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Tässä väitöskirjassa gaussisia prosesseja käytetään määrittämään priorijakaumia latenteille funktioille
hierarkisissa bayesilaisissa malleissa. Gaussinen prosessi on epäparametrinen malli, jossa latentin funktion
muotoa ei tarvitse kiinnittää vaan sen ominaisuuksia voidaan määritellä epäsuorasti. Ominaisuudet
määritellään keskiarvo- ja kovarianssifunktioiden avulla, jotka vaikuttavat muun muassa funktion sileyteen ja
vaihtelevuuteen. Gaussisen prosessin epäparametrisuus mahdollistaa joustavien ja monipuolisten
todennäköisyyspohjaisten mallien rakentamisen.

Gaussisten prosessien käytössä on kaksi merkittävää ongelmaa. Pääasiallinen ongelma on laskentaan
vaadittava aika, joka kasvaa nopeasti aineiston määrän kasvaessa. Toinen ongelma on, ettei malleja pystytä
analysoimaan analyyttisesti, mikä hidastaa laskentaa entisestään. Tässä väitöskirjassa tutkitaan menetelmiä
näiden ongelmien pienentämiseksi.

Mallien analysoinnin ongelmia ratkotaan aproksimatiivisilla menetelmillä. Laplace aproksimaatiota ja
expectation propagation algoritmia käytetään antamaan gaussinen approksimaatio latenttien muuttujien
ehdolliselle posteriorille annettuna hyperparametrit. Hyperparametrien yli integrointi suoritetaan Monte Carlo,
ruudukko, tai central composite design integrointimenetelmillä. Menetelmiä verrataan Markov ketju Monte
Carlo integrointiin kaikkien tuntemattomien muuttujien yli. Laskentaa nopeutetaan gaussisen prosessin
harvoilla aproksimaatioilla ja kompaktikantajaisilla kovarianssifunktioilla. Näitä molempia analysoidaan
yksityiskohtaisesti ja testataan koeaineistoilla. Myös käytännön yksityikohtia niiden yhdistämisestä
aproksimatiivisten analyysimenetelmien kanssa käsitellään.

Analyysin nopeutusmenetelmiä testataan kolmella mallinnusongelmalla: tautikartoitus-, regressio- ja
luokitteluongelmalla. Tautikartoitus- ja regressio-ongelmaa lähestytään sekä perinteisillä että robusteilla
havaintomalleilla. Tulokset osoittavat, että käsitellyt menetelmät nopeuttavat analyysia huomattavasti
huonontamatta tulosten tarkkuutta merkittävästi.
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Foreword

When I first opened the door to professor Jouko Lampinen’s office in 2004, I didn’t
have the smallest hunch where that summer job interview would lead me to. After
two summers of struggling with MCMC methods and Bayesian modeling I found my-
self doing a masters thesis on Gaussian processes. The research group and instructor,
Dr.Tech. Aki Vehtari, had remained the same throughout the journey from Metropolis-
Hastings to Reversible jump MCMC - and beyond. And then, in the fall 2006, Aki was
steering my first steps as a post graduate student.

During these four years my home base, Laboratory of Computational Engineering
at Helsinki University of Technology, has gone through a series of transformations.
First it merged with biomedical engineers and became part of Department of Biome-
dical Engineering and Computational Science, and moved to new premises. Later on,
my beloved university decided to merge with two other universities from the nearby
seaport putting our new shiny deparment as a part of Aalto University. Despite all the-
se transformations, it has provided me a safe and fertile ground for research.

Before I let you, dear reader, take a closer look at my accomplishments, I beg your
pardon and spend little time on acknowledgements. First of all, I want to thank my
instructor Aki Vehtari for all his support. Whenever there was a problem I could pop in
his office, and during the many bursts of frustration his patience proved to be endless.
My supervisor Jouko Lampinen receives thanks for excellent working environment
and the chance to work with these fascinating problems. Jouko deserves also special
mention for his relaxed attitude and ever present figure in laboratory’s leisure activities,
as well as his unbeatable solid chest in walrus wrestling.

I want to thank also all my collaborators and workmates. I give special thanks to
Pasi Jylänki, Jaakko Riihimäki, Jouni Hartikainen, Janne Ojanen, Ville Pietiläinen and
Jussi Kumpula for excellent company and interesting conversations. Thank you also
for occasionally harassing me with random matters that gave welcomed rest. From the
administrative staff I must mention Kaija Virolainen and Laura Pyysalo, who helped
with so many practical matters. From outside my research group, I first thank Pia Mä-
kelä, from National Institute for Health and Welfare, for guiding me in alcohol related
matters from nonconsumer point of view. I thank also Professor Zoubin Ghahramani
and Dr. Carl Rasmussen for hosting me in the Computational and Biological Learning
Lab in Cambridge in 2008.

I want to acknowledge also the funders of this work. The Graduate School in Elect-
ronics and Telecommunications and Automation (GETA) provided my basic funding
from almost the beginning of my post graduate studies. Finnish Funding Agency for
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Technology and Innovation (TEKES) and the Academy of Finland gave important
supplement to the graduate school funding through the Finnwell -project and Aki’s
grant. I want to thank also my scholarship providers, Satakunta regional Fund of Fin-
nish Cultural Foundation, Emil Aaltonen Foundation and the Finnish Foundation for
Economic and Technology Sciences – KAUTE, for their generous attitude towards me.

Usually parents are mentioned at this point, and so here also. Not for just being
there (since evidently my parents are a necessary condition for the existence of this
thesis) but for one particular decision they made in my youth. I’m gratefull to my
parents for finanzing my exchange student year during the high school (even after the
lengthy negotiations). The English I learned in Texas at the end of 1990’s has paid back
well during this work. I must mention also my former girlfriend – and present wife –
Sari, even though she explicitly forbade that. It is just a must to repeat her words at
this point: "I don’t want to be acknowledged for doing nothing."Well, this claim is not
totally true. Even though her input to the scientific work was infinitesimal, she stole
my thoughts from it every time I needed it most.
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Chapter 1

Introduction

Mathematical models are a nonseparable part of almost all scientific disciplines, en-
gineering applications and every day life in modern days. Probably the best known
example of mathematical models in science are Newton’s laws, which describe deter-
ministically the relationship between the forces acting on a body and the motion of
that body. In a deterministic approach, observations, for example motion, can be deter-
mined exactly from the parameters, force. Opposed to this, probabilistic models deal
with uncertain events, where parameters determine probabilities for a number of pos-
sible observations. The early works on probability theory concentrated on a pre-data
problem where the parameters are known and the aim is to give probability statements
about observations before seeing them. In the late 18th century the mathematical ma-
chinery was turned to solve the so called inverse probability, where the aim is to infer
the unknown parameters from the observations. Bayes (1763) and Laplace (1774) re-
ceive independent credit for being the firsts to consider the problem.

Albeit the Bayesian modeling owes its name to reverend Thomas Bayes, the mod-
ern day Bayesian theory has come rather far from the early works in the late 18th
century. The foundations were laid in the early 20th century (see e.g. Dale, 1999) and
current theoretical constructions are well summarized by Bernardo and Smith (2000).
The fundamental principle in the Bayesian theory is that all uncertainties are summa-
rized with probabilities, let them relate to parameters or observations. This differs from
the classical point of view, where only the observations may be random variables, but
is very much aline with modern day mathematical modeling in general. For example,
in physics or in engineering, handling uncertainties, let them relate to observations or
unknown parameters, is every day business.

Building a Bayesian model, denoted by M, starts with an observation model which
contains the description of the data generating process, or its approximation. The ob-
servation model is denoted by p(D|θ,M), where θ stands for the parameters and D

the observations. The observation model quantifies a conditional probability for data
given the parameters, and when regarded as a function of parameters it is called like-
lihood. If the parameter values were known, the observation model would contain all
the knowledge of the phenomenon and could be used as such. If the observations con-
tain randomness, sometimes called noise, one would still be uncertain of the future
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2 CHAPTER 1. INTRODUCTION

observations, but could not reduce this uncertainty since everything that can be known
exactly would be encoded in the observation model. Usually, the parameter values are
not known exactly but there is only limited knowledge on their possible values. This
prior information is formulated mathematically by the prior probability p(θ|M), which
reflects our beliefs and knowledge about the parameter values before observing data.
Opposed to the aleatory uncertainty encoded in the observation model the epistemic
uncertainty present in the prior can be reduced by gathering more information on the
phenomenon (for a more illustrative discussion on the differences between these two
sources of uncertainty see O’Hagan, 2004)). Bayesian inference is the process of up-
dating our prior knowledge based on new observations – in other words it is the process
for reducing the epistemic uncertainty.

The cornerstone of Bayesian inference is the Bayes’ theorem which defines the
conditional probability of the parameters after observing the data

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
. (1.1)

This is called the posterior distribution. It contains all the information about parameter
θ that we are able to extract from the data D with the model we are using and combines
this with the prior information. The normalization constant

p(D|M) =
∫
p(D|θ,M)p(θ|M)dθ (1.2)

is equal to the conditional probability of the data given our model assumptions. It
is also called the marginal likelihood for the model. The model, M, stands for all
the hypotheses and assumptions that are made about the phenomenon. It embodies the
functional forms of the observation model and the prior, which are always tied together,
as well as our subjective assumptions used to define these mathematical abstractions.
Because everything is conditioned on M, it is a redundant symbol and as such omitted
from this on. Usually we are not able to define ’correct’ model and most of the time we
have only limited ability to encode our prior beliefs in the mathematical formulation.
For this reason one should always keep in mind the hidden dependency on M and verify
that the results are sensible and investigate what aspects of reality are not captured by
the model. Checking the model is crucial to distinguish useful models from poor ones
(see for example Gelman et al., 2004).

The true power of the Bayesian approach comes from the possibility to construct
and analyze hierarchical models. In hierarchical models, prior probabilities are ap-
pointed also for the parameters of the prior. Let us write the prior as p(θ|η), where
η denotes the parameters of the prior distribution, hyperparameters. By setting a hy-
perprior, p(η), for the hyperparameters we obtain a hierarchical model structure where
the fixed parameter values move further away from the data. This allows more flexible
models and leads to vaguer prior, which is beneficial if the modeller is unsure of the
specific form of the prior. In theory the hierarchy could be extended as far as one de-
sires but there are practical limits how many levels of hierarchy are reasonable (Goel
and Degroot, 1981).

The models considered in this dissertation are hierarchical models where the pa-
rameter θ is replaced by a latent function f(x). The observation models are build so
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that an individual observation depends on a function value at a certain input location
x. The latent function f(x) is given a Gaussian process (GP) prior (Rasmussen and
Williams, 2006), whose properties are defined by a mean and covariance function, and
the hyperparameters related to them. The hierarchy is continued to the third level by
giving a hyperprior for the covariance function parameters. The assumption is that
there is a functional description for the studied phenomenon, which we are not aware
of, and the observations are noisy realizations of this underlying function. The power
of this construction lies in the flexibility and non-parametric form of the GP prior. We
can use simple parametric observation models that describe the assumed observation
noise. The assumptions about the functional form of the phenomenon are encoded in
the GP prior. Since GP is a non-parametric model we do not need to fix the functional
form of the latent function, but we can give implicit statements of it. These statements
are encoded in the mean and covariance function, which determine, for example, the
smoothness and variability of the function.

Despite their attractive theoretical properties, GPs provide practical challenges.
Their main complication relates to computational time which increases very rapidly as
a function of a number of data points. The other challenge is the analytically intractable
inference, which exacerbates the slow computational time. The goal of this dissertation
is to study methods to alleviate these problems. The treatment will be divided into two
separate methods. First, the inference problem is attacked. When inferring the poste-
rior of the hyperparameters or the latent function (the posterior process) one needs to
conduct a series of computational steps each of which scales as O(n3), where n is the
number of data points. The aim is to reduce the number of needed steps. For example,
a commonly used method of approximating posterior distributions is via Markov chain
Monte Carlo (MCMC), where each Markov step requires evaluation of a (unnormal-
ized) posterior density. In MCMC methods, one needs hundreds of such evaluations, at
the minimum. In comparison, giving an analytic approximation to the posterior distri-
bution may require only tens of optimization steps, at maximum. Thus, computational
savings are considerable. The second treatment tries to relieve the O(n3) scaling in
computational time. The solution to this is searched from the sparse approximations
to Gaussian processes and compactly supported (CS) covariance functions. The com-
putational time with sparse approximations scales as O(nm2), where m < n. How
small m can be, depends on the data. The CS covariance functions lead to computa-
tions which scale, in general, as O(n3) but with smaller constant than with traditional
covariance functions. The size of the constant depends, again, on data. It turns out that
sparse approximations and CS covariance functions are complementary. With data sets
where m should be large the constant factor related to compactly supported covariance
functions is usually small. And vice versa.

This work is organized as follows. The compendium part of the thesis consists of
six chapters that summarize the goals, techniques and discoveries of the research. The
published articles are attached at the end of the dissertation. The compendium part is
not meant to be an extensive description of the results and scientific contribution in the
thesis but to summarize the essential background theory and the main findings. It is in a
sense complementary to the publications and hopefully serves as an easy starting point
for those less familiar with the research subject. This first chapter has introduced the
basics of the Bayesian inference and summarized the goals of the research. Chapter 2
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4 CHAPTER 1. INTRODUCTION

gives a short introduction to Gaussian processes and the general description of models
considered in the dissertation. Chapter 3 summarizes the inference methods used in
the attached publications. The treatment is at a rather general level at this point and
more detailed description is given in the publications I-V. Chapter 4 is devoted for
sparse GPs, which form an essential part of the attached publications I, II and IV –
VI. Chapter 5 gives a short summary of the publications and the main results in them.
Chapter 6 discusses the results.

4 CHAPTER 1. INTRODUCTION

gives a short introduction to Gaussian processes and the general description of models
considered in the dissertation. Chapter 3 summarizes the inference methods used in
the attached publications. The treatment is at a rather general level at this point and
more detailed description is given in the publications I-V. Chapter 4 is devoted for
sparse GPs, which form an essential part of the attached publications I, II and IV –
VI. Chapter 5 gives a short summary of the publications and the main results in them.
Chapter 6 discusses the results.



Chapter 2

Gaussian process models

The probabilistic models considered in this work are build upon the Gaussian process
(GP), which is used to define prior distributions over latent functions. The general form
of the models can be written as follows:

observation model: y ∼
n∏
i=1

p(yi|fi, γ) (2.1)

GP prior: f(x)|θ ∼ GP (m(x), k(x,x′ |θ)) (2.2)
hyperprior: θ, γ ∼ p(θ)p(γ). (2.3)

Here y = [y1, ..., yn]T is a vector of observations (target values) at (input) locations
X = {xi = [xi,1, ..., xi,d]T}ni=1. f(x) is a latent function with value fi = f(xi) at
input location xi. The boldface notation will denote a set of latent variables in a vec-
tor f = [f1, ..., fn]T. Here, the inputs are real valued vectors x ∈ <d but in general
other inputs, such as strings or graphs, are possible as well. θ collects the hyperpa-
rameters in the covariance function k(x,x′ |θ), and γ collects the hyperparameters in
the observation model p(yi|fi, γ). The notation will be slightly abused since p(yi|·) is
used also for the likelihood, which is the same equation as the observation model but a
function of parameters instead of yi. The mean function is considered zero, m(x) ≡ 0,
throughout the work since this simplifies the notation. The zero mean is also used in
the attached publications since in methodological works (publications II, III, and V) it
follows the standard convention and in the more applied spatial models (publications
I, IV and VI) the standardization of the data before inference ensures that zero mean is
justified (see for example publication IV).

The advantage of using GPs is that we can conduct the inference directly in the
function space f(x) : <d → <. Formal definition for the process is given as (e.g.
Rasmussen and Williams, 2006):

A Gaussian process is a collection of random variables, any finite number of which
have a joint Gaussian distribution.
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6 CHAPTER 2. GAUSSIAN PROCESS MODELS

By definition, any set of function values f , indexed by the input co-ordinates X,
have a multivariate Gaussian prior distribution

p(f |X, θ) = N(f |0,Kf,f), (2.4)

where Kf,f is the covariance matrix. Notice, that the prior over functions will be
denoted by GP(·, ·), whereas the prior over finite set of latent variables will be de-
noted by N(·, ·). The covariance matrix is constructed from a covariance function,
[Kf,f ]i,j = k(xi,xj |θ), which characterizes the correlations between different points
in the process E[f(xi), f(xj)] = k(xi,xj |θ) (remember that the prior mean is explic-
itly set zero in this work). Covariance function encodes the prior assumptions of the
latent function, such as the smoothness and scale of the variation, and can be chosen
freely as long as the covariance matrices produced are symmetric and positive semi-
definite (vT Kf,f v ≥ 0,∀v ∈ <n). An example of a stationary covariance function is
the squared exponential

kse(xi,xj |θ) = σ2
se exp

(
−

d∑
k=1

(xi,k − xj,k)2/l2k

)
, (2.5)

where θ = {σ2
se, l1, ..., ld}. Here, σ2

se is the scaling parameter, and lk is the length-
scale, which governs how fast the correlation decreases as the distance increases in the
direction k. In this work, the length-scale differs from the standard convention by fac-
tor
√

2 (see e.g. Rasmussen and Williams, 2006). See Figure 2.1 for illustration. The
squared exponential is only one example of possible covariance functions. Few other
functions will be discussed in Chapter 4 and more detailed discussion on common co-
variance functions and their properties is given by, for example, in (Diggle and Ribeiro,
2007; Finkenstädt et al., 2007; Rasmussen and Williams, 2006).

By definition, the marginal distribution of any subset of latent variables, the func-
tion values at fixed input points, can be constructed by simply taking the appropriate
submatrix of the covariance and subvector of the mean. Imagine, that we want to
predict the values f̃ at new input locations X̃. The joint prior for latent variables at
observation X and prediction locations X̃ is[
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<d ×<d ×n → <1×n, and k(X,X) : <d×n ×<d×n → <n×n. The marginal distribu-
tion of f̃ is p(f̃ |X̃, θ) = N(f̃ |0,Kf̃ ,̃f) like the marginal distribution of f given in (2.4).
This marginal is also called a prior predictive distribution since it is not conditioned to
any observations. The conditional distribution of a set of latent variables given other
set of latent variables is Gaussian as well. For example, the distribution of f̃ given f is

f̃ | f ,X, X̃, θ ∼ N(Kf̃,f K-1
f,f f ,Kf̃ ,̃f −Kf̃,f K-1

f,f Kf ,̃f), (2.7)

which can be interpreted as the posterior predictive distribution for f̃ after observing
the function values at locations X. The mean and covariance of the conditional dis-
tribution are functions of input vector x̃ and X plays the role of fixed parameters.
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Thus, the above distribution generalizes to a Gaussian process with mean function
mp(x̃) = k(x̃,X) K-1

f,f f and covariance kp(x̃, x̃′) = k(x̃, x̃′)−k(x̃,X) K-1
f,f k(X, x̃′),

which define the posterior distribution of the latent function f(x̃). The posterior GP is
illustrated in Figure 2.2.
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Figure 2.1: An illustration of a Gaussian process. The upper left figure presents three
functions drawn randomly from a zero mean GP with squared exponential covariance
function. The hyperparameters are l = 1 and σ2 = 1 and the grey shading repre-
sents central 95% probability interval. The upper right subfigure presents the marginal
distribution for a single function value. The lower subfigures present three marginal
distributions between two function values at distinct input locations shown in the up-
per left subfigure by dashed line. It can be seen that the correlation between function
values f(xi) and f(xj) is the greater the closer xi and xj are to each others.

As will be seen, the class of models described by the equations (2.1)-(2.3) is
rather rich. Even though the observation model is assumed to be factorizable given
the latent variables f(x1), ..., f(xn), the correlations between the observations are in-
corporated into the model via the GP prior, and the marginalized observation model
p(y |γ, θ) =

∫
d f p(f |θ)

∏n
i=1 p(yi|fi, γ) is no longer factorizable. The models con-

sidered here are also rather old since utilizing Gaussian processes is certainly not a
new invention. Early examples of their usage can be found, for example, in time se-
ries analysis and filtering (Wiener, 1949), and geostatistics (e.g. Matheron, 1973). GPs
are still widely and actively used in these fields and usefull overviews are provided by
Cressie (1993), Grewal and Andrews (2001), Diggle and Ribeiro (2007), and Gelfand
et al. (2010). O’Hagan (1978) was one of the firsts to consider Gaussian processes in
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Figure 2.2: A conditional (posterior) GP p(f̃ | f , θ). The observations f = [f(0.7) =
1, f(1.3) = −1, f(2.4) = 0, f(3.9) = 2]T are plotted with circles in the upper left sub-
figure and the prior GP is illustrated in the figure 2.1. When comparing the subfigures
to the equivalent ones in Figure 2.1 we can see clear distinction between the marginal
and the conditional GP. Here, all the function samples travel through the observations,
the mean is no longer zero and the covariance is non-stationary.

a general probabilistic modeling context. He provided a general theory of Gaussian
process prediction and utilized it for a number of regression problems. This general re-
gression framework was later rediscovered as an alternative for neural network models
(Williams and Rasmussen, 1996; Rasmussen, 1996), and extended for other problems
than regression (Neal, 1997; Williams and Barber, 1998). This machine learning per-
spective is comprehensively summarized by Rasmussen and Williams (2006).
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Chapter 3

Inference and prediction

When conducting inference, the interest is in the posterior distributions of the hyper-
parameters and the latent function, as well as in the predictive distribution of new
observations (possibly at new input locations). In an ideal situation, all the desired dis-
tributions could be solved analytically, but unfortunately this is not possible in general.
This chapter illustrates how the posterior distributions can be approximated. First are
discussed methods for evaluating (or approximating) the conditional posterior of latent
variables,

p(f |D, θ, γ) =
p(y | f , γ)p(f |X, θ)∫
p(y | f , γ)p(f |X, θ)d f

, (3.1)

where the problem is the integral over f . Above, the training data is denoted by D =
{X,y}. Section 3.2 treats the problem of marginalizing over the hyperparameters to
obtain the marginal posterior distribution for the latent variables

p(f |D) =
∫
p(f |D, θ, γ)p(θ, γ|D)dθdγ. (3.2)

The question how to approximate the marginal posterior of the hyperparameters p(θ, γ|D)
is left for less attention and the topic is touched only shortly in the section 3.2.

The above considerations generalize straightforwardly to the evaluation of the pos-
terior predictive distribution of latent function, for which we may evaluate first the
conditional posterior p(f̃ |D, θ, γ, x̃) and then marginalize over the hyperparameters to
obtain p(f̃ |D, x̃). The conditional predictive distribution of a new observation can be
evaluated for each ỹi separately since the observation model is assumed to be factoriz-
able. Thus, we need to be able to evaluate the one dimensional integral

p(ỹi|x̃i,D, θ, γ) =
∫
p(ỹi|f̃i, γ)p(f̃i|x̃i,D, θ, γ)df̃i, (3.3)

after which the marginal posterior predictive distribution p(ỹi|x̃i,D) is evaluated anal-
ogously to the marginal posteriors p(f |D) and p(f̃ |D, x̃).
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3.1 Conditional posterior of the latent function

3.1.1 Posterior mean and covariance
If the hyperparameters are considered fixed, GP’s marginalization and conditionaliza-
tion properties can be exploited, for example, in prediction. Assume that we have found
the conditional posterior distribution p(f |D, θ, γ), which, in general, is not Gaussian.
We can then evaluate the posterior predictive mean simply by using the expression of
the conditional mean Ef̃ | f ,θ,γ [f(x̃)] = k(x̃,X) K-1

f,f f (see equation (2.7) and the text
below it) to obtain a parametric posterior mean function

mp(x̃|θ, γ) =
∫

Ef̃ | f ,θ,γ [f(x̃)]p(f |D, θ, γ)d f = k(x̃,X) K-1
f,f Ef |D,θ,γ [f ]. (3.4)

The posterior predictive covariance between any set of latent variables, f̃ , can be evalu-
ated from the relation (see, for example, Gelman et al., 2004, page 23 for justification)

Covf̃ |D,θ,γ [f̃ ] = Ef |D,θ,γ

[
Covf̃ | f [f̃ ]

]
+ Covf |D,θ,γ

[
Ef̃ | f [f̃ ]

]
, (3.5)

where the first term simplifies to the conditional covariance in equation (2.7) and the
second term can be written as k(x̃,X) K-1

f,f Covf |D,θ,γ [f ] K-1
f,f k(X, x̃′). Plugging

these into the equation and simplifying gives us the posterior covariance function

kp(x̃, x̃′) = k(x̃, x̃′)− k(x̃,X)
(
K-1

f,f −K-1
f,f Covf |D,θ,γ [f ] K-1

f,f

)
k(X, x̃′). (3.6)

Even if the exact posterior distribution p(f̃ |D, θ, γ), or in other words the poste-
rior process, was not analytically solvable we can still evaluate its posterior mean and
covariance functions easily, as long as we are able to solve the mean Ef |D,θ,γ and
covariance Covf |D,θ,γ [f ]. Following, for example, Csató and Opper (2002) the condi-
tional posterior mean can be written as

Ef |D,θ,γ [f ] = Kf,f

∫
d f p(f)∂p(y | f)/∂ f

p(D|θ, γ)
, (3.7)

and a similar result can be obtained for the covariance. The problem with the ex-
act formulas is that the integrals in them cannot be computed exactly. The common
practice to approximate the posterior distribution p(f |D, θ, γ) is either with Markov
chain Monte Carlo (MCMC) (e.g. Neal, 1997, 1998; Diggle et al., 1998; Kuss and
Rasmussen, 2005; Christensen et al., 2006) or by giving an analytic approximation to
it (e.g. Williams and Barber, 1998; Gibbs and Mackay, 2000; Minka, 2001; Csató and
Opper, 2002; Rue et al., 2009). The analytic approximations considered here assume
a Gaussian form in which case it is natural to approximate the posterior predictive
distribution with Gaussian as well. In this case the equations (3.4) and (3.6) give its
mean and covariance. The Gaussian approximation can be justified if the conditional
posterior is unimodal, which it is if the likelihood is log concave, and there is enough
data so that the posterior will be close to Gaussian. However, invoking the central limit
theorem with GP models is not straightforward since the number of observations may
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grow either alongside the latent variables or per latent variable. Examples of the for-
mer are traditional GP regression and classification (publications II, III and V) and the
latter case is present, for example, in disease mapping models (publications I, IV and
VI) where the background population in a grid cell may increase albeit the number of
latent variables remains constant. The central limit theorem may apply in the increase
alongside latent variables case as well if the effective number of latent variables re-
mains small compared to the number of observations. The goodness of the Gaussian
approximation is well discussed, for example, by Rue et al. (2009). A pragmatic justi-
fication for using Gaussian approximation is that many times it suffices to approximate
well the mean and variance of the latent function. These, on the other hand, fully de-
fine Gaussian distribution and one can approximate the integrals over f̃i by using the
Gaussian form for its conditional posterior.

3.1.2 Gaussian observation model
A special case of an observation model, for which the conditional posterior of the latent
variables can be evaluated analytically, is the Gaussian distribution, yi ∼ N(fi, σ2),
where the parameter γ is replaced by the noise variance σ2. In this case, both the
likelihood and the prior are Gaussian functions of the latent variable, and we are able
to analytically integrate over f to obtain the marginal likelihood of the hyperparameters

p(y |θ, σ2) = N(y |0,Kf,f +σ2I). (3.8)

Setting this in the denominator of the equation (3.1), re-arranging the terms and sim-
plifying the expression gives a Gaussian distribution also for the conditional posterior
of the latent variables

f |D, θ, σ2 ∼ N(Kf,f(Kf,f +σ2I)−1 y,Kf,f −Kf,f(Kf,f +σ2I)−1 Kf,f). (3.9)

Since the conditional posterior of f is Gaussian, the posterior process, or distri-
bution p(f̃ |D, θ, σ2), is also Gaussian. The predictive mean and covariance can be
evaluated by placing the mean and covariance from (3.9) in the equations (3.4) and
(3.6), after which we obtain the predictive distribution

f̃ |D, θ, σ2 ∼ GP
(
mp(x̃), kp(x̃, x̃′)

)
(3.10)

where the mean and covariance aremp(x̃) = k(x̃,X)(Kf,f +σ2I)−1 y and kp(x̃, x̃′) =
k(x̃, x̃′)− k(x̃,X)(Kf,f +σ2I)−1k(X, x̃′). The predictive distribution for new obser-
vations ỹ can be obtained by integrating p(ỹ|D, θ, σ2) =

∫
p(ỹ|f̃ , σ2)p(f̃ |D, θ, σ2)df̃ .

The result is, again, Gaussian with mean Ef̃ |D,θ[f̃ ] and covariance Covf̃ |D,θ[f̃ ] + σ2I.

3.1.3 Laplace approximation
In the Laplace approximation the mean is approximated by the posterior mode of f and
the covariance by the curvature of the log posterior at the mode. The approximation is
constructed from the second order Taylor expansion of log p(f |D, θ) around the mode
f̂ , which gives a Gaussian approximation to the conditional posterior

p(f |D, θ, γ) ≈ q(f |D, θ, γ) = N(f |f̂ ,Σ), (3.11)
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where f̂ = arg maxf p(f |D, θ, γ) and Σ−1 is the Hessian of the negative log condi-
tional posterior at the mode (Gelman et al., 2004; Rasmussen and Williams, 2006):

Σ−1 = −∇∇ log p(f |D, θ, γ)|f=f̂ = K-1
f,f +W. (3.12)

Since the likelihood is factorizable here, W is a diagonal matrix with entries Wii =
∇fi
∇fi

log p(y|fi, γ)|fi=f̂i
. The approximation scheme is called the Laplace method

following Williams and Barber (1998), but essentially the same approximation is named
Gaussian approximation by Rue et al. (2009) in their Integrated nested Laplace approx-
imation (INLA) scheme for Gaussian Markov random field models.

The posterior mean of f(x̃) can be approximated from the equation (3.4) by re-
placing the posterior mean Ef |D,θ[f ] by f̂ . The posterior covariance is approximated
similarly by using (K-1

f,f +W)−1 in the place of Covf |D,θ[f ]. Thus, after some rear-
rangements and using K-1

f,f f̂ = ∇ log p(y | f)|f=f̂ , the approximate posterior predictive
distribution is

f̃ |D, θ, σ2 ∼ GP
(
mp(x̃), kp(x̃, x̃′)

)
, (3.13)

where the mean and covariance aremp(x̃) = k(x̃,X)∇ log p(y | f)|f=f̂ and kp(x̃, x̃′) =
k(x̃, x̃′) − k(x̃,X)(Kf,f +W−1)−1k(X, x̃′) The approximate conditional predictive
density of a new observation ỹi can now be evaluated, for example, with quadrature
integration over each f̃i separately

p(ỹi|D, θ, γ) ≈
∫
p(ỹi|f̃i, γ)q(f̃i|D, θ, γ)df̃i. (3.14)

3.1.4 Expectation propagation algorithm
The Expectation propagation (EP) algorithm is a general method for approximating in-
tegrals over functions that factor into simple terms (Minka, 2001). The Laplace method
constructs a Gaussian approximation at the posterior mode and approximates the poste-
rior covariance via the curvature of the log density at that point. EP, for its part, tries to
minimize the Kullback-Leibler divergence from the true posterior to its approximation.
EP approximates the conditional posterior with

p(f |D, θ, γ) ≈ q(f |D, θ, γ) =
1
ZEP

p(f |θ)
n∏
i=1

ti(fi|Z̃i, µ̃i, σ̃2
i ), (3.15)

where the likelihood terms have been replaced by site functions ti(fi|Z̃i, µ̃i, σ̃2
i ) =

Z̃i N(fi|µ̃i, σ̃2
i ) and the normalizing constant by ZEP.

EP algorithm updates the site parameters Z̃i, µ̃i and σ̃2
i sequentially. At each itera-

tion, first the i’th site is removed from the i’th marginal posterior to obtain a cavity dis-
tribution q−i(fi) = q(fi|D, θ)/ti(fi). Second step is to find a Gaussian q̂(fi) to which
the Kullback-Leibler divergence from the cavity distribution multiplied by the i’th ex-
act likelihood term is minimized q̂(fi) = arg minq KL (q−i(fi)p(yi|fi)||q(fi)). This
is equivalent to matching the first and second moment between the two distributions
(Seeger, 2005). The site terms Z̃i are scaling parameters which ensure that also the
zeroth moment of the approximate and exact posterior match, that is ZEP ≈ p(D|θ, γ).
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After the moments are solved, the parameters of the local approximation ti are updated
so that the new marginal posterior q−i(fi)ti(fi) matches with the moments of q̂(fi).
For last, the parameters of the approximate posterior (3.15) are updated to give

p(f |D, θ, γ) ≈ N(f |Kf,f(Kf,f +Σ̃)−1µ̃,Kf,f −Kf,f(Kf,f +Σ̃)−1 Kf,f), (3.16)

where Σ̃ = diag[σ̃2
1 , ..., σ̃

2
n] and µ̃ = [µ̃1, ..., µ̃n]T. The predictive mean and covariance

of f̃ are again obtained from equations (3.4) and (3.6). The predictive distribution of a
new observation ỹ is derived analogically to the Laplace approximation.

From the equations (3.16), (3.13) and (3.9) it can be seen that there is a great sim-
ilarity between the exact solution with the Gaussian obsrvation model and the Laplace
and EP approximation. The diagonal matrices W−1 and Σ̃ correspond to the noise
variance σ2I in the Gaussian likelihood and the two approximations can be seen as
Gaussian approximation for the likelihood (Nickisch and Rasmussen, 2008).

3.1.5 Markov chain Monte Carlo

The accuracy of the two approximations considered this far is limited by the Gaus-
sian form of the approximating function. Another approach, which gives exact solu-
tion in the limit of infinite computational time, is to approximate the posterior with
Monte Carlo methods (Robert and Casella, 2004). These are based on sampling from
p(f |D, θ, γ) and using the samples to represent the posterior distribution. In this case,
the posterior marginals can be visualized with histograms and posterior statistics ap-
proximated with sample means. For example, the posterior expectation of f is

Ef |D,θ,γ [f ] ≈ 1
M

M∑
i=1

f (i), (3.17)

where f (i) is the i’th sample from the conditional posterior.
The problem with Monte Carlo methods is how to draw samples from arbitrary dis-

tributions. The challenge can be overcome with Markov chain Monte Carlo methods
(Gilks et al., 1996), where one constructs a Markov chain whose stationary distribution
is the posterior distribution p(f |D, θ, γ) and uses the Markov chain samples to obtain
Monte Carlo estimates. After having the posterior sample of latent variables, we can
sample from the posterior predictive distribution of any set of latent variables f̃ simply

by sampling with each f (i) one f̃
(i)

from p(f̃ | f (i), θ, γ), which is given in the equation

(2.7). Similarly, we can obtain a sample of ỹ by drawing one ỹ(i) for each f̃
(i)

from
p(y |f̃ , θ, γ). A rather efficient sampling algorithm is hybrid Monte Carlo (HMC) (Du-
ane et al., 1987; Neal, 1996), which utilizes the gradient information of the posterior
distribution to direct the sampling to interesting regions. Significant improvement in
mixing of the sample chain of the latent variables can be obtained by using the variable
transformation proposed by Christensen et al. (2006) (see also publication I). The three
approximations for the conditional posterior are summarized in Figure 3.1.
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Figure 3.1: Illustration of the Laplace approximation (solid line), EP (dashed line) and
MCMC (histogram) for the conditional posterior of a latent variable p(fi|D, θ) in two
applications. On the left, a disease mapping problem with Poisson observation model
(publication IV) where the Gaussian approximation works well. On the right, a classi-
fication problem with probit likelihood (publication V) where the posterior is skewed
and the Gaussian approximation is clearly a compromise. However, EP approximates
the mean and variance better than the Laplace approximation in this case also.

3.2 Marginalization over hyperparameters

3.2.1 Maximum a posterior estimate of hyperparameters
The easiest way to approximate the integral over p(θ, γ|D) is to give the hyperparam-
eters a point estimate such as the maximum a posterior (MAP) estimate

{θ̂, γ̂} = arg max
θ,γ

p(θ, γ|D) = arg max
θ,γ

[log p(D|θ, γ) + log p(θ, γ)] . (3.18)

In this approximation, the hyperparameter values are given a point mass one at the
posterior mode, and, for example, the marginal posterior of latent variables is approx-
imated as p(f |D) ≈ p(f |D, θ̂, γ̂) (the other posterior marginals come analogously).
Alternatively the hyperparameter optimization can be interpreted a model selection
over a model family indexed by continuous parameter ϑ = [θT, γT]T (Rasmussen and
Williams, 2006).

For the MAP estimate one needs to evaluate the log marginal likelihood. In Gaus-
sian case this is straightforward since it has an analytic solution (see equation (3.8)),

log p(D|θ, σ) = −n
2

log(2π)− 1
2

log |Kf,f +σ2I| − 1
2

yT(Kf,f +σ2I)−1 y, (3.19)

The log marginal likelihood, and thus also the log posterior, is differentiable with re-
spect to the hyperparameters, which allows a gradient based optimization.

If the observation model is not Gaussian the marginal likelihood needs to be ap-
proximated. The Laplace approximation to the marginal likelihood is constructed, for
example, by writing

p(D|θ, γ) =
∫
p(y| f , γ)p(f |θ)d f =

∫
exp(g(f))d f , (3.20)
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and making a second order Taylor expansion of g(f) around f̂ . This gives a Gaussian
integral over f multiplied by a constant, and results in the approximation

log p(D|θ, γ) ≈ log q(D|θ, γ) ∝ log p(y|f̂)− 1
2
f̂

T
K-1

f,f f̂ − 1
2

log |B|, (3.21)

where |B| = |I + W1/2 Kf,f W1/2|. This is the same approximation as the Gaussian
approximation by Rue et al. (2009) derived from p(y, f .θ, γ)/q(f |D, θ, γ)|f=f̂ , where
the denominator is the Laplace approximation in equation (3.13) (see also Tierney and
Kadane, 1986). The gradients of the approximate log marginal likelihood (3.21) can
be computed analytically, which enables the use of gradient based optimization with
Laplace approximation.

EP’s marginal likelihood approximation is its normalization constant

ZEP =
∫
p(f |X, θ)

n∏
i=1

Z̃i N(fi|µ̃i, σ̃2
i )dfi (3.22)

in equation (3.15). This is a Gaussian integral multiplied by constant
∏n
i=1 Z̃i, giving

logZEP =− 1
2

log |K + Σ̃| − 1
2
µ̃T
(
K + Σ̃

)−1

µ̃+ CEP, (3.23)

where CEP collects terms that are not explicit functions of θ or γ (there is implicit de-
pendence through the iterative algorithm, though). The parametersCEP, Σ̃ and µ̃ can be
considered constants when differentiating the function with respect to the hyperparam-
eters (Seeger, 2005), for which reason the MAP estimate can be found with gradient
based optimization methods with EP as well.

The advantage of MAP estimate is that it is relatively easy and fast to evaluate. In
the experiments optimization algorithms needed usually at maximum tens of optimiza-
tion steps to find the mode (see, for example, publication IV). The drawback, however,
is that it may underestimate the uncertainty in hyperparameters.

3.2.2 Grid integration
The previous section treated methods to evaluate exactly (the Gaussian case) or approx-
imately (Laplace approximation and EP) the marginal posterior p(θ, γ|D) up to the
normalization. There the unnormalized posterior was used for optimizing the hyperpa-
rameters but it can also be used for exploring the posterior for purposes of numerical
integration with a finite sum, such as

p(f |D) ≈
M∑
i=1

p(f |D, ϑi)p(ϑi|D)∆i. (3.24)

Here ϑ = [θT, γT]T and ∆i denotes the area weight appointed to an evaluation point
ϑi. Thus, the latent variable posterior is a mixture of Gaussians. The other marginal
posteriors are approximated similarly with mixture distributions.

3.2. MARGINALIZATION OVER HYPERPARAMETERS 15

and making a second order Taylor expansion of g(f) around f̂ . This gives a Gaussian
integral over f multiplied by a constant, and results in the approximation

log p(D|θ, γ) ≈ log q(D|θ, γ) ∝ log p(y|f̂)− 1
2
f̂

T
K-1

f,f f̂ − 1
2

log |B|, (3.21)

where |B| = |I + W1/2 Kf,f W1/2|. This is the same approximation as the Gaussian
approximation by Rue et al. (2009) derived from p(y, f .θ, γ)/q(f |D, θ, γ)|f=f̂ , where
the denominator is the Laplace approximation in equation (3.13) (see also Tierney and
Kadane, 1986). The gradients of the approximate log marginal likelihood (3.21) can
be computed analytically, which enables the use of gradient based optimization with
Laplace approximation.

EP’s marginal likelihood approximation is its normalization constant

ZEP =
∫
p(f |X, θ)

n∏
i=1

Z̃i N(fi|µ̃i, σ̃2
i )dfi (3.22)

in equation (3.15). This is a Gaussian integral multiplied by constant
∏n
i=1 Z̃i, giving

logZEP =− 1
2

log |K + Σ̃| − 1
2
µ̃T
(
K + Σ̃

)−1

µ̃+ CEP, (3.23)

where CEP collects terms that are not explicit functions of θ or γ (there is implicit de-
pendence through the iterative algorithm, though). The parametersCEP, Σ̃ and µ̃ can be
considered constants when differentiating the function with respect to the hyperparam-
eters (Seeger, 2005), for which reason the MAP estimate can be found with gradient
based optimization methods with EP as well.

The advantage of MAP estimate is that it is relatively easy and fast to evaluate. In
the experiments optimization algorithms needed usually at maximum tens of optimiza-
tion steps to find the mode (see, for example, publication IV). The drawback, however,
is that it may underestimate the uncertainty in hyperparameters.

3.2.2 Grid integration
The previous section treated methods to evaluate exactly (the Gaussian case) or approx-
imately (Laplace approximation and EP) the marginal posterior p(θ, γ|D) up to the
normalization. There the unnormalized posterior was used for optimizing the hyperpa-
rameters but it can also be used for exploring the posterior for purposes of numerical
integration with a finite sum, such as

p(f |D) ≈
M∑
i=1

p(f |D, ϑi)p(ϑi|D)∆i. (3.24)

Here ϑ = [θT, γT]T and ∆i denotes the area weight appointed to an evaluation point
ϑi. Thus, the latent variable posterior is a mixture of Gaussians. The other marginal
posteriors are approximated similarly with mixture distributions.
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In grid integration, the evaluation points are set into a regular grid. The construction
of the grid is started from the posterior mode ϑ̂, and continued so that the bulk of the
posterior mass is included in the integration. If the grid points are set evenly, the
area weights ∆i are equal. In practice, the construction of the grid is aided by the
information about the Hessian of log p(ϑ|D) at the mode, which would be the inverse
covariance matrix for ϑ if the density were Gaussian. This approximate covariance is
used to select the exploration directions and step sizes as illustrated in Figure 3.2(a)
and discussed in the publication IV and by Rue et al. (2009).

The numerical integration using the grid search is feasible only for a small num-
ber of hyperparameters since the number of grid points grows exponentially with the
dimension of the hyperparameter space d. For example, the number of the nearest
neighbors of the mode increases as O(3d), which results in 728 grid points already for
d = 6. If also the second neighbors are included, the number of grid points increases
as O(5d), which results in 15624 grid points for six hyperparameters.

3.2.3 Monte Carlo integration
Monte Carlo integration works better than the grid integration in large hyperparam-
eter spaces since its error decreases with a rate that is independent of the dimension
(Robert and Casella, 2004). There are two options to find a Monte Carlo estimate for
marginal posteriors, like p(f |D). The first option is to sample just the hyperparameters
from their marginal posterior p(θ|D) or from its approximation given by the Laplace
approximation or EP, which is illustrated in Figure 3.2(b). In this case, the posterior
marginals are approximated with mixture distributions as in the grid integration but
with equal weigths. The other option is to run a full MCMC for all the parameters in
the model. That is, we sample both the hyperparameters and the latent variables and
estimate the needed posterior statistics by sample estimates or by histograms (Neal,
1997; Diggle et al., 1998). Sampling both, the hyperparameters and latent variables,
is usually awfully slow since there is a strong correlation between them. This slows
the convergence and mixing of the Markov chain (see publication I and IV). Sampling
from the (approximate) marginal, p(θ|D), is a much easier task since the parameter
space is smaller. Tuning the sampler parameters is also the harder the more parameters
are sampled.

Although Monte Carlo integration is more efficient than grid integration, it also
has its downside. For most examples, few hundred independent samples are enough
for reasonable posterior summaries (Gelman et al., 2004), which seems achievable.
The problem, however, is that we are not able to draw independent samples from the
posterior. Even with a careful tuning of Markov chain samplers the autocorrelation is
usually so large that the required sample size is in thousands, which is a clear disad-
vantage compared with the MAP estimate, for example.

3.2.4 Central composite design integration
Rue et al. (2009) suggest a central composite design (CCD) for choosing the represen-
tative points from the posterior of the hyperparameters when the dimensionality d is
moderate or high. In this setting, the integration is considered as a quadratic design
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(c) Central composite design

Figure 3.2: Illustration of the grid based, the Monte Carlo and the central composite
design integration over the logarithm of the hyperparameters. The contour shows the
posterior density q(log(ϑ)|D) and the integration points are marked with dots. The left
figure shows also the vectors z along which the points are searched in the grid inte-
gration and central composite desing. The integration is conducted over q(log(ϑ)|D)
rather than q(ϑ|D) since the former is closer to Gaussian. (From the publication IV.)

problem in a d dimensional space with the aim in finding points that allow for estimat-
ing the curvature of the posterior distribution around the mode. The design used by
Rue et al. (2009) and in the publication IV is the fractional factorial design augmented
with a center point and a group of 2d star points. In this setting, the design points are
all on the surface of a d-dimensional sphere and the star points consist of 2d points
along each axis. This is illustrated in Figure 3.2(c). The number of the design points
grows very moderately and, for example, for d = 6 one needs only 45 points. The
fractional factorial design is discussed in detail by Sanchez and Sanchez (2005). The
CCD integration can be summarized with the equation (3.24) where the weights are
evaluated as described in the publication IV.

The CCD integration speeds up the integration considerably. The accuracy is be-
tween the MAP estimate and the full integration with grid search or Monte Carlo. Rue
et al. (2009) and Martino (2007) report good results with this integration scheme, and
the results in the publication IV are promising as well.

3.3 Summary of the inference methods
The methods treated in this chapter can be arranged in an increasing order of accu-
racy and computational time. The choice of the method is then a compromise between
these two attributes. The inference is the fastest when using MAP estimate for the
hyperparameters and Gaussian function for the conditional posterior. With a Gaus-
sian observation model, the Gaussian conditional distribution is exact and the only
source of imprecision is the point estimate for the hyperparameters. If the observation
model is other than Gaussian, the conditional distribution is an approximation, whose
quality depends on, how close to Gaussian the real conditional posterior is, and how
well the mean and variance are approximated. The form of the real posterior depends
on many things for which reason the Gaussian approximation has to be assessed in-
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dependently for every data. Methods for assessing the Gaussian approximation are
discussed, for example, by Rue et al. (2009) and in the publication IV. Tierney and
Kadane (1986) provide asymptotic results for the accuracy of the Laplace approxima-
tion and Nickisch and Rasmussen (2008) give extensive comparison between different
Gaussian approximations in classification problems. The Laplace approximation is
faster than EP but EP approximates better the posterior mean and variance. For exam-
ple, in classification, this is crucial since the posterior of the latent variables is rather
far from normal, as illustrated in Figure 3.1(b) (see also Kuss and Rasmussen, 2005;
Nickisch and Rasmussen, 2008). The publications III and IV contain examples where
Laplace approximation gives, at a practical level, as good results as full MCMC or EP
(see also Figure 3.1(a)). At the expense of computational time, the approximation to
the marginal posterior of a latent variable could be improved by evaluating correction
terms for the EP approximation (Paquet et al., 2009; Cseke and Heskes, 2010) or by
improving the Laplace approximation to marginals (Tierney and Kadane, 1986; Rue
et al., 2009). These techniques are, however, not on the focus of this work.

A golden standard for the conditional posterior of latent variables can be obtained
by an extensive MCMC at the MAP estimate for the hyperparameters. The MAP esti-
mate can be found by utilizing Laplace approximation or EP after which the sampling
of the latent variables can be performed efficiently with HMC aided by the variable
transformation (Christensen et al., 2006), which was used in the publication I. Even
if the Laplace approximation and EP lacked in accuracy for the conditional posterior
they may approximate the marginal likelihood well. The accuracy of the Laplace ap-
proximation depends on the effective number of latent variables and it is usually more
accurate for data sets with many observations per input location (Rue et al., 2009). This
was the case in disease mapping problems (publications IV and VI) where Laplace
approximation and EP worked practically as well as MCMC. EP has been shown to
approximate the marginal likelihood rather accurately in classification problems (Kuss
and Rasmussen, 2005; Nickisch and Rasmussen, 2008) as well, where Laplace ap-
proximation fails. This suggests that EP’s approximation to the marginal likelihood is
more reliable. In general, the parameters of the covariance function seem to be weakly
identifiable and the predictive performance rather insensitive to the exact values of the
length-scale and magnitude. The identifiability of the hyperparameters is well treated,
for example, by Diggle et al. (1998), Zhang (2004) and Diggle and Ribeiro (2007) and
shortly touched in the publications IV and V.

When integrating over hyperparameters, the Monte Carlo and grid integration give
exact results in the limit of an infinite number of evaluation points. This limit, how-
ever, can never be reached, and even finding practically sufficient number of evaluation
points may be an overwhelming task. For this reason Rue et al. (2009) proposed to use
the grid and CCD integration. Grid integration is very efficient for a small number of
hyperparameters (less than 4). CCD tries to incorporate the posterior variance of the
hyperparameters into the inference and seems to give good approximation in high di-
mensions. Since CCD is based on the assumption that the hyperparameter’s posterior is
(close to) Gaussian, the densities p(ϑi|D) at the points on the circumference should be
monitored in order to detect serious discrepancies from this assumption. These densi-
ties are identical if the posterior is Gaussian, for which reason great variability on their
values indicates that CCD has failed. The posterior of the hyperparameters may be far
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from a Gaussian distribution, but for a suitable transformation the approximation may
work well. For example, the covariance function parameters should be transformed
through logarithm as discussed in the publication IV.

There are also other analytic approximations than the Laplace approximation or EP
proposed in the literature. Most of these are based on some kind of variational approx-
imation (Gibbs and Mackay, 2000; Csató and Opper, 2002; Tipping and Lawrence,
2005; Kuss, 2006; Opper and Archambeau, 2009). The Laplace approximation and EP
were chosen for this work for a few reasons. They both are, in theory, straightforward
to implement for any factorizable likelihood (often there are practical problems with
the implementation though). They have also been extensively studied and compared
to MCMC in classification problems (Kuss and Rasmussen, 2005) where EP is shown
to compare well with MCMC whereas Laplace approximation is the number one in
computational speed. EP is also shown to outperform the variational approximations
in accuracy and to be similar in speed (Nickisch and Rasmussen, 2008). Thus, testing
Laplace approximation in other problems was tempting for its speed and EP for its
speed and accuracy.
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Chapter 4

Sparse Gaussian processes

The evaluation of the inverse and determinant of the covariance matrix scale as O(n3)
in time, and storing the full covariance matrix scales as O(n2). These rapidly increas-
ing resource needs limit the use of GP models to moderate size data sets. In this chapter,
the problem is tackled with sparse approximations to Gaussian process and compactly
supported (CS) covariance functions.

4.1 Compactly supported covariance functions
A compactly supported covariance function is a function that gives zero correlation
between data points whose distance exceeds a certain threshold leading to a sparse co-
variance matrix. The challenge in constructing CS covariance functions is to guarantee
their positive definiteness. A covariance function with global support can not be cut ar-
bitrarily to obtain a compact support, since the resulting function would not, in general,
be positive definite. Sansò and Schuh (1987) provide one of the early implementations
of spatial prediction with CS covariance functions. Their functions are build by self-
convoluting symmetric kernels with finite support (such as a linear spline). These are,
however, special functions for one or two dimensions. Later Wu (1995) introduced
radial basis functions with compact support and a generic procedure to construct them.
Wendland (1995) developed them further and later, for example, Gaspari and Cohn
(1999), Gneiting (1999, 2002), and Buhmann (2001) worked more on the subject.

The CS functions studied in this work are Wendland’s piecewise polynomials kpp,q
(Wendland, 2005), such as:

kpp,2 =
σ2

pp

3
(1− r)j+2

+

(
(j2 + 4j + 3)r2 + (3j + 6)r + 3

)
, (4.1)

where j = bd/2c + 3 and r2 =
∑d
k=1(xi,k − xj,k)2/l2k. These functions correspond

to processes that are q times mean square differentiable and are positive definite up to
input dimension d. Thus, the degree of the polynomial has to be increased alongside the
input dimension. The dependence of CS covariance functions to the input dimension is
very fundamental. There are no radial compactly supported functions that are positive
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definite on every <d but they are always restricted to a finite number of dimensions
(see e.g. Wendland, 1995, theorem 9.2).

The key idea with using CS covariance functions is that, roughly speaking, one
uses only the nonzero elements of the covariance matrix in the calculations. This may
speed up the calculations substantially since in some situations only a fraction of the
elements of the covariance matrix are non-zero. In practice, efficient sparse matrix rou-
tines are needed (Davis, 2006), which are nowadays a standard utility in many statisti-
cal computing packages, such as Matlab or R, or available as an additional package for
them. The CS covariance functions have been rather widely studied in the geostatistics
applications. The early works concentrated on their theoretical properties and aimed
to approximate the known globally supported covariance functions (Gneiting, 2002;
Furrer et al., 2006; Moreaux, 2008). There the computational speed-up is obtained us-
ing efficient linear solvers for the prediction equation f̃ = Kf̃,f(Kf,f +σ2)−1 y. The
hyperparameters are fitted to either the empirical covariance or the global support co-
variance function. Kaufman et al. (2008) study the maximum likelihood estimates for
tapered covariance functions (those are products of globally supported and CS covari-
ance functions). There, the magnitude can be solved analytically and the length-scale
(only one length-scale for all the input dimensions is used) is optimized using a line
search in one dimension. The benefits from a sparse covariance matrix have been im-
mediate since the problems collapse into solving sparse linear systems. In case of
multiple length-scales line search is not feasible and gradient based optimization be-
comes more advantageous. However, utilizing the gradient of the log posterior of the
hyperparameters needs some extra sparse matrix tools.

The problematic part is the trace in the derivative of the log marginal likelihood,
for example

∂

∂θ
log p(y|X, θ) =

1
2
yT(Kf,f +σ2I)−1 ∂(Kf,f +σ2I)

∂θ
(Kf,f +σ2I)−1y

− 1
2

tr
(

(Kf,f +σ2I)−1 ∂(Kf,f +σ2I)
∂θ

)
. (4.2)

If implemented naively, the trace requires the inverse of a sparse covariance matrix,
which is not sparse in general. Luckily, Takahashi et al. (1973) introduced an algo-
rithm whereby we can evaluate a sparsified version of the inverse of a sparse matrix.
This can be utilized in the gradient evaluations as described in the publication II. The
same problem was considered by Storkey (1999) who used the covariance matrices of
Toeplitz form, which are fast to handle due their banded structure. However, construct-
ing Toeplitz covariance matrices is not possible in two or higher dimensions without
approximations. Also the EP algorithm requires special considerations with CS covari-
ance functions. The posterior covariance Kf,f −Kf,f(Kf,f +Σ̃)−1 Kf,f in equation
(3.16) does not remain sparse, for which reason it has to be expressed implicitly during
the updates. The EP algoritm is treated in the publications IV and V.

4.2 FIC and PIC sparse approximations
Snelson and Ghahramani (2006) proposed a sparse pseudo-input Gaussian process
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The problematic part is the trace in the derivative of the log marginal likelihood,
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∂

∂θ
log p(y|X, θ) =

1
2
yT(Kf,f +σ2I)−1 ∂(Kf,f +σ2I)

∂θ
(Kf,f +σ2I)−1y

− 1
2

tr
(

(Kf,f +σ2I)−1 ∂(Kf,f +σ2I)
∂θ

)
. (4.2)

If implemented naively, the trace requires the inverse of a sparse covariance matrix,
which is not sparse in general. Luckily, Takahashi et al. (1973) introduced an algo-
rithm whereby we can evaluate a sparsified version of the inverse of a sparse matrix.
This can be utilized in the gradient evaluations as described in the publication II. The
same problem was considered by Storkey (1999) who used the covariance matrices of
Toeplitz form, which are fast to handle due their banded structure. However, construct-
ing Toeplitz covariance matrices is not possible in two or higher dimensions without
approximations. Also the EP algorithm requires special considerations with CS covari-
ance functions. The posterior covariance Kf,f −Kf,f(Kf,f +Σ̃)−1 Kf,f in equation
(3.16) does not remain sparse, for which reason it has to be expressed implicitly during
the updates. The EP algoritm is treated in the publications IV and V.

4.2 FIC and PIC sparse approximations
Snelson and Ghahramani (2006) proposed a sparse pseudo-input Gaussian process
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(SPGP), which Quiñonero-Candela and Rasmussen (2005) named later fully indepen-
dent training conditional (FITC). The original idea in SPGP was that the sparse approx-
imation is used only in the training phase and predictions are conducted using the exact
covariance matrix, where the word ’training’ comes to the name. If the approximation
is used also for the predictions, the word training should drop out leading to FIC. In
this case, FIC can be seen as a non-stationary covariance function on its own (Snelson,
2007). The partially independent conditional (PIC) sparse approximation is an ex-
tension of FIC (Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani,
2007), and they are both treated here following Quiñonero-Candela and Rasmussen
(2005).

The approximations are based on introducing an additional set of latent variables
u = {ui}mi=1, called inducing variables. These correspond to a set of input locations
Xu, inducing inputs. The latent function prior is approximated as

p(f |X) ≈ q(f |X,Xu) =
∫
q(f |X,Xu,u)p(u |Xu)du, (4.3)

where q(f |X,Xu,u) is the inducing conditional. The above decomposition leads to
the exact prior if the true conditional f |u ∼ N(Kf,u K-1

u,u u,Kf,f −Kf,u K-1
u,u Ku,f)

is used. However, in FIC framework the latent variables are assumed to be con-
ditionally independent given u, in which case the inducing conditional factorizes,
q(f |u) =

∏
qi(fi|u). In PIC latent variables are set into blocks which are condi-

tionally independent of each others, given u, but the latent variables within a block
have a multivariate normal distribution with the original covariance. The approximate
conditionals of FIC and PIC can be summarized as

q(f |X,Xu,u) = N
(
f |Kf,u K-1

u,u u,mask
(
Kf,f −Kf,u K-1

u,u Ku,f|M
))
, (4.4)

where the function Λ = mask (·|M), with matrix M of ones and zeros, returns a ma-
trix Λ of size M and elements Λij = [·]ij if Mij = 1 and Λij = 0 otherwise. An
approximation with M = I corresponds to FIC and an approximation where M is
block diagonal corresponds to PIC. The inducing inputs are given a zero-mean Gaus-
sian prior u ∼ N(0,Ku,u) so that the approximate prior over latent variables is

q(f |X,Xu) = N(f |0,Kf,u K-1
u,u Ku,f + Λ), (4.5)

where the matrix Kf,u K-1
u,u Ku,f is of rank m and Λ is a rank n (block) diagonal ma-

trix. The prior covariance can be seen as a non-stationary covariance function of its
own where the inducing inputs Xu and the matrix M are free parameters similar to hy-
perparameters, which can be optimized alongside θ (Snelson and Ghahramani, 2006;
Lawrence, 2007) (see also publication II and IV).

The computational savings are obtained by using the Woodbury-Sherman-Morrison
lemma to invert the covariance matrix in (4.5) as

(Kf,u K-1
u,u Ku,f + Λ)−1 = Λ−1−VVT, (4.6)

where V = Λ−1 Kf,u[chol(Ku,u + Ku,f Λ−1 Kf,u)]−T (e.g. Harville, 1997). There is
a similar result also for the determinant. With FIC the computational time is dominated
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by the matrix multiplications, which need time O(m2n). With PIC the cost depends
also on the sizes of the blocks in Λ. If the blocks were of equal size b× b, the time for
inversion of Λ would be O(n/b × b3) = O(nb2). With blocks at most the size of the
number of inducing inputs, that is b = m, the computational cost in PIC and FIC are
similar. Intuitively, PIC approaches FIC in the limit of a block size one and the exact
GP in the limit of a block size n. A formal treatment of this is given by Snelson (2007).

4.3 Sparse additive models

In many practical situations, a GP prior with only one covariance function may be too
restrictive since such a construction can model effectively only one phenomenon. For
example, the latent function may vary rather smoothly across the whole area of interest,
but at the same time it can have fast local variations. In this case, a more reasonable
model would be

f(x) = g(x) + h(x), (4.7)

where the latent value function is a sum of two functions, of which the other is slowly,
and the other fast varying. We can place GP prior for both of the functions g and h
with different covariance functions, which results in an additive prior

p(f |X) = N(f |0,Kg,g + Kh,h). (4.8)

An additive model could be formed also using specific covariance functions. For
example, rational quadratic covariance function can be seen as a scale mixture of
squared exponential covariance functions (Rasmussen and Williams, 2006), and could
be useful for data that contain both local and global phenomena. However, using sparse
approximations with the rational quadratic would prevent it from modeling local phe-
nomena (see publication II and IV). The additive model (4.8) suits better for sparse GP
formalism since it enables to combine FIC with CS covariance functions.

As discussed in section 4.2, FIC can be interpreted as a realization of a special kind
of covariance function. By adding FIC with CS covariance function, for example (4.1),
one can construct a sparse additive GP prior

f | X,Xu, θ ∼ N(0,Kf,u K-1
u,u Ku,f +Λ̂). (4.9)

This prior will be referred as CS+FIC. Here, the matrix Λ̂ = Λ +KCS
f,f is sparse with

the same sparsity structure as in KCS
f,f and, thus, it is fast to use in computations and

cheap to store. CS+FIC can be extended to have more than one component. However,
it should be remembered that FIC works well only for long length-scale phenomena
and the computational benefits of CS functions are lost if their length-scale gets too
large (see publication IV). For this reason the CS+FIC should be constructed so that
possible long length-scale phenomena are handled with FIC part and the short length-
scale phenomena with CS part. The implementation of the CS+FIC model follows
closely the implementation of FIC and PIC (for details see publications II and IV).
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4.4 Other means to speed up computation
The sparse approximation is a somewhat misleading term since the matrices involved
are not necessarily sparse but low rank. The term originates to the machine learning
literature where the early approximations were based on a representative subset of data
on which the most time consuming matrix operations were performed (e.g. Smola and
Bartlett, 2001; Csató and Opper, 2002; Seeger et al., 2003; Cornford et al., 2005). The
difference between FIC and PIC to the earlier approximations is that the locations of
the inducing inputs are not limited to a subset of training data but they are considered
as free variables that can be optimized alongside the hyperparameters. Later on Titsias
(2009) improved the optimization of the inducing inputs and hyperparameters by con-
sidering it as maximizing the variational bound between the full and sparse GP. Other
recent developments include, among others, the transformation of the inducing inputs
into more representative feature space (Lazaro-Gredilla and Figueiras-Vidal, 2009; Qi
et al., 2010), and sparse multi-output GPs (Alvarez and Lawrence, 2009; Alvarez et al.,
2010).

From the matrix algebra point of view the key step in sparse approximations is
to represent the full rank covariance matrix with VVT, where V ∈ <n×m. The
(block) diagonal Λ works as a correction term. In spatial statistics similar approaches
are called low-rank models (Diggle and Ribeiro, 2007). The low rank models as-
sume that the Gaussian field S ∈ <n is a linear combination of m basis functions,
S(x) =

∑m
i=1Aifi(x), where A = [A1, ..., Am]T is a Gaussian random variable

in <m. The covariance matrix of the field S, at locations X, is then F Cov(A)FT,
where F is a matrix with elements Fij = fj(xi). This is a low rank matrix simi-
lar to the sparse approximations. The type of an approximation depends on the ba-
sis functions used. Familiar examples include spectral representation (Diggle and
Ribeiro, 2007; Paciorek, 2007) and splines (Wood, 2003). The difference between
sparse approximations and low-rank models is more fundamental than just replacing
Cov(A) by K-1

u,u. The approximation Kf,u K-1
u,u Ku,f is induced from minimizing

KL(p(f ,u)R(y |u)||p(f ,u)p(y | f)) over all distributions of the form p(f ,u)R(y |u),
where R(y |u) is positive and dependent on u only (Csató, 2002; Seeger et al., 2003;
Titsias, 2009). This justification was used also by Banerjee et al. (2008) in their Gaus-
sian predictive process model. See also (Trecate et al., 1999) for similar considerations.
The diagonal term Λ, for example, in FIC results from minimising the KL-divergence
other way around (Qi et al., 2010).

In spatial statistics the computational cost of GP has commonly been reduced by
restricting it to a Gaussian Markov random field (GMRF) (Rue and Held, 2006; Best
et al., 2005; Elliot et al., 2001; Rue et al., 2009). GMRF is specified by assuming
conditional independence (Markov property) between a set of locations. That is, the
full conditional of a latent variable depends only on a small number of other latent
variables, called the neighbors. The conditional independence assumption leads to fast
computations since the resulting precision matrix is sparse. The advantage of GPs
over GMRF models is, however, the flexibility in choosing the covariance function.
The GMRFs have also been used to approximate the Gaussian random field (Rue and
Tjelmeland, 2002; Rue and Held, 2006).

The above mentioned methods try to speed up the computations given the large co-
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variance matrix. Another solution is to take advantage of a possible structure behind the
phenomenon. Examples of this are Kalman filtering and smoothing, which are special
cases of GP regression, and which scale linearly in a number of time points and cubicly
in state variables (e.g. Grewal and Andrews, 2001). If the number of state variables is
small, the Kalman smoother gives computationally efficient solution to the GP regres-
sion problem with a specific covariance function. Similarly in spatio-temporal models
the spatial and temporal components can be separated and the resulting structured co-
variance matrix handled efficiently (e.g. Finkenstädt et al., 2007). These approaches,
however, will not be applicable if we do not know the underlying structure of the phe-
nomena or can not formulate it in a way that leads to an efficient algorithm.
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Chapter 5

Summary of the publications

This chapter provides a short summary of the attached publications. The treatment will
be kept compact and discussion is omitted at this point. The aim is to give a glance at
the problems considered but one should read the publications for a detailed treatment.

5.1 Publication I
Spatial epidemiology concerns both describing and understanding the spatial variation
in the disease risk in geographically referenced health data. One of the main classes
of spatial epidemiological studies is disease mapping, where the aim is to describe
the overall disease distribution on a map and, for example, highlight areas of elevated
or lowered mortality or morbidity risk (e.g. Lawson, 2001; Richardson, 2003; Elliot
et al., 2001). In this work, a point-referenced health-care data are aggregated into a
lattice of grid cells. The mortality in a cell is modeled as a Poisson distribution, whose
mean is a product of a standardized expected number of deaths, ei and a relative risk
µ = exp(f(x)), where x is the co-ordinate of the cell. The expected number of deaths
is evaluated using age, gender and scholarly degree standardization, and the logarithm
of the relative risk is given a Gaussian process prior. The model follows the general
approach discussed by Best et al. (2005) and can be summarized as

y ∼
n∏
i=1

Poisson(exp(fi)ei) (5.1)

f(x)|θ ∼ GP (0, k(x,x′ |θ)) (5.2)

θ ∼ half-Student-t(ν, σ2
t ) (5.3)

Here σ2
t is the scale and ν the degrees of freedom of the half-Student-t distribution

(Gelman, 2006). The inference is conducted via MCMC by alternating the HMC to
sample from the conditional distributions of latent variables given the covariance func-
tion parameters and the covariance function parameters given the latent variables. The
mixing of latent variable sampling is improved with a transformation taking into ac-
count their approximate conditional posterior precision (Christensen et al., 2006).
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28 CHAPTER 5. SUMMARY OF THE PUBLICATIONS

The main contributions of this publication are the description how to implement
the HMC sampling with latent variable transformation for FIC, the first use of FIC
with other than Gaussian observation model, and experiments on the suitability of the
approximation to spatial modeling. FIC is shown to perform similarly to the full GP
whenever the posterior of the length-scale is long enough compared with the spacing
of the inducing inputs. The performance of FIC gradually decreases as the number
of the inducing inputs is reduced since then the inducing inputs get more sparsely
located. FIC is shown to be considerably faster than full GP with a small number of
inducing inputs. The results show the potential of FIC in spatial modelling problems
and encouraged further studies on the issue.

5.2 Publication II
This publication introduces the CS+FIC model for sparse additive GP regression. The
observation model is Gaussian noise and hyperprior half-Student-t distribution, which
results in the overall model

y |σ2 ∼ N(f , σ2I), (5.4)
f(x)|θh, θg ∼ GP (0, kg(x,x′ |θg) + kh(x,x′ |θh)) , (5.5)

θh, θg, σ
2 ∼ half-Student-t(ν, σ2

t ). (5.6)

The main contributions of the article are the description how CS covariance func-
tions can effectively be used in GP regression when utilizing the gradient of the log
likelihood with respect to the hyperparameters, proposal for the CS+FIC model, and
analyzis of the sparse GPs with data sets that contain additive long and short length-
scale phenomena. It is shown that CS+FIC outperforms FIC and PIC if data contain
short lenght-scale phenomena and is computationally faster than full GP. The computa-
tional techniques with CS functions rely, in addition to standard sparse matrix routines,
on the sparse inverse algorithm proposed by (Takahashi et al., 1973), which was intro-
duced to GP regression in this work. Key findings about the sparse GPs are that FIC is
global by its nature and does not work for short length-scale phenomena. PIC models
rather well also short length-scales, but suffers from the discontinuities in its correla-
tion structure. CS+FIC combines the good global properties of FIC and the good local
properties of CS covariance functions. The publication demonstrates the usefulness of
CS+FIC and encourages studies on its implementation for non-Gaussian observation
models.

5.3 Publication III
A commonly used observation model in the GP regression is the Gaussian distribution.
This is convenient since the inference is analytically tractable up to the covariance func-
tion parameters. However, a known limitation with the Gaussian observation model is
its non-robustness, due which outlying observations may significantly reduce the accu-
racy of the inference. A formal definition of robustness is given, for example, in terms
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located. FIC is shown to be considerably faster than full GP with a small number of
inducing inputs. The results show the potential of FIC in spatial modelling problems
and encouraged further studies on the issue.

5.2 Publication II
This publication introduces the CS+FIC model for sparse additive GP regression. The
observation model is Gaussian noise and hyperprior half-Student-t distribution, which
results in the overall model

y |σ2 ∼ N(f , σ2I), (5.4)
f(x)|θh, θg ∼ GP (0, kg(x,x′ |θg) + kh(x,x′ |θh)) , (5.5)

θh, θg, σ
2 ∼ half-Student-t(ν, σ2

t ). (5.6)

The main contributions of the article are the description how CS covariance func-
tions can effectively be used in GP regression when utilizing the gradient of the log
likelihood with respect to the hyperparameters, proposal for the CS+FIC model, and
analyzis of the sparse GPs with data sets that contain additive long and short length-
scale phenomena. It is shown that CS+FIC outperforms FIC and PIC if data contain
short lenght-scale phenomena and is computationally faster than full GP. The computa-
tional techniques with CS functions rely, in addition to standard sparse matrix routines,
on the sparse inverse algorithm proposed by (Takahashi et al., 1973), which was intro-
duced to GP regression in this work. Key findings about the sparse GPs are that FIC is
global by its nature and does not work for short length-scale phenomena. PIC models
rather well also short length-scales, but suffers from the discontinuities in its correla-
tion structure. CS+FIC combines the good global properties of FIC and the good local
properties of CS covariance functions. The publication demonstrates the usefulness of
CS+FIC and encourages studies on its implementation for non-Gaussian observation
models.

5.3 Publication III
A commonly used observation model in the GP regression is the Gaussian distribution.
This is convenient since the inference is analytically tractable up to the covariance func-
tion parameters. However, a known limitation with the Gaussian observation model is
its non-robustness, due which outlying observations may significantly reduce the accu-
racy of the inference. A formal definition of robustness is given, for example, in terms
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of an outlier-prone observation model. The observation model is outlier-prone of an
order n, if p(f |y1, ..., yn+1) → p(f |y1, ..., yn) as yn+1 → ∞ (O’Hagan, 1979; West,
1984). That is, the effect of a single conflicting observation on the posterior becomes
asymptotically negligible as the observation approaches infinity. This contrasts heavily
with the Gaussian observation model where each observation influences the posterior
no matter how far it is from the others. A well-known robust observation model is the
Student-t distribution, which is used also in this work. The model considered is

y |ν, σt ∼
n∏
i=1

Γ((ν + 1)/2)
Γ(ν/2)

√
νπσt

(
1 +

(yi − fi)2

νσ2
t

)−(ν+1)/2

, (5.7)

f(x)|θ ∼ GP (0, k(x,x′ |θ)) , (5.8)

θ, ν, σt ∼ half-Student-t(ν, σ2
t ). (5.9)

The idea of robust regression is not new. Outlier rejection was described already
by De Finetti (1961) and theoretical results were given by Dawid (1973), and O’Hagan
(1979). Student-t observation model with linear regression was studied already by West
(1984) and Geweke (1993), and Neal (1997) introduced it for GP regression. Other
robust observation models include, for example, mixtures of Gaussians, Laplace dis-
tribution and input dependent observation models (Naish-Guzman and Holden, 2008;
Kuss, 2006; Goldberg et al., 1998; Stegle et al., 2008).

A common computational approach has been to use the scale-mixture representa-
tion of the Student-t distribution, which enables Gibbs sampling (Geweke, 1993; Neal,
1997), and a factorized variational approximation (VB) (Tipping and Lawrence, 2005;
Kuss, 2006). The main contributions in this publication are the following. It is shown,
how Student-t observation model can be inferred in an efficient and robust way us-
ing Laplace approximation. The properties of the model are discussed and results are
compared to the earlier approaches which utilize the scale mixture representation. It is
shown, that Laplace approximation works quickly and accurately compared with full
MCMC and a factorized VB. It is also shown that the Laplace method approximates
the posterior covariance somewhat better than the factorized VB, which underestimates
the variance because of its factorized construction.

5.4 Publication IV
This work considers the same disease mapping problem as publication I (described
by the equations (5.1)–(5.3)). The article combines the sparse GPs discussed in chap-
ter 4 with the approximate inference schemes in chapter 3 and provides an extensive
description how they should be used to perform fast inference with Gaussian process
disease mapping model.

The main contributions of the paper are the following. The FIC, PIC and CS+FIC
sparse approximations are analyzed in detail. Their correlation structures and non-
stationary properties are analyzed and visualized for two dimensional input space. Also
their practical limits, compared with the smallest possible length-scale, are sought. It is
shown that, if we want FIC to approximate the full covariance well, the inducing inputs
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should be placed in a regular grid and the length-scale should be greater than the dis-
tance between adjacent inducing inputs. Also the discontinuous correlation structure
of PIC is demonstrated and ways to alleviate this property suggested. The implemen-
tation of Laplace approximation and EP for CS+FIC model is explained. The article
contains also comparison between the approximate inference methods. The Laplace
approximation and EP at θ̂ as well as after the grid, Monte Carlo or CCD integration
are compared with the full MCMC solution. It is shown that the Gaussian approxi-
mation to p(f |D, θ̂) resembles very closely the true conditional posterior obtained by
extensive MCMC. Also the marginal posterior p(f |D) is practically identical to the
MCMC solution. The article provides also a short comparison between the sparse GP
models and conditional autoregressive (CAR) model implemented with INLA (Rue
et al., 2009). Both models give similar results in overall but there are some differences
in the latent variable posterior. CAR model gives certain cells very awkward estimates,
since the expectation of the latent variables ranges from -20 to 0.7 and the variance
from 4 × 10−4 to 3 × 104, whereas with GP the expectations are between -0.9 and
0.7, and the variances between 0.004 and 0.23 (here it should be remembered that the
relative risk is exp(f)).

In summary, this publications presents practical implementation of GP models for
large spatial data. It also demonstrates the advantage of GPs over CAR models with
areally sparse spatial data.

5.5 Publication V
The common way to set up Gaussian process classification model is the following.
Consider binary observations, yi ∈ {−1,+1}, i = 1, ..., n, appointed to inputs X =
{x }ni=1. The observations are considered to be drawn from the Bernoulli distribution
whose success probability is related to the latent function f(x) : <d → < that is
mapped to a unit interval by a sigmoid transformation. The usual transformation is the
probit function p(yi = 1|xi) = Φ(f(xi)), where Φ denotes the cumulative probability
function of the standard Normal density. The latent function is then given a zero mean
GP prior which leads to the model

y ∼
n∏
i=1

Φ(f(xi)yi) (5.10)

f(x)|θ ∼ GP (0, k(x,x′ |θ)) , (5.11)

θ ∼ half-Student-t(ν, σ2
t ). (5.12)

This problem is discussed in detail by Rasmussen and Williams (2006). Nickisch and
Rasmussen (2008) provide comprehensive analysis of different approximate inference
methods proposed in the literature and show that the best compromise between accu-
racy and speed is the EP algorithm.

What has not been studied is how to implement EP for CS covariance functions.
This topic is touched shortly in the publication IV but in this work it is given a de-
tailed description and the needed sparse matrix routines are analyzed in length. Also
four of the Wendland’s piecewise polynomials (Wendland, 2005) are analyzed from
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machine learning point of view. It is shown that they all suffer from an increasing input
dimension but may speed up the inference considerably in small dimensional spaces.
Since EP algorithm can be applied to other problems than classification as well, the
techniques and considerations in the article are not limited to GP classification. The
main contributions of the publication are the analysis of the Wendland’s functions and
the sparse matrix techniques needed for EP to work fast with CS covariance functions.
From the results it can be concluded that CS covariance functions, with proper im-
plementation, provide an efficient alternative to full GP and sparse approximations for
datasets with low input dimension.

5.6 Publication VI
This last publication differs from the rest in that its main contribution is not in the
methodological development but in a real world application. The problem at hand is
a disease mapping problem where the aim is to study alcohol related mortality in Fin-
land during the years 2001-2005. In high-income countries, alcohol consumption is
the second most important determinant of loss of healthy life years due to illness and
death (World Health Organization (WHO), 2009). Alcohol related deaths have an im-
portant role in the mortality of working-age population in Finland as well and detailed
knowledge on their reasons is valuable. This study helps the health care authorities
by pointing out the problematic areas where preventive actions should be taken. The
publication is a translation of the original Finnish article (Vanhatalo et al., 2010).

In contrast to the disease mapping model of publications I and IV the observation
model is Negative-Binomial. The Negative-Binomial distribution is a robust version of
the Poisson distribution similarly as Student-t distribution can be considered a robusti-
fied Gaussian distribution (Gelman et al., 2004). The model considered is

y |r ∼
n∏
i=1

Γ(r + yi)
yi!Γ(r)

(
r

r + µi

)r (
µi

r + µi

)yi

(5.13)

f(x)|θ ∼ GP (0, k(x,x′ |θg)) , (5.14)

θ ∼ half-Student-t(ν, σ2
t ), (5.15)

where µi = exp(f(xi)). The main contributions of the publication are the follow-
ing. With the techniques described in this dissertation the spatial variation on alcohol
related deaths could be studied in 5 kilometers accuracy, which is a big advancement
compared with the previous studies at municipality level (e.g. Mäkelä et al., 2001).
The publication illustrates the use of the Google Maps and Google Earth mapping pro-
grams for analyzing the results. The key findings are that alcohol related deaths are
relatively less common in the south-west coast of Ostrobothnia, and more common in
Eastern and South-eastern Finland. Research also highlights the difference between
population centers and surrounding areas. Risk of dying from alcohol-based illness is
generally higher in densely than in sparsely populated areas even after standardizing
the incidence rates with the population density. The GP models were compared with
the CAR models implemented with INLA and GP was found to work better (detailed
comparison is not presented though).
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Chapter 6

Discussion

Broadly thinking Gaussian processes have been subject for intensive research for decades
and many disciplines have contributed to their study. They have not, necessarily, been
called Gaussian processes but, for example, spatial statistics, signal processing and fil-
tering literature have their own naming conventions. The point of view taken in this
study comes mainly from the machine learning literature where the subject has flour-
ished to a hot topic since late 1990’s. Readers who have waded up to this point may
have noticed that the material is largely a bag of tricks collected from various sources.
These tricks are not separate, though, but the bag could be labelled as: practical tools
for analyzing Gaussian process models. Some of the tools are very old, such as the
Laplace approximation based on Taylor expansion, which was used for the first time
in Bayesian analysis by Laplace himself (see, for example, the historical notes in Gel-
man et al., 2004). Some of the tricks are rather new, such as the CCD integration (Rue
et al., 2009) or EP algorithm (Minka, 2001), and some are even proposed by the author
himself, such as the EP algorithm for CS covariance functions in publications IV and
V.

This brings us to the definition of practical tools. I would say that practical com-
putational tools are such that they produce useful, interpretable results in a sensible
time. This does not mean that the results need to be exact, but they have to approxi-
mate well enough the essential aspects. Thus, practical tools are always data, model,
and problem dependent. For example MCMC methods are many times praised for
their asymptotic properties and seemingly easy implementation. Algorithms, such as
Metropolis-Hastings, are easy to write for almost any model. The problem, however,
is that as data set grows they may not give reliable results in a finite time. With GP
models this problem is faced very severely. For example, the disease mapping prob-
lems in publications IV and VI with over 10 000 data points would be impossible to
solve with standard office PC’s using MCMC. The convergence rate and mixing of the
sample chain would be just too slow. Every approximation is, however, a double-edged
sword. As we know that the results presented before our eyes are approximations we
should never take them as granted. The results should always be examined to learn
their limitations and possible faults. A good example of this is the classification prob-
lem where neither Laplace approximation nor EP give even close to exact result for the
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latent variable posterior (Kuss and Rasmussen, 2005; Nickisch and Rasmussen, 2008).
However, if we are interested in the classification performance, EP works almost as
well as MCMC.

Stating the general model family as in the equations (2.1) – (2.3) gives a hint, how
the models can be programmed effectively. This subject is not treated here but it is
worth mentioning that the models can be implemented in a rather modular way with
object oriented programming. Every piece of the model, likelihood, GP prior, hyperpri-
ors, covariance functions etc. should be written as an object which returns its essential
characteristics in a standard form. The inference methods can then be implemented in a
fairly general way for evaluating needed summaries, such as log marginal likelihood or
predictive distribution. This kind of implementation is used in MATLAB toolbox GP-
stuff (http://www.lce.hut.fi/research/mm/gpstuff/) which collects all
the models and methods discussed in this work.

Handling such a general class of models raises the question of model misspecifi-
cation. The model misfit related to the observation model is one source of problems.
For example, if the data contained outliers or observations with clearly higher vari-
ance than what the Gaussian or Poisson observation model predicts, the posterior of
the latent function would be highly compromised. For this reason, it is important to be
able to test easily robust alternatives for traditional models as well. Such as Student-t
or Negative-Binomial distribution. Even though the GP prior is very flexible and few
things, namely the mean and covariance, need to be fixed in its construction, it still
contains rather heavy assumptions in it. For example, a Gaussian process associated
with the squared exponential covariance function is indefinitely mean square differen-
tiable. This is a very strong assumption on the smoothness of the latent function. In
fact it is rather peculiar how little attention other covariance functions have gained in
machine learning literature. One of the reasons may be that often machine learning
problems take place in high dimensional input spaces where data are more likely to lie
sparsely. In this case we are not able to infer fast varying phenomena, since the sparse
data provide no information on them, and smooth solutions are the ones that get higher
posterior probability. The topic is covered in detail by [7] whose results suggest that un-
der certain assumptions on the input vector distribution the nonlinear methods that rely
on kernel matrices may be behaving like their linear counterparts. However, as shown
in publications I, II, IV, and VI the covariance function does influence the results at
least in low dimensional problems. Even though compactly supported covariance func-
tions are known to exist, they seem to be rather little used outside spatial statistics. As
discussed in the publications II and V, high dimensional input spaces seem to be prob-
lematic for the CS covariance functions, which may set them into disfavor (at least few
reviewers of the publications argued this way). However, this is a problem only if GP
is used as a black box that is expected to work for any problem without modifications,
but not if GPs are tailored for each problem individually. The latter approach is more
correct, I would claim, for which reason CS covariance functions should be exploited
more whenever the phenomenon is likely to contain short length-scale correlations.

In the spatial statistics literature, Gaussian processes defined by covariance function
have earlier been criticized for giving too smooth results and CAR models suggested
instead (Best et al., 2005). The results in the publications IV and VI, however, show
that GP may outperform CAR model. Presumably, the reason for differing results
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is that the previously used covariance functions have favored too smooth functions
and that additive covariance structures are seldom used. GP models with only one
covariance function tend to give smooth results, but with several components they can
adapt to very fast changes as well. Also, GP’s advantage over CAR model comes
clearly apparent if the spatial data is areally sparse (see publication IV). The sparse
GP’s discussed here start to be comparable to CAR models also in speed, as well as
other sparse methods proposed in the literature (e.g. Cornford et al., 2005; Banerjee
et al., 2008).

In statistical literature, inference in the hyperparameters is a natural concern but
in machine learning literature they are left in less attention. An indicator of this is
the usual approach to maximize the marginal likelihood which implies uniform prior
for the hyperparameters. In this work, the hyperparameters are always given an ex-
plicit prior. The choice has usually been half Student-t distribution which works as a
weakly informative prior (Gelman, 2006). There are a few reasons for explicitly defin-
ing a hyperprior. In spatial statistics literature it is well known that the length-scale
and magnitude are under identifiable and the proportion σ2/l is more important to the
predictive performance than their individual values (Diggle et al., 1998; Zhang, 2004;
Diggle and Ribeiro, 2007). These results are shown for Mátern class of covariance
functions but according to the experiments they seem to apply for Wendland’s piece-
wise polynomials as well. With them, the property can be taken advantage of since by
giving more weight to short length-scales one favors sparser covariance matrices that
are faster in computations. Other advantage is that priors make the inference problem
easier by narrowing the posterior and making the hyperparameters more identifiable.
This is useful especially for MCMC methods but optimization and other integration
approximations gain from the hyperpriors as well. These two reasons are rather prac-
tical. More fundamental reason is that in Bayesian statistics leaving prior undefined
(meaning uniform prior) is a prior statement as well, and sometimes it may be really
awkward (for example, uniform prior works very badly for the parameters of Student-t
distribution). Thus, it is better to spend some time thinking what the prior actually says.

What is left out from this dissertation are the improvements to the Gaussian approx-
imations. The shape of the marginal posterior of a latent variable could be estimated
more accurately with techniques described by, for example, Rue et al. (2009), Paquet
et al. (2009), and Cseke and Heskes (2010) (see also Tierney and Kadane, 1986). Im-
provements always compromise the computational speed but are essential for more
reliable results, for which reason the subject provides an important future research
direction. The results here suggest that the inference is not sensitive to the marginal-
ization over the hyperparameters and often the MAP estimate works fine. However, a
comprehensive study on the subject is still needed to assess the limits of MAP estimate
in GP models. A third future research topic, suggested by the results presented here,
is the CS covariance functions. They are not yet extensively studied in spatial statis-
tics nor machine learning literature and, for example, this work has just scratched their
surface.
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