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ABSTRACT

Savia, E. (2010): Mutual Dependency-Based Modeling of Relevance in
Co-Occurrence Data. Doctoral thesis, Aalto University School of Science and
Technology, Dissertations in Information and Computer Science, TKK-ICS-D17,
Espoo, Finland.

Keywords: Canonical Correlation Analysis, collaborative filtering, co-occurrence
data, dependency modeling, eye movements, fMRI, gene regulation, latent topic
models, natural stimulation, two-way grouping.

In the analysis of large data sets it is increasingly important to distinguish
the relevant information from the irrelevant. This thesis outlines how to find
what is relevant in so-called co-occurrence data, where there are two or more
representations for each data sample.

The modeling task sets the limits to what we are interested in, and in its part
defines the relevance. In this work, the problem of finding what is relevant in
data is formalized via dependence, that is, the variation that is found in both (or
all) co-occurring data sets was deemed to be more relevant than variation that is
present in only one (or some) of the data sets. In other words, relevance is defined
through dependencies between the data sets.

The method development contributions of this thesis are related to latent
topic models and methods of dependency exploration. The dependency-seeking
models were extended to nonparametric models, and computational algorithms
were developed for the models. The methods are applicable to mutual dependency
modeling and co-occurrence data in general, without restriction to the
applications presented in the publications of this work. The application areas of the
publications included modeling of user interest, relevance prediction of text based
on eye movements, analysis of brain imaging with fMRI and modeling of gene
regulation in bioinformatics. Additionally, frameworks for different application
areas were suggested.

Until recently it has been a prevalent convention to assume the data to be
normally distributed when modeling dependencies between different data sets.
Here, a distribution-free nonparametric extension of Canonical Correlation
Analysis (CCA) was suggested, together with a computationally more efficient
semi-parametric variant. Furthermore, an alternative view to CCA was derived
which allows a new kind of interpretation of the results and using CCA in feature
selection that regards dependency as the criterion of relevance.

Traditionally, latent topic models are one-way clustering models, that is, one of
the variables is clustered by the latent variable. We proposed a latent topic model
that generalizes in two ways and showed that when only a small amount of data
has been gathered, two-way generalization becomes necessary.

In the field of brain imaging, natural stimuli in fMRI studies imitate real-life
situations and challenge the analysis methods used. A novel two-step framework
was proposed for analyzing brain imaging measurements from fMRI. This frame-
work seems promising for the analysis of brain signal data measured under natural
stimulation, once such measurements are more widely available.
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Laajojen tietoaineistojen analysoinnissa on yhä tärkeämpää erottaa olennainen
tieto epäolennaisesta. Tässä työssä jäsennettiin tapoja tutkia, mikä on relevanttia
niin sanotussa yhteisesiintymäaineistossa, jossa jokaista näytettä vastaa kaksi tai
useampia esityksiä. Kulloinkin kyseessä oleva mallinnustehtävä asettaa rajat
sille, mikä on kiinnostavaa tietoa ja siten omalta osaltaan määrittelee,
mikä on relevanttia. Olennaisen tiedon löytämisen ongelma on tässä muotoiltu
riippuvuuden avulla; eli sellaisen variaation, joka esiintyy molemmissa (tai kaikissa)
yhteisesiintyvissä datajoukoissa katsottiin olevan merkityksellisempää kuin
sellaisen variaation, joka esiintyy vain yhdessä (tai joissakin) datajoukoista. Toisin
sanoen, relevanssi määriteltiin datajoukkojen välisten riippuvuuksien avulla.

Menetelmänkehityksen kontribuutiot liittyvät eräisiin piilomuuttujamalleihin
(topic models) sekä aineistojen keskinäisiä riippuvuuksia mallintaviin menetelmiin.
Riippuvuuden etsimiseen kehitettyjä malleja laajennettiin epäparametrisiin
malleihin, ja niille kehitettiin laskennallisia algoritmeja. Kehitettyjen menetelmien
soveltuvuus ei rajoitu vain näissä julkaisuissa esitettyihin sovelluksiin, vaan ne
ovat yleisesti käyttökelpoisia yhteisesiintymäaineistoihin sekä niiden keskinäisten
riippuvuuksien mallintamiseen. Julkaisujen sovellusalueita olivat käyttäjän
kiinnostuksen mallinnus, tekstin relevanssin ennustaminen silmänliikkeiden
perusteella, aivojen fMRI-kuvantamisen tulosten analysointi ja geenien säätelyn
mallintaminen bioinformatiikassa. Lisäksi eräisiin sovelluksiin esitettiin menetelmä-
kehyksiä.

Viime aikoihin asti datajoukkojen välisten riippuvuuksien mallintamisessa on
ollut vallitseva käytäntö olettaa, että aineistot ovat normaalijakautuneita. Tässä
työssä kanoniselle korrelaatioanalyysille (CCA) esitettiin jakaumasta riippumaton
epäparametrinen laajennus sekä tätä laskennallisesti tehokkaampi semi-
parametrinen versio. Sen lisäksi kanoniseen korrelaatioanalyysiin johdettiin
vaihtoehtoinen näkökulma, joka mahdollistaa tulosten uudenlaisen tulkinnan sekä
CCA:n käyttämisen piirrevalintaan, jossa riippuvuutta pidetään relevanssin
kriteerinä.

Perinteisesti nämä piilomuuttujamallit klusteroivat yhteen suuntaan, eli yksi
muuttujista klusteroidaan latentin muuttujan avulla. Tässä työssä ehdotettiin
piilomuuttujamallia, joka yleistää kahteen suuntaan, ja osoitettiin, että jos vain
pieni määrä dataa on saatavilla, niin kahteen suuntaan yleistäminen tulee
välttämättömäksi.

Aivokuvantamisen alueella luonnolliset ärsykkeet imitoivat tosielämän tilanteita
ja haastavat käytössä olevat analyysimenetelmät. Uusi kaksivaiheinen kehys
esitettiin fMRI-kuvantamisen mittausten analysointiin. Tämä kehys vaikuttaa
lupaavalta käytettäväksi aivosignaalien analysointiin heti, kun tällaisia
luonnollisten ärsykkeiden mittauksia on laajemmin saatavilla.
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1 Introduction
A certain perspective to data is taken in this thesis, by trying to answer the
question “Which aspects of the data are relevant to the task at hand?” The ways
that relevance in data is seen in this thesis are described in Section 1.1, naturally
noticing that there are many other ways to consider relevance in data than the
ones considered here.

More specifically, we restrict ourselves to so-called co-occurrence data, where
there are two or more representations for each data sample. The concept of co-
occurrence data is explained in Section 1.2 together with descriptions of the types
of co-occurrence that were present in the publications of this thesis.

1.1 Different Views on Relevance in Data

We consider two types of relevance. The first is the relevance as seen by the user
subjectively. The subjective relevance can be given, e.g., by ratings in a 1–5 stars
scale or even gathered implicitly from user’s actions. The second type considered is
a more abstract perspective to relevance, where we define the relevant variation in
several data sets to be the shared part of the variation. In other words, relevance
is defined through dependencies between the data sets.

1.1.1 Relevance Seen Subjectively by User

The type of relevance commonly discussed in information retrieval literature, for
instance, is the user’s subjective relevance; what does the user consider relevant
in the text he or she is browsing. Within our eye movement study, Publication 1,
we targeted the subjective relevance. Generally, every user has his own interests
or motivations in an information retrieval task, which we assumed would some-
how show in the gaze pattern, while the user is looking at the interesting parts
of the text. The users defined the ground truth themselves by giving relevance
judgements to the document titles. The modeling task was to learn a model based
on such features of the eye movements that would reveal hints of the user’s rele-
vance judgement.

On the other hand, in Publications 3, 4, and 5 the user’s interests were modeled
by groupings of similar users or items. The concept of relevance was, still, the user’s
subjective relevance for the items.

Furthermore, in Publication 2, the user’s subjective ratings for different movies
were modeled by such textual features that were discriminative with respect to the
movie genre.

1.1.2 Relevance via Dependency

All observations incorporate some noise. The noise can arise due to errors or
disturbances in the measurement process, or it can be due to some of the millions
of phenomena that are not under investigation at the moment and thus, have been
left unmodeled. In modeling, all variation in the data that has been left out of
the model are typically considered as noise, regardless of their origin. This leads
us to the view of considering relevance being that part of variation that we are
interested in, within the current modeling task. In this view, all other variation is
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1 INTRODUCTION

considered to be noise, even if it might be the focus of the modeling task in some
other case.

In Publications 6, 7, 8, and 9 we defined the relevant variation to be the shared
part of the variation between the two or more coupled data sets. In this view of
relevance, one is looking for dependencies between several data sets, and hence,
the within-dataset-variation implicitly becomes defined as noise.1

1.1.3 Relevance via Dependency in Brain Imaging

In Publications 7, 8, and 9 we defined the relevant parts of the brain activity and
the relevant parts of the stimuli to be those that show dependency between the
two data sets. The rationale behind this approach is described as follows.

Even in the most strictly controlled experimental setups there will always be a
lot of meaningful activity present in the brain, other than the functional behavior
that is targeted by the stimulation. By dependency analysis we can distinguish
the brain activity exclusive to the hypotheses of the current experiment from all
other activity.

Also, the stimulus sequences contain a lot of physical information, that is,
there are many measurable features available about the stimulus sequences, out
of which dependency analysis can reveal those that are the most relevant to the
current study. As an example, in Publication 7, we examined the relevance of
various spectral properties of auditory stimuli to the study.

1.2 Co-Occurrence Data

In co-occurrence data, there are two or more representations for each sample i
(Hofmann et al., 1999; Meeds et al., 2007). In all the publications in this the-
sis some co-occurrence data was studied, and they will be used as examples of
co-occurrence in this section.

The observations of co-occurrence data can, for instance, be vectors xi and
yi, or a vector xi and a scalar class ci. A number of different gene expression
measurements (xi,yi, . . . ) were coupled by the genes i in Publication 6. Each
data set covered a different condition of the cells, for which the gene activity
was measured. In Publications 7, 8 and 9 the time steps of the brain imaging
measurement paired the two data vectors xi and yi, the vectorial representation
of the stimulus and the measured brain activity, respectively.

Our application to user modeling contained a more complex example of co-
occurrence. We predicted users’ relevance evaluations rel to documents doc. We
assumed we had observed triplet samples (useri, doci, reli), which can also be seen
as two tuples (useri, reli) and (doci, reli) that are paired by the sample identifier
i and hence, build up to a co-occurrence data set. This kind of co-occurrence data
was present in Publications 2, 3, 4 and 5. There was even co-occurrence on top
of co-occurrence in Publication 1. These co-occurrences will be described in more
detail in Section 4.3.1.

1One could also use the dependencies in the opposite way, by defining the shared variation as
uninteresting and by focusing on the dataset-specific variation to study source-specific phenomena. In
this thesis, however, the focus is on the shared variation of the data sets.
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1.3 Contributions and Organization of the Thesis
The thesis is organized as follows: in Chapters 2 and 3 the novel method
development of the thesis is presented and the related methodological background
is given. The scientific questions from the application point of view are
discussed in the later chapters. The application areas of the publications include
modeling of user interest (Ch. 4), relevance prediction based on eye movements
(Ch. 5), analysis of brain imaging with fMRI (Ch. 6) and modeling of gene
regulation in bioinformatics (Ch. 7).

The presentation ordering of the publications reflects the research themes as
follows.
– Publication 1 is about proactive information retrieval using implicit feedback
from eye movements to enhance collaborative filtering. The suggested combined
method outperformed predictions of either single source of information.
– In Publication 2 the application area was also information retrieval but with
content-based filtering methods.
– Publication 3 introduced a two-way grouping latent topic model motivated by
collaborative filtering. The model will be discussed in Section 2.3.1.
– In Publication 4 the benefit of two-way grouping was shown when only small
amount of data is available. This issue will be discussed in Section 2.3.
– Publication 5 proposed an efficient approximation to the two-way grouping model
discussed in Section 2.4.
– In Publication 6 our new alternative view to CCA was applied to modeling
of gene regulation in bioinformatics. This alternative view to CCA, derived in
Section 3.4.4, allowed a new kind of interpretation of the results and using CCA
in feature selection that regards dependency as the criterion of relevance.

The last three publications introduced our novel two-step framework for analyzing
brain imaging measurements. In natural stimulation relevant combinations of
stimulus features could be behind the more complex brain activation patterns.
In our two-step framework dimensionality reduction by ICA produces meaningful
brain activity patterns and it is followed by a dependency-seeking method between
the brain patterns and the stimuli. The framework will be discussed in Section 6.6.
– In Publication 7 classical CCA was used for the dependency seeking step.
– In Publication 8 a nonparametric extension of CCA was applied. Until recently
it has been a prevalent convention to assume the data to be normally distributed
when modeling dependencies between data sets. We suggested using a distribution-
free nonparametric extension of CCA as the dependency-seeking method in
Publication 8, discussed in Section 3.6.2.
– In Publication 9 a faster semi-parametric variant of the nonparametric model
was developed. This method will be discussed in Section 3.6.3
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2 Latent Topic Models
In document modeling where the concept of latent topic model was first introduced,
the data consists of word occurrences in text, and mutually related words are
clustered into latent topics. The topics can then be used to categorize documents
or find documents related to each other.

In user interest modeling, where the task is to predict users’ relevance
evaluations to documents, it is possible to generalize from already seen data either
by grouping the users or by grouping the documents, which are two possible one-
way groupings. If both users and documents were grouped at the same time to
their respective groupings, it would constitute a two-way grouping.

In Publications 3 and 4 we have introduced a two-way grouping latent topic
model and analyzed it together with its closest related models. In Publication 5
we have presented a way to approximate our Two-Way Model using two one-way
grouping latent topic models. In this chapter these latent topic models and their
background are discussed.

2.1 Background in Probabilistic Modeling
In this section some basic concepts of probabilistic modeling commonly used in
machine learning are presented, as they are the prerequisites of the rest of this
chapter.

2.1.1 Some Basics
A probability density function expresses the probabilities of all the possible values
of the target random variables as a function of the parameters and sums up to
unity, ∑

j

p(X = j | ϕ) = 1 and
∫
x

p(x | ϕ) dx = 1 , (1)

in the discrete and continuous cases, respectively.
When a sample of independent observations , D = {xi}Ni=1, has been observed,

the probability of the observations can be expressed as the likelihood function L,
which is a function of the parameters ϕ:

L(D | ϕ) =
N∏
i=1

p(xi | ϕ) . (2)

After seeing some data D, a representative summary can be obtained by taking
the parameter setting that maximizes the likelihood function, to get the so-called
Maximum Likelihood estimate, ϕML,

ϕML = arg max
ϕ

L(D | ϕ) = arg max
ϕ

N∏
i=1

p(xi | ϕ) . (3)

In the case of multivariate distributions, e.g., p(x,y, z), the marginal
distribution with respect to one of the variables is defined by summing out, or
marginalizing over all the other variables:

p(x) =
∑
y

∑
z

p(x,y, z) . (4)
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When the distributions are continuous, the summations are replaced with
integrations over the domain.

A commonly used similarity measure between two distributions, p(x) and q(x),
is the Kullback-Leibler or KL-divergence (Kullback, 1959)

KL(p‖q) =
∑
x

p(x) log
p(x)
q(x)

, (5)

which can be interpreted as the average inefficiency of assuming that the
distribution is q(x) when the true distribution is p(x), measured in bits (Cover
and Thomas, 1991).

2.1.2 EM-Algorithm
The so-called expectation maximization (EM) algorithm (Dempster et al., 1977)
is commonly used to find maximum likelihood solutions for probabilistic models
with joint distribution

p(X,Z | ϕ) , (6)

where X denotes all the observed variables, Z denotes all the latent variables of
the model, and ϕ denotes the set of all the model parameters. The presentation
follows the description of EM-algorithm by Bishop (2006).2

The goal is to maximize the likelihood function given by

p(X | ϕ) =
∑
Z

p(X,Z | ϕ) . (7)

By observing that for any choice of probability distribution q(Z) we can write

ln p(X | ϕ) = ln p(X | ϕ)
∑
Z

q(Z)︸ ︷︷ ︸
=1

=
∑
Z

[ q(Z) ln p(X | ϕ) ] , (8)

we get the following decomposition for the log-likelihood

ln p(X | ϕ) =
∑
Z

q(Z) [ ln p(X | ϕ) + ln p(X,Z | ϕ)− ln p(X,Z | ϕ) ]

=
∑
Z

q(Z) ln
p(X,Z | ϕ)
p(Z | X,ϕ)

=
∑
Z

q(Z) [ ln p(X,Z | ϕ)− ln q(Z) ]︸ ︷︷ ︸
L(q,ϕ)

+
∑
Z

q(Z) [ ln q(Z)− ln p(Z | X,ϕ) ]︸ ︷︷ ︸
KL(q‖p)

= L(q,ϕ) +KL(q‖p) , (9)

where KL(q‖p) denotes the Kullback-Leibler or KL-divergence between
distributions q(Z) and p(Z | X). Since the KL-divergence is guaranteed to be
non-negative, the functional L(q,ϕ) is a lower bound for the target log-likelihood
(7).

2Here we assume that the latent variables Z are discrete but an analogous derivation holds for
continuous variables with summations replaced with integrations over the domain of Z.
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The EM-algorithm is a two-step iterative optimization technique based on the
decomposition (9).

• E-step (Expectation step)
Evaluate p(Z | X,ϕold). In the E-step the lower bound L(q,ϕold)
is maximized with respect to q(Z) while holding the parameters ϕold
fixed.

• M-step (Maximization step)
Find the maximum

ϕnew = arg max
ϕ

∑
Z

p(Z | X,ϕold) ln p(X,Z | ϕ) .

In the M-step the distribution q(Z) is held fixed and the lower bound
L(q,ϕ) is maximized with respect to the parameters ϕ.

It is useful to note that although the EM-algorithm does not decrease the
observed data likelihood function, there is still no guarantee that it converges
to a maximum likelihood estimator. For example, in the case of multimodal
distributions, it may converge to a local maximum (or saddle point) of the observed
data likelihood function, depending on the starting point.

The EM-algorithm is particularly useful when the likelihood belongs to the
family of exponential distributions; then both the E-step and the M-step attain
convenient forms. In this thesis EM-algorithm was used in the classical case of
a mixture of Gaussians (Sect. 6.7.1), where it is possible to derive closed-form
updates for each step.

2.1.3 Bayesian Modeling
In Bayesian modeling (see Bernardo and Smith (2000); Efron (2005a,b)) it is
assumed that it is somehow possible to define a prior probability density for the
different models (or parameter values). The prior could be given by an expert
of the field under study, be based on common sense or be as non-informative as
possible. In any case, the idea is that the events that have not occurred in the
data so far do not necessarily have zero probability, but there is a prior belief of
what can happen and how probably. It is also thought that every bit of new data
updates the beliefs from what they were prior to seeing the data.

The probabilities of different models (parameter values ϕ) after seeing some
data D, is defined as the posterior distribution

p(ϕ | D) =
L(D | ϕ) p(ϕ)

p(D)
=

L(D | ϕ) p(ϕ)∑
j

L(D | ϕj) p(ϕj)
, (10)

which is derived by using the definition of conditional probability and by the Bayes
formula

P (A | B) =
P (A,B)
P (B)

=
P (B | A)P (A)∑

j

P (B | A = j)P (A = j)
, (11)
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where j goes over all possible values of random variable A. Analogously, the
formula can be written for continuous distributions as

p(A | B) =
p(B | A) p(A)∫

A

p(B | A) p(A) dA
. (12)

In Bayesian modeling one is typically interested in deriving an estimate for
the posterior distribution over different models rather than one fixed model, as
in the case of point estimates. If a point estimate is needed, however, it can be
taken as the highest peak of the posterior distribution. It is called the Maximum
A Posteriori estimate, or MAP-estimate ϕMAP ,

ϕMAP = arg max
ϕ

L(D | ϕ) p(ϕ) = arg max
ϕ

N∏
i=1

[ p(xi | ϕ) p(ϕ) ] . (13)

Nevertheless, the posterior distribution can have many peaks or nodes and
taking just the highest node as a point estimate might be misleading. Since
the evaluation of the posterior distribution typically involves nontrivial
integrations, it is rare that a closed-form solution would be available. Therefore,
the usual way to evaluate Bayesian models is either by Markov chain Monte Carlo
sampling (MCMC; for textbook reference, see MacKay (2003)) or by variational
approximation (Sect. 2.1.4).

The Bayesian models were evaluated by Gibbs sampling in Publications 1, 3, 4
and 5, described in more detail in Section 4.5.3. Gibbs sampling is one of the
MCMC sampling methods where the model parameters are sampled one at a time,
each from a conditional distribution where all other parameters are assumed to
take their current sampled values (Casella and George, 1992; Geman and Geman,
1984). Furthermore, some of the alternative methods we compared
against were evaluated by variational approximation. The principle of variational
approximation is illuminated in the next subsection.

2.1.4 Variational Approximation

Variational approximation is a commonly used practice to approximate Bayesian
models (see, e.g., Bishop (2006) for textbook reference). Variational methods have
their origins in the 18th century work on the calculus of variations (Sagan, 1969).
A functional is a mapping that takes a function as input and returns a scalar
value as output. The calculus of variations deals with infinitesimal changes in
the functions and their reflections on the value of the functional. Many problems
can be considered as optimization problems where the solution is obtained by
exploring all possible input functions. If the range of possible functions is suitably
restricted, a more easily computable approximation can be obtained. Usually, in
the application to probabilistic inference the restriction is made by assuming the
distribution to be factorizable in a certain way (Jordan et al., 1999). The factorized
form of variational inference corresponds to the approximation framework called
mean field theory in physics.
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If our model is specified by the joint distribution p(X,Z) and we wish to
compute the posterior distribution p(Z | X), the decomposition of the
EM-algorithm, Eq. (9), can be used:

ln p(X) =
∫
Z

q(Z)
[

ln
p(X,Z)
q(Z)

]
dZ +

∫
Z

q(Z)
[

ln
q(Z)

p(Z | X)

]
dZ

= L(q) +KL(q‖p) (14)

and, instead of allowing any probability distribution q(Z), a factorizable
distribution

q(Z) =
M∏
j=1

qj(Zj) (15)

is substituted into the optimization. In effect, a lower bound for the log-likelihood
is maximized by choosing the optimal q(Z) within the model family. If all possible
distributions q(Z) were available, the optimum would become the true posterior
distribution p(Z | X). In many cases this factorizable approximation makes an
intractable posterior estimation tractable.

Variationally computed models were used in Publications 4 and 5.

2.2 One-Way Grouping Latent Topic Models
Latent topic models are a class of models where one or many latent variables
are assumed to generate the observed variables (Steyvers and Griffiths, 2005). In
document modeling it is assumed that one or many topics determine the
probabilities of certain words to occur in a document.

The topic models that are discussed here have their roots specifically in the
following two topic models: probabilistic Latent Semantic Analysis (pLSA,
Hofmann (2001, 2004)) and Latent Dirichlet Allocation (Pritchard et al. (2000),
see Blei et al. (2003)), also known as Multinomial Principal Component Analysis
(mPCA, Buntine (2002)).

In one-way grouping models there is one latent variable, for example user group
u∗, that is assumed to be responsible for generating groups of similar-minded users
and their ratings. Another example of a one-way grouping model would be a topic
model with latent variable Z expressing a topic of a text document, that is assumed
to be responsible for generating the words of text documents from different topics.

Throughout this chapter the notation of Table 1 will be used in the model
descriptions. We use the term “document” to refer to any items that users could
give ratings or relevance evaluations for.

2.2.1 User Rating Profile Model
User Rating Profile model (URP, Marlin (2004a)) is a one-way grouping model that
predicts user preferences on documents or other items. The model generalizes
over users u, which belong to user groups u∗ probabilistically. Therefore, each
user can belong to many groups with varying degrees. Once the “attitude” or
user group u∗ and the document d have been fixed, the rating r depends on the
corresponding multinomial θR over the different rating values. In our studies the
ratings were restricted to be binary, which reduced the multinomial θR to be a
Bernoulli distribution. All the multinomials of the URP model have conjugate
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prior distributions (i.e., Dirichlet αU and αR). See Figure 1 for a graphical model
representation of the URP model.

αU

Rα

u*

θR

x NDUK

N

u

r

d

βU
UN

Figure 1: Graphical model representation of the original User Rating Profile model (URP). The grey
circles indicate observed values. The boxes are “plates” representing replicates and the value at a
corner of each plate indicates the number of replicates. The rightmost plate is repeated for each
given (u, d) pair (altogether N pairs). The upper left plate represents the multinomial models of
different users. The lower left plate represents the multinomial relevance probabilities of the different
(user group, document) pairs. Both priors αU and αR follow Dirichlet distribution.

Table 1: Notation

SYMBOL DESCRIPTION

u user index
d document index
r binary relevance (relevant = 1, irrelevant = 0)

u∗ user group index (attitude in URP)
d∗ document cluster index

NU number of users
ND number of documents
N number of triplets (u, d, r)

KU number of user groups
KD number of document clusters

D observed data
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Originally, the URP model was suggested to be estimated by variational ap-
proximation (variational URP, Marlin (2004a,b)), but we have introduced also
two Gibbs-sampled variants of the model in Publications 3 and 4 (Gibbs URP and
Gibbs URP-GEN, sketched in Section 2.4, Fig. 3).

2.3 Two-Way Grouping Latent Topic Models
When making user preference predictions, it is possible to generalize from the
observed data either by grouping the users or by grouping the documents. We
have shown that grouping the users is needed when the documents are new, that
is, have only few ratings available. On the other hand, grouping the documents
is necessary when the users are new, that is, they have given only few ratings.
In two-way grouping models both users and documents are grouped at the same
time. Two-way grouping has been shown to be beneficial when there is not enough
data about either users or documents in order to learn a more detailed model.

2.3.1 Two-Way Model
In Publication 3 we go one step further from the URP model which has a latent
structure for the users, and introduce a similar latent structure for the documents
as well3. The effects of the two-way grouping and generation of the marginals
have been analyzed in Publication 4. The graphical model representation of the
Two-Way Model is shown in Figure 2.

θU

θD

αD βD

αU βU

Rα θR

u*

d*

α u*

α
d*

K

KU

D

N

d

r

u

Figure 2: Graphical model representation of the Two-Way Model. The rightmost plate represents
the repeated choice of N (user, document, rating) triplets. The plate labeled with KU represents
the different user groups u∗, and βU denotes the vector of multinomial parameters for each user
group. The plate labeled with KD represents the different document clusters d∗, and βD denotes the
vector of multinomial parameters for each document cluster. In the intersection of these plates there
is a Bernoulli-model with parameter θR for each of the KU × KD combinations of user group and
document cluster. All the priors α follow Dirichlet distributions.

3A similar two-way structure has been suggested by Si and Jin (2003) with some technical differences
that will be discussed in Section 2.3.2.
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2.3.2 Comparison to Other Two-Way Models

In this section comparisons are made between our Two-Way Model and other two-
way grouping models. Additionally, the main differences and similarities with URP
model are brought up.

In the Flexible Mixture Model (FMM, Si and Jin (2003)), as well as in our
Two-Way Model, both users and documents can belong to many latent groups, in
much the same way as users do in the URP model. In both the Two-Way model
and in the FMM model the relevance is assumed to depend only on the latent
groups, that is, there is a probability distribution of different ratings, Mult(θR),
for each (user group, document cluster) pair.

In addition to being two-way, our model and FMM differ from URP in that the
users u and documents d are explicitly generated. In contrast, the original URP
model contains no generative process for the users or documents.

The main difference between our Two-Way model and Flexible Mixture Model
is that our model is fully Bayesian and optimized by sampling the posterior
distribution. FMM simply finds the maximum likelihood solution with the EM-
algorithm.

Other related models include a graphical model for gene expression model by
Segal et al. (2003), where genes and measurement conditions correspond to users
and documents in our model, but they are taken as given covariates of the model.
The expression level corresponds to ratings in our Two-Way model, and it is
assumed to be normally distributed, with mean and variance depending on the
group memberships. However, in this model the genes and conditions are not
clustered in parallel, but belong with varying extent to the one and only set of
clusters of the model, called processes. It is a maximum-likelihood model that is
optimized with EM-algorithm.

2.3.3 Generation of Marginals

Besides the difference of being one-way or two-way, there is an additional difference
between URP and the Two-Way Model in whether the users and documents are
assumed to be generated by the model or treated as covariates of the model. In
Publication 4, it was found that unless the data marginal densities p(u) and p(d)
are especially misleading about the structure of the full data density p(r, u, d), it
is always useful to design the model to be fully generative, in contrast to seeing
users and documents as given covariates of the model.4 For that reason we have
introduced two fully generative variants of the URP model in Publications 4
and 5, user-grouping generative URP (User Gibbs URP-GEN, see Figure 3(a))
and document-grouping generative URP (Doc Gibbs URP-GEN, see Figure 3(b)).

Furthermore, by combining these two one-way grouping models it is possible
to approximate the Two-Way Model with reduced computational complexity, as
discussed in the next section.

4In such misleading data sets, most of the observations lie in the area that is non-informative about
the relevance. Then, it makes a difference whether the model generates the users and documents from
their marginal distributions, because ignoring the generation essentially equals to assuming that all
(u, d) pairs carry equal amount of information about the relevance r.
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(a) User Gibbs URP-GEN groups only
users and assumes that the relevance de-
pends solely on the user group and the doc-
ument.
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(b) Doc Gibbs URP-GEN groups only doc-
uments and assumes that the relevance de-
pends solely on the document cluster and
the user.

Figure 3: Graphical model representations of the generative Gibbs URP models with user grouping
(User Gibbs URP-GEN) and with document grouping (Doc Gibbs URP-GEN). The grey circles indicate
observed values. The boxes are “plates” representing replicates; the value in a corner of each plate is
the number of replicates. The rightmost plate represents the repeated choice of N (user, document,
rating) triplets. The plate labeled with KU (or KD) represents the different user groups (or document
clusters), and βU (or βD) denotes the vector of multinomial parameters for each user group (or
document cluster). The plate labeled with ND (or NU ) represents the documents (or users). In
the intersection of these plates there is a Bernoulli-model for each of the KU × ND (or KD × NU )
combinations of user group and document (or document cluster and user). Since αD and θD (or αU

and θU ) are conditionally independent of all other parameters given document d (or user u), they
have no effect on the predictions of relevance P (r | u, d) in these models. They only describe how
documents d (or users u) are assumed to be generated.

2.4 Approximate Two-Way Grouping by
One-Way Topic Models

The task of biclustering is to simultaneously cluster the rows and columns of a
data matrix in such a way that the submatrices spanned by pairs of row and col-
umn clusters are as uniform as possible (Madeira and Oliveira, 2004; Tanay et al.,
2006). Different definitions have been suggested, some of which allow overlap-
ping of the biclusters (soft biclustering) while others require mutually exclusive
biclusters (hard biclustering).

It has been shown for hard biclustering of binary data matrices that clustering
the marginals independently to produce a checkerboard-like biclustering is
guaranteed to achieve relatively good results compared to the NP-hard optimal
solution. An approximation ratio for the crossing of two one-way clusterings has
been proven (Anagnostopoulos et al., 2008; Puolamäki et al., 2008).

Inspired by the above-mentioned theoretical guarantee, we suggested in
Publication 5 approximating the Two-Way Model with two URP models: one
that groups users and one that groups documents. The combination of the two
Gibbs-sampled probabilistic predictions was made using a product of experts model
(Hinton (2002), see Section 4.5.4 for details).
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2.5 Combining Many Probabilistic Predictions

2.5 Combining Many Probabilistic Predictions
The above-mentioned combination of one-way models is a practical and efficient
way to combine two probabilistic predictions, but the combination can be done
in a more principled way, as well. In Publication 1, a well-justified means for a
similar combination task was needed, with the additional challenge that one of the
sources was very noisy.

In situations where one needs to combine two or more models using different
sources of information about the same topic of study, the simplest way to
combine the models is to train the models independently and combine the pre-
dicted probabilities to produce the final prediction. This approach has the ad-
vantage of being modular and easily extensible. In Publication 1, a generative
model called the Discriminative Dirichlet-Mixture Model for combining probabilis-
tic predictions was introduced.5 The goal of the model is to find an expression
for P (r|PA, PB ,ϕ), where ϕ denotes all parameters of the model and the (noisy)
predictions of the two separate models are denoted by PA and PB . The model is
described in figure 4.

X

π r PX

αX

NU NDx

Figure 4: A graphical model representation of the Discriminative Dirichlet-Mixture Model. X is the
index of the model that predicts relevance, thus in our case X ∈ {A,B}. The grey circles indicate
observed values. For each (user, document) pair, a binary relevance r is drawn from Bernoulli(π). For
each X ∈ {A,B}, a Bernoulli-parameter PX is drawn from Dirichlet(αr

X ). Observations are triplets
(r, PA, PB) for each user-document pair. The model is optimized by maximizing the conditional log-
likelihood of the relevances.

2.6 Summary
In Publications 1, 3, 4 and 5 latent topic models have been developed. To give
the needed amount of background knowledge some basics of probabilistic modeling
were recapitulated in the beginning of this chapter.

Topic models generally assume the data samples to be a set of discrete
observations, like the set of words occurring in a document in the bag-of-words
model. Traditionally, the topic models are one-way clustering models, that is, one
of the variables is clustered by the latent variable. Motivated by the application
of collaborative filtering we can see that it would be useful to be able to generalize
both over the users and over the items of interest. In Publication 3 we proposed
a generative latent topic model that groups two ways, coined the Two-Way Model.
We have shown in Publication 4 that when only small amount of data has been

5Besides giving predictions of relevance, the Dirichlet-mixture reveals how useful the different sources
of relevance information are relative to each other. Some of the feedback channels may produce smaller
prediction probabilities PX than others for the observed relevances r. Some of the relevance feedback
channels may additionally be noisy, that is, the prediction probabilities PX for a given relevance r
have a large variance.

13



2 LATENT TOPIC MODELS

gathered, two-way generalization becomes necessary. Naturally, the two-way
generalization is not restricted to the application of user interest modeling but
can be applied to any co-occurrence data.

In Publication 5 we introduced a new efficient approximation of the Two-Way
model that achieves the prediction performance of the original Two-Way Model
but with the computational complexity of the one-way grouping model.

Finally, as a more principled means of combining many probabilistic
predictions, e.g., predictions from two one-way topic models, the Discriminative
Dirichlet-Mixture Model was introduced in Publication 1.
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3 Modeling Dependence between
Data Sets

3.1 Motivation

The aim of mutual dependency modeling in this thesis is to find maximally
dependent representations for two data sets with co-occurring samples in the
setting of exploratory data analysis. Our argumentation for searching for
dependencies between data sets is to use dependency as a definition for what
is relevant in the data. In particular, this way we target such information that
could only by chance be unveiled by examining any individual source alone. This
has been a main research topic for our research group; for a recent view to earlier
work, see Klami (2008).

It is important to note that this approach is not equivalent to just concatenating
all observations and analyzing the resulting data set with unsupervised methods.
In general, unsupervised model, like PCA, cannot find the dependency structure
from the concatenated data set. Since different sources can have their own
characteristic ways of producing noise and irrelevant information to the data, the
distinction between the sources bears meaning, and taking it into account makes
a difference.

Data fusion or data integration is a field within data analysis where several data
sources are joined into the analysis, aiming to improve the performance. When
used in supervised learning data fusion is conceptually straightforward. Given
the target criterion, e.g., classification accuracy, in a supervised task one can just
utilize all the aspects of the data sources that improve the criterion. On the other
hand, in an unsupervised setting, the selection of the criteria defining relevant
aspects in data is in a key role, since the performance of the final result cannot
be evaluated in such a straightforward manner. The focus of this thesis is on
unsupervised learning.

A general term multi-view learning has been recently used for various methods
that take into account many different views or data sources while modeling the
same objects of interest. In practice this means searching for commonalities
between many data sets about the same objects, in order to learn better-
generalizing models than from individual data sources. The perspective of this
thesis is related to multi-view learning, in the sense that relevance in co-occurrence
data is here defined by statistical dependencies between the paired data sets.
However, here we make an important additional assumption compared to much of
the multi-view learning, that any model learned based on only one of the sources
might be insufficient or even misleading.

3.2 Measures of Statistical Dependency

Search for commonalities between the data sources requires a measure of
dependency. There are several alternative measures and the choice is reflected
in the kind of dependencies that one is able to find. In this section some measures
of dependency central to this thesis are introduced. Deza and Deza (2009) give a
comprehensive overview of distances and similarity measures, including distances
between probability distributions.
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3 MODELING DEPENDENCE BETWEEN
DATA SETS

3.2.1 Correlation
The Pearson correlation coefficient ρ measures linear dependence between two
random variables X and Y ,

ρ(X,Y ) =
E [X − µX ]T E [Y − µY ]

E [‖X − µX‖] E [‖Y − µY ‖]
. (16)

Here E denotes expectation, µX the mean of X and µY the mean of Y . This
measure is used in Canonical Correlation Analysis, discussed in Section 3.4. Other
correlation-related measures are found, e.g., in (Deza and Deza, 2009; Rényi, 1959).

3.2.2 Information-Theoretic Measures
The amount of information that is possible to convey by a random variable X
can be measured using a quantity called (Shannon) entropy (Cover and Thomas,
1991). In other words, entropy is the average amount of uncertainty or randomness
there is in the value of an unobserved random variable. Entropy over a discrete
random variable X is defined6 as

H(X) = −
∑
x

p(x) log p(x), (17)

and entropy over a continuous random variable analogously as

H(X) = −
∫
x

p(x) log p(x) dx . (18)

Mutual information measures the amount of information shared by two
random variables X and Y (Cover and Thomas, 1991), and its definition for
discrete random variables is

I(X;Y ) =
∑
x

∑
y

p(x,y) log
p(x,y)
p(x)p(y)

, (19)

where the summations go over all possible values ofX and Y , and in the continuous
case the definition is

I(X;Y ) =
∫
x

∫
y

p(x,y) log
p(x,y)
p(x)p(y)

dx dy . (20)

It cannot, however, be easily estimated in practice (Bromiley et al., 2004; Hutter
and Zaffalon, 2004). Multi-information is a generalization of mutual information
to more than two data sets. In the discrete form it is

I(X1;X2; . . . ;Xm) =
∑
x1

· · ·
∑
xm

p(x1, . . . ,xm) log
p(x1, . . . ,xm)
p(x1) · · · p(xm)

. (21)

We used it in Publication 6 as a measure of dependency between 16 data sets (See
Section 7.4 for more details).

A useful connection is that a commonly used divergence measure between two
distributions, the Kullback-Leibler divergence Eq. (5), allows mutual information
to be stated as a divergence between the joint distribution p(x,y) and the product
of the marginal distributions p(x) and p(y).

6The choice of base of the logarithm determines the unit of entropy, e.g., log2 corresponds to bits.
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3.2 Measures of Statistical Dependency

3.2.3 Bayes Factor

The so-called Bayes Factor from statistical analysis can also be used as a measure
of dependence (Kass and Raftery, 1995). Assume that we have to choose between
two models H and H̄ based on the observed data D; this is generally referred to as
the model selection problem. In Bayesian modeling the superiority of one model
over the other can be evaluated by the Bayes factor (BF ) given by

P (D | H̄)
P (D | H)

=
P (H̄ | D)
P (H | D)

· P (H)
P (H̄)

. (22)

If it is used as a measure of dependence, the null hypothesisH assumes independent
marginal distributions and H̄ is the interesting hypothesis that shows dependency
between the marginals. It is used as a measure of dependence, e.g., in Associative
Clustering (see Sect. 3.6.1, Kaski et al. (2005b)).

3.2.4 Other Measures of Dependence

The multivariate normal distribution and linear correlation are the basis of most
models used to model dependency, since linear correlation is a natural measure
in the context of normal distributions. However, empirical linear correlation
underestimates the amplitude of the actual correlation in the case of non-Gaussian
marginals (Calsaverini and Vicente, 2009). In particular, the linear correlation is
dependent on the marginal distributions, for instance, it is not invariant under
strictly increasing transformations of the marginals, and can hence be misleading
as a measure of dependence (Lindskog, 2000).

Copulas

In statistics, a copula is used to formulate a multivariate distribution in such a
way that each marginal variable is transformed to have a uniform distribution. In
a joint distribution, dependence and the marginal behavior can be separated, and
the copula can be considered to be the part describing the dependence structure
(Lindskog, 2000).

A copula function C(u, v) can be regarded as the joint cumulative distribution
function of two uniformly distributed variables u and v, both in the interval [0, 1],
where u and v denote the cumulative distributions, u = Px(x) and v = Py(y), of
the marginal distributions px(x) and py(y) (Calsaverini and Vicente, 2009).

The correlation ρ in Eq. (16) can be rewritten in terms of copula densities as:

ρ(X,Y ) =
∫

[0,1]2

c(u, v)P−1
x (u)P−1

y (v) du dv . (23)

If X and Y are statistically independent, c(u, v) = 1 and ρ(X,Y ) = 0. However, it
is possible that ρ(X,Y ) = 0, but c(u, v) 6= 1, in the case where there is other than
linear dependence between X and Y . Moreover, there exist a connection between
mutual information and copulas in the case of two continuous random variables

I(X;Y ) =
∫

[0,1]2

c(u, v) log c(u, v) du dv = −h(c) , (24)
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where h(c) is the differential entropy associated with the distribution c(u, v)
(Calsaverini and Vicente, 2009).

Dependence modeling with copula functions has been widely used in
applications of financial risk assessment, for example in the pricing of collateralized
debt obligations (CDOs, Galiani (2003)). As any other measure of dependence,
copula too, has the risk of being misused in deceitful hands (Salmon, 2009).

Scale-Invariant Measures

Scale-invariant measures of association such as Kendall’s tau (Kendall, 1938) and
Spearman’s rank correlation (Spearman, 1904) only depend on the copula and are
therefore invariant under all strictly increasing transformations of the marginals.
Kendall tau coefficient is defined as

τ = (Nc −Nd)/
(
N

2

)
, (25)

where Nc is the number of concordant pairs, and Nd is the number of discordant
pairs in the data set. Kendall’s tau can be expressed in terms of copulas (Cal-
saverini and Vicente, 2009) as:

τ = 4
∫

[0,1]2

C(u, v) dC(u, v) − 1 . (26)

Spearman’s rank correlation ρS can be seen as computing Pearson’s correlation
between the ranks of the observations on the two variables (Spearman, 1904), and
it can be expressed in terms of copulas (Calsaverini and Vicente, 2009) as:

ρS = 12
∫

[0,1]2

c(u, v)uv du dv − 3 . (27)

3.3 Principal Component Analysis

In order to study mutual dependencies between random variables with a classical
linear technique called Canonical Correlation Analysis (See Sect. 3.4) it is useful
to first understand how another linear technique, Principal Component Analysis
(PCA), works. In this section, the derivation of PCA is reviewed somewhat in
detail in order to alleviate the following of the derivations of CCA properties in
Section 3.4.

Principal component analysis is a widely used technique for dimensionality
reduction7(for textbook references, see Bishop (2006); Jolliffe (1986)). It has
two equivalent formulations; one is based on orthogonal projections onto a lower
dimensional subspace, so that the variance of the projected data is maximized
(Hotelling, 1933). The other formulation defines it as the projection that minimizes
the mean squared distance between the data points and their projections (Pearson,
1901). The following derivation takes the maximum variance perspective.

We start with an N -sized sample of M -dimensional random vectors xi. Let us
assume the data has been centered as a preprocessing step to simplify the formulas

7Also known as the Karhunen-Loève transform.
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3.3 Principal Component Analysis

(E[x] = 0). We start by looking for a projection vector w that maximizes the
variance of the projected scalar variable y,

y = wTx , (28)

where the norm of the projection vector w is constrained to be ‖w‖ = 1, to rule
out the possibility of increasing the length of the projection vector to infinity in
order to maximize the inner product. The variance of y is, by definition,

var[y] = E[(y − µy)2] = E[wTxxTw] = wTCw , (29)

where the covariance matrix of x and its estimate (sample mean) are

C = E[xxT ] ≈ 1
N

N∑
i=1

xixTi . (30)

By maximizing Equation (29) with constraint ‖w‖ = 1 using a Lagrange
multiplier λ, we get

Cw = λw , (31)

which is the eigenvalue equation for matrix C. Therefore, the largest variance is
attained when the largest eigenvalue and its corresponding eigenvector are chosen
as the (first) principal component, and the variance of the projection becomes
equal to the largest eigenvalue

σ2
y = wTCw = λwTw = λ . (32)

From this formulation it is easy to see that the data variance can be fully
described with a decomposition of M orthogonal principal components by using
the eigenvalue decomposition of the covariance matrix C,

CW = WΛ , (33)

where Λ is a diagonal matrix containing the eigenvalues in the decreasing order,
and W is the corresponding matrix of orthonormal eigenvectors, WTW = I.

In general, the problem of PCA dimensionality reduction relates to the
approximation problem of finding a matrix CK of rank K < M such that the
error in Frobenius-norm is minimized,

CK = arg min
CK

‖C−CK‖F , (34)

given that CK and C are both M ×M matrices. The Frobenius-norm of a matrix
is defined by

‖C‖F =
√∑

i

∑
j

|cij |2 . (35)

The solution to this problem is to take the first K eigenvectors of the eigenvalue
decomposition of C, where the eigenvalues λm are ordered so that λm ≥ λm+1

(Eckart and Young, 1936). Thus,

CK = WKΛKWT
K , (36)
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where WK is a M × K matrix containing the first K (column) eigenvectors
and ΛK is the diagonal matrix containing the first K rows and columns of the
eigenvalue matrix Λ. Additionally, it is known that the approximation error made
in Frobenius-norm is exactly the sum of the left-out eigenvalues (Eckart and Young,
1936),8

‖C−CK‖F =
M∑

m=K+1

|λm| . (37)

If we now wanted to reduce the dimensionality of x to K while preserving the
variance maximally, we would need to find a M ×K-sized projection matrix WK ,

y = WT
Kx , (38)

that maximizes

var[y] = trace [Cy] = trace
[
E[(WT

Kx)(WT
Kx)T ]

]
= trace

[
WT

KCWK

]
. (39)

The solution to this maximization problem is exactly the same as the rank-K-
approximation with respect to the Frobenius-norm in Eq. (36): the K
eigenvectors corresponding to the K largest eigenvalues of C. Again, the variance
included in the projected data and the left-out variance can be expressed in terms
of the eigenvalues, as follows:

var[y] = trace
[
WT

KCWK

]
= trace [ΛK ] =

K∑
m=1

λm . (40)

Notice that the projection to principal components without loss of information is
y = WTx or x = Wy =

∑M
m=1(wT

my)wm. Taking the rank-K-approximation
with K principal components yields x̂ =

∑K
m=1(wT

my)wm. Thus, the left-out
variance is

E[‖x− x̂‖2] =
1
N

N∑
i=1

∥∥∥∥∥
M∑

m=K+1

(wT
mxi)wm

∥∥∥∥∥
2

=
M∑

m=K+1

wT
m

(
1
N

N∑
i=1

xixTi

)
wm

=
M∑

m=K+1

wT
mCwm =

M∑
m=K+1

λm . (41)

These properties and connections of PCA come into play in Section 3.4.4, when
generalized CCA is discussed, together with the deflation methods.

8The eigenvalues are always real and positive in the case of real symmetric matrices like covariance
matrices.
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Deflation in PCA

Since the PCA problem reduces to solving an eigenvalue equation, it is possible to
look for the components either all at once or one at a time, by deflation. Similar
deflation will be needed in different variants of CCA (Sect. 3.4 and 3.4.6) and in
its nonparametric generalization NP-DeCA (Sect. 3.6.2).

In PCA the successive components are defined to always be orthonormal to
the earlier ones, wT

i wj = δij , where δij denotes the Kronecker delta. In PCA
we choose the direction of each new component to that which maximizes the
projected variance amongst all possible directions orthogonal to those already
selected. Deflation is the procedure where the already considered variance is
removed from the data, so that the next component can be sought by maximizing
the projected variance. After extracting the first component w1, the data is
deflated by

X̄ = X
(

I− 1
wT

1 X XT w1
XT w1 wT

1 X
)

=
(
I−w1 wT

1

)
X , (42)

and the next component is searched for by applying the algorithm to the deflated
data X̄ instead of the original data. When another component has been found the
data X̄ is deflated again, and the process continues until the desired number of
components has been reached.

Note that the first line in Equation (42) takes care that the projected variables
are orthogonal (wT

i X⊥wT
j X), while the second line states the orthogonality of

the projection vectors (wi⊥wj). In the PCA case these two orthogonalities are
equivalent. In Canonical Correlation Analysis the two ways to define orthogonality
are not, however, equivalent and there only the projected variables are orthogonal
(wT

i X ⊥ wT
j X). See Appendix 8 for more detailed explanation.

3.4 Canonical Correlation Analysis

A classical approach to searching for dependencies between two data sets is to
project them both onto a lower-dimensional subspace, in which it is easier to
estimate dependencies than in the original high-dimensional spaces. When the
projection is chosen in such a way that it maximizes dependency between the two
sets of variables, it discards variation that is not present in both sets, while keeping
the interesting shared variation. When the projections are restricted to be linear
and the dependency is measured by Pearson correlation, the method is the well-
known Canonical Correlation Analysis (CCA, Hotelling (1936), see Hardoon et al.
(2004); Timm (2002)).

The formulation given for CCA in this section allows straightforward
generalization to more than two data sets (generalized CCA, Sect. 3.4.2) and,
furthermore, avails in showing the connection between mutual information and
CCA in Section 3.4.3. A generalization of mutual information to more than two
data sets, multi-information, was used in Publication 6 as measure of dependency,
and its connection to generalized CCA is also discussed in Section 3.4.3.
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3.4.1 Formulation of CCA

Let us denote the original data spaces X1 and X2 (with dimensionalities d1 and d2,
respectively). We assume the means have been removed so that µi = E(Xi) = 0
for both data sets, i = 1 and 2. In CCA we look for such linear projections with
projection vectors a and b that the Pearson correlation between the projections is
maximized, i.e.,

max
a,b

ρ = max
a,b

aTX1XT
2 b (43)

with normalization constraints 1
N ‖a

TX1‖2 = 1
N ‖b

TX2‖2 = 1.
To obtain the desired formulation of CCA, the two data vectors can be

concatenated into one d-dimensional data vector z, whose covariance matrix C
is

C =
(

C1 C12

C21 C2

)
. (44)

The blocks on the diagonal are the covariance matrices of the individual data sets
and the off-diagonal blocks are the cross-covariances between the data sets9. While
PCA (Sect. 3.3) works with a single random vector and maximizes the variance of
projections of the data, CCA works with a pair of random vectors (or in generalized
case with a set of m random vectors) and maximizes the correlation between sets
of projections. While PCA leads to an eigenvalue problem, CCA leads to a so-
called generalized eigenvalue problem (Timm, 2002). CCA reduces to the following
generalized eigenvalue problem(

0 C12

C21 0

)(
ξ1
ξ2

)
= ρ

(
C1 0
0 C2

)(
ξ1
ξ2

)
, (45)

where ρ is the canonical correlation to be maximized and the diagonal blocks are of
size di×di, and the sizes of the off-diagonal blocks are di×dj10. For computational
reasons equation (45) is written as (where λ = 1 + ρ)(

C1 C12

C21 C2

)(
ξ1
ξ2

)
= λ

(
C1 0
0 C2

)(
ξ1
ξ2

)
. (46)

If we denote the block diagonal of C by D,

D =
(

C1 0
0 C2

)
, (47)

we can write Eq. (46) in short as

Cξ = λDξ . (48)

From this formulation of CCA it is easy to generalize to more than two data sets.

9Using the covariance matrices the problem can be rewritten as

max
a,b

ρ = max
a,b

aTC12b

with normalization constraints aT C1a = bT C2b = 1.
10With zero-mean variables Cx = E[xxT ] and Cxy = E[xyT ], which are in practice replaced with

their sample estimates.
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3.4.2 Generalizing CCA to Multiple Data Sets

There are several ways to generalize correlation to more than two sets of variables
(Kettenring, 1971), leading to several possibilities to generalize CCA to multiple
data sets. Here the one chosen by Bach and Jordan (2002) is presented and it is
referred to as generalized CCA or gCCA.

Let us assume that the original data consists of m coupled data sets
{X1, . . . ,Xm}, having dimensionalities d1, . . . , dm respectively. The m coupled
data vectors can be concatenated into one d-dimensional data vector z, whose
covariance matrix is C, and the corresponding CCA generalization is


C1 . . . C1m

C21 . . . C2m

...
. . .

...
Cm1 . . . Cm




ξ1
ξ2
...
ξm

 = λ


C1 . . . 0
0 . . . 0
...

. . .
...

0 . . . Cm




ξ1
ξ2
...
ξm

 . (49)

This can be written in short as

Cξ = λDξ . (50)

A procedure for computationally solving this generalized eigenvalue problem
with symmetric C and D and with positive definite D can be found, e.g., in (Golub
and van Loan, 1996). It is based on the so-called Cholesky decomposition and the
symmetric QR-algorithm.

3.4.3 Connection between CCA and Mutual
Information

For two vectorial Gaussian variables x1 and x2 there is a simple relationship
between canonical correlation analysis and the mutual information (Kullback,
1959), as follows:

I(x1; x2) = −1
2

log
(

det C
det C1 det C2

)
= −1

2
log V , (51)

where V is known as the generalized variance. The connection can be derived from
the following decomposition of mutual information

I(X1;X2) = H(X1) +H(X2)−H(X1, X2) . (52)
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We next derive the equation for multi-information between Gaussian data sets,
which was used in Publication 6 as means of interpreting the gCCA results. Multi-
information is a generalization of mutual information (52) to more than two ran-
dom variables11, and has the following decomposition

I(X1; . . . ;Xm) =
m∑
i=1

H(Xi)−H(X1, . . . , Xm). (53)

The individual Gaussian data sets’ entropies are

H(Xi) = −
∫
xi

p(xi) ln p(xi) dxi

= −
∫
xi

p(xi)
(
−di

2
ln(2π)− 1

2
ln det Ci −

1
2
xTi C−1

i xi

)
dxi

=
1
2

[ di ln(2π) + ln det Ci ]
∫
xi

p(xi) dxi +
1
2

E
[
xTi C−1

i xi
]

=
di
2

[ ln(2π) + 1 ] +
1
2

ln det Ci ∀i, (54)

where di denotes the dimensionality of the i’th data set. On the other hand, the
joint entropy is

H(X1, . . . , Xm) = −
∫
z

p(z) ln p(z) dz

=
d

2
[ ln(2π) + 1 ] +

1
2

ln det C, (55)

where C is the joint covariance matrix and d denotes the dimensionality of the
joint data set. So, substituting (54) and (55) into equation (52) yields

I(X1; . . . ;Xm) =
1
2

[ ln(2π) + 1 ]

(
m∑
i=1

di − d

)
+

1
2

(
m∑
i=1

ln det Ci − ln det C

)

= −1
2

ln
det C

det C1 · · · det Cm
= −1

2
lnV. (56)

11In order to have a high value, multi-information requires some pairs of the m variables to be
dependent in terms of mutual information, but not necessarily all of them.
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3.4.4 Dimensionality Reduction by Generalized CCA

In dimension reduction by gCCA the mutual information or multi-information is
maximized, i.e., the generalized variance

V =
det C

det C1 · · · det Cm
(57)

is minimized, while the dimensionality is reduced.
In this section we show that if we choose to look for such a linear transformation

that the following four framed properties below are met, and then choose the
maximum-variance-projection in the dimensionality reduction, we end up with the
CCA generalization of Publication 6 and Tripathi et al. (2008). There have been
many suggestions for generalization of CCA to more than two data sets (see for
example Bach and Jordan (2002)).

We look for a linear transformation that fulfils these properties:

i) removes the correlations between the within-dataset-variables

ii) normalizes all the variables to have equal variances

iii) normalizes the entropies of individual data sets to constants
depending only on the dimensionality of the data set

iv) preserves the multi-information between the data sets
(equivalent to preserving generalized variance V )

It will become evident that a procedure of whitening the within-dataset-covariances
and maximization of the variance12 of a linear projection is equivalent to searching
for the first generalized canonical correlation and the canonical correlates. This
intuition of generalized CCA gives an alternative view to the interpretation of the
gCCA results, and was utilized in Publication 6 to study different co-occurrence
data sets about yeast stress response. The next section shows how this equivalence
can be seen.

Derivation of an Alternative View to CCA

Let us make the following linear transformation to the concatenated variable z
(z = [xT1 xT2 . . .x

T
m])

z′ = D−1/2z , (58)

where

D−1/2 =


C−1/2

1 0 . . . 0
0 C−1/2

2 . . . 0
...

. . .
...

0 0 . . . C−1/2
m

 . (59)

12or equivalently entropy in the case of Gaussian data
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We can first check that the Conditions i) and ii) are met. As a result of the
transformation, the covariance matrix of the (transformed) data C′ is

C′ = E[z′z′T ] = D−1/2E[zzT ]D−1/2 = D−1/2CD−1/2 . (60)

In effect, we have now whitened the individual original data sets X1, . . . ,Xm to get
X′1, . . . ,X

′
m (Condition i) is met). Additionally, the variances of all the variables

are now equal, i.e., Condition ii) is met, and what is more, they are all equal to
one13.

In order to check the Conditions iii) and iv), we need to write down the
entropies of both the individual data sets and the concatenated data after the
transformation. If the data is Gaussian, after the transformation the entropy of
an individual data set is

H(X ′i) =
di
2

[ln(2π) + 1] +
1
2

ln det I

=
di
2

[ln(2π) + 1] ∀i. (61)

Hence, the entropy of an individual data set is dependent only on the
dimensionality of the data set, di, as required in Condition iii). On the other
hand, the joint entropy of the transformed (concatenated) Gaussian data is

H(X ′1, . . . , X
′
m) =

d

2
[ln(2π) + 1] +

1
2

ln det C′

=
d

2
[ln(2π) + 1] +

1
2

ln
det C

det C1 · · · det Cm
, (62)

because

det C′ = det(D−1/2) det(C) det(D−1/2) = det(C) det(D−1/2D−1/2)

= det(C) det(D−1)

=
det C

det C1 · · · det Cm
. (63)

We can now proceed to checking that the multi-information (or mutual
information) is preserved in the transformation (58), required in Condition iv),
as follows:

I(X ′1; . . . ;X ′m) =
m∑
i=1

H(X ′i)−H(X ′1, . . . , X
′
m)

= −1
2

ln det C′

= −1
2

ln
det C

det C1 · · · det Cm
= −1

2
lnV

=
m∑
i=1

H(Xi)−H(X1, . . . , Xm)

= I(X1; . . . ;Xm). (64)
13Note that it is possible to construct other related methods by choosing another whitening transfor-

mation than the one in Eq. (58). One could equally well choose to weight each variable differently or
just remove the between-dataset-correlations, but preserve the variances of the within-dataset-variables.
Then, the block diagonal of the covariance matrix C′ would consist of diagonal matrices instead of
identity matrices. However, our choice is the one that coincides with gCCA.
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In order to perform dimensionality reduction, we look for the maximum-
variance-direction after having removed the within-dataset-correlations. This
should emphasize the dependencies between the data sets in contrast to
dependencies within the data sets. Therefore, in the transformed feature space we
look for the one-dimensional projection z′′ = aT z′ (with normalization aTa = 1)
that maximizes the variance of the projected variable E[z′′z′′T ]. The (co)variance
of the projected variable z′′ is

C′′ = E[aT z′(z′)Ta] = aTC′a , (65)

and since aTC′a is the variance of z′ in the direction of a, it attains its maximum
when a is the first principal component of C′.14

So, actually, this procedure of whitening the within-dataset-covariances and
maximization of the variance of a linear projection is equivalent to searching for
the first generalized canonical correlation and the canonical correlates, i.e., solving
the following generalized eigenproblem

Cξ = λDξ ,

since, if we denote C− λD by A:

C− λD = A (66)

⇔ D−1/2 C− λD1/2 = D−1/2 A

⇔ D−1/2 C D−1/2 − λ I = D−1/2 A D−1/2

⇔ C′ − λ I = D−1/2 A D−1/2 , (67)

and take determinants on both sides of the first and the last equation, we get

det(C− λD) = 0⇔ det A = 0⇔ det(C′ − λI) = 0 . (68)

Hence, the solution of the generalized eigenproblem in CCA is equal to the solution
of the eigenvalue problem C′ξ = λξ, i.e., the PCA solution for the within-dataset-
whitened variable z′.

3.4.5 Deflation in CCA
The CCA components can also be computed either all at once, or one at a time
iteratively, by deflation like in PCA (See Section 3.3). The normalization
constraints of CCA are wT

x Cxwx = wT
y Cywy = 1, and the orthogonality

constraints hold for the projected variables (wi
x)T X ⊥ (wj

x)TX, but this is no
longer equivalent to the orthogonality of the projection vectors wi

x and wj
x, as was

the case in PCA, in Eq. (42). (See Appendix 8 for details.)
After extracting the first component wx, the data is transformed by

X̄ = X
(

I− 1
wT
x X XT wx

XT wx wT
x X

)
= X

(
I− 1

N
XT wx wT

x X
)
. (69)

14For Gaussian data this is equivalent with maximization of the entropy of the projected variable z′′

H(Z′′) =
1

2
[ln(2π) + 1] +

1

2
ln det C′′ =

1

2
ln aT C′a + const.
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The deflation is performed analogously for Y. The next component is sought by
applying the algorithm to X̄ and Ȳ instead of the original data. This procedure
can be continued up to the minimum of the data dimensionalities, or until there
are no significant dependencies left between X̄ and Ȳ.

3.4.6 Sparse and Non-Negative Variants of CCA

It is well-known that CCA for one projection vector in the case of two data sets
can also be formulated as an equivalent norm minimization problem:

(wx, wy) = arg min
wx,wy

‖wT
x X−wT

y Y‖2 , (70)

with normalization 1
N ‖w

T
x X‖2 = 1

N ‖w
T
y Y‖2 = 1 and orthogonality constraints

for the successive components w(i)T
x X⊥w(j)T

x X (and analogously for wy). In this
formulation successive components have to be sought iteratively by deflation (Vía
et al., 2005). This formulation opens up new ways to constrain the optimization,
e.g., by requiring the components to be non-negative or sparse, or both at the same
time (Sigg et al., 2007). Sparsity of the components can be achieved using LASSO-
like L1-norm-based sparsity constraints (Tibshirani, 1996). So-called non-negative
matrix factorization has also been introduced as a way to restrict the projection
weights to be non-negative (Lee and Seung, 1999, 2001). Another variant of CCA
is the so-called functional CCA, which has also been used in fMRI brain imaging
(He et al., 2003).

Kernel-CCA has been suggested to be used when the connection between the
two data sets could be nonlinear, where the nonlinearity can be embedded in
the kernel (Fyfe and Lai, 2000; Shawe-Taylor and Cristianini, 2004). However,
it requires quite cautious regularization in order not to overfit (Fukumizu et al.,
2007).

3.5 Probabilistic Extensions of CCA

Since classical CCA implicitly assumes the two (or more) sets of random variables
to be normally distributed, in which case the shared variance coincides with mutual
information, there is clearly a need for extensions that allow other than normally
distributed data. In Publications 6, 7, 8, and 9 we used information-theoretic
extensions of CCA (see Sect. 3.6). To give a more complete picture of the closest
related methods let us first look at the probabilistic extensions of CCA.

The probabilistic extensions of CCA are built on the basis of the probabilistic
extensions of PCA. In the next section the underlying PCA extension is presented,
and in Sections 3.5.2 and 3.5.3 both a maximum likelihood probabilistic extension
of CCA (Bach and Jordan, 2005) and a fully Bayesian CCA (Klami and Kaski,
2007) are presented. Recently, other probabilistic extensions have been suggested,
including probabilistic sparse PCA and sparse CCA (Archambeau and Bach, 2009).
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3.5.1 Probabilistic PCA

A generative model for PCA has been introduced by Tipping and Bishop (1999),
and its graphical model representation can be seen in Figure 5. This presentation
follows the textbook reference (Bishop, 2006).

In this section the dimensionality of the observed random variable x is denoted
byMx and the dimensionality of the paired observable y byMy. The data samples
are indexed by i, (i = 1, . . . , N), and the components by k with k = 1, . . . ,K. As
before, ϕ denotes the set of all model parameters. First, a K × 1 latent variable z
is drawn from the standard normal distribution

z | ϕ ∼ N (0, I) . (71)

Given the latent variable z, the observed variable x follows the normal distribution
of Eq. (72)

x | z,ϕ ∼ N
(
W z + µ, σ2 I

)
, (72)

where the matrix W contains the K projections that define the principal
components. The Mx × 1 mean vector of x is denoted by µ, and σ2 is the
common variance of each element of x. For optimization of the model there are,
e.g., EM-algorithms introduced by Roweis (1998).

W

µ

σ2

z

x

N

Figure 5: Graphical model representation of the probabilistic PCA. The plate represents the repeated
choice of N data samples x. The matrix W contains the K projection vectors that define the principal
components. The mean of x is denoted by µ, and there is a common variance σ2 for of each element
of x.
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3.5.2 Probabilistic CCA
On the basis of probabilistic PCA, a probabilistic CCA has been introduced (Bach
and Jordan, 2005). The model is represented as a graphical model in Figure 6.
As in generative PCA, first, a K × 1 latent variable z is drawn from the standard
normal distribution

z ∼ N (0, I) . (73)

Given the latent component z, the observed variables x and y follow the normal
distributions

x | z,ϕ ∼ N (Wx z + µx,Ψx)
y | z,ϕ ∼ N (Wy z + µy,Ψy) , (74)

where Wx and Wy are matrices containing the K projection vectors wk
x and wk

y as
their columns. These projections define the K canonical components. The Mx×1
mean vector of x is denoted by µx and µy is the My × 1 mean vector of y. Ψx

and Ψy are the covariance matrices of x and y, respectively.

µ x µ y

Ψx Ψyy

z

x

yWxW

N

Figure 6: Graphical model representation of the probabilistic CCA. The plate represents the repeated
choice of N paired data samples xi and yi. The matrices Wx and Wy contain as their columns the
K projections that define the canonical components. The mean vectors of x and y are denoted by µx

and µy . Ψx and Ψy are the covariance matrices of x and y, respectively.

The maximum likelihood solution of this model has been shown (Bach and
Jordan, 2005) to relate to the classical CCA via the following equations{

Wx = Cx Ux Qx

Wy = Cy Uy Qy
, (75)

where Cx and Cy are the empirical covariance matrices of x and y, Ux is the
Mx×K matrix containing the CCA projection vectors as columns (Uy analogously
for y). One should note, however, that the ML-solution does not define the rotation
of the K-dimensional subspace, but allows Qx and Qy to define the rotation. Qx

and Qy are random matrices of size K×K, with spectral norms smaller than one,
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and satisfying Qx QT
y = P, where P is a K ×K diagonal matrix containing the

corresponding canonical correlations. Archambeau et al. (2006) have presented a
method for solving the rotational ambiguity caused by Qx and Qy. This makes it
possible to find the projections of the classical CCA, instead of just the subspace.

3.5.3 Bayesian CCA
The probabilistic CCA opens interesting possibilities to interpret the model but
a fully Bayesian treatment is needed in order to estimate posterior distributions
instead of just maximum likelihood point estimate – which is anyway typically
more efficient to reach just by solving the original eigenvalue problem. In this
thesis, the model by Klami and Kaski (2007) is presented, but there are also other
possible ways to define the model distributions.15

As before, a K × 1 latent variable z is drawn from the standard normal
distribution

z ∼ N (0, I) . (76)

Again, given the latent variable z, the observed variables x and y follow the normal
distributions

x | z,ϕ ∼ N (Wx z + µx,Ψx)
y | z,ϕ ∼ N (Wy z + µy,Ψy) , (77)

µ x µ y

Ψy

wx wy

y

z

xΨx

υ y
0

S0
y

υ x
0

S
x
0

β

0α β 0

σ
0
2

N

K

Figure 7: Graphical model representation of the Bayesian CCA. The lower plate represents the repeated
choice of N paired data samples xi and yi. The upper plate labeled with K represents the different
canonical components, defined by K pairs of projection vectors.

15A similar Bayesian extension to probabilistic PCA has been introduced by Bishop (1999).
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where Wx and Wy are matrices containing the K projection vectors wk
x and wk

y

as their columns. These projections define the K canonical components. The
mean vectors of x and y are denoted by µx and µy, and Ψx and Ψy are the
corresponding covariance matrices. But, in contrast to the above probabilistic
CCA, all these model parameters are drawn from their prior distributions. For
computational convenience, conditionally conjugate prior distributions are used
for all parameters. Thus, the means and covariance matrices of x and y are drawn
as follows

µx ∼ N
(
0, σ2

0 I
)

and µy ∼ N
(
0, σ2

0 I
)

Ψx ∼ IW (Sx0 , ν
x
0 ) and Ψy ∼ IW (Sy0, ν

y
0 ) , (78)

where IW(S, ν) is the Inverse Wishart distribution with parameters S and ν. For
each component k, a common variance for both wk

x and wk
y is drawn from

βk ∼ IG (α0, β0) , (79)

where IG(α, β) is the Inverse Gamma distribution with parameters α and β.
Finally, the Mx× 1 linear projection wk

x for x and My× 1 linear projection wk
y for

y for component k can be drawn as follows

wk
x | βk ∼ N (0, βk I) and wk

y | βk ∼ N (0, βk I) . (80)

They are gathered as columns into matrices Wx and Wy.
In (Klami and Kaski, 2007) this model was evaluated by Gibbs sampling. A

variational Bayesian approach to CCA has been presented by Wang (2007), with
the subtle difference that the βk are not shared between wk

x and wk
y .

3.6 Information-Theoretic Extensions of CCA
Replacing correlation with mutual information makes the discovery of more
general types of dependency possible, extending the range of applications.
However, mutual information cannot be computed as easily as correlation,
and approximations are therefore needed. In this section we describe such
approximations used in the publications of this thesis; Associative Clustering
(Publication 6) and Nonparametric Dependent Component Analysis (Publication 8
and extended in Publication 9).

3.6.1 Associative Clustering
Associative Clustering (AC, Kaski et al. (2005b)) is a method that clusters two
continuous-valued multi-dimensional variable spaces X and Y , by maximizing
their dependencies. The dependencies are modeled based on observed paired data
without prior knowledge about the structure of the data sets. The method
effectively looks for compact areas of data points in both spaces with the
property that the pairs of the clustered data points are also clustered in the other
data space. The compactness assures a touch of internal homogeneity within the
clusters, which makes them more interpretable.

The dependencies between the partitionings of the spaces are presented with
a contingency table, where the slots result from the Cartesian product of the one-
way partitions of X and Y , respectively, and the count of each slot reflects the
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data density in that area. Traditionally, the so-called Bayes-factor (81) has been
used as a measure of dependency between the marginals of a given contingency
table but in AC the Bayes factor is used to select the partitions so as to maximize
the Bayes factor

P (D | H̄)
P (D | H)

=
P (H̄ | D)
P (H | D)

· P (H)
P (H̄)

=
P (H̄ | {nij})
P (H | {nij})

∝

∏
ij

Γ(nij + 1)∏
i

Γ(ni. + 1)
∏
j

Γ(n.j + 1)
, (81)

where we have assumed the priors of the hypotheses to be constant (for details
see Kaski et al. (2005b)). The hypothesis H is the null hypothesis that assumes
independent marginal distributions and H̄ is the interesting hypothesis that shows
dependency. We denote by nij the count of samples in the (i, j)’th bin of the
contingency table, and by {nij} the set of all counts in the table. Γ denotes the
gamma function, which has the property Γ(n) = (n− 1)! for positive integers n.

The larger the Bayes-factor is, the more dependent the marginal clusters are.
The technical details of the optimization of the AC model can be found in
Sinkkonen et al. (2005).

3.6.2 Nonparametric Dependent Component
Analysis

A straightforward option to estimating mutual information between data sets
is to empirically estimate the probability density in the projection space, and
estimate mutual information based on the density estimate. Fisher III and Darrell
(2004); Klami and Kaski (2005) and Yin (2004) have introduced methods based
on nonparametric Parzen-kernel estimates. We call these methods Nonparametric
Dependent Component Analysis (NP-DeCA), since they search for general
statistical dependencies. By Dependent Component Analysis (DeCA) we refer
to a broader range of dependence seeking algorithms, including also CCA and its
different variants.

The fundamental task in NP-DeCA (Klami and Kaski, 2005) is to find linear
projections of two data sets16, X and Y, so that the mutual information between
the projections sx = wT

xX and sy = wT
y Y is maximized. The objective is thus to

maximize

I(sx, sy) =
∫ ∫

p(sx, sy) log
p(sx, sy)
p(sx) p(sy)

dsxdsy (82)

with respect to linear transformations wx and wy. Here sx and sy are the random
variables sx = wT

x x and sy = wT
y y, and x and y are random vectors corresponding

to data sets X and Y.

16The method can be easily extended to more than two data sets, as was done for Nonparamet-
ric DeCA in (Klami and Kaski, 2005), using multi-information instead of mutual information as the
objective function.
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In practice, the integral is estimated with a sum

Î(sx, sy) =
1
N

N∑
i=1

p̂(six, s
i
y)

p̂(six) p̂(siy)
, (83)

where N is the number of observations and p̂(sx, sy) is a Parzen-estimate, which is
nonparametric. Hence, optimizing the cost of Eq. (82) is straightforward; it only
requires deriving the gradient of the cost and using any standard optimization
technique to find a local optimum.

NP-DeCA can be used instead of CCA when we have reason to believe that
the data is not normally distributed. In Publication 8 it was applied to brain
imaging analysis, where dependencies between stimulus time series and spatially
independent brain activity patterns were sought using NP-DeCA. The application
is discussed in Section 6.6.

3.6.3 Fast Semi-Parametric Extension of NP-DeCA

In the original NP-DeCA algorithm (Klami and Kaski, 2005) the density estimation
of the data sets was done in a nonparametric fashion by Parzen-estimates. The
Parzen-estimates are consistent and accurate, but unfortunately computationally
demanding for large data sets. The computation can be speeded up by using
only a subset of data points as kernels, as suggested by Klami and Kaski (2005),
but replacing the nonparametric density estimates with semi-parametric estimates
should give more accurate results.

In Publication 9, we introduced a faster semi-parametric variant of the
NP-DeCA-algorithm, which uses a mixture of Gaussians to estimate the density
in the projection space, and where the integral in (82) is estimated as an
average over the observed data points. An analogous method has earlier been
shown to improve efficiency in a related modeling task of finding supervised linear
projections, that is, projections informative of co-occurring categorical variables
(Peltonen et al., 2007).

We applied the novel Semi-Parametric DeCA (SP-DeCA) to the task of
finding dependencies between measured brain activity and multi-sensory stimuli
in Publication 9. The application is discussed in Section 6.6.

The main advantage of the method proposed in Publication 9, compared to
earlier nonparametric DeCA methods, is in the computational speed. The Parzen-
kernel estimate used in the earlier works has a computational complexity of O(N2),
where N is the number of training data points, and each iteration of a gradient-
based optimization algorithm requires evaluating the densities for a new set of
projected values. A mixture model with K mixture densities, however, has only
a complexity of O(NK) for evaluating the density or the gradient with respect to
the projections. The disadvantage of the parametric estimate is that we need to
learn the parameters of the mixture model as well, but in practice the number
of iterations required for convergence is small, and good performance can be
achievable already with a very small K. The resulting method is considerably
faster already in applications with some hundreds of data points.

34



3.6 Information-Theoretic Extensions of CCA

Cost and Optimization of Semi-Parametric DeCA

In this semi-parametric case we consider parametric estimates of the form

p̂(sx, sy | ϕ) =
K∑
k=1

πkN ([sx; sy] |µk,Σk) , (84)

where N (x |µ,Σ) denotes the normal distribution with mean µ and covariance
matrix Σ evaluated at x. The πk’s represent the probabilities of the mixture
components, and are therefore non-negative values that sum up to unity. This
estimate has a set of parameters ϕ = {πk,µk,Σk}Kk=1, which need to be learned.
Hence, straightforward optimization of the objective function

Î(sx, sy) =
1
N

N∑
i=1

p̂(six, s
i
y)

p̂(six) p̂(siy)
(85)

with respect to wx and wy is not possible.
In Publication 9, we have proposed an alternating algorithm following the work

in Peltonen et al. (2007). Starting with some initial projections, a mixture of
Gaussians in the projection space is learned using the expectation maximization
(EM) algorithm (Sect. 2.1.2). After learning the density estimate, the projections
wx and wy are optimized. The algorithm then proceeds by alternating these two
steps until convergence.

Given a fixed density estimate, the objective function Eq. (85) can easily be
differentiated, and gradient-based methods can be used to learn the projections. In
Publication 9 we used a conjugate-gradient method, with the number of iterations
equal to the dimensionality of the parameter space. The density estimate was
always optimized until convergence of the EM algorithm.17

Deflation in Semi-Parametric DeCA

The components are optimized one at a time. This is done because density
estimation in high-dimensional spaces is very difficult. By restricting to
one-dimensional projections the joint density p(sx, sy) will be estimated in a
two-dimensional space, which can be done accurately enough already with
reasonably small data sets.

After finding the first component, the next maximally dependent component is
sought with the following constraint: The projections on the consecutive
components are required to be independent of the projections on the previous
components, in both the X- and Y -spaces.

In practice, searching for a component that maximizes dependency with the
other data set while minimizing dependency with the earlier component(s) is
difficult. It could be done by adding a separate term in the cost function, but in
practice there is a computationally more efficient approximation available.

17In practice it only took a few steps, since we started from the previous estimate, which was typically
very close to a local optimum.

35



3 MODELING DEPENDENCE BETWEEN
DATA SETS

Instead of full independence, we require the components to be uncorrelated with
the earlier projections, analogously to how successive CCA components are
defined. This can be satisfied with a simple deflation procedure, as follows.18

After extracting the first component wx, the data is transformed by

X̄ = X
(

I− 1
wT
x X XT wx

XT wx wT
x X

)
(86)

(and analogously for Y), and the second component is searched for by applying
the algorithm to X̄ and Ȳ instead of the original data. This procedure can be
continued up to the minimum of the X- and Y -space dimensionalities, or until
there are no significant dependencies left between X̄ and Ȳ.

3.7 Summary
This chapter first motivated dependency modeling between data sets as a way to
define what is relevant in the data. A lot of background was given about the
classical methods PCA and CCA to remind the reader about certain properties of
the methods as a prerequisite for the extended work. Also probabilistic extensions
of PCA and CCA were briefly discussed to get a full picture of the closest related
methods.

An alternative view to CCA was derived, as whitening of the within-dataset-
covariances followed by PCA to search for those features that have maximal
variance and at the same time are dependent on both (or all the) datasets. This
alternative interpretation led us to a new way of using CCA in feature
selection in Publication 6.

As classical CCA has the restriction of implicitly assuming the data to be
normally distributed, we wanted to find an unsupervised dependency-seeking
method without the assumption of normally distributed data. We have developed
an extension of CCA to non-normally distributed data (NP-DeCA) and it
was applied to searching dependencies between two co-occurring data sets in
Publication 8. However, the Parzen-estimate-based Nonparametric DeCA is not
efficient enough for large data sets, and therefore, we pursued to find a faster
algorithm for the task. In Publication 9 we introduced a new faster variant of
the method, Semi-Parametric DeCA (SP-DeCA) where the density estimation is
based on Mixture of Gaussians.

18If maximal variance direction would determine the direction of the next component, this would
exactly match the orthogonality constraint of CCA. In our case the deflation does not strictly guarantee
uncorrelatedness of the successive components, but takes care that correlated successive components
are highly improbable.
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4 Modeling of User Interest

User modeling is generally understood as a broad field of studying and developing
systems that acquire information about a user (or group of users) so as to be able to
adapt the system’s behavior to that user or user group. Numerous applications of
such systems exist, e.g., in the area of natural language understanding and dialogue
systems, in computer-based educational systems and online learning environments,
and in recommender systems for e-commerce, news and entertainment. This thesis
focuses on the specific sub-genre of recommender systems.

4.1 Feedback in Recommender Systems

Our application areas have been related to the so-called recommender systems,
where the task is to predict the subjective relevance of new items to the user
based on his or her learned user profile. In Publication 2 we used content-based
filtering (Sect. 4.2), whereas and in Publications 3, 4 and 5 collaborative filtering
(Sect. 4.3) was used.

In recommender systems users give feedback about the recommended items
– e.g., music pieces or albums (Shardanand and Maes, 1995), movies, books,
news (Jokela et al., 2001), restaurants, wines (e.g. Viinitupa, a recommender
system prototype for wines19) etc. – and the system gathers a user interest profile
for each user. The system matches the user interest profile against a database
of items in order to find more items that match the interest profile. The most
reliable way to gather user profiles is based on so-called explicit feedback where
users give ratings to the items on a given scale (e.g., 0–5 stars). Because explicit
feedback is laborious to the users and typically at least tens of ratings are needed
in order to make reasonable recommendations, there has been various attempts
to find out about the user interests without bothering the user – using so-called
implicit feedback. If a user buys a book, bookmarks a product page or follows a
link, it can be inferred to convey information about his interest profile.

Explicit and implicit feedback can be also used in an information retrieval
setup. The task of an information retrieval (IR) system is to identify documents
that best match the query given by users, based on the contents of the documents.
The systems may additionally collect explicit relevance feedback from the user,
by asking which of the retrieved documents were relevant. Traditionally, implicit
feedback in information retrieval has been derived from document reading time, or
by monitoring user behavior: saving, printing, and selecting of documents (Kelly
and Teevan, 2003).

In Publication 1, we inferred user interest implicitly from eye movements using
probabilistic models that predict whether a user finds a text relevant, given her
eye movement trajectory while reading the text. The key assumption motivating
the use of eye movements is that attention patterns correlate with relevance, and
that attention patterns are reflected in eye movements (see Porta (2007); Salojärvi
et al. (2003)). The application is discussed further in Chapter 5.

19http://www.soberit.hut.fi/∼jti/winemag.htm
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4 MODELING OF USER INTEREST

4.2 Content-Based Filtering

In so-called content-based filtering, documents or other items are filtered for the
user based on his or her interest profile. But in contrast to so-called collaborative
filtering (Sect. 4.3), the opinions of other users do not affect the recommendations,
only the content descriptions of the items matter. The system maintains user
profiles and matches the profiles against a database of items in order to find more
items that match each interest profile. The profile can be defined in advance or
adapted based on gradually gathered explicit or implicit feedback about the items
of interest.

In case of text documents, the actual words in the vectorial form of
bag-of-words might be the content (see Sect. 4.4.3). In the case of music
recommendations some audio signal analysis of the sound could serve as a content-
based description (Eck et al., 2008; Lamere and Eck, 2007; West et al., 2006). In
case of news reporting, metadata that categorizes news articles in various ways is
being typically defined (Jokela, 2001; Savia, 1999; Tintarev and Masthoff, 2006;
Turpeinen, 2000).

In Publication 2, we looked for such textual features from movie synopses
that best separated between the 10 available movie genres, and used them for
content-based filtering for individual users. Finding such textual features would
help in relevance prediction for future movies that would not have the same genre
classification available.

4.3 Collaborative Filtering

Collaborative filtering is another way to make recommendations based on user
profiles. It is suitable for situations where one might expect the opinions of other
similar-minded people to be relevant, e.g., in matters of taste. It is assumed that
if two users have liked a group of same items – let us say books – they are likely
to share this liking also for other books in the future. The goal of collaborative
filtering is to predict the relevance of an item to a given user, based on a database
of explicit or implicit relevance ratings from a large population of users.

Traditionally, collaborative filtering has been performed by so-called memory-
based techniques, in which one first identifies users similar to a given user and
then gives predictions based on interests of those similar users (see, e.g., GroupLens
(Konstan et al., 1997), or Ringo (Shardanand and Maes, 1995)). However, the time
and memory requirements of the memory-based techniques do not generally scale
well as the number of users and documents increases, which has led to development
of model-based approaches (Bohnert et al., 2009; Hofmann, 2004; Jin and Si, 2004;
Wettig et al., 2003; Zitnick and Kanade, 2004). However, specific scalable memory-
based techniques have also been introduced (Bell and Koren, 2007).

An interesting family of models are the latent topic models, which have been
successfully used in document modeling but also in collaborative filtering (Blei
et al., 2003; Blei and Jordan, 2003; Erosheva et al., 2004; Hofmann, 2004; Keller
and Bengio, 2004; Marlin, 2004a; Marlin and Zemel, 2004; McCallum et al., 2004;
Popescul et al., 2001; Pritchard et al., 2000; Rosen-Zvi et al., 2004; Salakhutdinov
and Mnih, 2008; Si and Jin, 2003; Yu et al., 2005a,b). When applying these models
to collaborative filtering, each user is assumed to belong to one or many latent user
groups that explain her preferences.
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4.3 Collaborative Filtering

In Publication 4 we applied the collaborative filtering idea to British Parliament
votings (Votings of the British Parliament in 1997–2001). Later there has been
related work with same kind of senate voting data (Heller et al., 2008).

4.3.1 Connection to Co-Occurrence

In the Introduction there was discussion about two kinds of co-occurrence; in the
first kind the observations are simply coupled by the sample identifier i, such as
in vectors xi and yi. If we denote users by u, documents by d and relevance by r,
in the latter kind of co-occurrence we assume we have observed triplets (ui, di, ri),
and view them as two tuples (ui, ri) and (di, ri) that are paired by the sample
identifier i.

In Publications 3, 4 and 5, the data sets consisted of the latter kind of co-
occurrence, where (ui, di, ri) triplets were seen as co-occurring samples of pairs
(ui, ri) and (di, ri).

In Publication 2, the documents were represented as feature vectors di instead
of scalars, but otherwise the co-occurrence was seen in the same manner, as two
tuples (ui, ri) and (di, ri) that are paired by the sample identifier i.

As mentioned in the Introduction, there was even co-occurrence on top of
co-occurrence in Publication 1. First (ui, di, ri) triplets were seen as co-occurring
samples of pairs (ui, ri) and (di, ri) in a collaborative filtering model. In parallel,
another model for co-occurrence data, based on eye movements was trained. In the
eye movement model (ui, di)-pairs were seen as individual samples, denoted here
by udi for short, and the data therefore consisted of triplets (udi, ei, ri), where
ei stands for the feature vector from the eye movement path. This constitutes
the latter kind of co-occurrence, when viewing it as paired samples (udi, ei) and
(udi, ri). We predicted the relevance for each udi both with a model that was
based on eye movements (resulting in prediction denoted by r_eyei), and with a
collaborative filtering model (denoted by r_cfi). Eventually, the second layer of
co-occurrence was exhibited when the predictions based on both models (udi, r_cfi)
and (udi, r_eyei) were combined to produce the final relevance prediction (udi, ri).
This second layer can be considered to be co-occurrence of the first kind.

4.3.2 Combination of Eye Movements and
Collaborative Filtering

In Publication 1, we complemented the rich but noisy eye-movement-based
relevance feedback with collaborative filtering, using a probabilistic latent variable
model. We proposed a model-based approach, which uses the User Rating Profile
model (URP, Marlin (2004a)). The URP was optimized by using Markov Chain
Monte Carlo (MCMC) integration (see Section 4.5.3) instead of the variational
approximation used in Marlin (2004a,b). The two sources of relevance information
were combined to one less noisy prediction using the Discriminative Dirichlet-
Mixture Model, presented in Section 2.5. The combination of using implicit
feedback from eye movements and relevance prediction from a collaborative
filtering model is new. Collaborative filtering and content-based filtering have been
combined earlier (e.g., Basilico and Hofmann (2004); Popescul et al. (2001)); so,
combining all three would be a natural extension.
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4 MODELING OF USER INTEREST

4.4 Related Issues

4.4.1 Cold-Start Problem

The problem of making preference predictions for unseen or barely seen users and
documents is generally referred to as the cold-start problem in recommender system
literature (see, for instance, Lam et al. (2008); Lashkari et al. (1994)). All systems
that build profiles of their users have to rely on the past experiences of the users,
and are therefore sensitive to the cold-start problem. In content-based approaches
the problem concerns only new users, whose profile does not yet contain enough
information. Once a new item is introduced it has its content description available
for matching, so the cold-start problem does not have an effect on the item-side.

In contrast, a collaborative filtering system would have problems when assessing
new documents that have not yet been seen by most of the users, because it only
relies on the opinions of other users on the document. Making the collaborative
filtering scheme item-based, that is, grouping items or documents instead of users,
would in turn imply the problem where new users who have only few ratings will
get poor predictions. In Publication 3, we proposed the Two-Way Model to tackle
this problem of either new users or new documents, and the issue of new documents
(or users) in collaborative filtering has been assessed in Publications 3, 4 and 5.

4.4.2 Sparsity and Missing Data

In general, user interest modeling deals with very sparse data. There can be
thousands of movies or millions of other products of interest, from which a typical
user has rated maybe some tens of items, leaving the rest of the ratings “unknown”.
Even when implicit feedback is gathered, e.g., based on selecting, clicking etc.,
there must be some actions on the user’s behalf to indicate certain items to be
more relevant than others, so the scale of sparsity cannot be tremendously altered
by making the feedback mechanism implicit. From possibly millions of items, e.g.,
books, an individual user has typically given any kind of feedback to at most
hundreds of items.

In practice, most models make the missing at random assumption for the
missing data (Rubin, 1976). In statistical analysis it means that given the
observed data, the mechanism of missingness does not depend on the unobserved
data, i.e., P ( r | yobs , ymiss) = P ( r | yobs ) (for textbook reference, see Little and
Rubin (2002)). The assumption is problematic since a rating could be missing
because a certain user only rates items he or she liked, or because this particular
item is unseen to her. In either case, the rating is not necessarily missing at
random20.

Considering both predictions based on user-similarity and on item-similarity,
models can be made more robust to sparsity in rating data. Our approach is
a generative two-way grouping model, while Wang et al. (2006) combines two
memory-based collaborative filtering models to cope with the sparsity.

20In collaborative filtering context the missing at random assumption has been studied by Marlin
et al. (2005, 2007), and it has been found that when users give ratings to music pieces the missing
ratings have a different distribution than the ratings that were actually given.
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4.5 Other Used Machine Learning Tools

4.4.3 Document Modeling
Document modeling is most often done for information retrieval or text
categorization, but also content-based filtering in recommender systems can utilize
various document models, like TF-IDF or topic models.

Documents are most generally represented with a bag-of-words model, where
the frequencies of different words define the representation of the document and
the order of the words is disregarded.21 The frequencies of different words are
weighted; the most popular weighting is the TF-IDF representation (see, Manning
and Schütze (1999)), where each term is weighted according to its term-frequency
and its inverse document frequency, giving the following weight for term t in
document d:

tfidftd = tftd × idft . (87)

Here tftd is the count of term t in document d divided by its counts in the
whole collection D, and idft = log |D|

|{d|t∈d}| models the inverse of the fraction of
documents the term t occurs in within collection D. Although originally justified
heuristically, the weighting has outperformed many improvements suggested later,
and there might be information-theoretic connections to explain the good
performance (Aizawa, 2003; Elkan, 2005)

Words tend to appear in documents in “bursts”, that is, in such a way that if a
word has already appeared in the document, it is more likely to appear again. This
so-called word burstiness has been taken into account by Elkan (2005); Madsen
et al. (2005) and also in the topic models by Doyle and Elkan (2009).

In Publication 2, we used a TF-IDF model with binary weights that only
indicate the presence of the terms in the document, disregarding their relative
frequencies.

4.5 Other Used Machine Learning Tools
This section briefly introduces the various machine learning tools used in the
context of user interest modeling in this thesis.

4.5.1 Linear Discriminant Analysis
Linear discriminant analysis (LDA, for a textbook reference see, Timm (2002))
searches for such a linear separation between two normally distributed classes
that the expected Bayesian 0/1-loss is minimized. We denote by πk the prior
probability of class k, usually estimated by empirical frequencies in the training
set. The class-conditional density of X in class k is multivariate Gaussian, with
density

p(x | k) =
[

(2π)d det Σ
]− 1

2 e−
1
2 (x−µk)T Σ−1(x−µk) , (88)

where the covariance matrix Σ is assumed to be same for both classes. The class
means µk and the common covariance matrix Σ are estimated from the training
set. So, the most probable class for observation x according to the posterior
distribution is the MAP-estimate

k̂(x) = arg max
k

[ p(x | k) πk ] . (89)

21Additionally the very common words, or stop words, are ignored. The same applies for too infre-
quent words, which only occur in one of the documents.
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4 MODELING OF USER INTEREST

Finding Relevant Textual Features with LDA

It was shown in Publication 2 that content-based filtering of textual movie
descriptions can be improved by learning their connection to genre-information
and using the learned LDA model for new texts missing the movie genre. Finding
such textual features would help in relevance prediction for future movies that
would not have the same genre classification available. Using genre-information
together with collaborative filtering to find pleasing movies for users has been
suggested by Lee et al. (2007).

We simply sought one feature for each genre, to discriminate between movies
belonging and not belonging to it. Therefore, we used LDA 10 times, each
time trying to separate one class from all the other classes. We concluded that
supervising feature selection by the genres improved performance of the
subsequent prediction of relevance, giving almost the same performance as the
original genre information.

4.5.2 Log-Linear Classifier

The log-linear classifier makes it possible to use a simple “linear” model with un-
constrained vectorial input and still produce values in range [0, 1]. The input xi
denotes vectorial observations. The probability of an observation xi to belong to
a binary class (ri = 1) is assumed to be Bernoulli-distributed with input-specific
mean µi(xi), i.e.,

p(ri | xi) = µ(xi)ri
i [ 1− µ(xi)i ]1−ri . (90)

The logit function of the mean is assumed to obey a linear model with parameters
w:

logit(µ) := log
(

µ

1− µ

)
= logit( E[r | x] ) = wTx. (91)

The parameters w can be sought by maximizing the likelihood of the observed
data. For details of optimization see Nabney (1999). The inverse function of the
logit is the logistic function

logit−1(t) =
1

1 + e−t
, (92)

and the predicted class rnew of a new observation xnew is computed by taking the
inverse logit−1(wTxnew) ∈ [0, 1] in this model.

Using Log-Linear Classifier for Relevance Predictions

In Publication 2 the log-linear classifier was used to model the relevances of each
user. The input xi denoted a vectorial representation for the document di, for
instance a binary term vector. The probability of document di to be relevant
(ri = 1) to the user was assumed to be Bernoulli-distributed with document-
specific mean and the logit of the mean was assumed to obey a linear model with
user-specific parameters w. The parameters w were sought by maximizing the
likelihood of the observed data, i.e., ratings of the individual user. Predicted
relevance of a new document xnew in this model was logit−1(wTxnew) ∈ [0, 1]. In
the experiments the predictions were rounded to binary predictions, r ∈ {0, 1}.
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4.5 Other Used Machine Learning Tools

4.5.3 MCMC Sampling

Markov Chain Monte Carlo sampling is a class of commonly used techniques to
evaluate Bayesian models. We used mainly Gibbs sampling to evaluate the latent
topic models (in Publications 1, 3, 4 and 5). In Gibbs sampling the model
parameters are sampled one at a time, conditional on all other parameters known
(Casella and George, 1992; Geman and Geman, 1984). One iteration step consists
of sampling all parameters once, in a fixed order.

We were interested in modeling the conditional distribution P(r | u, d) where
the observations are triplets (u, d, r), meaning user, document, and the
corresponding relevance. To model the conditional distribution, one can take the
probability P(r | u, d) as the target function and estimate it with the mean over
the M Gibbs iterations:

P(r | u, d) =
∫
ψ

P(r,ψ | u, d) dψ =
∫
ψ

P(r | u, d,ψ)P(ψ) dψ

= E [P(r | u, d,ψ)] ≈ 1
M

M∑
m=1

P(r | u, d,ψ(m)) . (93)

We always sampled three MCMC chains in parallel and monitored the
convergence of predictions. First, each of the chains was run for 100 iterations
of burn-in, with tempering like in Koivisto (2004) to aid the convergence. After
that, the burn-in period was continued without the tempering, to burn in the
actual posterior distribution. The Dirichlet priors αu∗ and αd∗ were sampled with
the Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953).

4.5.4 Product of Experts Model

In Publication 5 we introduced an approximation of the Two-Way Model with
two generative URP models (see Sect. 2.4, Fig. 3); one that groups users and
one that groups documents. In the approximation two Gibbs-sampled predictive
Bernoulli distributions are estimated separately with user-based URP-GEN model
and document-based URP-GEN model (Sect. 2.4), and their results are combined
with a product of experts model (PoE, Hinton (2002)).

A Product of Experts model combines a number (K) of individual experts
by taking their product and normalizing the results. Each expert is defined as a
possibly unnormalized probabilistic model qk(x | ϕk) over its input space.

P (x | {ϕk}) =
1
Z

K∏
k=1

qk(x | ϕk) , (94)

where the normalizing coefficient is

Z =
∫
x

K∏
k=1

qk(x | ϕk)dx . (95)
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4 MODELING OF USER INTEREST

In our application, we first estimated the user’s u relevance to document
d with two different one-way models, the user-based URP model (denoted by
PU (r = 1|u, d)) and the document-based URP model (denoted by PD(r = 1|u, d)).
Finally, the product of these two estimates was taken, and the product distribution
was normalized, as follows:

PPoE(r = 1|u, d) =
PU (r = 1|u, d) PD(r = 1|u, d)∑
r=0,1

PU (r|u, d) PD(r|u, d)
. (96)

The method has the advantage of giving better predictions than the individual
one-way models with the computational complexity of the one-way model.

4.6 Summary
Modeling of user interest was the application area in Publications 1, 2, 3, 4 and 5.
This chapter discusses the application point of view in these publications.

In Publication 2, we predicted the relevance of movie synopses using content-
based filtering. Finding textual features that discriminate between the movie
genres would help in relevance prediction for future movies that would not have
the genre classification available. We concluded that supervising feature selection
by the genres with linear discriminant analysis improved performance of the
subsequent prediction of relevance.

To tackle the cold-start problem caused by new users and documents, in
Publication 3 we proposed the Two-Way Model that groups both users and
documents. In Publication 4 we showed that the two-way grouping is necessary
when there can be both new users and new documents.

In Publication 5 we introduced a new efficient approximation of the Two-Way
Model that achieves the prediction performance of the original Two-Way Model
but with the computational complexity of a one-way grouping model.
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5 Eye Movements

Research on eye movements has mainly been published in the field of psychology
(Rayner, 1998). In psychological studies it is commonly assumed that in cognitively
intensive tasks the attention is focused on where the eyes are fixated (eye-mind
link assumption, Just and Carpenter (1976)), although the link does not always
hold.

A recent overview by Salojärvi (2008) discusses applications of eye movements
and introduces the background of the study in Publication 1 from a broader
perspective. Here, we focus on the issues related to the joint Publication 1.

Eye-typing is one of the major applications of eye movements (Majaranta and
Räihä, 2002, 2007). However, controlling a user interface solely by eye movements
is laborious. Therefore, current research has also investigated the possibilities of
complementing the traditional input methods with eye movements (Ajanki et al.,
2009; Hardoon et al., 2007a; Hyrskykari et al., 2005; Porta, 2007; Salojärvi et al.,
2003; Salojärvi, 2008; Vertegaal, 2002).

5.1 Physiological Background

The direction of the gaze contains a lot of information because the area of sharp
vision is only 1–2 degrees wide (fovea). The eye can move either by drifting (e.g.,
when following a moving target) or by saccades, i.e., rapid jumps between more or
less motionless fixations. When reading or browsing through written content the
eye resorts to a scanpath of fixations and saccades. All the visual information is
gathered during the fixations, which last approximately 200–300 ms (Ciuffreda and
Tannen, 1995; Kienzle et al., 2009). The saccades, in turn, typically last 20–50 ms.

The current hypothesis is that eye movements are triggered by fairly low-level
processes. Conscious control is certainly possible, but it gets burdensome over
time, possibly because it requires active suppression of the standard low-level
processes.

The Minimum Error Minimax Probability Machine

Sphere−Packing Bounds for Convolutional Codes

Quantum State Transfer Between Matter and Light

PAC−Bayesian Stochastic Model Selection

Pictorial and Conceptual Representation of Glimpsed Pictures

Blink and Shrink: The Effect of the Attentional Blink on Spatial Processing

Figure 8: The fixations are marked as circles and the lines between them represent the saccades between
them. The boxes surrounding the words were used to match the fixations to the word occurrences.
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5 EYE MOVEMENTS

5.2 Measuring Eye Movements

During the last decades, eye movement measuring devices have become
progressively cheaper and relatively accurate, allowing also free head movement of
the user (Morimoto and Mimica, 2005).

In Publication 1 the eye movements were measured with a Tobii 1750 eye
tracker with a screen resolution 1280 × 1024 pixels and a sampling rate of 50Hz.
The equipment is shown in Figure 9, and it allows moderate head movements of
the user.

Figure 9: Tobii measurement device in use.

After some postprocessing, fixations can be identified and they are shown as circles
in Figure 8, connected with solid lines, which denote the identified saccades.

There are many text-related eye movement features that have been suggested
to be useful in separating those parts of text the reader considers relevant from
those considered irrelevant (Calvo and Meseguer, 2002; Rayner, 1998; Salojärvi
et al., 2005). Relying on an earlier feasibility study (Salojärvi et al., 2004), in
Publication 1 we used the three text-related eye movement features listed in the
frame below. All selected features were word-specific, resulting in data containing
a feature vector for each word occurrence in the browsed text. The relevance of
text lines was predicted based on the word-wise relevances using a so-called
discriminative hidden Markov model (dHMM, Salojärvi et al. (2005)).

5.3 Eye Movements as Indicator of Relevance

Implicitly gathered feedback information can be used proactively in the
background to improve the performance of the search in information retrieval
(Tennenhouse, 2000). Salojärvi et al. have carried out feasibility studies on
whether eye movements can be used as a source of implicit relevance feedback
in information retrieval (Salojärvi et al., 2003, 2004; Salojärvi et al., 2005). For an
review of the subject, see Salojärvi (2008). A possible application is to augment
the traditional user interface by extracting implicit feedback from eye movements.
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5.4 Hidden Markov Modeling Used in the Work

• One or many fixations within the word,
modeled with a binomial distribution.

• Logarithm of the total fixation duration on the word,
assumed to be Gaussian.

• Reading behavior (multinomial over 5 choices):

– skip the next word

– go back to already read words

– read next word

– jump to an unread line

– the last fixation on the page.

After it had been established that relevance can be determined from eye
movements to an extent, the information was exploited in Publication 1, where the
relevance predictions from eye movements were combined with feedback
information from collaborative filtering using Discriminant Dirichlet-Mixture
Model (DDMM, Sect. 2.5). The study showed that a new type of proactive
IR application is feasible, and introduced a justified way to combine relevance
predictions from several information sources.

5.4 Hidden Markov Modeling Used in the Work

For the sake of completeness this section briefly introduces the methods used in
modeling of the eye movement trajectories although it is not part of the
contribution of this thesis.

5.4.1 Markov Chain

A Markov chain is a state model where there is a finite number of states and
each state has its (multinomial) transition distribution. At each time step the
chain moves from one state to another according to the transition probabilities
Pij . There can also be an output yt at each step, and the output follows the
output distribution qj of the current state. Also, a starting distribution π0 or a
starting state needs to be defined.

The Markovian property in its basic form states that the state transition
probability only depends on the current state, not on how the state was reached,
which can be stated as

P (st+1 | s1, . . . , st) = P (st+1 | st) . (97)
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5 EYE MOVEMENTS

The states can have outputs attached to them, and the probability distribution of
the current output only depends on the current state,

P (yt) = P (yt|st) . (98)

The transition probabilities between the states can be collected into a matrix with
entries

Pij = P (st+1 = j|st = i) . (99)

Each row of the transition probability matrix P contains the multinomial transition
probabilities from one state to all the other states. For example,

P =

 0.1 0.9 0.0
0.0 0.1 0.9
0.4 0.2 0.4

 . (100)

Figure 10 depicts a very simple Markov chain, with 3 states {s1, s2, s3}.

s1

qa = 0.3

bq = 0.7

bq

qa = 0.8

= 0.2

s2

s3

0.2

0.4

0.9 a

q = 0.5b

= 0.5q

0.9

0.1

0.1

0.4

Figure 10: Illustration of a simple Markov chain. The output probabilities are shown in the boxes.
(qjk, where j is the state and k is the output: k ∈ {a, b}).

The output probabilities can also be collected into a matrix, where each row i
of the output probability matrix Q contains the multinomial output probabilities
over the outputs {a, b} when arriving to state i. For example, in Figure 10 the
corresponding output probability matrix Q is

Q =

 0.8 0.2
0.3 0.7
0.5 0.5

 . (101)
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5.5 Summary

5.4.2 Hidden Markov Models
Hidden Markov models are Markov chains where we assume the state sequence to
consist of hidden variables. They are optimized by maximizing the likelihood of
the observed output path with an EM-type algorithm (Baum-Welch or Forward-
Backward algorithm; see, e.g., Bishop (2006)). It is guaranteed, as always with
the EM-algorithm, that the algorithm does not decrease the likelihood,

P (y | ϕ̂t+1) ≥ P (y | ϕ̂t) . (102)

In Publication 1 we used a discriminative Hidden Markov Model introduced by
Salojärvi et al. (2005), to predict the reader’s subjective relevance for a set of
documents, with the eye movements as the observations. The model is made
discriminative by optimizing the conditional likelihood instead of the joint density
likelihood, i.e.,

L(C | Y,ϕ) =
N∏
i=1

P (ci | yi,ϕ) =
N∏
i=1

P (ci,yi | ϕ)
P (yi | ϕ)

. (103)

5.5 Summary
In Publication 1 we developed a method for complementing the relevance
predictions of collaborative filtering of text documents with implicit feedback from
the eye movements. We were able to produce prediction results that outperform
the predictions based on either single source of feedback. In this chapter our
research on eye movements was discussed within the scope of Publication 1.
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6 Brain Imaging with fMRI
By nature, brain functionality is spatially separated, that is, specific functions are
often localized at specific areas in the brain. The distribution of brain activity
can be identified at high spatial resolution using functional magnetic resonance
imaging (fMRI). The task to be solved by modeling and data-analysis is to find
the signal related to specialization of the brain functionality from the admixture
of various kinds of signals.

6.1 Brief Introduction to Functional Magnetic
Resonance Imaging

Basically, all magnetic resonance imaging is based on the interaction between the
tissue under study, the applied magnetic fields and accurately synchronized radio
frequency pulses.

Functional MRI of the brain is a non-invasive way to study brain function. The
idea in fMRI is to record a sequence of images at successive time points in order
to analyze the local changes in oxygenation level in different brain areas. The
most widely used method is based on measuring so-called BOLD signal changes
(Blood Oxygenation Level Dependent, Ogawa et al. (1992)). Detecting changes
of neuronal activation in fMRI is based on the differing magnetic properties of
oxygenated and deoxygenated hemoglobin molecules. Neuronal activation changes
the blood flow and oxygenation levels locally, which can be measured.

The measurements can be transformed into an image of a focused slice of brain
using standard signal processing techniques. The full volume image is produced by
scanning several adjacent slices. Producing high resolution images can take several
minutes, so such resolutions can be used only for structural imaging. Current fMRI
scanners are able to produce full head volumes in a few seconds, but the spatial
resolution is then only a fraction of that used in structural imaging.

The hemodynamic changes are related to the electrical activity of neurons in a
complex and delayed way (see, e.g., Huettel et al. (2008)). Furthermore, the fast
scanning and low signal to noise ratio of the BOLD signal make the image very
noisy. In addition, the fMRI measurements are contaminated with artifacts, such
as head movement and disturbances from the environment. Thus, the detection
and analysis of interesting phenomena is very challenging. Therefore, the images
need to be preprocessed in various ways (Worsley and Friston, 1995).

6.2 Traditional Neuroscientific Questions

Traditionally, fMRI studies use a strictly controlled stimulus, like visual patterns or
audible beeps, designed to test a specific hypothesis. The standard way to do this is
to repeat the stimulus a number of times, with empty periods without the stimulus
in between, scan the fMRI sequence during the entire sequence, and average the
scans to improve the signal-to-noise ratio. This kind of experimental setup is called
block-design. If there are several different stimuli each “block” consists of either
one of the stimuli or an empty period. In a block-design, there can be no overlap
of the stimuli.
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6.3 Novel and Future Neuroscientific Questions

A standard procedure of analyzing an fMRI sequence is to use statistical
parametric mapping (SPM2, 2002), which is based on a generalized linear model
(GLM, Worsley and Friston (1995)). Current research focus is drifting towards
more data-driven and adaptive methods, like Independent Component Analysis
(ICA, see Section 6.5), which we also used in Publications 7, 8, and 9.

Some of the recent works in machine learning with fMRI data conceptualize
the task as a prediction task: Are we able to predict the brain activity based on
the past data and the given stimulus sequence? (Ghebreab et al., 2008; Kay et al.,
2008; Mitchell et al., 2008; Rustandi et al., 2009) Another way to set the task has
been: Are we able to predict the stimulus based on the past stimulus sequence and
the given brain activity measurement sequence? (Ghebreab et al., 2007)

Both of these questions lead to more accurate modeling of the relationship
between measured brain activity and the used stimuli, but there is still the flavor
of regression making one of the data sets a covariate and the other the dependent
variable (or response variable). If we do not trust either of the feature selections
to be the absolutely relevant one, it is better to view the problem symmetrically,
as in CCA; both of the data sets are seen as covariates for each other, and the
dependence that is looked for is mutual rather than seeing one variable being
dependent on the other.

6.3 Novel and Future Neuroscientific Questions
Natural stimuli are being increasingly used in fMRI studies to imitate real-life
situations (Hari and Kujala, 2009; Malinen et al., 2007). They challenge the
analysis methods used, making new kind of research questions possible. With
natural stimuli it is no longer feasible to assume single features of the experimental
design alone to account for the observed brain activity. Instead, relevant
combinations of stimulus features could be behind the more complex activation
patterns.

Canonical correlation analysis, and especially kernel CCA, have been used to
meet the needs of more complex stimulations, e.g., in an unsupervised manner by
Hardoon et al. (2007b,c), or in supervised or semi-supervised manner by Shelton
and Bartels (2009).

Although we agree on the symmetricity of the setting by using CCA-type
methods to find the relevant combinations on both sides (stimuli and fMRI-activity)
we do not believe that the plain voxel data with, e.g., 10,000 voxels can be
anything else than overfitted to the, e.g., 10–20 features of the stimuli with fully
unsupervised methods.22

To reduce the complexity of the problem, it is necessary to reduce the
dimensionality of the voxel data before applying an unsupervised dependency-
seeking method, like CCA, to it. We have selected the dimensionality reduction
method in such a way that even the results of the first step are meaningful
functional elements of brain activity. In Publications 7, 8 and 9 we have suggested
using ICA (Sect. 6.5) for the dimensionality reduction of the fMRI measurements
and CCA-type of symmetric and unsupervised methods for finding the mutual
dependencies between the stimulus features and the ICA-based functional
patterns. This two-step framework will be discussed further in Section 6.6.

22In principle, of course, if all the actually involved stimuli were present in the data (the person’s
need to breath, blink his eyes, monitor his heart rate, thirst and hunger) there would be theoretical
possibilities to model the brain activity on that level of completeness.
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6 BRAIN IMAGING WITH FMRI

Other recent machine learning studies with fMRI data include work by
Hutchinson et al. (2009), where a generative model is based on a set of assumed
mental processes, for which parameters are learned from the data. The mental
processes are, in contrast to what was assumed in our approach, given as prior
knowledge. The model allows varying onset times relative to the stimulus sequence
and overlapping of the mental processes. Also, NP-DeCA-type of an algorithm has
been used directly on the voxel-specific fMRI measurements and the corresponding
stimulus sequences by (Tsai et al., 1999).

6.4 Effects of Experimental Design

6.4.1 “Anticorrelations” within Experimental
Settings

When the experimental design binds certain stimuli to always co-occur, it is not
possible to distinguish the corresponding brain correlates from each other. This
can be a natural consequence of true dependence between the stimuli, e.g., certain
measurable auditory features that relate to female speech will always occur
together with such speech. This ambiguity can also be a result of the selected
level of detail in the experimental design, which does not allow us to distinguish
between “naturally” correlated stimuli from those stimuli correlated only due to
the experimental setup.

Somewhat unexpectedly, similar confusion may happen with stimuli that never
co-occur. When the intuition has been to design uncorrelated labels by creating
a sequence without any overlap, the regularity of the setup may have led to
unexpected negative correlations between features. Such correlations that reflect
the experimental design cannot be distinguished from true negative correlations
between the stimuli. For details on how this happens, see Appendix 8. Thus one
might find dependencies between stimuli and brain activity that merely
represent characteristics of the experimental design, rather than of the observed
brain responses. As an example, the experimental design of the data we analyzed
in Publications 7 and 9 was unable to differentiate negatively correlated and
uncorrelated stimulus blocks of different sensory modalities, since the occurrence
of stimuli of any sensory modality was fully determined by the absence of stimuli
of all the other senses. More generally, the effects of negative and other spurious
correlations seem to be an emerging topic of scientific interest (see, e.g., Aguirre
et al., 1998; Gretton et al., 2006; Murphy et al., 2008).

Under strict laboratory control, it is possible to some extent to design the
experiment so that all relevant combinations of experimental variables are
presented in a well-balanced setup. However, in natural settings we cannot rely on
controlled designs but instead the data analysis has to take care of the balancing.
Hence, adequate design of the experimental setups to include rich enough stimuli
is important, to allow the analysis to deal with the balancing.
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6.5 Independent Component Analysis

6.4.2 Why Rich Set of Features is Needed

The main justification for the need for expressive stimulus features is that if the
actual reason for the measured brain activity cannot be represented with the
stimulus features, the brain correlates can be misinterpreted in terms of the
available features. However, if the set of stimulus features is expressive enough, the
proposed two-step framework could find a new kind of combination of the stimuli
that would give a hint of the missing feature. In principle, the CCA analysis, being
invariant to linear transformations of the stimulus features, is able to compensate
imperfect choice and encoding of stimulus features.

6.5 Independent Component Analysis

Independent Component Analysis (ICA) is a method for finding statistically
independent components from multivariate statistical data. ICA is commonly
used for separating statistically independent sources from fMRI measurements. In
general, ICA is one of the most popular methods for solving the so-called blind
source separation problem (BSS)

X
N×T

= A
N×K

S
K×T

, (104)

where only the observed data X are known, and where N is the number of samples,
K is the number of independent sources and T is the number of time points.
This interpretation is valid for the so-called temporal ICA, where the sources are
assumed to be time-dependent signals s(t). With fMRI measurements, however,
spatial ICA is typically used, where the sources are assumed to be spatial instead
of temporal, as follows:

X
N×V

= A
N×K

S
K×V

, (105)

where V is the number of spatial features (typically voxels in fMRI measurements),
and N is the number of samples (typically time points in fMRI measurements).
ICA assumes only statistical independence of the sources s(v) and full rank of the
mixing matrix A. Many different ICA-variants have been developed since the first
ICA models (see (Hyvärinen et al., 2001) for both the history of the method and
for later developments).

An efficient algorithm for solving ICA is the so-called FastICA algorithm
(Hyvärinen and Oja, 1997; FastICA, 1998), which is based on a fixed-point iteration
scheme for finding a maximum of the non-Gaussianity measured by negentropy.23

The inherent stochasticity of the ICA algorithm leads to variability between
ICA runs. The reliable ICA algorithm (Ylipaavalniemi and Vigário, 2004, 2008;
Ylipaavalniemi and Soppela, 2009; Arabica, 2008) takes into account the
algorithmic variability and the uncertainty of the sources in the data by performing
multiple runs of ICA. Components that are consistent across several runs are
considered reliable. In Publications 7, 8 and 9 we analyzed the fMRI measurements
with the reliable ICA based on multiple runs of FastICA.

23Negentropy is such a measure that it is always non-negative, and zero if and only if the mea-
sured data is Gaussian. It is a desirable measure also because of its invariance to invertible linear
transformations.
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6 BRAIN IMAGING WITH FMRI

In fMRI analysis, independence is typically considered in the spatial domain
(McKeown et al., 1998), where the corresponding mixing vectors reveal the
temporal dynamics of each identified independent functional pattern. A broad
overview of ICA usage in the field of brain imaging has been presented by Vigário
and Oja (2008). Fig. 11 shows an example of such an independent component and
its time course.

a

b

Figure 11: An illustrative example of one independent component (IC). Panel a shows the mean time
course of the IC, averaged across the two trials of all test subjects. The mean time courses of the IC’s
were used as input for CCA, together with the stimulation time courses. The gray band around the
trace shows the 95% confidence interval given by the reliable ICA approach. Three auditory stimulus
features are shown as colored blocks behind the time course. The changes in the IC do not exactly
match any of the individual features although the activity of the IC is correlated with them. Panel b
illustrates three different slices of the average brain (sagittal, coronal and axial), always centered on
the most active voxel of the IC. The bar on the right shows the used color range based on the z-score;
the upper end of the scale depicts positive weights and the lower end negative weights. The left edge
of the bar shows the shape of the distribution of the weight values. The more non-Gaussian the shape
is, the more independent the IC is.

6.6 Symmetric Two-Step Framework with ICA
Followed by DeCA

In Publications 7 and 8 we have proposed a two-step approach, where independent
component analysis (ICA, Bell and Sejnowski (1995); Hyvärinen et al. (2001)) is
first used to identify spatially independent brain processes, which we refer to as
functional patterns. As the second step, temporal dependencies between stimuli
and functional patterns are detected using either CCA (Publication 7) or its
distribution-free variant NP-DeCA (Klami and Kaski (2005), applied in
Publication 8). The latest development was to introduce a faster variant of
the nonparametric NP-DeCA, based on Mixture of Gaussians density estimation
(Publication 9). This Semi-Parametric or SP-DeCA is described in Section 3.6.3
in more detail.

Our two-step approach, thus, looks for combinations of stimulus features and
the corresponding combinations of functional patterns. Based on the findings in
Publications 7 and 8 this approach seems promising for the analysis of brain signal
data measured under natural stimulation, once such measurements are more widely
available. Figure 12 illustrates the framework.
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6.6 Symmetric Two-Step Framework with ICA
Followed by DeCA

5p N

Functional
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driven
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Figure 12: Sketch of the framework. Step 1: ICA is applied to the fMRI measurements (V = # of vox-
els, N = # of measurement time points, to find spatially independent patterns of brain activity
p = # of reliable ICA components, Step 2: DeCA is applied to identify functional combinations
based on the temporal dynamics of both the stimuli and the ICA components q = # of stimulus time
courses).

The aim of Publications 7, 8 and 9 is to take the first step towards inferring
brain correlates of natural stimuli with possibly overlapping stimuli. In this
framework the statistical hypotheses are no longer self-evidently derived from the
experimental setup, as conventionally. Instead, it is a goal of the analysis in itself
to identify the correct hypotheses by data-driven methods. We used the two-step
approach for the brain measurement analysis: First, spatially independent patters
of brain activity were extracted from magnetic resonance imaging (fMRI) data
with ICA. As the second step, in Publication 7, we used classical CCA (Sect. 3.4)
to find dependencies between the stimuli and fMRI-based ICA-components from
an existing study (Malinen et al., 2007). CCA is a fast and robust method, but
for many applications correlation is too simple a measure; CCA implicitly makes
an assumption about normally distributed data sets.

Replacing correlation with mutual information makes discovery of more general
types of dependency possible. As discussed in Chapter 3, mutual information
cannot be computed as easily as correlation, and we need to resort to
approximations. In NP-DeCA, nonparametric Parzen-kernel estimates are used to
model the densities in the projection space, and the mutual information between
the Parzen-estimates is maximized (see Sect. 3.6.2 for detailed description of the
algorithm (Klami and Kaski, 2005)). NP-DeCA was used as the method for finding
mutual dependencies between the stimuli and the fMRI-based ICA-components in
Publication 8.

In Publication 9, we introduced a faster semi-parametric DeCA-variant
(SP-DeCA) and applied it to the task of finding dependencies between measured
brain activity and multi-sensory stimuli. Semi-Parametric DeCA is discussed in
Section 3.6.3. Following the earlier application of CCA to the same study in
Publication 7, we used the two-step framework: First, functional patterns were
extracted from fMRI data with reliable ICA.Then, the SP-DeCA algorithm was
used to find mutual dependencies between the brain patterns and the stimuli.
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6.7 Other Used Machine Learning Tools

This section briefly introduces the various machine learning tools used in the
context of brain imaging in Publications 7, 8 and 9.

6.7.1 Mixture of Gaussians Model

The mixture of Gaussians model is a traditional method for modeling multimodal
distributions with more than one “bump” or mode (McLachlan and Basford, 1988;
McLachlan and Peel, 2000). The density model is simply a linear combination (or
mixture) of K different Gaussian distributions,

p(x) =
K∑
k=1

πk N (x |µk,Σk) , (106)

where N (x |µ,Σ) denotes the normal distribution with mean µ and covariance
matrix Σ evaluated at x. The πk’s represent the prior probabilities of the mixture
components (called the mixture coefficients), and are therefore non-negative values
that sum up to unity. This estimate has a set of parameters ϕ = {πk,µk,Σk}Kk=1

which need to be learned. One way to determine the values of these parameters is
to use the maximum (log-)likelihood

ln p̂(X | ϕ) =
N∑
i=1

ln

[
K∑
k=1

πk N (xi |µk,Σk)

]
, (107)

where X = {xi}Ni=1. It can be maximized either by iterative numerical
optimization techniques or by the expectation maximization (EM-)algorithm
discussed in Section 2.1.2.

6.7.2 K-Means Clustering

K-means clustering is a popular clustering algorithm that finds compact clusters
(Ball and Hall (1967), for textbook description see, e.g., Bishop (2006)). The
problem is to find such a partition of given data points into K partitions that the
within-cluster sum of square errors (108) is minimized

J =
N∑
i=1

∑
xi∈Ck

‖xi − µk‖2 . (108)

Here, we denote the observations by {xi | i = 1 . . . N}, the clusters by
{Ck | k = 1, . . . ,K} and the centroids (in this case means) of the clusters
by {µk | k = 1, . . . ,K}.

In general, the problem is NP-hard, so different heuristic algorithms have been
used to solve it. The most common algorithm is presented in the frame below
(K-means algorithm or Lloyd’s algorithm). The number of clusters K and some
initial values for the cluster centroids µk need to be set before applying the
algorithm.
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6.8 Summary

1. All the training set data points are assigned to the cluster whose
centroid is the closest to them,

C(xk) = arg min
k

‖xi − µk‖2 . (109)

2. The centroids µk are recalculated by

µk =
1
Nk

∑
xi∈Ck

xi , (110)

i.e., they are set to the means of the data points in the cluster.

These two steps are repeated until there is no change between the iterations.

K-Means Clustering as Initialization of
Semi-Parametric DeCA

We used K-means clustering to initialize the means of the Gaussians in the Semi-
Parametric DeCA in Publication 9. We initialized the mixture estimate in the
projection space as follows. The initial values of means µk and mixture
probabilities πk were determined by running K-means clustering (K = 5)
separately in both projection spaces, using the cluster centroids as initial means
of the mixture components and the relative cluster sizes as the mixture weights.
Finally, the covariance matrix Σk of each mixture component was initially set to

the diagonal matrix
[
σ2
x 0

0 σ2
y

]
containing the variances of the initial projections

sx and sy.

6.8 Summary
Natural stimuli are being increasingly used in fMRI studies to imitate real-life
situations. With more natural stimulation, questions about negative correlations
and expressiveness of stimulus features become more important, together with the
new kind of experimental settings.

Instead of assuming single features of the experimental design to account for the
brain activity, in Publications 7, 8 and 9 we have suggested relevant combinations
of stimulus features could be behind the more complex activation patterns. We
have proposed a novel two-step framework where ICA is first used to identify
spatially independent functional patterns. As the second step, DeCA is used for
finding the temporal mutual dependencies between the stimulus features and the
ICA-based functional patterns. Based on our findings this two-step framework
seems promising for the analysis of brain signal data measured under natural
stimulation, once such measurements are more widely available.
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7 Modeling Genes and Their
Regulation

In Publication 6, we studied the regulation of genes in baker’s yeast (Saccharomyces
cerevisiae) where understanding of the gene regulation of other organisms is an
ultimate goal. This chapter gives an introduction to the application area of
modeling genes and their regulation to the extent that is related to this thesis.
The biological background of this chapter is mostly based on Nikkilä (2005) and
Campbell and Reece (2001).

7.1 Basic Structure of Cells

Cells have a basic structure that is shared across the organisms, thus many
inferences made on the cell level apply to a wide range of organisms. This is
commonly utilized in biology and medicine, in particular when using so-called
model organisms, such as yeast or mouse, to study human.

Organisms are divided into two main classes based on whether the cells have a
membrane around their nucleus; eukaryotes have the membrane (e.g., human) and
prokaryotes (e.g., bacteria) do not have it. In a eukaryotic cell the genes are
encoded in the nucleus as a double-stranded DNA-molecule (Deoxyribonucleic
acid)24. The baker’s yeast Saccharomyces cerevisiae is one of the the best-understood
eukaryotic organisms, and the focus of our study in Publication 6.

7.2 Gene Expression

A gene is a sequence of the DNA in the nucleus that contains the information the
cell needs to manufacture a protein. Each DNA chain is composed of four kinds
of chemical building blocks called nucleotides. Proteins, in their part, are involved
in practically every process in the cell. A cell can get signals from its environment
or it can react to its internal state (e.g., concentrations of different proteins).

When a cell starts to manufacture a certain protein it first makes a copy of
the corresponding gene’s DNA, coded in messenger-RNA or mRNA.25 The process
where genes are coded into mRNA for protein production is called transcription.
The messanger-RNA is then transported outside the nucleus and after some
preprocessing it is translated to a protein according to the instructions coded by
the sequence of nucleotides.

Gene expression is measurable activity of a gene at some specific time, measured
by the amount of the gene’s mRNA transported outside the nucleus. With current
technology, using DNA microarrays the gene expression of thousands of genes can
be measured at the same time (Lockhart et al., 1996; Schena et al., 1995).

24DNA is the nucleic acid that carries the genetic information in the cell. The 4 different nucleotides
stem from the bases adenine, thymine, cytosine and guanine. The sequence of nucleotides determines
individual hereditary characteristics.

25Ribonucleic acid is a constituent of all living cells, consisting of a long, single-stranded chain of
alternating phosphate and ribose units with the bases adenine, guanine, cytosine, and uracil bonded
to the ribose. Messenger-RNA molecules are involved in the transmission of genetic information.
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7.3 Gene Regulation by Transcription Factors

The most dominant regulatory mechanism for controlling the protein
concentrations in the cell is transcriptional regulation, which means regulating
which genes are transcribed to proteins and how much. A set of proteins called
transcription factors (TF) binds to a certain DNA sequence nearby a gene (the
gene’s promoter region).26 Whether the gene is going to be transcribed to a protein
or not depends on the configuration of TF’s on its promoter region.

Binding of transcriptional regulators can be measured genome-wide to reveal
regulatory networks. The measurements are, however, noisy and expensive. We
have applied the Two-Way Model (Sect. 2.3.1) to model existing binding data in
order to predict binding for new factors or genes, assuming groups of genes and
groups of transcription factors have similar binding patterns (Kaski et al., 2005c).

Microarray-based chromatin immunoprecipitation (ChIP) allows measuring the
binding strength of the transcription factor (TF) proteins on any gene’s promoter
region (Lee et al., 2002; Ren et al., 2000). This kind of measurements were used
as one of the data sets in the dependency modeling of Publication 6.

7.4 Studying Stress Response of Yeast Cells

The response of yeast cells to stress induced by drastic changes in the environment
has been used as a paradigm to study gene regulation networks. Understanding
yeast gene regulation will, among other things, help as a model for studies on
higher organisms.

When a yeast cell is challenged by a rapid change in the surrounding conditions
(e.g., temperature, osmolarity, pH or nutrient), it starts a genome stress response
program. Survival of especially single-cell organisms depends on their ability to
adapt to the environmental changes, and therefore stress response has received
much attention. In the baker’s yeast Saccharomyces cerevisiae several hundred
genes out of about 6500 present in the genome have been found involved in a
stereotyped stress response pattern (Causton et al., 2001; Gasch et al., 2000; Kaski
et al., 2005a; Mager and Kruijiff, 1995; Ruis and Schuller, 1995). It has become
evident that a certain group of yeast genes (so called common environmental stress
response (ESR) genes) is always activated during various stress treatments.

In Publication 6, we searched for genes with maximal dependency between
gene expression data and ChIP-data to improve the accuracy of inference of which
transcription factors actually regulate each gene. The dependency maximization
was shown to improve the results compared to using either data source alone.

We modeled the yeast stress reaction by extracting the shared variation between
a set of stress treatments, considering all other variation irrelevant. In addition, the
regulation of stress was explored by searching for maximal dependencies between
the extracted stress reaction and a transcription binding data from Lee et al.
(2002).

26Other regulatory mechanisms include alternative splicing (Campbell and Reece, 2001) and RNA
interference (Dykxhoorn et al., 2003).
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The gene expression data used in this analysis was combined from Causton
et al. (2001) and Gasch et al. (2000) and it formed expression data in altogether 16
stress treatments for 5998 genes. The full expression data set was 104-dimensional.
TF-binding data for the same genes and 113 transcription factors was obtained
from Lee et al. (2002). In summary, we had 16 gene expression data sets with
variable numbers of columns, paired by the common 5998 genes, and additionally,
we had one TF binding data set with the binding strengths of 113 transcription
factors for each gene.

Generalized CCA (see Section 3.4.4) was used to extract only the variation
that was common to all 16 treatments in the gene expression data. We used cross-
validation to estimate the reliability of the gCCA components, and ended up with
12 generalized canonical components. Of the 12 components 9 showed statistically
significant association to the ESR genes that were previously known to be either
up-regulated or down-regulated in stress.

Finally, we used Associative Clustering (see Section 3.6.1) to search for
genes with maximal dependency between the gCCA-projected gene
expression data (5998 genes × 12 gCCA components) and the TF-binding data
(5998 genes × 113 TF’s) to improve the accuracy of inference of which
transcription factors actually regulate each gene.

7.5 Summary
In Publication 6 we studied a case from the field of bioinformatics, which matches
especially well to the dependency modeling task. The task was to find which part
of the structure in gene expression data about yeast stress response is common
to all the expression data sets. The alternative interpretation of CCA (derived in
Sect. 3.4.4) led us to a new way of using gCCA in feature selection, by choosing
those features that are maximally dependent between the datasets.

Furthermore, by searching for the dependencies between these features selected
using gCCA and another data set about binding of the gene regulators, we gained
an interpretation of how the yeast genes are regulated in stress.
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8 Conclusions

This thesis outlined how to find what is relevant in co-occurrence data. Two
types of relevance were considered. The first was the relevance of items as seen
by a user subjectively, like in the case of information retrieval. In the other
view of relevance, the problem of finding what is relevant in data was formalized
via dependence, that is, the variation that is found in both (or all) co-occurring
data sets was deemed to be more relevant than variation that is present in only one
(or some) of the data sets. Frameworks for different application
areas were suggested using both existing methods and methods developed in this
thesis. The dependency-seeking models were extended to nonparametric models,
and computational algorithms were developed for the models.

Method Development. The method development contributions of this thesis
are related to latent topic models and dependency exploration. The methods
are applicable to mutual dependency modeling and co-occurrence data in general,
without restriction to the applications presented in the publications of this work.

Traditionally, latent topic models are one-way clustering models, that is, one
of the variables is clustered by the latent variable. Motivated by the application
of collaborative filtering we proposed a generative latent topic model that
generalizes in two ways, the Two-Way Model (Publication 3). We have shown
that when only a small amount of data has been gathered, two-way generalization
becomes necessary (Publication 4). Furthermore, we introduced a new efficient
approximation of the Two-Way model that achieves the prediction performance
of the original Two-Way Model but with the computational complexity of the
one-way grouping model (Publication 5).

In this thesis an alternative view to CCA was derived, as whitening of the
within-dataset-covariances followed by PCA to search for those features that are
maximally dependent between both (or all the) datasets. This interpretation led
us to a new way of using CCA in feature selection (Publication 6).

As classical CCA has the restriction of implicitly assuming the data to be
normally distributed, we wanted to find an unsupervised dependency-seeking
method without this constraint. We applied a distribution-free extension of CCA
to searching dependency structure between two co-occurring data sets
(Publication 8). However, the Parzen-estimate-based method was not efficient
enough for large data sets, and therefore, we pursued to find a faster algorithm
for the task. We introduced a new faster variant of the method, Semi-Parametric
DeCA where the Parzen-estimates were replaced by density estimation based on
Mixture of Gaussians (Publication 9).

Applications. The application areas of the publications include modeling of user
interest (Chapter 4), relevance prediction based on eye movements (Chapter 5),
analysis of brain imaging with fMRI (Chapter 6) and modeling of gene regulation in
bioinformatics (Chapter 7). The main contribution to each of these four
application areas is described below.
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8 CONCLUSIONS

Modeling of User Interest. In a feasibility study, we applied content-based
filtering to the prediction of the users’ subjective relevance values for movies. We
concluded that supervising feature selection by the genres improved performance
of the subsequent prediction of relevance (Publication 2).

Modeling of user interests involves learning user interest profiles, and all
recommender systems have to rely on the past experiences of the users. Therefore,
such systems often have problems with new users (or new items of interest).

To tackle the cold-start problem caused by new users and documents in
collaborative filtering, we proposed the Two-Way Model that groups both users and
documents (Publication 3). Additionally, we introduced a new efficient
approximation of the Two-Way Model by combining the predictions of two
one-way grouping models. The approximation achieves the prediction performance
of the original Two-Way Model but with the computational complexity of a
one-way grouping model (Publication 5).

Eye Movements. The direction of the gaze can be a useful source of information
in many kinds of user interfaces. In information retrieval, implicit feedback
information can be used proactively in the background to improve the performance
of the search. We have developed methods for enhancing the relevance predictions
of collaborative filtering of text documents with implicit feedback from the eye
movements. We were able to produce prediction results that outperform the
predictions based on either single source of feedback (Publication 1). This work has
been continued by proactive information retrieval with the aid of eye
movements, and an interesting future direction would be combining eye
movements with brain imaging in order to better understand to which parts of
the stimuli the brain signal responses to.

Brain Imaging. Functionality of the brain is, by nature, spatially separated.
This specialization of the brain sites to different tasks can be identified at high
spatial resolution using functional magnetic resonance imaging. Natural stimuli
are being increasingly used in fMRI studies to imitate real-life situations. Instead
of assuming single features of the experimental design to account for the brain
activity, we suggested that relevant combinations of stimulus features could be
behind the more complex activation patterns.

We have proposed a novel two-step framework where ICA is first used to
identify spatially independent patterns of brain activity. As the second step,
Dependent Component Analysis is used for finding the temporal mutual
dependencies between the stimulus features and the ICA-based functional
patterns (Publications 7, 8 and 9). Furthermore, we introduced a new faster
variant of DeCA, Semi-Parametric DeCA (Publication 9).

Based on our findings this two-step framework seems promising for the analysis
of brain signal data measured under natural stimulation, once such measurements
are more widely available. Future work in brain imaging will involve the ability to
use more natural stimuli and eventually, use truly natural stimuli to study humans
in their normal social environment.
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Gene Regulation. In order to understand how the network of genes operates
in an organism, the influence of the regulatory proteins needs to be investigated.
They regulate the activity of genes by binding to certain areas near the genes.
We used the baker’s yeast as a model organism but the ultimate goal would be to
understand the corresponding gene regulatory networks in human.

With current microarray technology both the gene expression and the binding
strength of the regulatory proteins can be measured for thousands of genes at the
same time. The task was to find which part of the structure in gene expression data
about yeast stress response is common to all of the expression data sets. Using
generalized CCA to multiple stress-related gene expression data sets we produced
one representation of the shared variation. Our alternative view to CCA led us to
a new way of using CCA in feature selection, by choosing those features that are
maximally dependent between the datasets (Publication 6).

Furthermore, by searching for the dependencies between these features selected
using CCA and another data set about binding of the gene regulators, we gained
an interpretation of how the yeast genes are regulated under stress.
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Appendix 1

Details of Deflation in PCA and CCA

Deflation in PCA

In PCA we normalize the projection vectors wT
k wk = 1 and we wish the deflation

to take care that the projections are orthogonal wT
i X ⊥ wT

k X. The deflation
considered in Section 3.3

X̄ = X
(

I− 1
wT

1 X XT w1
XT w1 wT

1 X
)

(111)

has this property:

wT
1 X X̄T wk = wT

1 X
(

I− 1
wT

1 X XT w1
XT w1 wT

1 X
)

XT wk

= wT
1 X XT wk −

1
wT

1 X XT w1

(
wT

1 X XT w1

)
wT

1 X XT wk

= wT
1 X XT wk −wT

1 X XT wk = 0 , (112)

regardless of how the subsequent projection vector wk is chosen.27

When we have found the first principal component w1 in PCA, we can also use
the fact that it is an eigenvector of the original covariance matrix C (or actually
of its estimate C = 1

N X XT ),

C w1 = λ1w1 . (113)

Then, we can see that the same deflation formula can be written in another
equivalent form:

X̄ = X

I− 1
wT

1 X XT︸ ︷︷ ︸
N C

w1

XT w1 wT
1 X


= X− 1

NwT
1 C w1︸ ︷︷ ︸

λ1 w1

N C w1︸ ︷︷ ︸
λ1w1

wT
1 X = X− 1

λ1 wT
1 w1︸ ︷︷ ︸
=1

λ1 w1 wT
1 X

=
(
I−w1 wT

1

)
X , (114)

which actually takes care of the orthogonality of the projection vectors, wi ⊥ wk.

27However, if w1 were chosen again, the product would not be zero because of orthogonality, but
because wT

1 X̄ is a zero vector.
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The equivalence of these two orthogonalities can be seen as follows

0 = (wT
1 X)(wT

k X)T = wT
1 X XT︸ ︷︷ ︸

N C

wk

= N wT
1 C︸ ︷︷ ︸

λ1 wT
1

wk = N λ1 wT
1 wk

⇔ wT
1 wk = 0 (115)

Generally, the variance in the direction of a vector u before the deflation is
1
N uT X XT u and after the PCA deflation the variance in the direction u is

1
N

uT X̄ X̄T u =
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In the direction of w1 the variance is therefore

wT
1 C w1︸ ︷︷ ︸

λ1 w1

−λ1 (wT
1 w1)2 = λ1 wT

1 w1︸ ︷︷ ︸
=1

−λ1 = 0 , (117)

as wanted, and in the direction of another principal component wk the variance is

wT
k C wk︸ ︷︷ ︸

λk wk

−λ1 (wT
k w1)2 = λk wT

k wk︸ ︷︷ ︸
=1

− 0 = λk . (118)
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Deflation in CCA

In the case of CCA, the normalization constraints are wT
k C wk = 1 and the

orthogonality is required between the projections, wT
i X ⊥ wT

k X. The deflation of
Eq. (111) still holds, but it is no longer equivalent with the deflation of Eq. (114).

By straightforward substitution, it still holds that

wT
1 X X̄T wk = 0 , (119)

regardless of how the subsequent projection vector wk is chosen.
Generally, the variance in the direction of a vector u before the deflation is

1
N uT X XT u, which means that for the CCA components the variance before
deflation is

wT
k C wk = 1 . (120)

After the deflation the variance in the direction u is
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In the direction of w1 the variance is therefore
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1

(
I−C w1 wT

1

)
C w1 = wT

1 C w1︸ ︷︷ ︸
=1

−wT
1 C w1︸ ︷︷ ︸

=1

wT
1 C w1︸ ︷︷ ︸

=1
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as wanted, and in the direction of another CCA component wk (for which
wT
k C wk = 1) the variance is

wT
k

(
I−C w1 wT

1

)
C wk = wT

k C wk︸ ︷︷ ︸
=1

−wT
k C w1 wT

1 C wk

= 1− (wT
k C w1)2︸ ︷︷ ︸

=0

= 1 , (123)

since the CCA projections are required to be orthogonal in the sense: wT
k C wi = 0.

However, this orthogonality constraint does not imply the orthogonality of the
projection vectors (wT

k wi 6= 0), as was in the case of PCA.
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Appendix 2

Example of Negative Correlations between
Stimuli

If all the experimental stimulus features are non-overlapping, there emerge strong
negative correlations between the different stimuli. Such correlations can, however,
be avoided to some extent in the experimental design by delivering the stimuli in
some blocks simultaneously and in some blocks separately.

In the following illustrative example the sequences consist of 8 time points,
constructed so that when one of the stimuli is "on", the other one is "off". The
sequence in panel a is s1 = [1, 0, 1, 0, 1, 0, 1, 0] and the sequence in panel b is
s2 = [0, 1, 0, 1, 0, 1, 0, 1].

a

        
 

 

 

b

        
 

 

 

Figure 13: Simple time courses of totally exclusive stimulus sequences.

According to the definition of correlation, Eq. (16), the correlation between these
two sequences is

ρ(s1, s2) =
1
4
× −1− 1− 1− 1− 1− 1− 1− 1√

2 ·
√

2
= −1 . (124)

Therefore, there exists a linear mapping from one sequence to the other between s1

and s2 and they are negatively correlated with coefficient -1, exactly because they
are defined so strictly non-overlapping in order to avoid any positive correlations
between the sequences.

In the case of only two different stimuli it is easy to construct such a balanced
design, where knowing the other stimulus sequence does not convey information
about the other. E.g., for sequence s3 = [1, 0, 0, 1, 0, 0, 1, 1], the correlation
becomes

ρ(s1, s3) =
1
4
× +1 + 1− 1− 1− 1 + 1 + 1− 1√

2 ·
√

2
= 0 . (125)
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a

        
 

 

 

b

        
 

 

 

Figure 14: An illustrative example of a balanced setup where the stimulus sequences are not correlated
(at all). However, they blocks do overlap one fourth of the time.

When there are k different stimuli, the balanced setup would require balancing
the 2k different combinations each to occur 1/2k of the time. In this example there
were only 4 different combinations, but in real experiments there would naturally
be more of them.28

28With the original fMRI-study we analyzed in Publications 7 and 9, there were 7 different stimuli,
resulting in 27 = 128 different combinations to be balanced.
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