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1 INTRODUCTION 

The degree of crystallinity is an important parameter for various food and 

pharmaceutical systems as it affects their behaviour during processing, storage, and 

consumption. Presence of even a tiny amount of amorphous component(s) in a 

crystalline product may have considerable impact on the stability, processability, and 

bioavailability of the material and its performance during product manufacture and 

use.1-3 Detection and quantification of low levels of amorphous content have became 

important issues in fields at pharmacy and dairy products.4 The amorphous phases are 

typically formed unintentionally, and the challenge arises from the fact that the 

concentration of disordered material is often high enough to cause changes in product 

performance but yet too small to be easily detected.5-7 It is, therefore, of great 

importance to search for means to assess the extent of disorder in a solid quantitatively, 

down to very low concentration levels. 

A number of techniques are available for the detection and quantification of low levels 

of amorphous components, but the methods are usually sample-specific. In addition, the 

amount of the amorphous material in the crystalline mass may be small and hence 

difficult to detect using traditional analytical techniques. There are several studies 

reported in the literature where different techniques for determination of the content of 

amorphous phase(s) are compared as analytical methods.6-11 Each technique has its own 

advantages and disadvantages. The method of choice depends for example on the 

concentration level of the amorphous phase and the amount of sample available. In 

addition, there are differences in the sample preparation procedure and the time required 

by the measurement. Table 1 summarizes the various techniques employed. 

Differential scanning calorimetry (DSC) is one of the most frequently used techniques 

for the measurement of the degree of amorphicity. Owing to difficulties in detection of 

very low concentrations of amorphous phases by means of the conventional DSC 

technique, in recent years novel DSC approaches have been intensively looked for to 

improve parameters such as sensitivity, accuracy, and detection limit. The HyperDSC 

(high-speed or high-performance differential scanning calorimetry) technique, in which 

an increased heating rate is used, significantly improves the sensitivity of DSC as it 

allows small transitions to be detected more readily.12-25 Another possibility is to 

modulate the heating program such that the reversible changes in specific heat capacity 
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may be distinguished from potentially interfering irreversible kinetic events such as the 

enthalpy relaxation. Several versions of this approach have been proposed including the 

TMDSC (temperature modulated DSC),26-38 TOPEM (advanced temperature-modulated 

DSC)39-42 and StepScan DSC43-54 techniques.  

Table 1. Analytical methods employed and their detection limits for quantification of 
amorphous phases. 

Method Detection limit References 

   
X-ray powder diffraction (XRD) 0.4-10% 55-59 
Differential scanning calorimetry (DSC) 1-20% 58-61 
High-speed DSC (HyperDSC) 0.2-1.5% 16-18, ΙΙΙΙΙΙΙΙΙΙΙΙ, ΙΙΙΙV 
StepScan DSC  0.8% 9, V 
Temperature-modulated DSC (TMDSC) 0.9% 18, 62, 63 
Gravimetric moisture sorption (GMS) 0.5-1% 64, 65  
Solution calorimetry (SC) 0.5-1.8% 66-70 
Isothermal microcalorimetry (IMC) 0.5-5% 59, 65, 66, 71-74 
Dynamic mechanical analysis (DMA)  2% 75 

Density measurements 10% 6 
Solid-state nuclear magnetic resonance spectroscopy  
(SS-NMR) 

0.5-3% 55, 61, 71 

Fourier transform infrared spectroscopy (FTIR)  1-2% 10, 76 
Raman spectroscopy 1% 77-79 
Mid infrared spectroscopy (MIR) 1-2% 10 
Near infrared spectroscopy (NIR) 0.5-1% 57, 64, 80, 81 
Thermally-stimulated current spectrometry ~1% 82 
Therahertz pulsed spectroscopy 1-2% 83 
Inverse phase gas chromatography  1% 84, 85 

   

 

For quantification of amorphous content, fully crystalline and fully amorphous 

reference samples are needed. For that reason, the preparation of an amorphous sample 

is an essential part of method development. One of the most common methods used for 

the preparation of an amorphous sample is melting of the crystalline sample followed by 

rapid cooling. However, when melting temperatures of sugars are reviewed in the 

literature, it is seen that values for the same sugar may slightly differ from each other.ΙΙΙΙ,ΙΙΙΙΙΙΙΙ 

The melting of sugars is not an unambiguous event and it has therefore been studied in 

this theses. It was revealed that the melting of sugars is a multiphase phenomenon and 

the results are affected by both the determination method and the origin and quality of 

samples. For that reason, it is important to clarify whether melting can be used for 

preparation of amorphous sugar. 
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The main purpose of this thesis was to explore the ability of the HyperDSC and 

StepScan DSC techniques to detect and quantify low levels of amorphous phases in 

samples which are mostly crystalline (sugars and sugar alcohols). In this study, new 

methods for quantification of low concentrations of amorphous components in maltitol 

and sucrose samples were developed.  
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2 AMORPHOUS STATE 

In the crystalline state the basic constituents (molecules in the present case) have a well-

defined regular packing in an ordered lattice structure. Solids that are not crystalline are 

called amorphous. An amorphous state has no regular crystal organization but instead 

the molecules exist in a non-uniform array. The three-dimensional long-range order 

typical of a crystalline material does not exist in the amorphous state, and the position of 

molecules relative to one another is more random, approaching that in the liquid state. 

Amorphous solids typically exhibit short-range order over a few molecular dimensions 

and have physical properties quite different from those of their corresponding 

crystalline states.1,5,11,86-90 The structure of the amorphous materials is more difficult to 

characterise and their properties are more difficult to control than those of crystalline 

systems.5 Amorphous states demonstrate greater intermolecular distances and molecular 

mobilities, as well as higher potential energy levels when compared to crystals.2 The 

difference in the structure of amorphous and crystalline materials is illustrated in Fig. 1. 

crystalline
sample

amorphous
sample

 

Figure 1. Organization of the basic constituents (atoms, ions or molecules) in amorphous and 
crystalline samples. 

Amorphous material may exist as a viscous (solid) glass or as a more liquid-like rubbery 

amorphous state. Co-existence of different glassy states is also possible.91,92 The 

rubbery amorphous state is considered as an equilibrium supercooled liquid, an 

amorphous state with the structural characteristics of a liquid, but with a much higher 

viscosity.1 Glasses are considered to be “frozen” liquids due to their structural similarity 
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to liquids. However, in many aspects the glasses behave more like solids, although 

structurally they are liquid-like.2 The amorphous state does not define an exact surface 

nature, consequently amorphous material prepared by different methods could 

reasonably exhibit a different surface character.84  

2.1 Glass transition 

The transition between the rubbery state and the glassy state is a second-order phase 

transition, which occurs at the glass transition temperature, Tg.
93-95 At the glass 

transition temperature there will be a physical change in the amorphous material. The 

glass transition is a kinetic and relaxation event, depending on the temperature scanning 

rate and the thermal history of the material.89 It occurs at a temperature below which 

some molecular motions become so slow that the liquid takes on the properties of a 

solid. When a liquid is rapidly cooled so that the molecular motions sharply decrease 

and crystallization becomes impossible, the viscosity may become so high that all large-

amplitude molecular movements are “frozen” and the liquid completely loses its 

mobility and is quenched into a thermodynamically unstable glassy state.2,95 The ratio of 

the glass transition temperature to the melting temperature is typically 0.70.88 Residual 

water acts as a plasticizer by increasing the free volume of the material, hence it has a 

profound effect on the glass transition of amorphous materials leading to a decrease in 

Tg and increase in mobility.5,88,96-100  

Many physical properties of glassy amorphous materials are different from those of the 

corresponding rubbery amorphous materials.1 The glass transition temperature of an 

amorphous solid is a critical physical property, and it can influence its chemical and 

physical stability. Within the transition region many properties change their values such 

as viscosity, dielectric and especially mechanical properties.97,101 At the glass transition 

there is an abrupt change in derivative thermodynamic properties with a change in 

temperature.90  

2.2 Relaxation process 

The properties of glasses are markedly affected by their thermal history and the 

temperatures employed in their preparation.102-105 Thermal history is defined by the way 
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in which the glass was formed and for how long a time the system was maintained at 

any given conditions.106 Differences in molecular coordination of glasses represent 

different potential energy levels suggesting that in an amorphous system the energy 

levels of molecules are not uniform. The structural features and energy levels of 

amorphous phases are process dependent, which means that different amorphous states 

can be generated.2,90,103,104 In contrast to equilibrium crystals, there is a multitude of 

glasses of the same chemical structure, which differ in their cooling or annealing 

history.107 Below the glass transition temperature, large-amplitude molecular motions in 

the amorphous material still occur but on very slow time scales (e.g. hours or days).2,108 

The non-equilibrium nature of the glassy state leads to structural relaxation, i.e. the 

spontaneous approach of the material towards a thermodynamically more favourable 

equilibrium state at a rate that depends on the temperature and the whole thermal history 

of the glass.102,109,110 The term structural relaxation refers to changes in 

atomic/molecular arrangements that occur during the relaxation.90 The isothermal 

structural relaxation that occurs below the glass transition temperature is extremely slow 

and is often referred to as physical ageing or annealing.89,96,109,110 The annealing of 

amorphous material allows more of the initial microstructure to convert to the preferred 

local order.105 As glass is aged isothermally below the glass transition temperature, both 

enthalpy and entropy decrease spontaneously with time toward temperature-dependent 

equilibrium values.90,111,112 Amorphous states are constantly changing in structure and in 

energy level, moreover, the changes are not only time dependent but also temperature 

dependent.2 Relaxation phenomena are often observed within the glass transition 

temperature range and enthalpy relaxations may be either endothermic or exothermic, 

depending on the thermal history of the material and the time scale of observation.5,96 

The theoretical approaches to relaxation in glass-forming liquids and amorphous solids 

have been broadly reviewed by Angell et al.113 The possible coupling between 

molecular mobility and the stability of amorphous phases have recently received a lot of 

attention.2,106,111,114  

2.3 Preparation of amorphous material 

Preparation of amorphous material involves a rapid change of the material from 

equilibrium state to a non-equilibrium state without allowing the time needed for the 
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material to adjust to changes occurring in its surroundings and to maintain 

equilibrium.96 In order to produce an amorphous system it is necessary to create a 

highly disordered molecular state and then to stabilise that disordered state so that all 

molecular motions, which might induce instability, are reduced.108 For both 

thermodynamic and kinetic reasons, the preparation of an amorphous solid is 

straightforward for some materials (good glass formers), but difficult for others (poor 

glass formers).89 Figure 2 summarizes the most common ways to prepare amorphous 

materials. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Summary of the most common ways to prepare amorphous materials. 

The most common methods for producing amorphous materials are rapid cooling from a 

melt or rapid removal of the solvent.5,96 Generally, an amorphous solid is formed if the 

transition from a liquid state (melt or solution) to a solid state is fast enough to keep the 

molecules in a random order, i.e. crystallization is kinetically hindered and the 

molecules are kept in the same coordination as they where in the liquid state.2 

Crystallization requires nucleation, and nucleation tendency is a function of the 

viscosity of the liquid where it occurs.  

Amorphous solid

Preparation from solid state
- Mechanical activation

e.g. grinding or compression

- Dehydration

Preparation from liquid state
- Rapid cooling from melt

Preparation from vapour state
-Condensation

Preparation from solution state
- Rapid removal of solvent

e.g. spray drying or freeze drying
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When an amorphous solid is prepared by rapid cooling from a melt (melt quenching) at 

a given high viscosity (attained below the melting point), the material will have the 

appearance of an amorphous solid.86 After melting, among the factors determining the 

final solid phase are the relative rates of nucleation, crystal growth and cooling.3 

Cooling must take place quickly enough to prohibit nucleation and growth of crystals.90 

Depending on the cooling rate, various glassy states of the same material are formed. 

The drawback of this approach is its potential for chemical degradation during the 

melting step.104 For that reason, melt quenching can only be applied to samples that are 

thermally stable.11 Melt quenching is usually used in laboratory scale and the method 

for large-scale production of amorphous material is melt extrusion.115  

Random order that exists in solutions can be “frozen” due to a sufficiently rapid 

removal of the solvent for example by means of spray or freeze drying.5,96 In spray 

drying the solution is sprayed into hot air to produce uniform droplets and the solvent is 

evaporated fast which leads to amorphous particle formation. In freeze drying the 

solution is rapidly frozen and the water is separated from the solution at low 

temperature and pressure such that the solute molecules remain in the disordered 

structure they were frozen in. Extremely low temperatures are used to limit molecular 

mobility and to prevent nucleation.3,5,116  

Amorphous material can also be prepared by condensation from the vapour state. If the 

condensation of the material from the vapour state to the solid state occurs fast enough, 

the molecules remain disordered.1,117 Amorphous phase may also be obtained from the 

solid (crystalline) state under mechanical stress or upon dehydration.3,118 Mechanical 

activation of a crystalline material (e.g. during grinding or compression) may render a 

fully or partially amorphous material. Upon grinding, the crystalline material gradually 

collapses to the amorphous state with increasing grinding time.89,105  

The formation of the amorphous state and its relation to equilibrium conditions are 

illustrated in Fig. 3. Crystals, solution and melt are stable equilibrium states. The 

amorphous states (glass and rubber) are non-equilibrium states with time-dependent 

properties. Changes between equilibrium states and the glassy state always occur 

through the rubbery states.119 In their review papers, Morris et al.116 have introduced the 

theoretical approaches to phase transformations whereas Zhang et al.3 have focused on 

the practical aspect of the subject. 
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Figure 3. Physical states of material.119 

2.4 Some thermodynamic aspects 

The phase transitions can be classified based on changes in Gibbs energy. A schematic 

representation of the Gibbs energy (G) and the enthalpy (H) of crystalline, amorphous 

and liquid phases as a function of temperature at a constant pressure is shown in Fig. 4. 

The intercept of Gibbs energy lines gives the transition temperatures: the Gibbs energy 

is the same for the crystalline and liquid states at the melting point, Tf, and for the 

amorphous and liquid states at the glass transition temperature, Tg.  

Amorphous solids have higher energy, entropy, enthalpy and Gibbs energy than the 

corresponding crystals. The increase in enthalpy with increasing temperature is higher 

in the supercooled liquid state than in the glass state.89,96 Enthalpy shows a step change 

at the Tf. The enthalpy change occurs isothermally and is equal to the latent heat of 

transition.96 At the thermodynamic equilibrium for melting the Gibbs energy ∆G = ∆Hf 

-T∆Sf = 0, which gives ∆Hf = T∆Sf. From this equation, the entropy change in melting 

can be calculated as: ∆Sf = ∆Hf / T. The entropies can be compared: they follow the 
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order of Sl > Sa > Sc, where the subscripts l, a and c refer to the liquid, amorphous and 

crystalline states, respectively.  

 

 

 

 

 

 

 

 

 

Figure 4. Schematic presentation of the Gibbs energy (G) and enthalpy (H) of crystalline, 
amorphous and liquid phases as a function of temperature. The subscripts l, a and c refer to the 
liquid, amorphous and crystalline states, respectively. Stable states are presented as solid lines   
( ______ ). Amorphous glass states are presented in short dot lines ( .…….. ). The dashed lines  
( _ _ _ _ ) describe an extrapolated area and dash dotted lines ( _ . _ . _ ) describe the rubber 
area. 

The glass transition is represented by a change in the derivatives of extensive 

thermodynamic parameters such as volume, enthalpy and entropy.1 Because the 

constant pressure heat capacity Cp is defined as the derivative of the enthalpy versus 

temperature plot, a step change in Cp occurs at Tg (see Fig. 5). Hence the transition is 

dependent on molecular mobility with no associated heat of transition for the 

process.5,96 If there is no heat of transition, there can also be no entropy of transition.107 

At the glass transition ∆STg = 0, which means that Sl = Sa.  
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Figure 5. Schematic presentation of the heat capacity (Cp) and enthalpy (H) of crystalline and 
amorphous phases as a function of temperature about the glass transition region. 

2.5 Consequences of amorphous components 

The behaviour of powders will change depending upon their processing history.1-3,72 

Most crystalline solids undergoing processing are likely to take on a certain degree of 

amorphous character, i.e. they become partially or wholly disordered. Such processing 

includes freeze drying, spray drying, conventional drying, wet granulation, aqueous film 

coating, milling, grinding, compression and compaction.5,6 The presence of additives or 

processing conditions might stabilize or favour the amorphous state.1 As a result, the 

storage and processing conditions have to be controlled carefully.3 In typical 

pharmaceutical and food systems two types of situations should be considered. In the 

first case, the material exists intrinsically in the amorphous state or it is purposefully 

rendered amorphous. In the second case, crystalline material has been inadvertently 

converted to amorphous during processing. The latter type of amorphous character 

usually exists predominantly on surfaces at levels not easily detected; it has the potential 

to produce unwanted changes in the physical and chemical properties of the sample.1  
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The formation of disorder in a solid generally produces thermodynamically unstable 

regions that are in a higher energy state when compared to the crystalline form. The 

amorphous regions are reactive “hot spots” in which physical changes and/or chemical 

degradation can be initiated.6,7,100 Amorphous materials, although perhaps occupying 

only a very small proportion of the bulk, may contribute greatly to the behaviour of the 

material as it resides primarily on the particle surfaces.1,72 Amorphous material is 

thermodynamically unstable and therefore liable, under certain circumstances such as 

elevated temperature or relative humidity, to undergo changes in its amorphous 

structure, or susceptible to crystallization.1,3,11,88,90,120,121  

The presence of amorphous material in crystalline pharmaceutical and food substances 

can have considerable impact on the bioavailability, processability and 

physical/chemical stability of the system and the performance of the material during 

product manufacture and use.2,120,122 Typical amorphous solids have physical properties 

(heat capacity, vapour pressure, adsorption behaviour e.g. enhanced water sorption, 

mechanical and rheological properties, solubility) quite different from those of their 

corresponding crystalline forms.120 Amorphous forms, due their low packing efficiency 

and lack of long-range order, present higher internal energy, specific volume and 

molecular mobility than their crystalline counterparts, which may lead to enhanced 

dissolution behaviour and bioavailability.1,2,5,6,88,89,120 In some instances, these 

properties may be advantageous and it is desirable to produce and maintain the 

amorphous state,77 however, the increased molecular mobility of the amorphous state 

above the glass transition temperature may decrease the chemical stability.120 

Amorphous forms often exhibit stronger chemical reactivity and a faster chemical 

degradation rate. Potential conversion to a thermodynamically more stable crystalline 

form may occur over time. In addition, most amorphous solids are increasingly 

hygroscopic resulting in spontaneous absorption of water vapour.2,88,97 Moisture also 

acts as anti-solvent enhancing the driving force for crystallization.3  
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2.6 Amorphous sugars 

Sugars may exist as crystalline, semicrystalline, partially crystalline or totally 

amorphous. Amorphous sugar may be present as a thin layer on the surface of 

crystalline sugar.123 Amorphous sugar exists in a thermodynamically metastable, 

nonequilibrium state that tends to crystallize under the influence of a number of factors, 

mainly temperature and moisture. Molecules of amorphous solids in the glassy state are 

not able to change their spatial arrangement but as the temperature is increased above Tg 

the molecular mobility increases and crystallization becomes possible at temperatures 

higher than the glass transition temperature but below the melting 

temperature.96,97,121,124-126 Amorphous sugar is very hygroscopic and capable of 

absorbing water from the environment during processing. Most of the physical and 

structural properties of amorphous sugar are moisture dependent (for example the 

stickiness, caking and recrystallization).4,123  

The glass transition temperature of sugars generally depends on the molecular weight 

and several studies93,102,127 have reported the Tg values for common sugars and sugar 

alcohols. The glass transition temperature of amorphous sugar is extremely sensitive to 

water and it decreases with increasing water content.97-99 Roos93 reported an equation to 

predict the Tg values of carbohydrates at various water contents, for example, the glass 

transition temperature may change as much as some 10°C for mixtures containing only 

1% water.110 The differences between the reported Tg values for common sugar glasses 

are probably due to residual water in the samples, differences in sample handling 

techniques, and differences in techniques used to determine the value of Tg. Variations 

in the Tg values may also be due to the different thermal histories of the 

samples.93,95,96,108 The glass transition temperature seems to be a good indicator of the 

transitions that may occur in an amorphous sugar, like collapse, stickiness and caking 

during storage.123  

As the amorphous sugar glass is annealed at a constant annealing temperature below its 

Tg, its enthalpy relaxes toward equilibrium, i.e. the enthalpy decreases as ageing time 

increases. As the glass is reheated, the enthalpy increases and crosses the equilibrium 

liquid line. Amorphous sugar in products containing sugar can undergo physical ageing 

during storage below their glass transition temperatures. Physical ageing in food 

materials may produce unfavourable changes in some physical properties (density, 
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hardness and brittleness), which in turn affect the quality, stability and shelf life of those 

products.108-110,128-133  

The amorphous state of sugars is widely known. It is typically formed by dry-milling, 

quenching of melt, rapid drying of solutions (spray-drying), freeze-concentration of 

aqueous solutions and their freeze-drying, as well as boiling or extrusion of highly 

concentrated solutions followed by cooling.110,123 Most studies describe amorphous 

materials formed by rapid cooling from a melt.5,77,82,95,99,108-110,127-130,134-136 
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3 QUANTITATIVE ANALYSIS OF AMORPHOUS CONTENT BY DSC 

Differential scanning calorimetry (DSC) is one of the most frequently used techniques 

for the measurement of the degree of amorphicity. A typical DSC scan for a totally or 

partially amorphous sample is shown in Fig. 6; the curve displays a glass transition, a 

crystallization exotherm, and a melting endotherm.101 The glass transition is seen as a 

change in heat capacity on heating. The magnitude of ∆Cp at Tg varies from compound 

to compound, and this variance is the basis for the classification of glass formers from 

strong to fragile glass formers.90  
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Figure 6. Schematic DSC curve for a non-annealed amorphous sample upon heating. 

Traditionally the exothermic crystallization peak which follows - upon heating - the 

glass transition has been used for the quantitative analysis of the content of amorphous 

phase(s).6,57-59,137 In some studies (in case no crystallization occurs) even the melting 

enthalpy has been used for quantifying the degree of amorphicity.55,60 However, it is 

difficult to quantify particularly the small concentration of the amorphous phase with 

confidence in these techniques, therefore it is preferable to use the glass transition for 

the quantification of the amorphous content. With appropriate calibration, the 

magnitude of ∆Cp at Tg and thereby the amorphous content may be determined in a 
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highly quantitative way. Note that ∆Cp is linearly proportional to the amorphous content 

provided that the amorphous glasses are in the same state both in the actual sample 

studied and in the reference samples used for calibration.37 Great care is, however, 

required if the change in the Cp value at Tg is to be measured quantitatively. To obtain 

reliable results, it is essential to perform a calibration using a standard such as sapphire5 

and baseline calibration is also needed to ensure as flat baseline as possible. 

3.1 Glass transition seen by DSC 

The glass transition is a second-order transition and it is seen in the DSC data as a step 

in the baseline in the heat flow versus temperature curve (Fig. 7). The endothermic peak 

often observed on the heat flow curve at the end of the glass transition range is known 

as the enthalpy relaxation peak; it is the recovery of the enthalpy lost during the 

annealing process below the glass transition temperature and it corresponds to the 

enthalpy difference between an annealed glass and a quenched (non-annealed) 

glass.101,129,130 The relaxation peak may also arise if the heating and cooling rates are 

different. When a slowly cooled material is heated with a faster rate over the glass 

transition than was the case on cooling, rapid heating does not allow sufficient time for 

molecules to relax at the glass transition and extra energy at a higher temperature is 

needed for the relaxation of molecules to the rubber state.5,96 The presence of a 

relaxation endotherm may complicate the determination of Tg because the baseline shift 

may sometimes render the identification and quantification of the glass transition 

extremely difficult.  

There are at least three ways to determine the value of Tg from the DSC data. The so-

called “half-point-Tg” is the temperature that corresponds to the point on the heat flow 

curve where ∆Cp reaches 50 % of the total change in the specific heat capacity about the 

transition. At half-point-Tg the heat capacity is midway between those of the glassy and 

the liquid states. The glass transition temperature may also be read at the inflection 

point of the DSC curve associated with the glass transition. However, in the case where 

a large relaxation peak follows the glass transition, the inflection point determined from 

the curve is often displaced from the real inflection point of the glass transition,107 hence 

this is why the inflection point is seldom used to define the value of Tg.
101 The third way 

to determine the value of Tg is to find the intersection of the extrapolated pre-transition 
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and post-transition baselines on the enthalpy curve that is the integral of the specific 

heat curve (see Fig. 7).5,138 This point is called “fictive-Tg” ( i.e. “thermodynamic” or 

“enthalpic” glass transition temperature).101  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Glass transition seen in the DSC data, in the heat flow curve, and in the enthalpy 
curve. 

A particular problem related to DSC studies dealing with the glass transition is caused 

by the fact that an amorphous system carries a memory of its thermal history. Different 

cooling rates result in glasses of different degrees of order. Note that the glassy solid is 

thermodynamically far from equilibrium. Glasses are known to change their properties 

when annealed at temperatures below their glass transition temperature.108,110,128-132 The 

structure of a non-annealed glass is close to the structure of the corresponding liquid, 

and accordingly, ∆Cp at Tg is smaller for a non-annealed than an annealed glass.107  

The glass transition is a dynamic (not thermodynamical) phenomenon. Accordingly, the 

glass transition temperature depends not only on the thermal history of the sample but 

also on the temperature scanning rate.89,102,134 It should also be noted that the glass 

transition temperatures are extremely sensitive to water, as the residual moisture in the 

material acts as a plasticizer by increasing the free volume of the material. Hence, it has 
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a profound influence on the glass transition of amorphous materials leading to a 

decrease in Tg.
5,88,96-100  

3.2 Basic principles of method development 

Quantitative determination of amorphous phases requires 100% pure crystalline and 

amorphous standards as well as well-defined samples with various degrees of 

crystallinity for reference. A commonly accepted technique to prepare a standard series 

of samples with various known degrees of crystallinity is to simply weigh and 

thoroughly mix fully amorphous and fully crystalline samples at various ratios. A check 

for homogeneity of such a mixture can be done by observing the standard deviation of 

several measurements performed with the same mixture.8 However, preparation of 

samples with various degrees of crystallinity (on average) by mixing the fully 

amorphous and fully crystalline samples produces mixtures in which the crystalline and 

amorphous portions exist separately in different particles.1,6,9 This does not perfectly 

correspond to the real situation where amorphous and crystalline portions are normally 

in intimate contact with each other in each individual particle. 

A starting point in the development of a method for the determination of amorphous 

content is to ensure that the ∆Cp value for a 100% amorphous sample can be determined 

in a reproducible manner. Here the first step is to find the proper annealing temperature 

and time for the reference sample to eliminate the effect of thermal history of the 

sample and thereby reach a constant ∆Cp value. After the proper annealing conditions 

have been found, an appropriate temperature program can be made. This program is 

then used for the measurements of the fully crystalline and the fully amorphous samples 

as well as the synthetic mixtures. From the results, the ∆Cp value at the glass transition 

temperature as a function of the degree of amorphicity can be found and a linear 

regression line can be calculated. 

3.3 Novel enhanced DSC techniques 

Because of difficulties in detection of very low concentrations of amorphous phases by 

means of the conventional DSC technique, in recent years novel DSC approaches have 

been intensively looked to improve parameters such as sensitivity, accuracy and 
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detection limit. There are two new DSC approaches, the HyperDSC and the StepScan 

DSC, that have already been shown to greatly improve the detection of the glass 

transition. In the following, these techniques are discussed in more detail. 

3.3.1 HyperDSC 

The high-speed HyperDSC technique is based on a relatively new technology but has 

already attracted considerable interest as a method of high sensitivity. The technique 

employs very fast heating and cooling rates of up to 500°Cmin-1, and requires an 

instrument with an extremely fast response time with respect to the chosen temperature 

program together with a very high resolution. This can only be achieved using a power-

compensated DSC apparatus in which the low furnace mass and small dimensions 

ensure much faster heat transfer compared to the situation with the heat-flux DSCs.12-15 

The high heating rate significantly increases the sensitivity because an increased scan 

rate leads to a higher heat flow. The DSC output is measured in heat flow (mW), which 

can also be expressed as energy per unit time (J/s). At fast scan rates, the same amount 

of heat flows over a shorter time period, therefore, the use of increased heating rates 

allows extremely small transitions that would be below the limit of detection at the 

heating rates employed in conventional DSC to be measured. The HyperDSC technique 

also allows the measurement of much smaller samples12,13,16-20 and has over the last few 

years found a variety of applications in the fields of pharmaceuticals and polymers 

ranging from studies of polymorphism and glass transitions to those of the kinetics of 

macromolecular and pharmaceutical systems.13-25  

Higher scanning rates also aid the visualisation of the Tg in the samples with only a 

small amount of the amorphous phase embedded in crystalline matrix5,17,18,20 and this is 

illustrated in Fig. 8. Hence HyperDSC should be considered as a higly plausible 

technique for studying glass transitions. The technique can offer a huge improvement in 

sensitivity and speed over the conventional and modulated DSC techniques,12,18 and is 

able to provide us with valuable information rapidly and on small samples, opening a 

new area for research on amorphous materials.16  
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Figure 8. The effect of heating rate on the sensitivity of glass transition measurements. 

There are, however, some limitations to the technique. Resolution is one of the concerns 

that needs to be addressed.18 At high heating rates, thermal gradients within the sample 

may have an impact, widening the signals detected from the glass transition and other 

thermal events and superimposing these phenomena inside the material. One way to 

reduce the thermal gradient is to use samples of very small masses. On the other hand, a 

certain minimum mass is needed to ensure an acceptable signal-to-noise ratio and a 

measurable signal, hence, a compromise has to be found.13 To achieve optimal thermal 

contact between the sample and the sample container, aluminum foil or a thin-foil 

sample pan may be used.13,15,24 Corrections concerning thermal lag are often found to be 

necessary and have been used and discussed.24,25  

Both Saunders et al.16 and Gabbott et al.17 have evaluated the potential of the 

HyperDSC technique to characterize low amorphous contents in lactose samples. 

Different heating rates were tested, and the linear control of the heating rate for all the 

high scan rates used (50-500°Cmin-1) was demonstrated. The size of the DSC response 

increased substantially as the scan rate was increased, and it became easier to detect the 

glass transition even for samples with ∼1% amorphicity when using very low sample 

masses. Mixtures of crystalline and amorphous (spray dried) lactose were prepared, and 
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the heating rate of 500°Cmin-1 was chosen for the measurements because this rate was 

found to show the largest glass transition on the spray-dried lactose. The step height 

change of the glass transition was measured from the onset to the maximum height for 

each sample, and a linear relationship between this value and amorphicity was 

found.16,17 An independent sample that had been found to contain 1% amorphicity by a 

solution calorimetry method was measured under the same conditions: a clear glass 

transition was seen which clearly verified the sensitivity of the HyperDSC technique.17  

Saklatvala et al.18 compared the HyperDSC and TMDSC techniques using 

polyvinylpyrrolidone samples. As a result of the higher scanning rate, the step change 

about the glass transition was much larger in the case of HyperDSC confirming that the 

faster scanning rate leads to an improvement in the sensitivity. At the same time, 

however, the transition was broader in HyperDSC. Modulated DSC enabled the 

separation of the enthalpic relaxation from the heat capacity change allowing for a more 

straightforward detection of the glass transitions, however, detecting small glass 

transitions of amorphous components was a challenge. 

3.3.2 StepScan DSC 

StepScan DSC is the stepwise DSC technique for the characterization of thermal 

properties of materials.43-54 The technique permits the separation of DSC data into 

thermodynamic (reversible) and kinetic (irreversible) components for better 

interpretation. StepScan produces a temperature program that consists of a series of 

short heat-hold steps.43-45 After each step the heat flow is equilibrated until a given 

criterion is satisfied, and then the next step is started. The StepScan DSC approach is 

only possible with the design of the power-compensated DSC, with its very low-mass 

sample and reference furnaces and rapid response time.45-47 An empty-pan baseline 

should be run if an accurate Cp is needed.48  

The “Thermodynamic-Cp” data set reflects reversible (or fast) events, such as the 

sample’s heat capacity or glass transition. The kinetic or so-called “IsoK Baseline” data 

set reflects irreversible (or slow) processes taking place during the experiment, such as 

relaxation or crystallization. The temperature program used in StepScan DSC consists 

of alternate steps of heating with constant rate and isothermal holding. The reversible 

component is only observed in the heating part of the cycle and the irreversible one only 
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in the isothermal part.44,46,49 The duration of the isothermal part varies and the variation 

is controlled by the software which allows the sample to achieve a state close to the 

thermal equilibrium at each temperature step. No special mathematical operations, like 

Fourier transformation, are needed to obtain the results by the StepScan DSC 

technique.50 The basic equation describing the heat flow response in a StepScan DSC 

experiment is given as: dQ/dt = Cp(dT/dt) + K(T,t). In this equation, dQ/dt is the DSC 

heat flow, Cp is the sample’s specific heat capacity, dT/dt is the heating rate employed, 

and K(T,t) is the kinetic component.46,49  

There are many measurement parameters in the StepScan DSC method. The three most 

important parameters are the length of the isothermal segment, the temperature jump 

between two subsequent isothermal segments, and the linear heating rate in the dynamic 

segments.44,49 There is also a criteria-parameter (= criteria to shorten the isotherm) 

which determines the length of the isotherms.43,48 A fine criterion requires a longer time 

but it allows higher accuracy in the measurement. The sensitivity of the measurement 

can be improved by using a high heating rate or a large sample. For calibration a 

relatively slow heating rate (e.g. 2°Cmin-1) is recommended because, in spite of a high 

partial heating rate in the dynamic segment, the overall heating rate is usually quite slow 

in StepScan measurements. Slow scan speeds in order to maintain steady state through 

the required number of oscillations result in longer experimental running times. 

StepScan DSC requires two separate scans, a blank scan and a sample scan, for any 

given set of experimental parameters, which results in a very time-consuming 

procedure. 

In case the sample exhibits a glass transition with overlapping enthalpic relaxation, the 

Thermodynamic Cp signal would show the classic, stepwise change in the heat capacity, 

which simplifies the interpretation and makes the calculation of ∆Cp much easier. The 

enthalpic relaxation event would then show up in the IsoK Baseline data set45,47,48,51 and 

is shown in Fig. 9. 



 23 

 

Temperature

  Raw StepScan DSC data
  IsoK Baseline

- - - -   Thermodynamic C
p

H
ea

t F
lo

w
 E

nd
o 

U
p

 

 

S
pe

ci
fic

 h
ea

t

 

Figure 9. Typical StepScan DSC data for a glass transition: from the raw StepScan DSC data 
the IsoK Baseline curve and the Thermodynamic Cp curve are calculated. 

Lehto et al.9 determined the degree of amorphicity of lactose samples using StepScan 

DSC and compared the method to other methods that are widely used to quantify the 

degree of amorphicity (XRD, conventional DSC, IMC, SC, Raman spectrometry and 

GMS). The work revealed that the determination of ∆Cp may be hampered in StepScan 

DSC by the fact that the baseline of the heat capacity curve is not always a straight line. 

It was found that the interpretation of the glass transition was very difficult when the 

change in specific heat is small (as in the case with a sample with 2% amorphicity), 

however, good correlation was found between the degree of amorphicity and ∆Cp. 

Moreover, the StepScan DSC results were in good agreement with the results obtained 

with IMC, SC, Raman and GMS for the same samples.9  

Černošek et al.50 evaluated the capability of the StepScan DSC technique to measure the 

glass transition of a model glass (arsenic trisulfide). The reversing (thermodynamic) part 

of the StepScan data about the glass transition region was found to remain completely 

unaffected by the choice of the experimental parameters such that both the ∆Cp and Tg 

could be determined without influence of the thermal history experienced by the sample 

or the experimental conditions employed. 
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4 AIMS OF THE STUDY 

The research was divided into three parts: the melting behaviour of sugars and the 

preparation of amorphous samples as well as the development of a method for 

quantification of low amorphous contents. 

The specific aims of this study were: 

- to explore the ability of the HyperDSC and StepScan DSC techniques to detect 

and quantify low levels of amorphous phases in samples which are mostly 

crystalline (sugars and sugar alcohols) 

- to clarify whether melt quenching can be used for preparation of amorphous 

sugar and sugar alcohol samples 

- to study the melting behaviour of sugars 

- to study the effect of mechanical treatment on the amorphous content by 

grinding crystalline sucrose samples and to test the HyperDSC method for 

quantification of amorphous contents of ground samples 
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5 MATERIALS AND METHODS 

5.1 Reagents and samples 

The materials examined in melting studies of the present thesis were sucrose, glucose, 

fructose and xylose. Before melting measurements sucrose, glucose and fructose 

samples were dried at 50°C for two days and then stored in a desiccator over P2O5. 

Xylose samples were dried over P2O5.
ΙΙΙΙ,ΙΙΙΙΙΙΙΙ  

The samples for the quantification of low levels of amorphous content were maltitol and 

sucrose. Crystalline maltitol was dried and stored over P2O5. Amorphous maltitol was 

prepared from crystalline maltitol by melting it in an oven at 165°C (mp 150°C) and 

keeping it at that temperature for 15 minutes. The degradation temperature of maltitol 

was checked with TG before the preparation of amorphous maltitol. The bright and 

colourless liquid was poured on to a cooled metal plate and the plate was put in a 

desiccator. The desiccator was refrigerated at 5°C for at least 1 hour and the final 

product (glass) consisted of glassy “pearls”. After cooling, amorphous maltitol was 

crushed in a porcelain mortar and the powder was stored in a desiccator over P2O5 at 

5°C. Experiments showed that the powder started to crystallize if it was stored outside 

the desiccator at room temperature; the change started already within a couple of 

hours.ΙΙΙΙΙΙΙΙΙΙΙΙ,V  

Crystalline sucrose was dried at 50°C for two days and then stored in a desiccator over 

P2O5. Amorphous sucrose was prepared from a 30% (w/w) sucrose-water solution by 

spray drying. After spray drying, the samples were stored at room temperature in a 

desiccator over P2O5.
ΙΙΙΙV  

Mixtures of both maltitol and sucrose samples were prepared by weighing known 

quantities of amorphous and crystalline material at various ratios and by mixing them 

thoroughly in a porcelain mortar. In addition, 100 and 0% amorphous samples were 

used. The mixtures were prepared one at a time and measured immediately. Two to five 

parallel measurements were taken at each test point.ΙΙΙΙΙΙΙΙΙΙΙΙ-V 

Table 2 summarizes the samples employed in this study. Maltitol was chosen because it 

offers a practical advantage for the investigation of quantification of amorphous level as 

no interfering re-crystallization effect is observed. The glucose, fructose and sucrose 
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were chosen for model sugars because they are the most common sugars in industrial 

use. Xylose was investigated because of the interest of the sponsor.  

Table 2. Samples employed in this study. 

Sample Manufacturer 

  
Melting studies  
  
Sucrose (2820 Sucrose Pharma 51115) [sucrose A] Danisco Sweeteners, Finland 
D(+)-sucrose >99.5% [sucrose B]  Fluka BioChemica 
D(+)-glucose AnalR [glucose A] BDH 
D(+)-glucose anhydrous >99.5% [glucose B] Fluka BioChemica 
Fructose (A125 Fructofin C 10098) [fructose A] Danisco Sweeteners, Finland 
D(-)-fructose >99.5% [fructose B] Fluka BioChemica 
Crystalline L-xylose (Xylose lot 1 22.8.2001) Danisco Sweeteners, Finland 
D-xylose (Lot Z121296, >99.8%) Danisco Sweeteners, Finland 
L(-)-xylose (minimum 99%,) Sigma 
D(+)-xylose (Sigmaultra 99%) Sigma-Aldrich 
  
Amorphicity studies  
  
Crystalline maltitol (Lot M010803) 99.8% Danisco Sweeteners, Finland 
Crystalline maltitol >98% Sigma 
Crystalline D(+)-sucrose >99.5% Fluka BioChemica 
  

 

5.2 Analysis techniques 

The aim of the X-ray powder diffraction measurements was to identify the phases of the 

samplesΙΙΙΙ,ΙΙΙΙΙΙΙΙ or to ensure the amorphicity of the samplesΙΙΙΙΙΙΙΙΙΙΙΙ-V.  

The decomposition of samples was investigated using TG analysis. Conventional DSC 

was employed to study the melting behaviour of samples. Several heating rates were 

used in both the decomposition and the melting studies of the samples.ΙΙΙΙ,ΙΙΙΙΙΙΙΙ In addition, 

some StepScan DSC measurements with different measurement parameters were 

performed.ΙΙΙΙΙΙΙΙ Also a melting point apparatus was used for melting point measurements.ΙΙΙΙ  

Many different series of DSC measurements were carried out in order to develop a 

method for quantification of low levels of amorphous content in maltitol and sucrose. 

Both HyperDSC and StepScan DSC techniques were used. The experimental conditions 

of the DSC measurements are described in Publications ΙΙΙ-V. 
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The effect of mechanical treatment was studied by grinding crystalline sucrose for 

different times. The grinding was done at room temperature in a ball mill for 2.5 to 60 

minutes and the crystalline sucrose was dried in a desiccator over P2O5 before grinding. 

In addition, the grinding vessel and the metal balls were dried in an oven at about 115°C 

for 1 hour and then in a desiccator over silica gel for at least two hours every time 

before grinding. The ground samples were measured immediately after grinding with 

DSC.ΙΙΙΙV  
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6 STUDIES ON SUGARS AND SUGAR ALCOHOLS 

6.1 Melting of sugars 

Melting refers to the transformation of an organized solid crystalline structure to a 

disorganized liquid state.139 In melting, the solid and liquid are in thermodynamic 

equilibrium at constant temperature and pressure.107 Usually melting is determined by 

raising the temperature at a certain heating rate over the range of melting point, this 

causes a temperature gradient in the sample and an apparent rise of the observed melting 

temperature. For that reason, the melting proceeds over an apparent temperature range 

as a result of the lag in the heat transfer and is larger the faster the heating rate is.139 The 

melting can be said to be anomalous if the form recrystallized from the melt is different 

from the original form or if the conformation of molecules changes during melting. Also 

a decomposition taking place in the melting temperature range causes the melting to be 

anomalous. The anomalous melting temperature is strongly dependent on the heating 

rate. 

Heating of crystalline sugars above melting point followed by rapid cooling often 

results in the formation of a solid, transparent, glassy material.96 This technique is often 

used to prepare amorphous sugars and sugar alcohols.93,95,99,109,110,127,129,130,135,136 

Crystalline sugar melts when it is heated to or above its melting point. Sugars do not 

have sharp melting points and their melting proceeds over a temperature range and as a 

result the melting endotherms are fairly broad. The melting points of sugars are 

sensitive to water, impurities and crystallinity. Some sugars may caramelize and 

become brown concomitantly with the melting process. Sugars may also decompose 

before their melting begins.124,140,141 The melting points may differ between sugar 

anomers.96 α- and β-anomers of the same sugar are in equilibrium in water, but in the 

crystalline state one anomer is usually the dominating form.140,142,143 Also the 

conformation of the sugar may change in the melting process.99,144-149  

The melting of sugar is not a well-defined process because the liquid formed 

immediately on melting is not an equilibrium state of the system. A sugar in the molten 

state, above its melting point, is composed of more than one conformer (epimers, 

tautomers and anomers) and the conformer equilibrium is established on a longer time 

scale than that of the melting process. Hence, observing a true equilibrium fusion 
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process, e.g. by placing a crystal into an equilibrated melt, is probably not possible in all 

cases.129,131,150 Part of the complexity of the molten state of sugar is due to an initial 

non-equilibrium state produced on fusion and another part results from the 

decomposition processes which set in around the melting point. In addition, the 

equilibrium state of liquid itself is temperature-dependent, with widely different time 

scales for equilibration with respect to its different degrees of freedom.131  

When melting points of sugars are reviewed in the literature, it is found that values for 

the same sugar may slightly differ from each other (see Table 3). The articles are mainly 

general and the melting temperatures of various sugars are just summarized into one 

table. The melting behaviour of each individual sugar is usually not studied. However, 

the melting point is one of the parameters commonly used to identify and characterize 

the material and the amorphous sugar is often formed by heating of crystalline sugar 

above its melting temperature followed by rapid cooling. The melting of sugar is not an 

unambiguous event, for that reason, it should be studied in order to determine if melting 

can be used for preparation of amorphous sugar. 

Table 3. Literature values of melting points of sucrose, glucose, fructose and xylose (the values 
in parentheses are onset temperatures). 

Melting point / °°°°C 

Sucrose Glucose Fructose D-Xylose 
References 

     
160-186 146 (α) 

148-150 (β) 
102-104  151 

 146   146 
(173) 190 (143) 158 (108) 127 (143) 157 93 
(160) 185 (135) 150 (80) 115 (135) 150 152 

192 158 124  153 
 (158) 164 (114) 132  129 
  105  131 

188    121 
 165 120  141 

188    126 
190    95 

   155 144, 145 
185-186 146 (α) 

150 (β) 
103-105 145 154 

180 156 121  155 
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6.1.1 Melting studies of sucrose, glucose, fructose and xylose 

The differences between the literature values for the same sugars indicate that further 

work is needed in this area. In this study the apparent changes in the melting 

temperature were investigated and the reasons for the differences were examined. The 

samples studied were sucrose, glucose, fructose and xylose. Their melting behaviour 

was studied with conventional DSC (all samples) and also StepScan DSC method 

(xylose samples), and the decomposition of the same sugars was observed with TG 

analysis. Different heating rates were used in both types of measurements. Melting 

points were also determined using a melting point apparatus (sucrose, glucose and 

fructose samples). 

The results of thermal analysis measurements (TG and DSC) are collected in Tables 4-

7. Onset and peak temperatures of melting and heat of fusion (∆Hf) are from DSC. Ti is 

the initial temperature of decomposition (from TG) (see Fig. 10). Increasing heating 

rates increased both the onset and the peak temperatures in all samples studied. The 

enthalpy of melting increased as the heating rate increased and in addition, the initial 

temperatures of TG measurements were moved higher as the heating rates increased. 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Melting peak (DSC curve) and the start of decomposition (TG curve). 
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From the x-ray powder diffraction measurements, both sucroses studied were identified 

as D-sucrose, both glucoses as α-D-glucopyranose and both fructoses as β-D-

fructopyranose. Two enantiomeric forms of xylose were identified as α-D-xylopyranose 

and α-L-xylopyranose. All identifications were unambiguous.  

 

In the case of sucrose samples (see Table 4), the peak and onset temperatures clearly 

increased as the heating rate was increased to 10°Cmin-1 but onset was nearly constant 

at higher heating rates. The peaks also became slightly broader as the heating rate was 

increased. When TG and DSC results were compared, it could be noticed that the 

decomposition started before melting at slower heating rates, especially in case of 

sucrose A. The onset temperature was seen to change because of the decomposition.  

Table 4. Results of DSC and TG measurements and the calculated melting entropy values for 
sucrose. 

 Heating 
rate 

Onset 
temperature 

Peak 
temperature 

Ti  ∆∆∆∆Hf ∆∆∆∆Sf 

 /°°°°Cmin-1 /°°°°C /°°°°C /°°°°C /Jg-1 /Jmol-1°°°°C-1 

       
SUCROSE  0.5 167.9 169.9 159.6 55 112 

A 1 173.7 176.6 161.1 72 142 
 2 178.2 181.4 169.6 111 214 
 10 185.9 190.5 179.7 126 233 
 20 187.5 191.9 192.2 131 239 
 50 188.3 193.7 207.5 137 249 
 100 189.0 196.1 235.3 143 259 
       

SUCROSE  0.5 181.4 182.7 167.0 120 226 
B 1 184.5 186.6 171.3 127 235 
 2 187.1 189.3 178.8 128 234 
 10 188.9 191.5 189.2 134 244 
 20 189.6 192.9 200.7 135 244 
 50 191.1 196.1 214.9 139 249 
 100 190.8 196.5 228.4 145 261 
       

 

The two sucrose samples measured behaved in different ways at slow heating rates and 

melting occurred at a lower temperature for sucrose A than sucrose B. Distinct changes 

could also be seen in the shape of the melting peak and the enthalpy of melting. The low 

enthalpy can be explained by the enthalpy of decomposition being lower than the 

enthalpy of melting. On the other hand, at a heating rate of 10°Cmin-1 and above the 
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behaviour of both sucrose samples was quite similar. Onset temperatures were nearly 

constant and the peak temperatures changed only slightly. The caramellization could be 

seen before the melting peak of sucrose A but not in the melting peak of sucrose B. At 

high heating rates, the melting was normal and occurred clearly before the 

decomposition started. The melting of sucrose was found to be anomalous, especially at 

slow heating rates. 

 

In the glucose samples studied (see Table 5), the melting peaks moved to a higher 

temperature as the heating rate was increased and the shift was almost constant 

throughout the heating rate range. The peaks were narrow and their shapes were 

competent but at faster heating rates the peak broadened towards higher temperature. 

The significant differences between glucose samples were in temperatures: glucose A 

melted at a higher temperature than glucose B, but its decomposition started at a lower 

temperature, though their enthalpies of melting were similar. In contrast to sucrose, the 

increase of the onset temperature continued also at high heating rates in glucose.  

The decomposition started before melting was stopped only at slow heating rates and so 

there has to be another explanation for the shift of onset temperatures at high heating 

rates. Broido et al.146 studied the mutarotation of α- and β-D-glucose near their melting 

point. The process of mutarotation was found to become very fast as soon as the bulk 

material melted and the equilibrium α/β ratio was found to be 44% / 56% in melt. As a 

consequence the shift of onset temperature can be explained by partial decomposition 

but also by mutarotation.146 The melting of glucose was anomalous: besides the melting, 

also thermal decomposition and mutarotation occurred at slow heating rates, whereas at 

high heating rates the dominant process was mutarotation. 
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Table 5. Results of DSC and TG measurements and the calculated melting entropy values for 
glucose.  

 heating 
rate 

onset 
temperature 

peak 
temperature 

Ti  ∆∆∆∆Hf ∆∆∆∆Sf 

 /°°°°Cmin-1 /°°°°C /°°°°C /°°°°C /Jg-1 /Jmol-1°°°°C-1 

       
GLUCOSE  0.5 147.5 149.1 146.4 183 223 

A 1 149.8 151.7 149.8 189 227 
 2 152.8 154.8 151.4 189 223 
 10 160.4 163.1 166.4 196 220 
 20 164.8 167.4 176.5 200 219 
 50 169.4 172.6 191.6 208 221 
 100 171.8 176.1 194.4 221 231 
       

GLUCOSE  0.5 145.1 147.5 147.0 180 224 
B 1 146.5 149.3 152.0 185 228 
 2 148.9 151.9 159.1 187 226 
 10 155.2 159.4 170.3 194 226 
 20 158.3 163.8 183.5 199 227 
 50 163.3 168.9 201.1 207 228 
 100 166.7 173.8 204.3 219 237 
       

 

The melting peaks of the fructose samples studied were shifted most of all (Table 6). 

The difference between the results at the slowest and fastest heating rate was as much as 

30°C and the shift of the melting peak was regular over the whole heating rate range. 

Fructose samples behaved in the same way in the tests with the only visible difference 

the shape of the melting peaks. The peaks were broad already at low heating rates in 

both fructose samples, but overall a little broader in fructose A. At the slow heating 

rates the decomposition of fructose samples started before melting but at the faster 

heating rates the decomposition started only after the melting. In fructose, the onset 

temperature increased at all heating rates in the same way as in the case of glucose, 

however, the change was larger at slow heating rates than at fast rates.  

Farhoudi and Mauch147,148 studied mutarotation of D-fructose, and they noticed that 

during melting β-D-fructopyranose was converted into α- and β-D-fructofuranose, but 

D-fructofuranose in the melted state was reconverted into D-fructopyranose. The effect 

of mutarotation on the melting temperature was significant at all heating rates used. The 

melting of fructose was anomalous because the melting temperature was lowered by 

both thermal decomposition and mutarotation at low heating rates. On the grounds of 
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values given by TG, the mutarotation was the predominant factor in the change of the 

melting point, especially at high heating rates.  

Table 6. Results of DSC and TG measurements and the calculated melting entropy values for 
fructose.  

 Heating 
rate 

Onset 
temperature 

Peak 
temperature 

Ti  ∆∆∆∆Hf ∆∆∆∆Sf 

 /°°°°Cmin-1 /°°°°C /°°°°C /°°°°C /Jg-1 /Jmol-1°°°°C-1 

       
FRUCTOSE  0.5 108.2 114.3 110.7 148 246 

A 1 113.6 118.4 116.3 156 247 
 2 112.0 123.2 122.8 162 260 
 10 125.8 134.1 138.7 175 250 
 20 131.3 137.8 145.0 186 255 
 50 135.7 140.6 161.6 198 263 
 100 137.0 142.6 166.1 213 280 
       

FRUCTOSE  0.5 110.0 113.0 110.4 152 248 
B 1 112.7 116.7 113.9 154 246 
 2 116.2 121.0 119.0 164 254 
 10 125.7 131.7 136.8 177 253 
 20 130.0 136.0 147.1 186 257 
 50 134.9 139.8 157.0 199 266 
 100 136.8 142.0 165.4 204 268 
       

 

In the xylose samples (see Table 7), increasing the heating rate caused the onset and 

peak temperatures to move higher and the peaks to become slightly broader. The 

enthalpy of melting increased as well. The temperatures were overall higher for the L-

form than for the D-form. In both samples studied, the shape of peaks was normal but 

the peaks of D-form were in general broader than those of L-form. The enthalpy of 

melting of both samples was nearly equal at slow heating rates but was a little higher for 

L-form than D-form when higher heating rates were used. The decomposition of L-

xylose started at slightly higher temperatures than that of D-xylose. The thermal 

behaviour of different xylose forms differed especially at low heating rates and there 

were also differences in melting temperatures among the different samples of the same 

sugar. It was obvious that decomposition of both enantiomeric forms of xylose began at 

slow heating rates before the melting ended, whereas at high heating rates the melting 

clearly occurred before the decomposition started. At slow heating rates the change of 

onset temperature was larger than at high heating rates (see Table 7).  
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Table 7. Results of DSC and TG measurements and the calculated melting entropy values for L-
xylose and D-xylose. 

 Heating 
rate 

Onset 
temperature 

Peak 
temperature 

Ti  ∆∆∆∆Hf ∆∆∆∆Sf 

 /°°°°Cmin-1 /°°°°C /°°°°C /°°°°C /Jg-1 /Jmol-1°°°°C-1 

       
L-XYLOSE 0.5 143.9 147.3 145.1 208 217 

 1 147.1 150.5 146.9 213 217 
 2 151.4 155.3 149.2 222 220 
 10 155.8 160.8 164.6 237 228 
 20 159.2 164.8 187.5 240 226 
 40 162.2 168.4 198.0 251 232 
       

D-XYLOSE 0.5 136.8 142.4 138.5 207 227 
 1 139.7 145.8 147.0 216 232 
 2 143.7 150.1 147.1 222 232 
 10 152.8 157.7 160.7 228 224 
 20 156.3 162.7 174.0 236 227 
 40 158.3 166.3 184.4 239 227 
       

 

Two StepScan DSC measurements with different measurement parameters were 

performed for both L- and D-xylose samples. At the melting point, the change was seen 

in both thermodynamic and kinetic curves. There were differences between D- and L-

xylose and also between different measurements of the same sample. The peaks of 

kinetic IsoK baseline curves indicated that melting was not only a thermodynamic 

equilibrium process. The melting enthalpies calculated from the kinetic curves were 

only slightly smaller than the enthalpies obtained by conventional DSC that showed 

how considerable the kinetic part of melting was. 

According to Shafizadeh et al.144,145 α-D-xylopyranose changes to β-D-xylopyranose 

upon heating. The crystalline α-D-anomer contains about 10% of the β-D-anomer up to 

about 125°C where the endotherm begins. It then continues to equilibrate until the 

melting is completed and the ratio of anomers becomes constant. At a temperature of 

154°C, the ratio of α-D-xylopyranose and β-D-xylopyranose is 48%:52%, 

respectively.144,145 The melting of xylose was anomalous at slow heating rates because, 

besides the melting, also partial thermal decomposition and mutarotation occurred. At 

higher heating rates, judged from the TG data, the mutarotation was the predominant 

factor in the change of the melting point.  
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In thermodynamic melting, the onset temperature should not change although the 

heating rate changes, except for the amount of thermal lag. Thermal lag depends on 

numerous factors, such as the capability of the instrument to change energy during 

heating, the response time of the instrument, the heat conduction from the heater to the 

pan and further to the sample, and the heat capacity and enthalpy of melting of the 

sample. The crystalline state and melt state are two different thermodynamic systems. 

An ideal melting process takes place at a constant temperature and is accompanied by 

an increase in the entropy of system, ∆SREV or the melting entropy. In practice, non-

reversible processes cause the observed absorption of heat to differ from the ideal 

enthalpy of melting, and the calculated entropy change, ∆SIRREV, will differ from ∆SREV. 

The entropy changes in melting at the different heating rates used in this study were 

calculated and the results are shown in Tables 4-7. As the results show, the melting 

entropy changes of sucrose, glucose, fructose and xylose were quite similar. The change 

of entropy increased with increasing heating rate; especially for sucrose there were 

notable differences in the melting entropies between low and high heating rates. For 

comparison, the melting entropy of maltitol was also calculated. The melting of maltitol 

is known to be normal130,135 and the melting entropy is evidently higher (376 Jmol-1°C-1) 

than that of sucrose, glucose, fructose or xylose. The melting of maltitol is reversible 

whereas the melting of sucrose, glucose and fructose is irreversible because of 

simultaneous decomposition and/or mutarotation. The lower entropy values are due to 

the irreversibility of melting, especially at low heating rates. 

The DSC and TG measurements in the present study were performed by raising the 

temperature from room temperature over the melting point at different heating rates. In 

official melting point determination methods,156 the temperature of the bath should be 

raised to about 10°C below the presumed melting point and the sample should then be 

inserted into the apparatus only 5-10°C below the presumed melting point, so that 

thermally sensitive samples do not decompose during the measurement. For thermally 

sensitive samples, for example for different sugars, the melting point results should 

therefore always be validated.156,157 In this study, melting points were determined also 

using a melting point apparatus. As the results of melting point apparatus were 

compared with melting temperatures determined with DSC, the general conclusion was 

that the melting point apparatus gave lower melting points than DSC. The values 
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obtained by the melting point apparatus were comparable with the slowest heating rates 

(0.5 – 1°Cmin-1) of DSC.ΙΙΙΙ  

Based on all the results, the absolute melting can be seen in DSC best at a high heating 

rate because the other processes are slower. The one standardized melting point analysis 

method is the pharmacopeian method,156 if this is taken into account, the heating rate of 

DSC should be 1°Cmin-1 and measurements should be performed in an inert 

atmosphere. The melting point determined in this way is anomalous and the differences 

between samples are clearly seen at this heating rate.  

This work shows that the melting of sugars is a multiphase phenomenon and the results 

are affected by both the determination method and the origin and quality of samples. 

The results show that there can be differences between different samples of the same 

sugar although the measurements are performed identically. In addition the melting 

point alone cannot be used for identification of sugar samples in all cases. 
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6.2 DSC method development for quantification of amorphous content 

The sensitivity of the technique for quantification of amorphicity depends on the 

relative magnitude of the property change being measured. In DSC, detection of low 

concentrations of amorphous components is based on detection of changes in specific 

heat capacity associated with the glass transition. HyperDSC increases the sensitivity of 

DSC using a high heating rate, however, this approach also results in broadening and 

shifting of the glass transition, and does not always yield the desired sensitivity. 

Nevertheless, it should be emphasized that even though the value of Tg and also the heat 

capacity Cp will shift upwards with increasing heating rate, the magnitude of ∆Cp does 

not change.50 StepScan DSC, on the other hand, eliminates all baseline curvature and 

drift from the heat capacity signal and provides higher sensitivity for straightforward 

detection of weak glass transitions. However, in samples with extremely low 

concentrations of amorphous components, detecting the glass transitions may be a 

challenge and the calculation of the heat capacity change impossible. Hence the 

suitability, selectivity, and limit of detection of each technique are sample-specific. 

In this study, the methods of quantification of low concentrations of amorphous 

components in sugar and sugar alcohol samples by HyperDSC and StepScan DSC were 

developed.III-V The samples were maltitol (both HyperDSC and StepScan DSC) and 

sucrose (HyperDSC). Amorphous maltitol was prepared from crystalline by melting. 

Maltitol occurs in one form only (no polymorphism was observed) and additionally no 

recrystallization was detected in the glass transition range during the measurements.130 

Once melted, maltitol can be undercooled without further cold crystallization.135 The 

amorphous form of sucrose could not be prepared in the same way due to chemical 

degradation during melting, therefore, the amorphous sucrose was prepared by spray 

drying. Spray drying is widely used in pharmaceutical industries and it is known to 

produce predominantly amorphous material due to rapid solidification.64,137,158  

The method for quantification of amorphicity was developed by first finding out the 

annealing time that resulted in a constant ∆Cp for totally amorphous samples. The 

purpose of annealing was to eliminate the effect of the thermal history of the sample. 

The change of annealing time affected the glass transition temperature and the change 

of specific heat: as annealing time increased, Tg became higher and ∆Cp became larger. 
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The outcome of annealing measurements was a measuring program which produced a 

constant ∆Cp at Tg for totally amorphous sample.  

In the HyperDSC experiments of maltitol, the annealing temperature was 40°C110 and 

annealing times 35 and 60 min were tested. The following temperature program was 

used to run the experiments: (a) heating from room temperature to annealing 

temperature (from 30°C to 40°C) at a heating rate of 10°Cmin-1 and (b) annealing at 

40°C for 60 minutes, then (c) cooling to the starting temperature (- 10°C) at a cooling 

rate of 10°Cmin-1 and finally (d) heating from starting temperature over the glass 

transition region (from - 10°C to 100°C) at 100°Cmin-1.III  

In the sucrose experiments, an annealing temperature 60°C was chosen110,132,133 and the 

different annealing times of 0.5, 1, 2, 4, 5 and 6 hours were tested. The temperature 

program chosen to final measurements was: (a) heating from room temperature to 

annealing temperature (from 25°C to 60°C) at a heating rate of 10°Cmin-1 and (b) 

annealing at 60°C for 5 hours, then (c) cooling to the starting temperature (10°C) at a 

cooling rate of 10°Cmin-1 and finally (d) heating from starting temperature over the 

glass transition region (from 10°C to 120°C) at 100°Cmin-1.IV  

At the beginning the StepScan DSC measurements of maltitol, the influence of the 

measurement parameters of the StepScan DSC method on the shape of the glass 

transition and the size of ∆Cp was first evaluated. This was done by changing one 

parameter at a time while the others were kept constant. Also two different calibration 

heating rates were tested. It was found that the heating rate used in the calibration had a 

significant effect on the shape of the specific heat curve at different StepScan 

parameters. On the basis of the shapes of the curves and the values of ∆Cp two heating 

rates were used in the calibration and for that reason two measurement methods were 

carried out and compared during the following measurements. For calibrations done at a 

heating rate of 2°Cmin-1 the temperature program was: a heating rate of 2°Cmin-1, a 

temperature increment of 2°C, a isothermal segment of 1 min, an equilibrium criteria of 

0.01 mW (= Method 1). For calibrations done at a heating rate of 10°Cmin-1 the 

temperature program was: a heating rate of 10°Cmin-1, a temperature increment of 2°C, 

an isothermal segment of 1 min, an equilibrium criteria of 0.0001 mW (= Method 2).V  
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The ∆Cp values were calculated for both the fictive and the half-point glass transition 

temperatures for the sake of comparison, but no significant differences in the results 

were observed. The ∆Cp values of the P2O5 dried, totally amorphous samples are 

illustrated in Table 8. The results of maltitol are comparable with values of different 

authors130,135,136,ΙΙΙΙΙΙΙΙΙΙΙΙ,V and the result for sucrose is in line with literature 

values.93,108,127,132,ΙΙΙΙV  

Table 8. The ∆Cp values of parallel measurements of P2O5 dried totally amorphous samples of 
maltitol (n=6) and sucrose (n=4) measured with different methods.  

Sample Method Calculated from ∆∆∆∆Cp / Jg-1°°°°C-1 

    
Maltitol HyperDSC Fictive-Tg 0.73 ± 0.03 
  Half-point-Tg 0.71 ± 0.04 
    
Maltitol StepScan DSC Method 1  
  Fictive-Tg 0.71 ± 0.01 
  Half-point-Tg 0.71 ± 0.01 
    
 StepScan DSC Method 2  
  Fictive-Tg 0.72 ± 0.01 
  Half-point-Tg 0.72 ± 0.01 
    
Sucrose  HyperDSC Fictive-Tg 0.77 ± 0.01 
  Half-point-Tg 0.76 ± 0.01 
    

 

The mixtures with varying proportions of 100% amorphous and 100% crystalline 

sample were measured with a sample-specific measuring program. The ∆Cp values of 

synthetic mixtures were used to calculate average and standard deviation values and at 

least 3 parallel results were used for every point. The mean values of specific heat 

change at the glass transition region were plotted against the degree of amorphicity. The 

linear regression between ∆Cp and the degree of amorphicity was obtained for both the 

techniques, as illustrated in Fig. 11.  
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Figure 11. The average and standard deviation values for the specific heat change at glass 
transition temperature as function of amorphous content measured with HyperDSC and 
StepScan DSC for maltitol and sucrose samples.III-V  
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The sensitivity of HyperDSC is illustrated in Fig. 12 where DSC curves for various 

maltitol samples are shown. Even for a sample with 1% amorphous content the glass 

transition was easily seen such that the ∆Cp value could be calculated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. HyperDSC glass transitions for samples containing (a) 100%, (b) 10% and (c) 1% 
amorphous maltitol. Heating rate was 100°Cmin-1 and sample mass ca. 5 mg.III  
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6.2.1 Detection limits 

The limit of detection (LOD) is defined as the analyte concentration giving a signal 

equal to the blank response plus three standard deviations of this value, whereas the 

limit of quantification (LOQ) is the analyte concentration giving a signal equal to the 

blank response plus ten standard deviations of this value. From the regression lines the 

numerical information for constants b, a, sa and sb can be obtained for the equation of 

a=bx+y. The LOD and LOQ values can be calculated using the equations XL = 3sa/b for 

LOD and XL = 10sa/b for LOQ.159 Table 9 summarizes the calculated LOD and LOQ 

values. The values are appreciably low for both the HyperDSC and StepScan DSC 

techniques. 

Table 9. Calculated LOD and LOQ values.III-V  

Sample Method Calculated from LOD / % LOQ / % 

     
Maltitol HyperDSC Fictive-Tg 0.31 1.04 
  Half-point-Tg 0.11 0.36 
     
Sucrose HyperDSC Half-point-Tg 0.06 0.21 
     
Maltitol StepScan DSC Method 1   
  Fictive-Tg 0.24 0.81 
  Half-point-Tg 0.27 0.92 
     
Maltitol StepScan DSC Method 2   
  Fictive-Tg 0.18 0.61 
  Half-point-Tg 0.16 0.52 

     

 

In addition, instrumental sensitivity and detection limit were determined. The calculated 

LOD value for a heating rate of 100°Cmin–1 and a 10 mg sample was 0.001%. 

Comparing the value of detection limit at a heating rate of 100°Cmin-1 with the 

experimental LOD value (Publication ΙΙΙ: Table 8), it is possible to see that the 

experimental LOD is much higher than the instrumental limit of detection. This means 

that the preparation of the mixtures of samples was the weakest point in the 

determination of low amorphous levels. 



 44 

6.2.2 Sources of error 

There are a number of practical considerations associated with quantification of 

amorphicity using DSC. It is essential that baseline calibration is performed to ensure as 

flat baseline as possible. This is extremely important especially in the case of small 

glass transitions. The presence of relaxation endotherm can present a problem with the 

measurement of Tg because the baseline shift may sometimes make the identification 

and quantification of glass transition extremely difficult.  

The largest source of error appears to be the inhomogeneity of mixing during the 

preparation of samples. Sample preparation and storage conditions must be carefully 

controlled because sugars and sugar alcohols are very hygroscopic and capable of 

absorbing water. The level of residual moisture has a profound influence on the 

measured glass transition. 

The reliability of results could be improved if some other measurement techniques were 

used in parallel. 

6.2.3 Comparison of HyperDSC and StepScan DSC techniques 

There are some characteristic differences in the HyperDSC and StepScan DSC methods 

when employed for the quantification of low amorphous levels. In HyperDSC the 

sensitivity is higher owing to the high heating rates used. The limit of quantification is 

determined by the measurement noise and due to the lower noise level in HyperDSC, 

lower LOD and LOQ values can be reached and accordingly, smaller glass transitions 

can be detected. HyperDSC is also clearly faster than the StepScan DSC method. In 

some cases, however, distinguishing the glass transition from other thermal events (such 

as recrystallization and relaxation) has been found to be difficult in HyperDSC but can 

be readily achieved in StepScan DSC. The StepScan DSC measurements are more 

complicated to perform than the HyperDSC measurements. In the StepScan method, the 

proper choice of the various measurement parameters is important because they have a 

substantial effect on the results. In addition the calibration method also influences the 

results. However, the main advantage of the StepScan DSC method for quantification of 

an amorphous content is that the glass transition and relaxation peaks are separated to 

different curves such that the calculation of ∆Cp becomes much easier. 
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6.2.4 Quantification of amorphicity in ground sucrose samples 

Most crystalline solids undergo processing that might produce partially or wholly 

disordered materials, and one of these, grinding, is often used in industry. In this study 

the effect of grinding time on the amorphous content of crystalline sucrose was 

investigated.IV Crystalline samples were ground and measured with HyperDSC using 

the same temperature program that was used for the measurements of test mixtures. The 

∆Cp values of ground samples were plotted against grinding time and an exponential 

correlation was found (R2 = 0.998) (Publication ΙV: Fig. 4). ∆Cp increased with grinding 

time. As illustrated earlier, ∆Cp is linearly proportional to amorphous content. By 

combining some equations also a correlation between grinding time and amorphous 

content in sucrose were found (Publication ΙV: Fig 5). The amorphous content increased 

rapidly at the start of grinding, but it stabilized as grinding time became longer (about 

two hours). Only an amorphous content of 80-90% could be attained by the grinding 

method used in this study.  

Font et al.160 ground crystalline sucrose in a ball mill for 1 to 60 hours and observed that 

amorphization degree increases with increasing grinding time. Crystalline sucrose were 

ground with a vibrating mill for 2 to 16 hours at room temperature by Tsukushi et 

al.161,162 and Yamamuro et al.163 They reported that only partly amorphized sucrose 

could be attained with this technique.161-163  

The aim of the grinding studies was also to test the HyperDSC method for amorphous 

content determination. It was found that the determination of the change of the specific 

heat at the glass transition by HyperDSC is suitable for determining amorphous content 

in both synthetic mixtures and ground samples.  
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7 CONCLUSIONS 

The purpose of this thesis was to explore the ability of the HyperDSC and StepScan 

DSC techniques to quantify low contents of amorphous phases in food and 

pharmaceutical samples which are mostly crystalline (sugar and sugar alcohol). For 

quantification of amorphous content, crystalline and amorphous reference samples are 

needed. As an amorphous material is prepared by melting of a crystalline material, it 

must be ascertained that no other events are taking place at the same time.  

The melting of sugars is a multiphase phenomenon and the results are affected by both 

the determination method and the origin and quality of the sample. There can be 

differences between different samples of the same sugar. The differences in the 

literature values can be explained by different origins of materials and the different 

determination methods. The melting point alone cannot be used for identification of 

sugar samples in all cases. 

The preparation of test samples for the determination of small amorphous levels is 

difficult because amorphous sugars and sugar alcohols readily absorb moisture. In 

addition, dried crystalline samples may easily absorb small amounts of moisture if 

stored under normal humidity at room temperature, however, the results of experimental 

samples stored over P2O5 were satisfactory. 

In this study, new methods for quantification of low concentrations of amorphous 

components in sugar and sugar alcohol samples (maltitol and sucrose) were developed. 

The change in the specific heat (∆Cp) at the glass transition was shown to be a good 

indicator for the degree of amorphicity in samples that are mostly crystalline. It was 

found that the annealing time and temperature must be carefully chosen. The two 

relatively new DSC techniques, HyperDSC and StepScan DSC, provide us with obvious 

benefits for the accurate ∆Cp measurements. With both the methods, experimental 

conditions can be found under which the degree of amorphicity linearly depends on ∆Cp 

and low enough LOD and LOQ values are achieved. The HyperDSC method was tested 

by grinding the crystalline sucrose for different time periods and good correlation 

between the grinding time and the amorphous content of the sucrose was found. This 

study has established that the two new DSC approaches should both be seriously 

considered as potential techniques for quantifying low concentrations of amorphous 

phases in various crystalline matrices.  
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