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1 Introduction

Nature has been the inspiration of philosophers and nasgrahtists since the dawn of
Western philosophy. We are surrounded by the abundancergdleg natural phenomena.
To deal with this complexity, we choose a coarse-graininy@gch [66] that is common

in natural and crucial in computational sciehcé enables us to neglect a multitude of
insignificant details, and study the essential compondrisese phenomena. Hence, it

enables the use of tools of our respectful field of sciencaratysis.

In this thesis, two natural phenomena, polymer translonaind polymer sedimentation,
are studied with the means of computational and statigplegsics. This text has been
written as a part of the requirements for doctoral dissertaand, as such, meant to be

read by fellow physicists.

The aim of the coarse-graining used in this work is not toalisec fundamentals (or pieces
of puzzle) that could be assembled in a constructionistig wacquire the original sys-
tem (or puzzle), but instead discover the inherent propettat are characteristic to the
system. This philosophical point of view is explained by Argbn [5], who sees physics,
in general, as a study of symmetries. This idea of symmetaed symmetry breaks
(such as phase transitions), appearing on different scélabstraction is close to pre-
viously introducedseneral System Theoby von Bertalanffy [84] as being a paradigm
for development of theories. In polymer translocationsieasy to see that the system
symmetry plays a role, considering for example the ‘etestraiggle’ of the external and
the inherent entropic forces of the system. We can ask: atpdiat does the equilibrium
framework break down when the force is increased? Do thedbagms exhibit different

behavior, some kind of ‘long range symmetry breaking’, fribva short ones?

The text is written using inclusively the pronoun ‘we’. Withis the writer flexibly refers

For the role of coarse-graining in the metaphysics of causasee e.g. [74].



to various groups of people. Typically the pronoun referhheomembers of the research
group with whom the article related to the subject at handwade. However, at some
points the pronoun can be thought to consist of the writerthedreader. Finally, this

choice was motivated to pronounce the cooperative interaof the people that leads to

scientific excellence.

This text introduces and summarizes the study that has lwenid the attached articles,
and proceeds as follows. In the first Chapter, the phenonpeianer translocation and
polymer sedimentation, and literature concerning them,irtroduced. In the second
Chapter, the phenomena are treated as systems, which caanse-grained into a model
of a single polymer that is computationally tractable andhematically sound. The
inherent solvents of these systems are excluded at this aodhexplained in Chapter 4.
In the third Chapter, the concepts for analysis for the neslly introduced models are
presented. In the fourth Chapter, the solvent is treatedffi@rent frameworks. In the

fifth Chapter, the results of this work are presented, mepthiat the analysis of the
phenomena is made using the introduced concepts. Finallhe sixth Chapter, the
conclusions of the work are drawn. The reader should be atlhateghe subjects in this
text are presented rather in a pedagogical order than a alogioal one based on the

order that the papers were published.

Let us begin by introducing the concept of a polymer.

1.1 Polymers and biopolymers

Polymers are molecules subject to complex intra- and irtéroular interactions com-
bined with many intramolecular degrees of motional freed®tre word ‘polymer’ orig-
inates from Greek, and literally means ‘many parts’. In faclymers are made up of
monomer repeat units. The degree of polymerization (DPj¢chvianges typically from

10% to 10, denotes the number of monomer units jointed together inyamr. Natural



polymeric materials consist of fossilic fuels, celluloaejber, and rubber. Plastics con-
tain a lot of different synthetic polymers, PVC for exampl@ther synthetic polymers
also exist, for example, nylon and kevlar. Polymers are alsmdant in biological sys-
tems. This subclass of polymers is referred to as biopolgnaerd consists, for example,
of DNA, RNA, and proteins. Biopolymers are typically elecally charged, which is an
important property related to many biological phenomenecaise of the wide applica-
bility, it is not surprising that the study of polymers in féifent contexts has been, and

still is, intense.

A polymer can have various types of configurations, of whighthree basic ones include
linear, branched, and network (cross-linked chains) cardigons. In addition to weight,
DP and configuration properties, the morphology of the pelyims also an important
property and for example greatly influences the propertigbermoplastics. The poly-
mer morphology contains three basic classifications: ahwrg, semi-crystalline and
crystalline. In this thesis, the attention is limited on aptwus linear chains, referred to

as ‘polymers’ for simplicity.

1.2 Polymer translocation

Sanger received a Nobel price in 1959 for a research worlstiated, for the first time,
that proteins are composed of linear polypeptides formeoinjng amino acid recidues
in a defined, but apparently arbitrary order [71, 72]. Theaidé a linear information
sequence was quickly adapted for DNA, leading to the first Dd&§uencing experi-
ment to take place in 1968, and the discovery of the moderb@std DNA sequenc-
ing method in 1977 [34]. The new method was used later-on fanaated sequencing
factories hastening the completion of the Human Genomee&trdhat was concluded
in 2003. Many spinoff projectswere launched during and after the Human Genome

Project. Hopes for a new ultra-fast sequencing were lifttémiKasianowicz et al. [37]

2http://lwww.ornl.gov/sci/techresources/Human_Genoesearch/spinoffs.shtml



showed that measurements of the ionic current flowing tHrawuenometer-scale pores
(nanopores) could be used to analyze single DNA and RNA mt#sc Experimental
work on this so-calledorced polymer translocatiohas been typically conducted by us-
ing fabricated solid-state [79, 46] pores@hemolysin —HL) pores in lipid bi-layer
membranes [56, 37]. Attempts at purely electronic measengsrhad trouble achieving
the signal contrast required for single nucleotide diffiiggtion until 2007 [77]. A mul-
titude of theoretical and computational papers have bebhgmed since the start of the

ultra-fast translocation boom in 1996 (see Refs. of Ardi¢V).

In biology, the transport of biopolymers, such as DNA, RNAd groteins, through a
nano-scale pore in a membrane is a ubiquitous process.a8ities with the experimen-
tal forced polymer translocation exist. For example, int@roimport into different cell
compartments, such as mitochondria, chloroplasts, arakig@mes the translocation oc-
curs with the aid of a membrane potential [1]. One of the kegstjons has been, whether
the natural process is possible without any other mechartisam the eletrophoresis [83].

In Fig. 1.1, protein import into mitochondrion is depicted

Figure 1.1: An example of polymer translocation. Left: a mitochondriaside a cell.
The text inner membrane is encircled. Right: a lipid bilawé&h a translocase. A protein
that is translocating into thieansside, is represented by a yellow tube with a green front.
The words trans and cis come from the word transis.

3Left figure is from http://kconline kaskaskia.edu/bcaoiBiology%20117/Cells.htm



Many transport processes function without the biopolyneandpstrongly electrophoresed,
i.e. driven by a force, which has increased the interest daroed polymer transloca-
tion [76]. Partly due to the the abundance of detailed psegadding to the complexity
of its dynamics, such as binding of specific proteins on eithecis or transside of the
membrane, and the effects due to the properties of the pdréharsolvent, experimental
studies on unforced translocation are few [6] compared thighabundance of available
computational studies, sexg.[15, 47, 33, 22, 61, 31, 3, 28]. Another reason for the
abundance of computational studies is the paradoxal nafuhe polymer translocation
problem. On one hand, it seems like a well-defined statistechanical problem, where
familiar concepts of criticality such as universality candpplied. On the other hand, itis
a problem consisting of non-linearities such as anomaldfusn and many-particle hy-
drodynamics. The problem is interesting for statisticatgptists, and the non-linearities
provide a suitable need for computational research. Hokveadymer translocation is,
most importantly, a transport problem that, by definitiorald with finite size effects
that render the assumptions used for criticality quesbtmal he paradox of the problem
that exists between apparent criticality, and the finite gizes a conceptual challenge in

setting frames for this Thesis.

How these two processes, forced and unforced translogcdaliiber conceptually and oth-
erwise, will be discussed in Chapter 3. However, it is notgioto point out that both
of these mechanisms are relevant, for example, in the protgaort mechanism into mi-
tochondria, which has been under intense study for almastiseades, see e.g. [85, 58]
and references there-in. The phenomena can be split intprtoaesses, transits through

the outer and inner membrane, of which only the latter hadextrezal potential over it.

1.3 Polymer sedimentation

Sedimentation is a natural phenomenon induced by graw&/Fg. 1.2. The process is

applied experimentally in a quickened form by the use ofwkntrifuges. Two different
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Figure 1.2: A cartoon depicting polymer sedimentation. Left: A solvercluding an
added polymer is shaken. Center: The gragigcting upon the polymer makes it sed-
imentate towards to bottom. The different parts of the paymteract via the complex
fluid field that they exhibit. Right: The sedimentation presés ended as the polymer
reaches the bottom.

kinds of experiments are commonly performed on these imsnis: sedimentation equi-
librium experiments and sedimentation velocity experitaemhe first kind is concerned
only with the final steady-state of the experiment, wheransedtation is balanced by
diffusion opposing the concentration gradients, resglima time-independent concen-
tration profile. The experiment then describes the finalestagthe process that corre-
sponds to the rightmost frame in Fig. 1.2. Unlike in the figurentrifuge experiments
typically consist of multiple polymers. The second kindkelithe simulations done for
this Thesis, aims to interpret the time-course of sedintemawhich is illustrated by the
middle frame of Fig. 1.2. Typical quantities of interest #re shape and molar mass of

the dissolved macromolecules, as well as their size-Higion.

The rheological properties of polymer melts and soluticegstbeen under intense study
for many decades due to their non-Newtonian hydrodynanhevyier and important ap-
plications in materials processing [10]. With the rapidBvdloping field of nano- and
microfluidics [59, 78], and their important application ilab-on-a-chip” based technolo-
gies, it has become crucial to understand the behavior glesipolymers under non-
equilibrium conditions. In electrophoresis, which is agess similar to sedimentation,

hydrodynamic shielding has been found important even abligemer range of poly-



electrolyte chains, to produce correct dynamics [29].



2 Coarse-graining of molecular structures

In order to study the presented phenomena of polymer treaitstm and polymer sedi-

mentation, we coarse-grain the molecular structures.

2.1 From macromolecules into polymers

The basic idea behind coarse-graining is that any kind af lorear molecule, which can
even consist of about)® atoms (DNA) and different kinds of bonds, can be described by
fewer degrees of freedom depending of the details of the matdeng a coarse-grained
model, and comparing its behavior to the experimental testitan be verified that all the
crucial mechanisms have been included in the model. Whearttlerlying mechanisms
are revealed, the parametric model can describe all polk/saisfying the assumptions
of the respective model. Coarse-graining is indeed neeslade the computationally
feasible amount of degrees of freedom, for our polymerd,tiseoorder ofl0® or 10%. An

example of polymer coarse-graining is demonstrated inZEiQ.

The length scale of polymers ranges from the order of nanenmep to the order of mi-
crometers. Thus the study of polymers incorporates coaadpmiassical physics such as
elasticity. In our study, where we ignore bending potestitile primary quantity describ-
ing our model polymers is length, which is discretized irttorhogenous) repeat units,
and the molecular structure is approximated by beads wittsraad massless springs,
see Fig. 2.1. Here we note that the monomers of the coargeedrenodel polymer (i.e.
beads) are different from the monomers of the macromolediie amount of beads, or
(computational) monomersy adequately describes the contour length of the polymer,
when multiplied with the average spring (or bond) lengthlrhe lengthb is determined

from the elastic properties of a real polymer, i.e. how thigper responds to bending or



Figure 2.1: A polymer (upper figure) is coarse-grained into Kuhn segséower fig-
ure). The beads represent the mass of the segments, andelteddrom1 to N. The
figure is from Ref. [39]. The repeat units, i.e. monomers,hef toarse-grained model
polymer are different from the monomers of the macromokecurhe former are also
referred to as beads.

twisting

b=+/(x?) (2.1)

of the lengthse of the springs, see Fig. 2.1. The magnitudé adepends on the choice
made for the potential used for springs. In this thesis, tasstcal concept of Kuhn
length is used. For a real polymer, the length of a Kuhn segnsetaken just large
enough to permit ignoring any stereochemical restrictibthe orientation of the Kuhn
segments relative to each other. In the polymer model, tyacadt particles or beads are

thus connected by a one-dimensional potential (i.e. thegpthat is dependent on the
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distance between the beads. No mutual orientation caoelakists between the beads.
The conformational statistics of such a freely jointed oH&JC) of N, where N > 1,
Kuhn segments is mathematically equivalent to a random .walks changes if a self-
avoiding potential is included, although in the followirtgs still called a freely jointed

chain.

2.2 Freely jointed chain

The bead-spring chain, used as a coarse-grained polyme pidomputationally mod-
eled as point-like particles at coordinatgs,ro, .. .,ry} that are connected by springs.
Unlike the springs, the particles have a massThe total mass of the chaii is then
proportional to the degree of polymerization, or the amaimhonomers) ~ N. Ad-
jacent monomers are connected with anharmonic springatéatescribed by the finitely
extensible nonlinear elastic (FENE) potential,

U Kpe (1o (2.2)

= —— n — —= .
FENE 5 R2 )

wherer = |r; — r,| is the length of an effective bond between beadsd;j andR = 1.5

is the maximum bond length in our simulation units. The Ledr¥ones (LJ) potential

12 6
Uby = 4e [(z) (%) } < 2V
T r

Uy=0, r> 2%, (2.3)

is used between all beads of distancapart. The parameter values were chosen as
e =12,0=10=bandK = 60/c% The used LJ potential with no attractive part
mimics good solvent, i.e. the particles are soluble to theesd. The spring equations
(2.2) and (2.3) contain only radial dependence, and thugithesa so-calledreely jointed
chain (FJC), which is used in all the Articles from | to V. A widely e model that
extends the FJC model by including an angular dependenedies the worm-like chain

(WLC) [4]. An additivee term may be added to the potential of Eq. (2.3), though the
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current form was also numerically stable and we obtaineatneect swelling exponent

v = 0.60 £ 0.02 in 3D.

2.3 Radius of Gyration

A flexible chain, such as the FJC, goes through different garditions even in equilib-
rium. In the canonical ensemble, the contour length of tHgmer L = b/N remains
constant, even if its configuration changes. One way to ckeniae the conformation of

the polymer is the end-to-end vector, which is written as

N
Ree =) R (2.4)

n=1
Here, the segment-to-segment ved®®qr=r,, —r,,_;. The Kuhn segments are defined as
not having any rotational restrictions, and this,) = 0 for equilibrium random walk,

where the brackets denote an average over the distributranién

e—ﬁ[%wm})}

r, = 2.5
Here,Z is the canonical partition function for the system, and igtem as
N _g| P
7 = H/dpndrne o|#h+on] (2.6)
n=1

Another way to represent the size (or shape) of the polymter isse the mean squared

radius of gyration [20]
N
1 =
Ry =5 A =17, (2.7)

wherer; is the location of the segmentandr = % > r; is the location of the center
of mass of the polymer. The advantageR{ overR.. is that it is well defined even
for branched polymers, and it can be viewed as a value desgtibe radius of a sphere

occupied by the polymer.
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In equilibrium, the radius of gyratioR and the end-to-end vect®&.. scale identically

with respect taV [20]. We have a relation
(RE) = C(RL) =~ (N"D)?, (2.8)

whereR,. is defined by Eq. (2.4), and = 0.1599 + 0.0002 in 3D [45]. The self-
avoidance of the beads results in increased volume occbpigélte polymer (in contrast

to the ideal chain), and is described by the swelling expbnen

, — log(£e)
log(N)

In equilibrium, the exponent is universal, depending omiytlee dimension. 12D v =

(2.9)

0.75, while in 3D v = 0.5888, and it saturates to the mean-field exponent 0.5 in
4D and higher dimensions. Hence, dimension four is the uppecairdimension for

self-avoiding random walk.

2.4 Bi-layers and pores as planes and potentials

In Articles | to IV, the lipid bilayer that contains the narap through which the polymer
translocates is replaced by a mathematically defined pl&he.pore model used by us
in Articles I-lll is a homogeneous cylinder, whereas otl{gs 49, 27, 25] have used a
wall of immobile (point-like) particles through which theg is typically implemented

by removing a single particle, see Fig. 2.2. These diffefon.example, that the latter
implementation of the pore does not result in a potentidlithi@amogeneous with respect
to the direction of the translocation velocity . Other poredals include both square [25],
and cylinder [8] shaped pores used in lattice Boltzmann kitimns. Furthermore, com-

putational pore-polymer interaction studies include edieg the pore diameter and the
LJ potential cutoff length in 2D so that an attractive poi@ritetween the polymer and

pore beads forms in the middle of the pore [48].

In Article IV, we have conducted a comparison of the two masialy used pore models,

the one made of immobile particles and our cylinder poreFsge2.2. The latter is more



13

Figure 2.2: Schematic depiction of the two pore models. (a) The poreviawed from
the trans side along the:-axis. The small red circle depicts the cylindrical pore &f d
ameterl.20. The bead pore is defined by the eight beads each at distaincéom the
z-axis. The pore beads are drawn with circles using the Liatecutoff length2'/¢ as
their radius. The light blue area in the center of the porecatés the region where poly-
mer beads have no interaction with the pore beads. In conthescylinder pore model
has a damped-spring-like potential that acts on particlesyg/here inside the pore. (b)
Side view. The polymer about to translocate={ 1) is drawn as connected dots. The
potentials of the two pore models differ in both thee-plane and along the-axis.

aligned with the coarse-graining principle, being simgled more minimalistic than its
counterpart. The latter was used in Articles I-1V, and iseesglly convenient as a model
since it can be easily generalized into> 2 dimension. In Articles | and Il where the
stochastic rotation dynamics (SRD) model is used, the slitsvare also represented by

mathematical planes.

The cylindrical nanopore has a diameterldf o, whereoc = b. The forcef acting on
the beads inside the nanopore is constant and local for tfeg piich models well the
experimental setups and biological systems, where sa\anet good ionic conductors
thus eliminating any potential gradients outside the pditee polymer beads inside the
pore are not coupled with hydrodynamic modes in any of ouukations. In the direc-
tions perpendicular to the cylindrical pore, beads insidegore experience a damped

harmonic potential/,,, described by
VU, = frn = —kpray — Cpgy, (2.10)

wherek, = 100, C, = 1, r,, are the spring constant, the damping constant, and the
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position of polymer bead with respect to the center axis efaylindrical pore, respec-
tively, andv,, is the velocity component perpendicular to the pore walls.Afticle |

k, = 1000 andC, = 10.) ThusU, centers the polymer along thedirectional axis of
the pore. The potential is chosen large, so no hairpin coraigun can enter the pore as
its width is effectively small. Hence, the polymer segmeiside the pore remains rather
straight. In thez direction, the polymer beads experience either zero orefiinittion

in the pore. The beads experience either a slip or a no-stipdery condition, simula-
tions with both have been conducted. The no-slip boundangition for the solvent (in

simulations where hydrodynamics was used) will be desdrib&€hapter 4.

In Articles I-1V, the ionic current over the membrane, ileraugh the pore, is simulated
as a homogenous force field that acts only upon particlegéisate inside the pore. In
Article V, gravity is simulated as a force field covering thbale system. The force field
originating from the fluid properties, thermal motion, ahé totion of solute particles

is treated with different approaches that are explainedhiap@ers 3 and 4.
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3 Concepts for analysis

After coarse-graining the polymer, we basically have a maogy system ofV inter-
acting particles. For these, we can write the equations dfamdhat we can use to
computationally investigate the time development of thetey. A straightforward way

to implement dynamics for aiv-particle system in a canonical ensemble is to include a

heat bath.

3.1 Fokker-Planck equation

To treat anN-particle problem analytically, we can use the Fokker-Bkagquation

({”V}t St PUr 1) 3.1)

Z;
1 i

Q

7

+ZZ%%zmwmwMML

i=1 j=1

<.

which describes the time evolution of the probability dgnginction P({ry},t) of the
position of N particles. HereH is the drift vector andD the diffusion coefficient in
tensor form. The former represents deterministic motidnlerthe latter results from the

presence of a stochastic (Brownian) force.

3.2 Langevin dynamics

If we neglect the hydrodynamic interactions between théges, it suffices to simulate
the particles in a heat bath. One way to do so is to accountfidtted degrees of freedom
by the use of stochastic differential equations. One ty@paroach is called Langevin

dynamics, which mimics the viscous aspect of the solverd,iawas used in Articles
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lI-IV to model polymer translocation, since it is a compigaglly convenient method
to simulate the time development of the system. Specificaily algorithm was the one

formulated by Ermak [4].

Consider a system a¥ particles with masses. in coordinategr, (), ra(t),....,rn(t)}.
The time-development of such a system can be described byelanequations of the

form
mf; = =VU({r;}) = &ry + \/26kgTmR(t) , (3.2)

whereU ({r;}) is the particle interaction potentidlz7" is the Boltzmann constant times
the temperature, an(¢) is a delta-correlated stationary Gaussian process with zer
mean that is preceded by a prefactor that satisfies the flimtudissipation theorem [65].

Specifically,R(t) is required to satisfy

(R(t)) =0 (3.3)
(R()R(t')) = o(t — 1),

where/ is the Dirac delta function. As we can see, the equations ¢iom@3.2) include
a time-dependent random variable that accounts for Brawmiation, and a friction term

¢ that mimics the viscosity.

3.3 Diffusive motion

The Fokker-Planck equation, Eg. (3.1), is quite general. &kanintuitive form can be
achieved, for example, by considering a single particleguiléorium. In equilibrium,

which is the limit of strong friction¢v| > |mv| for Langevin dynamics, the drift term
can be taken to b& = 0. Also, if the diffusion tensoD is isotropic and constant in time,

we obtain a diffusion equation

% = D Vp(r,t), (3.4)
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where the diffusion coefficienD is a constant obtained from [65]
p="T
mé

Neglecting hydrodynamical effects, the diffusion coeéfitifor the center of mass of the

(3.5)

polymer scales a®,.,, ~ N~!. This is referred to as Rouse diffusion. With Stokes’
approximation, using the Oseen tensor for hydrodynamidatactions,D,.,, ~ N7,

yields Zimm diffusion [20].

The one particle diffusion coefficient can be obtained framuations as

D- %/OOO dt(v(0) - V(£). (3.6)

whered is the dimension of the system, and the brackets denote aag@/ever the phase
space, i.e. time and simulations, hence assuming ergadigpically, the ergodicity con-
dition is somewhat relaxed when, for example, Lennard-9qaeticles are considered.
Here the bracketed quantify; = (v(0) - v(t)) is called the velocity autocorrelation func-
tion, and the special cage&(t = 0) yields the familiar result of the equipartition theorem
(v?) = dkT/m. For a Brownian particle in equilibrium the information atbehe initial

velocity decays exponentially [65]

(k) V(1)) = % exp (—%\tz _ m) | (3.7)

In addition to being interesting fundamental physics, E§®), (3.6), (3.7) can be used
(as tools) to test the validity of computational models imiggrium. The analytically
obtained value forD of Eg. (3.5) should match the computationally obtained eaiti
Eqg. (3.6). Also, any equilibrium computational model stibyield the exponential decay
of Eq. (3.7). These tools have been used to verify the modedd €or this Thesis. In
addition, Eq. (3.6) can be used for various purposes evesideueéquilibrium. In article
V, we determine arffectivediffusion coefficient for the center of mass of the polymer
that is a result of complex coupling of hydrodynamical moiethe absence of thermal

motion.

The self-avoiding effects in the diffusive transport of agde polymer turn out to affect

the characteristic length scale. The average time for agodgmer to diffuse its own
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length in equilibrium is

_ B

o N, (3.8)

T

sinceRg ~ N¥, andD ~ N~! with Rouse dynamics. Eq. (3.8) provides a lower limit
for the scaling of the transport time, also in polymer tranation [36]. In the limit of no

excluded volume, the scaling of Eq. (3.8) would give- N2.

3.4 Single polymer chain in equilibrium framework

A system that is (or is assumed to be) in thermal equilibriam lge treated in the equi-
librium framework. Based on the equiprobability of the etabf the system, the idea is
to write a partition function that keeps track merely of tmeoaint of states. The sys-
tem is then fully described, except for the time scale ofudiffe dynamics or possible
fluctuations. Even introducing small perturbations to tiistam is allowed, since by
the fluctuation-dissipation theorem the system has a sklking property that works to

restore the equiprobability of the states.

Let us consider a free polymer with fixed number of monomérse. a canonical ensem-
ble. Assuming Boltzmann weights for particles in a heat path a constant temperature

T, we can write the partition function as

Iy = ﬁ/dpndrnexp <—BZ [% + U({rn})D : (3.9)

whereU ({r,}) is a potential acting on the beads, ahe- 1/kzT. Typically, one can cal-
culateZy from Eq. (3.9) for simple systems, such as the ideal gas, flegidintegration.
Unfortunately, ifU contains self-excluding terms, like in our case, we canobitesthe

location dependent integral in Eq. (3.9) directly. Howeagiother approach is possible.

If we consider a random walk (that is an ideal chain for> 1) in a d-dimensional
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lattice, the partition function can be straightforwardataulated as
Zn = :uNa (310)

wherep = 2d is the connective constant describing the degrees of freed@ach parti-
cle. The addition of exclusion effects (no overlap of pdesg alters the effective dimen-
sion of the system. A correction term is added to the partitimction of Eqg. (3.10) so
that

Z(N) = NN (3.11)

and the value of: is altered. Herej is the so-called surface critical exponent. For
an ideal chainy = 1, and Egs. (3.10) and (3.11) are equivalent. The self-angidi
polymer chain was theoretically shown to yield the sameensility as the self-avoiding
random walk by de Gennes [19]. The value of the connectivetenot, which describes
the degrees of freedom of a particle, is bounded from aboye ¥y2d (ideal chain), and
from below by > d (diffusion only towards positive axes). The limit value efihed as

1t = limy_ 1y, Wherepy = ¢/, and the value of, is the lattice self-avoiding walk
(SAW) enumeration [51]. The best bounds foand values fory are listed in table 3.1
for dimensions one through five. The critical exponert altered for a grafted chain that
is anchored from one end to a wall, hence residing in a haéspAdditionally, the value
for the swelling exponent is presented in different dimensions. Connective constant

and exact enumeratiohfor SAW can be found in electronic form.

3.4.1 Translocation between two equilibria

The key idea presented by Sung and Park [80], and Muthukubgig to assume two
separate equilibria that each contain a grafted polymencha. a polymer attached to
a wall from one end. These chains have lengths ahd N — s, wheres is the reaction

coordinate andaV is the total length of these two parts, see Fig. 3.1. The Byst&ropy,

4http://mathworld.wolfram.com/Self-AvoidingWalk Coreteze Constant. htm
Shttp://www.ms.unimelb.edu.atiwan/saw/SAW_ser.html



20

d I ¥ v v

2 || [2.62002,2.679192495] 3 & :

3| [4.572140,4.7476)  1.162 0.69 | 0.588
41| [6.742945,6.8179] 1 L+ corr
50 [8.828529,8.8602] 1 !

Table 3.1: In self-avoiding random walk, values for the connectivastant,, and the
surface critical exponentin dimensiord [9, 24, 60]. Values for a grafted chain in half-
space, denoted here &5 are also given. Fo# > 4, v = 1. Logarithmic corrections
denoted bycorr are made to the swelling exponenin d = 4. Refs. [13, 17, 45, 51]

-5 segments
s

ris side
membratie

Figure 3.1: A schematic representation of

trans side

the equilibrium polymenstacation. The

chain length isV — s segments on the cis side andegments on the trans side.

S = kg lIn Z, where the partition functio® is

obtained using Eq. (3.11):

The (Helmholtz) free energy = U — T'S can now be written as

S

Z(s,N) = Z()Z(N — s) (3.12)
pN [s(N — )77 (3.13)
Ins(N —s)+ ?—;, (3.14)

— N1 1—
T npu+(1—7)
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whereAy is the excess chemical potential per segment ofrdnesside relative to that of
thecis side. Thef, derived from the free energy of Eq. (3.14) is written as

. 9 F
kBT_ 83kBT

1 1 Ap

=0 -1 [E_N—s] T kpT

The forcef, then contains two competing terms, the first, entropic tezlated tokz T

(3.15)

(3.16)

and the second, deterministic term relatech\a The external driving forc¢ that we use
as a control parameter in our simulations is connected tottmical potential difference

asf ~ Apu. For unforced translocation, the control parameter 0.

The close-to-equilibrium criterion requires that thegatf the translocation time and the
(equilibrium) relaxation time of the polymer is smatl/7, < 1. We shall discuss this
ratio of times, as well as the relation of the entropic anctiaeinistic terms, when we

investigate the translocation process with simulatiorShapter 5.

3.4.2 Kramer’s escape

When it was discovered that the previously presented éguuitn framework yielded

unphysical results from the scaling of the translocatiaretwith respect to the polymer
length [15], the door was again open for other theories. Baltrilations and specifically
the Kramer’s escape problem was one potential candidasefaing the problem. Hence,
we will briefly outline this specific problem before we try tp@y it. For comprehensive

literature about Kramer’s work and rate calculations, sge[82] and references there-in.

Consider independent Brownian particles in a potertfigt), which has a shape shown
in Fig. 3.2. Let us assume that the potential well is deep batinitially the particles are
in the well. Physically, the particles are expected to readtose-to-equilibrium state,
but leak out slowly across the barrier. What is the rate atiwkhis escape takes place?

This is the Kramer’s escape rate problem.
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Figure 3.2: The generic shape of the potentid(x) used in Kramer's problem as a
function of the locatiorz. An infinite potential walla keeps the particles from escaping
towards left. A wellb is formed between the wall and a potential barcieFhe ensemble
of particles in the well is close to equilibrium, as the paes slowly leak over the barrier
into a state with lower potential. The ingenuity in the formulation of Kramer’s problem
is that we do not have to know the exact shape of the potditial. It suffices that/(z)
has this kind of a shape.

The Langevin equation for the particles in the overdampet,liin which the inertial
termma is omitted, is written as

_ O0U(=)
fv = ——5 T fr(t), (3.17)

wheref,(t) is the random force. The corresponding Fokker-Planck émuédr the prob-
ability densityP(z, t) is given by

OP(x,t) 0 [10U O?P(x,t)
0 [10U OP(z,t)
. [gap(x’ p + p2te) } (3.19)
= 0J (3.20)

-5
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whereD¢ = kgT and.J is a probability density current

1oU OP(z,1)

(3.21)

After some algebra and a couple of saddle-point approxanati32], we essentially ob-

tain theKramer’s escape rate formula

D

er B 27Tl€BT

1 E,
oot |-, (3.22)
whereE, = U(c)—U(b) is the barrier height. If the barrier height is raised, theage rate
falls off exponentially. The usefulness (or generality)=af. (3.22) comes from the fact
that we only have to know the value bf(x) at two pointsz = b andxz = ¢. However,

the formula only applies in th&, > kgT regime, because of the assumptions we have

made.

The application of Kramer’s problem to the problem of polyrtranslocation can be at-
tempted in two ways. The abstract entity of an ‘escapinggatican either be a single
monomer or the polymer as whole. In the first case, the patehiti= U({z;}) experi-
enced by particleé is dependent not only on its own location but on the locatialldhe
other particles as well. Hence, the assumption that thécfestare independent cannot
be satisfied. In the second case, the entropic potentiabgidtymer has a hilltop shape,
which is completely different from what is required for Kraris problem, see Fig. 3.2.
The entropic potentidl/(x) thus lacks the infinite wall that would confine the polymer

into an entropic well. This deficiency can be compensatedawtays.

The infinite wall potential can be addedx) by either restricting the first bead from
being sucked into the pore [22, 21], or restricting the systpace of theisside. Polymer
translocation from confinement has been studied in botrepl®2] and spherical geome-
tries. The latter is relevant especially in biological @sses, e.g. bacteria inserting their
DNA into living cells, which is often referred to as capsieé&jon [40, 2]. However,
these additions alter the system so fundamentally thatrigaal problem what we wish

to study becomes unaccessible. Moreover, in the limit angfrconfinement the poly-
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mer translocation is confinement driven [12], and thus inflecinwith the equilibrium

assumptions used in Kramer’s problem.

3.5 Steady-state

The equilibrium framework offers an abundance of powertals [65]. Perturbation
methods can expand some of these to cover non-equilibristersyss. One such method
that uses the close-to-equilibrium assumption was theiquely introduced Kramer’s
escape problem. In some cases, the statistical mechareasinent can be extended to
steady assemblies even if they are far from equilibrium.[8hje concept of equilibrium
is then replaced by a so-callsteady-stateand the statistical definitions of macroscopic
guantities like temperature and chemical potential redacguitable averages over the
local assembly. In other words, a system in a steady statént@serous) properties
whose averages are not changing in time. Systems with simédaroscopical properties,
e.g. temperature, ammmpatibleand can be brought together without any change in those
properties [81]. However, there are restrictionstonpatibilityfor systems that contain

many-particle interactions.

If we consider our bead-chain polymer model, monomers ddvetaken as non-interacting
particles. Hence, the sedimenting single polymer chainglied in Article V, are not
compatibleto be brought together in the sense that the macroscopieprep of the
steady-state would be conserved. In other words, singhgnpe chains in the dilute
limit, where chain-chain interactions are negligible, prene to have fundamentally dif-
ferent dynamical behavior than a system with more than odemganting chain would

have.

In the polymer sedimentation problem of Article V the polymesumes a settling veloc-
ity when the gravitational force is balanced by the viscausds of the fluid. When the

polymer has reached this settling velocity, we say it is ineady-state for the purpose
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of measuring some local quantities, e.g. the temperatuddranradius of gyratiomR.

For these, it is possible to determine a time-average, amldbmbine data from differ-
ent simulations to obtain the average. Hence, we assumesititat the polymer actively
tumbles through different configurations, it does not getlsin any distinct area of the

phase-space.

The average of the radius of gyration, that is constant ie tiwill turn out to be coupled
with the hydrodynamical drag, with the time-dependent oomftions resulting in fluc-
tuations in the settling velocity. These velocity fluctoas can be considered through
a concept of local temperature, as they show as a measwifddtivediffusion for the

center of mass. We shall return to this problem in Chapter 5.
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4 Fluid dynamics

The study of the deformation and flow of matter — rheology -gé&y determines the
dynamics of many biological structures. Hence, the implataigon of hydrodynamics
in a computational method is of high importance. Howevas ith not straightforward
as any computational study is a compromise between two ndéds, the description
of the structure and dynamics of the studied object shoulddtailed enough to allow
for the observation of essential mechanisms, and secomdiukied system sizes should
be large enough to reach the experimentally relevant sc@lesre is no unique way to
make this compromise, and therefore multiple methods wfthrént pros and cons are

generally employed.

In the preceding chapter, we discussed the Brownian hdatwhere hydrodynamics was
completely ignored. However, it is common knowledge thatrbgynamics contributes
even to equilibrium dynamics by adding long—range cori@tat between the suspended
particles. This shows in, for example, polymer relaxatiores [20]. If a sufficiently large
external force is applied to a system, the system is no langsguilibrium, and the Brow-
nian motion becomes less important as the external forgeases. In the limit where
the thermal Brownian motion is negligible, hydrodynamicsminates. In the following,
we shall discuss how the above—mentioned compromise betthedevel of detail and
computational efficiency is coupled to the inclusion of lpairamics from the micro-
scopic level to the macroscopic continuum limit, where thfis no longer presented

by particles but by a field.

Microscopically, hydrodynamics can be correctly implemeenonly in the microcanon-
ical ensemble, which preserves momentum. Using molecylaardics, e.g. the GRO-
MACS [23], to preserve the detailed interactions easily esalarger systems computa-
tionally intractable, thus making it impossible to invegstie phenomena that show only

on larger length scales. By a so-called dissipative partigihamics [30] hydrodynam-
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ics can be implemented judiciously and the detailed desonpf molecular dynamics be
preserved, but if the simulated system does not allow foresaddlitional coarse-graining,
also dissipative particle dynamics tends to be prohiditigeow. The by now traditional

coarse-grained complex fluid simulation method is thedatBoltzmann method [7]. Its
hybrid form where molecular dynamics is used to simulateactsjlike polymers in the

solvent has proven relatively versatile [55].

The hybrid methods solve simultaneously the equations dfomdor the particles and
take into account the fluid in some coarse-grained manngujogtng two time scales
to achieve computational efficiency. Two of the models usedHis Thesis, a coarse-
grained complex fluid simulation method called the Stoghd&&dtation Dynamics (SRD)
used in Articles | and Ill, and a Navier-Stokes solver ushmggo-called immersed bound-
ary assumption used in Article V, are both of hybrid form. $&enodels differ from each
other, and also from lattice Boltzmann method. For examiple,particles describing
the solvent dynamics in SRD are not restricted to latticessias they are in the lattice

Boltzmann method. SRD will be discussed in detail in Secidn

In the continuum limit, the microscopic degrees of freedam summed up in a field
that describes the collective motion of the fluid [44]. Thedlfield can then be simu-
lated with a Navier—Stokes solver. In Article V, we emplogka solver with immersed
boundaries [43, 42], i.e. that the fluid is assumed to fill th®le simulation box includ-
ing the particle locations. We shall refer to it as the IB noetim the following where we

briefly introduce the macroscopic treatment of hydrodyrcami
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4.1 From conservation laws to hydrodynamics

Assuming that the mass cannot be created or destroyed, @@ abé balance equation

for mass, i.e. the continuity equation [44]

dp
I v = 4.1

which states, that the change rate of mass inside a volumea & the mass flux through
the surface of that volume. For incompressible fluid the dignsis constant and the
above equation reduces to

V-u=0. (4.2)

Let us consider an arbitrary fluid element in an incomprésgiewtonian fluid, with a

volumeV and surface5. The stress tenseris defined as [44]
o =—pl+n(Vu+ (Vu)"), (4.3)

wherel is a second rank unit tensor, apds the pressure. The viscosity which is
the ratio between stress and the deformation, is assumeathedrior a Newtonian fluid.
The balance equation for momentum, in the coordinates dfulteelement, can now be

written as [44]
Du

"Dt

wheref is the external force field. As noted before, for systemsdahatiriven by a strong

=V -0+ pf, (4.4)

external force the thermal Brownian motion is negligiblevithing back to laboratory
coordinates and by combining Eq. (4.3) and (4.4) we get theex&tokes equation for

the incompressible Newtonian fluid [44]

P 1
a_l; (U V)u=—"Vp+ vV2u + 1. (4.5)

Herev = n/p is the ratio between the viscosity and the density, knowmakinematic
viscosity. As in any other physical problem, the boundamyditions are a vital part of
fluid mechanics, since material interfaces have certaipgat@s that cannot be ignored.

The typical physical boundary condition that is used in flomidchanics is the no-slip
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condition. It is the analog of the constitutive relationse(tstress tensar defined in

Eq. (4.3) and heat fluxy = —kVT, wherek is the thermal conductivity) and only
holds when at least one material is a Navier—Stokes fluidifiabeys the Navier—Stokes
equation) [44, 18]. The no-slip condition states that theroscopic fluid element residing
on the surface of the particle does not have any movemertiveeta the surface, i.e. it

moves with the surface.

The no-slip condition is inherent to both the SRD and the IBhaods. In the first, the slit
walls pose a strict no-slip condition to the fluid particl&be solute particles, in the first
and in the latter, are imposed to such interactions with thd that the no-slip condition
can be seen fulfilled. In addition, thermal fluxes are out efsbope of this Thesis, as itis
assumed for all our models that the temperature varies gl@hdt all) so that no thermal

convection occurs.

4.2 Reynolds number

Problems that require computational approach typicalbi dath non-linearity. For hy-
drodynamics, the non-linearity of the Navier-Stokes Egb)4s described by the dimen-

sionless Reynolds number

L
Re:Q,

n
whereV and L denote the characteristic velocity and length scales isyseem and is

(4.6)

the viscosity. The Reynolds number is an estimate of the adtihe inertial(u - Vu) and
viscous(n/pV?u) terms in Eq. (4.5) presented in laboratory coordinates.(£¢) that
is in the coordinates of the fluid particle can be presentealdimensionless form, as a
function of Re. For this purpose, we may introduce dimers&swvariables (denoted by
tildes) as follows

u=Vvia, t=—f —= 19 p=pVip, f= Vi (4.7)
T L
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HereV and L are the above—mentioned characteristic velocity and tesgales that
the flow has. Substituting these into Eq. (4.4), and droppinegtildes, we obtain the

dimensionless Navier-Stokes equation

Du 1
it fo_—
Di VPR

V4, (4.8)
where Re= V' /v is the Reynolds number as presented in Eq. (4.6). It shoultbtex
here that in the IB method used in Article V, the single pé&tiRe= 0.25 that we keep
fixed could, in fact, be used as a control parameter. For SRbhave approximated
in Article | that the single particle Re- VL/v ~ 0.005 in forced translocation with
fiot = 3, N =100, V = 0.004, andL = 1. The kinematic viscosity for the bead used
here is four times the one of the fluid= 3.1, which is derived in Section 4.6. The whole
polymer’s Reynolds number is naturally larger (and depehda the chain lengtiv),

since the polymer has a different characteristic lengtledt@n a single particle.

4.3 Stokes approximation

Neglecting the inertial ternju - Vu) from Eq. (4.5), we end up with an approximation
Re = 0, which is the so-called Stokes approximation. This appnation linearizes the
Navier-Stokes equation (Eq. 4.5) and allows further aiadytreatment. The equation
thus reduces (when inertial and temporal accelerabofvt terms are ignored) to the
Stokes equation

—nV?u = —Vp + pf. (4.9)

With this approximation the problem of a single, non-Broami spherical particle of
radiuse and mass density, settling steadily in a gravitational field of strengtthrough

an (incompressible) viscous fluid of mass dengity p, — Ap and shear viscosity can

be solved. The viscous for€ernau acting on the particle is balanced by the gravitational

forcemg = Apa®g. The sphere then assumes a steady settling velocity

a*Apg/n, (4.10)

u =

O N
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where the fluid velocity field

u(r) ~ S T>a (4.12)

decays very slowly as a function of distancérom the center of the sphere. A finite

Reynolds number increases the decay dramatically.

The polymer in the sedimentation problem of Article V may heught to be approx-
imately a settling particle, whose hydrodynamic radiuseigresented by the radius of
gyration R that was introduced in Section 2.3. In the forced polymengi@cation,
Storm et al. [79] considered the polymer as a particle of ausmafl; that is pulled to-
wards the pore so that the pulling pore force is balanced éytdrodynamic drag of a
particle with radiugk. However, this qualitative picture turned out to be inadgguand

a more suitable description was later given by Sakaue [6@}@sted by us in Article I.

4.4 Péclet number

The Péclet number PeVa?/D is a dimensionless quantity measuring the relative im-
portance of flow and thermal diffusion in a suspension. Giersa Brownian sphere of
radiusa that has a buoyant weight (i.e. weight minus the weight ofesal displaced)
Amg, whereg is the acceleration due to gravity addn is the buoyant mass, settling
through a viscous fluid at temperatutrg?’ in energy units. The Péclet number for this

particle is obtained as [64]
pe — AM9e.
kgT

since the settling velocity = mg( and D = kgT/( from Einstein relation, where

(4.12)

is the coefficient of the viscous drag on the fluid. Eq. (4.52%eéen to be simply the
effective gravitational potential energy difference asr@ height equal to the particle
radiusa, scaled by the temperature. A system in which Pe is excelydimge, 10? or

more, the Brownian motion can be neglected [64]. The demsftgrence between the

particles and fluid\p in the IB method used in Article V i$.5 times the density of the
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fluid, thusAp = p, — p = 1.5p. Let us consider a suspension in the room temperature
(T = 293K), in which Pe = 100, for example. This would mean that the sedimenting
particles (assumed to be spheres) of Article V would havelausaof about .6 ym and a

mass oR.5 x 10~ kg.

4.5 Stochastic Rotation Dynamics

The Stochastic Rotation Dynamics (SRD) — also called Mediticle Collision Dynam-
ics — method was introduced by Malevanets and Kapral [52583B, It is essentially a
simplification of molecular collision dynamics yieldingetltorrect hydrodynamic equa-
tions over long distances. By construction, the dynamicsen/es mass, momentum,
and energy. The algorithm consists of two phases, namedystreaming of the fictitious
fluid particles and simplified collisions among them. For stegn of() fluid particles the

free streaming step reads as
r;(t + At) = r;(t) + v;(t) At, (4.13)

wherer;(t) andv;(t) are the position and the velocity of particle [1, Q], respectively,
andAt is the time step of the algorithm. The free streaming is fodld by the simplified

collision step

Vill + At = R[Vi(t) = Ve ()] + Vom (0), (4.14)

whereR is the rotation matrix and,,, is the center-of-mass velocity. At each time
interval the rotation axis is picked randomly, so that thation anglen = 37 /4 is kept
constant. In order to maintain molecular chaos, severéréifit rotations have to be
performed at different positions in the system. The simotespace is divided into cells,
which are shifted randomly in the periodjedirection between the time steps. Shifting
ensures Galilean invariance at low temperatéfEs< 1 [35]. An individualR is defined

for each cell, and accordingly for each cell,, is then defined as the center-of-mass
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velocity of particles belonging to that cell, i.e.

o ZEimivi(t)
cm T / Y
2?:1 m;

where@’ is the number of particles in the cell and, is the mass of particle Hence

(4.15)

the collision step, Equation (4.14), for each cell can bevei# as first eliminating the
collective motion of the particles in the call(t) — v.,(t), then rotating the resulting
random velocities to mimic collisions, rescaling them satttihe equipartition theorem
condition
@ , 3
Z oM Vi(t) = Vem(t)]” = Q' ékT (4.16)
i=1
is met and finally adding back the collective motion. The cataponal efficiency is thus
obtained by taking the fluid particles’ collisions into agoo statistically as an average

over an ensemble of fictitious fluid particles.

Due to the simple coarse-grained fluid dynamics, implentemtaf a hybrid SRD, where
the dynamics of the object under investigation is perforimedore detail, is straightfor-
ward. The patrticles belonging to the investigated solutgcsire, such as the beads of
a polymer, perform both molecular dynamics and SRD dynanaicd are thus coupled
to the solvent. Accordingly, each solute particle is trdaggactly like a solvent parti-
cle inside a cell. Additional computational efficiency isrgad if the modes of motion
of the solute and the solvent particles are well separatedemanding that the masses
of the solvent and solute particles differ. In the model ukedArticles | and lll, the
solvent polymer beads are four times heavier than the @iostsolvent particles, which
in a situation where the system geometry does not tend tougéz@olymer from the
solvent allows us to perform one SRD step for only evry molecular dynamics steps.
However, due to the nature of the polymer translocationlprabthe SRD steps are per-
formed more often, once for evesy molecular dynamics steps. This choice for the time

parameter will be shortly justified.

The basic geometry used in the simulations for Articles | Hhi$ a simulation box of

L,xL,xL,, whereL, = 25andL, = L, = 32in cell lengths. Having a fluid density of
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5 solvent particles per cell, this equals to having approxahya 28000 solvent particles
in 25600 cells, in total. The simulation space is bounded by two wagigpendicular to the
x direction. No-slip boundary conditions are applied betwte walls and the solvent
by reversing the velocity vectors of colliding particleadahe system is periodic in the
andz directions. However, the space is divided in two equallgéacompartments by a
wall on thexy-plane. The polymers immersed in the solvent have segmagitis around

1, so typically there are from to 3 polymer beads in one cell.

4.6 Schmidt number

The importance of hydrodynamic transport compared to siffin can be characterized
by the Schmidt numbefc. Itis defined as the ratio of momentum diffusivity (viscgsit
to mass diffusivity, i.eSc = v/ D, wherev is the kinematic viscosity. Most importantly,
the Schmidt number distinguishes the dynamical behavitiuifs Sc ~ 10? — 10 from
that of gases$'c ~ 1 [11]. In order to make accurate simulations, itis a good ideeerify
that a model solvent represents what it is supposed to, vitnithis case is water. The IB
method used in Article V does not contain thermal diffusism the Schmidt number is
large (or infinite) — describing a liquid. For SRD, the tot&éaosityn = pv consists of
two terms [38, 35]

1 = Nkin + Neol, (417)
where
- kBTpAt( 5p B 1) (4.18)
hin a’ (4—2cosa—2cos2a)(p—1) 2/’ '

m(1 — cos )

TN (4.19)

Neol =

are the kinetic and collisional contributions. The Schnmdimber can be adjusted with
the choice of the collision time stet [67]. For our choice of parameters used in Articles

land Il (m = 4, = 37 /4,At = 0.1,a = 1,p = 5,kgT = 1), we haveny;, ~ 0.33,
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andr.,; ~ 15.2. Hence, the total viscosity ~ 15.5, and the kinematic viscosity ~ 3.1

for the solvent.

To obtain the Schmidt number, we also need to measure thesidiff coefficientD from
our simulations. We consider a best—-case scenario for thesigity of the solvent, by
measuring the diffusion coefficient of a single monomeripkrtwith m = 16, instead
the one of a solvent particle with, = 4. We obtainD; ~ 0.05 from the mean-squared
displacement for each componerih three dimensions. From = > . D; ~ 0.15 we
obtainSc ~ 20, which could now be four times lower for the sole solvent¢sithe solute
monomer particles are four times heavier than the solvetitfes. Judging from this, the
solvent in our simulations describes a dilute liquid. HoaresinceSc ~ 1/(At)? [67],
the Schmidt number for this model may be increased to obtaeti@r accordance with
water (containing salt). This is done by decreasing the stepAt with the caveat that

computational efficiency is sacrificed concurrently.

4.7 Finite—size effects

Models that employ hydrodynamics typically have periocaibdary conditions to allow
the formation and development of hydrodynamic modes atdhgdst possible length
scale, which is the system size. In these cases, where thesmoaks the periodic bound-
aries, it is crucial to distinguish actual physical beha¥fom model specific artefacts.
All models need to be tested agaiffisiite—size effectssince any phenomenon that ap-
pears simply because the simulation box is too small is usiphl In other words, we
need to make sure that the size of the simulation box is largegh so that the finite—size

effects are avoided.

With hydrodynamics, the primary concern is that the modegdouple through the mir-
ror images of the simulation box and be unphysically stramgour SRD translocation

model, the slit walls on which the no-slip boundary conditie imposed effectively hin-
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der forming of any periodic modes in thedirection, and block them in the-direction.

Moreover, the pore wall restricts the fluid from forming petic hydrodynamic modes in
thez-direction, as even the pore is inpermeable to the fluid. dfoee, even when the box
has periodic boundaries, periodic hydrodynamic modes ar@allowed in the direction
of the pore force. Somewhat in accordance, from our resoltserning Articles | and
lll, a stronger finite—size effect than the potentially upgisal coupling of hydrodynamic
modes resulted from the physical confinement of the polyrhamc Roughly, the re-
guirement for the simulation box size is that a sphere ofua#i; fits easily to thecis

side of the pore wall.

For the IB-method used in Article V, the system box of the cataponal model was
also tested against finite—size effects, since periodiathates were used in all three
dimensions. Too small a box was seen to alter both the stafpepties, such as the radius
of gyration R, and dynamic properties, such as the terminal settlingcitgle;;,, and
effective diffusion coefficienD, of the steady—state. While in steady—state, the settling
polymer induces a backflow in the fluid, see Fig. 4.1. This fgarm snapshot illustration

of the zz-plane, where: is the direction of the gravity, and the colors representes

... from a norm imposed to the velocity of the fluid. Namely,
Cpz = Z[U(ZE, Y, Z)]Qv (420)
Y

whereu(z, y, z) is the fluid velocity in the grid poin{z, y, z}. In Fig. 4.1, colors from
highest to lowest value afare red, yellow, light blue, and dark blue. Finally, the siaau
tion box was chosen so large in the gravitational directi@t the terminal velocity;,,
would not couple to the backflow of the polymer’s own imageotder not to endlessly
add more and more energy to the system, the algorithm isrcmtest so that the average

fluid velocity is substracted from the fluid velocity in eaatdgpoint [43].
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Figure 4.1: A snapshot of a system with a polymer of length = 64 from the IB-
method. The velocity field of the Navier-Stokes fluid is viszed by colors. The fluid
is moving faster in the yellow and red spots than in the zonelwé color. This figure
contains only information extracted from the fluid velodisid. We can identify some of
the particle locations in the figure due to the immersed bagndondition, since the fluid
and the patrticles travel at same velocity at these locatibins lighter blue arc following
the polymer is the backflow. The figure does not display thelevkionulation box.
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5 Results

This Chapter contains the essential results presentedticie 1-V. The research in the
polymer translocation reported in Articles -1V is first rewed by using the concepts
introduced in Chapter 3. In particular, the equilibriurmfi@wvork is invoked. Afterwards,
the study of the sedimenting polymer in a steady—state dan fequilibrium, reported in
Article V, is outlined. Here, the emphasis is on the inteyddatween hydrodynamics and

the polymer configuration.

5.1 Polymer translocation

The forced polymer translocation, which is relevant for. ellira—fast DNA sequencing,
has been said to be so well-studied experimentally thattbelyveak force regime was
left for theoretical studies [41]. Close to equilibrium, evhthe driving force is weak,
the transport mechanism is explained by the equilibriuméwaork (see Chapter 3). In
translocation studies, however, the definition of a weakdas typically superficial. For
example, requiring thaf,,;,b N/kT < 1 does not give quantitative information on how
the simulation parametefi,; should be set. Rigorously, the only way then is to test the
equilibrium assumption. Otherwise, misinterpretatiores@ossible. One example of this
is to assume that equilibrium concepts apply also for stfonces, f;,:b/kT = 1 in
Ref. [21].

In spite of the above statement in Ref. [41] several questizare, however, left open for
theoretical studies. We will consider these in Section dfter the critical evaluation of

the equilibrium paradigm.



39

5.1.1 Ciritical evaluation of the equilibrium paradigm

At the time Article Il was written, most of the computatiomasearch in polymer translo-
cation was founded on the papers of Sung and Park [80] andWduthar [57], which
use the equilibrium framework. Assumptions based on thédibgum theory,e.g.the ef-
fect of the pore force and hydrodynamics, carried over tomatational studies. Among
other things, this hampered scientific dialogue as authodgy results inconsistent with
the theory started arguing about the rigor of various resiioreover, the research com-
munity was split in roughly two distinct camps. When othetterapted to cement the
universality of the forced translocation by pinning dowe tritical exponent(s), others
tried to distinguish between the equilibrium and out-otdégrium processes and find
separate solutions. Lately however, the community hasrbecaware that instead of
confirming the universalities expected by the equilibridmadry, the results cover differ-

ent force ranges. For example, Sakaue [70] has defined tmezregimes.

Monte Carlo (MC) methods have provided valuable resultpddymers in equilibrium [20].
However, when a significant external force is present, thiiegum assumption cannot
be straightforwardly made. In Article II, we criticize thagadigm of using MC methods
in forced translocation, i.e. the algorithms that have h@@wven strictly valid only for
equilibrium dynamics. At the time Article 1l was written, éhitheoretical treatment of
forced translocation can be said to have been almost salatied by MC simulations,
despite the MC results contradicting the available expenital results. Hence the theory
evolved independently of the experimental findings. A logfidrt was wasted in the at-
tempt to determine the dynamical universality class of theglocation process, by using
the scaling of the average translocation timeith respect to the polymer chain length
N, T ~ NP. As a result, there is an abundance of research reportifeyefit scaling

exponents’.

Already in 2005, Stormret al. [79] anticipated the experimental pore force magnitudes

to be larger than those used in (MC) computer simulationgokttmately, they reported
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experiments made with only one force value so that the assomgf a universal value
for 5 was not proven wrong. In Article Il (published in 2008), weosled that the ex-
perimentally and biologically relevant force range is bayohe force threshold for MC
transition probability saturation. In other words, thesecés cannot be simulated with
MC methods. However, while close to equilibrium MC methodsyield the correct
physical behavior and, at least in 1D, belong to the sameeusality class as LD simu-
lations, which is also shown in Article 1. We found it to be @nsewhat general feature
that the model specific details, e.g. hydrodynamics or thre pwodel, which might be
insignificant close to equilibrium, were prone to becomeegsal to out-of-equilibrium

dynamics.

5.1.2 Research questions

In this Thesis, the main research questions concerningriftdgm of polymer translo-
cation arel. in what circumstances does the process remain close takequil, and2.

how does the hydrodynamics contribute.

The first question is not to be taken lightly. It determinesetiier the dynamics of the
process is predominantly deterministic or diffusive. We tiee concept of equilibrium in
a following manner. The fluctuation-dissipation theorelovas small perturbations when
we consider the free energy. Then the mathematical toolefrom the assumptions is
valid, and we consider the process to be close to equilibrlarthe forced translocation,
we ask what is the threshold value for the pore force thathastly keeps the process
in the frame that can be treated with equilibrium theory. €becept of equilibrium can
thus be used to divide the problem of polymer translocatia (at least) two distinct
cases. The first case is where the pore force is small enoutitasd does not distort
the probabilities of the system states. The second casedsewifne pore force dominates
over any thermal based entropic forces. In the followingsthare called as close-to-

equilibrium and out-of-equilibrium cases, respectivalye shall reflect the concepts of
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unforced (Article 111) and forced translocation (Articlé$V) upon this definition.

The second question is more concerned with the out-of4#equin process, since close
to equilibrium the effect of hydrodynamics is less pronathand better known, as dis-
cussed in Chapter 4. We are interested in the following duest How is the dynamics
affected, and is the hydrodynamic coupling through the pssential? Close to equi-
librium, the relaxation times of the polymer are affectecenile, diffusion of the chain
is faster. What then happens outside of equilibrium, whesirdyynamics mediate the
momentum between the beads and thus enhance the colleati@nof the polymer?

Results from simulations including hydrodynamics are regabin Articles | and 1.

5.1.3 Confirming the equilibrium statement

In order to confirm that the unforced translocation procaksg place close to equilib-
rium, we investigate the state transition probabilitiesatone in Article 11l. The polymer
beads are numbered frofto N, with the middle bead initially in the pore and the end
beadl on thetransand NV on thecis side. The states of the system are labelled by the
reaction coordinate, defined as the number of the polymer bead currently in theli@id
of the pore. The system enters the stgtevhen the bead numberenters the middle

of the pore. Assuming that the two polymer tails on each sidd@ wall are in sepa-
rate thermal equilibria, we can calculate the transfer gbdlty of a ‘forward move’ as
Pi(s) = P(s — s+ 1) ~ exp(—f(Fst1 — Fs)), wherep = 1/kgT and F} is the free
energy given by Eq. (3.14). We obtain

Py(s) ~ (1- % + Nl_ S)M. (5.1)

In our simulations, the pore &b long, so beads — 1 ands + 1 are also inside the pore,
which is taken into account by using effective valdes 1 and N — s — 1 for the chain

lengths ortransandcis sides in Eq. (5.1).
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Figure5.1: The forward move{ — s+ 1) probability P (s) for chains of lengthV = 51

and 101. The solid lines are theoretical predictions from Eq. (5dgrived using the
equilibrium free energy. The reduction &f due to finite pore length has been accounted
for by using values ofV € {49,99} in theoretical predictions. a) SRD results where
hydrodynamics is included and the pore is frictionless. bést fit (shown) is obtained
with v = 0.69 + 0.05. b) Results from Langevin dynamics in 2D with frictional por
N = 51,101, and251. The best fit (shown) is obtained with= 0.80 4 0.05.

In Fig. 5.1 a) the transfer probabilities obtained from tHeDSsimulations in 3D are
compared to those given by Eq. (5.1). The best fit of the prtibab from both LD and
SRD simulations to the analytical values is obtained forekgonent value = 0.69 +
0.05, which is the exponent for the self-avoiding walk (SAW) arehbe in agreement
with our measured value for the swelling exponent: 0.60 £ 0.02, which for SAW is

v = 0.588. Consequently, in 3D the unforced translocation is adedyatescribed by
two thermodynamic ensembles separately in thermal equifih even in the presence of
hydrodynamic modes. However, close to the chain enelswhens is close tol or N,
translocating segments are inclined to accelerate duestéatbe entropic difference of
the polymer segments on the two sides of the wall resultirglarge driving force. This

has been studied in detail elsewhere [28].

The data in Figure 5.1 is somewhat rough, but further equuilb behavior is observed
in Article lll considering the state transition times, andiwersality in scaling of the

mean-squared displacement of the reaction coordinatdence, we can conclude that
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the unforced translocation process takes place closediblEqm.

Close to equilibrium, the critical properties, such as arsality, are meaningful. In Ar-
ticle Ill, we verify the lower limit for the scaling exponeat the translocation time with

respect to the chain contour length to be
T~ NP B>2041, (5.2)

which is a straightforward result from Rouse dynamics — wéthout hydrodynamics
— as proposed by Chuaret al. [15]. The idea behind Eq. (5.2) is that the polymer is
considered to travel a distance proportional to its own attaristic lengthR; ~ N” by

diffusion. For the Rouse dynamic®, ~ 1/N [20].

5.1.4 Force threshold

Let us (naively) assume that close-to-equilibrium andafegquilibrium regimes for the
translocation process are separated by some force valiugh whk call the threshold pore
force. In other words, if the total pore force surpassestthisshold value, the process is
driven out of equilibrium. We can then use the forward tréosiprobabilitiesP;(s) to
determine an approximation for the threshold pore forcee/as in Article IV. In Fig. 5.2,
the measured (s) for various forces are shown. Witfy,, = 0.1, the measured(s) is
aligned with the solid line that represents the equilibrivamsition probabilities, namely
Eq. (5.1) shifted upwards. Witfi,; = 0.5, the form of the measuref;(s) differs from
the equilibrium form so that the process can be taken to befaquilibrium. Therefore,
fitb/ KT ~ 0.1 can be taken as the force threshold value for which the psdedsarely,

but still, describable by the equilibrium framework.

Sakaue [70] theoretically distinguished three regimesytuth the close-to-equilibrium
regime is one. The two other regimes are bound to reside agufibrium. We will try

to separate these two, namely the high force range and tiramgje, in Section 5.1.6.
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Figure 5.2: Forward transfer probabilitie®’; as functions of the reaction coordinate
normalized with polymer lengths/N. The data is from LD simulations and given for
the bead (bd) and cylindrical (cyl) pore. Hefe= 0.7 and NV is 255 or 256, depending
on the polymer’s initial position. The pore forge, has the following values from top
to bottom: f; = 5.0 (cyl,bd), fo = 1.17 (bd), f3 = 0.5 (bd). At the bottom are?; for
fior = 0.1 for the bead (bd, distinct squares from the solid curve) aeatylindrical (cyl)
pore (red) obtained from simulations together with the bksalid curve calculated from
Eq. (5.1) for the unforced case. For tfig values0.1, 0.5, and1.17 (f; upper curve) the
polymer was initially placed halfway through the pare- (N — 1) /2. For thef,,, values
5.0 (both) and1.17 (f, lower curve), the polymer started from this sides = 1. The
shape of the probability curve depends of the pore maoflgl polymer’s initial position
(f2), and changes with the force.

5.1.5 The pore force in Sl-units

Conventionally, as in our case, parameters and observatdgeesented in reduced, di-
mensionless units. How then do these units connect to $$;usiwhat we attempt to
address next. It is highly relevant to compare, for exantple simulation force magni-

tudes to the force magnitudes used in experiments and auserbiological processes.

The force mapping is considered in Articles I, Il and IV. Ittignveniently conducted by
considering a dimensionless ratio of the two dynamicalljmpeting energies. We have

used the ratio between the energy of the total force fieldclvis obtained from the
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product of the pore force and the pore length, and the theenexgy, namelyf,;b/kgT.
This dimensionless quantity can be rather straightforlyardnsformed from simulation
units to Sl-units by applying the according unit scales. Witenthe equality

ftotb _ ftotl;
kT kT’

(5.3)

where the left and right hand sides consist of simulation@lRdnits, respectively. Here,
for example,b = 1 is the Kuhn length in simulation units, btit= 2), is in Sl-units,
where \, is the persistence length, roughig A for a single-stranded (ss) arid0 A
for a double-stranded (ds) DNA [82]. We note that the mapihgnits is not unique,
but depends on the physical system. Thus the simulatednsyste represent different
systems found in nature that share some predefined chastcsern our case, this means
that DNA, RNA and proteins are all represented (at some lef/@bstraction) by our
simulated polymer chain. Continuing with the mapping oftsirthe computational’” =

1 can be chosen to correspond to the product of the Boltzmamstaatk 5, and the room
temperaturél’ = 300K. Hence, the dimensionless total pore foftg = 3f, where
f = 1 corresponds to the force in Sl-unifs From Eq. (5.3), we obtaiff,; ~ 0.12 pN
for dsDNA andj,,; ~ 1.6 pN for ssDNA as in Article I. The threshold pore force value
determined previously (as in Article IV) would then b6®04 pN for dsDNA and).53 for
ssDNA. This is what we obtain for the pore force by converbogsimulation parameters

from the simulation units to Sl-units.

A typical experimentally used potential driving a polymlerdugh the pore for both the
ssDNA in thea«—hemolysin and dsDNA in the solid state pore-4id20 mV. The primary
control parameter (in a regulating sense) is the total pmeef f,,, = M f, wherel! is
the number of points on the polymer contour on which the poreef f, is exerted.
On dsDNA these points can be taken to reside at intervalsrdeted by the nucleotide
spacing, which i$.4 A for dsDNA and~ 4 A for ssDNA. The pore force per nucleotide
in the experiments may be estimated as

zq*U

f = L )

(5.4)



46

where the pore potentidl = 120mV, L is the length of the pore and the number of ele-
mentary chargesper nucleotide is = 2 for dSSDNA andz = 1 for ssDNA. The effective
chargeg* is taken ag for dsDNA [79] and0.1e for ssDNA due to charge reduction [73].
This givesf ~ 1.92pN for dsDNA andf = 0.37pN for ssDNA. Since the length of the
solid state pore i80 nm, M ~ 59, f,.« ~ 113 pN or greater for dsDNA, but could also
be considerably smaller due to Manning condensation adials to the confinement in
the pore. For ssDNA in an-HL pore the charge reduction was evaluated to be drastic,

giving fro: ~ 5 pN [56, 73].

In spite of the intricacies (see Atrticles I, Il and 1V) inveld in estimating the true force
exerted on the polymer inside the pore, the experimentaefaragnitudes are included
in the pore force rangé,; € [3,300], used in the SRD simulations of Article |. The same
qualitative out-of-equilibrium behavior that we observeak also verified with Langevin
dynamics in Article II. In Articles Il and IV, we have compad both the unforced and

the close-to-equilibrium cases to the out-of-equilibricase of forced translocation.

5.1.6 High pore forces

The limit where deterministic dynamics (originated by théeenal force) dominate over
the stochastic one (originated by the thermal diffusiom) loa found by considering the
free energy. If the deterministic term is larger than theagit term (that is bounded

from above), we have

AS < Lot (5.5)

kT

We can find out the maximum jump in entropy by requiring that plore force is large
enough to hold the first segment inside the pore, i.e. to Hwdchain attached to the

surface. We evaluate the entropy difference between a fréeaagrafted chain, as the
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particle at the end of the chain can be either attached tautti@ce or not, to be

AS = Sfree - Sgrafted (56)
= (77— 7)) InN, (5.7)

where~; = 1.2 andy, = 0.69 for three dimensions. The condition féf = 100, for

example, now reads

ftotb
kT

~23. (5.8)

On the other hand, we may attempt to determine the magnituitteedotal pore force
for which the reaction coordinatewould increase with a probabiliti;(s) close to one,
similarly as in Article IV. The random force terfa(¢) in the Langevin equation of motion
is approximated to be Gaussian with a standard deviatien(&ef. [65] pp. 251-253).
The properties of the Gaussian standard deviatiguarantee that if,,; > o, there is a
probability of(0.68 that the total pore force is larger than the random force theckfore
the particle is bound to move in the wanted direction with gy \egh probability. Using

the definition from fluctuation-dissipation theorem to abta, we write the condition

ft20t :<fr(t)fr(t/)> (5.9)
=(0)? (5.10)
=6kTE0(t —t'). (5.11)

For the simulation parameteis= 1, £ = 0.7 andkT = 1.2, this condition yields

%ﬁ:22. (5.12)

In Articles I, Il and IV, we note that the control parameter fbe polymer translocation
process is the total pore force, or equivantly in the casenakatropic pore, the pore
potential. In other words, the pore length is also a factarthis sense, the calculated
magnitudes off;,; in Egs. (5.8) and (5.12) are to be considered as total exterees
experienced by the polymer. Finally, fgy, ~ 4.2 the process would be deterministic

to the extent that’s(s) is close to unity, meaning that the thermal motion would be
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negligible. For comparison, the process is shown to be lgl@at of equilibrium for
fiot = 3, which is a value smaller than the respective biological>greeimental force
(in Article 1), and also to reside out of equilibrium alreaiy a considerably lower force

fior = 0.5, see Article IV.

Translocation into a different dimension

An interesting special case of forced translocation is witkendriving force originates
from an entropic difference. This so—called pore escapéudtiesd in Article 1ll. Here
we briefly show that the entropic force for a polymer movingnira space of smaller

dimension into a space of larger dimension is large and tledfieictively is a constant.

The equation (3.13) describes a polymer translocatingdeatwwo equilibria of the same
dimensiondrrans = dcrs. However, if one considers a case, where a polymer would
exit a one—dimensional tubular hol&;zans > dcrs, the entropic force would be signif-

icantly larger than in Eq. (3.16). The partition functiom uch case is
Z(s,N) = Z*P(s)Z'P (N — s), (5.13)
whereZ?P (s) comes from Eq. (3.11), and'” (N — s) = 1 = constant, yielding
Z(s,N) ~ us’ (5.14)
The free energyl /kT = —slnu + (1 — «y) In s, yields a force

fo=tnut (v— 1) (5.15)

)
S

for whichlnp > |(y — 1)/s], sinceln 3P ~ 1.54 andy — 1 ~ —0.31. Hence, the

entropic force of Eq. (5.15) can be taken as a constant.
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5.1.7 Ways of testing the equilibrium assumption

Although we have already shown usiy(s) that the translocation process is close to
equilibrium whenf,;b/kT 5 0.1, and outside equilibrium whefi.b/kT Z 0.5, we
shall discuss here some other ways to test the equilibrissunagtion. This seems rel-
evant, as there is no unique best way (in general) to determirether a process is in
or out of equilibrium. The following schemes were consideae some point during the

making of this Thesis.

Basically, if given enough time, any isolated system rea@wiilibrium. Therefore it is
logical to check the (equilibrium) relaxation time of the polymer against the average
translocation time. From this comparison we see if the polymer has enough timeddg
so that the translocation process would take place closquiilaium. For a rigorous

comparison, we write

lim exp ( — i) dt (5.16)

wherer, is the characteristic equilibrium relaxation time, ahdenotes time the polymer
is let to relax. In the straightforward comparisonroéndr,, the problem usually is that
t* is finite. In other wordshowthe comparison between the time scales should be done
guantitatively is not straightforward, due to the relagatiime being a characteristic time
describing the decay of correlations, whereas the traagstottime is an absolute time

describing the transport of mass.

Regardless of this difficulty, we may attempt a straightfamdvtime scale comparison.
It is meaningful to consider the time scales at the singlesiteon basis, since for each
transition the entropy term in the free energy is changed. aFgrafted polymer with
N = 70, we obtain a characteristic relaxation time= 180 + 40 with respect to the
radius of gyration in 3D Langevin dynamics simulations#or= 16 (Article IlI). In the

forced polymer translocation, we have an average timefor each transition — s+ 1
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for m = 1 (Article IV). For f,,, = 1.5, the forced translocation proceeds witk) ~ 10

for N = 128. With f,,, = 0.1, we obtain values fof(s) that reside betweeln0 and150,
excluding the transitions near the end of the polymer. Biveith f,,, = 0.01, the typical
transition timeg(s) lie betweenl 30 and300. Noting the bead mass difference, the above
relaxation time should be four times larger when compardté@bove transition times,
and based on these times, we can not judge whether the pieadgse—to—equilibrium
or not, even iff;,; is one order of magnitude lower than what was needed to otitain
distribution of equilibrium transition probabilitie3; (). It is unlikely that this inaccuracy
would disappear even for a lower force, since fg; = 0.01 we have obtainedd =

2.2 + 0.1, which already corresponds to the unforced case 2v + 1 = 2.2 for our

model, see Article IV.

Arbitrary units

Figure 5.3: Comparison of two observables: the tension of labelledddos 70 and the
mean squared pore-bead distag€®’,) of the labelled bead = 70 are both plotted as
a function ofs. The tension data is grainy, and although it has out-ofigajiim charac-
teristics for f;,; = 30, none can be seen fgf,; = 3. In contrast,(éRge) has negligible
fluctuations, and the observed plateau and decrease indtaatieady flat slope indicates
that in addition to diffusion another kind of dynamics isdhxed. Obviously,(dR>,) is

a more reliable and accurate observable for the systema&vimeh The observables are
extracted from the same data and thus contain an identicabeuof samples. These
results are from 3D Langevin simulations with= 100, and f;,; = 3 (red) andf,,; = 30
(green). A cylindrical pore witld = 3 was used.
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One well-known way to find out if a system is out of equilibripisito measure tension.
For the forced translocation, the tension of the bonds caméesured along the poly-
mer contour. We measured the extension of the individuatlbpand determined the
appropriate forces imposed by the FENE potential that ave/siin Fig. 5.3. The tension
turned out to be a bad measure for the non-equilibrium dyosynsince only for a total

pore forcef;,; = 30 we observe clear out—of—equilibrium characteristics.

A considerably better gauge for non-equilibrium dynamies\iound by considering the
monomer locations, more specifically the measured distant¢he labelled polymer
beads from the pore},.. This can be seen from the comparison between the measured
tension of a labelled bond and the measured mean squaret@adedistancé R ) of a
labelled bead, shown in Fig. 5.3. Observing the mean squemesibead distanc@ R, )

as a function of the reaction coordinatewe see that the behavior of the observable is
drastically changed, when the tension imposed on the clydindypore force reaches the
labelled bead at the inflection points in Fig. 5.4 (a). Froesthpoints we extracted the
the number of mobile beads,. We defined a labelled bead as mobile if the measured
distanceR,., averaged over several runs, changed appreciably. Thacégtr of s,,

was possible only without hydrodynamics. For equilibriuanslocation, one expects
that R, (s) would display only one dynamical region showing that theelkal bead is

diffusing towards the pore.

In Fig. 5.4 b)s,, is plotted as a function of translocated beadshen hydrodynamics
is not included. Linear dependengg = ks is obtained. Up to lengths oV ~ 200,

k ~ N~X and levels off to a constant value that is greater than uoitjoihger polymers.
At all times, the total drag forcef,, balances the total pore forge,. In the absence
of hydrodynamics, all mobile beads experience an equal flcay the fluid viscosity.

Hence,
fa~ sm(v), (5.17)

where(v) is the average velocity of the mobile beads. Without hydnaalyics, the beads

are set in motion from their equilibrium positions, so thstdnced of the mobile bead
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Figure 5.4: a) Averages over simulations of squared distances of beadwbered
30, 50, 70, and90 from the pore as a function of the number of translocated Hedor
polymers of lengthV = 100 with and without hydrodynamics. b) The number of mobile
beadss,,, (see text) vs number of translocated beadboth normalized to the polymer
length, NV, in the case of no hydrodynamicg.,; = 30 in a) and b). c) 3D snapshot of
a translocating polymer of lengtN' = 100 at s = 35. Here the pore is frictionless and
fiot = 6. For clarity reasons, walls are not shown. The pore is &1l in a) and b).

furthest from the pore scales ds~ N”. The average translocation time then scales as
7~ {d)/{v) ~ kN ~ N'*=X_ For the data in Fig. 5.4 b), whefe= 3 (f.; = 9),

we obtainy ~ 0.35 that is in accord with the measurgd= 1.26, see Fig. 1 b) in Article

l. With the pore forcef = 100 (f;.x = 300) the £’s for s,, = ks are smaller and the
measureds,,-s curves for differentV appear more aligned. Asymptotically, — 1,

VN, asf — oo, i.e. polymer beads are translocated at the same rate that thegtare
in motion. Removing the friction from the pore also makegalues smaller and more
identical for different/V due to translocation becoming faster. Both the increashan t
pore force and reduction in the pore friction take the sgadixponenti toward1 + v due

to s, and hence the drag forcg;, remaining more constant throughout the translocation.
Hydrodynamics changes the form of the drag forfeno more depends strictly linearly
on s,, for configurations of moving polymer segments, but all bes@sset in motion in

the beginning of translocation.

The R,. consideration, residing entirely on tles side of the pore wall, tells nothing
about the dynamics on theansside. To quantify the state of tlieans-side chain, the
radius of gyrationR; describes the compactness of the chain configuration. liclArt

I, the measured; was force-dependent, and statistically shorter than imibgum for
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fiotb/ KT > 3, thus having a clear signature of out-of-equilibrium dymzsn

In summary, we discussed three ways to determine wheth@rdiocess is out of equilib-
rium, in addition to the previously presented forward titios probabilitiesP;(s). Of
these three, the pore to bead distafte turned out to be a more sensitive observable
than the transition timeKs) or the chain tension. In addition, in Article IV we discuss
that the model specific details, which were seen to be infsogmnit close to equilibrium
but become increasingly dominating, when the process v&@nlout of equilibrium. In
particular, we find that the scaling expongéhbecomes dependent of the particle mass
m, and that the pore model, whether a cylinder or constructed beads, also alters
Then the change in the scaling expongican also be regarded as an indicator of whether

the process takes place close to equilibrium.

Additionally, hydrodynamics can also be thought to be a rhsgecific detail. Next, we

will review how it affects processes close and far from afaum.

5.1.8 Hydrodynamics significantly affects translocation t aking place out

of equilibrium

In our minimal model used in Article | (and 1ll) fluid is not allved to enter the pore,
which precludes hydrodynamic coupling of the two chambepagated by the wall. As
written in Article | and is implicitly evident from the follwing, we do not think that
allowing hydrodynamics inside the pore would have an esdagitect on dynamics. Here
we discuss the forced translocation, where the pore foriteisnly driving force for the

translocation.

The distribution of translocation times(r), for polymers of lengthV = 100 is shown in
Fig. 5.5. Due to the larger polymer velocities, i.e. the edtive motion, the effect of hy-

drodynamics on forced translocation is much more pronadititan what was observed
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Figure 5.5: The distribution of translocation timesfor chains of lengthV = 100 and a
constant pore forcg = 10, with hydrodynamics (curve on left) (averaged o8@d runs)
and without hydrodynamics (curve on right) (averaged a¥@rruns). Inset: Average
translocation time- as a function of the driving forcg. The scalingr ~ f© is obtained
with (higher plot)a = —0.940 + 0.013 for f > 3, and (lower plotyy = —0.994 4+ 0.008

for f > 1 without and with hydrodynamics, respectively. The chaimgté isN = 100,

and the pore is frictional. The pore length= 3b, so the control parametéy,, = 3f.

for unforced translocation in Article Il1. In Article |, welzserved a reduction in transloca-
tion times due to hydrodynamics, which was also seen by &yad[26, 25]. In addition,
hydrodynamics not only significantly speeds up forced faagion but also reduces the
variance of measured translocation times. This is becdiesemng range correlations due
to hydrodynamics mediate the effect of the pore force altwvegpolymer contour. The
translocation times scale as~ f¢, see in Fig. 5.5 (inset), which was expected for force

values large compared with thermal fluctuatiofigp/kT > 3.

In Article I, the measured translocation times scale witlymer length, ~ N”, both
with and without hydrodynamics. It is noteworthy, howewéat there exists no single
scaling, butg varies with the total pore forcefy,, = 3f. In our SRD simulationsj
starts from unity and increases with For constantf, smaller was obtained for the

frictional pore. To distinguish between the changeialue to increasing translocation
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velocity, v, and due to frictional term, whefi was increased, scaling efwith N for

a pore with no friction was measured and it was found that trenge of was still
significant, see Fig. 1 in Article I. The experimentally abtd 7 ~ 1.27 for a solid
state pore [79] would be obtained in our model with a poredofc~ 3 or greater.
Hence, it can be concluded that the changg efith f arises not only from the change
in the frictional contribution in the translocation dynasi but also because of dynamic
changes due to the changevinwhich is a clear indication of out-of-equilibrium effects
In comparison, Fytat al.[26] obtaineds = 1.28 + 0.01, and = 1.36 + 0.03 with and
without hydrodynamics, respectively, for the pore fofce 1, which closely corresponds
to f = 1 in our simulations as the pore length in [26] is approximaB#l. A pore of
very low friction was used in these lattice Boltzmann (LBjnsiations. Accordingly,
the obtained scaling exponent is in fair agreement withéhes have obtained for the
frictionless pore with hydrodynamics. Also the increasejoivhen hydrodynamics is

switched off qualitatively agrees with our results.

When hydrodynamics is allowed, the polymer segments arethivem their initial equi-
librium positions already before actually being pulled bg tightening polymer contour.
This is seen in Fig. 5.4 a), where the squared distaﬁég,n), of the polymer bead,
labelledn, measured from the pore on this side as a function of the number of translo-
cated beadss, is shown. In the absence of hydrodynamics, the segmentrdsvihe
free end are seen to remain immobile until they are pulledtdw/the pore, whereas due
to hydrodynamic interactions the distance of the labelledd» from the pore is seen
to start decreasing right from the beginning of the traraion. Hence, the initial con-
figuration shows less in the translocation, when hydrodyosis included. Instead, the
segments on theis side continually reach an increasingly extended polymefigara-
tion. Regarding only the dynamics on tbis side, for an initially completely extended
polymer asymptoticallyj — 1 as f is increased, which explains the reductionsoét

constantf when hydrodynamics is applied.

In summary, the inclusion of hydrodynamics essentially msesdding large-scale many-



56

particle correlations, which emphasizes the collectivelesan the dynamical behavior.
Hydrodynamics is then naturally expected to have more itnpagrocesses out of than
those close-to-equilibrium where it mainly affects rel@xatimes and diffusive transport
of the polymer. In particular, hydrodynamics mediates theeorce by emphasizing the
collective motion of the beads, as we observed meaSLRf;ggor fiot = 3. As a result,
average translocation timesire decreased, and their distributiaiis) are narrower. The
force balance between the total pore force and the totabusstorce experienced by the
mobile beads governs the translocation dynamics. Becdubépthe scaling exponent
[ is lower with than without hydrodynamics. Roughly, incriegsthe pore force in the
polymer translocation problem shifts the interest fromildgium theory into solving

drift equations, e.g. Navier—Stokes. These are left farrfustudies.

Ignoring hydrodynamics is one reason for the previouslyrtmeed gap between com-
putational and experimental results. In the light of the MoGarlo, Langevin and SRD
results, it can be said that running simulations is fasténout hydrodynamics — with

the caveat that the obtained results might not be compat@bbgperiments. We observed
that hydrodynamics plays a significant role in the biololjycand experimentally relevant

force range of forced translocation (Article I).
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5.2 Polymer sedimentation

In 1956, Zimm [86] introduced a theory which predicts tha¢ gedimentation veloc-
ity of high molecular weight DNA will decrease as the rotoesg of an ultracentrifuge
measurement increases. This inverse relationship leats fact that a lower molecular
weight DNA may sediment faster than a high molecular weighAt high rotor speeds.
The prediction of a crossover in sedimentation velocitghagotor speed is raised (to the
order of10° rounds per minute), has been experimentally verified [68, TlHe crossover
property is rather universal even when boundaries areeghplWhen a centrifuge tube is
used, sedimenting particles interact with tube walls legdo a reduction in sedimenta-

tion velocity independent of the reduction described by distheory [16].

5.2.1 Research questions

When considering a polymer chain, one has a many-body oljgttomplicated elastic
and finite volume interactions — in addition to hydrodynasnie that guarantee a rich
physical behavior at different length and time scales. Hsearch questions concerning
the polymer sedimentation afé) what part of dynamics do we essentially lose, when
thermal fluctuations are ignore(;) what is the relationship between the conformation
of the sedimenting polymer and its limiting velocity, afid) what is the crossover limit

in terms of V (for our model), when the sedimentation velocity startseolithe.

The first question concerns the applicability of the resultthis study; what is the size
and weight (in Sl-units) of the particles that we study. lnestwords, we ask if our model
depicts physical systems that can be found outside our atronk. Thermal motion, or a
heat bath, adds perturbative forces that deviate the syfstemits possible ground state
(given that one exists). If a system would get stuck in a gdastate without any thermal
motion, and could be excited out of that state with some gaigig thermal motion would

alter the dynamical behavior. We then ask if the sedimenolgmer is prone to get stuck
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in some kind of a ground state while sedimenting. Moreoverattempt to discover if the
steady state (that the sedimenting polymer reaches) tlsemides a ground-state from

which the thermal motion could drive it out.

The second question is rather profound and in Article V weausealing theory to attack
it. The external force, i.e. gravity, induces a limitingeelty and breaks the symmetry of
the polymer conformation. Thus the separation betweerethsgmmetric components

depends only on the limiting velocity of the polymer.

The third question is motivated by the previously publistiesbry and experiments. It is
not concerned with new physics, as we try to reproduce sange#tready discovered in

experiments, but rather can act as a benchmark to our model.

(a) "06““ (b) ()
“H
- -

by Y0 F

+

Figure 5.6: Snapshots of typical configurations of a settling polymé&hw = 32 in
the steady state. The polymer is elongated in the horizatitattion (a). The loose
end of the polymer is attracted by the smaller pressure dabgeack-flow, and the
polymer elongates in the vertical direction (b). The spfimges pull the part that is left
behind, and the polymer collapses into a globular shapevugh then expands due to
self-avoidance leading back to a shape of the type in (a).

5.2.2 Dynamics in a steady-state

The sedimenting polymer reaches a steady—state, when &héygis matched by the

hydrodynamic viscous force. The limiting settling velgcit;,,, = (v(t)) of the polymer
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is adequately described by the Stokes velocity of a sphg Eqg. (4.10). However,
v(t) has a time dependence that results from the altering coatiwns of the polymer,
see Figure 5.6. This affects its effective radius and uliityethe viscous drag acting on
the settling polymer. Hence, the component of the radiuytgn perpendicular to the
gravitational force vectoR ; fluctuates, as shown in Figure 5.7. The time-series data
(not shown) indicates a perfect correlation between thgrpei’s center of mass velocity
and Rs .. The tumbling of the polymer can be described as rather ehé@emporal

Fourier analysis showed no peaks corresponding to perasgitiations).

Due to the time-dependence«t) it is reasonable to treat it in a form where some small

fluctuationsiv(t) < vy, are allowed keeping the main payt,, constant,
v(t) = Vi + V(). (5.18)

This approximation is particularly convenient, as it lineas the Navier-Stokes equation
for analytical purposes(t) - Vu(t) =~ v, Vév. We will return to this later on. Some

analytical results have been derived in [63].

Velocity fluctuations

In Chapter 3, we introduced means in form of Eq. (3.6) to deitee the diffusion coeffi-

cient for a single particle. Similarly from the velocity fluwations defined by Eq. (5.18),
we determine an effective diffusion constdnt; ; for the center of mass of the polymer.
In the presence of the symmetry breaking gravitational fiskelobserved distinct scaling

behaviors parallel to, and perpendicular to the gravitetidield

D, ~N7"D.L, (5.19)
For both exponents, a negative value was obtainegd = —1.0 £ 0.2 andvp , =

—0.22 + 0.11. Hence, the effective diffusion coefficieht is increased wheV grows.
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Figure 5.7: Raw data for the components of the radius of gyration Wth= 32 in the
steady-state. The vertical lines indicate the averageevalihe respective component,
calculated from the whole simulation data, of which only aaipart is shown in the

figure.

This is in line with the fact that the total gravitational éeracting on the polymer in-
creases linearly a& grows, while the number of possible configurations througirctv
the polymer ‘chaotically’ tumbles also increases. A braddsight on the scaling pre-

sented in Eqg. (5.19) can be found in the dissertation of OkKinen (pp. 90-91) [63].

To answer the first research question for the sedimentatimligm, we wish to find out
whether adding a heat bath to the simulations would reveaéseew dynamical behavior.
In the limit where thermal transport dominates, the diffesiynamics of a polymer in

equilibrium is well known [20]. In the limit where thermalainsport is negligible, we
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have the results of Article V. It is possible, but unlikelgat some additional underlying

dynamics would be revealed as a result.

Essentially, the weight of the simulated particles is dateed by the interactions that
they experience. For very light particles, the gravitagidorce can be omitted, as Brow-
nian forces dominate. For monomers that by themselvesdgiregperience the gravi-
tational force, we can make a scaling estimate how the Pealaber for the polymer
Pe= V L/D depends on the chain lengiti. The flow is described by a characteristic
velocity V' ~ vy, ~ N°~“+ and a characteristic length ~ N”I. For details on the
scaling ofv;;,,,, see Article V. Using Zimm dynamics, the thermal transportthe center

of mass decline® ~ N, v = 0.588 as a function ofV. We obtain
Pe ~ NYIHA=vity o 09340 (5.20)

wheref > 0.5 is positive. This implies that the impact of the thermal saort decreases
exponentially as a function a¥, when the monomers are heavy enough to feel the grav-
itational pull. Comparing the effective diffusion of Eq..{9) to the thermal diffusion
yields the same qualitative result: the first becomes moportant with increasingv.
Hence, the answer to the research questipms that adding the thermal motion is un-
likely to reveal any interesting scaling dependencies wagpect taV, as increasingV
quickly takes the system to the limit of large Pe. Also, thaatit conformational be-
havior that we have observed in Fig. 5.7 indicates that nb gunound state exists, from

which the polymer could be driven out by thermal fluctuations

It is interesting to compare the chaotic shape fluctuatidyserved here to a study of
polymer sedimentation in the limit Re 0 [75]. In this case, for long polymers and large
driving force (Pe large), chainlike polymers assume a stadbngated configuration due
to an effective stretching force on the chain. Our resuligcgite that such a configuration
becomes unstable against hydrodynamic fluctuations for Reat least for large Pe. The
particles that we have studied can be approximated as beimgter at room temperature

(T = 293K), where in the non-Brownian limit Pe 100. Assuming a spherical shape,
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we obtain a mass af.5 x 10~ kg, and a radius of.6m.

Conformations within the steady—state

In Article V, the steady-state of the polymer is determingdcbnsidering the average
of Rg and the limiting velocityy;,,, as time invariant for fixedV (as for an equilibrium
system). To understand the conformational changes witleiisteady—state, we construct
an equilibrium free energy function for the polymer as a fiorcof Rs(N), follow-
ing the original Flory mean—field argument [20]. A kineticrteis added to take the
non-equilibrium behavior into account [63]. Thus, the ketaergy of the polymer chain
consists of the spring forces between the monomers, theagalflance and the kinetic
energy contribution, and can be written as

1k 1 1
QNR?; + §V02Ré + §mN [V(R(;)}z, (521)

Etotar =
where N is the number of monomers,is the spring constant between two monomers,
m is the mass of one monomer, and~ N/R?, is the concentration of monomers per
volume. Furthermorej( R ) is the velocity of the center of mass for a given configuration
R¢. As shown in Article V, the calculation then proceeds by gdime approximation of
Eqg. (5.18) to treat the kinetic term. Essentially, omittihg steps already shown in Article

V, we obtain

(Rg.1) ~N3 v |3,

(Ra) ~ N2 v | V12, (5.22)

In the case of the polymer chain, we can estimate the depeadéithe limiting velocity
on Rq by assuming that it is determined simply by the average dizbeopolymer in
the direction perpendicular to gravity. Then, using thek8s5 formula introduced in
Chapter 46mn R|vim| = Mg, whereM = Nm is the total mass of the polymer, we can

derive that

(5.23)
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In the limit of low Re, the scaling of the components of theinadf gyration is then
given by (R¢, 1) ~ N%*% and(Rg,) ~ N3, These results are consistent with our

previous assumption théi; | > R, for largeN.

At the limit of high Re, we use an empirical expansion formiglathe limiting velocity,
which is given by

Mg

|Ulim|

Re
— 67R (1 T 0.017Re>. 5.24
G 4(1+ vRe (5.24)

This is a theoretically convenient form, since at the lifit < 1, Eq. (5.24) reduces to

the Stokes equation. We can now write a general scaling form
Vtim ~ NP7, (5.25)

where = 1 for Re< 1 andj = 1/2 for Re>> 1. Inserting this into Eq. (5.22), we
obtain the theoretical results shown in Table | of ArticleT¥ie research questidiy) is

answered by Eq. (5.25).

The qualitative behavior of the sedimentation velocity

To be in line with the experiments, the scaling behavigy, ~ N'/27*+ should yield
a negative exponent with Re- 1. Using the valuer, = 0.45 4+ 0.07 obtained from
simulations, the settling velocity would scalew@ag, ~ N%% for large N. The scaling
exponent thus approaches, but never reaches, a negatine @lir study was limited to
modest polymer lengths due to computational cost that aser@ as- N3, and therefore

it is likely that the negative exponent can only be obsereeddnger polymers.

In Article V, we have extrapolated from th&; data that theR?;; component would
exceed the perpendicular componenvVat: 120. This might lead into dynamical changes
incurring the crossover. Obviously, the rangeNdfwe studied was below the crossover

value. The answer to the research questiah thus remains vague. As the crossover has
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been experimentally observed and well known, the researektipn concerning only the

benchmarking of the model is somewhat academic.
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6 Conclusion

In this Thesis, two problems of polymer physics have beerevesd. First, the back-
ground for the problems of polymer translocation and polysetlimentation was in-
troduced in Chapter 1. Then the coarse—graining of molestitactures, necessary for
construction of computational models, was outlined in Gaa@. For the problem of
polymer translocation we also introduced the widely usedtétical equilibrium frame-
work in Chapter 3. In order to give a necessary backgroundhydrodynamics that is
inherent to two of the five computational models used in thigsls, an outline of the
fluid dynamics was presented in Chapter 4. This concerndtthettranslocation and the
sedimentation problem. Finally, the essential resultdlaffahe Articles I-V have been

presented in Chapter 5.

Here we present the summary of the results of this Thesistremidiscuss them.

6.1 Summary of results

In polymer translocation, we have asked first in what cirdamses it is an equilibrium

process, and second how the hydrodynamics contributes.

In Article Il, we performed a critical evaluation of the efjoiium paradigm used in
Monte Carlo studies. In particular, we showed that the erpartally and biologically
relevant force range is above the force value for which the tk&@sition probabilities
reach the value one. In other words, these forces cannoirhgaged with MC methods.
In contrast, close to equilibrium MC methods do yield thereor physical behavior and,
at least in 1D, belong to the same universality class thanibidlations, which is shown

in Article II.
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In Article I, we confirmed that the unforced translocatjgmocess takes place in or close
to equilibrium by investigating the (forward) transitioropabilitiesP;(s) obtained from
the equilibrium framework. Furthermore, we used the fodvaansition probabilities
P;(s) to determine the threshold value for the pore force, for Wiie process is barely,
but still, describable by the equilibrium framework (AtedV). In addition to this close-
to-equilibrium regime, we estimated the total pore forckuea for the high force and

middle regimes in Article IV, which were originally propasey Sakaue [70].

We compared pore forces used in our simulations to thoseinsegeriments by map-
ping the force through dimensionless energy units. In sditee intricacies (see Articles
[, I and IV) involved in estimating the true force exertedttie polymer inside the pore,
the experimental force magnitudes were seen to be insidmitesforce range used in the

SRD simulations involving hydrodynamics (Article I).

We have discussed ways to test whether the system is clasgutbbrium, other than
the direct measurement of the transition probabilifiess). These include comparing
the (equilibrium) relaxation time to the transition tim¢s), measuring the tension along
the polymer contour and, finally, tracing the distance ofitelled beads from the pore,
which turned out to be a sensitive indicator of out-of-eipuilim behavior. There are
other indicators, however. In Article IV, we have shown ttree model specific detalils,
which might be insignificant close to equilibrium can become&easingly meaningful
or even dominating to the dynamics, when the process isrdiow of equilibrium. In
particular, we have found that the scaling exponebecomes dependent of the particle

massn, and that the pore model, whether a cylinder or constructed beads, also alters

3.

Due to the larger polymer velocities, i.e. collective matithe effect of hydrodynamics
on the forced translocation (Article I) is much more pronoechthan what we observed
with the unforced translocation (Article 1l1). Includingyirodynamics essentially means

adding long—range many—particle correlations, which easges the collective modes
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in the dynamics. In Article I, we obtained a reduction in siation times due to hy-
drodynamics, which was also seen by Fgtaal [26, 25]. In addition to significantly
speeding up the forced translocation process, hydrodyrsaatso reduced the variance
of measured translocation times. This is due to the induaeg ftange correlations that
mediate the effect of the pore force along the polymer cant@un the other hand, we
feel that ignoring hydrodynamics is one reason for the gawéd®n computational and
experimental results. In the light of the Monte Carlo, Larigeand SRD results, it can
be said that running simulations is faster without hydradyits. The caveat is that the
obtained results might not be comparable to experimenmsgsve found that hydrody-
namics plays a significant role in the biologically and expentally relevant force range

of forced translocation.

In the polymer sedimentation, we have askgdvhat part of dynamics do we essentially
lose, when thermal fluctuations are neglectgd), what is the relationship between the
conformation of the sedimenting polymer and its limitindogéty, and(ziz) what is the
crossover limit in terms ofV (for our model), when the sedimentation velocity starts to

decline.

In the limit where thermal transport dominates, the diffesilynamics of a polymer in
equilibrium is well known [20]. In the limit where thermalaimsport is negligible, we
have the sedimentation results of Article V. It is unlikelhat adding a heat bath in our
simulations would reveal any new scaling behavior, sincegasing the polymer length
quickly takes the system to the limit of large Pe. Additidpahe polymer conformation
exhibits such a chaotic time-development that no grouni $tam which the polymer

could be driven out by thermal fluctuations is likely to exist

A polymer sedimenting in the dilute limit assumes a steaties The polymer settles
with a limiting velocity that is connected to the componehtliee radius of gyration
perpendicular to the direction of the gravity. In Article We present a scaling law to

quantify this connection. Additionally, an expansion tasthcaling law is given with
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respect to the Reynolds number. Hydrodynamic fluctuationRé> 0, at least for large

Pe, cause the polymer to tumble, which chaotically altsrsanfiguration.

Computational constraints prevented us to observe thedheally and experimentally
discovered crossover, where the increasing the chainfHemguld decrease the settling

velocity of the center of mass of the polymer.

6.2 Final remarks

In this Thesis, the discussion on the translocation prolilesibeen twofold. First, we
have discussed a problem of physics that requires a stuéglieyg the underlying dy-

namics. This aspect is mostly covered by the summary of tsgswthere the research
guestions were covered with their appropriate answersorggave have discussed the
gap between the theoretical and experimental resultsiratiire that originated from too
general equilibrium assumptions in theoretical studiesijamthe experimental process
was out of equilibrium. Perhaps the lesson to learn hereaisoie should be very careful

with assumptions, especially since they are built into cotagonal models.

Means like the equilibrium framework and excessively used fmulations that can be
credited for most of the static (equilibrium) results, eagitical exponents, have to be
evaluated critically when applied on a new problem. The pasadigm that the writer
is aware of is to use different models and compare the resBitsdoing so, the model

specific details that might be first hidden are bound to bealede

Here, it all boiled down to distinguishing between out-glsgibrium and close-to-equilibrium
processes. As there currently is not any paradigm to do ¢piarstion, it had to be made
using different indicators or measures. Although it felmstimes like trying to draw
lines on water, the separation based on the transition pries turned out to be quite

successful in the end.



69

Philosophically, the coarse—graining paradigm in polymleysics often culminates in
making scaling laws with respect to various parameters, #g chain length. These
laws express the inherent characteristic properties gbdihaner systems studied in this
Thesis, which we set out to explore in the Introduction. Ihentwords, these scaling
laws express an emergent level of physics arising from tls&ckegquations of motion,
which, reflecting to the paradigm, cannot be straightfodiaderived from these basic
equations, nor be used as a constructionistic building(pa# piece of puzzle) to obtain

the original system (the puzzle) that was studied.

In this Thesis, we have seen that equilibrium and out-offdgium polymer systems

may both have at least apparent characteristic scalingepiep, even if the scaling be-
haviors differ and follow from different dynamics. It remaian open question, why we
obtain apparent scaling behavior even for a process thatwe $hown to be nonuniver-
sal. In spite of this, the coarse—graining paradigm prowadable and took us through

the above—mentioned problems in the sense that this workishéd.



70

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

B. Albertset al. 1994. Molecular Biology of the Cell. Garland Publishing,viNe
York.

I. Ali, D. Marenduzzo, and J. M. Yeomans. 2006. Polymeciaying and Ejection
in Viral Capsids: Shape Matters. Phys. Rev. Lett. 96, nopage 208102.

I. Aliand J. M. Yeomans. 2005. Polymer translocationeifect of backflow. J.

of Chem. Phys. 123, page 234903.

M.P. Allen and D. J. Tildesley. 2006. Computer Simulatiof Liquids. Oxford

science publications, Oxford.
P.W. Anderson. 1972. More is Different. Science 177,§383.

M. Bates, M. Burns, and A. Meller. 2003. Dynamics of DNA Moules in a
Membrane Channel Probed by Active Control Techniques. BiepJ. 84, page
2366.

R. Benzi, S. Succi, and M. Vergassola. 1992. The lattio#tZ8nann equation:
theory and applications. Physics Reports 222, no. 3, patfes 197.

M. Bernaschi, S. Melchionna, S. Succi, M. Fyta, and E. iKas< 2008. Quantized
Current Blockade and Hydrodynamic Correlations in Biopody Translocation
through Nanopores: Evidence from Multiscale Simulatid¥iano Letters 8, no. 4,
pages 1115-1119. PMID: 18302329.

W. A. Beyer and M. B. Wells. 1972. Lower Bound for the Contiee Constant of
a Self-Avoiding Walk on a Square Lattice. J. Combin. Th. A&ges 176-182.

R. B. Bird, R. C. Armstrong, and O. Hassager. 1987/2@namics of Polymeric

Liquids Vol. 1. Wiley-Interscience, New York.

T. Bonometti and S. Balachandar. 2008. Effect of Schimishber on the structure
and propagation of density currents. Theor. Comput. Flyid.22, page 341.



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

71

Angelo Cacciuto and Erik Luijten. 2006. ConfinemenivM@n Translocation of a

Flexible Polymer. Phys. Rev. Lett. 96, no. 23, page 238104.

J.L. Cardy and S. Redner. 1984. Conformal invarianaksaif-avoiding walks in
restricted geometries. Journal of Physics A: MathemasindlGeneral 17, no. 17,
page L933.

David Chia and Verne N. Schumaker. 1974. A rotor spegetddent crossover in
sedimentation velocities of DNA's of different sizes. Bi@enical and Biophysical

Research Communications 56, no. 1, pages 241 — 246.

Jeffrey Chuang, Yacov Kantor, and Mehran Kardar. 208homalous dynamics

of translocation. Phys. Rev. E 65, no. 1, page 011802.

R. Clark and C. Lange. 1980. A quantitative test of Zimmsdel for the
rotorspeed-department sedimentation of linear DNA-mdkec Biopolymers 19,
pages 945-964.

A. R. Conway and A. J. Guttmann. 1996. Square LatticéASaiding Walks and
Corrections to Scaling. Phys. Rev. Lett. 77, no. 26, pag84-52287.

Michael A. Day. 1990. The no-slip condition of fluid dym&s. Erkenntnis 33,
pages 285—-296. 10.1007/BF00717588.

P. G. de Gennes. 1979. Scaling Concepts in Polymer &hy§iornell University

Press, Ithaca and London.

M. Doi and S. F. Edwards. 1986. The Theory of Polymer Dyits. Oxford

science publications, Oxford.

J. L. A. Dubbeldam, A. Milchev, V. G. Rostiashvili, andA. Vilgis. 2007. Driven
polymer translocation through a nanopore: A manifestatibanomalous diffu-

sion. EPL (Europhysics Letters) 79, no. 1, page 18002.



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

72

J. L. A. Dubbeldam, A. Milchev, V. G. Rostiashvili, and A. Vilgis. 2007. Poly-
mer translocation through a nanopore: A showcase of anarsaiffusion. Phys.

Rev. E 76, no. 1, page 010801.

Lindahl Erik, Hess Berk, and van der Spoel David. 2001RGBIACS 3.0: a
package for molecular simulation and trajectory analysisMol Model 7, page
306.

S. R. Finch. 2003. Self-Avoiding Walk Constants. 5.404athematical Constants.
Cambridge University Press, Cambridge, England, 331-28@ .

M. Fyta, E. Kaxiras, S. Melchionna, and S. Succi. 200&iltMcale Simulation of

Nanobiological Flows. Computing in Science Engineeringrid 4, pages 10 —-19.

M. Fyta, S. Melchionna, S. Succi, and E. Kaxiras. 200§ dtédynamic correla-
tions in the translocation of a biopolymer through a nanepdheory and multi-

scale simulations. Phys. Rev. E 78, no. 3, page 036704.

M. Gauthier and G. Slater. 2008. Molecular Dynamicsidation of a polymer
chain translocating through a nanoscopic pore. The Europégsical Journal E:

Soft Matter and Biological Physics 25, pages 17-23. 10.Ep}&/i2007-10257-5.

M. G. Gauthier and G. W. Slater. 2009. Nondriven polytnanslocation through
a nanopore: Computational evidence that the escape an@tielaprocesses are

coupled. Phys. Rev. E 79, no. 2, page 021802.

Kai Grass, Ute Bohme, Ulrich Scheler, Hervé Cottet, &fdlistian Holm. 2008.
Importance of Hydrodynamic Shielding for the Dynamic Babawf Short Poly-
electrolyte Chains. Phys. Rev. Lett. 100, no. 9, page 096104

R.D. Groot and P.B. Warren. 1997. Dissipative parttijlaamics: Bridging the gap

between atomistic and mesoscopic simulation. J. Chem.. RBys page 4423.

S. Guillouzic and G. W. Slater. 2006. Polymer transtmoain the presence of
excluded volume and explicit hydrodynamic interactionbystcs Letters A 359,

no. 4, pages 261 — 264.



[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

73

Peter Hanggi, Peter Talkner, and Michal Borkovec. 19®@&action-rate theory:

fifty years after Kramers. Rev. Mod. Phys. 62, no. 2, pages-251.

I. Huopaniemi, K. Luo, T. Ala-Nissila, and S.-C. Ying0@6. Langevin dynamics
simulations of polymer translocation through nanoporesf £hem. Phys. 125,

page 124901.

C. A. lll Hutchison. 2007. DNA sequencing: bench to bddsaind beyond. Nucleic
Acids Res. 35, pages 6227-37.

T. Ihle and D. M. Kroll. 2003. Stochastic rotation dynas |I. Formalism, Galilean

invariance, and Green-Kubo relations. Phys. Rev. E 67, nmage 066705.

Yacov Kantor and Mehran Kardar. 2004. Anomalous dyranoif forced translo-

cation. Phys. Rev. E 69, no. 2, page 021806.

John J. Kasianowicz, Eric Brandin, Daniel Branton, &avid W. Deamer. 1996.
Characterization of individual polynucleotide moleculessng a membrane chan-

nel. Proc. Natl. Acad. Sci. 93, no. 24, pages 13770-13773.

N. Kikuchi, C. M. Pooley, J. F. Ryder, and J. M. Yeoman802. Transport co-
efficients of a mesoscopic fluid dynamics model. J. of ChenysPh19, page

6388.

R. Kimmich and N. Fatkullin. 2004. Advances in Polymeagi€hice. Springer-
Verlag, Berlin, 1-113 pages.

James Kindt, Shelly Tzlil, Avinoam Ben-Shaul, and \idith M. Gelbart. 2001.
DNA packaging and ejection forces in bacteriophage. Pradl. Mcad. Sci. 98,
no. 24, pages 13671-13674.

A. B Kolomeisky. 2008. How polymers translocate thrbygores: memory is

important. Biophys. J. 94, page 1547.

E. Kuusela. 2005. Steady-State Sedimentation of NmwBian Particles with
Finite Reynolds Number. Otamedia Oy, Espoo.



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

74

Esa Kuusela, Kai Hofler, and Stefan Schwarzer. 2001. fitdation of particle set-
tling speed and orientation distribution in suspensionzolate spheroids. Journal
of Engineering Mathematics 41, pages 221-235. 10.1028/4:900103361.

L. D. Landau and E. M. Lifshitz. 1987. Fluid MechanicautB:rworth-Heinemann,
Oxford.

Bin Li, Neal Madras, and Alan Sokal. 1995. Critical exygmts, hyperscaling, and
universal amplitude ratios for two- and three-dimensia®f-avoiding walks. J

Stat Phys 80, page 661.

J. Li, M. Gershow, D. Stein, E. Brandin, and J. A. Gologoko. 2003. DNA
molecules and configurations in a solid-state nanoporeostope. Nature Mate-

rials 2, page 611.

K. Luo, T. Ala-Nissila, and S.-C. Ying. 2006. Polymeamislocation through a
nanopore: A two-dimensional Monte Carlo study. J. of ChehysP 124, page
034714.

K. Luo, T. Ala-Nissila, S.-C. Ying, and A. Bhattachary2007. Influence of
Polymer-Pore Interactions on Translocation. Phys. Rett. 989, no. 14, page

148102.

K. Luo, T. Ala-Nissila, S.-C. Ying, and R. Metzler. 200Briven polymer translo-
cation through nanopores: Slow-vs.-fast dynamics. EPkdghysics Letters) 88,

no. 6, page 68006.

K. Luo, S. T. T. Ollila, I. Huopaniemi, T. Ala-Nissila,&vel Pomorski, M. Kart-
tunen, S.-C. Ying, and A. Bhattacharya. 2008. Dynamicalirsga@xponents for
polymer translocation through a nanopore. Phys. Rev. EQ.&,rpage 050901.

N. Madras and G. Slade. 1996. The Self-Avoiding WalkitkBéuser, Boston.

A. Malevanets and R. Kapral. 1999. Mesoscopic modekfivent dynamics. J.

of Chem. Phys. 110, page 8605.



[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

75

A. Malevanets and R. Kapral. 2000. Solute molecularatyits in a mesoscale

solvent. J. Chem. Phys. 112, page 7260.

A. Malevanets and R. Kapral. 2004. Mesoscopic Multitigée Collision Model
for Fluid Flow and Molecular Dynamics, In:ecture Notes in Physi&0 ed. by
M. Karttunen, I. Vattulainen, and A. Lukkarinen. SpringBerlin, Heidelburg,
116-149 pages.

S. Melchionna, M.G. Fyta, E. Kaxiras, and S. Succi. 2xporing DNA translo-
cation through a nanopore via a multiscale lattice-Boltzm@aolecular-dynamics

methodology. International Journal of Modern Physics Cab8je 685.

Amit Meller. 2003. Dynamics of polynucleotide trangpilnrough nanometre-scale

pores. Journal of Physics: Condensed Matter 15, no. 17,iRa82.

M. Muthukumar. 1999. Polymer translocation throughadeh J. of Chem. Phys.
111, pages 10371-4.

Walter Neupert and Johannes M. Herrmann. 2007. Traastn of Proteins into

Mitochondria. Annual Review of Biochemistry 76, no. 1, pag@3—749.

N. T. Nguyen and S. T. Wereley. 2006. Fundamentals Angligptions of Mi-

crofluidics, Second Edition (Integrated Microsystems)e8h House Publishers.

J. Noonan. 1998. New Upper Bounds for the Connectivestoris of Self-
Avoiding Walks. J. Stat. Phys. 91, pages 871-888.

D. Panja, G. T. Barkema, and R. C. Ball. 2007. J. Phys.déan. Matter 19, page
432202.

Debabrata Panja, Gerard T Barkema, and Robin C Ball82B0@lymer transloca-
tion out of planar confinements. Journal of Physics: Conelgémdatter 20, no. 7,

page 075101.



[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

76

O. Punkkinen. 2009. Conformations and Dynamics of 18ilp
Charged Biomolecules. Helsinki University of Technology. URL
http://1ib.tkk.fi/Di ss/2009/isbn9789512299171/.

S. Ramaswamy. 2001. Issues in the statistical mechafisteady sedimentation.

Advances in Physics 50, page 297.

L. E. Reichl. 1998. A Modern Course in Statistical Plugsi Wiley Interscience,
New York.

Katinka Ridderbos. 2002. The coarse-graining apgrdacstatistical mechanics:
how blissful is our ignorance? Studies In History and Plujbsy of Science Part

B: Studies In History and Philosophy of Modern Physics 33,Inpages 65 — 77.

M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompp2004. Low-
Reynolds-number hydrodynamics of complex fluids by mudtiticle-collision dy-

namics. EPL (Europhysics Letters) 68, no. 1, page 106.

Irwin Rubenstein and Sara B. Leighton. 1974. The infagenf rotor speed on
the sedimentation behavior in sucrose gradients of higleoutdr weight DNA'S.

Biophysical Chemistry 1, no. 4, pages 292 — 299.

T. Sakaue. 2007. Nonequilibrium dynamics of polymansiocation and straight-

ening. Phys. Rev. E 76, no. 2, page 021803.

T. Sakaue. 2010. Sucking genes into pores: Insightdriten translocation. Phys.
Rev. E 81, no. 4, page 041808.

F. Sanger. 1949. The terminal peptides of insulin. Bera J. 45(5), pages 563—
574.

F. Sanger and H. Tuppy. 1951. The amino-acid sequenteiphenylalanyl chain
of insulin. 2. The investigation of peptides from enzymiadhylysates. Biochem

J. 49(4), pages 481-490.



77

[73] Alexis F. Sauer-Budge, Jacqueline A. Nyamwanda, DEvidubensky, and Daniel
Branton. 2003. Unzipping Kinetics of Double-Stranded DMAiNanopore. Phys.
Rev. Lett. 90, no. 23, page 238101.

[74] Jonathan Schaffer. 2008. The Metaphysics of Causatlon Edward N. Zalta
(editor), The Stanford Encyclopedia of Philosophy. FabD&@dition.

[75] Xaver Schlagberger and Roland R. Netz. 2007. Anomakalgmer Sedimentation
Far from Equilibrium. Phys. Rev. Lett. 98, no. 12, page 12830

[76] S. M. Simon, C. S. Peskin, and G. F. Oster. 1992. Whatdrifie translocation of
proteins? Proc. Natl. Acad. Sci. 89, page 3770.

[77] Gautam V. Soni and Amit Meller. 2007. Progress towarttdfast DNA Sequenc-
ing Using Solid-State Nanopores. Clin Chem 53, no. 11, p4§66—2001.

[78] Todd M. Squires and Stephen R. Quake. 2005. Microflsididuid physics at the
nanoliter scale. Rev. Mod. Phys. 77, no. 3, page 977.

[79] Arnold J. Storm, Cornelis Storm, Jianghua Chen, Henayndbergen, Jean-
Francois Joanny, and Cees Dekker. 2005. Fast DNA Trangadatough a Solid-
State Nanopore. Nano Letters 5, no. 7, pages 1193-1197.

[80] W. Sung and P. J. Park. 1996. Polymer Translocatiorutjina Pore in a Mem-
brane. Phys. Rev. Lett. 77, no. 4, pages 783-786.

[81] H. N. V. Temperley. 1957. The Statistical Mechanics lué Steady State. Proc.
Phys. Soc. B 70, page 577.

[82] B. Tinland, A. Pluen, J. Sturm, and G. Weill. 1997. Pstence Length of Single-
Stranded DNA. Macromol. 30, page 5763.

[83] M. van der Laaret al. 2007. Motor-free mitochondrial presequence translocase

drives membrane integration of preproteins. Nature Cell.Bi, page 1152.

[84] L. von Bertalanffy. 1968. General System Theory: Fatrahs, Development,

Applications. George Braziller, New York.



78

[85] Nils Wiedemann, Ann E. Frazier, and Nikolaus Pfann804£2 The Protein Import
Machinery of Mitochondria. Journal of Biological Chemis&79, no. 15, pages
14473-14476.

[86] B.H.Zimm. 1956. Dynamics of Polymer Molecules in Déusolution: Viscoelas-
ticity, Flow Birefringence and Dielectric Loss. J. ChemyBh24, page 269.





