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Symbols and definitions 

Vector and matrix quantities are represented in bold, italic, scalar quantities are in italic, 
and complex-valued quantities are underlined, italic. 

Symbols 

a  magnetic vector potential in 1-D 
A  magnetic vector potential in 2-D 
b magnetic flux density in 1-D, material parameter related to texture and 

grain size of material 
B  magnetic flux density in 2-D 
C  circuit matrix 
e  unit vector 
E electric field strength in 2-D, vector related to eddy current modeling of 

steel sheets 
f  frequency 
G  circuit matrix 
h  magnetic field strength in 1-D 
H  magnetic field strength in 2-D, circuit matrix 
i  current 
j  current density in 1-D 
J  current density in 2-D, moment of inertia 
K  stator-winding connection matrix 
l  length 
L  inductance 
m  number of phases in stator winding 
M  magnetization 
n  1-D shape function 
N  2-D shape function, number of turns 
nf  number of free nodes in 1-D finite element mesh 
Nf  number of free nodes in 2-D finite element mesh 
nn  number of nodes in 1-D finite element mesh 
Nn  number of nodes in 2-D finite element mesh 
Ns  number of symmetry sectors 
p  Jacobian in 1-D 
P  Jacobian in 2-D, power 
Qb  number of rotor bars in solution region 
r  radius, residuals 
rr  inner radii of air gap 
rs  outer radii of air gap 
R  resistance 
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s  short notation in 1-D formulations, slip 
S  cross-section area, short notation in 2-D formulations 
t  short notation in 1-D formulations, time 
T  short notation in 2-D formulations, time period, torque 
u  voltage 
V  volume 
w  weighting function  
x, y, and z Cartesian spatial coordinates 
zi  upper integration bound 
α  rotation angle 
β  constant related to time-discretization 
γ  1-D solution region 
Γ  number of harmonics 
θ  angle of magnetic flux density vector 
µ  permeability 
µ0  permeability of free space 
ν  reluctivity 
|ν|  absolute value of complex reluctivity 
σ  electrical conductivity 
φ   electric scalar potential 
χ  relaxation factor 
χm  magnetic susceptibility 
ω  angular frequency of time variation 
Ω  2-D solution region 
Ωm  mechanical angular frequency of rotor 

Subscripts 

ag  air gap 
ave  average 
b  bar, rotor 
c  classical eddy current, cage, laminated core 
c  either x or y 
cw  coil side of phase winding 
e  electromagnetic 
ea  excess 
eb  end of bar 
ef  effective 
el  electric 
er  short-circuiting ring 
f  field 
h  hysteresis, alternating hysteresis 
p  peak value 
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r  resistive, rotating component, radial component 
s  saturation, shaft, supply, surface 
w  phase winding 
φ  angular component 

Superscripts 

Im  imaginary part 
k  time-step 
n  iteration 
Re  real part 
T  transpose of a matrix 

Abbreviations 

1-D  one-dimensional 
2-D  two-dimensional 
3-D  three-dimensional 
PWM  pulse width modulation 

Headings 

First, second, and third level headings are numbered 
Fourth level headings are in Arial, bold, font size 12 
Fifth level headings are in Times New Roman, underlined, font size 14 
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1 Introduction 

1.1 Background 

The majority of the electrical energy consumed by Finnish industry, over 70%, is spent 
on various electrical motors that convert electrical energy into its mechanical counter-
part. During the process, a great deal of energy is wasted as losses in different parts of 
the machines, for instance, in their laminated iron cores. 

As energy efficiency and environmental issues have become increasingly important, 
there is a high demand for improving the qualities of electrical machinery and its utiliza-
tion. To give an example, the standards concerning the energy efficiency of electrical 
machines have been tightened in the whole European Union and North America. Loss 
reductions are sought by several means. Machine designs are enhanced to a certain ex-
tent by, for instance, material choices and structural modifications. On the other hand, 
many simple processes, such as pumping and fanning, can be performed in a signifi-
cantly more efficient manner by the intelligent control of the machines. 

Because of their advantageous efficiency profiles, electrical drives consisting of a motor 
and a supply unit, namely a frequency converter, are being utilized increasingly nowa-
days. Although savings in the total energy consumption are achieved in this way, the 
machine itself will be exposed to non-sinusoidal supply conditions that inflict extra 
losses (Moses and Shirkoohi, 1987). It has been reported in the literature that the loss 
component that is most affected is the eddy current losses of the laminated iron core. 
Starting from this observation, this work is motivated to develop computational meth-
ods for the accurate modeling of eddy currents in steel laminations and, more impor-
tantly, the losses arising from them. In particular, the aim is to incorporate those phe-
nomena directly into the field analysis of an electrical machine and make them account-
able for under the complex voltage waveforms produced by a frequency converter. The 
topic is significant as more complete simulation tools might offer that extra insight 
which allows one to optimize the machine designs even further. 

1.2 Literature review 

Whenever an electrical steel sheet of a ferromagnetic material is exposed to a magnetic 
field, energy losses, so-called iron losses, will emerge in it. The mechanisms behind 
these losses are generally considered to be separable into the hysteresis, classical eddy 
current, and excess effects (Bertotti, 1988). Hysteresis refers to the microscopic-scale 
phenomena of a material that cause the magnetization process to be discontinuous. The 
classical eddy currents are regarded as macroscopic scale effects occurring in electri-



 

 

16

cally conducting media in the presence of varying magnetic fields. The excess effects 
are associated with the microscopic structure of the materials, the movements of the 
domain walls which cause additional local eddy current losses. Many aspects related to 
the different iron-loss components and their physical interpretations have been ad-
dressed, for instance in (Stewart, 1950), (Bertotti and Pasquale, 1992), and (Serpico et 
al., 2000). 

As electrical steel sheets are an essential part of various electromagnetic devices, a vast 
amount of research has been conducted on them. Even so, the problem is as interesting 
today as ever because a definitive “standardized” way to cope with it is still lacking. 
The comprehensive modeling of the electrical steel sheets and the emerging losses ne-
cessitates the analysis of three-dimensional (3-D) time-dependent electromagnetic 
fields, including sophisticated highly non-linear and hysteretic magnetic material prop-
erties. The preceding statement encompasses rather challenging aspects. First, the elec-
trical steel sheets have fine geometries and are used to form stacks consisting of tens to 
thousands of them. As a result, the fully 3-D field computation quickly turns out not to 
be feasible, even if simplified material modeling is adopted. Furthermore, the considera-
tion of the magneto-dynamic phenomena of the sheets, which are the hysteresis, eddy 
current, and excess effects introduced above, requires not only feasible models but also 
powerful numerical methods for coping with the related non-linearities and notable 
computational resources. 

The field analysis of rotating electrical machines has to be simplified in one way or an-
other, for instance for the aforementioned reasons concerning the electrical steel sheets. 
That holds true despite the fact that the development of modern computers has enabled 
more and more complicated problems to be solved. In the case of radial flux machines, 
two-dimensional (2-D) finite element field computation has proven to be highly suitable 
(Chari and Silvester, 1971). If implemented conventionally, such an approach by defini-
tion omits the eddy currents in the sheets. In addition, the modeling of the hysteresis is 
typically beyond their scope and, as a result, the laminated iron core becomes treated as 
a non-conducting, non-linear homogenous medium. Consequently, there is only the 
group of post-processing techniques that are applicable to the evaluation of iron losses. 
While the losses might still be estimated accurately enough, their effect on the field so-
lution is still missing. 

The motivation of this thesis originates from the rapid spread of electric drive units. As 
the eddy current losses in the sheets appear to be the most sensitive to non-sinusoidal 
supply waveforms, this thesis targets their accurate analysis and thus their inclusion in 
the field analysis. The starting point of the research was the in-house software of the 
Department of Electrical Engineering, which combines the solution of the 2-D fields 
with the winding equations of electrical machines. The incorporation of the eddy cur-
rents of the sheets into that method is extensively investigated. For the other core-loss 
components a post-processing computation technique (Belahcen and Arkkio, 2008), 
(Belahcen and Arkkio, 2010) is employed. The following four sections try to summarize 
and analyze the relevant research pursued on related topics. 
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1.2.1 Post-processing core-loss models 

The laminated iron cores of electrical machinery are nowadays still often modeled as 
non-conducting, non-linear media in association with numerical field analysis. This, 
however, implies that the evaluation of the iron losses must be carried out by some a 
posteriori technique based on the field solution thus obtained. The a posteriori iron-loss 
computation techniques have been tackled in the literature by countless means. This 
section tries only to give a short introduction to the topic and the main frames of devel-
opment. 

Bertotti formulated his idea of statistical loss theory in (Bertotti, 1988). It was stated 
that the total iron losses consist of three components, which are the hysteresis, classical 
eddy current, and excess losses, the definitions of which are given as (Bertotti, 1988) 

 ( ) ( ) ( )
h c e

22
2 3 22

0 p p 1 p

π 2
6

P P P P

d
C B f B f C B f

σ

= + +

= + +
 (1.1) 

in which Ph denotes the static hysteresis loss, Pc the classical eddy current loss, Pe the 
excess loss, C0 the hysteresis-loss coefficient, Bp the peak value of the magnetic flux 
density, f the frequency, d half of the thickness of the sheets, σ the electrical conductiv-
ity, and C1 the excess loss coefficient. 

The loss contributions in Equation (1.1) are derived on the basis of the assumption that 
the magnetic field varies unidirectionally and sinusoidally with respect to time and is 
uniform, thus neglecting the skin effect. Owing to, for instance, its geometry, material 
properties, and possibly non-sinusoidal supply conditions, the field of a rotating electri-
cal machine hardly ever varies sinusoidally with time. Additionally, in some parts of the 
machine geometry, for instance in the yoke of the stator and the roots of the stator teeth, 
rotating flux patterns occur (Saitz, 2001). 

A great deal of research has been done on amending the statistical loss theory and de-
veloping more comprehensive post-processing computation methods. The works of 
Fiorillo and Novikov (1990), Barbisio et al. (2004), and Yamazaki (2001b) address the 
effects of the non-sinusoidal magnetic flux waveforms on the losses. Fiorillo and No-
vikov (1990) worked out their widely popular iron-loss formulation by starting from the 
Fourier series representation of an arbitrary magnetic flux density. Barbisio et al. (2004) 
developed the statistical loss theory even further by taking into account the minor hys-
teresis loops. The measuring results of non-oriented sample sheets corresponded well 
with those from computations. 
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Attempts towards a more accurate post-processing evaluation of the iron losses in the 
presence of rotating fields have also been made. Bertotti et al. (1991) proposed a correc-
tion to the hysteresis part of the losses and gave the eddy current losses as a sum of the 
two alternating orthogonal components. Other work investigating the extension to rotat-
ing fields has been presented in (Domeki et al., 2004), (Belahcen and Arkkio, 2008), 
(Belahcen and Arkkio, 2010). 

Research on the a posteriori methods of iron losses that might be of interest has also 
been conducted, for instance by Ali et al. (1997), Štumberger et al. (2003) and Zirka et 
al. (2010). As further reading on the subject, the Ph.D. thesis of Saitz (2001) is also 
suggested. 

1.2.2 Field formulations of electrical steel sheets 

This section focuses on summarizing the different applicable field formulations of the 
electrical steel sheets presented in the literature. The emphasis in this thesis is on the 
eddy currents and, furthermore, on their coupling to the 2-D analysis. Thus, although 
some of their modeling techniques are cited, the hysteresis and excess effects are not 
dealt with in a comprehensive manner. Excellent literature reviews on the hysteresis 
models and their identification and other related issues can be found from (Bergqvist, 
1994), (Saitz, 2001), (Dlala, 2008b). 

Solution of diffusion equation 

Perhaps the most common approach to dealing with the problem of a laminated iron 
core in 3-D analysis is to enforce its structure by anisotropic material properties. Practi-
cally, the electrical conductivity in the direction perpendicular to the sheets is set to zero 
or to a very low value (Silva et al., 1995). The modeling of the hysteresis is omitted and 
the magnetic material properties in different directions are instead given by a single-
valued magnetization curve. The drawback of descriptions such as this is that the phe-
nomena in the lamination thickness are neglected and only the losses resulting from 
leakage fluxes are encompassed. The formulation can be improved by, for instance, 
computing the eddy currents within the thickness of the sheets separately (Hollaus and 
Biro, 2000), (Muramatsu et al., 2004), (Preis et al., 2005). In (Hollaus and Biro, 2000), 
it was shown that the eddy current losses obtained by the anisotropic approach are heav-
ily dependent on how the value of electrical conductivity normal to the steel sheets is 
chosen. More importantly, the approach that is presented was found to produce eddy 
current losses comparable to those from analyses of a model in which each of the steel 
sheets in the stack is taken into account individually. Muramatsu et al. (2004) founded 
their method on the anisotropic-material-based 3-D formulation of the laminated core, 
as Hollaus and Biro (2000), and combined it with a one-dimensional (1-D) eddy current 
analysis of separate sheets. The eddy current modeling, however, was realized in a post-
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processing manner, having no influence on the 3-D fields. The validity of the proposed 
approach was demonstrated by a comparative study with a complete stack model con-
sisting of individual sheets. 

The 3-D modeling of laminated iron cores has also been tackled in, for instance, (Dular 
et al., 2003), (Gyselinck and Dular, 2004), (Gyselinck et al., 2006), (Gyselinck and Lo-
pez-Fernandez, 2006), and (Kawase et al., 2003). The works presented by Dular et al. 
and Gyselinck et al. study the homogenization of the laminated media and present it as a 
continuum. In (Dular et al., 2003), both the low- and high-frequency implementations 
were shown with linearized magnetic material properties. The high-frequency model 
was developed with sinusoidal time variation being assumed. The extension of the high-
frequency formulae to the general time variation was introduced in (Gyselinck and Du-
lar, 2004). A verification of the proposed method was carried out through a comparative 
study. In (Gyselinck et al., 2006), time-varying fields were considered together with 
saturable sheets. The flux patterns from the homogenization technique were compared 
with those from a complete formulation in a 3-D axisymmetric test geometry. 

Kawase et al. (2003) employed a 3-D computation to solve a region of the geometry of 
an interior permanent magnetic machine that covers 1/8 of its sheet. The eddy current 
losses in the sheets were calculated from the eddy current density and the hysteresis 
losses by a post-processing technique presented in (Yamazaki, 2001a). The iron losses 
in the rotor of the machine were found to be 10% of the total iron losses. The inclusion 
of the hysteresis of the sheets in the 3-D field equations has been investigated in, for 
instance, (Leite et al., 2008). 

One-dimensional fields 

The electromagnetic field problem of electrical steel sheets can often be simplified by 
taking advantage of their geometrical measurements. Instead of performing a fully 3-D 
analysis, 2-D cross-sectional fields or 1-D formulations can be considered. Relevant lit-
erature addressing these two approaches is discussed next. 

The transverse dimensions of electrical steel sheets are often considerably greater than 
their thickness. This allows one to neglect the edge effects and to develop the field for-
mulation of the sheets in their thickness (Lammeraner and Stafl, 1966). Under an alter-
nating excitation, the electromagnetic field in a sheet thus becomes (Gillott and Calvert 
1965), (Del Vecchio, 1980) 
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in which σ denotes the electrical conductivity, z the Cartesian coordinate in the direction 
of the thickness of the sheets, t time, Hx the x-component of the magnetic field strength, 
and Bx the x-component of the magnetic flux density. The term ‘alternating’ is generally 
used to refer to problems for which the variation of the magnetic field is unidirectional 
with respect to time. 

As electrical steel sheets exhibit hysteretic behavior, attaining a complete overview re-
quires the relation between B and H within the diffusion equation (1.2) to be repre-
sented by some hysteresis model. This matter has been tackled by several authors. In 
(Del Vecchio, 1980) the classical or scalar Preisach model (Preisach, 1935) was utilized 
by means of a simplified mathematical treatment founded on the Everett functions. The 
iron losses of a test sample measured under sinusoidal supply conditions showed good 
agreement with the computed losses. Other relevant research addressing the inclusion of 
the hysteresis through the classical Preisach model can be found from (Del Vecchio, 
1982a), (Appino, 1996), (Bottauscio et al., 2000a). 

The classical Preisach model omits the excess effects resulting from the movements of 
the domain walls in ferromagnetic materials. The rate-dependent or dynamic Preisach 
hysteresis model was developed to overcome this simplification (Bertotti, 1991), (Ber-
totti, 1992). The solution of the diffusion equation (1.2) by employing the dynamic 
Preisach model has been investigated in, for instance, (Philips et al., 1994), (Philips and 
Dupré, 1996), (Basso et al., 1997), (Dupré et al. 1996), (Dupré et al., 1997a), (Dupré et 
al., 1998), (Dupré et al., 1999), (Bottauscio et al., 2000a). Basso et al. (1997) continued 
the work started in (Appino et al., 1996) by coupling the 1-D Maxwell’s equations of 
the electrical steel sheets to the dynamic Preisach hysteresis. The excess losses were 
found to follow the statistical law up to frequencies of 200–400 Hz. Phillips et al. 
(1994) compared the classical and generalized dynamic approaches of Preisach model-
ing. As excess effects were significant in the test samples used, the dynamic Preisach 
technique traced the measured B-H loops with a substantially higher accuracy than the 
classical one. A comparative study of the classical and dynamic Preisach models was 
also carried out in (Dupré et al., 1997a). The authors came to the same conclusion as 
Phillips et al.; the dynamic Preisach model estimates the measured characteristics of the 
test sheets considerably better than the classical one. In (Dupré et al., 1998), the per-
formance of the classical and dynamic Preisach models under arbitrary flux excitation 
was investigated. The dynamic implementation was reported to provide the best ap-
proximations in comparison with the measuring results. 

Besides the hugely popular Preisach-type ones, other hysteresis modeling approaches 
have been investigated as well. Zirka et al. (Zirka et al., 2002), (Zirka et al., 2005), 
(Zirka et al., 2006), (Marketos et al., 2008), (Zirka et al., 2008a), (Zirka et al., 2008b), 
(Zirka et al., 2010) have carried out a great deal of research on viscous-type hysteresis 
models. The first attempts were made in (Zirka et al., 2002). An alternating 1-D field 
formulation of an electrical steel sheet was considered, giving the relation between B 
and H by a history-dependent hysteresis model (Zirka and Moroz, 1999) and including 
the excess losses by a model derived from the Landau-Lifshitz-Gilbert equation. An ad-
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vantage of the approach is that the modeling of the excess losses is not an inherent part 
of the hysteresis model; any static hysteresis model can be applied instead. In (Zirka et 
al., 2005), the individual loss components were explored more carefully. The total 
losses in the non-oriented test sheet were the greatest with the dynamic hysteresis model 
presented. Moreover, a redistribution of the losses was observed as at the same time the 
classical eddy current losses from the static hysteresis model excluding the excess ef-
fects were larger than those from the dynamic one. A verification of the proposed model 
by measurements was shown in (Zirka et al., 2006). 

In many applications, for instance in rotating electrical machinery, the flux density 
variation is rotating and not purely alternating. If the 1-D approximation is being em-
ployed, the electromagnetic field in an electrical steel sheet is then governed by (Lam-
meraner and Stafl, 1966), (Del Vecchio, 1982b) 
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in which Hy is the y-component of the magnetic field strength and By the y-component 
of the magnetic flux density. The two equations (1.3) describing the field in an electrical 
steel sheet are coupled through the B-H relations and possibly through the boundary 
conditions. 

Del Vecchio (1982b) utilized a single-valued magnetization curve to represent the con-
stitutive relation between the magnetic flux density and the magnetic field strength. The 
study revealed that summing the eddy current losses created by two components x and y 
acting separately yields a result that corresponds well with that evaluable from Equation 
(1.3) under a rotating flux excitation. This issue was carefully analyzed in (Mayergoyz, 
1998). Mayergoyz stated that the rotating eddy current losses correspond exactly to 
those calculable as a sum of the two individual alternating eddy current loss components 
x and y if the magnetic flux density over the lamination cross-section is uniform. Other 
interesting works addressing the modeling of rotational fields appear in (Mayergoyz and 
Abdel-Kader, 1984) and (Gyselinck et al., 1999). 

The incorporation of the hysteretic behavior of ferromagnetic materials into rotating 
field formulae requires the utilization of a vector hysteresis model (Mayergoyz, 1991). 
The analysis of the rotating 1-D fields in electrical steel sheets, including hysteresis, has 
been addressed in relatively few works. Bottauscio and Chiampi (2001) extended their 
alternating field formulation (Bottauscio et al., 2000a) to rotating fields by applying a 
vector hysteresis model founded on stop operators. As the hysteresis model utilized was 
a rate-independent one, the excess effects were omitted from the analysis. Even then, 
the computed static hysteresis and eddy current losses were in reasonable agreement 
with the measured ones. More recently, Dlala et al. (2008d) introduced a magneto-
dynamic model of laminations that employs the generalized vector hysteresis model of 
Mayergoyz (2003) in a modified manner. In principle, the directions of the vector hys-
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teresis model are represented by a viscosity-based model as a sum of the static hystere-
sis model and an excess effects term. 

Two-dimensional fields 

The limitations of the 1-D field formulations of electrical steel sheets have been ana-
lyzed in, for instance, (Bottauscio et al., 2000b) and (Chevalier et al., 2000a). Both the 
works study the alternating cross-sectional fields in the laminations. Bottauscio et al. 
(2000b) showed that the 1-D approximation overestimates the losses, especially the 
eddy current losses. Chevalier et al. (2000a) defined a limit for the applicability of the 
1-D formulation by means of a qualitative analysis; the ratio of the thickness of the 
sheets to their width should be more than 10. 

The alternating cross-sectional field analysis has also been investigated, for instance, by 
Rouve et al. (1996), Gyselinck et al. (1999) and Chevalier et al. (2000b). Rouve et al. 
(1996) carried out a thorough study by employing three different ways to represent the 
B-H relations: a single-valued magnetization curve and static and dynamic Preisach 
models. The simulated losses and B-H loops were compared with the measurements. In 
both respects, the dynamic Preisach model was found to result in the best accuracy. 
Chevalier et al. (2000b) used a single-valued magnetization curve and a Duhem-type 
hysteresis model (Potter and Schmulian, 1971) to solve the cross-sectional field in an 
electrical steel sheet. Similar observations as in Chevalier et al. (2000b) were made; the 
measured losses agree better with the computed ones if the hysteresis is included. How-
ever, as the frequency increases the differences between the two methods of material 
modeling become smaller. 

Matsuo et al. (2000) solved the rotating cross-sectional field in a lamination represent-
ing the magnetic constitutive relation by a vector hysteresis model based on play and 
stop hysterons (Bobbio et al., 1997). The stop hysteron model was proven to be compu-
tationally more efficient than the play hysteron one. 

Simplified models of electrical steel sheets 

This section explores the possibilities discussed in the literature for modeling the mag-
neto-dynamic effects in electrical steel sheets within the 2-D or 3-D analysis without 
actually having to solve the diffusion equation in them. These sorts of simplified formu-
lations may offer computationally efficient yet accurate enough ways to analyze com-
plicated apparatuses such as rotating electrical machines. In addition, approaches intro-
ducing the assumption of sinusoidal time variation are touched on. 
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Zirka et al. (2008a) investigated several aspects concerning the modeling of electrical 
steel sheets. First, a finite difference formulation for the 1-D alternating field (penetra-
tion equation (1.2)) that utilized the viscous-type hysteresis model (Zirka et al., 2004), 
(Zirka et al., 2006) was proposed. Second, a solution of the 1-D problem that omitted 
the excess effects and thus considered only static hysteresis was studied. In addition to 
the complete ones, simplified approaches were also proposed. The main idea in these is 
to assume the sheets to be thin with a uniform flux density (or the frequency to be low), 
in which case the skin effect can be neglected (Jiles, 1994). The magnetic field strength 
in the sheets is then given as a sum of three components originating from the three iron-
loss components. Such a description of H can be used in 2-D and 3-D field analyses to 
account simply for the magneto-dynamic effects. The simplified thin sheet model was 
found to perform well up to a frequency of 200 Hz. However, this resulted partly from 
the estimation error of the component of the classical eddy current loss. Experimental 
results from a single sheet tester and Epstein frame were used to verify the models. In 
(Zirka et al., 2008b), the applicability of these in voltage- and current-driven problems 
was analyzed. 

Dlala (2008a) improved the thin sheet model (Jiles, 1994) further by obliging the eddy 
current and excess terms of the magnetic field strength to be dependent on the magneti-
zation and thus including the skin effect. The simplified formulation of the electrical 
steel sheets obtained thereby was compared with measurements and with a complete 
model, i.e., solving the penetration equation with hysteretic material properties. The 
agreement was found to be good. 

Owing, for instance, to its material properties, the time variation of the electromagnetic 
field in an electrical steel sheet is practically never sinusoidal. Even though the ap-
proximation of the sinusoidal time variation is thus not strictly suited for the analysis of 
electrical machinery, attempts to utilize it have been made (Niemenmaa, 1988), (Arkkio 
et al., 1998), (Pippuri and Arkkio, 2009), and (Jagiela et al., 2010). Pippuri and Arkkio 
(2009) developed a computational routine based on the time-harmonic approximation 
which can still be applied to study the additional electromagnetic losses as a result of 
the frequency-converter supply. The governing equations were those of the 2-D finite 
element analysis to which the hysteresis and eddy currents in the sheets were coupled 
through a complex reluctivity. The measured results of a frequency-converter-fed induc-
tion motor were in satisfactory correspondence with those from simulations. Other 
works related to the time-harmonic modeling of the phenomena in electrical steel sheets 
have been presented, for instance, in (O'Kelly, 1972), (Hollaus and Biro, 2002). 

1.2.3 Incorporation of the magneto-dynamic effects of electrical steel 
sheets into field analysis of electrical machinery 

In this section, the coupling of the magneto-dynamic effects of the electrical steel sheets 
to the field analysis of electrical machinery is discussed. The aim is, especially, to ad-
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dress the relevant literature concerning the 2-D approaches that encompass sophisticated 
models of the sheets. Some remarks about the numerical techniques are also made. 

By far the simplest way to include the eddy currents in the 3-D or 2-D analysis is to ne-
glect the skin effect and define the constitutive relation between B and H by an irre-
versible law, as in (Stillesjö et al., 1998), (Gyselinck et al., 1999), (Dular et al., 2003) 
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in which ν is the reluctivity of the laminations. Gyselinck et al. (1999) carried out a 
thorough analysis of the limitations of the approach and justified its usability at low fre-
quencies. 

Righi et al. (2001) incorporated the eddy currents in electrical steel sheets in 2-D finite 
element analysis in a rather similar manner to (Gyselinck et al., 1999), (Dular et al., 
2003). However, besides the eddy currents, the hysteresis and excess effects were also 
taken into account and H was defined as a sum of three components. Measurements on 
a voltage-fed Epstein frame were employed for verification. The measured current 
showed good correspondence with that computed by the proposed method. On the other 
hand, when the iron losses were omitted, the prediction of the current did not succeed in 
an application without an air gap, such as the Epstein frame. In (Sadowski et al., 2002) 
the technique presented in (Righi et al., 2001) was further developed by introducing an 
inverse Jiles-Atherton-type hysteresis model (Jiles and Atherton, 1984). A comparative 
study of the measured and computed currents verified the applicability of the proposed 
model. 

If the actual magnetic properties and skin effect in the sheets need to be taken into ac-
count, an approach like that in Equation (1.4) may become insufficient. More complete 
formulations have been analyzed in (Dupré et al., 1997b), (Bottauscio et al., 2000), 
(Bottauscio and Chiampi, 2001), (Bottauscio and Chiampi, 2002), (Dlala et al., 2008c). 
Bottauscio et al. (2000) introduced a 2-D field formulation, the material modeling of 
which was realized with a 1-D model of the sheets, including hysteresis. Alternating 
fields employing classical (static) and dynamic Preisach hysteresis models were consid-
ered. The resulting non-linear system of equations was solved as a truncated Fourier se-
ries with the fixed point technique in association with the finite elements. For the verifi-
cation, measurements on an eccentric toroid were used. The measured currents and in-
stantaneous powers were found to show good correspondence with the computed ones. 
The method was extended in (Bottauscio and Chiampi, 2001) for rotating fields. Simu-
lations and experiments were performed on a ferromagnetic disk with a diameter of 90 
mm and the losses from these two showed good agreement. In (Bottauscio and Chiampi, 
2002a), the 1-D formulation was directly incorporated into the 2-D system matrices in 
order to avoid nested iteration schemes. 
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More recently, research on the coupled 2-D–1-D model has been conducted by Dlala et 
al. (2008c). Thanks to the parallel iteration of the 2-D and 1-D formulae, the method 
showed good computational efficiency. The numerical form of the equations was pro-
duced by the finite element and Crank-Nicolson methods, while the non-linearities were 
handled by the fixed point technique. 

1.2.4 Application of the iron-loss computation methods to electrical 
machinery 

The comprehensive models of electrical steel sheets, by which it is meant that they en-
compass the hysteresis, eddy current, and excess effects, have been applied in many 
works to analyze rather simple geometries, such as toroids. The iron losses of complex 
apparatuses, such as rotating electrical machines, are still commonly evaluated by post-
processing techniques. Some works, however, also address their inclusion in the field 
solution. This section aims at discussing the relevant research conducted on the topic of 
modeling iron losses in electrical machinery. 

Post-processing techniques 

The evaluation of iron losses in electrical machines as post-processing has been studied, 
for instance, in (Atallah et al., 1992), (Sadowski et al., 2000), and (Štumberger et al., 
2003). Sadowski et al. (2000) computed the three iron-loss components from the instan-
taneous values of the magnetic flux density. The main contribution of the research was 
in defining the losses resulting from the minor hysteresis loops by a rain-flow method. 
In principle, the hysteresis part of the total losses was formulated in a similar way to, for 
instance, in (Atallah et al., 1992). A time-stepping finite element analysis was per-
formed on two different electrical machines, from the results of which the iron losses 
were evaluated with the proposed technique. The computations were verified by meas-
urements. 

Štumberger et al. (2003) studied an induction motor by finite elements using six differ-
ent a posteriori iron-loss computation methods. The eddy current losses were computed 
traditionally, with the skin effect being neglected, while the original idea was to com-
pare different expressions of hysteresis losses. The authors stated that the sum of the 
hysteresis losses caused by two alternating orthogonal flux components acting sepa-
rately is a sufficient approximation of the total hysteresis loss. However, if the rotating 
nature of the flux patterns is taken into account, the agreement between the measured 
and computed losses is improved. 

The output-voltage waveform produced by a frequency converter is known to increase 
the losses in electrical machinery in comparison with a purely sinusoidal supply. A 
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Japanese research group (Yamazaki and Seto, 2006), (Yamazaki and Fukushima, 2010) 
has studied the iron losses of frequency-converter-fed electrical machines employing 
different post-processing formulations. Yamazaki and Seto (2006) used 2-D transient 
non-linear finite element analysis to model an interior permanent magnet machine. It 
was supplied by a voltage waveform that accords with the one generated by the control 
methodology of a real pulse width modulation-based (PWM) converter. The iron losses 
were computed by the well-known statistical model. In the work exhaustive analysis of 
the different origins, carrier harmonics, slot harmonics etc. and the resultant iron losses 
was shown. In (Yamazaki and Fukushima, 2010), the computation of the eddy current 
losses of the sheets was improved by directly solving those from a 1-D penetration 
equation. Several measurements performed on a frequency-converter-fed test machine 
proved the validity of the approach. 

Other works addressing the iron-loss analysis of PWM-fed electrical machines can be 
found from (Cester et al., 1997), (Hildebrand and Roehrdanz, 2001), (Green et al., 
2003), (Lee et al., 2004), (Sagarduy et al., 2006). Most of these works simply evaluate 
the iron losses as post-processing with a statistical-like iron-loss model. In (Hildebrand 
and Roehrdanz, 2001), however, the machine modeling is based on an equivalent cir-
cuit, not on numerical field analysis. Hence, the eddy currents arising in the core are de-
termined through an iron impedance. Green et al. (2003), among others, performed an 
extensive analysis of the iron losses of a test machine under different loading conditions 
when supplied from a sinusoidal and frequency-converter voltage source. Generally, the 
iron losses appeared to be independent of the slip. In comparison to the sinusoidal sup-
ply, the rotor eddy current losses were the most sensitive to the frequency-converter 
output voltage. Lee et al. (2004) tackled the problem with a variable-step finite element 
algorithm. 

Comprehensive field formulations 

Although the majority of the works study the post-processing techniques, extensive field 
formulations including the phenomena in the sheets have also been applied to rotating 
electrical machines. In this connection the 3-D approaches, which commonly encom-
pass either eddy currents or hysteresis, are not considered. Instead, the 2-D and 1-D ap-
proaches and combinations of those are discussed. 

One of the first studies modeling both the eddy currents and hysteresis in the sheets of a 
rotating electrical machine was performed by Dupré et al. (1997b). They analyzed the 
region of one tooth of a test machine by means of a two-level model. The cross-
sectional 2-D field in the tooth is first evaluated as a flux-driven problem with suitable 
boundary conditions. Next, the local 1-D fields are solved using the 2-D field as an ex-
citation. A 3-kW cage-induction motor was utilized as a test motor, and for this the 
losses computed by the proposed method were in reasonable agreement with those ob-
tained by measurements. The method that is discussed is, in fact, a post-processing one 
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as there is no feedback from the 1-D model to the 2-D one. However, its loss computa-
tion is founded on the actual solution of the field in the lamination depth employing a 
hysteresis model and can be seen as a first attempt to couple the 2-D and 1-D formula-
tions. In (Gyselinck et al., 1998), a similar approach to that of (Dupré et al., 1997b) was 
utilized but a more detailed analysis of the 3-kW test machine was shown. Gyselinck et 
al. (2000) developed their method further, now omitting the solution of the 1-D penetra-
tion equation. Instead, a 2-D formulation in which the eddy currents were incorporated 
as in Equation (1.4) and hysteresis implemented by the Preisach model was proposed. 
Another work of the group that might be of interest is that of Dupré et al. (2003). 

Dlala (2009a) carried out an extensive study of the iron losses in a 37-kW test induction 
motor. Two types of finite element analyses in which the magneto-dynamic effects in 
the sheets were incorporated were considered. First, the 2-D finite element formulation 
of a cross-sectional field was coupled with the 1-D penetration equation of the sheets 
including dynamic hysteresis. Second, an improved thin sheet formulation (Dlala, 
2008a) was used to derive the 2-D equations. The latter method was found to be compu-
tationally efficient and stable. 

Frequency-converter-fed electrical machines 

An Italian research group has conducted a great deal of research into iron losses in de-
vices under distorted supply conditions (Boglietti et al., 1991), (Boglietti et al., 1996), 
(Boglietti et al., 1998). In (Boglietti et al., 1991), a major increase in the iron losses of a 
simple test object, i.e., in a steel sheet, as a result of the PWM supply was reported. 
Later on, the authors analyzed the same problem by a 1-D approach, including hystere-
sis (Boglietti et al., 1996), (Boglietti et al., 1998). The measured and computed losses 
were in sufficient accordance with each other and several aspects concerning the switch-
ing frequency and modulation index of the PWM supply were investigated. Modeling a 
single sheet with a PWM supply has also been addressed, for instance in (Leonard et al., 
2006). 

Lately, some works have appeared that study frequency-converter-fed electrical ma-
chines by means of advanced field analysis techniques. Bottauscio et al. (2002b) ana-
lyzed a motor model which had a slotless, solid rotor. Three different iron-loss compu-
tation methods, two of which were a posteriori ones, were applied. The third one in-
cluded the hysteresis in the field solution but evaluated the eddy current and excess 
losses as post-processing. The no-load operation of the motor model was examined un-
der different supply conditions. The hysteresis losses from the comprehensive approach 
agreed rather well with those from the a posteriori calculations. In (Bottauscio et al., 
2003), the authors solved the stator fields in a 7.5-kW test induction motor, including 
the eddy currents and hysteresis in the sheets (Bottauscio and Chiampi, 2001), (Ragusa 
and Repetto, 2000). To compare, the same problem was also analyzed with only hyster-
etic material properties and by employing a single-valued magnetization curve. The au-
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thors stated that the flux patterns are not appreciably affected by the comprehensiveness 
of the material modeling. In addition, the total iron losses from a post-processing tech-
nique used by Fiorillo and Novikov (1990) did not differ notably from those obtained 
directly from the field solution at frequencies below 400 Hz. A comparative study of the 
iron losses under a sinusoidal and six-step supply was carried out. A moderate increase 
in those resulting from the frequency-converter supply was observed. 

Perhaps the latest work on the topic was conducted by Dlala and Arkkio (2009b). They 
investigated the losses of a frequency-converter-fed 37-kW induction machine. The 
field computation was based on 2-D finite element analysis, into which the magneto-
dynamic effects in the sheets were incorporated by means of an advanced thin sheet 
model. Several operating points of the test motor were computed and the total electro-
magnetic losses obtained were found to correspond with experiments. In the iron losses, 
an increase of 6–66% as a result of the frequency-converter supply was observed. 

1.2.5 Conclusion 

The literature survey that was conducted revealed that the iron-loss computation of ro-
tating electrical machines is largely based on post-processing. There is thus a need for 
more complete formulations of the magnetic fields in which the core losses are in-
cluded. Attaining such a goal would lead to a better estimation of the flux patterns and 
the losses themselves. Interesting work on rotating electrical machines has been carried 
out in (Bottauscio et al., 2003), (Dlala, 2009a), and (Dlala and Arkkio, 2009b). How-
ever, it seems that the core losses in a frequency-converter-fed machine have not been 
analyzed by solving the actual field distribution of the sheet from the diffusion equation. 

In addition, there are some works that investigate the coupling of the magneto-dynamic 
effects in electrical steel sheets to 2-D field analysis. It was observed, however, that not 
very much attention has been paid to the reliability and accuracy of the coupling. This 
refers to how the 1-D field solution obtained should be utilized in order to include the 
associated losses correctly in the 2-D computation scheme. This work aims at producing 
new information on this topic. Last, the possibilities of linearizing the field problem of 
the sheets in order to gain better computational efficiency are investigated. 

1.3 Aim of the work 

This work aims at developing computational methods that are based on the 2-D finite 
element analysis of the field but still include the eddy currents in electrical steel sheets. 
Despite the awareness that the phenomena in the sheets are interdependent, only the 
eddy currents are mostly considered. This is a consequence of the other objective of the 
thesis, which is to analyze the losses in frequency-converter-fed rotating electrical ma-
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chines under practical operating conditions. According to the literature survey, the eddy 
current contribution of the total iron losses appears to be the aspect which is most af-
fected by the higher harmonics of the frequency-converter supply (Boglietti et al., 
1996), (Boglietti et al., 1998). On the basis of this observation, a decision was made to 
omit the hysteresis and excess effects from the field computation and simply approxi-
mate the losses related by a post-processing technique. Last, the development and im-
provement of techniques for coping with the non-linearity of the problem are beyond 
the scope of this thesis. Thus, the stability of the computations is ensured by relatively 
simple means which, on the other hand, might not be the most efficient ones. 

1.4 Scientific contribution 

The scientific contributions of the thesis can be listed as follows. 

1. Within this thesis a time-discretized 2-D finite element model of electrical ma-
chines, including the eddy currents in electrical steel sheets through a 1-D diffu-
sion equation, is presented. Particularly, this work contributes by carefully in-
vestigating how the 1-D field solution is accurately coupled with the 2-D equa-
tions, i.e., how the eddy current loss involved is fully included in the 2-D analy-
sis. 

2. The thesis discusses two approaches used to represent the 1-D solution in the 2-
D machine model. The effects of the spatial discretization of the 1-D diffusion 
equation are studied. The results show the importance of the appropriate space-
discretization. A proposal for an optimal coupling that accords with the results is 
given. 

3. The linearization of the 1-D model in association with the time-discretized cou-
pled approach is studied. It is found that there is virtually no need to take into 
account the magnetic non-linearity of the sheets within the 1-D model when the 
skin depth is greater than one fifth of the sheet thickness. 

4. The time-discretized method for encompassing the eddy currents in the sheets is 
used to model the test machine under different supply and loading conditions. A 
comparison of the simulation results with experimental ones verifies the appli-
cability of the approach. 

5. A simpler method for including the eddy current and hysteretic effects in the 
electrical steel sheets of electrical machines is presented. It is founded on the ap-
proximation of sinusoidal time variation. Owing to its implementation the 
method is suitable for analyzing the additional electromagnetic losses caused by 
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the non-sinusoidal voltage waveforms produced by frequency converters. Highly 
efficient computational performance is attained, slightly at the expense of the 
accuracy of the results. 

1.5 Outline of the thesis 

This thesis is organized in the following way. 

• Chapter 1 elaborates the background of the research, discusses the relevant lit-
erature, and emphasizes the motivations for the work. The scientific contribu-
tions are summarized as well. 

• In Chapter 2, the computational methods developed are discussed in a detailed 
manner, starting from the basic equations of the field and windings and ending 
up with the non-linear system of equations and its solution. The second section 
of the chapter concentrates on discussing the experimental part of the research. 

• Chapter 3 represents the most important results obtained during the course of the 
work. The general characteristics of the methods are first closely investigated via 
simple example geometries. Second, a 37-kW cage-induction machine is ana-
lyzed under different operating conditions with sinusoidal and frequency-
converter supplies. 

• Last, in Chapters 4 and 5, the methods, results, and fulfillment of the aims are 
carefully discussed. Chapter 5 summarizes the content of the thesis. 
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2 Methods 

2.1 Finite element model for cage-induction machines 

This section discusses the computational methods that were developed. The 1-D field 
formulation of electrical steel sheets is dealt with first. Next, the 2-D finite element 
model of cage-induction machines is presented and the coupling of the eddy currents in 
electrical steel sheets elaborated. The derivations and solution methods are given for 
both a general time variation and the approximation of sinusoidal time variation. 

2.1.1 One-dimensional eddy current model of electrical steel sheets 

The 1-D eddy current formulation of electrical steel sheets is discussed. The fundamen-
tal electromagnetic field equations are presented. The solution of the 1-D field problem 
in both the time-stepping and time-harmonic schemes is shown. 

Fundamental equations 

The electromagnetic field in an electrical steel sheet is governed by the quasi-static 
Maxwell’s equations 

 
t

∂
∇× = −

∂
BE  (2.1) 

 ∇× =H J  (2.2) 

 0∇⋅ =B  (2.3) 

and constitutive relations 

 σ=J E  (2.4) 

 ( )0µ= +B H M  (2.5) 

where E is the electric field strength, B the magnetic flux density, t time, H the mag-
netic field strength, J the current density, σ the electrical conductivity, µ0 the permeabil-
ity of free space, and M the magnetization. 

The term ∂D/∂t, which is related to the polarization and displacement currents, is omit-
ted from the field formulation (Equation (2.2)). Applying the resulting so-called quasi-



 

 

32

static approximation is well justified here, since at the frequencies present in an electri-
cal machine, the emerging conductive currents are substantially greater than the polari-
zation and displacement ones. 

The constitutive relation between the magnetic flux density and magnetic field strength 
is given in its most general form in Equation (2.5). Utilizing this kind of expression is 
necessary if the hysteretic and even anisotropic characteristics exhibited by the ferro-
magnetic steel sheets need to be included in the analysis. However, the solution of the 
eddy current problem in question is simplified substantially if the modeling of these 
phenomena can be omitted. Then the magnetic properties of the materials can be de-
scribed with a single-valued magnetization curve. This approach is adopted here. The 
magnetization can be expressed as 

 mχ=M H  (2.6) 

in which χm is the magnetic susceptibility of a material. Substituting Equation (2.6) in 
Equation (2.5) yields 

 ( )0 m1µ χ= +B H . (2.7) 

Furthermore, by utilizing permeability µ or its inverse reluctivity ν, Equation (2.7) can 
simply be written as 

 µ=B H or as ν=H B . (2.8) 

In the case of electrical steel, the permeability (or its inverse reluctivity) is a non-linear 
function of the magnetic field. 

The definition of the magnetic vector potential A is 

 = ∇×B A . (2.9) 

Since the curl of the gradient of any scalar function is identically zero, the uniqueness of 
the magnetic vector potential needs to be ensured by an additional constraint. In the 
quasi-static field problems, Coulomb’s gauge is frequently utilized: 

 0∇⋅ =A . (2.10) 

In terms of magnetic vector potential, Ampère's circuital law (2.2) fulfils 

 ν∇× ∇× =A J . (2.11) 

The substitution of Equation (2.9) into Equation (2.1) gives 
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t
∂

∇× = − ∇×
∂

E A . (2.12) 

By introducing the electric scalar potential φ , the electric field strength can be written 
as 

 
t

φ∂
= − −∇

∂
AE . (2.13) 

Taking a curl of the above expression of the electric field strength Equation (2.13) 
yields Equation (2.12), since the curl of the gradient of the electric scalar potential is 
identically zero. 

Utilizing the Ohm's law (2.4) and the definition of the electric field strength in Equation 
(2.13), one can express the current density as 

 
t

σ σ φ∂
= − − ∇

∂
AJ . (2.14) 

The current density (2.14) satisfies the continuity equation 

 0∇⋅ =J . (2.15) 

Combining Equation (2.14) with Equations (2.11) and (2.15) results in two partial dif-
ferential equations from which the vector and scalar potentials can be solved 

 0
t

ν σ σ φ∂
∇× ∇× + + ∇ =

∂
AA  (2.16) 

 0
t

σ σ φ∂⎛ ⎞∇ ⋅ + ∇ =⎜ ⎟∂⎝ ⎠
A . (2.17) 

The above derivations are presented in the most general case, i.e., in three dimensions. 
However, if the width and length of the electrical steel sheets are much greater than 
their thickness, the edge effects become negligible and the intrinsically 3-D eddy cur-
rent problem can be reduced to a 1-D one without a great loss of accuracy (Lammeraner 
and Stafl, 1966). Employing the 1-D approximation of the field, for the sheets posi-
tioned in the same way as the one in Figure 2.1, the magnetic vector potential and cur-
rent density can be formulated as 

 ( ) ( ), ,x x y ya z t a z t= +a e e  (2.18) 

 ( ) ( ), ,x x y yj z t j z t= +j e e  (2.19) 
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in which z is a Cartesian spatial coordinate and ex and ey are the unit vectors parallel to 
the x- and y-axes, respectively. ax and ay denote the x- and y-components of the mag-
netic vector potential, and jx and jy the x- and y-components of the current density. The 
1-D quantities are throughout the thesis denoted with lower case letters in order to dif-
ferentiate them from the 2-D ones. 

z

y

x

2d

z

y

x

2d

 
Figure 2.1 Alignment of the electrical steel sheets. 

The substitution of Equation (2.18) into Equation (2.16) yields 

 ( ) ( )0, 0,yx
x y z

aaa a
t t z

∂∂ ∂
∇ ⋅ ∇ − = ∇ ⋅ ∇ − = ∇ =

∂ ∂ ∂
eν σ ν σ . (2.20) 

The two equivalent equations for the components of the magnetic vector potential in 
Equation (2.20), which define the field in the electrical steel sheets, are coupled through 
the reluctivity and boundary conditions. In this work, the sheets are assumed to be mag-
netically isotropic by giving their reluctivity in both the x- and y-directions with the 
same non-linear function of a square of magnetic flux density b2 (Belahcen et al., 2010). 

Furthermore, the expressions for the components of current density and magnetic flux 
density are 

 , yx
x y

aaj j
t t

∂∂
= − = −

∂ ∂
σ σ  (2.21) 

 ,y x
x y

a ab b
z z

∂ ∂
= − =

∂ ∂
. (2.22) 
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Transient time-discretized analysis 

The actual time-dependence of the 1-D electromagnetic field quantities has to be 
worked out numerically. The space-discretization of the 1-D problem is performed by 
the finite element method, whereas the time-dependence is handled by the backward 
Euler method. The resulting non-linear system of equations is solved within the New-
ton-Raphson iterative scheme. 

Time-discretization 

Solving the field equations of the electrical steel sheets requires the approximation of 
their time derivatives by some time-discretization technique. For that purpose, the 
backward Euler method, in association with a constant time-step of length ∆t, is em-
ployed. If two successive time-steps are denoted by k and k + 1, both the components of 
the magnetic vector potential at a time instant k + 1 can be formulated as 

 ( )1 1| 1 |k k k kc c
c c

a aa a t
t t

+ +∂ ∂⎡ ⎤= + + − ∆⎢ ⎥∂ ∂⎣ ⎦
β β  (2.23) 

in which c denotes either x or y and β is a constant, depending on the time-discretization 
technique applied. For the backward Euler method, that constant is 1. Other common 
techniques include the forward Euler and Crank-Nicolson methods, in the case of which 
β is 0 and 0.5, respectively. The backward Euler method was chosen to be used because 
of its good performance with problems coupling external circuits and eddy currents 
(Tsukerman, 1995), (Islam, 2010). 

Since the components of the magnetic vector potential fulfill the equivalent equation 
(Equation (2.20)), the following derivations are carried out utilizing the notation ac, 
where c is either x or y. Let us write the equation for a component of magnetic vector 
potential at two successive time-steps k + 1 and k 

 ( )1 1 1| 0k k kc
c

aa
t

+ + +∂
∇ ⋅ ∇ − =

∂
ν σ  (2.24) 

 ( ) | 0k k kc
c

aa
t

∂
∇ ⋅ ∇ − =

∂
ν σ . (2.25) 

Multiplying Equation (2.24) by β and Equation (2.25) by 1 − β gives 

 ( )1 1 1| 0k k kc
c

aa
t

+ + +∂
∇ ⋅ ∇ − =

∂
β ν βσ  (2.26) 
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 ( ) ( ) ( )1 1 | 0k k kc
c

aa
t

∂
− ∇ ⋅ ∇ − − =

∂
β ν β σ . (2.27) 

Summing Equations (2.26) and (2.27) yields 

 ( ) ( ) ( ) ( )1 1 1| 1 1 | 0k k k k k kc c
c c

a aa a
t t

+ + +∂ ∂
∇ ⋅ ∇ − + − ∇ ⋅ ∇ − − =

∂ ∂
β ν βσ β ν β σ . (2.28) 

Utilizing the expression of Equation (2.23), the derivative terms of Equation (2.28) can 
be eliminated 

 ( ) ( ) ( )1 1 1 1
0k k k k k k

c c c ca a a a
t t

+ + + −
∇ ⋅ ∇ − + ∇ ⋅ ∇ + =

∆ ∆
βσ σν ν

β β β
. (2.29) 

Space-discretization 

The spatial discretization is accomplished by the finite elements together with the 
method of weighted residuals. Transforming the governing differential equations into a 
variational form is done by the weighted residuals method. The finite element method is 
then used to discretize the solution region of the problem in question into a finite ele-
ment mesh in which the unknowns are approximated as a linear combination of suitable 
functions employing appropriate boundary conditions. 

According to the method of weighted residuals, the field equation (2.29) is multiplied 
by a weighting function w(z) and integrated over the whole solution region γ: 

 ( ) ( ) ( )1 1 1 1
d 0k k k k k k

c c c ca w a w a w a w
t t

+ + + −⎛ ⎞
∇ ⋅ ∇ − + ∇ ⋅ ∇ + =⎜ ⎟∆ ∆⎝ ⎠

∫
γ

βσ σν ν γ
β β β

. (2.30) 

As the symmetry of the electrical steel sheets is exploited, only half of their thickness 
needs to be considered (the solution region covers half of the thickness of the sheets). 

By applying the identity 

 ( ) ( )c c ca w w a w a∇ ⋅ ∇ = ∇ ⋅ ∇ − ∇ ⋅∇ν ν ν  (2.31) 

Equation (2.30) can be formulated as 
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( )
( ) ( ) ( )

1 1 1 1 1

d 0
1 1

k k k k k
c c c

k k k k k
c c c

w a w a a w
t

w a w a a w
t

+ + + + +⎛ ⎞∇ ⋅ ∇ − ∇ ⋅∇ −⎜ ⎟∆⎜ ⎟ =
⎜ ⎟− −
+ ∇ ⋅ ∇ − ∇ ⋅∇ +⎜ ⎟

∆⎝ ⎠

∫
γ

σν ν
β

γ
β β σν ν

β β β

. (2.32) 

Furthermore, the finite element method approximates both the components of the mag-
netic vector potential as 

 ( )
n

|
1

n

c c j j
j

a a n z
=

≅ ∑  (2.33) 

in which ac|j denotes the component of the magnetic vector potential associated with the 
node j of the finite element mesh, nj the shape function associated with the node j of the 
finite element mesh, and nn the number of nodes in the finite element mesh. 

The nodal values of the magnetic vector potential are fixed at the boundaries of the elec-
trical steel sheet geometry. In the rest of the nodes, i.e., in the free nodes, the solution of 
the magnetic vector potential is sought. A shape function nj is a continuous real-valued 
function that has a non-zero value only in the elements to which the node j belongs. In 
the node j, the shape function nj has a value of one and in the other nodes, it is equal to 
zero. Here, depending on the order of the elements, the shape functions are either first-, 
second-, or third-order polynomials. 

Substituting Equation (2.33) in Equation (2.32) yields 

 
( )

( )

n

n n

n

n n

1 1
|

1

1 1 1
| |

1 1

|
1

| |
1 1

1

1

n
k k

c j j
j

n n
k k k

c j j c j j
j j

n
k k

c j j
j

n n
k k k

c j j c j j
j j

w a n

w a n a n w
t

w a n

w a n a n w
t

+ +

=

+ + +

= =

=

= =

⎛ ⎛ ⎞⎛ ⎞
∇ ⋅ ∇⎜ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
⎜

⎛ ⎞ ⎛ ⎞⎜ − ∇ ⋅∇ −⎜ ⎟ ⎜ ⎟⎜ ∆⎝ ⎠ ⎝ ⎠⎜
⎜ ⎛ ⎞⎛ ⎞−
⎜+ ∇ ⋅ ∇⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
⎜

⎛ ⎞ ⎛ ⎞−⎜ − ∇ ⋅∇ +⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎝ ⎠⎝

∑

∑ ∑

∑

∑ ∑

ν

σν
β

β
ν

β

β σν
β β

d 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟ =
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎠

∫
γ

γ . (2.34) 

The weighting functions to be used can be chosen in many ways. Here, Galerkin’s 
method is utilized, implying that the shape functions of the free nodes in the finite ele-
ment mesh are applied as weighting functions one by one: 

 ( ) ( )=i iw z n z . (2.35) 
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Thus, when the numbering of the free nodes runs from 1 to the total number of free 
nodes nf, Equation (2.34) becomes 

 ( )

( )

n

n n

n

n n

1 1
|

1

1 1 1
| |

1 1

|
1

| |
1 1

1

1

n
k k

i c j j
j

n n
k k k

i c j j c j j i
j j

n
k k

i c j j
j

n n
k k k

i c j j c j j i
j j

n a n

n a n a n n
t

n a n

n a n a n n
t

+ +

=

+ + +

= =

=

= =

⎛ ⎛ ⎞⎛ ⎞
∇ ⋅ ∇⎜ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎝ ⎠⎝ ⎠
⎜

⎛ ⎞ ⎛ ⎞⎜ − ∇ ⋅∇ −⎜ ⎟ ⎜ ⎟⎜ ∆⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞−

+ ∇ ⋅ ∇⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞−

− ∇ ⋅∇ +⎜ ⎟ ⎜ ⎟∆⎝ ⎠ ⎝ ⎠⎝

∑

∑ ∑

∑

∑ ∑

ν

σν
β

β
ν

β

β σν
β β

f

d 0,

1, ,i n

⎞
⎟
⎟
⎟
⎟
⎟

⎜ ⎟ =
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎠
=

∫

…

γ

γ
. (2.36) 

Integrating a derivative of a function yields the function itself: 

 
n n

| | f
1 1

d | , 1, ,
n n

i c j j i c j j
j j

n a n n a n i n
= =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
∇ ⋅ ∇ = ∇ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑∫ …γ
γ

ν γ ν . (2.37) 

As ni goes through the free nodes, at the fixed boundary nodes, Equation (2.37) is iden-
tical to zero. Thus the divergence terms of Equation (2.36) vanish, resulting in 

 ( )

n n

n n

1 1 1
| |

1 1

| |
1 1

f

d 0,
1

1, ,

n n
k k k

i c j j c j j i
j j

n n
k k k

i c j j c j j i
j j

n a n a n n
t

n a n a n n
t

i n

+ + +

= =

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
− ∇ ⋅∇ −⎜ ⎟⎜ ⎟ ⎜ ⎟∆⎜ ⎟⎝ ⎠ ⎝ ⎠ =⎜ ⎟⎛ ⎞ ⎛ ⎞−⎜ ⎟− ∇ ⋅∇ +⎜ ⎟ ⎜ ⎟⎜ ⎟∆⎝ ⎠ ⎝ ⎠⎝ ⎠

=

∑ ∑
∫

∑ ∑
…

γ

σν
β

γ
β σν

β β

. (2.38) 

By rearranging Equation (2.38), Equation (2.39) is obtained. 

 ( )

n

n

1 1
|

1

|
1

f

d 0,
1

1, ,

n
k k

i j i j c j
j

n
k k

i j i j c j
j

n n n n a
t

n n n n a
t

i n

+ +

=

=

⎛ ⎞⎛ ⎞
∇ ⋅∇ +⎜ ⎟⎜ ⎟∆⎝ ⎠⎜ ⎟ =⎜ ⎟−⎛ ⎞⎜ ⎟+ ∇ ⋅∇ −⎜ ⎟⎜ ⎟∆⎝ ⎠⎝ ⎠

=

∑
∫

∑
…

γ

σν
β

γ
β σν

β β
 (2.39) 

Introducing terms 
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 1 dk
ij i js n n

γ

ν γ+= ∇ ⋅∇∫  ( )1
dk

ij i js n n
γ

β
ν γ

β
−

= ∇ ⋅∇∫  (2.40) 

 dij i jt n n
t

=
∆∫

γ

σ γ
β

 ij ijt t= −  (2.41) 

Equation (2.39) can be written in a more compact form 

 ( )( ) ( )( )
n n

1 1
| | f

1 1

0, 1, ,
n n

k k k k
ij ij c j ij ij c j

j j

s t a s t a i n+ +

= =

+ + + = =∑ ∑a a … . (2.42) 

Newton-Raphson solution of the non-linear equations 

If the number of unknowns (that are the free nodal values of a component of magnetic 
vector potential) is nf, there are now equally many equations for solving these (Equation 
(2.42)). In general, a finite element problem that has nf unknowns and is given in terms 
of a component of magnetic vector potential can be expressed in brief notation as 

 ( )f f n

1 1 1 1
c | |1 | | 1 | f, , , , , 0, 1, ,k k k k
c i c c n c n c nr a a a a i n+ + + +

+ = =… … …  (2.43) 

in which the subscripts from 1 to nf denote the free nodes and the subscripts from nf + 1 
to nn the nodes fixed by boundary conditions. The equations rcc|i in Equation (2.43) are 
referred to as residual functions. 

By defining a column vector of the nodal values of a component of magnetic vector po-
tential ac as 

 { }| n, 1, ,c c ja j n= =a … , (2.44) 

the residual vector consisting of the residual functions rcc|i can be written as 

 ( )1
c 0k
c c

+ =r a . (2.45) 

If the problem being considered includes the sources of non-linearities, such as materi-
als that have properties depending on the magnetization, the solution of Equation (2.45) 
needs to be carried out iteratively as a series of sequential linear tasks. Here, the lineari-
zation is done by the Newton-Raphson method. At every iteration n + 1, a new estimate 
for the vector of the nodal values of a component of the magnetic vector potential is ob-
tained by correcting the inaccurate result from the previous iteration n 
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 1| 1 1| 1|k n k n k n
c c c
+ + + += + ∆a a a . (2.46) 

The incremental adjustment to be made, ∆ac
k + 1|n, is determined from the following sys-

tem of equations 

 ( ) ( )1| 1| 1|
c

k n k n k n
c c c c c

+ + +∆ = −p a a r a  (2.47) 

in which pc is the nf-by-nn Jacobian matrix of the residual vector rcc. 

The Jacobian matrix pc consists of the derivatives of the residual functions. Its elements 
can be given as 

 ( ) ( )f f n

1| 1| 1| 1|
c | |1 | | 1 |1|

| 1|
|

, , , , ,k n k n k n k n
c l c c n c n c nk n

c lm c k n
c m

r a a a a
p

a

+ + + +
++

+

∂
=

∂
a

… …
. (2.48) 

The field in the electrical steel sheets is governed by the two components of the mag-
netic vector potential that are strongly coupled through the boundary conditions and re-
luctivity. Thus their solution must be carried out simultaneously in the same system of 
equations. At the same time, the residual vector of a component of the magnetic vector 
potential has to be differentiated with respect to the other component as well. Applying 
the Newton-Raphson iteration scheme to the 1-D eddy current problem yields 

 
( ) ( )
( ) ( )

( )
( )

1| 1| 1|1|
c

1|1| 1| 1|
c

k n k n k nk n
xx xy xx

k nk n k n k n
yyx yy y

+ + ++

++ + +

⎡ ⎤ ⎡ ⎤⎡ ⎤∆⎢ ⎥ ⎢ ⎥= −⎢ ⎥∆⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

p a p a r aa
ap a p a r a

. (2.49) 

That is the system of equations to be solved at each iteration n of every time-step k + 1. 

The elements of the residual vectors of the components of the magnetic vector potential 
satisfy 

 ( ) ( )( ) ( )( )
n n

1| 1| 1| | |
c | | |

1 1

n n
k n k n k n k n k n

x i ij ij x j ij ij x j
j j

r s t a s t a+ + +

= =

= + + +∑ ∑a a a  (2.50) 

and 

 ( ) ( )( ) ( )( )
n n

1| 1| 1| | |
c | | |

1 1

n n
k n k n k n k n k n

y i ij ij y j ij ij y j
j j

r s t a s t a+ + +

= =

= + + +∑ ∑a a a  (2.51) 

and the elements of the Jacobian matrices resulting from the differentiation of the resid-
ual vectors are, according to Equations (2.48), (2.50), and (2.51), 
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 ( ) ( ) ( )1|n
1| 1| 1|

| |1|
1 |

k nn
ljk n k n k n

xx lm lm lm x jk n
j x m

s
p s t a

a

+
+ + +

+
=

∂
= + +

∂∑
a

a a  (2.52) 

 ( ) ( )n
1|

1| 1|
| |1|

1 |

k nn
ljk n k n

xy lm x jk n
j y m

s
p a

a

+
+ +

+
=

⎛ ⎞∂
⎜ ⎟=
⎜ ⎟∂⎝ ⎠

∑
a

a  (2.53) 

 ( ) ( )1|n
1| 1|

| |1|
1 |

k nn
ljk n k n

yx lm y jk n
j x m

s
p a

a

+
+ +

+
=

⎛ ⎞∂
⎜ ⎟=
⎜ ⎟∂⎝ ⎠

∑
a

a  (2.54) 

and 

 ( ) ( ) ( )1|n
1| 1| 1|

| |1|
1 |

k nn
ljk n k n k n

yy lm lm lm y jk n
j y m

s
p s t a

a

+
+ + +

+
=

∂
= + +

∂∑
a

a a . (2.55) 

Time-harmonic analysis 

The field in an electrical machine or even in an electrical steel sheet practically never 
varies sinusoidally with time. This is due to, for instance, the magnetic non-linearity of 
iron. If the assumption of sinusoidal time variation is, despite that, made, the electro-
magnetic field quantities can be represented as phasors and consequently the time-
dependence eliminated from the equations to be solved. As a result, a substantial reduc-
tion in the computation time is achieved. That is the major reason why the utilization of 
such a rough simplification is investigated. In the time-harmonic approximation, the 
phasors of magnetic vector potential and current density for the 1-D eddy current model 
of electrical steel sheets are given as 

 ( ) ( )x x y ya z a z= +a e e  (2.56) 

 ( ) ( )x x y yj z j z= +j e e  (2.57) 

in which ax and ay and jx and jy are the x- and y-components of the magnetic vector po-
tential and current density. The underscore means that the quantities are complex vari-
ables. 

From the phasors the time-dependent quantities are obtainable as 

 { }jRe e t=a a ω  (2.58) 

in which ω denotes the angular frequency of the time variation. 
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The components of the magnetic vector potential fulfill 

 ( ) ( )j 0, j 0x x y ya a a a∇ ⋅ ∇ − = ∇ ⋅ ∇ − =ν ωσ ν ωσ  (2.59) 

in which |ν| is the absolute value of complex reluctivity. 

Here, the absolute value of complex reluctivity is a quantity equal to the effective value 
of reluctivity. The effective reluctivity is commonly used to describe the magnetic prop-
erties within the time-harmonic approximation (Luomi et al., 1986). 

Solving the 1-D field equation (2.59) with non-linear magnetic properties requires an 
iterative computation. Now, in order to reduce the complexity of the combined 2-D–1-D 
approach, the magnetic properties of the sheets along their thickness are assumed to be 
linear. Then, in fact, an analytical solution for the components of the magnetic vector 
potential can be derived 

 1 2
1 2e ez z

ca c c= +λ λ  (2.60) 

in which 

 1 2
j j,ωσ ωσλ λ
ν ν

= = −  (2.61) 

and 

 ( ) ( )
1 2 1 21 2,

e e e e
c c

d d d d

a d a d
c c− − − −

− −
= =

− − +λ λ λ λ  (2.62) 

where d denotes half of the thickness of a lamination and ac(−d) the value of the com-
ponent of the magnetic vector potential at the boundary −d. 

As the magnetic vector potential is known, the magnetic flux density and current density 
can be estimated 

 j , jx x y yj a j a= − = −ωσ ωσ  (2.63) 

 
d d,
d d

y x
x y

a ab b
z z

= − =  (2.64) 

In spite of the fact that the assumptions exploited enabled analytical expressions for the 
electromagnetic quantities to be derived, not all the integral terms related to the cou-
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pling of the 1-D and 2-D models are analytically attainable. Those terms are solved nu-
merically by the finite difference method and trapezoidal rule. 

2.1.2 Two-dimensional–one-dimensional finite element model for cage-
induction machines 

In this section, the 2-D formulations of the machine model are presented. Both the time-
discretized and time-harmonic approaches are considered. In particular, the aim is to 
elaborate the coupling of the eddy currents in the electrical steel sheets to the 2-D field 
and winding equations. 

Fundamental field and winding equations 

As this work concentrates on modeling radial flux rotating electrical machines, the con-
sideration of 3-D electromagnetic fields can be avoided and 2-D ones studied instead. 
Assuming the machine to be infinitely long in the direction of its shaft, the analysis can 
be reduced to a study of the plane perpendicular to the shaft. The magnetic vector poten-
tial and current density can be defined as 

 ( ), ,z zA x y t=A e  (2.65) 

 ( ), ,z zJ x y t=J e  (2.66) 

where ez denotes the unit vector parallel to the z-axis (and at the same time parallel to 
the shaft of the machine) and Az and Jz are the z-components of the magnetic vector po-
tential and current density, respectively. 

B-H relations 

The solution region, i.e., the cross-section of an electrical machine, contains materials 
exhibiting different magnetic properties. A division into magnetically linear, non-linear, 
and hysteretic ones can be made. The air and stator and rotor winding parts are magneti-
cally linear and have a relative permeability equal to that of free space. The solid shaft 
of a machine is commonly described with a single-valued magnetization curve. The sta-
tor and rotor core are constructed of electrical steel sheets. In a 2-D analysis, such a core 
structure is typically modeled as a non-conducting medium with a single-valued mag-
netization curve. Hence, both the hysteresis and eddy currents in the electrical steel 
sheets are neglected. 



 

 

44

The B-H relation for the air and winding parts of the model geometry is given as 

 0µ=B H  or 0ν=H B  (2.67) 

in which ν0 denotes the reluctivity of free space. 

For the shaft of the machine, the magnetic constitutive relation is 

 µ=B H  or ν=H B  (2.68) 

in which µ or its inverse ν is a single-valued non-linear function of the square of the 
magnetic flux density. 

The eddy currents in electrical steel sheets are now contained in the analysis. As usual, 
the electrical conductivity of the sheets in the equations of the 2-D plane is set to be 
equal to zero. The B-H relations are used to couple the 1-D eddy current solution with 
the 2-D field analysis. As the approach discussed in (Henrotte et al., 1992) is applied, 
the constitutive law in the electrical steel sheets is defined as 

 c= +h B Hν  (2.69) 

The first term on the right-hand side depicts the dependency of h on B when the eddy 
currents in the sheets are not included. The reluctivity in Equation (2.69) is given as a 
single-valued non-linear function of the square of the magnetic flux density. The second 
term on the right-hand side, Hc, represents the correction to be made to the component 
νB in order to obtain the magnetic field strength h imposed by the 1-D eddy current so-
lution. The section entitled “Definition of Hc” discusses the components of the constitu-
tive law in detail. 

Definition of current density in windings 

Under the 2-D approximation of the fields, the electric scalar potential in a straight solid 
conductor parallel to the z-axis must be a linear function of the z-coordinate. Hence, the 
gradient of the electric scalar potential fulfills 

 b

b b
z z z

u
z l l
φ φφ ∂ ∆

∇ = = = −
∂

e e e  (2.70) 

in which lb denotes the length of the conductor and ub the voltage over the conductor. 
Substituting Equations (2.65), (2.66), and (2.70) in Equation (2.14) yields 
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 b
b

b

z
z

A uJ
t l

∂
= − +

∂
σ σ . (2.71) 

Equation (2.71) is applied for determining the current density in the bars of the squirrel-
cage rotor winding. The same expression could also be used for the coil sides of the sta-
tor phase winding. This would, however, lead to computationally very expensive mod-
els as a result of the large number of thin conductors in each of the stator slots. In most 
cases, neglecting the skin effect in the stator-winding conductors is justified, thus ena-
bling the current density in a coil side of a phase winding Jzcw to be defined as 

 cw w
cw

cw
z

N iJ
S

=  (2.72) 

in which Ncw denotes the number of turns in series in a coil side of a phase winding, iw 
the current in a phase winding, and Scw the cross-section area of a coil side of a phase 
winding. 

Summary of field equations 

The field equations in different parts of the solution region can be summarized as fol-
lows: 

 ( )

( )

cw w

cw

b

b

c

0 in air

in phase windings

in rotor bars

in rotor shaft

in laminated iron

z
z

z

z

N i
S

A u
A

t l
A
t

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪∂⎪ ⎪− +−∇ ⋅ ∇ = ⎨ ⎬∂⎪ ⎪
⎪ ⎪∂

−⎪ ⎪
∂⎪ ⎪

⎪ ⎪− ∇×⎩ ⎭H

σ σν

σ

. (2.73) 

The field in the air is derived from Equations (2.11) and (2.67). In a stator phase wind-
ing, Equations (2.11), (2.67), and (2.72) are utilized and in a squirrel-cage rotor winding 
Equations (2.11), (2.67), and (2.71). The field equation of a rotor shaft is defined from 
Equations (2.16) and (2.68). In the shaft the electric scalar potential is zero. The equa-
tion for the laminated iron is determined on the basis of Equations (2.11) and (2.69). 
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Winding equations 

The computational algorithm that is applied performs a coupled solution of the field and 
winding equations of the cage-induction machine. The expressions for the circuit equa-
tions of the stator and rotor windings of the cage-induction machine are briefly pre-
sented next. In the formulation of the stator phase winding, an additional end-winding 
inductance is included in order to approximate the effects of the end-winding in the ma-
chine. For the squirrel-cage rotor winding, the voltage equations of the bars and end-
rings are presented. 

A stator phase winding consists of several coils that are connected in series and distrib-
uted in the stator slots of the machine. Naturally, the formulae to be presented would be 
valid for a phase winding in the rotor as well. A part of the coil sides of a phase winding 
is positively oriented and a part negatively oriented. This can be compactly expressed as 

 ( )

cw|

cw|

cw|
w|

cw|

in positively oriented coil sides
of a phase winding 

in negatively oriented coil sides
,

of a phase winding 

0 otherwise

n

n

n
n

n

N
nS

N
x y

nS
β

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪= −⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

. (2.74) 

According to circuit theory, the voltage of a phase winding is the sum of the voltage 
drop in its resistance and the time derivative of its flux linkage. The flux linkage now 
consists of two terms. The first term is imposed by the 2-D field solution as a surface 
integral of the time derivative of the magnetic vector potential over the coil sides of the 
phase winding. The second term is the one related to the end-winding inductance. 
Hence, when it is assumed that the number of parallel paths in the phase winding is one 
and that the number of poles in the solution region is an integer, the voltage equation of 
a phase winding n in the entire solution region fulfills (Arkkio, 1987) 

 w|
w| s ef w| w w| ew

d
d

d
n

n n n

i
u N l R i L

t tΩ

β ∂
= ⋅ + +

∂∫
A Ω  (2.75) 

in which uw|n denotes the voltage over the phase winding n, Ns the number of symmetry 
sectors in the machine being studied, lef the length of the iron core of the machine, Ω the 
area of the whole solution region, Rw the DC resistance of each of the phase windings, 
also including the end region, iw|n the current in a phase winding n, and Lew the end-
winding inductance approximating the 3-D effects of the part of the phase winding out-
side the iron core. 
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For each of the bars in the squirrel-cage winding, a voltage equation of its own is ap-
plied. The voltage equation of a bar can be derived from its current density given by 
Equation (2.71). Integrating the current density Equation (2.71) of a bar over its cross-
section area yields (Arkkio, 1987) 

 
b b

b| b|
b

1d dn n
S S

i u S
t l

σ σ∂
= − ⋅ +

∂∫ ∫
A S  (2.76) 

in which ib|n denotes the current in the bar n and Sb the cross-section area of each of the 
bars. 

If the conductivity and cross-section area of the bars are constant, their voltage equa-
tions in the entire solution region fulfill (Arkkio, 1987), (Kanerva, 2005) 

 b|
b| b b| eb b b|

d
d

d
n

n n n

i
u R i L R

t tΩ

β σ ∂
= + + ⋅

∂∫
A Ω  (2.77) 

in which ub|n is the voltage over a bar n, Rb is the resistance of each of the bars, includ-
ing the end region outside the iron core of the machine, Leb is the inductance of the bar 
ends outside the iron core of the machine, and βb|n is defined as 

 ( )b|

1 in a bar 
,

0 otherwisen

n
x yβ

⎧ ⎫
= ⎨ ⎬
⎩ ⎭

. (2.78) 

In both the ends of the rotor core, the rotor bars are connected to each other by a short-
circuiting ring. The voltage of the short-circuiting ring uer|n associated with the bar n ful-
fills (Arkkio, 1987), (Kanerva, 2005) 

 er|
er| er| er| er|

d
d

n
n n n n

i
u R i L

t
= +  (2.79) 

where Rer and Ler denote the resistance and inductance and ier the current of the short-
circuiting ring associated with the bar n. A detailed discussion of the model of the cage 
winding can be found from (Arkkio, 1987). 

Transient time-discretized analysis 

When all the rotor bars and phases of the stator winding are taken into account, the par-
tial differential equation of the 2-D electromagnetic field in an electrical machine based 
on Equations (2.73), (2.74), and (2.78) can be written as 
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 ( ) ( )
b

b| b| w| w| c
1 1b

1 0
Q m

z
z n n n n z

n n

AA u i
t l = =

∂
−∇ ⋅ ∇ + − − + ∇× =

∂ ∑ ∑ Hν σ σβ β  (2.80) 

in which Qb denotes the number of rotor bars in the solution region and m the number of 
phases in the stator winding. 

In the field equation (2.80) there are four unknowns: the magnetic vector potential, the 
voltages of the rotor bars, the phase currents of the stator winding, and the additional 
term as a result of the inclusion of the eddy currents in the electrical steel sheets. Defin-
ing these unknowns requires a coupled solution of the 2-D field and winding equations 
and the 1-D eddy current model. 

When the true time-dependence of the 2-D quantities is of interest, a time-stepping 
analysis needs to be performed. The 2-D problem is discretized in a similar way to the 
1-D eddy current model by utilizing the backward Euler and finite element method. The 
linearization of the resulting non-linear equations is accomplished by the Newton-
Raphson method. 

Time-discretization 

The expressions needed for the time-discretization of the 2-D equations are 

 ( )1 1| 1 |k k k kz z
z z

A AA A t
t t

+ +∂ ∂⎡ ⎤= + + − ∆⎢ ⎥∂ ∂⎣ ⎦
β β , (2.81) 

 ( )w/b| w/b|1 1
w/b| w/b|

d d
| 1 |

d d
n nk k k k

n n

i i
i i t

t t
β β+ +⎡ ⎤

= + + − ∆⎢ ⎥
⎣ ⎦

. (2.82) 

The field or winding equation of the 2-D model is first written at the time-steps k and k 
+ 1. The expression at the time-step k is then multiplied by 1 − β and at the time-step k + 
1 by β. Summing the two resultants together yields an expression of which the time de-
rivatives can be approximated by Equations (2.81) and (2.82). The time-discretization of 
the 2-D electromagnetic field equation (2.80) gives 
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( )

( )
( ) ( )
( ) ( ) ( ) ( )

b

b

1 1 1

1 1 1
b| b| w| w| c

1 1b

b| b| w| w| c
1 1b

1

1

1 1 11 0

k k k
z z
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n n n n z
n n

A A
t

u i
l

A A
t

u i
l

+ + +

+ + +

= =

= =

−∇ ⋅ ∇ +
∆

− − + ∇×

−
− ∇ ⋅ ∇ −

∆

− − −
− − + ∇× =

∑ ∑

∑ ∑

H

H

σν
β

σβ β

β σν
β β
β β β

σβ β
β β β

. (2.83) 

For the sake of simplicity, the derivations concerning the approximation of the time de-
rivatives of the winding equations are not presented here. See (Arkkio, 1987), (Islam, 
2010) for these. 

Space-discretization 

The space-discretized formulation of the 2-D problem is produced by the finite element 
method in association with Galerkin’s method. Only the smallest symmetry sector of the 
cross-sectional geometry of the application being studied is considered; this is meshed 
with either first- or second-order triangular elements (Arkkio, 1987). The nodal values 
of the magnetic vector potential on the symmetry boundaries are enforced by proper pe-
riodicity constraints. On the rest of the boundary, the Dirichlet boundary conditions are 
imposed. The values of the magnetic vector potential of the free nodes need to be 
solved. 

By approximating the 2-D magnetic vector potential as 

 ( )
n

|
1

,
N

z z j j
j

A A N x y
=

≅ ∑  (2.84) 

and repeating the mathematical steps presented in the case of the 1-D model, the 2-D 
field in the free nodes i can be expressed as 
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j
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Ω
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, (2.85) 

in which Az|j denotes the component of the magnetic vector potential connected to the 
node j of the finite element mesh, Nj the shape function of the node j of the finite ele-
ment mesh, and Nn the number of nodes in the finite element mesh. The shape functions 
Nj are either first- or second-order polynomials, depending on the degree of the finite 
elements applied. The index i runs from 1 to the number of free nodes in the 2-D finite 
element mesh denoted by Nf. 

Just as their time-discretization was not, neither is the finite element approximation of 
the winding equations considered in detail for the sake of clarity. Comprehensive dis-
cussion on the topic has been provided in, for instance, (Arkkio, 1987), (Kanerva, 
2005), and (Islam, 2010). 

Newton-Raphson solution of the non-linear equations 

The 2-D machine model is governed by the residual vectors of the field and windings 
that are connected with each other. When all the possible connections of the phase 
windings and the cage windings as a whole are taken into consideration, those vectors 
can be represented as 

 
( ) ( )( )

( )( ){ }
1 1 1 1 1 T 1 T T 1

f b w b b w w

T T T 1
b b w w c c

, ,

0

k k k k k k k
z z z

k k k k k k
z z

+ + + + + + +

+

= + + +

+ + + + + + =

r A u i S A T A D u D K i

S A T A D u D K i E E
 (2.86) 

 ( ) { }1 1 1 1
b b b b b b b b b b, 0k k k k k k k

z z z
+ + + += + + − + + =r A u D A C u D A C u G i  (2.87) 
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 ( ) ( ){ }1 1 1 1 1
w w w w w w w w w w w, 0k k k k k k k k

z z z
+ + + + += + + − + + + =r A i KD A G i KD A H i C u u  (2.88) 

in which Az denotes the vector of nodal values of the magnetic vector potential, ub the 
vector of the rotor-bar voltages, ib the vector of the rotor-cage currents, uw the vector of 
the stator-phase voltages, and iw the vector of the stator-phase currents. K is the stator-
winding connection matrix, and Cb, Gb, Cw, Gw, and Hw denote the circuit matrices of 
the rotor and stator windings. The definitions of the connection and circuit matrices as 
well as those of the short notations can be found from (Arkkio, 1987), (Kanerva, 2005), 
and (Islam, 2010). The superscript T denotes a transpose of a matrix. The elements of 
the vectors Ec and cE  satisfy 

 ( )1
c| c dk

i i z
E N

Ω

Ω+= ×∇∫ H  ( ) ( )c| c

1
dk

i i z
E N

Ω

β
Ω

β
−

= ×∇∫ H . (2.89) 

The solution of the non-linear problem is carried out in the Newton-Raphson iterative 
scheme. Following the derivations presented for the 1-D model, a system of equations 
from which the incremental adjustment to be made to the 2-D variables at every itera-
tion step n can be obtained 
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. (2.90) 

The elements of the Nf-by-Nn Jacobian matrix P(Az
k + 1|n) satisfy 

 ( ) ( ) ( )n
1|

1| 1| 1|
|1|

1 |

k nN
lj zk n k n k n

lm z lm z lm z jk n
j z m

S
P S T A
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+
+ + +

+
=

∂
= + +

∂∑
A

A A . (2.91) 

The vector Ec which is associated with the eddy currents in electrical steel sheets de-
pends on the magnetization. The Jacobian matrix, however, is formulated with the terms 
originating from that being omitted. The Newton-Raphson iterative scheme is thus re-
ferred to be applied in an incomplete manner. A complete formulation of the Jacobian 
matrix in a case similar to this is presented in (Bergqvist, 1994). The convergence of the 
computation is assured by under-relaxation, meaning that the unknowns from a previous 
iteration are corrected as (Janicke and Kost, 1998) 

 1| 1 1| 1|k n k n k n
z z zχ+ + + += + ∆A A A  (2.92) 

in which χ is the relaxation factor. 
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Definition of Hc 

The magnetic constitutive law in the laminated parts of the 2-D cross-section geometry 
is given by Equation (2.69). The term Hc is used to represent the eddy currents in the 
steel laminations. An illustration of the components of the magnetic field strength h and 
their dependencies is presented in Figure 2.2. The actual value of the magnetic field 
strength h is now the one obtained through the 1-D eddy current modeling at the bound-
ary of the sheets (z = −d or equally z = d). The component νB corresponds to the value 
of the magnetic field strength when the eddy currents in the steel sheets are omitted. 
Last, Hc is the difference between the actual h and νB. For the inclusion of the eddy cur-
rents, the term Hc is required. Its value fulfils 

 ( ) ( ) ( )c , , , , ,x y t d t x y t= − −H h Bν  (2.93) 

in which the reluctivity ν is given as a single-valued function of the square of the mag-
netic flux density (B(x,y,t))2. 

Hy

Hx

νB

h

Hc = h – νBHy

Hx

νB

h

Hc = h – νB

 
Figure 2.2 Illustration of the magnetic field strength and its components. 

Two approaches for the estimation of the magnetic field strength at the boundary of the 
sheets, h(−d,t), are proposed. First, one can calculate h(−d,t) as a product of the mag-
netic flux density at the boundary of the sheets b(−d,t) and the corresponding reluctivity 
ν(−d,t) (Equation (2.8)). These values of the magnetic flux density and reluctivity are 
then evaluated from the distribution of the 1-D magnetic vector potential by means of 
the shape functions. The approach described above is henceforth referred to as conven-
tional. 

On the other hand, an expression for h(−d,t) can be derived from the Ampère's circuital 
law (2.2). Then the x- and y-components of h(−d,t) become defined as 

 ( ) ( ) ( )i

i, , ,
z

x y xd
h d t j z t z h z t

−
− = − ∂ +∫  (2.94) 
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 ( ) ( ) ( )i

i, , ,
z

y x yd
h d t j z t z h z t

−
− = ∂ +∫  (2.95) 

in which zi is the upper integration bound, hx(zi,t) and hy(zi,t) are the values of the com-
ponents of the magnetic field strength at the upper integration bound. The value of 
h(zi,t) is evaluated in the traditional manner as a product of b(zi,t) and ν(zi,t). The choice 
of a proper upper integration bound is discussed in detail in the section “Choosing a 
proper upper integration bound for the integration approach”. The method expressed by 
Equations (2.94) and (2.95) is henceforth referred to as integration. 

Analysis of the coupling techniques 

This section clarifies the difference between the two coupling techniques that are con-
sidered by means of a simple example. As discussed above, there exists an analytical 
expression for the field in the sheets if their reluctivity is supposed to be independent of 
the magnetization. Indeed, that solution is given by Equations (2.58) and (2.60). Let us 
next analyze this linearized problem in one x-y point of the 2-D space by feeding it with 
a unidirectional, sinusoidally varying magnetic flux density having a frequency of 50 
Hz and an amplitude of 1 T. The relative permeability of the sheets is set to 1000 H/m, 
with their conductivity and thickness being 2.5 MS/m and 0.65 mm, respectively. Be-
sides analytically, the same problem is solved numerically showing the resulting esti-
mates of the magnetic field strength at the boundary of the sheets for both the conven-
tional and integration method. The 1-D finite element mesh that covers half of the 
thickness of the sheets is consisted of nine first-order elements and during each compu-
tation, three periods (altogether 1200 time-steps) are completed. 

The main results of the investigation are illustrated in Figures 2.3 and 2.4 and in Table I. 
First, Figure 2.3 and Table I pursue to elaborate the evaluation of h(−d,t) within the in-
tegration method during one instant. The eddy current density in the half of the lamina-
tion thickness is shown in Figure 2.3. Integrating this current density over the whole so-
lution sector, zi thus being 0, results in the value referred to as “Integral” in Table I. The 
other part of the definition of h(−d,t), i.e. here hy(zi,t), is furthermore referred to as 
“Value at the upper integration bound” and is calculated traditionally as a product of the 
magnetic flux density and reluctivity. Last, the result of the integration approach that is, 
according to Equation (2.95) the sum of the two aforementioned components, is simply 
referred to as “Result” in Table I. Clearly, the term hy(zi,t) is the dominant part while the 
integral of the current density only provides a small correction to the final result. 

A comparison of the analytical and numerical solutions of the magnetic field strength in 
the thickness of the sheets as well as of the associated results from the two coupling ap-
proaches is presented in Figure 2.4. These results are again obtained at one instant. As 
Figure 2.4 shows, the first-order elements produce a rather rough estimate for the distri-
bution of the magnetic field strength in the thickness of the sheets in comparison with 
the analytical solution; the relative difference between the values at the boundary from 



 

 

54

the conventional and analytical approaches is on average 2.6%. Besides by means of 
higher-order elements, the correspondence between the analytical and numerical esti-
mates can, apparently, be notably improved by employing the integration approach, the 
relative difference then being on average 0.1%. 

The usefulness of the integration approach stems from two factors. First, its integral 
term is calculated from the current density the solution of which is accurate. Second, by 
choosing the upper integration bound suitably, the direct consideration of the field 
strength in the vicinity of the boundary can be avoided. This is rather beneficial since, 
as seen from Figure 2.4, the changes in the field distribution are not that abrupt in the  

 

 

Table I Example of the magnitudes of the 
components composing the outcome of 

the integration approach, h(–d,t), at one 
instant. 

Integral (A/m) 11.6 

Value at the upper 
integration bound 
(A/m) 

763.7 

Result, hy(−d,t) 
(A/m) 775.3 
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Figure 2.4 Comparison of values of 

magnetic field strength at one instant. 
Con and Int refer to the final results of 
the conventional and integration ap-

proaches, respectively. Analytical and 
numerical results are plotted with a 
dashed and a solid line, respectively. 
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Figure 2.3 Numerical solution of eddy 

current density in the half of the lamina-
tion thickness (red curve) at one instant. 
Blue curve illustrates the 1-D mesh with 
its nodes depicted by diamond shapes. 
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middle of the sheets and therefore can be traced even with the first-order elements with 
sufficient accuracy. 

Time-harmonic analysis 

The approximation of sinusoidal time variation offers a greatly simplified manner to 
study electrical machines and hence its utilization is investigated. In the analysis, the 
stator quantities are assumed to vary with the supply frequency fs. The actual movement 
of the rotor cannot be taken into account, but it is approximated by employing the slip 
frequency sfs, denoting the slip by s for the rotor-side quantities. Under such assump-
tions, the 2-D problem can be formulated using phasor variables and the time-
dependence eliminated from the equations. The phasors of the magnetic vector potential 
and current density are 

 ( ),z zA x y=A e  (2.96) 

 ( ),z zJ x y=J e . (2.97) 

The time-dependence of the quantities can be worked out as 

 { }jRe e t
z

ω=A A  (2.98) 

 { }jRe e t
z

ω=J J . (2.99) 

The magnetic properties of the sheets are modeled by a complex reluctivity. This defini-
tion involves both the eddy current and hysteresis of ferromagnetic materials. In the 
other parts of the machine geometry, the effective reluctivity is employed (Luomi et al., 
1986). The equation governing the cross-sectional field in a cage-induction machine un-
der the time-harmonic approximation satisfies 

 ( )
b

b| b| w| w|
1 1b

1j 0
Q m

z z n n n n
n n

A s A u i
l

ν ωσ σβ β
= =

−∇ ⋅ ∇ + − − =∑ ∑ . (2.100) 

In the stator parts of the machine geometry, the slip equals to 1. For the rest of the parts, 
except for the steel sheets, the complex reluctivity is replaced by the effective reluctiv-
ity. 

Space-discretization 

Similarly as in the time-discretized approach, the differential equations of the field and 
windings are converted into a numerical form by means of the finite elements and 



 

 

56

Galerkin’s method. Utilizing the finite element approximation of the magnetic vector 
potential 

 ( )
n

|
1

,
N

z z j j
j

A A N x y
=

≅ ∑  (2.101) 

and carrying out some mathematical manipulations yields 
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…

. (2.102) 

Newton-Raphson solution of the non-linear equations 

The system of equations representing the 2-D machine model with the assumption of 
sinusoidal time variation is in the form of residual vectors 

 ( ) ( ) T T T
f b w b b w w, , 0z z z= + + =r A u i S A A D u D K i  (2.103) 

 ( )b b b b b, 0z z= + =r A u D A C u  (2.104) 

 ( ) ( )1
w w w w w w, 0k

z z
+= + + =r A i KD A G i h v  (2.105) 

in which Cb, Gw, and h denote the circuit matrices of the rotor and stator windings, the 
definitions of which are given in (Arkkio, 1987). 

The Newton-Raphson scheme is developed separately for the real and imaginary parts 
of the variables. The vector of incremental adjustments to be performed at each iteration 
n is solvable from 
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 (2.106) 
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The elements of the Jacobians and matrices R and T are 
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As in the case of the time-discretized model, the Newton-Raphson scheme is imple-
mented in an incomplete manner, as the derivative of the complex reluctivity is not af-
fected by the 1-D eddy current modeling. Instead, it is solved from the values suggested 
by the 2-D field, as can be seen from Equations (2.107)–(2.110) (Pippuri and Arkkio, 
2009). 

Complex reluctivity 

When the complex phasor formulation is employed, the hysteretic behavior of ferro-
magnetic materials can be represented by the complex reluctivity (Arkkio et al., 1998). 
In addition to the hysteresis, in this work, the eddy currents in the electrical steel sheets 
are incorporated into the 2-D equations through the complex reluctivity. Hence, it is de-
fined as 
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 ( )h cj
c
e += ϕ ϕν ν  (2.111) 

where |ν|c is the absolute value of the reluctivity imposed by the 1-D eddy current 
model, φh the hysteresis part of the argument, and φc the eddy current part of the argu-
ment. 

In the time-harmonic approach the 1-D eddy current equations are implemented in a lin-
earized manner only. The absolute value of the reluctivity |ν| needed for their evaluation 
is determined in each case by the square of the 2-D magnetic flux density from a single-
valued reluctivity curve. The values on that curve are defined employing the expression 
(Luomi et al., 1986) 

 ( )
( )p

1 d
sin 2πT

H t
t

T B t T
ν = ∫  (2.112) 

Equation (2.112) assumes a sinusoidal and unidirectional time variation for the mag-
netic flux density, while the magnetic field strength can be taken from a single-valued 
magnetization curve of the material in question. 

The hysteresis of ferromagnetic materials causes phase lag between the magnetic flux 
density and magnetic field strength, the modeling of which is covered by the hysteresis 
part of the argument of the complex reluctivity. The method represents the hysteresis 
part of the argument as a single-valued curve that is a function of the 2-D magnetic flux 
density. In this work the curves were fitted from measuring data of alternating magnetic 
fields. The related experiments are discussed in detail in Section 2.3.1. 

The absolute value of the reluctivity in the 2-D computation is imposed by the 1-D eddy 
current distribution. The increase in the phase shift between the magnetic flux density 
and magnetic field strength is taken into account by an additional argument term, as 
shown in Equation (2.111). Let us first consider the formulation of the absolute value of 
the reluctivity |ν|c. First, the effective magnetic flux density is evaluated 

 ( ) ( )( ) ( )( ) ( )( ) ( )( )2 2 2 2Re Im Re Im
ef

1
2 x x y yb z b z b z b z b z= + + + . (2.113) 

The effective values of the other quantities can be calculated similarly. 

The magnetic field strength at the boundary of the sheet is derived as 

 ( ) ( )ef efh d b dν− = −  (2.114) 

in which bef(−d) is the value of the effective magnetic flux density at the boundary of 
the sheets. 
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The absolute value of the reluctivity for the 2-D computation is obtainable from the ef-
fective magnetic field strength at the boundary and average effective magnetic flux den-
sity bef, ave as 

 ( )ef
c

ef, ave

h d
b

ν
−

= . (2.115) 

The definition of the eddy current argument of the reluctivity is formulated using two 
different expressions of the eddy current losses. One can calculate the eddy current 
losses from the effective eddy current density jef 

 2
c ef

1 d
V

P j V
σ

= ∫ . (2.116) 

On the other hand, these can be estimated in a similar manner to the hysteresis losses by 
integrating the area of an ellipse traced by the 1-D magnetic flux density vector (Nie-
menmaa, 1988) 

 Im 2
c c ef d

V

P b Vν ω= ∫ . (2.117) 

Setting these two formulations to be equal yields an expression from which the imagi-
nary part of the complex reluctivity that is connected to the eddy currents can be solved 

 
2
ef, aveIm

c 2
ef, ave

j
b

ν
ωσ

=  (2.118) 

in which jef
2

, ave is the average of the second power of the effective eddy current density 
and bef

2
, ave is the average of the second power of the effective magnetic flux density. 

As the absolute value of the reluctivity (2.115) and the imaginary part of the reluctivity 
(2.118) are known, the real part of the reluctivity is easy to solve 

 ( ) ( )2 2Re Im
c cc

ν ν ν= −  (2.119) 

Finally, the eddy current part of the argument is 
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 (2.120) 
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2.2 Computational algorithm of the cage-induction machine 
model 

This section deals with the computational algorithms developed for the time-discretized 
and time-harmonic implementations of the coupled 2-D–1-D method. The time-
discretized implementation is discussed first. Within it, the 1-D eddy current modeling 
of the sheets can be coped with in two ways. First, the actual magnetic properties of the 
sheets can be worked out. This results in a computational routine consisting of two 
nested iterative procedures. Second, the magnetic properties of the sheets in the 1-D 
model can be linearized. In the second section, the computational algorithm of the time-
harmonic implementation is elaborated. That involves the possibility of employing non-
sinusoidal supply conditions. In addition to the eddy currents, the hysteresis of the fer-
romagnetic materials is also included in the field solution. Differently from the time-
discretized approach, only the linearized way of dealing with the 1-D eddy current prob-
lem is realized. 

2.2.1 Transient time-discretized implementation 

A flowchart of the computational algorithm of the time-discretized implementation of 
the coupled 2-D–1-D method is presented in Figure 2.5. As shown in Figure 2.5, the 
computation starts with the initialization, which includes setting the inputs and structur-
ing the system matrices of the problem. The input data of a time-discretized simulation 
contain the information on the geometry of the application being studied, the meshing of 
the geometry, the materials in the different parts of the geometry, the supply conditions, 
the initial state, and the time-discretization. A field solution obtained by some means 
besides a zero field can be utilized as an initial state. In this work, the time-harmonic 
implementation of the 2-D–1-D model is applied to determine the initial states for the 
time-discretized simulations. In practice, the operating point to be studied is first com-
puted with the time-harmonic 2-D–1-D model. Transforming the real part of the com-
plex-valued time-harmonic solution obtained into a DC field yields the initial condition 
of a time-discretized simulation (Arkkio, 1987). Applying such an initial condition usu-
ally ensures that a steady state is reached after simulating only a few periods of supply 
voltage. 

After the initialization, the solution of the coupled 2-D–1-D equations is worked out it-
eratively at specified equally spaced time-steps. In the 2-D scheme, at every iteration of 
each of the time-steps, the element-wise system matrices, i.e., the Jacobian matrix and 
residual vector, are first constructed and then added one by one to the global matrices. 

As pointed out above, the 1-D model is used to couple the eddy currents in electrical 
steel sheets to the 2-D machine model. At each point at which the 1-D problem fulfilling  
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Equation (2.49) needs to be solved, its boundary conditions are imposed by the 2-D 
field as 

 ( ) ( )1| 1|, , ,k n k n
x ya d t dB x y t+ +− =  ( )1| 0, 0k n

xa t+ =  (2.121) 
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Figure 2.5 Flowchart of the time-stepping model. 
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 ( ) ( )1| 1|, , ,k n k n
y xa d t dB x y t+ +− = −  ( )1| 0, 0k n

ya t+ =  (2.122) 

in which d is half the thickness of the electrical steel sheets. Bx and By are the compo-
nents of B at an x-y point of the 2-D cross-sectional plane in which the eddy current 
model is called. To be exact, here the x-y points are the integration points of the ele-
ments in the laminated iron. The magnetic flux density B equals the average magnetic 
flux density in the thickness of the sheets at a certain x-y point. The symmetry of the 1-
D problem is exploited by performing the solution only in half of the thickness of the 
sheets. 

The lamination model is here realized in a linear or non-linear manner, as emphasized in 
Figure 2.5. If a linear implementation is applied, in addition to the boundary conditions 
given by Equations (2.121) and (2.122), the reluctivity of the sheets is taken as an input 
from the 2-D scheme. Hence, the reluctivity is then constant throughout the entire 
thickness of the sheets. Its value is imposed by the square of the 2-D magnetic flux den-
sity B2 from a single-valued reluctivity curve. That is the same 2-D magnetic flux den-
sity as that associated with the boundary conditions at a certain point. The construction 
of the 1-D system matrices is performed in the same way as in the 2-D scheme of the 
element-wise 1-D Jacobian matrices and residual vectors. If the 1-D equations are util-
ized in a linear manner, no iterative process is required for their solution. The correction 
of the 1-D magnetic vector potential is performed only once, after which the computa-
tion proceeds to the next stage. 

If the true magnetic properties of the steel laminations are to be modeled, the non-linear 
implementation of the 1-D eddy current model has to be employed. Then the reluctivity 
in the 1-D scheme is defined by the same reluctivity curve as that which is utilized in 
the 2-D model, and its value at each of the integration points of the 1-D elements is im-
posed by the square of the 1-D magnetic flux density. The solution of such a formula-
tion must be carried out iteratively. The iterative process continues until the conver-
gence limits are reached. After the convergence, the computation proceeds to the next 
stage. The output of both the linear and non-linear implementations of the 1-D model is 
Hc. 

As depicted in Figure 2.5, at each iteration, the increment vector showing the correction 
to be made to the 2-D variables from the previous iteration is solved from the composed 
2-D system matrices. In order to achieve better stability for the computation, the incre-
ment vector obtained is not utilized in full. Instead, under-relaxation is applied. After 
the solution of the 2-D equations converges, the time-step is finished by saving the in-
stantaneous values of the magnetic vector potential and other variables. 

The time-discretized process is continued until all the predetermined time-steps are 
completed. The number of time-steps in a simulation must be large enough to model the 
steady-state operation of the test machine for a couple of periods of supply voltage. Af-
ter the last time-step, the computation is finalized, including the integration of the aver-
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age values of numerous quantities, such as the electromagnetic torque, powers, losses, 
currents, and voltages, utilizing their stored time-step-specific results. 

Electric power and electromagnetic losses 

The steady-state average values of different quantities are of great interest. The average 
electric power, i.e., the input power in the motoring operation and the output power in 
the generating operation, is calculated from (Arkkio, 1987) 

 el w| w|
1

1 d
m

n n
nT

P u i t
T =

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
∑∫  (2.123) 

in which T is the time period over which the power is integrated. Typically, taking one 
or two periods of line voltage into account yields appropriate results. 

The formulae for the stator phase winding are derived with the skin effect being ne-
glected. Thus, the losses in the winding can be evaluated from (Arkkio, 1987) 

 ( )2

wr w w|
1

1 d
m

n
nT

P R i t
T =

⎧ ⎫
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⎩ ⎭
∑∫  (2.124) 

The resistive losses in the squirrel-cage rotor winding are defined as a volume integral 
of the product of the inverse of the electrical conductivity and the square of the current 
density. The time average of these losses fulfills (Arkkio, 1987) 
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in which Vn is the volume of the nth rotor bar inside the core region of the machine ge-
ometry. 

The proposed coupled method embraces the modeling of the eddy currents in the elec-
trical steel sheets. Hence, the eddy current losses of the sheets can be worked out from 
the actual eddy current distribution. Integrating the product of the inverse of the electri-
cal conductivity and the square of the eddy current density over half of the lamination 
thickness and averaging the result thus obtained yields the eddy current loss density. 
The average eddy current loss is obtained as a volume integral of the eddy current loss 
density and by taking a time average. This can be expressed as 
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where Vc denotes the volume of the laminated iron core and |j| the magnitude of the 
eddy current density given as 

 2 2
x yj j= +j . (2.127) 

The losses in the laminated iron core consist of hysteresis, eddy current, and excess 
losses. The modeling of the hysteresis and excess effects is omitted from the time-
discretized analysis. Hence, the losses resulting from these two phenomena have to be 
estimated by some post-processing approach. For that purpose, a method proposed by 
Belahcen and Arkkio (2008) is applied. In that method, the components of the core 
losses are computed at each time-step by post-processing, utilizing the field solution 
from the previous and current time-step. The average hysteresis losses can be calculated 
from the time-specific values as 
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where kh denotes the alternating hysteresis loss coefficient, |B| the magnitude of the 2-D 
magnetic flux density defined as 

 2 2
x yB B= +B , (2.129) 

kr the rotating hysteresis loss coefficient, Bs the saturation magnetic flux density, b a 
material parameter related to the texture and grain size of the material, and θ the angle 
of the magnetic flux density vector given as 

 ( )arctan y xB Bθ = . (2.130) 

Conveniently, the hysteresis loss formulation Equation (2.128) contains both the alter-
nating and rotating parts. 

The excess losses in the steel laminations are also worked out at each of the time-steps. 
According to the approach taken by Belahcen and Arkkio (2008), the average excess 
losses satisfy 
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 (2.131) 

where kea denotes the excess-loss coefficient. 

Electromagnetic torque, shaft power, and friction losses 

The average electromagnetic torque produced by the machine being studied is computed 
using a method described by Arkkio (1987): 

 
( )

ag

e r
0 s r

1 1 d d
T S

T rB B S t
T r r ϕµ

⎧ ⎫⎪ ⎪= ⎨ ⎬−⎪ ⎪⎩ ⎭
∫ ∫  (2.132) 

in which rs denotes the outer radii of the air gap, rr the inner radii of the air gap, Sag the 
cross-section area of the air gap, r the radius, Br the radial component of the 2-D mag-
netic flux density, and Bφ the angular component of the 2-D magnetic flux density. 

The friction losses arising in rotating electrical machinery are omitted from the analysis. 
Hence, the average shaft power can be evaluated by the following expression: 

 s m eP TΩ=  (2.133) 

where Ωm denotes the mechanical angular frequency of the rotor of the machine. 

During the time-discretized simulation, the rotor of the machine is rotated at an angle 
corresponding to the mechanical angular frequency. When the rotor rotates at a constant 
speed, no additional equations are needed. In a more general case, the change to be 
made to the position of the rotor at each time-step, i.e., the rotation angle has to be 
solved from 

 1 e s
m m

m

k k
k k T T t

J
Ω Ω+ −

= + ∆ , (2.134) 

 1
m

k k k tα α Ω+ = + ∆ , (2.135) 

where Ts denotes the shaft torque, Jm the moment of inertia of the rotor, and α the angle 
according to which the rotor is rotated. 
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Power balance 

The correctness of the implementation of the time-discretized algorithm that is devel-
oped is assessed by considering the power balance. Generally, if the input power fed to 
a system is equivalent to the sum of its output power and its losses, the power balance is 
fulfilled. In a steady state, employing the average powers determined above, the preced-
ing condition can be expressed for the numerical method discussed here as 

 el s wr cr cP P P P P= + + + . (2.136) 

The definition of the power balance (2.136) encompasses the components of losses that 
are incorporated into the 2-D–1-D field and winding equations, the stator-winding DC 
resistive losses, the rotor-cage losses, and the eddy current losses of the sheets. The hys-
teresis and excess losses of the sheets and the eddy current losses of the stator winding 
are also evaluated during the simulations but within the post-processing phase. Hence, 
these make no contribution to the field computation or to the power balance. In addition, 
the time interval over which the powers are integrated is supposed to be long enough for 
the time average of the change in the energy of the magnetic field to vanish. 

2.2.2 Time-harmonic implementation 

When the approximation of sinusoidal time variation is employed, the source of the 
electromagnetic field and the other quantities too are supposed to vary at a single fre-
quency, as discussed in the section “Time-harmonic analysis”. In this work, in order to 
broaden the applicability of the time-harmonic version of the coupled model, it is not 
implemented in the usual way, but in a manner that enables several frequency compo-
nents to be handled consecutively during one simulation. In this way, a realization of the 
model is attained that can be applied to analyze, for instance, frequency-converter-fed 
electrical machines. 

A flowchart of the implementation of the time-harmonic model is given in Figure 2.6. 
The initialization begins the computation. During that process, the inputs are set and the 
system matrices are assembled. Among the inputs, the geometry, meshing, materials, 
and supply conditions for the application being studied are passed. If a non-sinusoidal 
source voltage or current is to be applied, the inputs must include its time series. The 
actual supply conditions of a simulation are then determined by performing a Fourier 
analysis of the waveform provided and by choosing, in addition to the fundamental fre-
quency component, the Γ − 1 harmonics with the biggest amplitudes. 

The coupled 2-D–1-D analysis is first carried out utilizing the fundamental wave of the 
supply. As shown in Figure 2.6, this is an iterative process. At each iteration, the ele-
ment-wise matrices are first assembled and then added to the global system matrices. At  
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the integration points of the 2-D elements in the laminated iron, the 1-D eddy current 
model is called and used to update the absolute value of the complex reluctivity, |ν|c, 
and to define the eddy current part of the argument of the complex reluctivity, φc. In the 
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Figure 2.6 Flowchart of the time-harmonic machine model. 
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time-harmonic implementation of the coupled method, the 1-D eddy current model is 
realized only in a linear way. Hence, the reluctivity within the thickness of the sheets is 
a constant and is imposed from the reluctivity curve by the square of the 2-D magnetic 
flux density, B2. The boundary conditions of the 1-D eddy current problem are also de-
termined by the 2-D magnetic flux density. As the symmetry of the sheets is exploited, 
these can be written as 

 ( ) ( ),n n
x ya d dB x y− =  ( )0 0n

xa =  (2.137) 

 ( ) ( ),n
y xa d dB x y− = −  ( )0 0n

ya =  (2.138) 

where Bx and By are the components of B at an x-y point of the 2-D cross-section ge-
ometry in which the eddy current model is called. As a result of the simplifying assump-
tions adopted, the 1-D eddy current problem of the sheets can be solved analytically. 

In addition to the eddy currents, the hysteresis in the electrical steel sheets is incorpo-
rated into the analysis. The hysteresis part of the argument of the complex reluctivity, 
φh, is imposed from a hysteresis-argument curve at each integration point of the 2-D 
elements in the laminated iron by the square of the 2-D magnetic flux density, B2. 

Solving the system of equations that has been constructed yields the increment vector 
used to correct the 2-D variables from the previous iteration. After each iteration, the 
convergence test is performed. As the computation converges, the outputs, such as 
losses, are calculated and the nodal values of the 2-D magnetic vector potential are 
saved. Then, if an input voltage or current waveform consisting only of a single fre-
quency component is applied, i.e., Γ is equal to 1, the computation is stopped. If not, the 
computation is continued so that the 2-D–1-D fields generated by the Γ harmonics of 
the input waveform are solved one by one. In order to sustain the same level of mag-
netization throughout the entire analysis, the absolute value of reluctivity used in the 1-
D model and the hysteresis part of the argument are invariably determined by the 2-D 
magnetic flux density associated with the fundamental component of the input wave-
form, and the iterative solution of the 2-D equations is omitted. Otherwise the computa-
tion proceeds in the same way as under the fundamental wave. 

Electric power and electromagnetic losses 

The average values of the electric power and the stator and rotor winding losses can be 
calculated from Equations (2.123)–(2.125) as phasor operations. 

The eddy current losses of the sheets are evaluated from the eddy current density as 
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The hysteresis of the ferromagnetic materials is also contained in the field solution and 
the losses resulting from it are solvable from 

 
c

Im 2
h h ef d

V

P B Vν ω= ∫  (2.140) 

in which νh
Im denotes the imaginary part of the reluctivity resulting from the hysteresis 

and Bef the effective value of the 2-D magnetic flux density. 

Electromagnetic torque and shaft power 

Equations (2.132) and (2.133) are also applied to evaluate the electromagnetic torque 
and shaft power within the time-harmonic analysis. 

Power balance 

Besides the eddy currents, the hysteresis of the electrical steel sheets is incorporated into 
the time-harmonic field equations. The power balance of such a formulation fulfills 

 el s wr cr c hP P P P P P= + + + + . (2.141) 

2.3 Measurements 

This section reports the measurements that were performed. First, the wound-ring sam-
ple that was manufactured is discussed. The measuring data of this sample are used to 
define the magnetic material properties and iron-loss parameters of the numerical mod-
els. In the second subsection, the experiments carried out on a cage-induction machine 
are reported. The coupled method is used to simulate that test machine and the results 
obtained are verified by the measurements. 

2.3.1 Experiments on wound-ring sample 

The electrical steel sheets of the wound-ring sample were machined out of the rotor of a 
30-kW cage-induction motor. Photos of the rotor after the machining are presented in 
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Figures 2.7 and 2.8. The steel sheets obtained thereby were cut into the form of ellip-
soids. Figure 2.9 presents the CAD drawing used in the cutting process. The contours of 
the ready-made sheets of the sample are depicted in red and all the measures are given 
in millimeters. 

A toroid core without insulating sheets between the steel sheets was assembled and two 
magnetizing windings and one measuring winding were wound onto it. The main pa-
rameters and a photo of the ready sample henceforth referred to as R1382 are presented 
in Table II and in Figure 2.10. 

The wound-ring sample was tested employing the measuring setup presented in Figure 
2.11. The measurements were controlled by a computer using a LabVIEW FPGA mod-
ule. An input voltage produced by an arbitrary voltage generator and amplified by a 

 

 

 
Figure 2.9 Geometry of the sheets of 
the wound-ring sample cut from the 

rotor sheets. 

 

 
Figure 2.10 Wound-ring sample. 

 
Figure 2.8 End of the rotor from which 

the sheets were machined. 

 
Figure 2.7 Half of the rotor of the 

cage-induction machine. 
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power amplifier was fed to the primary (magnetizing) coils. The results, which are the 
values of B and H, were collected with a data acquisition card. 

Experiments with fundamental frequencies ranging from 20 Hz to 5 kHz were per-
formed. Up to 2.5 kHz, it was possible to magnetize the sample until saturation. At fre-
quencies higher than that, the flux levels reached were somewhat lower. A magnetiza-
tion curve approximated from the B-H loops measured at an exciting frequency of 30 
Hz is shown in Figure 2.12. 

The main motivation for the construction of the wound-ring sample was to obtain data 
for defining the material properties of the test motor used in the work. Due to the age of 
the test machine, almost 20 years, there were not suitable manufacturer’s catalogs at 
hand for that purpose. The 30-kW cage-induction motor, the rotor of which was ex-
ploited, was approximately of the same age and size and had the same sheet thicknesses 
as the test machine. Thus, it is reasonable to assume that the material characteristics of 
the cores of these two machines resemble each other closely enough. 

 

 

Table II Main parameters of the wound-
ring sample. 

Mass (g) 63.8 
Number of the sheets 9 

Thickness of the sheets (mm) 0.65 
Number of turns, magn. 250 

Diameter of the wire, magn. (mm) 1 
Number of turns, meas. 850 

Diameter of wire, meas. (mm) 0.16 
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Figure 2.11 Measuring setup for the 

wound-ring sample. 
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Figure 2.12 Magnetization curve of the 

steel laminations. 
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2.3.2 Experiments on electrical machines 

This section introduces the test motor of the work and elaborates the measurements that 
were performed. Two types of no-load tests, slip-control and standard ones, are consid-
ered in addition to the loading experiments. The operation of the test motor is explored 
both with sinusoidal voltage excitation and frequency-converter supply. 

Test motor 

A 37-kW cage-induction machine is employed as a test motor in this work. Its cross-
section area is depicted in Figure 2.13 and the main parameters are given in Table III. 

 

Standard no-load and load tests 

Standard no-load and full-load tests for the 37-kW cage-induction motor were carried 
out under both sinusoidal and frequency-converter supply conditions (IEEE Std 112-
1996, 1996). The devices, setups, and measuring processes applied are briefly discussed 
in the following four sections. 

 
 

Figure 2.13 Cross-section area 
of the 37-kW cage-induction 

motor. 

Table III Main parameters of the 37-kW cage-
induction motor. 

Machine type Induction 
motor 

Number of pole pairs 2 
Number of phases 3 

Number of stator slots 48 
Outer diameter of the stator core (mm) 310 
Inner diameter of the stator core (mm) 200 
Outer diameter of the rotor core (mm) 198.4 

Core length (mm) 249 
Connection star 

Rated voltage (V) 380 
Rated frequency (Hz) 50 

Rated power (kW) 37 
Electrical conductivity of laminations (MS/m) 2.5 

Thickness of laminations (mm) 0.65 
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Measurement setup 

The 37-kW test motor was first driven by a frequency converter. The measuring setup 
of the loading experiments is depicted in Figure 2.14. A photo of the test floor is shown 
in Figure 2.15. The frequency converter that was employed, illustrated on the left-hand 
side of Figure 2.14, was of the Vacon 90CX type. That is a relatively new device and 
has a control methodology based on pulse width modulation and a switching frequency 
controllable from 1 kHz to 10 kHz. As Figure 2.14 shows, a 40-kW DC generator was 
mechanically coupled with the test motor and utilized for the loading. The operating 
speed of this machine was controlled by a thyristor bridge rectifier. The measuring setup 
of the no-load experiments was otherwise the same as the one presented in Figure 2.14, 
but the DC generator was naturally uncoupled from the shaft of the test motor. 
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Figure 2.14 Measuring setup for the standard test. IM denotes the induction machine 

being tested and DCG the DC generator applied as load. 

 

The voltages, currents, powers, and power factors of the test motor were monitored and 
recorded by a Norma Wide Band Power Analyzer D 6100. Its maximum sampling fre-
quency is 70 kHz and shunts with a bandwidth of 2.2 MHz and accuracy of 
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Figure 2.16 Measured operating points 

of the 37-kW cage-induction motor. Figure 2.15 Experimental test floor. 
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±0.03…±0.1% were utilized for the current measurement. The torque was measured by 
a HBM T30FNA torque transducer and the speed by a tachometer of the Leine & Linde 
RSI 503 type. Both of these quantities were monitored and recorded through the power 
analyzer. The output-voltage waveforms of the frequency converter were saved by a 
computer program called PowerView 6000, with a sampling frequency of 70 kHz. More 
detailed information on the devices and programs can be found from, for instance, 
(Saitz, 2001). 

The operating points that were studied are depicted in Figure 2.16. Each of these was 
measured by applying three different switching frequencies for the frequency converter, 
1, 3, and 6 kHz, one by one. The intermediate DC link voltage of the frequency con-
verter was monitored and was invariably adjusted to 510 V. Every experiment was car-
ried out similarly by first running the test motor to a thermally steady state and then by 
recording the electromagnetic quantities together with the speed and torque. The resis-
tance measurement was performed as a last experiment in order to determine the stator-
winding temperature (IEC 60034-1). 

The operating points shown in Figure 2.16 were also measured under a sinusoidal volt-
age supply. In each of the experiments, an input voltage equal to the fundamental com-
ponent of the voltage waveform generated by the frequency converter at a switching 
frequency of 3 kHz was fed to the test machine. At no load, under the frequency-
converter supply and with the switching frequency being 3 kHz, the fundamental fre-
quency-fundamental voltage pairs were (7.5 Hz; 58.3 V), (22.5 Hz; 176.3 V), (50 Hz; 
384.2 V), (70 Hz; 383.1 V), and (100 Hz; 383.4 V). The corresponding figures for the 
sinusoidal supply were (7.5 Hz; 58.5 V), (22.5 Hz; 176.8 V), (50 Hz; 383.6 V), (70 Hz; 
382.6 V), and (100 Hz; 383.9 V). 

Components of the measured total losses 

In order to segregate the electromagnetic losses from the total losses of the standard 
tests, the friction losses must be known. Friction loss measurements employing the 
standard no-load test at variable voltage (IEEE Std 112-1996, 1996), (Saitz, 2001), and 
(Pippuri and Arkkio, 2008) were performed on the test motor at rotating speeds corre-
sponding to the supply frequencies 7.5, 22.5, 50, 70, and 100 Hz. Subtraction of the fric-
tion losses from the total losses yields the electromagnetic losses. It must be noted that 
the observed obscurity concerning the quantity of the friction losses introduces some 
inaccuracy to the estimates thus obtained (Pippuri and Arkkio, 2008). 

The experimental electromagnetic losses can be divided into the DC resistive losses of 
the stator winding and other electromagnetic losses. The DC resistive losses of the stator 
winding are evaluated as a product of the DC resistance and the square of the current. 
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Additional electromagnetic losses resulting from the frequency-converter 

supply 

The RMS value of the sinusoidal voltage supply was adjusted to be in accordance with 
that of the fundamental component generated by the frequency converter. The additional 
electromagnetic losses inflicted by the distorted voltage waveform can be obtained by 
subtracting the total losses from the sinusoidal supply from those at the frequency-
converter supply. 

Slip-control no-load tests 

The slip-control test was developed for measuring the no-load electromagnetic losses of 
rotating electrical machines. It is, however, also applicable to determining the hysteresis 
torque (Saitz, 2001), (Dlala, 2008b). 

Measurement setup 

The same measuring devices and software as in the standard no-load experiments were 
used (Saitz, 2001). In the slip-control no-load experiment, the test machine is mechani-
cally coupled with a slip-ring machine, as shown in Figure 2.17. The stator windings of 
both the machines are fed from a sinusoidal voltage source. A three-phase power ampli-
fier is used to supply the rotor of the slip-ring machine. That makes possible the fine  
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Figure 2.18 Average input power of the 
37-kW cage-induction motor as a func-
tion of slip. White dots are measured, 

yellow dots are extrapolated to the zero 
slip, and the red dot is the result of the 
slip-control measurement, i.e., the no-

load electromagnetic loss. 
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Figure 2.17 Measuring setup for the 

slip-control test. SG is an abbreviation 
for synchronous generator, PA for 

power amplifier, SLM for slip-ring ma-
chine, and IM for induction machine. 
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control of the rotating speed of the machines. Experiments on the test machine are car-
ried out by running it at specific positive and negative slips in the vicinity of its syn-
chronous speed. Employing the results obtained, the electromagnetic losses at a zero 
slip are estimated. Figure 2.18 illustrates the related extrapolation and averaging at the 
rated voltage of the test motor. For more detailed information on the slip-control meas-
urement see (Saitz, 2001), (Pippuri and Arkkio, 2008). 

The mechanical losses of the test motor, in the slip-control measurement, are compen-
sated by a slip-ring machine mounted on the same shaft. This is a great advantage as it 
enables the no-load electromagnetic losses to be measured in a direct manner. At the 
same time, the consideration of the friction losses, the reliable experimenting of which 
has turned out be challenging, can be avoided. Another advantage of the slip-control test 
is that it appears to have good repeatability (Pippuri and Arkkio, 2008). 

Components of the measured total losses 

The total electromagnetic losses from the slip-control test can be separated into two 
components. The stator-winding DC losses are calculated as a product of the DC resis-
tance and the square of the current. By subtracting these from the total electromagnetic 
losses, the second component, referred to as the other electromagnetic losses, is ob-
tained. 
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3 Results 

3.1 General properties of the combined 2-D–1-D model 

This section aims at investigating various topics related to the computational methods 
that were developed. A particular goal is to find an optimal coupling for the eddy cur-
rents in the sheets to the 2-D field analysis. The power balance of the method is consid-
ered to be a useful measure for this assessment. In this section only simple example ge-
ometries are utilized, whereas a thorough analysis of the test motor is carried out in Sec-
tion 3.2. 

3.1.1 Simple example geometries employed in the study 

The two simple example models or geometries used for examining the general proper-
ties of the methods are introduced next. The x-y plane and main parameters of the one 
henceforth referred to as example geometry 1 are shown in Figure 3.1 and in Table IV. 
In Figure 3.1, the white-colored segments are associated with electrical steel sheets and 
the gray-colored segments with a coil. 

 

The boundary conditions of the 2-D plane of example geometry 1 were set in such a way 
that the resulting magnetic flux density varied unidirectionally and uniformly. In prac-
tice, periodicity constraints were applied to the horizontal boundaries, while, on the ver-
tical boundary on the left-hand side, the nodal values were fixed and those on the verti-
cal boundary on the right-hand could change freely. Furthermore, the meshing of the 
model was performed by 12 second-order elements with three integration points. As 
shown in Figure 3.1, out of the elements, eight were located in the sheets and four in the 

Figure 3.1 Example geometry 1 
consisting of a stack of sheets 

and a coil. 

Table IV Parameters of example geometry 1. 
Width of the sheets (m) 1 
Height of the sheets (m) 1 

Width of the coil (m) 0.2 
Height of the coil (m) 1 

Depth of the whole geometry (m) 1 
Resistance of the coil (µΩ) 75 
Number of turns in the coil 1 

Thickness of the sheets (mm) 0.65 
Electrical conductivity of the sheets (MS/m) 2.5 
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coil. The magnetic properties of the sheets were covered by the reluctivity and hystere-
sis-argument curves presented in Figures 3.2–3.4. All of these cubic spline representa-
tions were fitted from the magnetization curve shown in Figure 2.12. 

 

 

The other simple example model, henceforth referred to as example geometry 2, was 
used for the verification of the coupled method. Its 2-D geometry and main parameters 
are given in Figure 3.5 and in Table V. In order to meet the assumptions of the analyti-
cal equations (Vogt, 1983) to which the numerical computations were compared, (i) the 
reluctivity of the sheets was set to a constant equal to a relative permeability of 1000 
and (ii) a uniform, sinusoidally alternating magnetic flux density was created in the 
stack via the boundary conditions (Pippuri and Arkkio, 2009). The nodal values on the 
horizontal boundaries of the 2-D geometry were free ones. On the vertical boundaries 
these were fixed: on the left-hand side to zero and on the right-hand side to the ones of 
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Figure 3.4 Hysteresis part of the argu-

ment of the complex reluctivity as a 
function of the square of the magnetic 
flux density. Time-harmonic analysis. 
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Figure 3.3 Absolute value of reluctivity 
as a function of the square of the mag-

netic flux density. Time-harmonic analy-
sis. 
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Figure 3.2 Reluctivity as a function of 
the square of the magnetic flux density. 

Time-discretized analysis. 
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the driving magnetic flux density. Last, the 2-D mesh comprised eight second-order 
elements with three integration points. 

 

3.1.2 Time-discretized implementation 

In this section several issues concerning the accuracy and applicability of the time-
discretized implementation of the coupled 2-D–1-D method are addressed. In the first 
section, the two approaches proposed for representing the 1-D eddy currents in the 2-D 
model are analyzed and compared. Second, the usability of both the linear and non-
linear implementations of the 1-D eddy current modeling is investigated. In particular, 
the aim is to find suitable areas of application for the linearized approach. In addition, 
the influence of the magnitude of the magnetic flux density on the accuracy of the cou-
pling of the two models is studied. Last, the correctness of the time-discretized algo-
rithm that was developed is verified by purely analytical derivations of the eddy current 
losses in a stack of steel laminations. 

Conventional and integration implementation of the 1-D eddy current solu-
tion in the 2-D finite element model 

This section is divided into four parts. First, the effect of the upper integration bound of 
the integration approach on the results is investigated. Next, the two coupling tech-
niques are compared in terms of electromagnetic quantities. In the third section, the 
computational times of the techniques are examined. Finally, the main findings are 
summarized. 

 
Figure 3.5 Example geometry 2 
consisting of a stack of sheets. 

 
Table V Parameters of example geometry 2. 

Width of the sheets (m) 1 
Height of the sheets (m) 1 

Depth of the whole geometry (m) 1 
Thickness of the sheets (mm) 0.65 

Electrical conductivity of the sheets (MS/m) 2.5 
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Choosing a proper upper integration bound for the integration approach 

As is apparent from the section “Definition of Hc”, the upper integration bound, zi, of 
the integration coupling technique is not defined unambiguously. Instead, in principle 
the bound can be chosen freely within the limits of the solution region of the 1-D prob-
lem. Before the two methods of coupling were compared, suitable values for the upper 
integration bound of the integration technique were sought. 

The study was carried out by analyzing example geometry 1. In order to imitate the dis-
torted flux patterns present in a rotating electrical machine, the system was not fed by a 
sinusoidal voltage but by the voltage depicted in Figure 3.6. The fundamental compo-
nent of this is 4000 V (RMS) at 50 Hz. The percentages of the amplitudes of the har-
monics from the fundamental component are 8%, 4%, and 2% with frequencies 18, 23, 
and 36 times the frequency of the fundamental, respectively. Such harmonic compo-
nents could be involved, for instance, with a frequency-converter supply. 

During every simulation, altogether three periods of the supply voltage, 0.06 s, were 
completed using a time-step of 0.05 ms. The average values of different quantities such 
as powers were integrated from the results of the last computed period. In order to com-
prehensively study the influence of the upper integration bound on the results of the in-
tegration approach, first-, second- and third-order 1-D elements were employed for the 
space-discretization of the eddy current model of the sheets. The numbers of equally 
sized elements in the 1-D solution sector (half of the thickness of the sheets, 0.325 mm) 
were six, three, and two with the first-, second- and third-order elements, respectively. 
Thus, the number of nodes in the mesh was kept constant. Throughout the study the 1-D 
model was utilized in the non-linear manner. To ensure the convergence of the compu-
tation, a relaxation factor, χ, of 0.3 was used. 
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Figure 3.6 Input voltage waveform with 

a fundamental component of 4000 V 
(RMS) at 50 Hz. 
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Three different values of the upper integration bound denoted by zi were considered. As 
the lower integration bound, −d, was −0.325 mm, the upper integration bounds of 
(−0.325 + 0.325/3) mm, (−0.325 + 0.325 · 2/3) mm, and 0 mm were chosen to be exam-
ined. The results obtained with different orders of 1-D elements are shown in Figures 
3.7–3.9 and Tables VI–VIII. The errors in the power balance given in Tables VI–VIII 
are defined as the difference between the input power and the total losses divided by the 
input power. In addition, the eddy current losses presented in Tables VI–VIII are calcu-
lated from the eddy current density. 

As can be observed from Figures 3.7–3.9 and Tables VI–VIII, the upper integration 
bound does not greatly affect the losses arising in the simple example geometry. The 
resistive losses in the coil are, according to all the cases that were studied, 3302 W. In 
the eddy current losses, small deviations are observed. Their largest value, 78007 W, is 
obtained with the first-order 1-D elements and an upper integration bound of 0 mm. 
Furthermore, the smallest of these are when the second-order 1-D elements with the up-
per integration bound are utilized (−0.325 + 0.325/3) mm, 76535 W. Hence, the largest 
estimate is 1.9% greater than the smallest one. 
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Figure 3.9 Losses and input power with 

third-order 1-D elements. 
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Figure 3.8 Losses and input power with 

second-order 1-D elements. 
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Figure 3.7 Losses and input power with 

first-order 1-D elements. 
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While the computed losses are not significantly affected by the upper integration bound 
applied, the input power and, thus, also the power balance of the method are. As can be 
seen from Figure 3.9 and Table VIII, the coupling of the eddy current phenomena to the 
2-D analysis succeeds well in general with the third-order 1-D elements. With all the 
upper integration bounds considered, the total losses of the system are in agreement 
with its input power. Thus, the error in the power balance remains small too; it is 0.32% 
at the most. 

Table VIII Losses, input power, and power balance with two equally sized third-
order 1-D elements. 

zi (mm) (−0.325 + 
0.325/3)

(−0.325 + 
0.325 · 2/3) 0

Eddy current loss of the sheets (W) 77005 77115 77057
Resistive loss of the coil (W) 3302 3302 3302
Total loss (W) 80306 80417 80359
Input power (W) 80560 80601 80542
Difference between the input power and total loss (W) 254 184 183
Error in the power balance (%) 0.32 0.23 0.23

Table VII Losses, input power, and power balance with three equally sized second-
order 1-D elements. 

zi (mm) (−0.325 + 
0.325/3)

(−0.325 + 
0.325 · 2/3) 0

Eddy current loss of the sheets (W) 76535 76961 77141
Resistive loss of the coil (W) 3302 3302 3302
Total loss (W) 79836 80262 80442
Input power (W) 79004 78642 78630
Difference between the input power and total loss (W) −833 −1620 −1812
Error in the power balance (%) −1.05 −2.06 −2.30

Table VI Losses, input power, and power balance with six equally sized first-order 
1-D elements. 

zi (mm) (−0.325 + 
0.325/3)

(−0.325 + 
0.325 · 2/3) 0

Eddy current loss of the sheets (W) 77939 77587 78007
Resistive loss of the coil (W) 3302 3302 3302
Total loss (W) 81241 80888 81309
Input power (W) 93144 87023 81353
Difference between the input power and total loss (W) 11903 6135 44
Error in the power balance (%) 12.78 7.05 0.05
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On the contrary, if the first-order 1-D elements are applied, a proper selection of the up-
per integration bound becomes essential. The results obtained with the first-order 1-D 
elements are shown in Figure 3.7 and Table VI. Obviously, the greater the integration 
interval is, the better the power balance is fulfilled. With the upper integration bounds 
(−0.325 + 0.325/3) mm and (−0.325 + 0.325 · 2/3) mm, the input power of the system 
becomes overestimated, thus resulting in substantial errors in the power balance. By in-
creasing the integration interval by utilizing the upper integration bound of 0 mm, the 
accuracy of the coupling can be improved and the error in the power balance reduced to 
0.05%. 

Analyzing the results obtained with the second-order 1-D elements, it is observed that 
most of these are better in terms of power balance than the ones computed with the first-
order 1-D elements. In contrast to the first-order 1-D elements, the accuracy is improved 
when the integration interval is shortened, as depicted in Figure 3.8 and Table VII. In 
addition, when the second-order 1-D elements are utilized the input power of the system 
is slightly underestimated – not overestimated as it is with the other degrees of the 1-D 
elements. This is also the reason for the negative signs in the errors of the power bal-
ance. 

Comparison between the conventional and integration approaches 

Besides the integration one, the conventional approach was proposed for combining the 
1-D eddy current solution of the electrical steel sheets with the 2-D finite element analy-
sis. Next, the two techniques are compared. While the integration approach is given by 
Equations (2.94) and (2.95), in the conventional coupling, the magnetic field strength at 
the boundary of the sheets is calculated as a product of the magnetic flux density and 
reluctivity. 

Exactly the same problem of example geometry 1 as above with the integration one was 
analyzed using the conventional technique. All the settings and inputs were the same as 
above, except that the coupling of the 2-D and 1-D models was performed differently. 
The eddy current losses in the stack of the sheets, the total losses, and the input powers 
obtained with the different orders of the 1-D elements are illustrated in Figure 3.10. The 
numerical values of those quantities with the errors in the power balance are given in 
Table IX. It can be seen from Figure 3.10 and Table IX that when the first-order 1-D 
elements are associated with the conventional technique the coupling of the eddy cur-
rent phenomena to the 2-D model fails. The error in the power balance is as much as 
−30%. The reason for this is that the magnetic field strength at the boundary of the 
sheets h(−d,t) that is evaluated from a certain 1-D field distribution is not able to repre-
sent the total eddy current loss related to the same distribution. The portion of the total 
eddy current losses included in the 2-D field analysis can be calculated from the B-H 
loops depicted in Figures 3.11 and 3.12. With the first-order 1-D elements, the losses 
integrated from the B-H loop are about 75% of those computed from the eddy current 
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density. It was also found that in the case of the first-order 1-D elements even the tri-
pling of their number from six to 18 does not result in sufficient accuracy. The error in 
the power balance is still as high as 8.2%. Hence, it is justified to state that the fast 
changes of the magnetic field strength near the boundaries of the sheets cannot be traced 
with the linear first-order 1-D elements with sufficient accuracy. 

 

 

 

Table IX Losses, input power, and power balance when utilizing the conventional 
approach. 

Order of 1-D elements 1 2 3
Number of 1-D elements 6 3 2
Eddy current loss of the sheets (W) 78757 76765 77047
Resistive loss of the coil (W) 3302 3302 3302
Total loss (W) 82059 80067 80349
Input power (W) 63057 81135 81135
Difference between the input power and total loss (W) −19001 1068 786
Error in the power balance (%) −30.13 1.32 0.97
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Figure 3.12 B-H loops for the conven-

tional approach, a close-up. 
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Figure 3.11 B-H loops for the conven-

tional approach. 
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Figure 3.10 Losses and input power util-

izing the conventional approach. 
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Applying the second-order 1-D elements with the conventional approach yields a con-
siderable improvement in the accuracy of the coupling of the 2-D and 1-D formulations. 
As depicted in Figure 3.10, the input power agrees well with the total losses. Thus the 
error in the power balance is small, 1.3%. However, some numerical instability occurs 
during the simulation, leading to the divergence of the computation at eight time-steps 
out of the total of 1200 time-steps. This can be observed from Figure 3.12. In the B-H 
loop, a visible deviation from the general trend of the curve is seen, for instance, at 
−410 A/m. The convergence properties of the computation could have been enhanced 
by a lower value of the relaxation factor χ. Decreasing χ, however, increases the compu-
tational burden. The convergence is slower, i.e., more iterations are required per time-
step. As convergence problems were only encountered in the case of the second-order 1-
D elements, utilizing a smaller χ was considered to be unnecessary in this connection. 

The precision of the coupling can be improved even further by utilizing the third-order 
1-D elements in association with the conventional technique. The error in the power 
balance is then reduced to 1%. The stability of the computation improves, too, in com-
parison with the second-order 1-D elements. Hence the utilization of the third-order 1-D 
elements is preferable with the conventional approach. 

Next the characteristics of the conventional and integration method are compared. With 
the integration approach, the computations were carried out utilizing three different up-
per integration bounds in association with each of the orders of the 1-D elements. Now, 
of the results obtained with a certain order of the 1-D elements, those having the small-
est error in the power balance are chosen for the comparison. Thus, for the first- and 
third-order 1-D elements an upper integration bound of 0 mm is used. With the second-
order 1-D elements, on the other hand, applying an upper integration bound of −0.325 + 
0.325/3 mm results in the best power balance. 

The total losses, i.e., the sum of the eddy current losses in the sheets and the DC resis-
tive losses of the coil, and the input powers computed with the conventional and inte-
gration approaches, are depicted in Figure 3.13. As can be seen from Figure 3.13, the 
higher the order of the 1-D elements is, the better the agreement of the total losses from 
the two coupling methods is. The differences observed originate fully from the eddy 
current losses of the sheets as the DC resistive losses of the coil have the same value, 
regardless of the coupling or the order of the 1-D elements utilized. At the most, the 
relative difference between the eddy current losses from the conventional and integra-
tion approaches is 1.0%. This discrepancy occurs with the first-order 1-D elements 
when the accuracy, i.e., the power balance provided by the conventional technique, is 
the poorest and that by the integration approach the best. Hence the success of the cou-
pling of the 2-D and 1-D models has only a slight effect on the magnitude of the losses. 

While the total losses from the conventional and integration approaches correspond 
well throughout the study, the input powers do not, as can be seen from Figure 3.13. 
When the first-order 1-D elements are applied, the conventional approach yields an es-
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timate that is 22% less than the one from the integration technique. The reason for the 
difference is the inappropriateness of the conventional approach in connection with the 
first-order elements. As the order of the 1-D elements is increased, the correspondence 
between the two methods improves. With the second-order elements, the input power of 
the conventional approach is 2.7% greater than that from the integration one, whereas in 
the case of the third-order elements the results are practically equal. 

In addition to the total losses and input powers, the input currents and power factors 
were also compared. The currents are presented in Figure 3.14 and the power factors in 
Figure 3.15. As Figure 3.14 shows, the currents flowing in the coil are not notably af-
fected by the method of the coupling or the order of the 1-D elements. However, the 
power factor is. As can be observed from Figure 3.15, the results obtained mostly corre-
spond well. Anyhow, it becomes evident in the power factor if the coupling of the 1-D 
and 2-D models does not succeed with sufficient accuracy. The greatest difference be-
tween the two coupling methods occurs with the first-order 1-D elements, when the 
conventional technique operates the worst. 
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Figure 3.15 Power factors obtained with 
the conventional (Con) and integration 

(Int) approach. 
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Figure 3.14 Currents in the coil ob-

tained with the conventional (Con) and 
integration (Int) approach. 
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Figure 3.13 Total losses and input pow-

ers obtained with the conventional 
(Con) and integration (Int) approach. 
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Computational efficiency 

In addition to the accuracy of the results, the computational efficiency of the two cou-
pling approaches under investigation is of great interest. Next, these two are compared 
in terms of computational time. The average computing times for one period of line 
voltage, the average computing times for constructing a 2-D system matrix, and the av-
erage numbers of iterations per time-step are collected in Table X. As can be seen from 
Table X, the comparison was carried out for the same group of results as above. The 
simulations were run on a PC with a 2.66-GHz processor and 1.95 GB of RAM. 

The average computing times for constructing a 2-D system matrix are rather similar, 
the integration approach being slightly slower than the conventional one. At the most, 
the difference is 4%. This, however, does not lead to a better overall performance of the 
conventional approach in all the cases that were studied. With the second-order 1-D 
elements, when the convergence properties of the conventional approach are reduced, 
the computing times of one period of line voltage are favorable to the integration ap-
proach. 

The numbers of nodes in the 2-D and 1-D meshes were kept constant in each of the 
simulations. Nevertheless, the computation times of both coupling approaches were ob-
served to increase along with the order of the 1-D elements. For instance, when the 
third-order 1-D elements are applied instead of the first-order ones, the computation 
time of one period is increased by approximately 13% with both techniques. 

 

Conclusion 

The results of the above comparative study can be concluded as follows. 

Table X Computation times for the conventional and integration approach. 
Order of 1-D elements 1 2 3 
Number of 1-D elements 6 3 2 

Method of coupling Conven-
tional 

Integra-
tion 

Conven-
tional 

Integra-
tion 

Conven-
tional 

Integra-
tion 

zi (mm) - 0 - (−0.325 + 
0.325/3) - 0 

CPU time per period of line voltage 
(s) 20.58 21.57 25.18 23.27 23.35 24.39 

Average CPU time for constructing 
a 2-D system matrix (ms) 1.444 1.481 1.511 1.560 1.619 1.687 

Average number of iterations per 
time-step 34 34 38 35 34 34 
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• When the first-order 1-D elements are applied, the integration interval of the in-
tegration approach (Equations (2.120) and (2.121)) should be the whole 1-D so-
lution sector (i.e., half of the thickness of the laminations), whereas with the 
second-order 1-D elements it should be kept as short as possible. With the third-
order 1-D elements the reliability of the coupling did not depend heavily on the 
upper integration bound applied. Hence it can be chosen freely. 

• Both methods discussed, the conventional and integration one, can be used for 
representing the 1-D eddy current solution of the sheets within the 2-D equations 
if the order of the 1-D elements is chosen suitably. In the case of the conven-
tional approach, the utilization of the second- or third-order 1-D elements pro-
vides sufficient accuracy for the power balance. However, better numerical sta-
bility of the computation can be achieved with the third-order 1-D elements. 
Hence their application is recommended. In comparison with the conventional 
approach, the integration approach also couples the 1-D solution to the 2-D for-
mulations reliably with the first-order 1-D elements. 

• It was found that the order of the 1-D elements applied has a rather important ef-
fect on the computation times of the coupled 2-D–1-D method. When the num-
ber of nodes in the 1-D mesh is kept unchanged but the third-order elements are 
utilized instead of the first-order ones, the computing times are lengthened by 
13%. This concerns both the coupling techniques investigated. The integration 
approach also yields a satisfactory power balance and computational stability 
with the first-order 1-D elements and, thus, appears to be preferable. 

Linear and non-linear implementation of the 1-D eddy current model 

As discussed above, the 1-D eddy current model of the electrical steel sheets was im-
plemented in a linear and non-linear manner in the time-discretized computational 
scheme. Next, the applicability of those two implementations to different modeling 
problems is investigated. In the first section, the effects of the implementations on the 
electromagnetic quantities are studied. The second section discusses their computational 
efficiency. Last, in the third section, the main findings are summarized. 

Comparison between the linear and non-linear implementations 

The features of the linear and non-linear implementations of the 1-D eddy current model 
of the steel sheets are investigated via the model example geometry 1, with the excep-
tion being that the thickness of the sheets in the stack is altered. The same input voltage 
waveform, time-discretization, and iterative schemes as above in the sections “Choosing 
a proper upper integration bound for the integration approach” and “Comparison be-
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tween the conventional and integration approaches” are applied, as well as both the 
coupling techniques, conventional and integration. 

Five different types of electrical steel sheets were included in the study. The electrical 
conductivity of all of these was 2.5 MS/m but their thicknesses varied from 0.35 to 2 
mm. The orders and numbers of the 1-D elements and relaxation factors, χ, used in each 
of the computations are collected in Table XI. Table XI also shows an estimate for the 
skin depth of the sheets, which was evaluated at a frequency of 1800 Hz, with a reluc-
tivity of 365 m/H. These two values comprise the “worst-case scenario” for the problem 
considered here, in terms of skin depth. The space-discretization of the 1-D model was 
adjusted according to the ratio of the sheet thickness to the skin depth. Those ratios are 
presented in Table XI. Last, χ in the case of all the sheet types was fixed to the largest 
possible value that still ensures the convergence of the computation with the non-linear 
implementation of the 1-D model. Reasonably, the more dominant the eddy current 
phenomenon, the lower the χ applied is. 

 

The main results of the investigation are shown in Figures 3.16–3.20. The eddy current 
losses obtained with both couplings and eddy current model implementations are plotted 
in Figure 3.16 as a function of the ratio of the thickness of the sheets to the skin depth. 
Clearly, the influence of the linearization of the 1-D equations on the eddy current 
losses is rather exiguous. With both couplings, the losses from the non-linear implemen-
tation are slightly larger than those from the linear implementation. The greatest differ-
ences occur with the 1-mm sheets. With the conventional approach the non-linear im-
plementation results in eddy current losses 4% greater than the linear implementation. 
For the integration coupling, the corresponding figure is 3%. 

The DC resistive losses of the coil are plotted in Figure 3.17. Those are practically in-
dependent of the implementation of the eddy current model. The greatest discrepancy 
occurs with the thickest sheet type, where the results obtained with the non-linear im-
plementation are found to be 0.2% greater than those from the linear implementation. 
This applies to both the coupling methods. 

Table XI Parameters used in the computations with both implementations of the 
eddy current model of the sheets, linear and non-linear. 

Thickness of the sheets (mm) 0.35 0.50 0.65 1.00 2.00 
Order of 1-D elements 3 3 3 3 3 
Number of 1-D elements 2 2 2 3 6 
Skin depth (mm) 0.1607 
Thickness of the sheets divided by the skin depth 2.18 3.11 4.04 6.22 12.44 
χ 0.80 0.40 0.30 0.10 0.03 
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As the 1-D modeling of the sheets is directly coupled to the 2-D formulae, its lineariza-
tion has an impact on the whole computation, also on the loss components that are ob-
tainable by post-processing. Next, particularly, the dependency of the hysteresis and ex-
cess losses (Equations (2.128) and (2.131)) on the linearization is investigated. The sum 
of the hysteresis and excess losses as a function of the ratio of the sheet thickness to the 
skin depth is presented in Figure 3.18. The results in Figure 3.18 were computed using 
values 112.1604 W/m3 and 1.2995 W/m3 for the hysteresis and excess-loss coefficients, 
kh and kea, respectively. The fitting of these parameters was carried out in the least-
squares sense employing the data of the sample R1382. It can be observed from Figure 
3.18 that the linearization of the eddy current model does not have a notable effect on 
the result if the sheet thickness to skin dept ratio does not exceed 4.5. After that point, 
the nonlinear implementation starts to slightly differ from the linear one, the greatest  
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Figure 3.18 Sum of hysteresis and ex-
cess losses obtained with the conven-
tional (Con) and integration (Int) ap-
proach employing the linear (Lin) and 

non-linear (Non) implementation. 
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Figure 3.19 Errors in the power balance 

obtained with the conventional (Con) 
and integration (Int) approach employ-

ing the linear (Lin) and non-linear 
(Non) implementation. 
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Figure 3.17 DC resistive losses of the 
coil obtained with the conventional 

(Con) and integration (Int) approach 
employing the linear (Lin) and non-

linear (Non) implementation. 
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Figure 3.16 Eddy current losses of the 
sheets obtained with the conventional 
(Con) and integration (Int) approach 
employing the linear (Lin) and non-

linear (Non) implementation. 



 

 

91

 

difference with both the coupling techniques at the most being approximately 2%. 
Clearly, when the eddy current phenomenon of the sheets is more dominant its nonlin-
ear modeling seems to capture its damping effects on the field more efficiently. 

Figure 3.19 shows the errors in the power balance from the computations performed. As 
observed from Figure 3.19, the two coupling methods, conventional and integration, 
provide similar results in the case of the linear and non-linear implementations. If the 
analysis encompasses the modeling of the true magnetic properties of the materials, the 
coupling of the 1-D and 2-D formulations succeeds well with all the sheet types investi-
gated. The absolute values of the error in the power balance vary from 0.42 to 0.97 with 
the conventional approach and from 0.18 to 0.31 with the integration approach. The 
linearly implemented 1-D model performs with an accuracy comparable to the non-
linearly realized one if the ratio of the sheet thickness to the skin depth is below 4.5. Af-
ter that point, the error in the power balance starts to increase gradually, as can be seen 
from Figure 3.19. The performance of the linear 1-D model cannot be significantly im-
proved by finer meshing. Considering the conventional technique in connection with the 
linearized eddy current modeling, increasing the number of the 1-D elements from three 
to six reduces the error in the power balance from 3.81% to 3.76%. The results from the 
conventional and integration methods when the linear implementation of the 1-D model 
is utilized are almost indistinguishable. 

The error in the power balance is present in the values of the power factor, which are 
depicted in Figure 3.20. As for the error in the power balance, an adequate correspon-
dence between the results from the linear and non-linear implementations of the eddy 
current model is observed if the ratio of the lamination thickness to the skin depth is ap-
proximately below 5. 
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Figure 3.20 Power factors obtained with 
the conventional (Con) and integration 
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The B-H loops traced by the magnetic flux density and magnetic field strength are 
shown for the 0.65-mm sheets in Figure 3.21. Similar results for the 2-mm sheets are 
plotted in Figure 3.22. As can be seen from Figure 3.21, no differences can be distin-
guished between the B-H loops when the suitable operating ranges of the linearized im-
plementation of the 1-D model are met. With the thickest sheets, on the other hand, 
clear deviations between the curves are observed. The linear implementation of the 1-D 
model differs from the non-linear one the most when the time derivative of the magnetic 
flux density gains its highest values. 

 

Computational efficiency 

The computational times for the conventional and integration methods of coupling are 
collected in Tables XII and XIII. As the space-discretization of the 1-D solution sector  

 

Table XII Computation times for the conventional approach. 

CPU time per period 
of line voltage (s) 

Average CPU time 
for constructing a 2-

D system matrix (ms)

Average number of 
iterations per time-

step 
Thickness of the 
sheets divided by 

the skin depth 
Linear Non-

linear Linear Non-
linear Linear Non-

linear 
2.18 2.88 6.61 0.6 1.7 8 8 
3.11 7.18 16.64 0.7 1.6 24 24 
4.04 10.13 23.50 0.7 1.6 34 34 
6.22 49.15 125.32 1.0 2.6 116 117 
12.44 421.10 1390.63 2.5 8.3 409 410 

-2

-1

0

1

2

-10000 -5000 0 5000 10000

H y , s (A/m)

B
y

, a
ve

 (T
)

Lin, Con Lin, Int Non, Con Non, Int

 
Figure 3.22 B-H loops for the conven-
tional (Con) and integration (Int) ap-
proach employing the linear (Lin) and 

non-linear (Non) implementation. 
Thickness of the sheets 2 mm. 
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Figure 3.21 B-H loops for the conven-
tional (Con) and integration (Int) ap-
proach employing the linear (Lin) and 

non-linear (Non) implementation. 
Thickness of the sheets 0.65 mm. 
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was the same with both the methods, the results provided by these are practically 
equivalent. In comparison with the non-linear one, the linear implementation of the 1-D 
model guarantees significantly lower computational times. The more substantial the 
eddy current phenomenon in the sheets, the greater the discrepancy between the imple-
mentations is. At the most, the computational time of the non-linear implementation is 
over three times longer than that of the linear implementation. As expected, the decrease 
of the relaxation factor, χ, substantially affects the number of iterations per time-step. 
Hence, χ should be kept as high as possible. 

Conclusion 

The main observations of this section can be summarized as follows. 

• When the actual magnetic properties of the sheets are modeled, i.e., the non-
linear 1-D model is employed, both the conventional and integration techniques 
succeed in the coupling with sufficient accuracy within a wide range of different 
steel sheet types. 

• When the linearly realized 1-D model is utilized, the conventional and integra-
tion techniques provide results that are almost indistinguishable from each other. 
In addition, it was found that the linearized approach to the eddy current model-
ing is well suited to problems for which the skin depth is larger than one fifth of 
the thickness of the sheet. Within a suitable operating range, an accuracy of the 
coupling which accords with that from the non-linear approach is obtained with 
the linear implementation. 

• The linear and non-linear realizations of the 1-D model provide very similar es-
timates of the eddy current losses, regardless of the success of the 1-D–2-D cou-
pling. 

Table XIII Computation times for the integration approach. 

CPU time per period 
of line voltage (s) 

Average CPU time 
for constructing a 2-

D system matrix (ms)

Average number of 
iterations per time-

step 
Thickness of the 
sheets divided by 

the skin depth 
Linear Non-

linear Linear Non-
linear Linear Non-

linear 
2.18 3.08 6.80 0.7 1.8 8 8 
3.11 7.83 17.57 0.7 1.7 24 24 
4.04 10.83 24.36 0.7 1.7 34 34 
6.22 51.32 127.30 1.1 2.7 116 117 
12.44 429.14 1391.94 2.6 8.4 409 410 
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• Whenever practicable, the linear implementation of the 1-D model should be 
utilized because of its superior computational efficiency. Moreover, when an ap-
plication as complex as, for instance, a rotating electrical machine is being stud-
ied, the consideration of the true magnetic properties of the sheets may turn out 
not to be feasible when the linearized 1-D eddy current modeling must be en-
forced despite its limitations. 

• The number of iterations per time-step increases rapidly with the decrease of χ. 
Thus, it should be adjusted to the largest value possible, according to the re-
quirements of the task in hand. 

Effect of the magnitude of the magnetic flux density on the coupling of the 
2-D and 1-D models 

The magnitude of the magnetic flux density at the boundary of the sheets influences the 
accuracy of the coupling of the 1-D and 2-D models. This issue is analyzed next in the 
frame of the example problem example geometry 1 (Section 3.1.1). The same time-
discretization and iterative schemes as previously are used. The solution region of the 1-
D eddy current model (half of the sheet thickness, 0.325 mm) is discretized with two 
third-order 1-D elements. The flux level in the system under study example geometry 1 
is controlled through the input voltage. In this investigation, four input voltages are em-
ployed. One of these is that shown in Figure 3.6. The other three are formed similarly 
but their fundamental components are 100 V (RMS), 500 V (RMS), and 2000 V (RMS), 
all at 50 Hz. 

The computations were carried out with both the linear and non-linear implementations 
of the eddy current model. As in the preceding investigations, the discrepancies between 
the losses from the conventional and integration methods were observed to be small. 
The results of main interest, the errors in the power balance, are presented in Figure 
3.23. The flux patterns provided by the integration approach combined with the non-
linear implementation of the 1-D model are shown in Figure 3.24. According to Figure 
3.23, the reliability of the coupling depends somewhat on the flux levels. The peak val-
ues of the magnetic flux density at the voltages 100 V (RMS), 500 V (RMS), 2000 V 
(RMS), and 4000 V (RMS) are 0.3 T, 1.3 T, 1.7 T, and 1.8 T, respectively. When the 
input voltage is approximately below 500 V (RMS), the results from the two couplings 
and eddy current model implementations are in good agreement with each other. As the 
input voltage is increased, differences begin to appear. The conventional and integration 
techniques in connection with the non-linear 1-D model yield nearly equal couplings of 
the 2-D and 1-D models. In the case of the linearized 1-D model, the agreement be-
tween those two methods is notably poorer. However, to summarize, although the error 
in the power balance increases as the flux levels get higher, even its greatest values are 
acceptable. 
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Verification 

A purely analytical formulation of the eddy current losses in a stack of steel sheets 
(Vogt, 1983) is used to verify the computational algorithm of the time-discretized im-
plementation of the coupled 2-D–1-D method. The eddy current losses in the stack are 
first evaluated with both the analytical derivations and the proposed numerical method. 
For the computations, the model example geometry 2 is employed. A comparative study 
of the results obtained yields information on the correctness of the implementation of 
the numerical method. 

The computations were conducted using the linear implementation of the 1-D eddy cur-
rent model and under-relaxation, and with χ having as large a value as was practical. For 
the space-discretization of the 1-D solution sector (half of the sheet thickness, 0.325 
mm), three equally sized third-order elements were applied. The time-discretization was 
performed with 400 time-steps per period and a total of 1200 time-steps. The average 
values were integrated over the third period. 

The eddy current losses in the stack were calculated at exciting frequencies ranging 
from 0 to 1000 Hz, applying the analytical equations and both the numerical implemen-
tations, conventional and integration. As the third-order 1-D elements were employed, 
the upper integration bound of the integration approach was set to 0. The amplitude of 
the driving magnetic flux density was fixed to 1 T. The eddy current losses obtained are 
shown in Figure 3.25 in W/kg. The value used for the mass density of the sheets was 
7800 kg/m3. The relative differences between the numerical and analytical results are 
shown in Figure 3.26. 
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Figure 3.24 B-H loops for the integra-
tion approach employing the non-linear 

implementation. 
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Figure 3.23 Error in the power balance 
as a function of the fundamental compo-
nent of the input voltage. Conventional 
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non-linear (Non). 



 

 

96

 

Clearly, the eddy current losses from the 2-D–1-D method with both the coupling tech-
niques correspond well with those obtained by the analytical formulations. The relative 
difference between the results is 0.2% at most. The increase in the relative difference as 
the frequency increases is related to the utilization of the same time- and space-
discretizations throughout the study. For instance, if the operating point of 1000 Hz is 
computed without changing the space-discretization but by employing 2000 time-steps 
per period, the value of the relative difference between the numerical and analytical re-
sults is reduced to 0.04%. In conclusion, the computational algorithm of the time-
stepping approach proved to be appropriately implemented. 

3.1.3 Time-harmonic implementation 

This section concentrates on examining the time-harmonic implementation of the cou-
pled model. First, the success of the approach in terms of the power balance is discussed 
and then a verification of its computational algorithm is performed. 

Success of the coupling 

The time-harmonic 2-D–1-D method includes the eddy currents and hysteresis in the 
sheets in the 2-D finite element analysis through the complex reluctivity. Next, the reli-
ability of this coupling is studied. The model example geometry 1 is suitable for this 
purpose. Altogether, three points are simulated using different input voltages one by 
one. Hence, the consecutive solution of the different components is omitted and fields 
varying at a single frequency are considered (Γ is equal to 1). Last, the number of calcu-
lation points in the 1-D eddy current model is seven. 
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Figure 3.26 Relative differences be-

tween the eddy current losses. 
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Figure 3.25 Eddy current losses of the 
stack of the steel laminations in W/kg. 
Conventional (Con), integration (Int), 

and linear (Lin). 
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The results obtained are collected in Table XIV. As can be seen from Table XIV, the 
coupling of the hysteresis and eddy current phenomena with the 2-D equations succeeds 
with reasonable accuracy. Up to 100 Hz, the error in the power balance is below 0.85%. 
As the frequency increases, higher but still acceptable discrepancies occur. 

 

Verification 

The computational algorithm of the time-harmonic 2-D–1-D method is verified in a 
manner similar to that of the time-discretized one. The eddy current losses of the stack 
are first computed by the proposed time-harmonic method, and are then compared with 
those attainable by the purely analytical formulations (Vogt, 1983). 

The model example geometry 2 was utilized for the investigation. The assumptions of 
the analytical formulae (Vogt, 1983) were fulfilled in the manner discussed in 3.1.1. 
The exciting magnetic flux density on one boundary of the 2-D geometry was set to 
vary at a single frequency, i.e., the number of harmonics Γ during the simulations was 1 
(Pippuri and Arkkio, 2009). Within the 1-D solution sector, 10 calculation points were 
employed (for the space-discretization of the 1-D model in time-harmonic analysis see 
Section 2.1.1). 

The eddy current losses from the numerical time-harmonic approach and from the ana-
lytical formulae are depicted in Figure 3.27 in W/kg. The mass density of the sheets was 
set to 7800 kg/m3. In all the simulations, the amplitude of the driving magnetic flux 
density was 1 T but its frequency was varied from 0 Hz to 1000 Hz. The relative differ-
ences between the numerical and analytical results are presented in Figure 3.28. As 
Figure 3.27 shows, the agreement between the eddy current losses obtained by the two 
formulations is good. The discrepancy between the results increases slightly with the 

Table XIV Losses, input power, power factor, and power balance for the time-
harmonic approach under different voltage supplies. 

Voltage (V) 2000 1000 500 
Frequency (Hz) 50 100 200 
Current (A) 2981 589 120 
Power factor 0.01 0.17 0.47 
Hysteresis loss of the sheets (W) 43475 58083 12229 
Eddy current loss of the sheets (W) 16211 43138 17563 
Resistive loss of the coil (W) 666 26 1 
Total loss (W) 60352 101247 29792 
Input power (W) 60339 100401 28311 
Difference of input power and total loss (W) −13 −846 −1481 
Error in the power balance (%) −0.02 −0.84 −5.23 
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exciting frequency. This is a result of the space-discretization applied. The correspon-
dence of the numerical and analytical calculations can be further improved by utilizing a 
greater number of computation points for the 1-D model. Anyhow, the implementation 
of the time-harmonic approach was proven to be properly performed. 

 

3.2 Application to induction motors 

In this section, simulations carried out on the test motor are elaborated and analyzed. 
The slip-control, no-load, and load conditions are investigated. The performance of both 
the time-discretized and time-harmonic algorithms is dissected. The measurement re-
sults verify the applicability of the methods that were developed. 

3.2.1 Parameters of the iron-loss models and magnetic material proper-
ties of the steel sheets 

The reluctivity curve employed in the time-discretized analysis for both the stator and 
rotor sheets is depicted in Figure 3.2. The function of the absolute value of the reluctiv-
ity needed for the time-harmonic analysis and used in the stator and rotor is shown in 
Figure 3.3. The hysteresis part of the argument of the complex reluctivity as a function 
of the square of the magnetic flux density is given in Figure 3.4. It was determined from 
the measuring data of the wound-ring sample R1382. Thus the hysteresis modeling does 
not contain any information on rotating fields. 

The parameters of the hysteresis and excess-loss models Equations (2.128) and (2.131) 
were fitted in the least-squares sense by a non-linear curve-fitting algorithm. As the data 
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Figure 3.28 Relative differences be-
tween the eddy current losses obtained 

by analytical equations and by the time-
harmonic 2-D–1-D model. 
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Figure 3.27 Eddy current losses of the 
stack of the steel laminations in W/kg 
computed by analytical equations and 
by the time-harmonic 2-D–1-D model. 
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of the sample R1382 were utilized, the rotating loss part in Equation (2.128) became 
neglected. The frequency range of the measurements included was 20–320 Hz. The co-
efficients used in all the simulations are collected in Table XV. 

 

3.2.2 Slip-control test 

The measurement results from the slip-control no-load tests of the 37-kW cage-
induction machine are used to validate the time-discretized implementation of the ma-
chine model that has been presented. The second objective of the study is to verify the 
observations made from the analyses of the simple example geometries in Section 3.1 
with respect to a real rotating electrical machine. Hence, computations employing both 
the conventional and integration coupling techniques in association with the linear and 
non-linear implementations are carried out. 

Problem setting 

The main parameters of the 37-kW test motor are shown in Table III. The 2-D finite 
element mesh that was utilized covered one fourth of the cross-section of the motor and 
consisted of 1686 second-order elements with three integration points. The mesh is 
shown in Figure 3.29. During each of the simulations, a symmetrical sinusoidal  

 

 
Figure 3.29 Finite element mesh and 

points A and B where the flux patterns 
are investigated more closely. 

Table XV Hysteresis and excess-loss coefficients. Mass density 7800 kg/m3. 
Hysteresis-loss coefficient kh (W/m3)112.1604
Excess-loss coefficient kea (W/m3) 1.2995 
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three-phase voltage with a frequency of 50 Hz was fed to the stator winding. The num-
ber of time-steps per period was 400 and altogether 4000 steps were computed. The av-
erage values of the quantities were integrated over the last computed period. The 1-D 
geometry was discretized either with six first-order elements or with two third-order 
elements. The upper integration bound of the integration approach was 0 in all simula-
tions as it provides accurate coupling with both the orders of the 1-D elements utilized. 
The solution of the 2-D equations was performed in the incomplete Newton-Raphson 
iterative scheme with χ of 0.15. The motor was made to run at zero slip, at synchronous 
speed with all the supply voltages. 

Electromagnetic losses 

The total electromagnetic losses attained with the first- and third-order 1-D elements 
with different implementations are depicted in Figures 3.30 and 3.31. First, let us con-
sider the results obtained with the first-order 1-D elements. As Figure 3.30 shows, the 
discrepancies between the total electromagnetic losses from the two coupling techniques 
and eddy current model implementation are very small. The results provided by the non-
linear implementation of the eddy current model are at most 0.52% greater than those 
from the linear implementation. This applies to both the coupling techniques. Impor-
tantly, the simulated estimates of the total electromagnetic losses are in sufficient 
agreement with the measured ones. The greatest discrepancy occurs at 100 V, when the 
computed losses are 24% lower than the measured ones. At the higher supply voltages 
the correspondence is much better. For instance, at 300 V, the relative difference be-
tween the simulated and measured losses is only 3%. On average, the relative difference 
between the simulations and measurements is 7.7%. 

Similar observations as with the first-order 1-D elements were made in the case of the 
third-order ones. The simulated total electromagnetic losses are not significantly 
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Figure 3.31 Electromagnetic losses with 

two third-order 1-D elements. 
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Figure 3.30 Electromagnetic losses with 

six first-order 1-D elements. Conven-
tional (Con), integration (Int), linear 

(Lin) and non-linear (Non). 
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dependent on the coupling technique or on the implementation of the eddy current 
model. In addition, the results from the non-linear implementation of the 1-D model are 
consistently slightly larger than those from the linearized one with both the coupling 
techniques. The agreement between the simulated and measured results from the third-
order 1-D elements corresponds with that attained by using the first-order 1-D elements. 
The relative difference between the computations and experiments is 8.1% on average. 

As discussed in Section 2.3.2, the measured total electromagnetic losses can be sepa-
rated into two components. The DC resistive losses of the stator winding and the loss 
component referred to as the other electromagnetic losses are depicted in Figures 3.32–
3.35. According to Figures 3.32 and 3.33, the first- and third-order 1-D elements pro-
vide similar estimates of the other electromagnetic losses. In addition, the simulated  
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Figure 3.35 DC resistive losses of the 

stator winding with two third-order 1-D 
elements. 
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Figure 3.34 DC resistive losses of the 
stator winding with six first-order 1-D 
elements. Conventional (Con), integra-
tion (Int), linear (Lin) and non-linear 

(Non). 
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Figure 3.33 Other electromagnetic 
losses with two third-order 1-D ele-

ments. 
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Figure 3.32 Other electromagnetic 

losses with six first-order 1-D elements. 
Conventional (Con), integration (Int), 

linear (Lin) and non-linear (Non). 
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results agree with reasonable accuracy with the measured ones. When the first-order 1-
D elements are applied, the average relative difference between the simulations and ex-
periments is 12.8%. For the third-order 1-D elements, the corresponding figure is 
12.9%. As Figures 3.32 and 3.33 show, the other electromagnetic losses are somewhat 
underestimated when the supply voltage is at most 300 V, while above that limit, they 
are slightly overestimated. 

As can be seen from Figures 3.34 and 3.35, the agreement between the computed and 
measured DC resistive losses of the stator winding is sufficient. An average of 13.8% 
for the relative difference between the computations and experiments is attained with 
both the orders of the 1-D elements. Particularly at lower supply voltages (up to 300 V), 
the DC resistive losses of the stator winding are overestimated. 

The eddy current losses of the sheets from the first- and third-order 1-D elements are 
compared in Figures 3.36 and 3.37. The results shown were obtained using the integra-
tion method for the coupling and taking the true magnetic properties of the steel sheets 
into account. According to Figures 3.36 and 3.37, when the number of nodes in the 1-D 
mesh is kept constant, changing the order of the elements does not significantly affect 
the results. Anyhow, the first-order 1-D elements consistently provide larger estimates. 
The stator eddy current losses from the first-order 1-D elements are at most 1.4% 
greater than those from the third-order ones. For the rotor side, the corresponding figure 
is 4.6%. Comparable results were achieved with the other coupling and 1-D model im-
plementation combinations as well. 
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Figure 3.37 Eddy current losses in the 

rotor obtained with first- and third-
order elements (integration method, 

non-linear 1-D model). 
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Figure 3.36 Eddy current losses in the 
stator obtained with first- and third-
order elements (integration method, 

non-linear 1-D model). 
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Flux patterns 

The B-H loop and magnetic flux density in the stator tooth tip at point A depicted in 
Figure 3.29 are shown in Figures 3.38 and 3.39. Similar curves for the rotor side at 
point B in Figure 3.29 are given in Figures 3.40 and 3.41. The magnetic flux density 
values are averaged over the thickness of the sheets, whereas the magnetic field strength 
is from the surface of the sheets. The results shown were obtained with a rated voltage 
of 400 V, using the first-order elements for 1-D equations in connection with the inte-
gration technique. As is evident in Figures 3.38 and 3.39, in the stator tooth tips, the 
flux patterns calculated with the linearized 1-D model are indistinguishable from those 
from the non-linear one. Similar observations were also made in other parts of the sta-
tor. On the rotor side, the B-H loops from the linear and non-linear modeling were 
found to be slightly different at higher flux densities. The Bx-By patterns also showed 
minor discrepancies. The difference between the field solutions obtained with the two  
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Figure 3.39 Bx-By loop in stator at point 
A at a voltage of 400 V. 1-D model dis-

cretized with first-order elements. 
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Figure 3.38 B-H loop in stator at point 
A at a voltage of 400 V. 1-D model dis-

cretized with first-order elements. 
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Figure 3.41 Bx-By loop in rotor at point 
B at a voltage of 400 V. 1-D model dis-

cretized with first-order elements. 
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Figure 3.40 B-H loop in rotor at point B 
at a voltage of 400 V. 1-D model discre-

tized with first-order elements. 



 

 

104

 

implementations of the eddy current model of the sheets at the time instant 200 ms is 
illustrated in Figure 3.42. According to the results in Figure 3.42 the rotor slot closings 
and stator teeth are the parts most affected by the non-linear eddy current modeling. 
However, for the problem being studied the differences are insignificant; the maximum 
value of the magnetic flux density in Figure 3.42 is 0.01 T. 

Stator current 

Comparisons of the computed and measured stator phase currents are presented in  

 

 
Figure 3.42 Difference of the field solu-

tions from the linear and non-linear 
eddy current models. Magnetic flux den-

sity shading. 
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Figure 3.44 Current with two third-

order 1-D elements. 
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Figure 3.43 Current with six first-order 
1-D elements. Conventional (Con), inte-
gration (Int), linear (Lin) and non-linear 

(Non). 
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Figures 3.43 and 3.44. The computed currents agree well with the measured ones with 
both the orders of the 1-D elements. In addition, the effect of the coupling or implemen-
tation of the 1-D model on the results is minor. The average relative difference between 
the simulations and experiments is 4.6% for both the orders of the 1-D elements. 

Power balance 

A study of the errors in the power balance reveals the importance of choosing the 1-D 
elements in accordance with the coupling approach. The errors in the power balance 
from the first-order 1-D elements are depicted in Figure 3.45, whereas Figure 3.46 
shows similar results for the third-order 1-D elements. Clearly, as was observed in the 
investigations of the model example geometry 1, the first-order 1-D elements in connec-
tion with the conventional coupling technique do not represent the eddy currents with 
sufficient accuracy. The error in the power balance is as much as −17% at 100 V. As the 
voltage increases, the accuracy of the coupling is improved. This is related to the in-
crease in the portion of the total losses of the stator-winding DC resistive losses. As op-
posed to the conventional approach, the integration approach provides a reliable cou-
pling even with the first-order 1-D elements. The errors in the power balance range 
from −1.55% to −0.83%. 

When the third-order 1-D elements are employed, both the coupling approaches perform 
well enough. The integration technique improves fairly well, the errors in the power 
balance being between −0.95% and −0.12%. For the conventional technique the en-
hancement is much more notable. For instance, at 100 V, the error in the power balance 
changes from −17% to −0.6%, depending slightly on the implementation of the eddy 
current model. 
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Figure 3.46 Errors in the power balance 

with two third-order 1-D elements. 
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Figure 3.45 Errors in the power balance 
with six first-order 1-D elements. Con-

ventional (Con), integration (Int), linear 
(Lin) and non-linear (Non). 
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According to the errors obtained in the power balance, linearizing the 1-D eddy current 
problem does not lead to a great loss of accuracy. With the first-order 1-D elements, the 
linear and non-linear implementations of the 1-D model yield similar results in the case 
of both the coupling methods. When the third-order elements are applied the discrepan-
cies between the two implementations are somewhat greater but not remarkable. 

Computational efficiency 

The computer employed was equipped with a 2.66-GHz processor and 1.95 GB of 
RAM. Comparisons of the computation times of the slip-control tests are shown in Ta-
bles XVI and XVII. The tabulated figures were obtained with a rated voltage of 400 V. 
It is observed that the utilization of the third-order 1-D elements results in slightly 
higher computation times in most cases. With the integration coupling and linear im-
plementation of the 1-D model, for instance, the computation time of one period of line 
voltage is 6% greater for the third- than for the first-order 1-D elements. It is worth not-
ing that the number of nodes in the 1-D mesh was constant throughout the study. 

Modeling the true magnetic properties of electrical steel sheets is computationally ex-
pensive. The increase in the computation time of a period of line voltage is, on average, 
81% when the non-linear eddy current model is employed instead of the linear one. 

 

 

Table XVII Computation times with an input voltage of 400 V utilizing two 
third-order 1-D elements. 

Method of coupling Lin, Con Non, Con Lin, Int Non, Int 
CPU time per period of line voltage 
(s) 3605 8067 3246 5528 

Average CPU time for constructing 
a 2-D system matrix (s) 0.0614 0.1026 0.0559 0.1064 

Average number of iterations per 
period of line voltage 106 164 106 106 

Table XVI Computation times with an input voltage of 400 V utilizing six 
first-order 1-D elements. 

Method of coupling Lin, Con Non, Con Lin, Int Non, Int 
CPU time per period of line voltage 
(s) 3467 4914 3048 5774 

Average CPU time for constructing 
a 2-D system matrix (s) 0.0597 0.0945 0.0509 0.1093 

Average number of iterations per 
period of line voltage 106 106 106 106 
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Combining the conventional technique and third-order 1-D elements with the non-linear 
implementation of the 1-D model is particularly inefficient. This inefficiency is due to 
the convergence problems faced. Overcoming these requires a smaller value for χ, 0.1, 
than in other computations. 

Conclusion 

The most important findings of the above no-load simulations of the 37-kW test motor 
can be summarized as follows. 

• The conclusions drawn from the analyses of the simple example geometry were 
found also to hold true for a rotating electrical machine. Both the conventional 
and integration techniques couple the lamination eddy currents to the 2-D model 
accurately enough if the order of the 1-D elements is suitably selected. Impor-
tantly, the linearized approach is also valid for complicated apparatuses such as 
electrical machines, provided the ratio of the sheet thickness to the skin depth is 
low enough. 

• The order of the 1-D elements does not affect the losses heavily. However, the 
utilization of the first-order 1-D elements is preferable from the computational 
efficiency point of view. 

• The measured total electromagnetic losses and their separate components match 
well with the corresponding computed ones. The computed currents are in good 
correspondence with the measured ones. 

• On the basis of the study, it is proposed that the integration method, together 
with the first-order 1-D elements, should be used for the coupling. Such a com-
bination provides an adequate power balance with the lowest computational cost 
in comparison with the other approaches. In addition, whenever justified, the 1-
D eddy current modeling should be dealt with in a linearized manner. 

3.2.3 No-load and full-load operation with frequency-converter supply 

This section aims to analyze the test motor and, particularly, its losses under a fre-
quency-converter supply. First, the no-load operation is investigated and, especially, the 
effects of the switching frequency are elaborated. Both the time-discretized and time-
harmonic implementations of the method are used to compute the additional electro-
magnetic losses resulting from the higher harmonics and a comparison with the meas-
urements is shown. Next, the simulations performed under loading are elaborated. 
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Those studies aim at investigating the change in the losses in comparison with the no-
load condition. Last, the possibilities of employing the 1-D sheet model purely as a 
post-processing tool are discussed. 

Problem setting 

In order to model the high frequencies present in the frequency-converter supply, denser 
meshing and short time-steps were employed (Pippuri and Arkkio, 2009). The 2-D ge-
ometry was meshed with 3046 second-order elements with three integration points, 
while the 1-D mesh covering half of the lamination thickness consisted of 13 equally 
sized first-order elements. The 2-D mesh is shown in Figure 3.47 together with a close-
up of a rotor bar. The measured output-voltage waveforms were used as inputs in the 
simulations. The main voltages at no load at a fundamental frequency of 50 Hz, the 
switching frequency being 3 kHz, are depicted in Figure 3.48. At the operating points 
for which the fundamental frequency was 7.5 or 22.5 Hz, the number of time-steps per 
period was 2000 and for the rest it was 1000. Altogether 10 periods of line voltage were 
computed. The 2-D and 1-D models were coupled in a linearized manner with the inte-
gration method and χ was 0.15. 

 

Standard no-load test 

During a standard no-load experiment the machine is not running exactly at zero slip at 
synchronous speed. A slip at which the motor can produce the power that is consumed 
as friction losses was used in the simulations. The measured and computed total elec-
tromagnetic losses at different switching frequencies are compared in Figures 3.49–
3.51. Clearly, the time-discretized method provides accurate enough results, especially 

 
Figure 3.47 Finite element mesh and 

points A and B where the flux patterns 
are investigated more closely. 
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Figure 3.48 Main voltages and related 
fundamental components at no load at 

50 Hz, switching frequency 3 kHz. 
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when the fundamental supply frequency is between 22.5 and 70 Hz. The greatest rela-
tive difference between the simulated and measured losses is 37% at 7.5 Hz, with the 
switching frequency being 6 kHz. However, on average the difference is significantly 
lower, about 9%. The stator currents are depicted in Figure 3.52. Figure 3.52 shows that 
in comparison with the measured ones, the computed stator currents are somewhat 
overestimated, on average by 8%. Particularly at 100 Hz, with a switching frequency of 
1 kHz, the difference is significant, which, in part, causes the overestimation of the elec-
tromagnetic losses. 

 

 

The computed electromagnetic losses are collected in Figure 3.53 and compared. It can 
be seen from Figure 3.53 that the results are mainly in accordance with the theory, i.e., 
the losses in the motor decrease as the switching frequency of the supplying frequency 
converter increases. As can be seen from Figure 3.52 the deviation at 7.5 Hz, 6 kHz, is 
partly associated with the overestimated DC resistive losses of the stator winding. A 
closer look at the results revealed that the eddy current losses of the sheets and the rotor-
cage losses are most notably affected by the switching frequency. The different loss 
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Figure 3.52 Stator current as a function 

of fundamental frequency. 
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Figure 3.51 Electromagnetic losses as a 
function of fundamental frequency, at a 

switching frequency of 6 kHz. 
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Figure 3.50 Electromagnetic losses as a 
function of fundamental frequency, at a 

switching frequency of 3 kHz. 
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Figure 3.49 Electromagnetic losses as a 
function of fundamental frequency, at a 

switching frequency of 1 kHz. 
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components at 50 Hz are shown in Figure 3.54. The core losses at the same operating 
point are separated for the stator and rotor parts in Figure 3.55. These are the rotor eddy 
current losses that are the most dependent on the switching frequency. 

 

 

Additional losses caused by the frequency-converter supply 

In order to study the additional losses caused by the harmonic content of the frequency-
converter supply, the operating point for which the switching frequency is 3 kHz was 
also simulated under sinusoidal supply conditions. The input voltage was adjusted to 
accord with the fundamental component of the frequency-converter output-voltage 
waveform. In addition to the time-discretized analyses, the time-harmonic implementa-
tion of the coupled 2-D–1-D model was also employed in the investigation. Within the 
simulations that were performed, the number of harmonic components taken into ac-
count was 500. Such an amount provided a sufficient coverage of the measured wave-
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Figure 3.54 Computed electromagnetic 
losses at fundamental frequency 50 Hz 
as a function of switching frequency. 
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Figure 3.55 Computed iron losses at 

fundamental frequency 50 Hz as a func-
tion of switching frequency. 
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Figure 3.53 Computed electromagnetic 
losses as a function of fundamental fre-

quency. 
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forms. The same space-discretization as in the time-discretized computations was util-
ized. 

The additional electromagnetic losses obtained with both the computational methods 
and experiments with a switching frequency of 3 kHz are shown in Figure 3.56. It is ob-
served that the results from the time-discretized simulations mostly agree well with the 
experiments. The greatest difference occurs at a fundamental frequency of 7.5 Hz. The 
time-harmonic model is able to predict the trend of the additional losses measured with 
reasonable accuracy. The differences in the quantities of the results are largely explain-
able by the neglect of the excess losses. On the other hand, omitting the phase shifts and 
considering solely the amplitudes of the voltage components in the construction of the 
supply conditions of a simulation is not expected to cause great errors. According to 
previous research (Repo and Arkkio, 2006), the phase shifts of the harmonics or distur-
bances are important only if their frequencies are low compared to the fundamental fre-
quency, for instance below 200 Hz with a fundamental of 50 Hz. In the operating points 
studied, only very few of all the harmonics (0.8%) fell into that category. 

The main motivation for applying a method as rough as the time-harmonic one pre-
sented here is its computational efficiency. While the total computation time of one op-
erating point in Figure 3.56 with the time-discretized method is 90 hours, the time-
harmonic one solves the same problem in approximately 15 minutes. The rather long 
computation times of the time-discretized simulations originate from the following rea-
sons: (i) in order to obtain one operation point, two simulations, one with frequency-
converter supply and another with sinusoidal supply, need to performed, (ii) during both 
the aforementioned simulations, 10 periods of line voltage are completed, and (iii) 
rather fine space- and time-discretizations are employed for capturing the high-
frequency phenomena with a sufficient accuracy. 
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Figure 3.56 Additional electromagnetic 

losses resulting from the frequency-
converter supply with a switching fre-

quency of 3 kHz. 
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The increases in the different loss components according to the time-discretized analy-
ses are illustrated in Figures 3.57 and 3.58. Figure 3.57 shows the difference of the loss 
components evaluated by subtracting the results with a sinusoidal supply from those 
with a frequency-converter supply. In Figure 3.58, the increase in the iron-loss compo-
nents obtained in a similar manner is elaborated. Up to the operating point of 50 Hz, the 
absolute change in the hysteresis losses is the greatest. At 70 and 100 Hz the eddy cur-
rent losses dominate. A closer look at the changes in the iron-loss components reveals 
that except at the operating point of 50 Hz, the eddy current losses of the rotor are the 
losses that are most affected by the higher harmonics of the frequency converter. On the 
stator side, the difference in the eddy current losses is small. On the other hand, the in-
crease in the hysteresis losses of the stator is rather significant. 

The flux patterns of the test motor with a sinusoidal voltage waveform and  
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Figure 3.58 Increase in iron-loss com-
ponents resulting from the frequency-
converter supply with a switching fre-

quency of 3 kHz. Time-discretized 
analysis. 
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Figure 3.57 Increase in loss components 
resulting from the frequency-converter 
supply with a switching frequency of 3 

kHz. Time-discretized analysis. 
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Figure 3.60 Bx-By loop in stator at point 
A at a fundamental frequency of 50 Hz. 
Sin sinusoidal supply, Vac frequency-

converter supply. 
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Figure 3.59 B-H loop in stator at point 
A at a fundamental frequency of 50 Hz. 
Sin sinusoidal supply, Vac frequency-

converter supply. 
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frequency-converter supply are compared in Figures 3.59–3.62. The B-H loop and Bx-By 
patters in the stator tooth tip at point A are shown in Figures 3.59 and 3.60 as Figures 
3.61 and 3.62 are from the rotor slot closure at point B. The computation results that are 
used are from the 50-Hz operating points. The rotor-side loop patterns are particularly 
altered by the higher harmonics. A field solution obtained by subtracting the sinusoidal 
supply result from the frequency-converter one at a time instant 200.4 ms is given in 
Figure 3.63. Clearly, the magnetic field density in the rotor parts close to the air gap is 
changed the most. 

 
Figure 3.63 High-frequency magnetic 
flux density associated with the fre-

quency-converter supply at a fundamen-
tal frequency of 50 Hz. 
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Figure 3.62 Bx-By loop in rotor at point 
B at a fundamental frequency of 50 Hz. 
Sin sinusoidal supply, Vac frequency-

converter supply. 
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Figure 3.61 B-H loop in rotor at point B 

at a fundamental frequency of 50 Hz. 
Sin sinusoidal supply, Vac frequency-

converter supply. 
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Standard full-load test 

The full-load operation of the 37-kW test motor was simulated using the output-voltage 
waveforms recorded at the switching frequency 3 kHz. The slip was set to a value with 
which the motor produces an electromagnetic torque that corresponds to the sum of the 
measured shaft torque and the torque resulting from the friction losses. The increase in 
the total electromagnetic losses from the loading is shown in Figure 3.64. The differ-
ences in the loss components obtained by subtracting the results at no load from those at 
full load are depicted in Figure 3.65. As can be seen from Figure 3.64, the total electro-
magnetic losses change substantially under the loading. At the fundamental frequency 
of 100 Hz these are almost nine times as large as at no load. The major increase is 
mainly due to the loading currents, which result in considerable losses in the windings 
of the machine, as shown in Figure 3.65. Of those in the core, the eddy current losses 
are the most altered. At the operating points 7.5 and 22.5 Hz, the core losses are slightly 
greater at no load than at full load. The reason for this is the drop in the flux level in the 
motor as a result of the loading. 

 

Utilization of the eddy current model of the sheets for post-processing 

The full-load operation of the test motor was also investigated by omitting the eddy cur-
rents in the sheets from the field solution and instead utilizing the 1-D model purely for 
the post-processing of the related losses. The results of the comparative study carried 
out with the 3-kHz output-voltage waveforms are illustrated in Figures 3.66–3.70. The 
total measured and simulated electromagnetic losses are shown in Figure 3.66. The cor-
respondence between these is good, the relative difference being 7.7% on average for 
the complete approach with the eddy currents of the sheets included in the field solution 
and 8.3% for the a posteriori analysis. The differences in the separate loss components 
between the two computation models are illustrated in Figure 3.67. It was found that the 

-50
250
550
850

1150
1450
1750

7.5 22.5 50 70 100

Fundamental frequency (Hz)

D
iff

er
en

ce
 in

 lo
ss

es
 

(W
)

Stator winding Rotor cage Hysteresis
Eddy current Excess

 
Figure 3.65 Losses at no load sub-

tracted from those at full load. Different 
loss components. 
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Figure 3.64 Increase in the total elec-
tromagnetic losses caused by the load-

ing. 
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coupled model produces larger winding losses than the a posteriori one, while for the 
core losses the opposite is true. When the eddy currents in the sheets are included in the 
analysis, they damp the field, resulting in smaller core losses. In the frame of the total 
electromagnetic losses, however, the discrepancies seem to be rather insignificant. 

Besides the electromagnetic losses, the stator currents, electromagnetic torque, and in-
put power were also examined. As Figure 3.68 shows, the simulated stator currents are 
in satisfactory agreement with the measured ones. The coupled model produces esti-
mates that are, on average, 3.5% too large, while for the a posteriori technique the cor-
responding figure is 2.8%. The computation of the input power can be slightly enhanced 
by including the eddy currents of the sheets in the field analysis. The relative difference 
between the coupled model and measurements is 1.3% on average. The application of 
the 1-D model merely as post-processing yields an average relative difference of 2%. 
The values of the electromagnetic torque evaluated from the measurements and  
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Figure 3.67 Loss differences. Results of 
post-processing subtracted from those of 

the coupled model. 
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Figure 3.68 Stator current as a function 
of fundamental frequency; PP denotes 

post-processing. 
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Figure 3.66 Electromagnetic losses as a 
function of fundamental frequency; PP 

denotes post-processing. 
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obtained by simulations are shown in Figure 3.70. Clearly, the correspondence between 
the results is good and there is practically no difference between the two computation 
approaches. 

Conclusion 

The most important results of the analysis of the test motor under the frequency-
converter supply are given below. 

• Time-discretized analyses of the no-load operation of the test motor were carried 
out employing three different input voltages with switching frequencies 1 kHz, 3 
kHz, and 6 kHz. The computed total electromagnetic losses were in satisfactory 
agreement with the measurements; the average relative difference was 9%. 

• The additional electromagnetic losses caused by the harmonic content of a fre-
quency-converter supply were examined by both the time-harmonic and time-
discretized implementation of the coupled method. The correspondence between 
the simulations and experiments was found to be reasonable. In the case of the 
time-discretized model the relative difference was 20% on average, while for the 
time-harmonic one the corresponding figure was 23%. The value presented for 
the time-discretized method would be notably better if the 7.5 Hz point was not 
taken into consideration. The eddy current losses of the rotor were revealed to be 
the losses that were most influenced by the higher harmonics. However, the total 
hysteresis losses rose notably, too. 

• The performance of the test motor was also investigated under loading. The in-
crease in the electromagnetic losses in comparison with no load is substantial 
and is mainly caused by the winding losses. The eddy current losses are the most 
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Figure 3.69 Input power as a function of 

fundamental frequency; PP denotes 
post-processing. 
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Figure 3.70 Electromagnetic torque as a 
function of fundamental frequency; PP 

denotes post-processing. 
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altered of the core-loss components. The simulated full-load losses agreed well 
with the experimental ones. 

• Last, the possibility of applying the 1-D model solely for the loss computation 
was considered. According to the study, the total electromagnetic losses of the 
test machine could be estimated at full load almost as accurately as when the 
eddy currents of the sheets were included in the field solution. Furthermore, the 
simulated values of the electromagnetic torque were practically indistinguishable 
from those that were measured. Clearly, the eddy current phenomenon of the 
sheets is not dominant in the test motor, at least not at full load. 
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4 Discussion 

4.1 Summary and significance of the work 

In this thesis, the eddy current phenomenon in electrical steel sheets is carefully investi-
gated. For this purpose two methods have been developed: a time-discretized and a 
time-harmonic one. Both the methods incorporate the eddy currents in the sheets into 
the 2-D finite element analysis of electrical machines through a 1-D penetration equa-
tion. The work especially concentrates on the applicability and proper implementation 
of such coupled methods and on the analysis of frequency-converter-fed electrical ma-
chines. 

Let us first consider the time-discretized approach and the results obtained with it. The 
original idea of including the magneto-dynamic effects of steel sheets in a 2-D field 
formulation through a 1-D penetration equation was presented by Bottauscio et al. 
(2000a). This thesis contributes to the topic by studying the utilization of the 1-D field 
solution in 2-D equations in detail. The hysteresis and excess effects, however, are ne-
glected and the magnetic properties covered by a single-valued magnetization curve. In 
principle, the two models are coupled by obliging the magnetic field strength in the 2-D 
analysis to correspond with the surface magnetic field strength of the sheets from the 1-
D modeling. For determining the surface magnetic field strength, i.e., h(−d,t), two ap-
proaches are proposed, the conventional and integration techniques. 

In the conventional technique, the magnetic field strength is solved traditionally as a 
product of the magnetic flux density and reluctivity, while the integration one is based 
on Ampère's circuital law. Analyses of simple example geometries and of an electrical 
machine show that the space-discretization of the 1-D geometry greatly affects the reli-
ability of the coupling in certain cases. In particular, associating the first-order 1-D ele-
ments with the conventional technique is inappropriate. By doing this the eddy current 
losses represented by the 1-D field solution become only partly included in the 2-D 
equations. This is seen in the power balance of the method if the eddy current density is 
used to evaluate the related losses. On the other hand, if the eddy current losses are inte-
grated from the B-H loops, the values obtained are considerably underestimated. On the 
contrary, the integration approach also performs well in terms of the power balance 
with the first-order 1-D elements. This can be justified by the fact that the approach 
solves the magnetic field strength on the surface from the eddy current distribution. The 
aspects concerning the accuracy of the inclusion of the eddy currents in the 2-D analysis 
and its effects on the different electromagnetic quantities have only rarely been ad-
dressed in the literature (Dupré et al., 1999), (Dlala, 2009a). Within this thesis, the cou-
pling of the 1-D and 2-D formulations is investigated in a systematic and thorough 
manner, with the space-discretization being considered carefully. Thus it contributes by 
providing new information on the suitable use of methods such as the one in question. 
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In addition to the success of the inclusion of the eddy current effects in the 2-D finite 
element analysis, the computational cost at which it is achieved is of great importance. 
The computations that were carried out revealed that even if the number of nodes in the 
1-D mesh is kept constant, changing the order of the elements might result in a notable 
increase in the computation time. Basically, the higher the order, the longer the compu-
tation time is. The magnetic linearization of the 1-D model was also studied in order to 
gain better computational efficiency. When the non-linear magnetic properties of the 
steel sheets are being considered, the computational algorithm of the 2-D–1-D approach 
that was developed copes with two nested iterative schemes. Obviously, it would be 
beneficial to avoid that. It was discovered that the iterative solution of the 1-D equations 
can be omitted and instead the reluctivity taken as an input from the 2-D computation 
scheme if the ratio of the sheet thickness to the skin depth is approximately below five. 
Within these limits, the linearized 1-D implementation provides results comparable to 
those obtained with the non-linear one, not only in respect of the losses but in respect of 
other electromagnetic quantities as well. 

On the basis of the observations above, from the viewpoint of both accuracy and com-
putational efficiency, the integration method together with the first-order 1-D elements 
couples the 2-D and 1-D models in an optimal way. In addition, the complexity of the 
computational scheme should be reduced, whenever practicable, by magnetically lin-
earizing the 1-D eddy current problem. The idea of the linearization of the 1-D equa-
tions within the coupled approach and its implementation are original. 

The time-discretized 2-D–1-D method was used to compute a 37-kW test induction mo-
tor under different supply and loading conditions. First, the no-load operation with a 
sinusoidal voltage supply was simulated. The slip-control measurements performed ver-
ify the simulation results obtained; the relative difference between the computed and 
experimental electromagnetic losses is 8% on average. For the stator currents, the corre-
sponding figure is 5%. Second, the operation of the test motor with a frequency-
converter supply was analyzed. At no load, computations in which the switching fre-
quency of the frequency converter was varied were carried out. The electromagnetic 
losses obtained agree reasonably well with the measurements, the relative difference 
being 9% on average. 

The biggest differences between the simulations and experiments occur at the operating 
points with the lowest and highest fundamental frequencies. This is partly due to the 
overestimation of the stator currents by the method. One of the findings of the no-load 
simulations is that the eddy current losses of the sheets are the core-loss component 
which is most affected by the switching frequency. In the rotor, these losses decrease by 
36% on average when the switching frequency is raised from 1 kHz to 6 kHz. The addi-
tional losses caused by the higher harmonics of the frequency-converter supply were 
also studied. Of the core-loss components, the rotor eddy current losses of the sheets 
change the most in comparison with the case of the sinusoidal voltage supply. Besides 
the no-load condition, loaded operating points of the test motor were investigated. The 
method was found to provide reasonable estimates of the electromagnetic losses at load-
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ing, too. The simulated values differ from the measured ones by 8% on average. Last, 
the application of the 1-D eddy current model merely for the loss computation without 
its inclusion in the 2-D equations was analyzed. According to the examination, the 
simulated losses and input powers agree slightly better with those from the measure-
ments when the eddy current phenomena in the sheets are actually taken into account. 
However, the increase in the accuracy is low in comparison with its computational cost. 

By neglecting the eddy currents from the field solution, the computation time can be 
reduced by 93% on average. Thus, it appears that in applications such as the test ma-
chine in question it may be more beneficial to omit the eddy currents in the sheets from 
the 2-D analysis and simply post-process the related losses by the 1-D model. In par-
ticular, in this thesis, the test machine was investigated with a frequency-converter sup-
ply in a manner which comprehensively models the eddy currents in the sheets. To con-
clude, the various simulations conducted on the 37-kW test motor clarify the usability of 
the time-discretized method that was developed. The correspondence between the com-
puted and measured losses and other electromagnetic quantities is satisfactory. 

The time-harmonic method that was developed is, owing to its implementation, applica-
ble for analyzing problems for which supply conditions might be non-sinusoidal. Like 
the time-discretized one, it was used to model the 37-kW test machine. The additional 
electromagnetic losses at no load as a result of the frequency-converter supply were 
computed. The results that were obtained agree with the measurements with reasonable 
accuracy. The most significant single factor explaining the differences between the 
simulations and measurements is the neglect of the excess losses. Because of its supe-
rior computational efficiency, the time-harmonic approach that was proposed is seen to 
hold opportunities for qualitative analysis. 

4.2 Shortcomings and further research 

Although the 2-D–1-D models that were presented were able to predict the losses and 
other electromagnetic quantities of the test motor under various operating conditions 
with reasonable accuracy, they also involve some shortcomings. These are discussed 
next. In addition, this section points out some topics and themes for further research. 

Perhaps the most obvious shortcoming of the time-discretized method is the neglect of 
the hysteresis and excess effects. Their inclusion in the analysis would require, particu-
larly in the case of rotating electrical machines, either utilization of more powerful 
methodologies for coping with the non-linearities, e.g. the fixed point method (Dlala, 
2008b), or derivation of the equations of the sheets in a mesh-free frame (Rasilo and 
Arkkio, 2010). As pointed out above, however, the consideration of all the magneto-
dynamic effects of the sheets was beyond the scope of this thesis. 
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In principle, the separation of the truly interdependent phenomena of the sheets is a 
rather substantial simplification. According to the literature review, however, in an ap-
paratus with an air gap, such as an electrical machine, it is mostly expected to cause the 
contributions of the iron-loss components to be somewhat inaccurate. For instance, 
Dlala et al. (2010) analyzed a test induction motor by post-processing its losses with a 
comprehensive sheet formulation, i.e., solving the 1-D penetration equations encom-
passing dynamic hysteresis modeling. Their study revealed that the total amount of the 
iron losses does not change greatly, regardless of whether or not the eddy current and 
hysteresis phenomena are interdependently taken into account. If they are, the total 
losses are 577 W, while, if not, the corresponding figure is 567 W. The contributions of 
the iron-loss components, on the other hand, are quite notably affected since, for in-
stance, the eddy current losses computed with a single-valued magnetization curve are 
21% greater than those obtained with the hysteresis included. Thus, the methods devel-
oped within this thesis are expected to produce somewhat overestimated values of the 
eddy current losses of the sheets. Regarding the modeling of the sheets, it must also be 
noted that both the coupled methods presented in this thesis omit the rotating compo-
nents of the hysteresis and the time-discretized method the rotating components of the 
excess losses, too. This naturally partly explains the differences between the simulations 
and measurements. The iron-loss computation of the time-discretized approach could be 
enhanced by fitting the hysteresis and excess-loss coefficients from 2-D measuring data. 
The same also applies to the hysteresis modeling of the time-harmonic method. Another 
future topic is the inclusion of the excess effects in the time-harmonic method. 

Other shortcomings of the methods concerning the modeling of the fields and windings 
are the neglect of the losses in the frame of the machines and the exclusion of the eddy 
currents in the conductors of the stator windings. Both of these simplifications, how-
ever, are typically justified for machines like the one studied in this work. Including the 
eddy currents of the phase windings in the field analysis becomes necessary with ma-
chines equipped with form-wound windings (Islam, 2010). In addition, the reduction of 
the intrinsically 3-D problem to a coupled 2-D–1-D one in the first place introduces 
sources of inaccuracy. The end fields of rotating electrical machines tend to be strongly 
3-D, implying that the losses and their distribution in a real machine are different from 
the assumed ones. Finally, electrical steel sheets always exhibit anisotropy to some ex-
tent, the consideration of which has been beyond the scope of the research (Tumanski, 
2003). 

Finally, within this thesis, the non-linearities of the problems were handled by an in-
complete Newton-Raphson method, possibly in association with under-relaxation. Al-
though such means ensure sufficient convergence properties, they might not be the most 
efficient ones. An attractive topic for future research is the enhancement of the compu-
tation times, particularly of the time-discretized method. Interesting works on the im-
provement of the Newton-Raphson iterative scheme have been produced, for instance 
by Bastos et al. (1995) and Fujiwara et al. (2005). The findings of these might be appli-
cable to speed up the convergence of the time-discretized simulations. 
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5 Conclusion 

This work aimed at developing methods that comprehensively model the eddy currents 
in electrical steel sheets and the losses inflicted by these. The second objective was to 
employ such methods in the analysis of frequency-converter-fed rotating electrical ma-
chines under practical working conditions. To meet these objectives, two methods were 
developed, one of which is founded on the assumption of the sinusoidal time variation 
of the electromagnetic quantities, whereas the other is suitable for studying the actual 
time variation. In order to test their applicability, a 37-kW cage-induction motor was 
examined under different operating conditions by means of experiments and simulations 
and the results were compared. 

Both the computational methods that were developed are based on the finite element 
solution of the two-dimensional (2-D) field and winding equations of electrical ma-
chines. The eddy currents flowing in the sheets are modeled by a one-dimensional (1-D) 
diffusion equation and incorporated into the 2-D formulations. The time-discretized 
method couples the 1-D solution through the surface magnetic field of the sheets, while 
the time-harmonic model employs the complex reluctivity. 

This work contributes to the methodology of coupled, time-discretized 2-D–1-D models 
by carefully analyzing how the 1-D solution is properly utilized in the 2-D formulation. 
Two means for the coupling of the models, i.e., for defining the surface magnetic field, 
were presented and investigated. The results revealed that relatively great errors might 
occur in the input powers, losses, or power balance of the method if the inclusion of the 
eddy currents is realized improperly. The study resulted in a proposal for the optimal 
coupling. Second, the linearization of the 1-D model within the coupled method was 
analyzed. It was found that the modeling of the true magnetic properties of the sheets, 
i.e., here representing the magnetic properties of the sheets with a single-valued reluc-
tivity curve, is not necessary if the ratio of the sheet thickness to the skin depth is below 
five. The time-harmonic version of the coupled model encompasses the eddy current but 
also the hysteresis of the sheets through a complex reluctivity. One of its innovations 
concerns the implementation; the method can be applied to compute a machine fed from 
a non-sinusoidal voltage source. 

The methods proposed were applied to the test machine under different supply and load-
ing conditions. The time-discretized approach provided sufficiently accurate estimates 
of the electromagnetic losses throughout the study, the errors being below 10%. In addi-
tion, it was found that out of the iron-loss components, the eddy current losses of the 
rotor are the most sensitive to the switching frequency of the frequency converter. These 
losses were also observed to increase the most in comparison with the sinusoidal sup-
ply. The hysteresis losses of the stator, however, changed remarkably, too. Partly be-
cause of its neglect of excess losses, the time-harmonic implementation of the method 
resulted in somewhat rough results. However, it modeled the trends of the additional 
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losses accurately enough with high computational efficiency. Its utilization for problems 
for which the definite quantity of the losses is not a key issue but the relative changes 
are could thus be proper. To conclude, the comparative investigations of the measure-
ments and simulations emphasized the suitability of the methods developed for coping 
with the real operating conditions and properties of rotating electrical machines. 
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