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Tässä väitöskirjassa tutkitaan biopolymeerin (tyypillisesti DNA, RNA tai proteiini) translokaatiota ja
sedimentaatiota. Tutkimusparadigmana käytetään coarse–graining periaatetta ja tulokset saadaan eri
malleilla tehdyistä tietokonesimulaatioista.

Translokaatio eli biopolymeerien siirtyminen membraanissa olevan pienen raon läpi on yleinen prosessi
biologisissa systeemeissä. Translokaatioprosessin tavoiteltu kokeellinen sovellus on ultra-nopea DNA- ja
RNA-molekyylien sekvenssointi, joka mahdollistaisi mm. räätälöidyt lääketieteelliset hoidot. Polymeerin
translokaatiota on tutkittu intensiivisesti yli kymmenen vuoden ajan, mutta laajasta teoreettisesta työstä
huolimatta ajettuun tapaukseen liittyviä kokeellisia tuloksia ei ole pystytty selittämään. Ajetussa
translokaatiossa polymeeri siirtyy raon läpi ionivuon muodostaman sähköisen voiman avulla. Prosessi
voidaan jakaa (ainakin) kahteen dynaamisesti erilaiseen tapaukseen ajavan voiman suuruuden mukaan: se
etenee joko lähellä tai kaukana termistä tasapainoa. Tässä työssä nämä kaksi tapausta käsitellään erikseen
ja tehdään vertaileva selvitys niiden erottamiseen tarvittavista indikaattoreista. Lisäksi tutkitaan
hydrodynamiikan roolia prosessin aikana, joka osoittautuu dynaamisesti määrääväksi kaukana termisestä
tasapainosta tapahtuvassa translokaatiossa.

Sedimentaatio on gravitaation aikaansaama luonnollinen prosessi, jota voidaan ultrasentrifuugilla kokeellisesti
hyödyntää nopeutetussa muodossa. Prosessina se on samankaltainen kuin elektroforeesi. Tässä työssä
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1 Introduction

Nature has been the inspiration of philosophers and naturalscientists since the dawn of

Western philosophy. We are surrounded by the abundance of complex natural phenomena.

To deal with this complexity, we choose a coarse-graining approach [66] that is common

in natural and crucial in computational science1. It enables us to neglect a multitude of

insignificant details, and study the essential components of these phenomena. Hence, it

enables the use of tools of our respectful field of science foranalysis.

In this thesis, two natural phenomena, polymer translocation and polymer sedimentation,

are studied with the means of computational and statisticalphysics. This text has been

written as a part of the requirements for doctoral dissertation and, as such, meant to be

read by fellow physicists.

The aim of the coarse-graining used in this work is not to discover fundamentals (or pieces

of puzzle) that could be assembled in a constructionistic way to acquire the original sys-

tem (or puzzle), but instead discover the inherent properties that are characteristic to the

system. This philosophical point of view is explained by Anderson [5], who sees physics,

in general, as a study of symmetries. This idea of symmetries, and symmetry breaks

(such as phase transitions), appearing on different scalesof abstraction is close to pre-

viously introducedGeneral System Theoryby von Bertalanffy [84] as being a paradigm

for development of theories. In polymer translocation, it is easy to see that the system

symmetry plays a role, considering for example the ‘eternalstruggle’ of the external and

the inherent entropic forces of the system. We can ask: at what point does the equilibrium

framework break down when the force is increased? Do the longchains exhibit different

behavior, some kind of ‘long range symmetry breaking’, fromthe short ones?

The text is written using inclusively the pronoun ‘we’. Withthis the writer flexibly refers

1For the role of coarse-graining in the metaphysics of causation, see e.g. [74].
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to various groups of people. Typically the pronoun refers tothe members of the research

group with whom the article related to the subject at hand wasmade. However, at some

points the pronoun can be thought to consist of the writer andthe reader. Finally, this

choice was motivated to pronounce the cooperative interaction of the people that leads to

scientific excellence.

This text introduces and summarizes the study that has been done in the attached articles,

and proceeds as follows. In the first Chapter, the phenomena,polymer translocation and

polymer sedimentation, and literature concerning them, are introduced. In the second

Chapter, the phenomena are treated as systems, which can be coarse-grained into a model

of a single polymer that is computationally tractable and mathematically sound. The

inherent solvents of these systems are excluded at this point and explained in Chapter 4.

In the third Chapter, the concepts for analysis for the previously introduced models are

presented. In the fourth Chapter, the solvent is treated in different frameworks. In the

fifth Chapter, the results of this work are presented, meaning that the analysis of the

phenomena is made using the introduced concepts. Finally, in the sixth Chapter, the

conclusions of the work are drawn. The reader should be awarethat the subjects in this

text are presented rather in a pedagogical order than a chronological one based on the

order that the papers were published.

Let us begin by introducing the concept of a polymer.

1.1 Polymers and biopolymers

Polymers are molecules subject to complex intra- and intermolecular interactions com-

bined with many intramolecular degrees of motional freedom. The word ‘polymer’ orig-

inates from Greek, and literally means ‘many parts’. In fact, polymers are made up of

monomer repeat units. The degree of polymerization (DP), which ranges typically from

102 to 106, denotes the number of monomer units jointed together in a polymer. Natural
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polymeric materials consist of fossilic fuels, cellulose,amber, and rubber. Plastics con-

tain a lot of different synthetic polymers, PVC for example.Other synthetic polymers

also exist, for example, nylon and kevlar. Polymers are alsoabundant in biological sys-

tems. This subclass of polymers is referred to as biopolymers, and consists, for example,

of DNA, RNA, and proteins. Biopolymers are typically electrically charged, which is an

important property related to many biological phenomena. Because of the wide applica-

bility, it is not surprising that the study of polymers in different contexts has been, and

still is, intense.

A polymer can have various types of configurations, of which the three basic ones include

linear, branched, and network (cross-linked chains) configurations. In addition to weight,

DP and configuration properties, the morphology of the polymer is also an important

property and for example greatly influences the properties of thermoplastics. The poly-

mer morphology contains three basic classifications: amorphous, semi-crystalline and

crystalline. In this thesis, the attention is limited on amorphous linear chains, referred to

as ‘polymers’ for simplicity.

1.2 Polymer translocation

Sanger received a Nobel price in 1959 for a research work thatshowed, for the first time,

that proteins are composed of linear polypeptides formed byjoining amino acid recidues

in a defined, but apparently arbitrary order [71, 72]. The idea of a linear information

sequence was quickly adapted for DNA, leading to the first DNAsequencing experi-

ment to take place in 1968, and the discovery of the modern gel-based DNA sequenc-

ing method in 1977 [34]. The new method was used later-on in automated sequencing

factories hastening the completion of the Human Genome Project that was concluded

in 2003. Many spinoff projects2 were launched during and after the Human Genome

Project. Hopes for a new ultra-fast sequencing were lifted when Kasianowicz et al. [37]

2http://www.ornl.gov/sci/techresources/Human_Genome/research/spinoffs.shtml
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showed that measurements of the ionic current flowing through nanometer-scale pores

(nanopores) could be used to analyze single DNA and RNA molecules. Experimental

work on this so-calledforced polymer translocationhas been typically conducted by us-

ing fabricated solid-state [79, 46] pores orα-hemolysin (α−HL) pores in lipid bi-layer

membranes [56, 37]. Attempts at purely electronic measurements had trouble achieving

the signal contrast required for single nucleotide differentiation until 2007 [77]. A mul-

titude of theoretical and computational papers have been published since the start of the

ultra-fast translocation boom in 1996 (see Refs. of Articles I-IV).

In biology, the transport of biopolymers, such as DNA, RNA and proteins, through a

nano-scale pore in a membrane is a ubiquitous process. Similarities with the experimen-

tal forced polymer translocation exist. For example, in protein import into different cell

compartments, such as mitochondria, chloroplasts, and peroxisomes the translocation oc-

curs with the aid of a membrane potential [1]. One of the key questions has been, whether

the natural process is possible without any other mechanisms than the eletrophoresis [83].

In Fig. 1.1, protein import into mitochondrion is depicted3.

Figure 1.1: An example of polymer translocation. Left: a mitochondrion inside a cell.
The text inner membrane is encircled. Right: a lipid bilayerwith a translocase. A protein
that is translocating into thetransside, is represented by a yellow tube with a green front.
The words trans and cis come from the word transis.

3Left figure is from http://kconline.kaskaskia.edu/bcambron/Biology%20117/Cells.htm
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Many transport processes function without the biopolymer being strongly electrophoresed,

i.e. driven by a force, which has increased the interest on unforced polymer transloca-

tion [76]. Partly due to the the abundance of detailed processes adding to the complexity

of its dynamics, such as binding of specific proteins on either thecis or transside of the

membrane, and the effects due to the properties of the pore and the solvent, experimental

studies on unforced translocation are few [6] compared withthe abundance of available

computational studies, seee.g. [15, 47, 33, 22, 61, 31, 3, 28]. Another reason for the

abundance of computational studies is the paradoxal natureof the polymer translocation

problem. On one hand, it seems like a well-defined statistical-mechanical problem, where

familiar concepts of criticality such as universality can be applied. On the other hand, it is

a problem consisting of non-linearities such as anomalous diffusion and many-particle hy-

drodynamics. The problem is interesting for statistical physicists, and the non-linearities

provide a suitable need for computational research. However, polymer translocation is,

most importantly, a transport problem that, by definition, deals with finite size effects

that render the assumptions used for criticality questionable. The paradox of the problem

that exists between apparent criticality, and the finite size gives a conceptual challenge in

setting frames for this Thesis.

How these two processes, forced and unforced translocation, differ conceptually and oth-

erwise, will be discussed in Chapter 3. However, it is noteworthy to point out that both

of these mechanisms are relevant, for example, in the protein import mechanism into mi-

tochondria, which has been under intense study for almost two decades, see e.g. [85, 58]

and references there-in. The phenomena can be split into twoprocesses, transits through

the outer and inner membrane, of which only the latter has an electrical potential over it.

1.3 Polymer sedimentation

Sedimentation is a natural phenomenon induced by gravity, see Fig. 1.2. The process is

applied experimentally in a quickened form by the use of ultracentrifuges. Two different
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Figure 1.2: A cartoon depicting polymer sedimentation. Left: A solvent including an
added polymer is shaken. Center: The gravityg acting upon the polymer makes it sed-
imentate towards to bottom. The different parts of the polymer interact via the complex
fluid field that they exhibit. Right: The sedimentation process is ended as the polymer
reaches the bottom.

kinds of experiments are commonly performed on these instruments: sedimentation equi-

librium experiments and sedimentation velocity experiments. The first kind is concerned

only with the final steady-state of the experiment, where sedimentation is balanced by

diffusion opposing the concentration gradients, resulting in a time-independent concen-

tration profile. The experiment then describes the final stage of the process that corre-

sponds to the rightmost frame in Fig. 1.2. Unlike in the figure, centrifuge experiments

typically consist of multiple polymers. The second kind, like the simulations done for

this Thesis, aims to interpret the time-course of sedimentation, which is illustrated by the

middle frame of Fig. 1.2. Typical quantities of interest arethe shape and molar mass of

the dissolved macromolecules, as well as their size-distribution.

The rheological properties of polymer melts and solutions have been under intense study

for many decades due to their non-Newtonian hydrodynamic behavior and important ap-

plications in materials processing [10]. With the rapidly developing field of nano- and

microfluidics [59, 78], and their important application in “lab-on-a-chip” based technolo-

gies, it has become crucial to understand the behavior of single polymers under non-

equilibrium conditions. In electrophoresis, which is a process similar to sedimentation,

hydrodynamic shielding has been found important even at theoligomer range of poly-
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electrolyte chains, to produce correct dynamics [29].



8

2 Coarse-graining of molecular structures

In order to study the presented phenomena of polymer translocation and polymer sedi-

mentation, we coarse-grain the molecular structures.

2.1 From macromolecules into polymers

The basic idea behind coarse-graining is that any kind of long linear molecule, which can

even consist of about108 atoms (DNA) and different kinds of bonds, can be described by

fewer degrees of freedom depending of the details of the model. Using a coarse-grained

model, and comparing its behavior to the experimental results, it can be verified that all the

crucial mechanisms have been included in the model. When theunderlying mechanisms

are revealed, the parametric model can describe all polymers satisfying the assumptions

of the respective model. Coarse-graining is indeed needed,since the computationally

feasible amount of degrees of freedom, for our polymers, is of the order of103 or 104. An

example of polymer coarse-graining is demonstrated in Fig.2.1.

The length scale of polymers ranges from the order of nanometers up to the order of mi-

crometers. Thus the study of polymers incorporates concepts of classical physics such as

elasticity. In our study, where we ignore bending potentials, the primary quantity describ-

ing our model polymers is length, which is discretized into (homogenous) repeat units,

and the molecular structure is approximated by beads with mass and massless springs,

see Fig. 2.1. Here we note that the monomers of the coarse-grained model polymer (i.e.

beads) are different from the monomers of the macromolecule. The amount of beads, or

(computational) monomers,N adequately describes the contour length of the polymer,

when multiplied with the average spring (or bond) lengthb. The lengthb is determined

from the elastic properties of a real polymer, i.e. how the polymer responds to bending or
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Figure 2.1: A polymer (upper figure) is coarse-grained into Kuhn segments (lower fig-
ure). The beads represent the mass of the segments, and are labelled from1 to N . The
figure is from Ref. [39]. The repeat units, i.e. monomers, of the coarse-grained model
polymer are different from the monomers of the macromolecule. The former are also
referred to as beads.

twisting

b ≡
√

〈x2〉 (2.1)

of the lengthsx of the springs, see Fig. 2.1. The magnitude ofb depends on the choice

made for the potential used for springs. In this thesis, the classical concept of Kuhn

length is used. For a real polymer, the length of a Kuhn segment is taken just large

enough to permit ignoring any stereochemical restriction of the orientation of the Kuhn

segments relative to each other. In the polymer model, two adjacent particles or beads are

thus connected by a one-dimensional potential (i.e. the spring) that is dependent on the
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distance between the beads. No mutual orientation correlation exists between the beads.

The conformational statistics of such a freely jointed chain (FJC) ofN , whereN ≫ 1,

Kuhn segments is mathematically equivalent to a random walk. This changes if a self-

avoiding potential is included, although in the following it is still called a freely jointed

chain.

2.2 Freely jointed chain

The bead-spring chain, used as a coarse-grained polymer model, is computationally mod-

eled as point-like particles at coordinates{r1, r2, . . ., rN} that are connected by springs.

Unlike the springs, the particles have a massm. The total mass of the chainM is then

proportional to the degree of polymerization, or the amountof monomers,M ∼ N . Ad-

jacent monomers are connected with anharmonic springs thatare described by the finitely

extensible nonlinear elastic (FENE) potential,

UFENE = −K
2
R2 ln

(

1 − r2

R2

)

, (2.2)

wherer = |ri − rj | is the length of an effective bond between beadsi andj andR = 1.5

is the maximum bond length in our simulation units. The Lennard-Jones (LJ) potential

ULJ = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

, r ≤ 21/6σ

ULJ = 0, r > 21/6σ, (2.3)

is used between all beads of distancer apart. The parameter values were chosen as

ǫ = 1.2, σ = 1.0 = b andK = 60/σ2. The used LJ potential with no attractive part

mimics good solvent, i.e. the particles are soluble to the solvent. The spring equations

(2.2) and (2.3) contain only radial dependence, and thus describe a so-calledfreely jointed

chain (FJC), which is used in all the Articles from I to V. A widely used model that

extends the FJC model by including an angular dependence is called the worm-like chain

(WLC) [4]. An additiveε term may be added to the potential of Eq. (2.3), though the
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current form was also numerically stable and we obtained thecorrect swelling exponent

ν = 0.60 ± 0.02 in 3D.

2.3 Radius of Gyration

A flexible chain, such as the FJC, goes through different configurations even in equilib-

rium. In the canonical ensemble, the contour length of the polymer L = bN remains

constant, even if its configuration changes. One way to characterize the conformation of

the polymer is the end-to-end vector, which is written as

Ree =
N
∑

n=1

Rn. (2.4)

Here, the segment-to-segment vectorRn ≡ rn − rn−1. The Kuhn segments are defined as

not having any rotational restrictions, and thus〈Rn〉 = 0 for equilibrium random walk,

where the brackets denote an average over the distribution function

ψ(pn, rn) =
e
−β

»

p2n
2m

+U({rn})

–

Z
. (2.5)

Here,Z is the canonical partition function for the system, and is written as

Z =
N
∏

n=1

∫

dpndrn e
−β

»

p2n
2m

+U({rn})

–

. (2.6)

Another way to represent the size (or shape) of the polymer isto use the mean squared

radius of gyration [20]

R2
G =

1

N

N
∑

i

〈(ri − r̄)2〉, (2.7)

whereri is the location of the segmenti and r̄ = 1
N

∑

ri is the location of the center

of mass of the polymer. The advantage ofRG over Ree is that it is well defined even

for branched polymers, and it can be viewed as a value describing the radius of a sphere

occupied by the polymer.
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In equilibrium, the radius of gyrationRG and the end-to-end vectorRee scale identically

with respect toN [20]. We have a relation

〈R2
G〉 = C〈R2

ee〉 ≃ (Nνb)2, (2.8)

whereRee is defined by Eq. (2.4), andC = 0.1599 ± 0.0002 in 3D [45]. The self-

avoidance of the beads results in increased volume occupiedby the polymer (in contrast

to the ideal chain), and is described by the swelling exponent

ν =
log(RG)

log(N)
. (2.9)

In equilibrium, the exponent is universal, depending only on the dimension. In2D ν =

0.75, while in 3D ν = 0.5888, and it saturates to the mean-field exponentν = 0.5 in

4D and higher dimensions. Hence, dimension four is the upper critical dimension for

self-avoiding random walk.

2.4 Bi-layers and pores as planes and potentials

In Articles I to IV, the lipid bilayer that contains the nanopore through which the polymer

translocates is replaced by a mathematically defined plane.The pore model used by us

in Articles I–III is a homogeneous cylinder, whereas others[50, 49, 27, 25] have used a

wall of immobile (point-like) particles through which the pore is typically implemented

by removing a single particle, see Fig. 2.2. These differ in,for example, that the latter

implementation of the pore does not result in a potential that is homogeneous with respect

to the direction of the translocation velocity . Other pore models include both square [25],

and cylinder [8] shaped pores used in lattice Boltzmann simulations. Furthermore, com-

putational pore-polymer interaction studies include extending the pore diameter and the

LJ potential cutoff length in 2D so that an attractive potential between the polymer and

pore beads forms in the middle of the pore [48].

In Article IV, we have conducted a comparison of the two most widely used pore models,

the one made of immobile particles and our cylinder pore, seeFig. 2.2. The latter is more
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(a) (b)
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Figure 2.2: Schematic depiction of the two pore models. (a) The pores are viewed from
the trans side along thez-axis. The small red circle depicts the cylindrical pore of di-
ameter1.2σ. The bead pore is defined by the eight beads each at distance1.5σ from the
z-axis. The pore beads are drawn with circles using the LJ potential cutoff length21/6 as
their radius. The light blue area in the center of the pore indicates the region where poly-
mer beads have no interaction with the pore beads. In contrast, the cylinder pore model
has a damped-spring-like potential that acts on particles everywhere inside the pore. (b)
Side view. The polymer about to translocate (s = 1) is drawn as connected dots. The
potentials of the two pore models differ in both thexy-plane and along thez-axis.

aligned with the coarse-graining principle, being simplerand more minimalistic than its

counterpart. The latter was used in Articles I–IV, and is especially convenient as a model

since it can be easily generalized intod ≥ 2 dimension. In Articles I and III where the

stochastic rotation dynamics (SRD) model is used, the slit walls are also represented by

mathematical planes.

The cylindrical nanopore has a diameter of1.2 σ, whereσ = b. The forcef acting on

the beads inside the nanopore is constant and local for the pore, which models well the

experimental setups and biological systems, where solvents are good ionic conductors

thus eliminating any potential gradients outside the pore.The polymer beads inside the

pore are not coupled with hydrodynamic modes in any of our simulations. In the direc-

tions perpendicular to the cylindrical pore, beads inside the pore experience a damped

harmonic potentialUp, described by

−∇Up = fh = −kprx,y − Cpvx,y, (2.10)

wherekp = 100, Cp = 1, rx,y are the spring constant, the damping constant, and the
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position of polymer bead with respect to the center axis of the cylindrical pore, respec-

tively, andvx,y is the velocity component perpendicular to the pore walls. (In Article I

kp = 1000 andCp = 10.) ThusUp centers the polymer along thez-directional axis of

the pore. The potential is chosen large, so no hairpin configuration can enter the pore as

its width is effectively small. Hence, the polymer segment inside the pore remains rather

straight. In thez direction, the polymer beads experience either zero or finite friction

in the pore. The beads experience either a slip or a no-slip boundary condition, simula-

tions with both have been conducted. The no-slip boundary condition for the solvent (in

simulations where hydrodynamics was used) will be described in Chapter 4.

In Articles I–IV, the ionic current over the membrane, i.e. through the pore, is simulated

as a homogenous force field that acts only upon particles thatreside inside the pore. In

Article V, gravity is simulated as a force field covering the whole system. The force field

originating from the fluid properties, thermal motion, and the motion of solute particles

is treated with different approaches that are explained in Chapters 3 and 4.
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3 Concepts for analysis

After coarse-graining the polymer, we basically have a many-body system ofN inter-

acting particles. For these, we can write the equations of motion that we can use to

computationally investigate the time development of the system. A straightforward way

to implement dynamics for anN-particle system in a canonical ensemble is to include a

heat bath.

3.1 Fokker-Planck equation

To treat anN-particle problem analytically, we can use the Fokker-Planck equation

∂P ({rN}, t)
∂t

= −
N
∑

i=1

∂

∂xi
[Hi(r1, . . . , rN)P ({rN}, t)] (3.1)

+
N
∑

i=1

N
∑

j=1

∂2

∂xi ∂xj

[Dij(r1, . . . , rN )P ({rN}, t)] ,

which describes the time evolution of the probability density functionP ({rN}, t) of the

position ofN particles. HereH is the drift vector andD the diffusion coefficient in

tensor form. The former represents deterministic motion, while the latter results from the

presence of a stochastic (Brownian) force.

3.2 Langevin dynamics

If we neglect the hydrodynamic interactions between the particles, it suffices to simulate

the particles in a heat bath. One way to do so is to account for omitted degrees of freedom

by the use of stochastic differential equations. One typical approach is called Langevin

dynamics, which mimics the viscous aspect of the solvent, and it was used in Articles
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II–IV to model polymer translocation, since it is a computationally convenient method

to simulate the time development of the system. Specifically, our algorithm was the one

formulated by Ermak [4].

Consider a system ofN particles with massesm in coordinates{r1(t), r2(t), . . ., rN(t)}.

The time-development of such a system can be described by Langevin equations of the

form

mr̈i = −∇U({ri}) − ξṙi +
√

2ξkBTmR(t) , (3.2)

whereU({ri}) is the particle interaction potential,kBT is the Boltzmann constant times

the temperature, andR(t) is a delta-correlated stationary Gaussian process with zero

mean that is preceded by a prefactor that satisfies the fluctuation-dissipation theorem [65].

Specifically,R(t) is required to satisfy

〈R(t)〉 = 0 (3.3)

〈R(t)R(t′)〉 = δ(t− t′),

whereδ is the Dirac delta function. As we can see, the equations of motion (3.2) include

a time-dependent random variable that accounts for Brownian motion, and a friction term

ξ that mimics the viscosity.

3.3 Diffusive motion

The Fokker-Planck equation, Eq. (3.1), is quite general. A more intuitive form can be

achieved, for example, by considering a single particle in equilibrium. In equilibrium,

which is the limit of strong friction|ξv| ≫ |mv̇| for Langevin dynamics, the drift term

can be taken to beH = 0. Also, if the diffusion tensorD is isotropic and constant in time,

we obtain a diffusion equation

∂p(r, t)
∂t

= D∇2p(r, t), (3.4)
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where the diffusion coefficientD is a constant obtained from [65]

D =
kT

mξ
. (3.5)

Neglecting hydrodynamical effects, the diffusion coefficient for the center of mass of the

polymer scales asDcm ∼ N−1. This is referred to as Rouse diffusion. With Stokes’

approximation, using the Oseen tensor for hydrodynamical interactions,Dcm ∼ N−ν ,

yields Zimm diffusion [20].

The one particle diffusion coefficient can be obtained from simulations as

D =
1

d

∫ ∞

0

dt〈v(0) · v(t)〉, (3.6)

whered is the dimension of the system, and the brackets denote an average over the phase

space, i.e. time and simulations, hence assuming ergodicity. Typically, the ergodicity con-

dition is somewhat relaxed when, for example, Lennard-Jones particles are considered.

Here the bracketed quantityCt ≡ 〈v(0) · v(t)〉 is called the velocity autocorrelation func-

tion, and the special caseC(t = 0) yields the familiar result of the equipartition theorem

〈v2〉 = dkT/m. For a Brownian particle in equilibrium the information about the initial

velocity decays exponentially [65]

〈v(t2) · v(t1)〉 =
kT

m
exp

(

− ξ

m
|t2 − t1|

)

. (3.7)

In addition to being interesting fundamental physics, Eqs.(3.5), (3.6), (3.7) can be used

(as tools) to test the validity of computational models in equilibrium. The analytically

obtained value forD of Eq. (3.5) should match the computationally obtained value of

Eq. (3.6). Also, any equilibrium computational model should yield the exponential decay

of Eq. (3.7). These tools have been used to verify the models used for this Thesis. In

addition, Eq. (3.6) can be used for various purposes even outside equilibrium. In article

V, we determine aneffectivediffusion coefficient for the center of mass of the polymer

that is a result of complex coupling of hydrodynamical modesin the absence of thermal

motion.

The self-avoiding effects in the diffusive transport of a single polymer turn out to affect

the characteristic length scale. The average time for a freepolymer to diffuse its own
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length in equilibrium is

τ =
R2

G

D
∼ N1+2ν , (3.8)

sinceRG ∼ Nν , andD ∼ N−1 with Rouse dynamics. Eq. (3.8) provides a lower limit

for the scaling of the transport time, also in polymer translocation [36]. In the limit of no

excluded volume, the scaling of Eq. (3.8) would giveτ ∼ N2.

3.4 Single polymer chain in equilibrium framework

A system that is (or is assumed to be) in thermal equilibrium can be treated in the equi-

librium framework. Based on the equiprobability of the states of the system, the idea is

to write a partition function that keeps track merely of the amount of states. The sys-

tem is then fully described, except for the time scale of diffusive dynamics or possible

fluctuations. Even introducing small perturbations to the system is allowed, since by

the fluctuation-dissipation theorem the system has a self-relaxing property that works to

restore the equiprobability of the states.

Let us consider a free polymer with fixed number of monomersN , i.e. a canonical ensem-

ble. Assuming Boltzmann weights for particles in a heat bathwith a constant temperature

T , we can write the partition function as

ZN =
N
∏

i=1

∫

dpndrn exp

(

−β
∑

n

[

p2
n

2m
+ U({rn})

]

)

, (3.9)

whereU({rn}) is a potential acting on the beads, andβ = 1/kBT . Typically, one can cal-

culateZN from Eq. (3.9) for simple systems, such as the ideal gas, by direct integration.

Unfortunately, ifU contains self-excluding terms, like in our case, we cannot solve the

location dependent integral in Eq. (3.9) directly. However, another approach is possible.

If we consider a random walk (that is an ideal chain forN ≫ 1) in a d-dimensional
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lattice, the partition function can be straightforwardly calculated as

ZN = µN , (3.10)

whereµ = 2d is the connective constant describing the degrees of freedom of each parti-

cle. The addition of exclusion effects (no overlap of particles) alters the effective dimen-

sion of the system. A correction term is added to the partition function of Eq. (3.10) so

that

Z(N) = µNNγ−1, (3.11)

and the value ofµ is altered. Here,γ is the so-called surface critical exponent. For

an ideal chainγ = 1, and Eqs. (3.10) and (3.11) are equivalent. The self-avoiding

polymer chain was theoretically shown to yield the same universality as the self-avoiding

random walk by de Gennes [19]. The value of the connective constant, which describes

the degrees of freedom of a particle, is bounded from above byµ ≤ 2d (ideal chain), and

from below byµ ≥ d (diffusion only towards positive axes). The limit value is defined as

µ ≡ limN→∞ µN , whereµN = c
1/N
d , and the value ofcd is the lattice self-avoiding walk

(SAW) enumeration [51]. The best bounds forµ and values forγ are listed in table 3.1

for dimensions one through five. The critical exponentγ is altered for a grafted chain that

is anchored from one end to a wall, hence residing in a half-space. Additionally, the value

for the swelling exponentν is presented in different dimensions. Connective constants4

and exact enumerations5 for SAW can be found in electronic form.

3.4.1 Translocation between two equilibria

The key idea presented by Sung and Park [80], and Muthukumar [57] is to assume two

separate equilibria that each contain a grafted polymer chain, i.e. a polymer attached to

a wall from one end. These chains have lengths ofs andN − s, wheres is the reaction

coordinate andN is the total length of these two parts, see Fig. 3.1. The system entropy,

4http://mathworld.wolfram.com/Self-AvoidingWalkConnectiveConstant.html
5http://www.ms.unimelb.edu.au/∼iwan/saw/SAW_ser.html
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d µ γ γ′ ν

2 [2.62002, 2.679192495] 43
32

61
64

3
4

3 [4.572140, 4.7476] 1.162 0.69 0.588

4 [6.742945, 6.8179] 1 1
2

+ corr

5 [8.828529, 8.8602] 1 1
2

Table 3.1: In self-avoiding random walk, values for the connective constantµ and the
surface critical exponentγ in dimensiond [9, 24, 60]. Values for a grafted chain in half-
space, denoted here asγ′, are also given. Ford ≥ 4, γ = 1. Logarithmic corrections
denoted bycorr are made to the swelling exponentν in d = 4. Refs. [13, 17, 45, 51]

Figure 3.1: A schematic representation of the equilibrium polymer translocation. The
chain length isN − s segments on the cis side ands segments on the trans side.

S = kB lnZ, where the partition functionZ is obtained using Eq. (3.11):

Z(s,N) = Z(s)Z(N − s) (3.12)

= µN [s(N − s)]γ−1 . (3.13)

The (Helmholtz) free energyF = U − TS can now be written as

Fs

kBT
= N lnµ+ (1 − γ) ln s(N − s) +

s∆µ

kBT
, (3.14)
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where∆µ is the excess chemical potential per segment of thetransside relative to that of

thecis side. Thefe derived from the free energy of Eq. (3.14) is written as

fe

kBT
= − ∂

∂s

Fs

kBT
(3.15)

= (γ − 1)

[

1

s
− 1

N − s

]

− ∆µ

kBT
. (3.16)

The forcefe then contains two competing terms, the first, entropic term related tokBT

and the second, deterministic term related to∆µ. The external driving forcef that we use

as a control parameter in our simulations is connected to thechemical potential difference

asf ∼ ∆µ. For unforced translocation, the control parameterf = 0.

The close-to-equilibrium criterion requires that the ratio of the translocation time and the

(equilibrium) relaxation time of the polymer is small,τ/τr ≪ 1. We shall discuss this

ratio of times, as well as the relation of the entropic and deterministic terms, when we

investigate the translocation process with simulations inChapter 5.

3.4.2 Kramer’s escape

When it was discovered that the previously presented equilibrium framework yielded

unphysical results from the scaling of the translocation time with respect to the polymer

length [15], the door was again open for other theories. Ratecalculations and specifically

the Kramer’s escape problem was one potential candidate forsolving the problem. Hence,

we will briefly outline this specific problem before we try to apply it. For comprehensive

literature about Kramer’s work and rate calculations, see e.g. [32] and references there-in.

Consider independent Brownian particles in a potentialU(x), which has a shape shown

in Fig. 3.2. Let us assume that the potential well is deep and that initially the particles are

in the well. Physically, the particles are expected to reacha close-to-equilibrium state,

but leak out slowly across the barrier. What is the rate at which this escape takes place?

This is the Kramer’s escape rate problem.
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a

c

d

U(x)

b

x

Figure 3.2: The generic shape of the potentialU(x) used in Kramer’s problem as a
function of the locationx. An infinite potential walla keeps the particles from escaping
towards left. A wellb is formed between the wall and a potential barrierc. The ensemble
of particles in the well is close to equilibrium, as the particles slowly leak over the barrier
into a state with lower potentiald. The ingenuity in the formulation of Kramer’s problem
is that we do not have to know the exact shape of the potentialU(x). It suffices thatU(x)
has this kind of a shape.

The Langevin equation for the particles in the overdamped limit, in which the inertial

termmv̇ is omitted, is written as

ξv = −∂U(x)

∂x
+ fr(t), (3.17)

wherefr(t) is the random force. The corresponding Fokker-Planck equation for the prob-

ability densityP (x, t) is given by

∂P (x, t)

∂t
=
∂

∂x

[

1

ξ

∂U

∂x
P (x, t)

]

+D
∂2P (x, t)

∂x2
(3.18)

=
∂

∂x

[

1

ξ

∂U

∂x
P (x, t) +D

∂P (x, t)

∂x

]

(3.19)

= − ∂J

∂x
, (3.20)
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whereDξ = kBT andJ is a probability density current

J = − 1

ξ

∂U

∂x
P (x, t) −D

∂P (x, t)

∂x
. (3.21)

After some algebra and a couple of saddle-point approximations [32], we essentially ob-

tain theKramer’s escape rate formula

Rkr =
D

2πkBT
[U ′′(b)|U ′′(c)|]

1

2 exp

[

− Ec

kBT

]

, (3.22)

whereEc = U(c)−U(b) is the barrier height. If the barrier height is raised, the escape rate

falls off exponentially. The usefulness (or generality) ofEq. (3.22) comes from the fact

that we only have to know the value ofU(x) at two points,x = b andx = c. However,

the formula only applies in theEc ≫ kBT regime, because of the assumptions we have

made.

The application of Kramer’s problem to the problem of polymer translocation can be at-

tempted in two ways. The abstract entity of an ‘escaping particle’ can either be a single

monomer or the polymer as whole. In the first case, the potential U = U({xj}) experi-

enced by particlei is dependent not only on its own location but on the location of all the

other particles as well. Hence, the assumption that the particles are independent cannot

be satisfied. In the second case, the entropic potential of the polymer has a hilltop shape,

which is completely different from what is required for Kramer’s problem, see Fig. 3.2.

The entropic potentialU(x) thus lacks the infinite wall that would confine the polymer

into an entropic well. This deficiency can be compensated in two ways.

The infinite wall potential can be added toU(x) by either restricting the first bead from

being sucked into the pore [22, 21], or restricting the system space of thecisside. Polymer

translocation from confinement has been studied in both planar [62] and spherical geome-

tries. The latter is relevant especially in biological processes, e.g. bacteria inserting their

DNA into living cells, which is often referred to as capsid ejection [40, 2]. However,

these additions alter the system so fundamentally that the original problem what we wish

to study becomes unaccessible. Moreover, in the limit of strong confinement the poly-
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mer translocation is confinement driven [12], and thus in conflict with the equilibrium

assumptions used in Kramer’s problem.

3.5 Steady-state

The equilibrium framework offers an abundance of powerful tools [65]. Perturbation

methods can expand some of these to cover non-equilibrium systems. One such method

that uses the close-to-equilibrium assumption was the previously introduced Kramer’s

escape problem. In some cases, the statistical mechanical treatment can be extended to

steady assemblies even if they are far from equilibrium [81]. The concept of equilibrium

is then replaced by a so-calledsteady-state, and the statistical definitions of macroscopic

quantities like temperature and chemical potential reduceto suitable averages over the

local assembly. In other words, a system in a steady state has(numerous) properties

whose averages are not changing in time. Systems with similar macroscopical properties,

e.g. temperature, arecompatibleand can be brought together without any change in those

properties [81]. However, there are restrictions tocompatibilityfor systems that contain

many-particle interactions.

If we consider our bead-chain polymer model, monomers cannot be taken as non-interacting

particles. Hence, the sedimenting single polymer chains, studied in Article V, are not

compatibleto be brought together in the sense that the macroscopic properties of the

steady-state would be conserved. In other words, single polymer chains in the dilute

limit, where chain-chain interactions are negligible, areprone to have fundamentally dif-

ferent dynamical behavior than a system with more than one sedimenting chain would

have.

In the polymer sedimentation problem of Article V the polymer resumes a settling veloc-

ity when the gravitational force is balanced by the viscous forces of the fluid. When the

polymer has reached this settling velocity, we say it is in a steady-state for the purpose
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of measuring some local quantities, e.g. the temperature and the radius of gyrationRG.

For these, it is possible to determine a time-average, and thus combine data from differ-

ent simulations to obtain the average. Hence, we assume thatsince the polymer actively

tumbles through different configurations, it does not get stuck in any distinct area of the

phase-space.

The average of the radius of gyration, that is constant in time, will turn out to be coupled

with the hydrodynamical drag, with the time-dependent conformations resulting in fluc-

tuations in the settling velocity. These velocity fluctuations can be considered through

a concept of local temperature, as they show as a measurableeffectivediffusion for the

center of mass. We shall return to this problem in Chapter 5.
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4 Fluid dynamics

The study of the deformation and flow of matter – rheology – largely determines the

dynamics of many biological structures. Hence, the implementation of hydrodynamics

in a computational method is of high importance. However, this is not straightforward

as any computational study is a compromise between two needs. First, the description

of the structure and dynamics of the studied object should bedetailed enough to allow

for the observation of essential mechanisms, and second, the studied system sizes should

be large enough to reach the experimentally relevant scales. There is no unique way to

make this compromise, and therefore multiple methods with different pros and cons are

generally employed.

In the preceding chapter, we discussed the Brownian heat bath, where hydrodynamics was

completely ignored. However, it is common knowledge that hydrodynamics contributes

even to equilibrium dynamics by adding long–range correlations between the suspended

particles. This shows in, for example, polymer relaxation times [20]. If a sufficiently large

external force is applied to a system, the system is no longerin equilibrium, and the Brow-

nian motion becomes less important as the external force increases. In the limit where

the thermal Brownian motion is negligible, hydrodynamics dominates. In the following,

we shall discuss how the above–mentioned compromise between the level of detail and

computational efficiency is coupled to the inclusion of hydrodynamics from the micro-

scopic level to the macroscopic continuum limit, where the fluid is no longer presented

by particles but by a field.

Microscopically, hydrodynamics can be correctly implemented only in the microcanon-

ical ensemble, which preserves momentum. Using molecular dynamics, e.g. the GRO-

MACS [23], to preserve the detailed interactions easily makes larger systems computa-

tionally intractable, thus making it impossible to investigate phenomena that show only

on larger length scales. By a so-called dissipative particle dynamics [30] hydrodynam-
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ics can be implemented judiciously and the detailed description of molecular dynamics be

preserved, but if the simulated system does not allow for some additional coarse-graining,

also dissipative particle dynamics tends to be prohibitively slow. The by now traditional

coarse-grained complex fluid simulation method is the lattice Boltzmann method [7]. Its

hybrid form where molecular dynamics is used to simulate objects like polymers in the

solvent has proven relatively versatile [55].

The hybrid methods solve simultaneously the equations of motion for the particles and

take into account the fluid in some coarse-grained manner, employing two time scales

to achieve computational efficiency. Two of the models used for this Thesis, a coarse-

grained complex fluid simulation method called the Stochastic Rotation Dynamics (SRD)

used in Articles I and III, and a Navier-Stokes solver using the so-called immersed bound-

ary assumption used in Article V, are both of hybrid form. These models differ from each

other, and also from lattice Boltzmann method. For example,the particles describing

the solvent dynamics in SRD are not restricted to lattice sites, as they are in the lattice

Boltzmann method. SRD will be discussed in detail in Section4.5.

In the continuum limit, the microscopic degrees of freedom are summed up in a field

that describes the collective motion of the fluid [44]. The fluid field can then be simu-

lated with a Navier–Stokes solver. In Article V, we employ such a solver with immersed

boundaries [43, 42], i.e. that the fluid is assumed to fill the whole simulation box includ-

ing the particle locations. We shall refer to it as the IB method in the following where we

briefly introduce the macroscopic treatment of hydrodynamics.
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4.1 From conservation laws to hydrodynamics

Assuming that the mass cannot be created or destroyed, we obtain the balance equation

for mass, i.e. the continuity equation [44]

∂ρ

∂t
+ ∇ · (ρu) = 0, (4.1)

which states, that the change rate of mass inside a volume is equal to the mass flux through

the surface of that volume. For incompressible fluid the density ρ is constant and the

above equation reduces to

∇ · u = 0. (4.2)

Let us consider an arbitrary fluid element in an incompressible Newtonian fluid, with a

volumeV and surfaceS. The stress tensorσ is defined as [44]

σ = −p1 + η
(

∇u + (∇u)T
)

, (4.3)

where1 is a second rank unit tensor, andp is the pressure. The viscosityη, which is

the ratio between stress and the deformation, is assumed constant for a Newtonian fluid.

The balance equation for momentum, in the coordinates of thefluid element, can now be

written as [44]

ρ
Du
Dt

= ∇ · σ + ρ f, (4.4)

wheref is the external force field. As noted before, for systems thatare driven by a strong

external force the thermal Brownian motion is negligible. Switching back to laboratory

coordinates and by combining Eq. (4.3) and (4.4) we get the Navier-Stokes equation for

the incompressible Newtonian fluid [44]

∂u
∂t

+ (u · ∇)u = −1

ρ
∇p + ν∇2u + f. (4.5)

Hereν = η/ρ is the ratio between the viscosity and the density, known as the kinematic

viscosity. As in any other physical problem, the boundary conditions are a vital part of

fluid mechanics, since material interfaces have certain properties that cannot be ignored.

The typical physical boundary condition that is used in fluidmechanics is the no-slip
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condition. It is the analog of the constitutive relations (the stress tensorσ defined in

Eq. (4.3) and heat fluxq = −k∇T , wherek is the thermal conductivity) and only

holds when at least one material is a Navier–Stokes fluid (i.e. it obeys the Navier–Stokes

equation) [44, 18]. The no-slip condition states that the microscopic fluid element residing

on the surface of the particle does not have any movement relative to the surface, i.e. it

moves with the surface.

The no-slip condition is inherent to both the SRD and the IB methods. In the first, the slit

walls pose a strict no-slip condition to the fluid particles.The solute particles, in the first

and in the latter, are imposed to such interactions with the fluid that the no-slip condition

can be seen fulfilled. In addition, thermal fluxes are out of the scope of this Thesis, as it is

assumed for all our models that the temperature varies slowly (if at all) so that no thermal

convection occurs.

4.2 Reynolds number

Problems that require computational approach typically deal with non-linearity. For hy-

drodynamics, the non-linearity of the Navier-Stokes Eq. (4.5) is described by the dimen-

sionless Reynolds number

Re =
V Lρ

η
, (4.6)

whereV andL denote the characteristic velocity and length scales in thesystem andη is

the viscosity. The Reynolds number is an estimate of the ratio of the inertial(u · ∇u) and

viscous(η/ρ∇2u) terms in Eq. (4.5) presented in laboratory coordinates. Eq.(4.4) that

is in the coordinates of the fluid particle can be presented ina dimensionless form, as a

function of Re. For this purpose, we may introduce dimensionless variables (denoted by

tildes) as follows

u = V ũ, t =
L

V
t̃,

∂

∂x
=

1

L

∂

∂x̃
, p = ρV 2p̃, f =

V 2

L
f̃. (4.7)
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Here V andL are the above–mentioned characteristic velocity and length scales that

the flow has. Substituting these into Eq. (4.4), and droppingthe tildes, we obtain the

dimensionless Navier-Stokes equation

Du
Dt

= −∇p + f +
1

Re
∇2u, (4.8)

where Re= V L/ν is the Reynolds number as presented in Eq. (4.6). It should benoted

here that in the IB method used in Article V, the single particle Re= 0.25 that we keep

fixed could, in fact, be used as a control parameter. For SRD, we have approximated

in Article I that the single particle Re= V L/ν ≃ 0.005 in forced translocation with

ftot = 3, N = 100, V = 0.004, andL = 1. The kinematic viscosity for the bead used

here is four times the one of the fluidν = 3.1, which is derived in Section 4.6. The whole

polymer’s Reynolds number is naturally larger (and dependent on the chain lengthN),

since the polymer has a different characteristic length scale than a single particle.

4.3 Stokes approximation

Neglecting the inertial term(u · ∇u) from Eq. (4.5), we end up with an approximation

Re = 0, which is the so-called Stokes approximation. This approximation linearizes the

Navier-Stokes equation (Eq. 4.5) and allows further analytical treatment. The equation

thus reduces (when inertial and temporal acceleration∂u/∂t terms are ignored) to the

Stokes equation

−η∇2u = −∇p + ρf. (4.9)

With this approximation the problem of a single, non-Brownian, spherical particle of

radiusa and mass densityρp settling steadily in a gravitational field of strengthg through

an (incompressible) viscous fluid of mass densityρ = ρp − ∆ρ and shear viscosityη can

be solved. The viscous force6πηau acting on the particle is balanced by the gravitational

forcemg = ∆ρa3g. The sphere then assumes a steady settling velocity

u ≡ 2

9
a2∆ρg/η, (4.10)
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where the fluid velocity field

u(r) ∼ 1

r
, r > a (4.11)

decays very slowly as a function of distancer from the center of the sphere. A finite

Reynolds number increases the decay dramatically.

The polymer in the sedimentation problem of Article V may be thought to be approx-

imately a settling particle, whose hydrodynamic radius is represented by the radius of

gyrationRG that was introduced in Section 2.3. In the forced polymer translocation,

Storm et al. [79] considered the polymer as a particle of a radiusRG that is pulled to-

wards the pore so that the pulling pore force is balanced by the hydrodynamic drag of a

particle with radiusRG. However, this qualitative picture turned out to be inadequate, and

a more suitable description was later given by Sakaue [69] and tested by us in Article I.

4.4 Péclet number

The Péclet number Pe= V a2/D is a dimensionless quantity measuring the relative im-

portance of flow and thermal diffusion in a suspension. Consider a Brownian sphere of

radiusa that has a buoyant weight (i.e. weight minus the weight of solvent displaced)

∆mg, whereg is the acceleration due to gravity and∆m is the buoyant mass, settling

through a viscous fluid at temperaturekBT in energy units. The Péclet number for this

particle is obtained as [64]

Pe =
∆mga

kBT
, (4.12)

since the settling velocityu = mgζ andD = kBT/ζ from Einstein relation, whereζ

is the coefficient of the viscous drag on the fluid. Eq. (4.12) is seen to be simply the

effective gravitational potential energy difference across a height equal to the particle

radiusa, scaled by the temperature. A system in which Pe is exceedingly large,102 or

more, the Brownian motion can be neglected [64]. The densitydifference between the

particles and fluid∆ρ in the IB method used in Article V is1.5 times the density of the



32

fluid, thus∆ρ = ρp − ρ = 1.5ρ. Let us consider a suspension in the room temperature

(T = 293K), in which Pe = 100, for example. This would mean that the sedimenting

particles (assumed to be spheres) of Article V would have a radius of about1.6µm and a

mass of2.5 × 10−14kg.

4.5 Stochastic Rotation Dynamics

The Stochastic Rotation Dynamics (SRD) – also called Multi-Particle Collision Dynam-

ics – method was introduced by Malevanets and Kapral [52, 53,54]. It is essentially a

simplification of molecular collision dynamics yielding the correct hydrodynamic equa-

tions over long distances. By construction, the dynamics conserves mass, momentum,

and energy. The algorithm consists of two phases, namely free streaming of the fictitious

fluid particles and simplified collisions among them. For a system ofQ fluid particles the

free streaming step reads as

ri(t+ ∆t) = ri(t) + vi(t)∆t, (4.13)

whereri(t) andvi(t) are the position and the velocity of particlei ∈ [1, Q], respectively,

and∆t is the time step of the algorithm. The free streaming is followed by the simplified

collision step

vi(t+ ∆t) = R[vi(t) − vcm(t)] + vcm(t), (4.14)

whereR is the rotation matrix andvcm is the center-of-mass velocity. At each time

interval the rotation axis is picked randomly, so that the rotation angleα = 3π/4 is kept

constant. In order to maintain molecular chaos, several different rotations have to be

performed at different positions in the system. The simulation space is divided into cells,

which are shifted randomly in the periodicy-direction between the time steps. Shifting

ensures Galilean invariance at low temperatureskT ≪ 1 [35]. An individualR is defined

for each cell, and accordingly for each cellvcm is then defined as the center-of-mass
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velocity of particles belonging to that cell, i.e.

vcm =

∑Q′

i=1mivi(t)
∑Q′

i=1mi

, (4.15)

whereQ′ is the number of particles in the cell andmi is the mass of particlei. Hence

the collision step, Equation (4.14), for each cell can be viewed as first eliminating the

collective motion of the particles in the cellvi(t) − vcm(t), then rotating the resulting

random velocities to mimic collisions, rescaling them so that the equipartition theorem

condition
Q′
∑

i=1

1

2
mi [vi(t) − vcm(t)]2 = Q′ 3

2
kT (4.16)

is met and finally adding back the collective motion. The computational efficiency is thus

obtained by taking the fluid particles’ collisions into account statistically as an average

over an ensemble of fictitious fluid particles.

Due to the simple coarse-grained fluid dynamics, implementation of a hybrid SRD, where

the dynamics of the object under investigation is performedin more detail, is straightfor-

ward. The particles belonging to the investigated solute structure, such as the beads of

a polymer, perform both molecular dynamics and SRD dynamics, and are thus coupled

to the solvent. Accordingly, each solute particle is treated exactly like a solvent parti-

cle inside a cell. Additional computational efficiency is gained if the modes of motion

of the solute and the solvent particles are well separated, by demanding that the masses

of the solvent and solute particles differ. In the model usedfor Articles I and III, the

solvent polymer beads are four times heavier than the fictitious solvent particles, which

in a situation where the system geometry does not tend to decouple polymer from the

solvent allows us to perform one SRD step for only every500 molecular dynamics steps.

However, due to the nature of the polymer translocation problem, the SRD steps are per-

formed more often, once for every50 molecular dynamics steps. This choice for the time

parameter will be shortly justified.

The basic geometry used in the simulations for Articles I andIII is a simulation box of

Lx×Ly ×Lz, whereLx = 25 andLy = Lz = 32 in cell lengths. Having a fluid density of
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5 solvent particles per cell, this equals to having approximately 128000 solvent particles

in 25600 cells, in total. The simulation space is bounded by two wallsperpendicular to the

x direction. No-slip boundary conditions are applied between the walls and the solvent

by reversing the velocity vectors of colliding particles, and the system is periodic in they

andz directions. However, the space is divided in two equally large compartments by a

wall on thexy-plane. The polymers immersed in the solvent have segment lengths around

1, so typically there are from1 to 3 polymer beads in one cell.

4.6 Schmidt number

The importance of hydrodynamic transport compared to diffusion can be characterized

by the Schmidt number,Sc. It is defined as the ratio of momentum diffusivity (viscosity)

to mass diffusivity, i.e.Sc = ν/D, whereν is the kinematic viscosity. Most importantly,

the Schmidt number distinguishes the dynamical behavior offluidsSc ≃ 102 − 103 from

that of gasesSc ≃ 1 [11]. In order to make accurate simulations, it is a good ideato verify

that a model solvent represents what it is supposed to, whichin this case is water. The IB

method used in Article V does not contain thermal diffusion,so the Schmidt number is

large (or infinite) — describing a liquid. For SRD, the total viscosityη = ρν consists of

two terms [38, 35]

η = ηkin + ηcol, (4.17)

where

ηkin =
kBTρ∆t

a3

( 5ρ

(4 − 2 cosα− 2 cos 2α)(ρ− 1)
− 1

2

)

, (4.18)

ηcol =
m(1 − cosα)

18a∆t
(ρ− 1) (4.19)

are the kinetic and collisional contributions. The Schmidtnumber can be adjusted with

the choice of the collision time step∆t [67]. For our choice of parameters used in Articles

I and III (m = 4, α = 3π/4,∆t = 0.1, a = 1, ρ = 5, kBT = 1), we haveηkin ≃ 0.33,
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andηcol ≃ 15.2. Hence, the total viscosityη ≃ 15.5, and the kinematic viscosityν ≃ 3.1

for the solvent.

To obtain the Schmidt number, we also need to measure the diffusion coefficientD from

our simulations. We consider a best–case scenario for the diffusivity of the solvent, by

measuring the diffusion coefficient of a single monomer particle with m = 16, instead

the one of a solvent particle withm = 4. We obtainDi ≃ 0.05 from the mean-squared

displacement for each componenti in three dimensions. FromD =
∑

iDi ≃ 0.15 we

obtainSc ≈ 20, which could now be four times lower for the sole solvent, since the solute

monomer particles are four times heavier than the solvent particles. Judging from this, the

solvent in our simulations describes a dilute liquid. However, sinceSc ∼ 1/(∆t)2 [67],

the Schmidt number for this model may be increased to obtain abetter accordance with

water (containing salt). This is done by decreasing the timestep∆t with the caveat that

computational efficiency is sacrificed concurrently.

4.7 Finite–size effects

Models that employ hydrodynamics typically have periodic boundary conditions to allow

the formation and development of hydrodynamic modes at the longest possible length

scale, which is the system size. In these cases, where the modes cross the periodic bound-

aries, it is crucial to distinguish actual physical behavior from model specific artefacts.

All models need to be tested againstfinite–size effects, since any phenomenon that ap-

pears simply because the simulation box is too small is unphysical. In other words, we

need to make sure that the size of the simulation box is large enough so that the finite–size

effects are avoided.

With hydrodynamics, the primary concern is that the modes might couple through the mir-

ror images of the simulation box and be unphysically strong.In our SRD translocation

model, the slit walls on which the no-slip boundary condition is imposed effectively hin-
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der forming of any periodic modes in they-direction, and block them in thex-direction.

Moreover, the pore wall restricts the fluid from forming periodic hydrodynamic modes in

thez-direction, as even the pore is inpermeable to the fluid. Therefore, even when the box

has periodic boundaries, periodic hydrodynamic modes are not allowed in the direction

of the pore force. Somewhat in accordance, from our results concerning Articles I and

III, a stronger finite–size effect than the potentially unphysical coupling of hydrodynamic

modes resulted from the physical confinement of the polymer chain. Roughly, the re-

quirement for the simulation box size is that a sphere of radiusRG fits easily to thecis

side of the pore wall.

For the IB-method used in Article V, the system box of the computational model was

also tested against finite–size effects, since periodic boundaries were used in all three

dimensions. Too small a box was seen to alter both the static properties, such as the radius

of gyrationRG, and dynamic properties, such as the terminal settling velocity vlim and

effective diffusion coefficientD, of the steady–state. While in steady–state, the settling

polymer induces a backflow in the fluid, see Fig. 4.1. This figure is a snapshot illustration

of thexz-plane, wherez is the direction of the gravity, and the colors represent values

cx,z from a norm imposed to the velocity of the fluid. Namely,

cx,z =
∑

y

[u(x, y, z)]2, (4.20)

whereu(x, y, z) is the fluid velocity in the grid point{x, y, z}. In Fig. 4.1, colors from

highest to lowest value ofc are red, yellow, light blue, and dark blue. Finally, the simula-

tion box was chosen so large in the gravitational direction that the terminal velocityvlim

would not couple to the backflow of the polymer’s own image. Inorder not to endlessly

add more and more energy to the system, the algorithm is constructed so that the average

fluid velocity is substracted from the fluid velocity in each grid point [43].
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Figure 4.1: A snapshot of a system with a polymer of lengthN = 64 from the IB-
method. The velocity field of the Navier-Stokes fluid is visualized by colors. The fluid
is moving faster in the yellow and red spots than in the zone ofblue color. This figure
contains only information extracted from the fluid velocityfield. We can identify some of
the particle locations in the figure due to the immersed boundary condition, since the fluid
and the particles travel at same velocity at these locations. The lighter blue arc following
the polymer is the backflow. The figure does not display the whole simulation box.
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5 Results

This Chapter contains the essential results presented in Articles I–V. The research in the

polymer translocation reported in Articles I–IV is first reviewed by using the concepts

introduced in Chapter 3. In particular, the equilibrium framework is invoked. Afterwards,

the study of the sedimenting polymer in a steady–state far from equilibrium, reported in

Article V, is outlined. Here, the emphasis is on the interplay between hydrodynamics and

the polymer configuration.

5.1 Polymer translocation

The forced polymer translocation, which is relevant for e.g. ultra–fast DNA sequencing,

has been said to be so well–studied experimentally that onlythe weak force regime was

left for theoretical studies [41]. Close to equilibrium, when the driving force is weak,

the transport mechanism is explained by the equilibrium framework (see Chapter 3). In

translocation studies, however, the definition of a weak force is typically superficial. For

example, requiring thatftotbN/kT ≪ 1 does not give quantitative information on how

the simulation parameterftot should be set. Rigorously, the only way then is to test the

equilibrium assumption. Otherwise, misinterpretations are possible. One example of this

is to assume that equilibrium concepts apply also for strongforces,ftotb/kT = 1 in

Ref. [21].

In spite of the above statement in Ref. [41] several questions were, however, left open for

theoretical studies. We will consider these in Section 5.1.2, after the critical evaluation of

the equilibrium paradigm.
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5.1.1 Critical evaluation of the equilibrium paradigm

At the time Article II was written, most of the computationalresearch in polymer translo-

cation was founded on the papers of Sung and Park [80] and Muthukumar [57], which

use the equilibrium framework. Assumptions based on the equilibrium theory,e.g.the ef-

fect of the pore force and hydrodynamics, carried over to computational studies. Among

other things, this hampered scientific dialogue as authors finding results inconsistent with

the theory started arguing about the rigor of various results. Moreover, the research com-

munity was split in roughly two distinct camps. When others attempted to cement the

universality of the forced translocation by pinning down the critical exponent(s), others

tried to distinguish between the equilibrium and out-of-equilibrium processes and find

separate solutions. Lately however, the community has become aware that instead of

confirming the universalities expected by the equilibrium theory, the results cover differ-

ent force ranges. For example, Sakaue [70] has defined three force regimes.

Monte Carlo (MC) methods have provided valuable results forpolymers in equilibrium [20].

However, when a significant external force is present, the equilibrium assumption cannot

be straightforwardly made. In Article II, we criticize the paradigm of using MC methods

in forced translocation, i.e. the algorithms that have beenproven strictly valid only for

equilibrium dynamics. At the time Article II was written, the theoretical treatment of

forced translocation can be said to have been almost solely guided by MC simulations,

despite the MC results contradicting the available experimental results. Hence the theory

evolved independently of the experimental findings. A lot ofeffort was wasted in the at-

tempt to determine the dynamical universality class of the translocation process, by using

the scaling of the average translocation timeτ with respect to the polymer chain length

N , τ ∼ Nβ . As a result, there is an abundance of research reporting different scaling

exponentsβ.

Already in 2005, Stormet al. [79] anticipated the experimental pore force magnitudes

to be larger than those used in (MC) computer simulations. Unfortunately, they reported
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experiments made with only one force value so that the assumption of a universal value

for β was not proven wrong. In Article II (published in 2008), we showed that the ex-

perimentally and biologically relevant force range is beyond the force threshold for MC

transition probability saturation. In other words, these forces cannot be simulated with

MC methods. However, while close to equilibrium MC methods do yield the correct

physical behavior and, at least in 1D, belong to the same universality class as LD simu-

lations, which is also shown in Article II. We found it to be a somewhat general feature

that the model specific details, e.g. hydrodynamics or the pore model, which might be

insignificant close to equilibrium, were prone to become essential to out-of-equilibrium

dynamics.

5.1.2 Research questions

In this Thesis, the main research questions concerning the problem of polymer translo-

cation are1. in what circumstances does the process remain close to equilibrium, and2.

how does the hydrodynamics contribute.

The first question is not to be taken lightly. It determines whether the dynamics of the

process is predominantly deterministic or diffusive. We use the concept of equilibrium in

a following manner. The fluctuation-dissipation theorem allows small perturbations when

we consider the free energy. Then the mathematical tool derived from the assumptions is

valid, and we consider the process to be close to equilibrium. In the forced translocation,

we ask what is the threshold value for the pore force that justbarely keeps the process

in the frame that can be treated with equilibrium theory. Theconcept of equilibrium can

thus be used to divide the problem of polymer translocation into (at least) two distinct

cases. The first case is where the pore force is small enough sothat it does not distort

the probabilities of the system states. The second case is where the pore force dominates

over any thermal based entropic forces. In the following, these are called as close-to-

equilibrium and out-of-equilibrium cases, respectively.We shall reflect the concepts of
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unforced (Article III) and forced translocation (ArticlesI-IV) upon this definition.

The second question is more concerned with the out-of-equilibrium process, since close

to equilibrium the effect of hydrodynamics is less pronounced and better known, as dis-

cussed in Chapter 4. We are interested in the following questions: How is the dynamics

affected, and is the hydrodynamic coupling through the poreessential? Close to equi-

librium, the relaxation times of the polymer are affected. Hence, diffusion of the chain

is faster. What then happens outside of equilibrium, when hydrodynamics mediate the

momentum between the beads and thus enhance the collective motion of the polymer?

Results from simulations including hydrodynamics are reported in Articles I and III.

5.1.3 Confirming the equilibrium statement

In order to confirm that the unforced translocation process takes place close to equilib-

rium, we investigate the state transition probabilities asis done in Article III. The polymer

beads are numbered from1 to N , with the middle bead initially in the pore and the end

bead1 on thetransandN on thecis side. The states of the system are labelled by the

reaction coordinates, defined as the number of the polymer bead currently in the middle

of the pore. The system enters the states, when the bead numbers enters the middle

of the pore. Assuming that the two polymer tails on each side of the wall are in sepa-

rate thermal equilibria, we can calculate the transfer probability of a ‘forward move’ as

Pf(s) = P (s → s + 1) ∼ exp(−β(Fs+1 − Fs)), whereβ = 1/kBT andFs is the free

energy given by Eq. (3.14). We obtain

Pf (s) ∼
(

1 − 1

s
+

1

N − s

)1−γ

. (5.1)

In our simulations, the pore is3 b long, so beadss− 1 ands+ 1 are also inside the pore,

which is taken into account by using effective valuess − 1 andN − s − 1 for the chain

lengths ontransandcis sides in Eq. (5.1).
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Figure 5.1: The forward move (s→ s+1) probabilityPf (s) for chains of lengthN = 51
and 101. The solid lines are theoretical predictions from Eq. (5.1), derived using the
equilibrium free energy. The reduction ofN due to finite pore length has been accounted
for by using values ofN ∈ {49, 99} in theoretical predictions. a) SRD results where
hydrodynamics is included and the pore is frictionless. Thebest fit (shown) is obtained
with γ = 0.69 ± 0.05. b) Results from Langevin dynamics in 2D with frictional pore,
N = 51, 101, and251. The best fit (shown) is obtained withγ = 0.80 ± 0.05.

In Fig. 5.1 a) the transfer probabilities obtained from the SRD simulations in 3D are

compared to those given by Eq. (5.1). The best fit of the probabilities from both LD and

SRD simulations to the analytical values is obtained for theexponent valueγ = 0.69 ±
0.05, which is the exponent for the self-avoiding walk (SAW) and hence in agreement

with our measured value for the swelling exponent,ν = 0.60 ± 0.02, which for SAW is

ν = 0.588. Consequently, in 3D the unforced translocation is adequately described by

two thermodynamic ensembles separately in thermal equilibrium, even in the presence of

hydrodynamic modes. However, close to the chain ends,i.e. whens is close to1 or N ,

translocating segments are inclined to accelerate due to the large entropic difference of

the polymer segments on the two sides of the wall resulting ina large driving force. This

has been studied in detail elsewhere [28].

The data in Figure 5.1 is somewhat rough, but further equilibrium behavior is observed

in Article III considering the state transition times, and universality in scaling of the

mean-squared displacement of the reaction coordinates. Hence, we can conclude that
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the unforced translocation process takes place close-to equilibrium.

Close to equilibrium, the critical properties, such as universality, are meaningful. In Ar-

ticle III, we verify the lower limit for the scaling exponentof the translocation time with

respect to the chain contour length to be

τ ∼ Nβ , β ≥ 2ν + 1, (5.2)

which is a straightforward result from Rouse dynamics — i.e.without hydrodynamics

— as proposed by Chuanget al. [15]. The idea behind Eq. (5.2) is that the polymer is

considered to travel a distance proportional to its own characteristic lengthRG ∼ Nν by

diffusion. For the Rouse dynamics,D ∼ 1/N [20].

5.1.4 Force threshold

Let us (naively) assume that close-to-equilibrium and out-of-equilibrium regimes for the

translocation process are separated by some force value, which we call the threshold pore

force. In other words, if the total pore force surpasses thisthreshold value, the process is

driven out of equilibrium. We can then use the forward transition probabilitiesPf(s) to

determine an approximation for the threshold pore force value, as in Article IV. In Fig. 5.2,

the measuredPf(s) for various forces are shown. Withftot = 0.1, the measuredPf(s) is

aligned with the solid line that represents the equilibriumtransition probabilities, namely

Eq. (5.1) shifted upwards. Withftot = 0.5, the form of the measuredPf(s) differs from

the equilibrium form so that the process can be taken to be outof equilibrium. Therefore,

ftotb/kT ≃ 0.1 can be taken as the force threshold value for which the process is barely,

but still, describable by the equilibrium framework.

Sakaue [70] theoretically distinguished three regimes, ofwhich the close-to-equilibrium

regime is one. The two other regimes are bound to reside out ofequilibrium. We will try

to separate these two, namely the high force range and the midrange, in Section 5.1.6.
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Figure 5.2: Forward transfer probabilitiesPf as functions of the reaction coordinate
normalized with polymer length,s/N . The data is from LD simulations and given for
the bead (bd) and cylindrical (cyl) pore. Hereξ = 0.7 andN is 255 or 256, depending
on the polymer’s initial position. The pore forceftot has the following values from top
to bottom:f1 = 5.0 (cyl,bd), f2 = 1.17 (bd), f3 = 0.5 (bd). At the bottom arePf for
ftot = 0.1 for the bead (bd, distinct squares from the solid curve) and the cylindrical (cyl)
pore (red) obtained from simulations together with the black solid curve calculated from
Eq. (5.1) for the unforced case. For theftot values0.1, 0.5, and1.17 (f2 upper curve) the
polymer was initially placed halfway through the pores = (N −1)/2. For theftot values
5.0 (both) and1.17 (f2 lower curve), the polymer started from thecis sides = 1. The
shape of the probability curve depends of the pore model (f1), polymer’s initial position
(f2), and changes with the force.

5.1.5 The pore force in SI-units

Conventionally, as in our case, parameters and observablesare presented in reduced, di-

mensionless units. How then do these units connect to SI-units, is what we attempt to

address next. It is highly relevant to compare, for example,the simulation force magni-

tudes to the force magnitudes used in experiments and observed in biological processes.

The force mapping is considered in Articles I, II and IV. It isconveniently conducted by

considering a dimensionless ratio of the two dynamically competing energies. We have

used the ratio between the energy of the total force field, which is obtained from the
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product of the pore force and the pore length, and the thermalenergy, namelyftotb/kBT .

This dimensionless quantity can be rather straightforwardly transformed from simulation

units to SI-units by applying the according unit scales. We write the equality

ftotb

kT
=
f̃totb̃

kBT̃
, (5.3)

where the left and right hand sides consist of simulation andSI-units, respectively. Here,

for example,b = 1 is the Kuhn length in simulation units, butb̃ = 2λp is in SI-units,

whereλp is the persistence length, roughly40 Å for a single-stranded (ss) and500 Å

for a double-stranded (ds) DNA [82]. We note that the mappingof units is not unique,

but depends on the physical system. Thus the simulated system can represent different

systems found in nature that share some predefined characteristics. In our case, this means

that DNA, RNA and proteins are all represented (at some levelof abstraction) by our

simulated polymer chain. Continuing with the mapping of units, the computationalkT =

1 can be chosen to correspond to the product of the Boltzmann constantkB, and the room

temperatureT̃ = 300K. Hence, the dimensionless total pore forceftot = 3f , where

f = 1 corresponds to the force in SI-units̃f . From Eq. (5.3), we obtaiñftot ≈ 0.12 pN

for dsDNA andf̃tot ≈ 1.6 pN for ssDNA as in Article I. The threshold pore force value

determined previously (as in Article IV) would then be0.004 pN for dsDNA and0.53 for

ssDNA. This is what we obtain for the pore force by convertingour simulation parameters

from the simulation units to SI-units.

A typical experimentally used potential driving a polymer through the pore for both the

ssDNA in theα−hemolysin and dsDNA in the solid state pore is∼ 120 mV. The primary

control parameter (in a regulating sense) is the total pore force,f̃tot = Mf̃ , whereM is

the number of points on the polymer contour on which the pore force, f̃ , is exerted.

On dsDNA these points can be taken to reside at intervals determined by the nucleotide

spacing, which is3.4 Å for dsDNA and≈ 4 Å for ssDNA. The pore force per nucleotide

in the experiments may be estimated as

f̃ =
zq∗U

L
, (5.4)
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where the pore potentialU = 120mV, L is the length of the pore and the number of ele-

mentary chargese per nucleotide isz = 2 for dsDNA andz = 1 for ssDNA. The effective

chargeq∗ is taken ase for dsDNA [79] and0.1e for ssDNA due to charge reduction [73].

This givesf̃ ≈ 1.92pN for dsDNA andf̃ ≈ 0.37pN for ssDNA. Since the lengthL of the

solid state pore is20 nm,M ≈ 59, f̃tot ≈ 113 pN or greater for dsDNA, but could also

be considerably smaller due to Manning condensation and also due to the confinement in

the pore. For ssDNA in anα-HL pore the charge reduction was evaluated to be drastic,

giving ˜ftot ∼ 5 pN [56, 73].

In spite of the intricacies (see Articles I, II and IV) involved in estimating the true force

exerted on the polymer inside the pore, the experimental force magnitudes are included

in the pore force rangeftot ∈ [3, 300], used in the SRD simulations of Article I. The same

qualitative out-of-equilibrium behavior that we observedwas also verified with Langevin

dynamics in Article II. In Articles III and IV, we have compared both the unforced and

the close-to-equilibrium cases to the out-of-equilibriumcase of forced translocation.

5.1.6 High pore forces

The limit where deterministic dynamics (originated by the external force) dominate over

the stochastic one (originated by the thermal diffusion) can be found by considering the

free energy. If the deterministic term is larger than the entropic term (that is bounded

from above), we have

∆S <
ftotb

kT
. (5.5)

We can find out the maximum jump in entropy by requiring that the pore force is large

enough to hold the first segment inside the pore, i.e. to hold the chain attached to the

surface. We evaluate the entropy difference between a free and a grafted chain, as the
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particle at the end of the chain can be either attached to the surface or not, to be

∆S = Sfree − Sgrafted (5.6)

= (γf − γg) lnN, (5.7)

whereγf = 1.2 andγg = 0.69 for three dimensions. The condition forN = 100, for

example, now reads

ftotb

kT
≃ 2.3 . (5.8)

On the other hand, we may attempt to determine the magnitude of the total pore force

for which the reaction coordinates would increase with a probabilityPf(s) close to one,

similarly as in Article IV. The random force termfr(t) in the Langevin equation of motion

is approximated to be Gaussian with a standard deviation ofσ (Ref. [65] pp. 251-253).

The properties of the Gaussian standard deviationσ guarantee that ifftot ≥ σ, there is a

probability of0.68 that the total pore force is larger than the random force, andtherefore

the particle is bound to move in the wanted direction with a very high probability. Using

the definition from fluctuation-dissipation theorem to obtain σ, we write the condition

f 2
tot =〈fr(t)fr(t

′)〉 (5.9)

=(σ)2 (5.10)

=6 kTξδ(t− t′). (5.11)

For the simulation parametersb = 1, ξ = 0.7 andkT = 1.2, this condition yields

ftotb

kT
≃ 2.2 . (5.12)

In Articles I, II and IV, we note that the control parameter for the polymer translocation

process is the total pore force, or equivantly in the case of an isotropic pore, the pore

potential. In other words, the pore length is also a factor. In this sense, the calculated

magnitudes offtot in Eqs. (5.8) and (5.12) are to be considered as total external forces

experienced by the polymer. Finally, forftot ≃ 4.2 the process would be deterministic

to the extent thatPf(s) is close to unity, meaning that the thermal motion would be
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negligible. For comparison, the process is shown to be clearly out of equilibrium for

ftot = 3, which is a value smaller than the respective biological or experimental force

(in Article I), and also to reside out of equilibrium alreadyfor a considerably lower force

ftot = 0.5, see Article IV.

Translocation into a different dimension

An interesting special case of forced translocation is whenthe driving force originates

from an entropic difference. This so–called pore escape is studied in Article III. Here

we briefly show that the entropic force for a polymer moving from a space of smaller

dimension into a space of larger dimension is large and that it effectively is a constant.

The equation (3.13) describes a polymer translocating between two equilibria of the same

dimensiondTRANS = dCIS. However, if one considers a case, where a polymer would

exit a one–dimensional tubular hole,dTRANS > dCIS, the entropic force would be signif-

icantly larger than in Eq. (3.16). The partition function for such case is

Z(s,N) = Z3D(s)Z1D(N − s), (5.13)

whereZ3D(s) comes from Eq. (3.11), andZ1D(N − s) = 1 = constant, yielding

Z(s,N) ≃ µssγ−1. (5.14)

The free energy,Fs/kT = −s lnµ+ (1 − γ) ln s, yields a force

fe = lnµ+ (γ − 1)
1

s
, (5.15)

for which lnµ ≫ |(γ − 1)/s|, sincelnµ3D ≃ 1.54 andγ − 1 ≃ −0.31. Hence, the

entropic force of Eq. (5.15) can be taken as a constant.
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5.1.7 Ways of testing the equilibrium assumption

Although we have already shown usingPf(s) that the translocation process is close to

equilibrium whenftotb/kT / 0.1, and outside equilibrium whenftotb/kT ' 0.5, we

shall discuss here some other ways to test the equilibrium assumption. This seems rel-

evant, as there is no unique best way (in general) to determine whether a process is in

or out of equilibrium. The following schemes were considered at some point during the

making of this Thesis.

Basically, if given enough time, any isolated system reaches equilibrium. Therefore it is

logical to check the (equilibrium) relaxation timeτr of the polymer against the average

translocation timeτ . From this comparison we see if the polymer has enough time torelax

so that the translocation process would take place close to equilibrium. For a rigorous

comparison, we write

lim
t∗→∞

∫ t∗

0

exp
(

− t

τr

)

dt (5.16)

≡τr,

whereτr is the characteristic equilibrium relaxation time, andt∗ denotes time the polymer

is let to relax. In the straightforward comparison ofτ andτr, the problem usually is that

t∗ is finite. In other words,how the comparison between the time scales should be done

quantitatively is not straightforward, due to the relaxation time being a characteristic time

describing the decay of correlations, whereas the translocation time is an absolute time

describing the transport of mass.

Regardless of this difficulty, we may attempt a straightforward time scale comparison.

It is meaningful to consider the time scales at the single transition basis, since for each

transition the entropy term in the free energy is changed. For a grafted polymer with

N = 70, we obtain a characteristic relaxation timeτr = 180 ± 40 with respect to the

radius of gyration in 3D Langevin dynamics simulations form = 16 (Article III). In the

forced polymer translocation, we have an average timet(s) for each transitions→ s+ 1
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for m = 1 (Article IV). For ftot = 1.5, the forced translocation proceeds witht(s) ≃ 10

for N = 128. With ftot = 0.1, we obtain values fort(s) that reside between100 and150,

excluding the transitions near the end of the polymer. Finally with ftot = 0.01, the typical

transition timest(s) lie between130 and300. Noting the bead mass difference, the above

relaxation time should be four times larger when compared tothe above transition times,

and based on these times, we can not judge whether the processis close–to–equilibrium

or not, even ifftot is one order of magnitude lower than what was needed to obtainthe

distribution of equilibrium transition probabilitiesPf(s). It is unlikely that this inaccuracy

would disappear even for a lower force, since forftot = 0.01 we have obtainedβ =

2.2 ± 0.1, which already corresponds to the unforced caseβ = 2ν + 1 = 2.2 for our

model, see Article IV.
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Figure 5.3: Comparison of two observables: the tension of labelled bond k = 70 and the
mean squared pore-bead distance〈δR2

pe〉 of the labelled beadk = 70 are both plotted as
a function ofs. The tension data is grainy, and although it has out-of-equilibrium charac-
teristics forftot = 30, none can be seen forftot = 3. In contrast,〈δR2

pe〉 has negligible
fluctuations, and the observed plateau and decrease insteadof a steady flat slope indicates
that in addition to diffusion another kind of dynamics is involved. Obviously,〈δR2

pe〉 is
a more reliable and accurate observable for the system’s behavior. The observables are
extracted from the same data and thus contain an identical number of samples. These
results are from 3D Langevin simulations withN = 100, andftot = 3 (red) andftot = 30
(green). A cylindrical pore withd = 3 was used.
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One well-known way to find out if a system is out of equilibrium, is to measure tension.

For the forced translocation, the tension of the bonds can bemeasured along the poly-

mer contour. We measured the extension of the individual bonds, and determined the

appropriate forces imposed by the FENE potential that are shown in Fig. 5.3. The tension

turned out to be a bad measure for the non-equilibrium dynamics, since only for a total

pore forceftot = 30 we observe clear out–of–equilibrium characteristics.

A considerably better gauge for non-equilibrium dynamics was found by considering the

monomer locations, more specifically the measured distances of the labelled polymer

beads from the pore,Rpe. This can be seen from the comparison between the measured

tension of a labelled bond and the measured mean squared pore-bead distance〈δR2
pe〉 of a

labelled bead, shown in Fig. 5.3. Observing the mean squaredpore-bead distance〈δR2
pe〉

as a function of the reaction coordinates, we see that the behavior of the observable is

drastically changed, when the tension imposed on the chain by the pore force reaches the

labelled bead at the inflection points in Fig. 5.4 (a). From these points we extracted the

the number of mobile beadssm. We defined a labelled bead as mobile if the measured

distanceRpe, averaged over several runs, changed appreciably. The extraction of sm

was possible only without hydrodynamics. For equilibrium translocation, one expects

thatRpe(s) would display only one dynamical region showing that the labelled bead is

diffusing towards the pore.

In Fig. 5.4 b)sm is plotted as a function of translocated beadss when hydrodynamics

is not included. Linear dependencesm = ks is obtained. Up to lengths ofN ≈ 200,

k ∼ N−χ and levels off to a constant value that is greater than unity for longer polymers.

At all times, the total drag force,fd, balances the total pore forceftot. In the absence

of hydrodynamics, all mobile beads experience an equal dragfrom the fluid viscosity.

Hence,

fd ∼ sm〈v〉, (5.17)

where〈v〉 is the average velocity of the mobile beads. Without hydrodynamics, the beads

are set in motion from their equilibrium positions, so the distanced of the mobile bead
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Figure 5.4: a) Averages over simulations of squared distances of beadsnumbered
30, 50, 70, and90 from the pore as a function of the number of translocated beads s for
polymers of lengthN = 100 with and without hydrodynamics. b) The number of mobile
beads,sm, (see text) vs number of translocated beads,s, both normalized to the polymer
length,N , in the case of no hydrodynamics.ftot = 30 in a) and b). c) 3D snapshot of
a translocating polymer of lengthN = 100 at s = 35. Here the pore is frictionless and
ftot = 6. For clarity reasons, walls are not shown. The pore is frictional in a) and b).

furthest from the pore scales asd ∼ Nν . The average translocation time then scales as

τ ∼ 〈d〉/〈v〉 ∼ kN1+ν ∼ N1+ν−χ. For the data in Fig. 5.4 b), wheref = 3 (ftot = 9),

we obtainχ ≈ 0.35 that is in accord with the measuredβ = 1.26, see Fig. 1 b) in Article

I. With the pore forcef = 100 (ftot = 300) the k’s for sm = ks are smaller and the

measuredsm-s curves for differentN appear more aligned. Asymptotically,k → 1,

∀N , asf → ∞, i.e. polymer beads are translocated at the same rate that they areset

in motion. Removing the friction from the pore also makesk values smaller and more

identical for differentN due to translocation becoming faster. Both the increase in the

pore force and reduction in the pore friction take the scaling exponentβ toward1+ ν due

to sm and hence the drag force,fd, remaining more constant throughout the translocation.

Hydrodynamics changes the form of the drag force.fd no more depends strictly linearly

on sm for configurations of moving polymer segments, but all beadsare set in motion in

the beginning of translocation.

TheRpe consideration, residing entirely on thecis side of the pore wall, tells nothing

about the dynamics on thetransside. To quantify the state of thetrans-side chain, the

radius of gyrationRG describes the compactness of the chain configuration. In Article

I, the measuredRG was force-dependent, and statistically shorter than in equilibrium for
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ftotb/kT ≥ 3, thus having a clear signature of out-of-equilibrium dynamics.

In summary, we discussed three ways to determine whether theprocess is out of equilib-

rium, in addition to the previously presented forward transition probabilitiesPf(s). Of

these three, the pore to bead distanceRpe turned out to be a more sensitive observable

than the transition timest(s) or the chain tension. In addition, in Article IV we discuss

that the model specific details, which were seen to be insignificant close to equilibrium

but become increasingly dominating, when the process is driven out of equilibrium. In

particular, we find that the scaling exponentβ becomes dependent of the particle mass

m, and that the pore model, whether a cylinder or constructed from beads, also altersβ.

Then the change in the scaling exponentβ can also be regarded as an indicator of whether

the process takes place close to equilibrium.

Additionally, hydrodynamics can also be thought to be a model specific detail. Next, we

will review how it affects processes close and far from equilibrium.

5.1.8 Hydrodynamics significantly affects translocation t aking place out

of equilibrium

In our minimal model used in Article I (and III) fluid is not allowed to enter the pore,

which precludes hydrodynamic coupling of the two chambers separated by the wall. As

written in Article I and is implicitly evident from the following, we do not think that

allowing hydrodynamics inside the pore would have an essential effect on dynamics. Here

we discuss the forced translocation, where the pore force isthe only driving force for the

translocation.

The distribution of translocation times,π(τ), for polymers of lengthN = 100 is shown in

Fig. 5.5. Due to the larger polymer velocities, i.e. the collective motion, the effect of hy-

drodynamics on forced translocation is much more pronounced than what was observed
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Figure 5.5: The distribution of translocation timesτ for chains of lengthN = 100 and a
constant pore forcef = 10, with hydrodynamics (curve on left) (averaged over300 runs)
and without hydrodynamics (curve on right) (averaged over400 runs). Inset: Average
translocation timeτ as a function of the driving forcef . The scalingτ ∼ fα is obtained
with (higher plot)α = −0.940 ± 0.013 for f ≥ 3, and (lower plot)α = −0.994 ± 0.008
for f ≥ 1 without and with hydrodynamics, respectively. The chain length isN = 100,
and the pore is frictional. The pore lengthd = 3b, so the control parameterftot = 3f .

for unforced translocation in Article III. In Article I, we observed a reduction in transloca-

tion times due to hydrodynamics, which was also seen by Fytaet al [26, 25]. In addition,

hydrodynamics not only significantly speeds up forced translocation but also reduces the

variance of measured translocation times. This is because the long range correlations due

to hydrodynamics mediate the effect of the pore force along the polymer contour. The

translocation times scale asτ ∼ fα, see in Fig. 5.5 (inset), which was expected for force

values large compared with thermal fluctuations,ftotb/kT > 3.

In Article I, the measured translocation times scale with polymer length,τ ∼ Nβ , both

with and without hydrodynamics. It is noteworthy, however,that there exists no single

scaling, butβ varies with the total pore force,ftot = 3f . In our SRD simulations,β

starts from unity and increases withf . For constantf , smallerβ was obtained for the

frictional pore. To distinguish between the change ofβ due to increasing translocation
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velocity, v, and due to frictional term, whenf was increased, scaling ofτ with N for

a pore with no friction was measured and it was found that the change ofβ was still

significant, see Fig. 1 in Article I. The experimentally obtained β ≈ 1.27 for a solid

state pore [79] would be obtained in our model with a pore force f ≈ 3 or greater.

Hence, it can be concluded that the change ofβ with f arises not only from the change

in the frictional contribution in the translocation dynamics, but also because of dynamic

changes due to the change inv, which is a clear indication of out-of-equilibrium effects.

In comparison, Fytaet al. [26] obtainedβ = 1.28 ± 0.01, andβ = 1.36 ± 0.03 with and

without hydrodynamics, respectively, for the pore forcef = 1, which closely corresponds

to f = 1 in our simulations as the pore length in [26] is approximately 3b. A pore of

very low friction was used in these lattice Boltzmann (LB) simulations. Accordingly,

the obtained scaling exponent is in fair agreement with those we have obtained for the

frictionless pore with hydrodynamics. Also the increase ofβ when hydrodynamics is

switched off qualitatively agrees with our results.

When hydrodynamics is allowed, the polymer segments are moved from their initial equi-

librium positions already before actually being pulled by the tightening polymer contour.

This is seen in Fig. 5.4 a), where the squared distance,R2
pe(n), of the polymer bead,

labelledn, measured from the pore on thecisside as a function of the number of translo-

cated beads,s, is shown. In the absence of hydrodynamics, the segments towards the

free end are seen to remain immobile until they are pulled towards the pore, whereas due

to hydrodynamic interactions the distance of the labelled beadn from the pore is seen

to start decreasing right from the beginning of the translocation. Hence, the initial con-

figuration shows less in the translocation, when hydrodynamics is included. Instead, the

segments on thecis side continually reach an increasingly extended polymer configura-

tion. Regarding only the dynamics on thecis side, for an initially completely extended

polymer asymptoticallyβ → 1 asf is increased, which explains the reduction ofβ at

constantf when hydrodynamics is applied.

In summary, the inclusion of hydrodynamics essentially means adding large-scale many-
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particle correlations, which emphasizes the collective modes in the dynamical behavior.

Hydrodynamics is then naturally expected to have more impact on processes out of than

those close-to-equilibrium where it mainly affects relaxation times and diffusive transport

of the polymer. In particular, hydrodynamics mediates the pore force by emphasizing the

collective motion of the beads, as we observed measuringR2
pe for ftot ≥ 3. As a result,

average translocation timesτ are decreased, and their distributionsπ(τ) are narrower. The

force balance between the total pore force and the total viscous force experienced by the

mobile beads governs the translocation dynamics. Because of this, the scaling exponent

β is lower with than without hydrodynamics. Roughly, increasing the pore force in the

polymer translocation problem shifts the interest from equilibrium theory into solving

drift equations, e.g. Navier–Stokes. These are left for future studies.

Ignoring hydrodynamics is one reason for the previously–mentioned gap between com-

putational and experimental results. In the light of the Monte Carlo, Langevin and SRD

results, it can be said that running simulations is faster without hydrodynamics — with

the caveat that the obtained results might not be comparableto experiments. We observed

that hydrodynamics plays a significant role in the biologically and experimentally relevant

force range of forced translocation (Article I).
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5.2 Polymer sedimentation

In 1956, Zimm [86] introduced a theory which predicts that the sedimentation veloc-

ity of high molecular weight DNA will decrease as the rotor speed of an ultracentrifuge

measurement increases. This inverse relationship leads tothe fact that a lower molecular

weight DNA may sediment faster than a high molecular weight DNA at high rotor speeds.

The prediction of a crossover in sedimentation velocity, asthe rotor speed is raised (to the

order of105 rounds per minute), has been experimentally verified [68, 14]. The crossover

property is rather universal even when boundaries are applied. When a centrifuge tube is

used, sedimenting particles interact with tube walls leading to a reduction in sedimenta-

tion velocity independent of the reduction described by Zimm’s theory [16].

5.2.1 Research questions

When considering a polymer chain, one has a many-body objectwith complicated elastic

and finite volume interactions — in addition to hydrodynamics — that guarantee a rich

physical behavior at different length and time scales. The research questions concerning

the polymer sedimentation are(i) what part of dynamics do we essentially lose, when

thermal fluctuations are ignored,(ii) what is the relationship between the conformation

of the sedimenting polymer and its limiting velocity, and(iii) what is the crossover limit

in terms ofN (for our model), when the sedimentation velocity starts to decline.

The first question concerns the applicability of the resultsin this study; what is the size

and weight (in SI-units) of the particles that we study. In other words, we ask if our model

depicts physical systems that can be found outside our simulations. Thermal motion, or a

heat bath, adds perturbative forces that deviate the systemfrom its possible ground state

(given that one exists). If a system would get stuck in a ground state without any thermal

motion, and could be excited out of that state with some, neglecting thermal motion would

alter the dynamical behavior. We then ask if the sedimentingpolymer is prone to get stuck
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in some kind of a ground state while sedimenting. Moreover, we attempt to discover if the

steady state (that the sedimenting polymer reaches) then resembles a ground-state from

which the thermal motion could drive it out.

The second question is rather profound and in Article V we usea scaling theory to attack

it. The external force, i.e. gravity, induces a limiting velocity and breaks the symmetry of

the polymer conformation. Thus the separation between these asymmetric components

depends only on the limiting velocity of the polymer.

The third question is motivated by the previously publishedtheory and experiments. It is

not concerned with new physics, as we try to reproduce something already discovered in

experiments, but rather can act as a benchmark to our model.

Figure 5.6: Snapshots of typical configurations of a settling polymer with N = 32 in
the steady state. The polymer is elongated in the horizontaldirection (a). The loose
end of the polymer is attracted by the smaller pressure caused by back-flow, and the
polymer elongates in the vertical direction (b). The springforces pull the part that is left
behind, and the polymer collapses into a globular shape (c),which then expands due to
self-avoidance leading back to a shape of the type in (a).

5.2.2 Dynamics in a steady–state

The sedimenting polymer reaches a steady–state, when the gravity is matched by the

hydrodynamic viscous force. The limiting settling velocity vlim ≡ 〈v(t)〉 of the polymer
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is adequately described by the Stokes velocity of a sphereu0 of Eq. (4.10). However,

v(t) has a time dependence that results from the altering conformations of the polymer,

see Figure 5.6. This affects its effective radius and ultimately the viscous drag acting on

the settling polymer. Hence, the component of the radius of gyration perpendicular to the

gravitational force vectorRG,⊥ fluctuates, as shown in Figure 5.7. The time-series data

(not shown) indicates a perfect correlation between the polymer’s center of mass velocity

andRG,⊥. The tumbling of the polymer can be described as rather chaotic (temporal

Fourier analysis showed no peaks corresponding to periodicoscillations).

Due to the time-dependence ofv(t) it is reasonable to treat it in a form where some small

fluctuationsδv(t) ≪ vlim are allowed keeping the main partvlim constant,

v(t) = vlim + δv(t). (5.18)

This approximation is particularly convenient, as it linearizes the Navier-Stokes equation

for analytical purposesv(t) · ∇v(t) ≃ vlim∇δv. We will return to this later on. Some

analytical results have been derived in [63].

Velocity fluctuations

In Chapter 3, we introduced means in form of Eq. (3.6) to determine the diffusion coeffi-

cient for a single particle. Similarly from the velocity fluctuations defined by Eq. (5.18),

we determine an effective diffusion constantDeff for the center of mass of the polymer.

In the presence of the symmetry breaking gravitational field, we observed distinct scaling

behaviors parallel to, and perpendicular to the gravitational field

D‖ ∼N−νD,‖,

D⊥ ∼N−νD,⊥. (5.19)

For both exponents, a negative value was obtainedνD,‖ = −1.0 ± 0.2 and νD,⊥ =

−0.22 ± 0.11. Hence, the effective diffusion coefficientD is increased whenN grows.
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Figure 5.7: Raw data for the components of the radius of gyration withN = 32 in the
steady-state. The vertical lines indicate the average value of the respective component,
calculated from the whole simulation data, of which only a small part is shown in the
figure.

This is in line with the fact that the total gravitational force acting on the polymer in-

creases linearly asN grows, while the number of possible configurations through which

the polymer ‘chaotically’ tumbles also increases. A broader insight on the scaling pre-

sented in Eq. (5.19) can be found in the dissertation of O. Punkkinen (pp. 90-91) [63].

To answer the first research question for the sedimentation problem, we wish to find out

whether adding a heat bath to the simulations would reveal some new dynamical behavior.

In the limit where thermal transport dominates, the diffusive dynamics of a polymer in

equilibrium is well known [20]. In the limit where thermal transport is negligible, we
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have the results of Article V. It is possible, but unlikely, that some additional underlying

dynamics would be revealed as a result.

Essentially, the weight of the simulated particles is determined by the interactions that

they experience. For very light particles, the gravitational force can be omitted, as Brow-

nian forces dominate. For monomers that by themselves already experience the gravi-

tational force, we can make a scaling estimate how the Pecletnumber for the polymer

Pe= V L/D depends on the chain lengthN . The flow is described by a characteristic

velocity V ≃ vlim ∼ Nβ−ν⊥ and a characteristic lengthL ∼ Nν‖ . For details on the

scaling ofvlim, see Article V. Using Zimm dynamics, the thermal transport for the center

of mass declinesD ∼ N−ν , ν = 0.588 as a function ofN . We obtain

Pe ∼ Nν‖+β−ν⊥+ν ≃ N0.93+β , (5.20)

whereβ ≥ 0.5 is positive. This implies that the impact of the thermal transport decreases

exponentially as a function ofN , when the monomers are heavy enough to feel the grav-

itational pull. Comparing the effective diffusion of Eq. (5.19) to the thermal diffusion

yields the same qualitative result: the first becomes more important with increasingN .

Hence, the answer to the research question(i) is that adding the thermal motion is un-

likely to reveal any interesting scaling dependencies withrespect toN , as increasingN

quickly takes the system to the limit of large Pe. Also, the chaotic conformational be-

havior that we have observed in Fig. 5.7 indicates that no such ground state exists, from

which the polymer could be driven out by thermal fluctuations.

It is interesting to compare the chaotic shape fluctuations observed here to a study of

polymer sedimentation in the limit Re= 0 [75]. In this case, for long polymers and large

driving force (Pe large), chainlike polymers assume a stable, elongated configuration due

to an effective stretching force on the chain. Our results indicate that such a configuration

becomes unstable against hydrodynamic fluctuations for Re> 0, at least for large Pe. The

particles that we have studied can be approximated as being in water at room temperature

(T = 293K), where in the non-Brownian limit Pe= 100. Assuming a spherical shape,
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we obtain a mass of2.5 × 10−14 kg, and a radius of1.6µm.

Conformations within the steady–state

In Article V, the steady–state of the polymer is determined by considering the average

of RG and the limiting velocityvlim as time invariant for fixedN (as for an equilibrium

system). To understand the conformational changes within the steady–state, we construct

an equilibrium free energy function for the polymer as a function of RG(N), follow-

ing the original Flory mean–field argument [20]. A kinetic term is added to take the

non-equilibrium behavior into account [63]. Thus, the total energy of the polymer chain

consists of the spring forces between the monomers, the self-avoidance and the kinetic

energy contribution, and can be written as

Etotal =
1

2

k

N
R2

G +
1

2
νc2R3

G +
1

2
mN

[

v(RG)
]2
, (5.21)

whereN is the number of monomers,k is the spring constant between two monomers,

m is the mass of one monomer, andc ≃ N/R3
G is the concentration of monomers per

volume. Furthermore,v(RG) is the velocity of the center of mass for a given configuration

RG. As shown in Article V, the calculation then proceeds by using the approximation of

Eq. (5.18) to treat the kinetic term. Essentially, omittingthe steps already shown in Article

V, we obtain

〈RG,⊥〉 ∼N2/3|vlim|1/3,

〈RG,‖〉 ∼N7/12|vlim|−1/12. (5.22)

In the case of the polymer chain, we can estimate the dependence of the limiting velocity

onRG by assuming that it is determined simply by the average size of the polymer in

the direction perpendicular to gravity. Then, using the Stokes’ formula introduced in

Chapter 4,6πηR|vlim| = Mg, whereM = Nm is the total mass of the polymer, we can

derive that

vlim ∼ mN

〈RG,⊥〉
. (5.23)
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In the limit of low Re, the scaling of the components of the radius of gyration is then

given by〈RG,⊥〉 ∼ N0.545 and〈RG,‖〉 ∼ N0.818. These results are consistent with our

previous assumption thatRG,‖ ≫ RG,⊥ for largeN .

At the limit of high Re, we use an empirical expansion formulafor the limiting velocity,

which is given by

Mg

|vlim|
= 6πRG,⊥η

(

1 +
Re

4(1 +
√
Re

+ 0.017Re
)

. (5.24)

This is a theoretically convenient form, since at the limitRe ≪ 1, Eq. (5.24) reduces to

the Stokes equation. We can now write a general scaling form

vlim ∼ Nβ−ν⊥, (5.25)

whereβ = 1 for Re≪ 1 andβ = 1/2 for Re≫ 1. Inserting this into Eq. (5.22), we

obtain the theoretical results shown in Table I of Article V.The research question(ii) is

answered by Eq. (5.25).

The qualitative behavior of the sedimentation velocity

To be in line with the experiments, the scaling behaviorvlim ∼ N1/2−ν⊥ should yield

a negative exponent with Re≫ 1. Using the valueν⊥ = 0.45 ± 0.07 obtained from

simulations, the settling velocity would scale asvlim ∼ N0.05 for largeN . The scaling

exponent thus approaches, but never reaches, a negative value. Our study was limited to

modest polymer lengths due to computational cost that increased as∼ N3, and therefore

it is likely that the negative exponent can only be observed for longer polymers.

In Article V, we have extrapolated from theRG data that theRG,‖ component would

exceed the perpendicular component atN ≈ 120. This might lead into dynamical changes

incurring the crossover. Obviously, the range ofN we studied was below the crossover

value. The answer to the research question(iii) thus remains vague. As the crossover has
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been experimentally observed and well known, the research question concerning only the

benchmarking of the model is somewhat academic.
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6 Conclusion

In this Thesis, two problems of polymer physics have been reviewed. First, the back-

ground for the problems of polymer translocation and polymer sedimentation was in-

troduced in Chapter 1. Then the coarse–graining of molecular structures, necessary for

construction of computational models, was outlined in Chapter 2. For the problem of

polymer translocation we also introduced the widely used theoretical equilibrium frame-

work in Chapter 3. In order to give a necessary background forhydrodynamics that is

inherent to two of the five computational models used in this Thesis, an outline of the

fluid dynamics was presented in Chapter 4. This concerned both the translocation and the

sedimentation problem. Finally, the essential results of all of the Articles I–V have been

presented in Chapter 5.

Here we present the summary of the results of this Thesis, andthen discuss them.

6.1 Summary of results

In polymer translocation, we have asked first in what circumstances it is an equilibrium

process, and second how the hydrodynamics contributes.

In Article II, we performed a critical evaluation of the equilibrium paradigm used in

Monte Carlo studies. In particular, we showed that the experimentally and biologically

relevant force range is above the force value for which the MCtransition probabilities

reach the value one. In other words, these forces cannot be simulated with MC methods.

In contrast, close to equilibrium MC methods do yield the correct physical behavior and,

at least in 1D, belong to the same universality class than LD simulations, which is shown

in Article II.
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In Article III, we confirmed that the unforced translocationprocess takes place in or close

to equilibrium by investigating the (forward) transition probabilitiesPf (s) obtained from

the equilibrium framework. Furthermore, we used the forward transition probabilities

Pf(s) to determine the threshold value for the pore force, for which the process is barely,

but still, describable by the equilibrium framework (Article IV). In addition to this close-

to-equilibrium regime, we estimated the total pore force values for the high force and

middle regimes in Article IV, which were originally proposed by Sakaue [70].

We compared pore forces used in our simulations to those usedin experiments by map-

ping the force through dimensionless energy units. In spiteof the intricacies (see Articles

I, II and IV) involved in estimating the true force exerted onthe polymer inside the pore,

the experimental force magnitudes were seen to be inside thepore force range used in the

SRD simulations involving hydrodynamics (Article I).

We have discussed ways to test whether the system is close-toequilibrium, other than

the direct measurement of the transition probabilitiesPf(s). These include comparing

the (equilibrium) relaxation time to the transition timest(s), measuring the tension along

the polymer contour and, finally, tracing the distance of thelabelled beads from the pore,

which turned out to be a sensitive indicator of out-of-equilibrium behavior. There are

other indicators, however. In Article IV, we have shown thatthe model specific details,

which might be insignificant close to equilibrium can becomeincreasingly meaningful

or even dominating to the dynamics, when the process is driven out of equilibrium. In

particular, we have found that the scaling exponentβ becomes dependent of the particle

massm, and that the pore model, whether a cylinder or constructed from beads, also alters

β.

Due to the larger polymer velocities, i.e. collective motion, the effect of hydrodynamics

on the forced translocation (Article I) is much more pronounced than what we observed

with the unforced translocation (Article III). Including hydrodynamics essentially means

adding long–range many–particle correlations, which emphasizes the collective modes
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in the dynamics. In Article I, we obtained a reduction in translocation times due to hy-

drodynamics, which was also seen by Fytaet al [26, 25]. In addition to significantly

speeding up the forced translocation process, hydrodynamics also reduced the variance

of measured translocation times. This is due to the induced long range correlations that

mediate the effect of the pore force along the polymer contour. On the other hand, we

feel that ignoring hydrodynamics is one reason for the gap between computational and

experimental results. In the light of the Monte Carlo, Langevin and SRD results, it can

be said that running simulations is faster without hydrodynamics. The caveat is that the

obtained results might not be comparable to experiments, since we found that hydrody-

namics plays a significant role in the biologically and experimentally relevant force range

of forced translocation.

In the polymer sedimentation, we have asked(i) what part of dynamics do we essentially

lose, when thermal fluctuations are neglected,(ii) what is the relationship between the

conformation of the sedimenting polymer and its limiting velocity, and(iii) what is the

crossover limit in terms ofN (for our model), when the sedimentation velocity starts to

decline.

In the limit where thermal transport dominates, the diffusive dynamics of a polymer in

equilibrium is well known [20]. In the limit where thermal transport is negligible, we

have the sedimentation results of Article V. It is unlikely that adding a heat bath in our

simulations would reveal any new scaling behavior, since increasing the polymer length

quickly takes the system to the limit of large Pe. Additionally, the polymer conformation

exhibits such a chaotic time-development that no ground state from which the polymer

could be driven out by thermal fluctuations is likely to exist.

A polymer sedimenting in the dilute limit assumes a steady–state. The polymer settles

with a limiting velocity that is connected to the component of the radius of gyration

perpendicular to the direction of the gravity. In Article V,we present a scaling law to

quantify this connection. Additionally, an expansion to this scaling law is given with
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respect to the Reynolds number. Hydrodynamic fluctuations for Re> 0, at least for large

Pe, cause the polymer to tumble, which chaotically alters its configuration.

Computational constraints prevented us to observe the theoretically and experimentally

discovered crossover, where the increasing the chain length would decrease the settling

velocity of the center of mass of the polymer.

6.2 Final remarks

In this Thesis, the discussion on the translocation problemhas been twofold. First, we

have discussed a problem of physics that requires a study revealing the underlying dy-

namics. This aspect is mostly covered by the summary of results, where the research

questions were covered with their appropriate answers. Second, we have discussed the

gap between the theoretical and experimental results in literature that originated from too

general equilibrium assumptions in theoretical studies, while the experimental process

was out of equilibrium. Perhaps the lesson to learn here is that one should be very careful

with assumptions, especially since they are built into computational models.

Means like the equilibrium framework and excessively used MC simulations that can be

credited for most of the static (equilibrium) results, e.g.critical exponents, have to be

evaluated critically when applied on a new problem. The bestparadigm that the writer

is aware of is to use different models and compare the results. By doing so, the model

specific details that might be first hidden are bound to be revealed.

Here, it all boiled down to distinguishing between out-of-equilibrium and close-to-equilibrium

processes. As there currently is not any paradigm to do this separation, it had to be made

using different indicators or measures. Although it felt sometimes like trying to draw

lines on water, the separation based on the transition probabilities turned out to be quite

successful in the end.
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Philosophically, the coarse–graining paradigm in polymerphysics often culminates in

making scaling laws with respect to various parameters, e.g. the chain length. These

laws express the inherent characteristic properties of thepolymer systems studied in this

Thesis, which we set out to explore in the Introduction. In other words, these scaling

laws express an emergent level of physics arising from the basic equations of motion,

which, reflecting to the paradigm, cannot be straightforwardly derived from these basic

equations, nor be used as a constructionistic building part(or a piece of puzzle) to obtain

the original system (the puzzle) that was studied.

In this Thesis, we have seen that equilibrium and out-of-equilibrium polymer systems

may both have at least apparent characteristic scaling properties, even if the scaling be-

haviors differ and follow from different dynamics. It remains an open question, why we

obtain apparent scaling behavior even for a process that we have shown to be nonuniver-

sal. In spite of this, the coarse–graining paradigm proved valuable and took us through

the above–mentioned problems in the sense that this work is finished.
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