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Abstract 
The potential impact of lipid research has been increasingly realised both in 
disease treatment and prevention. Recent advances in soft ionization mass 
spectrometry (MS) such as electrospray ionization (ESI) have permitted parallel 
monitoring of several hundreds of lipids in a single experiment and thus 
facilitated lipidomics level studies. These advances, however, pose a greater 
challenge for bioinformaticians to handle massive amounts of information-rich 
MS data from modern analytical instruments in order to understand complex 
functions of lipids.  The main aims of this thesis were to 1) develop bioinformatics 
approaches for lipid identification based on ultra performance liquid 
chromatography coupled to mass spectrometry (UPLC/MS) data, 2) predict the 
functional annotations for unidentified lipids, 3) understand the omics data in the 
context of pathways and 4) apply existing chemometric methods for exploratory 
data analysis as well as biomarker discovery. 

A bioinformatics strategy for the construction of lipid database for major 
classes of lipids is presented using simplified molecular input line entry system 
(SMILES) approach. The database was annotated with relevant information such 
as lipid names including short names, SMILES information, scores, molecular 
weight, monoisotopic mass, and isotope distribution. The database was tailored 
for UPLC/MS experiments by incorporating the information such as retention 
time range, adduct information and main fragments to screen for the potential 
lipids. This database information facilitated building experimental tandem mass 
spectrometry libraries for different biological tissues. 

Non-targeted metabolomics screening is often get plagued by the presence of 
unknown peaks and thus present an additional challenge for data interpretation. 
Multiple supervised classification methods were employed and compared for the 
functional prediction of class labels for unidentified lipids to facilitate exploratory 
analysis further as well as ease the identification process. As lipidomics goes 
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beyond complete characterization of lipids, new strategies were developed to 
understand lipids in the context of pathways and thereby providing insights for 
the phenotype characterization. Chemometric methods such as principal 
component analysis (PCA) and partial least squares and discriminant analysis 
(PLS/DA) were utilised for exploratory analysis as well as biomarker discovery 
in the context of different disease phenotypes. 
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1. INTRODUCTION 
Lipids are an important class of compounds that have a wide variety of key 
cellular functions including compartmentalisation, energy storage, cell-signalling, 
protein trafficking and membrane anchoring (Orešič et al. 2008, van Meer 2005, 
Vance and Vance 2008). Emerging evidence suggests that abnormalities in these 
functions are either directly or indirectly linked to the pathogenesis of various 
diseases (Wenk 2005) including obesity (Shi and Burn 2004), Alzheimer’s diseas 
(Cutler et al. 2004), cancer (Menendez and Lupu 2007) and atherosclerosis 
(Lusis 2000). The lipids are generally hydrophobic in nature and are soluble in 
organic solvents. They are defined as hydrophobic or amphipathic small 
molecules that may originate entirely or in part by carbanion based condensation 
of thioesters, and/or by carbocation based condensation of isoprene units (Fahy 
et al. 2005). These lipids vary widely ranging from simple fatty acids to complex 
glycolipids. Systematic cataloguing of all these lipid classes and their 
nomenclature is required for databases and bioinformatics needs. According to 
new classification system, lipids are classified into eight main categories: 1) 
Fatty acids, 2) Glycerolipids, 3) Glycerophospholipids, 4) Sphingolipids, 5) 
Sterols, 6) Prenol lipids, 7) Saccharolipids, and 8) Polyketides (Fahy et al. 2009). 

The structural diversity of lipids stems mainly from various combinations of 
fatty acid chain lengths and possible head groups (e.g., for glycerophospholipids) 
that are linked to glycerol backbone (Figure 1.1). The presence of ethylene-
interrupted or less common methylene-spaced double bonds in fatty acid 
moeities introduces an additional diversity in the lipidome. The presence of 
various types of glycerol-alkyl chain linkages such as ester, ether and vinyl ether 
bonds provide further diversity. Ether and vinyl ether bonds are more common 
in sn-1 position and are found mainly in phosphatidylcholine (PC) and 
phosphatidylethanolamine (PE) type of lipid classes (Snyder 1999). This 
diversity and abundance of these lipid species varies from tissue to tissue. For 
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instance, ether-linked (plasmanyl) and vinyl-ether linked (plasmenyl) phospholipids 
are more abundant in tissues such as heart, kidney, and central nervous system 
(Druilhet et al. 1975, Panganamala et al. 1971). Similar diversity can be seen in 
most other classes of lipids and the theoretical number of possible lipids, when 
conservatively estimated, exceeds ~180,000 lipids (Yetukuri et al. 2008). 
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Figure 1.1. Glycerophospholipid structural diversity: R1 and R2 are fatty acids at position 
1 and position 2, respectively. X represents head group moiety at position 3. Head groups 
legend: PA = Phosphate, PPA = Pyrophosphate, PE = Phosphoethanolamine, PC = 
Phosphocholine, PS = Phosphoserine, PG = Phosphoglycerol and PI = Phosphoinositol. 

Recent burgeoning interest in lipid research illustrates the critical physiological 
importance of lipids. Moreover, recently emerged new lipidomics consortia such 
as the US-based LIPID MAPS (www.lipidmaps.org) and its affiliated sphinGOMAP 
(http://sphingolab.biology.gatech.edu/), and similar community-wide efforts in 
Japan (www.lipidbank.jp) and Europe (www.lipidomics.net) emphasis the growing 
need for indepth lipidomic research. Other related initiatives include The 

http://www.lipidmaps.org
http://sphingolab.biology.gatech.edu/
http://www.lipidbank.jp
http://www.lipidomics.net
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Alliance for Cell Signaling (www.signaling-gateway.org/) and Lipid Profiles 
(www.lipidprofiles.com). As a result, lipid research is now beginning to appear 
as omics level science with the emerging precipitous developments. Lipidomics 
is defined as “the comprehensive understanding of the influence of all lipids on a 
biological system with respect to cell signaling, membrane architecture, 
transcriptional and translational modulation, cell-cell and cell-protein interactions, 
and response to environmental changes over time” (Watson 2006). 

Any successful lipid analytical method should be a flawless combination of 
extraction, separation, detection and easy processing of the data. However, no 
single methodology or technique is yet in widespread use to screen all lipids. 
Recent advances in mass spectrometry-based studies have revolutionized 
lipidomics research at molecular level (Griffiths 2003, Navas-Iglesias et al. 
2009, Ståhlman et al. 2009). Especially, the soft ionization MS-based analytical 
methods have gained popularity for their specificity, sensitivity and fast 
detection of different lipids from various biological matrices. The development 
of electrospray ionization techniques (Fernandis and Wenk 2009, Pulfer and 
Murphy 2003) have led to the study of lipids to a greater detail mainly in two 
ways: separation of lipid extracts using liquid chromatogram (LC) followed by 
on-line MS monitoring (Ogiso et al. 2008, Wang et al. 2005) and direct infusion 
of lipid extracts into a mass spectrometer where lipids are selectively detectable 
using techniques such as specific precursor ion scans (PIS) and neutral loss 
scans (NLS) (Ejsing et al. 2006, Ekroos et al. 2002, Han and Gross 2005a). As 
analytical technologies are becoming more mature and moving towards 
achieving the true quantitative or at least semi-quantitative characterization of 
molecular lipid species and lipid classes, it is becoming possible to study lipid 
pathways at the molecular level. It is evident that this knowledge will 
significantly advance our knowledge on thd roles of lipids in the context of 
cellular and organismal physiology. 

Lipidomics, a branch of metabolomics, is the end point of omics cascade and 
bears the direct link to several disease phenotypes and therefore has recently 
become the target of post-genomics research. The advent of modern MS 
technologies has facilitated in the analysis of hundreds of lipid molecules from a 
given biological matrix. As a result, large scale data sets are being generated 
from the modern analytical methods, presenting new challenges for lipid 
informatics. The informatics approaches in co-ordination with improved 
analytical methods should resolve and identify individual lipids, unravel minute 

http://www.signaling-gateway.org/
http://www.lipidprofiles.com
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systemic changes at molecular level and integrate the complex lipidome data 
with other enitities such as genes, proteins and other metabolites. 

1.1 Aims of the thesis 

The main aim of this thesis was to develop bioinformatics approaches for the 
non-targeted lipidomics data coming from UPLC/MS. The specific goals of my 
thesis (Figure 1.2) were the following: 

♦ Development of computational spectral libraries and their customization 
for the UPLC/MS platform to facilitate lipid identification (Publication I). 

♦ Building of tissue-specific experimental spectral libraries combining both 
positive and negative ion mode tandem mass spectrometry data (e.g., 
Publication VI). 

♦ Functional class label annotation of unidentified lipids (Publication II). 

♦ Mapping of lipidomics data in metabolic pathways (Publication I). 

♦ Applications of developed informatics approaches followed by exploratory 
analysis (Publication III, IV, V). 
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Figure 1.2. A schematic diagram showing the overview of this thesis in lipid bioinformatics 
approaches. 
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2. LITERATURE REVIEW 
The lipid bioinformatics field is interdisciplinary in nature and topics related to 
this thesis are reviewed in this chapter. This chapter reviews the use of liquid 
chromatography and mass spectrometery in the lipid analysis, and advances in 
dataprocessing tools, databases and biochemical pathways. 

2.1 Lipid analysis using LC/MS techniques 

Biological matrix usually contains several lipids some of which have the same 
effective carbon number (ECN, a measure of non-polar characteristic of fatty 
acid chain or molecule) and therefore either co-elute partially or entirely from 
the liquid chromatography (LC) column. Thus simple LC alone is not enough to 
separate them. Favourably, mass spectrometry (MS) can act as second 
dimensional separation by discriminating compounds based on their mass 
fragments. Successful integration of LC with MS has played a significant role in 
the characterization of multiple compounds in a single sample. 

2.1.1 Separation of lipids using liquid chromatography 

Several studies have successfully demonstrated the usefulness of liquid 
chromatographic techniques in the analysis of complex lipid mixture (Bijlsma et 
al. 2005, Hermansson et al. 2005, Houjou et al. 2005). LC-based methods make 
use of properties such as differential solubility and partition between mobile and 
stationary phases. One of the earlier developments of LC is thin layer 
chromatography (TLC) which has been successfully used for the analysis of 
lipids (Bennet and Heftmann 1962, Michalec et al. 1962). TLC is developed 
from paper chromatography and comprises thin layer of stationary phase such as 
silica or cellulose on a flat support. Various combinations of aqueous stationary 
and organic mobile phases facilitate separation of several classes of lipids and 
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thus serve as a rapid screening tool prior to the development of more advanced 
and sensitive methods. Another notable methodology is solid phase extraction 
(SPE). This technology is useful in separating crude lipid mixtures into several 
classes including phospholipids, fatty acids, cholesterol esters, acyl glycerols 
and cholesterol (Kaluzny et al. 1985). High performance liquid chromatography 
(HPLC) has gained high popularity for its selectivity and efficiency. The 
separation in HPLC can be achieved using either normal-phase or reverse-phase 
columns. Normal-phase HPLC facilitates separation of lipids based on their 
polar head group (Lesnefsky et al. 2000) without major effect by the fatty acid 
substituents. In this case, each class co-elutes as single chromatographic peak 
with small retention time differences across the individual molecules in the 
class. In case of reverse phase column, the separation of lipids is based on their 
polarity, degree of alkyl chain saturation, and chain length. The reverse phase 
column thus enables separation of lipids with different fatty acid compositions 
(McHowat et al. 1997). 

2.1.2 MS-based lipid analysis 

Mass spectrometer, which has profound influence on modern analytical 
chemistry, can measure the mass of charge carrying molecules. The instrument 
measures both mass-to-charge ratio of molecule and its intensity and thus serves 
as an invaluable tool in structural elucidation (using tandem mass spectrometry) 
as well as quantification. 

Electron ionization (EI) is useful in gas chromatography where the eluting 
gaseous molecules are bombarded with a beam of high-energy electrons and thus 
generating a specific fragmentation patterns. Other techniques such as chemical 
ionization (CI) use a reagent gas to ionize molecules which do not give 
molecular ion in EI and produce less fragmentation pattern than EI analysis. This 
ionization method was initially developed for gas chromatography and has been 
used as atmospheric pressure chemical ionization (APCI) for liquid samples. 
Laser-based soft ionisation technique called matrix-assisted laser desorption/ 
ionization (MALDI) is used for the analysis of large molecules and also can also 
be used for the analysis of lipids. The sample is mixed with a chemical matrix 
and then applied to sample holder as small spot. The matrix absorbs the energy 
from laser beam and thereby analyte receives the energy and results in ionization 
of molecules. ESI-based MS provides the most promising soft ionization 
technique and now has become the system of choice for both characterization 
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and quantification of lipids. This technology has been successfully applied in 
numerous lipidomic studies (Griffiths 2003, Han and Gross 2005a, Pulfer and 
Murphy 2003). This technique does not require any derivatisation and can 
directly be applied on solutions. The technique is moreover characterized by 
high-sensitivity with reasonable experimental complexity and high 
reproducibility. The ESI-based MS methodology has become the preferred 
method for the analysis of phospholipids (Brugger et al. 1997, Pulfer and 
Murphy 2003) and sphingolipids (Haynes et al. 2009). The methodology is also 
adopted for the analysis of non-polar lipids such as acylglyerols (Han and Gross 
2001). 

2.2 UPLC/MS-based non-targeted lipidomic analysis 

Advances in MS-based analytical methods, in combination with ESI-based soft 
ionization technique, have spurred lipidomic research in recent years. The 
HPLC-based methods, however, are time-consuming and often present a 
bottleneck in the routine analysis. Shorter LC analysis times allow increasing 
sample throughput as well as lab productivity. 

Recent advances in novel mass analysers such as orthogonal-accelerated time 
of flight (oa-TOF) have led to the development of mass spectrometer. A 
commonly used mass spectrometer with oa-TOF analyser contains a quadruple-
time of flight (Q-TOF) configuration (Figure 2.1) and resembles as triple 
quadrupole MS in which third quadrupole has been replaced with oa-TOF. The 
TOF analyser permits full scan acquisitions with high resolution and mass 
accuracy. This powerful combination of single quadrupole and high performance 
of TOF enables both MS and tandem mass spectrometry (MS/MS) experiments. 
In the MS mode, the first quadrupole and collision cell merely guide the ions, 
while TOF seperates all the ions that are orthogonally accelerated. In MS/MS 
mode, the filter capabilities of quadrupole are exploited to transmit and to select 
only precursor ions. These precursor ions are accelerated due to potential 
difference before they get fragmented in the collision cell induced by collision 
with neutral gases such as argon or nitrogen. The resulting ions are analysed in 
TOF tube with high mass accuracy. 



2. LITERATURE REVIEW 

22 

REFLECTRON

TRANSFER OPTICS

AIR-COOLED TURBOMOLECULAR PUMPS

DRE LENSRESOLVING
QUADRUPOLE

ION GUIDE

PUSHER
DETECTO
R

COLLISION CELL

LC COLUMN

REFLECTRON

TRANSFER OPTICS

AIR-COOLED TURBOMOLECULAR PUMPS

DRE LENSRESOLVING
QUADRUPOLE

ION GUIDE

PUSHER
DETECTO
R

COLLISION CELL

LC COLUMN

 
Figure 2.1. Schematic view showing the configuration of quadrupole time of flight 
(Q-TOF) mass analyzer. 

Recent advances in reverse phase chromatographic columns (e.g., Bridged 
Ethane Hybrid (BEH) C18 columns packed with 1.7 μm particles) and mobile 
phase systems allowed HPLC system to operate at much higher back-pressures. 
The new column, called ultra performance liquid chromatography (UPLC), 
offers significant advantages in resolution, speed, and sensitivity as compared to 
conventional HPLC analysis (Apollonio et al. 2006, Churchwell et al. 2005, 
Leandro et al. 2006, Wilson et al. 2005). With improved speed and sensitivity, 
UPLC/MS platform thus provide a greater advantage in high-throughput sample 
analysis. Here, UPLC is coupled to high resolution quadrapole time of flight (Q-
TOF) mass analyzer which enables accurate mass measurements of precursor 
and fragment ions. Non-targeted lipidomics approaches have the advantage of 
detecting greater number of lipid components and possibility for detecting novel 
compounds. It is also advantageous in picking up global changes thereby serving 
as a guide for designing targeted approaches. 
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2.3 Data processing tools for lipid analysis 

The modern analytical instruments allowed lipidomic studies, generating huge 
amounts of data to process. The data processing step is critical, labor-intensive 
and becomes the rate-limiting step in metabolomics studies. This impetus has led 
to the development of many data processing tools both in open source and 
commercial environment (Katajamaa and Orešič 2007). Common data 
processing steps in lipidomics include peak detection, lipid identification, 
isotope correction, response correction and quantification. The typical data 
processing starts by inputting data in some vendor-specific format, which often 
becomes practical difficulty in applying same software for different data formats 
coming from different vendors. Recently introduced tools such as Lipid 
Qualitative/Quantitative Analysis (LipidQA) software platform (Song et al. 
2007) can identify and quantitate the complex lipids in biological mixtures. The 
software can process the data coming from TSQ-7000 triple stage quadrupole 
and LTQ linear ion trap mass spectrometers from Thermo-Finnigan and Q-TOF 
hybrid quadrupole/time-of-flight instrument from Waters-Micromass. The 
algorithm can also handle data-dependent manner lipid identification based on 
MS/MS spectra of glycerophospholipid species. Fatty Acid Analysis Tool 
(FAAT) tool (Leavell and Leary 2006) is developed for the analysis of data 
coming from Fourier transform mass spectrometry and the tool is demonstrated 
using mycobacteria species data. The main functionalities of the software 
include identification of overlapping saturated and unsaturated lipids, assignment 
of known ions from a user-defined library and handling of isotopic shifts from 
stable isotope labeling experiments. The software tools such as SECD and 
LIMSA (Hermansson et al. 2005) are useful for the display of chromatograms 
and performing several data processing steps including peak picking, integration, 
isotope correction and internal standards-based quantification. Other tools such 
as Lipid Profiler (Ejsing et al. 2006) and LipidInspector (Schwudke et al. 2005) 
are compatible for the data acquisition with Applied Biosystems hybrid 
quadrupole/time-of-flight instruments that can perform multiple precursor ion 
scans in a single experiment. The novel lipid-mediator informatics developments 
such as cognoscitive-contrast-angle algorithm and database (COCAD) (Lu et al. 
2006) enhance correct identifications of lipid-mediators by matching either 
known standard MS/MS spectra with chromatograms and UV spectra or virtual 
liquid chromatography-ultraviolet-tandem mass spectra. 
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MZmine software (Katajamaa et al. 2006, Katajamaa and Orešič 2005) is an 
open source Java-based data processing tool for LC/MS-based metabolomics 
experiments, with a particular focus on differential analysis of lipidomics data 
from UPLC/MS experimental setup. The software implements several key 
methods for data processing stage including spectral filtering, peak picking, 
deisotoping, alignment of samples and quantification. Moreover, recursive peak 
search algorithm and peak picking methods facilitate the improvement of already 
aligned data. Several data visualization options are available for the display of 
spectral data across multiple samples. MZmine2 (http://mzmine.sourceforge.net/) 
presents new features and improved modularity for better expandability. Some 
of new features include processing of high-resolution instrumental data, better 
visualisation (3D visualisation) and a new implementation of 2D visualiser. It 
allows storage of parameters for defining sample properties. The software supports 
importing of several data formats such as netCDF, Thermo RAW, mzML and 
mzXML and also the stored project-specific parameters defining the samples. 

2.4 Lipid databases 

Development of databases (Table 2.1) and related bioinformatics tools has 
become an essential part of functional genomics studies. Over the recent years, 
empowered by high-throughput technologies for omics fields, creation of 
databases devoted to certain entities such as lipids was undertaken. Consequently, 
lipid-centric databases were developed that enabled researchers to comfortably 
analyse expression patterns of lipid related genes and gene products. For 
example, a database of genomics of lipid-associated disorders, called GOLD, 
offers annotated pathways, curated data sets and possibility to study 
experimental data in the context of biological pathways (Hackl et al. 2004). The 
LIPID MAPS Proteome Database (LMPD) (Cotter et al. 2006) is a database of 
lipid-associated protein sequences and annotations. Presently, the database 
mainly comprises human and mouse related proteins of lipid metabolism. The 
protein database is enhanced with annotations from external databases. 

Several lipid databases such as LIPID BANK (http://www.lipidbank.jp/), 
LIPIDAT (Caffrey and Hogan 1992) and LMSD (Sud et al. 2007) are publicly 
available offering wide-range of information including lipid structures. Notably, 
LMSD offers systematic structures of lipids as well as other related information 
according to the classification scheme recommended by LIPID MAPS consortium. 
Users can retrieve the data from LMSD using text- or structure-based queries. 

http://mzmine.sourceforge.net/
http://www.lipidbank.jp/
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Web tools such as LIPID MAPS online tools (Fahy et al. 2007) permit user friendly-
queries from underlying databases. Lipid library (http://www.lipidlibrary.co.uk/) and 
CyberLipid (http://www.cyberlipid.org/) offer rich source of lipid information. 

The proposed classification, nomenclature, and chemical representation 
system introduced by the the LIPID MAPS consortium has become standard 
reference for the construction of lipid databases and management of lipidomics 
data. One of the main goals of LIPID MAPS initiative includes building of lipid 
databases and related bioinformatics approaches. These databases need to be 
complemented with annotation and curation of lipid structures. The LIPID 
BANK aims at curation of lipid structures as well as annotation of the related 
literature. Other databases like PubChem (http://pubchem.ncbi.nlm.nih.gov/) 
offer huge repository of chemical compounds including lipids. The database also 
provides various physical/chemical properties and cross links to other databases. 
All these databases are handy in the analysis of lipids and may serve as tools for 
validation of results. Notably, LMSD also provide various tools for mass 
spectrometry data. However, given the diversity of lipids across different 
organisms, tissues, and cell types, it is unlikely any one database can become a 
reference for mass spectrometry data. Mainly for LC/MS-based analysis, the 
development of in-house databases that are customized for the instrumental 
settings are needed 

2.5 Lipid pathway resources 

The existing databases offer rich source of information on lipid pathways. 
Databases such as Kyoto encyclopedia of genes and genomes (KEGG) database 
(Kanehisa and Goto 2000, Kanehisa et al. 2004) serve as a valuable resource for 
analyzing cells, not only at genomic level but also for metabolic networks in 
different organisms. The database offers information on most metabolic 
pathways including lipid pathways. Additionally, KEGG provides generic 
pathways (i.e., species-independent pathways) as reference pathways for the 
reconstruction of context- or organism-specific pathways. Moreover, the KEGG 
Brite (http://www.genome.jp/kegg/brite.html) maintains a collection of hierarchical 
classifications of lipid species whose reactions and pathways can be viewed. 
Other more annotated databases such as MetaCyc (Krieger et al. 2004) and EcoCyc 
(Keseler et al. 2005) serve as a good starting point for the study of lipids. 
SphinGOMAP (http://sphingolab.biology.gatech.edu/) offers comprehensive pathway 
mapping of about 450 distinct sphingolipids and glycosphingolipids species. LIPID 

http://www.lipidlibrary.co.uk/
http://www.cyberlipid.org/
http://pubchem.ncbi.nlm.nih.gov/
http://www.genome.jp/kegg/brite.html
http://sphingolab.biology.gatech.edu/
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MAPS biopathways workbench (http://www.biopathwaysworkbench.org/) provides a 
graphic tool that facilitates to display, edit and analyse biochemical pathways of 
lipids. In a recent study (Gupta et al. 2009), kinetic model was built from the 
lipidomics flux analysis using integrated network of eicosanoids metabolism and 
signaling pathways. The developed integrated model is based on the KEGG 
pathways and literature knowledge. Rate constants in the kinetic model are 
estimated and tuned using generalised constrained non-linear optimization. 
These quantitative models are quite useful for perturbation studies to gain 
mechanistic understanding about the underlying phenotype. These tools and 
databases allow reconstruction of integrated pathway models and thus open new 
avenues for building system level quantitative models. 

Table 2.1. List of publicly available lipid resources and their characteristics. 

Lipid database/source Description 

LIPID MAPS 
(www.lipidmaps.org) 

Provides guidelines for classification system for lipids, hosts 
databases of lipids and lipid-associated protein data and develop 
tools for identifying lipids. 

Lipidomics Expertise Platform 
(http://www.lipidomics.net/) 

European level Initiative for lipid research. Provides databases for 
the registered users and serves as a source for establishing 
European level networks, industrial relations and exchange of 
standard materials. 

CyberLipids 
(www.cyberlipid.org) 

Offers huge collection of updated scientific knowledge on all 
aspects of lipids. Also facilitates establishing relationships among 
students, teachers, scientists and technicians and present and 
provides updated bibliography devoted to lipid biology. 

LIPIDAT 
(ww.lipidat.chemystry.ohio-

state.edu/home.stm) 

Presents thermodynamic information on lipids including lipid 
phase transition temperatures and enthalpy changes for synthetic 
and biologically relevant complex polar lipids. 

LIPID BANK 
(www.lipidbank.jp) 

Provides chemical structures of lipids with names, chemical and 
physical properties, biological activities and metabolism. In 
addition, spectral information from various instruments such as 
ultraviolet, infrared spectrometry, nuclear magnetic resonance, 
mass spectrometry, liquid chromatography, and thin-layer 
chromatography can also be obtained. 

KEGG lipids 
(http://www.genome.jp/kegg-
in/get_htext?br08002.kegg) 

Provides lipid pathway maps as well as associated information 
such as the name, formula, mass, structure, biochemical reactions 
and external links to other public databases 

THE LIPID LIBRARY 
(http://www.lipidlibrary.co.uk/) 

Portal for the study of many classes of lipids and their analysis 
both in mass spectrometry and chromatography. 

sphinGOMAP 
(http://www.sphingomap.org/) 

Offers a database for biochemical mapping of sphingo- and 
glycosphingo-lipids. 

http://www.biopathwaysworkbench.org/
http://www.lipidmaps.org
http://www.lipidomics.net/
http://www.cyberlipid.org
http://www.lipidbank.jp
http://www.genome.jp/kegg-in/get_htext?br08002.kegg
http://www.genome.jp/kegg-in/get_htext?br08002.kegg
http://www.genome.jp/kegg-in/get_htext?br08002.kegg
http://www.lipidlibrary.co.uk/
http://www.sphingomap.org/
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3. METHODS 

3.1 Lipid analysis using UPLC/MS platform 

3.1.1 Lipid standards and chemicals 

Sample was extracted with chloroform / methanol (2:1, 100 µl) after addition of an 
aliquot (20 µl) containing internal standard mixture. After homogenization and 
vortexing, the sample was centrifuged (10000 rpm, 3 min) and the lower phase was 
collected. The lower lipid phase was mixed with another aliquot of labeled standard 
mixture. The labeled mixture containing 3 standards was added before analysis in 
order to control the extraction process (Pietiläinen et al. 2007). The labeled standards 
were PC(16:0/0:0-d3), PC(16:0/16:0-d6) and TG(16:0/16:0/16:0-13C3) and were 
obtained from Larodan Fine Chemicals (Malmo, Sweden). The internal standards 
mixture comprised MG(17:0/0:0/0:0)[rac], DG(17:0/17:0/0:0)[rac] and 
TG(17:0/17:0/17:0) from Larodan Fine Chemicals (Malmo, Sweden) and 
PC(17:0/0:0), PC(17:0/17:0), PE(17:0/17:0), PG(17:0/17:0)[rac], Cer(d18:1/17:0), 
PS(17:0/17:0), PA(17:0/17:0) and D-erythro-Sphingosine-1-Phosphate (C17 
Base) from Avanti Polar Lipids (Alabaster, AL). 

3.1.2 Mass spectrometry conditions 

The extracted lipid samples were analysed on quadrupole time-of-flight (Q-Tof 
Premier) mass spectrometer combined with an Acquity ultra performance liquid 
chormatogram (UPLC) (Waters Inc., Milford, MA). The column was an Acquity 
UPLC™ BEH C18 10×50 mm with particle size of 1.7 µm and was maintained 
at 50°C. The composition of the binary solvent system at the flow rate of 0.200 
ml/min was A: water (1% 1 M NH4Ac, 0.1% HCOOH) and B: LC/MS grade 
(Rathburn) acetonitrile/isopropanol (5 2, 1% 1 M NH4Ac, 0.1% HCOOH). The 

 



3. METHODS 

28 

initial gradient of the solvent composition was 65% A/35% B. The gradient 
reached 100% B in 6 min and maintained there for the next 7 min. The total run 
time was 18 min which included a 5 min re-equilibration step. The sample 
organizer was set at 10°C. 

The lipid profiling was carried out on Waters Q-Tof Premier mass 
spectrometer using electron spray ionization in either positive or negative ion 
mode. The data were collected usually in the mass range of m/z 300–1200 with 
scan duration of 0.2 sec. The temperature of source was maintained at 120°C and 
nitrogen was used as desolvation gas (800 L/h) at 250°C. The voltages of the 
sampling cone and the capillary were 39 V and 3.2 kV, respectively. Reserpine 
(50 µg/L) was used as the lock spray reference compound (5 µl/min; 10 sec scan 
frequency). The samples were analysed in a randomized order. 

3.1.3 Data processing with MZMine 

Lipid data from UPLC/MS experiments were first converted from raw data to 
netCDF file format using DataBridge utility of MassLynx 4.1 software (Waters, 
Inc.). The netCDF files were preprocessed using an in-house developed MZmine 
software version 0.60 (Katajamaa et al. 2006). Main functionalities of the 
software include peak picking, chromatographic alignment, spectral filtering, 
peak area calculations, visualisation (i.e. peak maps, curvilinear distance 
analysis and Sammon’s mapping), gapfilling, normalisation, and data export. 
De-isotoping step was performed using in-house developed MATLAB scripts. 
Lipids were identified using an internal spectral library or alternatively with 
tandem mass spectrometry. Calibration (normalisation) was done based on multiple 
internal standards and was performed as follows: All monoacyl lipids 
(monoacylglycerols and lysophospholipids) were normalized with LysoPC(17:0/0:0), 
all diacyl lipids except phosphatidylethanolamines and ethanolamine plasmalogens 
were normalized with PC(17:0/17:0), the phosphatidylethanolamines and 
ethanolamine plasmalogens were normalized with PE(17:0/17:0), and the 
triacylglycerols and cholesterol esters with TG(17:0/17:0/17:0). Calibration of 
unidentified lipids, similar to method described earlier (Bijlsma et al. 2005), was 
done using three internal standards as follows: lysoPC(17:0/0:0) was used to 
normalize the peaks eluting with retention time (RT) < 300s, PC(17:0/17:0) for 
300s < RT< 410s, and TG(17:0/17:0/17:0) for RT > 410s. 
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3.2 Lipid database construction 

3.2.1 Lipid scaffold generation 

Lipid database was constructed computationally using Simplified Molecular 
Input Line Entry System (SMILES) approach (Publication I) which is a widely 
used chemical notation to represent a chemical structure in terms of atoms and 
bonds governed by set of syntax rules (Weininger 1988). The database 
accommodated main classes of lipids including fatty acids, phospholipids, 
glycerolipids, cholesterol esters, and sphingolipids. The scaffolds of theoretically 
possible lipids were computed based on known lipid building blocks such as 
polar head groups and fatty acids in order to facilitate identification of lipids. In 
order to construct a particular lipid class (e.g., glycerophospholipid), SMILES 
template was constructed to represent the structure of the class. Possible lipids in 
the class along with their names were generated compuationally by varying alkyl 
moiety, nature of linkage and head group. Each lipid in the database was 
annotated with systematic name, SMILES, molecular formula and exact average 
mass and monoisotopic mass. A score value was assigned to each compound 
based on natural abundance of fatty acid(s). Common factors considered while 
assigning the score were natural abundance of the fatty acid, and odd or even 
number of carbon atoms present in the fatty acid chain. This kind of scoring 
scheme facilitated quick search of possibly abundant compounds. 

3.2.2 Lipid nomenclature 

Lipids were named according to recent nomenclature system for lipids 
introduced by LIPID MAPS consortium (Fahy et al. 2009). For example, 
lysophosphatidylcholine with 17:0 fatty acid chain at sn-1 position was named as 
1-heptadecanoyl-sn-glycero-3-phosphocholine (short name: PC(17:0/0:0)). If the 
exact fatty acid composition was not determined, total number of carbons and 
double bonds was indicated. For example, a phosphatidylcholine species 
PC(18:0/20:4) is represented as PC(38:4). However, PC(38:4) may correspond 
to isobaric (e.g., PC(22:4/16:0)) or isomeric species (e.g., PC (20:4/18:0)). 
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3.2.3 Database design 

Information on each lipid entry was converted into XML document and the 
resulting documents were loaded to the database using mass-loading tool of 
Tamino server. The database is a native XML database implemented in Tamino 
XML Server (Software AG). Each entry in the database was annotated with an 
internal identifier, scoring information, class, canonical SMILES, molecular 
formula, molecular weight and isotopic distribution. All the relevant scripts were 
implemented in the Perl language. When implementing the database, we used 
XMLSPY software (Altova, Inc.) and Tamino Schema Editor Software (Software 
AG) for the construction and validation of logical and physical schemas, 
respectively. 

3.3 Lipid pathways 

3.3.1 Lipid pathways and extensions 

System level characterization by integrating genes, proteins, lipids and other 
molecules provide better insights in an organism (Joyce and Palsson 2006). The 
existing databases provide different levels of information. The databases such as 
KEGG database (Kanehisa and Goto 2000, Kanehisa et al. 2004) serve as a 
valuable resource for analyzing cells not only at genomic level but also for 
metabolic networks in different organisms. The KEGG is a database of 
biological systems that integrates genomic, chemical and network information 
(http://www.genome.jp/kegg/). The KEGG hosts a collection of manually drawn 
pathway maps based on the current knowledge on the molecular interaction and 
reaction networks. The KEGG PATHWAY database offers information on most 
metabolic pathways including lipid pathways include fatty acid biosynthesis, 
fatty acid elongation in mitochondria, fatty acid metabolism, synthesis and 
degradation of ketone bodies, steroid biosynthesis, primary and secondary bile 
acid biosynthesis, C21-Steroid hormone metabolism, androgen and estrogen 
metabolism, glycerolipid metabolism, glycerophospholipid metabolism, ether 
lipid metabolism, sphingolipid metabolism, arachidonic acid metabolism, 
linoleic acid metabolism, alpha-linolenic acid metabolism and biosynthesis of 
unsaturated fatty acids. Additionally, KEGG also provides generic pathways 
(i.e., species-independent pathways) to serve as reference pathways for the 
reconstruction of context- or organism-specific pathways. 

http://www.genome.jp/kegg/
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Figure 3.1. An illustrative example of lipid pathway reconstruction methodology via pathway 
instantiation. Interesting lipids from co-regulation network are linked to molecular instance 
pathways. Red/green colour coding refers to up/down regulation of enzymes and lipids. 

Modern MS-based analytical techniques provide lipid species level information, 
whereas present lipid pathway information is mostly limited to the generic lipid 
class level. At the generic level, most lipid entries on pathways may contain one 
or more fatty acids and/or head groups. Due to enormous diversity in fatty acids 
and head groups, large number of specific lipids that are measurable now can be 
substitutable for a particular entry on pathway. As a result, lipid pathway 
reconstruction may easily end up in combinatorial explosion with varying complexity 
from pathway to pathway. To avoid this combinatorial problem, generic pathway 
templates are utilized to create molecular instance pathways for molecular 
species selected based upon multivariate and co-regulation analyses (Figure 3.1). 
Pathway instantiation is a method of converting generic names of lipids on 
biochemical lipid pathways to corresponding specific names of interest. Instance 
pathways allows mapping of lipids observed in mass spectrometric experiments. 
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3.3.2 Visualization tools for lipid pathways 

Managing and organising lipid-related pathways into useful, interactive pathways 
and networks present a greater challenge for lipid bioinformatics. In-house 
developed megNET software tool enables retrieval and visualisation of biological 
relationships across heterogeneous data sources from an integrated database 
(Gopalacharyulu et al. 2005). Other open source visualization tools such as 
VANTED (Junker et al. 2006) enable importing and customisation of KEGG 
lipid-specific pathways. 

3.4 Modeling with supervised and unsupervised methods 

There are two main categories of mathematical modeling approaches: supervised 
and unsupervised. Supervised modeling (Mitchell 1997) is an approach that uses 
pairs of input objects (usually in the form of matrix, X) and desired outputs (usually 
in the form of matrix, Y). The output of the function can either be continuous, as in 
the case of regression, or categorical, as in the case of classification. Information in 
matrix Y is used to guide the construction of the model for X and hence the 
name supervised. On the other hand, unsupervised modeling only utilizes the 
observed data in X and the model tries to learn the statistical patterns or trends 
available in X (Duda et al. 2001). Conventional methods for unsupervised 
learning such as principal component analysis (PCA) and hierarchical cluster 
analysis (HCA) are generally employed in exploratory analysis. 

3.4.1 Preprocessing of multivariate data 

Preprocessing of multivariate data is advocated to extract relevant information 
from a given data matrix. One of the most commonly employed procedures is 
mean-centering (also called column centering) where the goal is to model the 
actual variation in the data. In mean-centering, the mean of each measured 
variable (column mean) is substracted from each value of the respective 
variables in the data set so that resulting data matrix contains columns with zero 
mean. Other routinely used preprocessing step, especially in chemometrics, is 
unit variance (UV) scaling where each variable (column vector in the data 
matrix) is divided by the respective standard deviation. This scaling alleviates 
the effect of differences in magnitude of variables i.e., the higher magnitude 
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variables have the greater influence on the results. Combination of mean-
centering and UV-scaling can also be employed (i.e., auto scaling). 

3.4.2 PCA 

Principal Component Analysis (PCA) is a latent variables-based unsupervised 
method for exploratory analysis (Hotelling 1933). PCA uncovers simpler 
patterns from the complex inter-correlated variables. The PCA can also be seen 
as a dimensionality reduction strategy while retaining as much information as 
possible. This is achieved by creating new set of variables which are linear 
combinations of original variables to produce principal components. These 
principal components are orthogonal to each other and are uncorrelated. The 
first principal component is in the direction of the greatest variance in the data 
and subsequent components are constructed orthogonal (independent) to the 
previous ones in the direction of largest remaining variance. Usually, the first 
few latent components account for the most of the variation in the data matrix (X 
[nxm]). The data matrix, X, can be decomposed into two matrices: scores matrix 
(T) and loadings matrix (P)  

∑
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where t denotes a transpose operation on matrix. The loading matrix contains 
information on the variables while the scoring matrix contains information about 
the objects. When the data are projected into a lower dimensional space spanned 
by few principal components corresponding to maximum variation, the data 
matrix X can be written as in equation (4.2). 
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where E is unexplained variation in data matrix X and k (k << m) is the number 
of first principal components. 

3.4.3 HCA 

General clustering methods are based on the distance between the samples 
whose observed parameters are co-ordinates in the multi-dimensional space. 
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Similarity or dissimilarity of the samples is based on whether they are close or 
not in the high dimensional space. Hierarchical cluster analysis (HCA) (Jolliffe 
1986) can broadly be divided into two methods: agglomerative methods and 
divisive methods. The divisive methods start with all of the observations in one 
cluster and then proceed to split (partition) them into smaller clusters. On the 
other hand, the agglomerative methods initially treat each observation as a 
separate cluster and then proceed to fuse pair of clusters with smallest distance. 
The fusion will continue until all observations belong to one cluster. Popular 
agglomerative methods are single linkage (nearest neighbor approach), average 
linkage, complete linkage (furthest neighbor) and Ward’s method. 

Average linkage clustering uses the average similarity of observations 
between two groups as the measure between the two groups. Complete linkage 
clustering uses the furthest pair of observations between two groups to determine 
the similarity of the two groups. Single linkage clustering, on the other hand, 
computes the similarity between two groups as the similarity of the closest pair 
of observations between the two groups. Ward's linkage is distinct from all the 
other methods in that it uses an analysis of variance approach to evaluate the 
distances between clusters. 

The outcome of HCA is a hierarchy or tree-like structure (dendogram) showing 
the relations among the entities. Dendogram can be interpreted based on the 
length of branches which are proportional to distance between various clusters. 

3.4.4 PLS-DA 

PLS-DA is a widely used supervised classification algorithm when dimensionality 
reduction is needed and discrimination is sought in multivariate analysis 
(Matthew Barker 2003). In the mass spectrometry data, it is typical to observe 
that the number variables are more than the number of samples. Moreover, many 
variables are correlated. The partial least squares (PLS) method permits investigation 
of complex problem of collinearity (i.e., X-variables). The PLS-DA model establishes 
the relation between predictor variables (i.e., X matrix) and response variables 
(i.e., Y matrix) by finding latent variables in such a way that the covariance 
between the two variables is maximum. The obtained latent variables are linear 
combinations of old X-variables. Often optimum number of latent variables is 
needed and can reliably be computed from cross validation procedures. 
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3.4.5 k-NN 

k-NN is a supervised learning algorithm that works without any prior assumptions 
about the distribution from which training samples are drawn. The training data 
are vectors in the high-dimensional feature space which is partitioned into 
regions by class label. The algorithm involves storing of feature vectors and 
class labels in the learning phase. In order to estimate the class label for the test 
sample, k-NN computes distances from test sample to all other samples from 
training set and k nearest neighbours are selected. In order to compute the 
distances, distance metrics such as Euclidean distance can be employed. Test 
sample is assigned to most frequent class label among k nearest neighbours in 
high dimensional feature space. If the tie scenario arises, the ties are broken at 
random or closer neighbours are given priority. It is common to select larger k 
value to help reduce noisy effects in data and odd k value to break ties. The 
optimal choice of k is important and can be selected by cross-validation 
approach (Duda et al. 2001). 

3.4.6 SVM 

Support vector machines are a group of supervised methods introduced earlier 
by Vapnik (Vapnik 1995). The SVMs have gained popularity and have been 
successfully applied to number of applications including protein structural 
classification, image recognition, text classification, microarray gene expression 
data analysis and protein fold recognition (Brown et al. 2000, Cai et al. 2001, 
Joachims 1998). SVMs are primarily designed for binary classification problems 
where the training data with two classes are transformed into a high dimensional 
space by kernel functions. These classifiers rely on hyperplanes corresponding to 
decision functions. SVM model achieves its objective of classification by 
constructing optimal hyperplane, i.e., the hyperplane that maximises separation 
between the two classes. The solution for the classification lies in the support 
vectors that determine the maximum margin hyperplane. The margin of a linear 
classifier is the minimal distance of any training point to the hyperplane. Multi-
class problem of SVMs can be regarded as multiple binary class problems. One 
way to solve multi-class classification is using ‘one-versus-one’ approach where 
the model constructs a binary classifier for every pair of classes, resulting in k 
(k-1)/2 SVM models for k-class classification problem. 
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3.4.7 Naive Bayes 

Naive Bayes is a probability based classifier and is obtained by assuming 
conditional independence of the predictor variables given the class label in 
Bayes theorem (Hand et al. 2001). As a result, likelihood term of Bayes rules 
can be decomposed into product terms. The classifier basically ignores the 
potential inter-dependencies such as correlations among the inputs and reduces a 
complex multivariate problem to a group of simple univariate problems. For a 
given set of predictor variables, X, the model constructs posterior probability for 
any event Cj among the set of categorical levels of C. Labeling of new predictor 
variable to a particular class is based on the highest posterior probability. Naive 
Bayes methodology simplifies a classification task by allowing the computation 
of class conditional densities for each variable separately. 

3.5 Statistical hypothesis testing 

3.5.1 Student’s t-test 

Two sample t-test (Fisher Box 1987, Snedecor and Cochran 1989) is commonly 
employed to investigate whether the means of two groups of samples are 
significantly different from each other. The t-test compares difference in the two 
means in relation to existing variation in the data. The t-test, as shown in 
equation (4.3), is a ratio with numerator representing the differences between the 
means and denominator denoting the measure of variability (standard error of 
differences) in the data. 

The t-test investigates the following hypothesis: 

For null hypothesis (Ho):                 21 μμ =  

For alternative hypothesis (Ha):       21 μμ ≠  

t-statistic is given by the equation (4.3) 
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where 1y  and 2y are the means of the two samples, s1 and s2 are the standard 
deviations of the two samples, and n1 and n2 are sample sizes. 
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3.5.2 Wilcoxon test 

Wilcoxon test is a non-parametric (Mann and Whitney 1947, Wilcoxon 1945) 
equivalent of parametric t-test. The non-parametric test assumes that samples are 
randomly taken from population with symmetric frequency distribution and does 
not require that data to follow normal distribution. The test investigates 
hypothesis on median and can be applied on single sample or two samples 
(paired or unpaired samples). In single sample case, the test investigates whether 
the median of sample is different from the hypothesised median of the population. In 
two samples case, Wilcoxon test investigates median of one sample is different 
from the second one. Two common non-parametric tests are: Wilcoxon signed-
rank test for paired data and the Mann-Whitney U test (also known as Mann-
Whitney-Wilcoxon test, the Wilcoxon T test, the Wilcoxon two-sample test, or 
the Wilcoxon W test) for unpaired data. These tests are based on ranking of the 
data and looking at the ranks rather than the actual values of the observations. 

3.5.3 Analysis of variance 

Analysis variance (ANOVA) is used to compare the means of two or more 
groups using F-statistic under the assumption that sampled population are 
normally distributed (Snedecor and Cochran 1989). One-way ANOVA allows 
determining whether one given factor (factor is an independent variable whose 
values are controlled and varied, for example, in experiments) has significant 
effect in mean values of any groups in the data. 

F-test statistic computes ratio of two sources of variability as below: 

F = between group variability / within group variability 

ANOVA tests the following hypothesis: 

Null hypothesis (Ho):      kμμμμ === ...321  

Alternative hypothesis (Ha):       Means of all groups are not equal. 

The significant p value means that there is at least one group whose mean is 
different from the rest of groups. One-way ANOVA, however, does not provide 
information on which group is different from the rest. Post-hoc tests are needed 
to find which specific group(s) is different from the rest. 
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3.5.4 Multiple hypothesis testing 

The probability of making Type I errors increases rapidly along with the number 
of hypotheses tested simultaneously. This is called multiple hypothesis testing 
problem. This problem has become routine in omics studies (Farcomeni 2008) 
where large numbers of statistical tests are performed in the same data set 
independently on a number of variables. This is the condition where one needs 
to account for the multiple tests performed. For instance, when employing a t-
test for comparison of means across two groups at 5% significant level, the test 
is willing to accept 5% error i.e., if 100 hypothesis tests are performed, it is 
expected to see five significantly different variables by chance alone even if 
there are no actual differences. Many solutions (e.g., Anisimova and Yang 2007) 
are suggested to account for multiple hypotheses testing including Boneferroni 
and false discovery rate approaches. Boneferroni correction (Miller 1981), which 
controls family wise error rate, is the simplest and more conservative correction 
to account for the multiple hypothesis testing. This correction obtains acceptable 
significant level by taking into account number of hypothesis tests performed. 
This is achieved by dividing the p-value of the test by the number of tests 
performed. Other notable multiple hypothesis testing correction is false 
discovery rate (FDR) (Benjamini and Hochberg 1995) which is the expected 
proportion of Type I errors among the rejected hypotheses. It is less conservative 
approach as compared to family wise error rate correction, which is the 
probability of making at least one Type 1 error over all hypothesis tests. 

3.5.5 Correlations 

Correlation describes the degree of relationship between two variables (X and Y) 
and is measured using correlation coefficient. The value of correlation coefficient 
varies from 0 (no relationship between X and Y) to 1 (perfect linear relation 
ship) or -1 (perfect negative linear relationship). A positive value for the correlation 
implies a positive association (large values of X tend to be associated with large 
values of Y and small values of X tend to be associated with small values of Y). 
A negative value for the correlation implies a negative or inverse association 
(large values of X tend to be associated with small values of Y and vice versa). 

The most common measure of correlation is Pearson correlation (Pearson 1896) 
which is computed using equation (4.4) 
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where xyr  is correlation coefficient between X, Y variables, xi, yi are series of 
measurements on X and Y respectively, Sx and SY are standard deviations of X 
and Y respectively and x  and y  are sample means of X and Y respectively. 

The non-paramteric version of measuring correlations is Spearman's rank 
correlation (Spearman 1904) which is computed as below: 
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where ρ  is Spearman’s rank correlation coefficient, n is the number of values in 
each data set and di is the difference between the ranks of corresponding values 
Xi and Yi. 
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4. RESULTS AND DISCUSSION 
This chapter covers main results related to informatics framework for non-
targeted screening of lipids, computational aspects of functional class label 
prediction for unidentified lipids, lipid pathways instantiation strategy and 
exploratory analysis of lipidomics data. More detailed information can be found 
in the original publications I–VI. 

4.1 Lipid identification 

One of the main challenges in lipidomics is to characterize the complete lipid 
inventory present in a given biological matrix. This challenge motivated the 
present work to compute spectral libraries for the screening of potential lipid 
species. This was important especially as there were no publicly available inter-
laboratory transferable lipid libraries for the LC/MS platforms. 

4.1.1 Database content and basic search 

Lipid database (LipidDB) was constructed computationally using SMILES 
approach (Publication I). The LipidDB comprised main classes of lipids such as 
glycerophospholipids, sphingolipids, glycerolipids, and sterol esters. Specific 
contents of each lipid class are as shown in the Table 4.1. The enormous 
structural diversity found in these classes of lipids is due to the differences in 
length and degree of unsaturation in alkyl chains. Structural rules of specific 
class (i.e., glycerophospholipids) typically follow a common template which 
allowed incorporating the structural diversity computationally. The computational 
framework was based on the construction of “seed” fatty acids most likely to 
occur in living systems. Each lipid entry was assigned a scoring value based on 
the seed fatty acid composition to facilitate the searches of experimental results 
against LipidDB. The scoring value aided when search results were associated 
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with multiple hits due to isobaric and/or isomeric matches in mass as well as 
limitations in the analytical approach. Such a heuristic scoring scheme can be 
modified and the scheme may be different for different cell or tissue types. 

Table 4.1 List of different lipid classes and their specific contents in the LipidDB. 

Class Description 

Fatty Acyls Alcohols/aldehydes/carboxylic acids and CoAs 

Glycerolipids 
Mono acyl/alkyl glycerols 
Diacyl/alkyl glycerols 
Triacylglycerols 

Glycerophospholipids 

Glycerophosphocholines, 
glycerophosphoethanolamines, glycerophosphoserines, 
glycerophosphates, glyceropyrophosphates and 
glycerophosphoglycerols. 

Sphingolipids 

Sphingoid bases, various ceramides including  
ceramide phosphoinositols, ceramide phosphocholines, 
ceramide phosphoethanolamines, N-acylsphingosines, 
N-acylsphinganines, ceramide 1-phosphates and 
sulfatides. 

Sterols Cholesteryl esters 

Plasmalogens 
(glycerophospholipids) Phospholipids with vinyl ether bonds at sn-1 position 

 
LipidDB was stored in a native XML database implemented in Tamino XML 
Server (Software AG). Each lipid entry in LipidDB was described by an internal 
identifier, scoring information, class, canonical SMILES, molecular formula, 
molecular weight and isotopic distribution. XML schema for LipidDB is shown 
in the Figure 4.1. This database was extensively used for the extraction of crucial 
information using basic search interface as shown in Figure 4.2. The basic 
search allows queries on lipids species based on their molecular masses, adduct 
information, lipid classes, fatty acid chain positions, head group information and 
number of bonds. 
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Figure 4.1. XML database schema for LipidDB stored in the native Tamino XML database. 
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Figure 4.2. Basic search interface for the extraction of lipid information from the underlying 
LipidDB. 

4.1.2 Customisation of LipidDB for UPLC/MS platform 

Customisation of experimental information such as retention time, adducts and 
MS/MS fragmentation in in silico database is useful for the screening of 
potential lipids (Figure 4.3). 
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Figure 4.3. LipidDB was updated with external annotations from public databases as well 
as experimental information from UPLC/MS platform. 

Annotations from external databases: Publicly available databases such as 
PubChem (http://pubchem.ncbi.nlm.nih.gov/) provide valuable information on 
small molecules including lipids. LipidDB was annotated with physical and 
chemical properties as well as external IDs of different databases available in the 
PubChem database. 

 
Addition of retention time ranges and adducts information: In UPLC/MS-
based global lipidomics screening, retention time range information is useful 
parameter and can serve as a coarse filter to avoid false positive hits. Detailed 
tandem mass spectrometry (MS/MS)-based characterization of all peaks revealed 
information about retention time ranges for several classes of lipids. The 
information was obtained from the two dimensional m/z and retention time plot 
(Figure 5, Publication II) generated using MZmine software version 0.60. 
Characterization of class specific regions and their adduct information was based 
on MS/MS spectra. 

 
Addition of MS/MS fragmental information: In order to facilitate the 
identification of lipid species, the main fragmental peaks of acyl glycerols, 
phospholipids, cholesteryl esters and sphingolipids were included in in silico 
LipidDB. The computational library had greatly facilitated lipid identifications 

http://pubchem.ncbi.nlm.nih.gov/
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while comparing with experimental MS/MS spectra. The main fragmentation 
information of different classes of lipids is summarised as below: 

Glycerophosphocholine (PC): In the positive ion mode, PC molecular species 
form either protonated [M+H]+ or sodiated [M+Na]+ adduct ions as well as 
dominant peak at m/z 184, representing choline head group. Sodiated PC 
molecular species produce characteristic fragments at m/z [M+Na-59]+, [M+Na-
205]+ and [M+Na-183]+. To facilitate the assignment of fatty acid moieties at 
sn-1 and sn-2 positions, negative ion mode ESI-MS/MS analysis was performed. 
In general, negative ion spectra of all phospholipids classes yield four series of 
ions (Pulfer and Murphy 2003) corresponding to (1) loss of fatty acyl 
substituents as free fatty acids (2) loss of fatty acyl substituents as ketenes (3) 
fatty acyl carboxylate anions and (4) head group specific ions. In the negative 
ion mode, PC molecular species yield ions characteristic for formate adduct 
[M+HCOO]- and demethylated [M-CH3]- species as well as ions characteristic 
of the fatty-acyl group esterified at the sn-1 and sn-2 positions. Product ion 
spectra of plasmanyl (alkyl ether linkage at sn-1 position) / plasmenyl (vinyl 
ether linkage at sn-1 position) molecular species contains information predominantly 
related to fatty acyl chain at sn-2 position as well as ion reflecting the loss of sn-
2 fatty acyl chain and hence are distinguished from ester-linked phosphatidyl 
species (Khaselev and Murphy 2000, Zemski Berry and Murphy 2004). 

Glycerophosphoethanolamine (PE): Phosphatidylethanolamine, being zwitterionic, 
can be detected both in positive and negative ion mode mass spectra. 
Characterization of molecular species as their protonated species [M+H]+ and 
subsequent yielding of major fragment at m/z [M+H -141]+ (due to loss of head 
group) is used for the identification of PE molecular species in the positive ion 
mode. Ethanolamine plasmalogens are detected based on two fragment ions 
characteristic of sn-1 and sn-2 positions (Khaselev and Murphy 2000, Zemski 
Berry and Murphy 2004). In the negative ion mode, PE molecular species form 
deprotonated ([M-H]-) ion which undergoes cleavage of fatty acyls substituents 
mainly as ketenes. Head groups specific ions are observed at m/z 140 
(phosphoethanolamine ion) and 196 (i.e., loss of fatty acyl groups in PE). 

Glycerophosphatidylserine (PS): In the positive ion mode, PS is detected as 
protonated ion. Structural characterization of PS species is mainly done using 
negative ion mode ESI-MS/MS. In this mode, PS species form [M-H]- ions and 
[M-H-87]- ions, arising from the loss of serine group upon fragmentation as well 
as ions corresponding to loss of fatty acyl substituents as ketenes. 
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Glycerophosphoglycerol (PG): These are less abundant ions of phospholipids. 
In the negative ion mode, these molecular species yield [M-H]- ions as well as 
characteristic peaks of lysophospholipids-like fragments due to loss of fatty acyl 
ketenes/acids and carboxylate anions. Head group specific fragments are 
detected at m/z 227 and 171. 

Glycerophosphoric Acid (PA): PA is the simplest phospholipid and preferentially 
studied in the negative ion mode in which PA yields deprotonated ion ([M-H]-). 
Like in other phospholipids, PA forms ions corresponding to neutral loss of 
acids, neutral loss as ketenes and carboxylate anions. Head group specific ion is 
detected at m/z 153, a characteristic ion arising from loss of fatty acyls groups 
from PA species. 

Glycerophosphoinositol (PI): Negative mode ESI-MS yields [M-H]- ions of 
PI. The major fragmentation pathways involves neutral loss of fatty acid, neutral 
loss as ketenes and loss of the inositol head group (m/z 162, inositol − H2O). A 
prominent characteristic ion at m/z 241 represents a dehydrated product of 
inositol phosphate. 

Triacylglycerol (TG): ESI-MS of TG species yields ammonium adduct ions 
which are fragmented in MS/MS to diacylglycerol ([DG]+) like fragments and 
are similar to those of [DG]+ species in phospholipids due to loss of head groups 
in phospholipids. These [DG]+ species are informative in identifying TG species. 
However, in the analysis of mass spectra with co-eluting TG species, it is 
difficult to assign [DG]+ fragments to its parent TG molecular species correctly. 

Cholesteryl Ester (ChoE): ESI-MS platform is not well suited for the analysis 
of free cholesterol. ChoEs, however, form ammonium adducts in the positive ion 
mode and generate a fragment ion at m/z 369 upon collision-induced fragmentation. 

Sphingolipids: In the positive mode, ESI-MS analysis of sphingomyelin (SM) 
yields a characteristic protonated phosphocholine peak at m/z 184. PC and SM 
species are distinguished based on their characteristic m/z value (PC species 
occur at even at m/z and SM species at odd m/z). Similar to PC, sphingomyelin 
yields either [M+H]+ or [M+Na]+ ions in the positive mode, while in negative 
ion mode are [M-CH3]- and [M+ HCOO]- ions. 

In the positive ion mode, ceramides form unstable protonated molecular 
species which undergo dehydration to form [M+H-H2O]+ ion. Molecular ions in 
negative ionisation conditions are very informative in identifying the fatty acyl 
and long chain base substituents of ceramide. Ceramide species yields [M-H]- 

and [M-H-30]- (due to loss of HCHO group) ions in negative ionisation 
conditions. While positive mode analysis of long chain bases such as 
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sphingosine (d18:1), sphinganine (d18:0) and 4-D-hydroxysphinganine (t18:0) 
undergo dehydration to form fragments at m/z 282/264, 284/266 and 300/282, 
negative ion mode analysis of sphingosine and phytosphingosine moieties are 
characterised by the fragments at m/z 237/263 and 225/255/267 respectively 
(Merrill et al. 2005, Myoung Hee Lee and Jong 2003). 

4.1.3 Building of tissue-specific lipid libraries 

Comprehensive mass spectrometry studies allow building of MS/MS fragment 
libraries for different biological tissues. These libraries are useful for intra-
laboratory use in rapidly assigning lipid species coming from new experiments 
under similar conditions. Tissue-specific libraries were built using the fragmentation 
characteristics of lipids described in the section 4.1.2. Such MS/MS spectral libraries 
have limitations due to laboratory-dependent ion source conditions. Moreover, ESI 
usually produce little structural information and single set of conditions are not 
applicable for broad spectrum of lipids, or metabolites in general. 

Lipoprotein lipidomics in the context of insulin resistance and abdominal 
obesity 

Background: In order to investigate the relation between serum lipid and lipoprotein 
abnormalities with insulin resistance, sixteen non-diabetic subjects between 18 and 
60 years of age were recruited based on a healthy clinical background and modest 
alcohol consumption. Relevant clinical parameters of all subjects were measured 
using standard protocols as described in the original publication (Publication VI). 
The lipoprotein fractions such as VLDL, intermediate density lipoprotein (IDL), low 
density lipoprotein (LDL) and high density lipoprotein (HDL) were separated by 
sequential flotation in an ultracentrifuge (Taskinen et al. 1988). 

In contrast to the traditional measurement of total protein, phospholipid, 
cholesteryl esters, and TG content in a given biological sample (Vance and 
Vance 2008), modern MS-based techniques allow analysis at the molecular 
species level. The MS-based methods have become mainstay of lipidomic 
research mainly with two strategies: global and targeted approaches. Global (or 
non-targeted) approaches are directed towards identification and quantification 
of several hundreds of lipids in a high-throughput basis. In this direction, 
multiple shotgun-based MS approaches (Ejsing et al. 2009, Han & Gross 2005b) 
have been developed for wider coverage of different lipid classes. Our recent 
analysis using UPLC/MS-based platform allowed the analysis of multiple 
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abundant lipid classes (e.g., triacylglycerols, cholesterol esters, sphingomyelins, 
phosphatidylcholines) as well as bioactive lipid species (e.g., ceramides, 
plasmalogens, and lysophosphatidylcholines) simultaneously (Pietiläinen et al. 
2007). This global approach does not assume any prior knowledge on type of 
lipids to be screened and thus providing greater possibility for discovering new 
classes of lipids. The quantification of lipids in the presented methodology 
requires further optimization given that lipids cover wide concentration range of 
compounds. The targeted approaches have been developed for screening of one 
or few classes of lipids and are more quantitative. Like any other lipidomics 
methods, the UPLC/MS-based method has limitations in detecting the position 
and configuration of double bonds within the fatty acid moieties of lipid species. 
Recent developments on ozone-induced dissociation (OzID) of double bonds 
(Thomas et al. 2007) can offer a potential solution. 

 
Lipid characterization: Non-targeted profiling was performed to determine the 
individual species in each lipoprotein fraction. Tandem mass spectrometry was 
performed both in positive and negative ion modes. Negative mode analysis was 
mainly utilized to determine fatty acid composition of phospholipids. This 
extensive study, typically involved examining each individual product ion 
spectra and compiling spectral information, allowed building of spectral libraries 
for lipoprotein fractions. 

The comprehensive profiling allowed us to detect the compositional details of 
bioactive lipid species in different lipoproteins. Ceramides were found only in 
VLDL and LDL, whereas ethanolamine plasmalogens (PE(p)) were found only 
in LDL and HDL2. Lysophosphatidylcholines (lysoPC) and ether linked 
phosphatidylcholines (PC(e)) were present in all lipoproteins with the greatest 
abundance in HDL2, HDL3, and LDL (Figure 2, Publication VI). Identification 
of individual TGs in major lipoprotein particles allowed us to elucidate how 
changes in different TGs and fatty acids related to features of insulin resistance 
and abdominal obesity (Figure 1, Publication VI). 

As a summary, the SMILES-based approach allowed the construction of lipid 
database for identification of lipids in mass spectrometry analysis. The direct 
application of databases as described in section 2.4 for mass spectrometry is 
limited due to the nature of LC/MS-based analysis. The LC/MS-based spectral 
libraries are very much dependent on the type of scanning mode and 
instrumental settings and hence it is very unlikely any single database can act as 
a standard reference for all types of lipidomic analysis. This is also partly due to 
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large diversity of lipids across different organisms, tissues, and cell types. Here, 
the developed database was customized to global screening methods by addition 
of RT information, adducts, mass fragments and other annotations from external 
databases. The database was extensively used in the construction of tissue 
specific spectral libraries. 

4.2 Functional class label prediction of unidentified peaks 

Mass spectrometry-based metabolomics experiments often results in unidentified 
peaks which can hamper in the interpretation of results. The problem is even 
more challenging in the non-targeted metabolome screening experiments since 
modern MS instruments have ability to detect several hundreds of peaks in a 
given sample. Even when the identification is relatively easier for lipids if 
MS/MS spectra are obtained, non-targeted UPLC/MS approach often results in 
unidentified peaks due to analytical limitations resulting from small peaks, co-
fragmentation, ambiguous spectra, as well as complex spectra probably coming 
from modified and uncommon lipids. In fact, data analysis (univariate or 
multivariate analysis) often lead to interesting peaks which are often unidentified 
and may serve as potential biomarkers. Strategies are therefore needed to interpret 
the data when exact identifications are not available. The challenge was addressed 
computationally by predicting functional class labels for unidentified peaks 
(Publication II). This methodology serves as a helpful intermediate step in data 
analysis as well as a guide towards the further steps to identify the compounds. 

Computational methodology was demonstrated using the lipidomics data from 
our earlier twin pair study (Pietiläinen et al. 2007). The lipidomic data were 
preprocessed using an MZmine software version 0.60 (Katajamaa and Orešič, 2005, 
Katajamaa et al., 2006). Based on identifications, lipids were assigned to one of the 
following classes: glycerophosphocholines (PC) glycerophosphoethanolamines 
(PE), sphingomyelins (SM) and triacylglycerols (TG). Cross validation strategy 
was employed to assess the generalisation performance of the classifiers. Here, 
computational work involved single cross validation method for models with no 
meta-parameter estimation (i.e., random model and Naive Bayes) and double 
cross validation for models requiring metaparameter estimation (i.e., k-NN, 
SVM and PLS-DA). Details of single and double cross validation methods are 
available in original publication (Publication II). Main results of employed 
supervised classifiers (PLS/DA, SVM, Naive Bayes and k-NN) are summarised 
below. 
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4.2.1 PLS/DA 

PLS-DA is a latent variable-based supervised classifier and was investigated to 
evaluate the performance in predicting the functional labels for unlabeled peaks. 
Repeated double cross validation setting was employed to estimate the optimal 
number of latent variables, which was found to be mainly between 5 and 20 
components. The optimum number of components from inner loop of double 
cross validation was used to evaluate the performance of classifier on 
corresponding test sets in the outer loop. The errors made in predicting test set 
labels were computed and overall accuracy of the PLS-DA classifier was found 
to be 63.3%. In all, the classifier performed slightly better than both Naive 
Bayes and random models and underperformed as compared to k-NN and SVM 
models (Table 1, Publication II) 

4.2.2 SVM 

SVM classifier was used to solve multiclass-classification problem using ‘one-
against-one’ approach which trains L(L-1)/2 (L = number of levels) binary 
classifiers. The appropriate class was found by the majority voting scheme. 
Linear kernel function was utilised and the performance of classifier was 
evaluated using four-fold cross validation study with double cross validation 
being repeated for 25 times. Double cross validation was used to select an 
optimal regularisation parameter (C). The parameter corresponding to minimum 
cross validation error was varied mostly between 100 and 1000. The cross 
validation accuracy of SVM classifier was found to be 92.83 %. Prediction 
accuracies of SVM model on lipid classes were found to be better than those 
predicted by k-NN and Naive Bayes models (Table 1, Publication II). 
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Figure 4.4. Comparative cross validation performances of SVM, k-NN, PLS-DA, Naive 
Bayes and random classifiers. 

4.2.3 Naive Bayes 

Naive Bayes classifiers are probabilistic version of classifiers. It was also trained 
using four-fold cross validation repeated 25 times. Cross validation accuracy in 
class label prediction on test set as well as individual classes are shown in Table 
1 of Publication II. The performance based on cross validation accuracy of 
Naive Bayes model was found to be poor as compared to k-NN and SVM 
models. 

4.2.4 k-NN 

 k-NN classifier requires estimation of parameter k to decide appropriate class 
label for a given test sample. The value of k represents the number of nearest 
training samples in the feature space considered when deciding class label for 
the test sample. Repeated four-fold cross validation procedure was employed to 
select optimal k and performance evaluation of the k-NN classifier. The average 
cross validation accuracy of k-NN classifier for the whole test set as well as for 
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each lipid class was summarized in Table 1 of Publication II. Cross validation 
accuracy of k-NN model was 75.97 %. k-NN classifier outperformed random 
assignment model both in terms of class-specific as well as over all cross 
validation performance. Naive Bayes model showed poor cross validation 
performance as compared to k-NN model on complete test set as well as TG and 
SM classes. Better prediction accuracy of lipid classes (TG, PC and SM) 
demonstrated predictive ability of k-NN classifier in lipid data. 

Here we attempted to make use of unidentified peaks in the lipidomic analysis 
by predicting the functional labels using supervised classifiers. The k-NN and 
SVM classifiers outperformed Naive Bayes and PLS-DA classifiers. More 
robust prediction could be achieved by utilizing consensus predictions from both 
SVM and k-NN classifiers. The poor performance of Naive Bayes classifiers 
could be attributed to class-specific co-regulations of lipids. This computational 
framework complements the existing identification methodologies with predictions 
of class labels to facilitate exploratory analysis. These kinds of appproaches are 
more useful in the global screening approaches in the metabolomics where the 
identification of metabolites is a bottleneck. 

4.3 Reconstruction of lipid pathways 

Biochemical pathways are rich sources of information and may help to gain 
mechanistic links behind underlying phenotype. Properly organized and curated 
databases are required to view or construct biochemical pathways reliably. 
Databases such as KEGG PATHWAY database provide information on 
available lipid pathways besides other biochemical pathways. The database also 
provides generic, organism-independent biochemical pathways that serve as 
reference pathways for constructing organism-specific pathways. The available 
databases therefore serve as a good starting point for pathway analysis. 

4.3.1 Pathway instantiation 

Biochemical research is empowered with modern analytical techniques which 
can provide plenty of detailed molecular information. As a result, available 
pathway databases need to accommodate these changes to the resolution of 
available information. This problem is obvious particularly in the case of lipids. 
The essential building blocks for the molecular pathway instantiation were 
explained in the original publication (Publication I). 
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Each node in Figure 4.5 is either a lipid metabolite or enzyme or other 
interconnecting metabolic pathway. Grey color represents metabolites/other 
metabolic pathways and brown represents enzymes. Up- and down-regulation of 
corresponding nodes are denoted by red and green colors, respectively. Enzyme 
names are shown only if they are differentially regulated (~ 1.5 fold change). 
Glycerolipid pathway instantiation was demonstrated with TG(18:1/18:1/18:1) 
(Figure 4.5A) lipid species where experimental measurements could be mapped 
directly on pathway unlike in generic pathways and thus bridging the gap 
between MS data and existing lipid pathways. From the sphingolipid pathway 
map (Figure 4.5B), two enzymes linked to the ceramide via metabolic reactions, 
one is SGPP1 (Sphingosine-1-phosphate phosphatase 1, UniProt ID Q9JI99), the 
other GALC (galactosylceramidase, UniProt ID P54818) were upregulated in 
ob/ob. SGPP1 is involved in de novo ceramide synthesis, while GALC 
hydrolyses galactosylceramide to form ceramide. Interestingly, sphingomyelin 
SM(d18:1/18:0) a precursor of ceramide via the sphingomyelinase reaction is 
downregulated, while the sphingomyelinase level is maintained. Therefore, these 
results indicate that both glycolipids and free fatty acids may act as a source of 
the elevated ceramides in the ob/ob fatty liver.  
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Figure 4.5A, B. Instantiated pathways for Cer(d18:1/18:0) and TG(18:1/18:1/18:1). A) 
Instantiation of TG(18:1/18:1/18:1) as part of glycerolipid metabolism. (B) Instantiation of 
Cer(d18:1/18:0) as part of sphingolipid metabolism. 

4.3.2 Tissue- and context -specificity in lipid pathways 

In order to facilitate any modifications in the existing pathways, the megNET 
visualisation tool is extended to construct pathways for a given list of EC 
numbers and lipid data. The developed frame work is now being targeted 
towards building context-sensitive and tissue-specific pathways. As a part of 
new developments, a new database was compiled with all available lipid-related 
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proteins with their pathway information such as KEGG pathways and context 
information such as gene ontology terms. Knowledge about the tissue-specific 
enzymes was incorporated at transcriptomic level. The presence or absence level 
information of mRNA in tissues is expected to facilitate the development of 
tissue-specific pathways. 

4.4 Lipid profiling applications and data analysis 

High-throughput molecular profiling technologies provide an opportunity to 
measure lipids on an unprecedented scale. The large amount of data presents a 
major challenge for statistical methods to handle and assemble proper 
knowledge for biomarkers discovery efforts. These analyses typically start with 
unsupervised methods where the main aim is to get accurate knowledge on 
samples whether they really cluster or provide trends in the data. These 
techniques also serve as good visualisation tools in data analysis. Unsupervised 
methods such as principal component analysis (PCA) are useful to capture the 
trends mainly when there are correlated variables in the data (e.g., lipid data). 
Such PCA-assisted analysis of projecting samples into lower dimensional space 
from high dimensional space not only allow one to confirm the expected patterns 
in the data based on the group membership of samples but also facilitates in 
detecting outliers in samples. Supervised methods such as PLS/DA can also be 
employed to describe complex data with few latent components as well as a 
obtain set of most distinguishing variables (lipids) among the groups of samples. 

4.4.1 Lipidomic profiling of multiple tissues of the POKO mice 

Increased obesity is the one of the risk factors for type 2 diabetes. The 
relationship of how obesity causes the diabetes still remains unknown. It is 
hypothesised that when adipose tissue reaches its full capacity, the excess fat 
spills over to other metabolically active organs such as liver, pancreas and 
skeletal muscle. This condition leads to insulin resistance and diabetes (Gray and 
Vidal-Puig 2007). Earlier studies indicate that peroxisome proliferator activated 
receptor gamma (PPARγ) plays a key role in adipogenesis and insulin sensitivity 
(Koutnikova et al. 2003, Rosen et al. 1999, Spiegelman 1998). However, the 
importance of PPARγ2, which is nutritionally regulated isoform of PPARγ, is 
still not clear. 
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In order to investigate the physiological importance of PPARγ2 under positive 
energy balance conditions in ob/ob mice (PPARγ2þ/þ Lepob/Lepob) 
(Publication V), lipidomic analyses were performed on relevant tissues. Profiling 
of adipose tissue, pancreatic islets, liver, and skeletal muscle samples revealed 
distinct differences in four genotypes: WT (PPARγ2þ/þ Lepþ/Lepþ), PPARγ2 
KO (PPARγ2_/_ Lepþ/Lepþ), ob/ob (PPARγ2þ/þ Lepob/Lepob), and POKO 
(PPARγ2_/_ Lepob/Lepob). The adipose tissue from POKO mice was 
characterised by decreased triacylglycerols (TGs) and increased diacylglycerols 
(DGs). These changes were associated with increased levels of ceramides. Lipid 
profiling revealed decreased TG and DG levels and increased ceramides (Cer) 
levels in POKO islets, indicating the possible role of PPARγ2 in promoting TGs 
levels to increase the lipid-buffering capacity of β-cells thereby preventing 
lipotoxicity. Liver and skeletal muscle lipidomics revealed decreased TGs and 
increased formation of bioactive lipid species such as ceramides and 
lysophosphatidylcholines in POKO mice compared to ob/ob mice. In all, 
lipidomic profiling of four tissues showed similar pattern of changes. 

The study on 16-week-old mice revealed increased levels of ceramide in 
POKO islets as compared to ob/ob islets. The study was later extended to 
investigate whether perturbed lipid metabolism is already present in islets at 4–5 
weeks of age (Publication IV). There were no statistically significant changes in 
lipid composition among the four genotypes of mice (Figure 4.6) unlike in the 
16-week-old mice. The statistical significance was based on one way analysis of 
variance (1-way ANOVA) and associated p value was adjusted for multiple 
hypothesis testing. Analysis in other metabolically active tissues such as serum, 
liver, adipose tissue and muscle from WT, PPARγ2 KO, ob/ob and POKO mice, 
however, showed significant lipid compositional changes in 4-week-old mice. In 
serum, POKO mice had higher levels of TGs and high levels of short- and 
medium-chain PC species as compared to mice with other genotypes. 
Interestingly, the levels of long-chain TGs were lower in ob/ob mice than in WT 
and PPARγ2 KO mice. Lipidomic characterization of liver tissue revealed 
increased TG levels (mainly short- and medium chain TGs) at 4 weeks of age in 
both POKO and ob/ob mice as compared to WT mice. Ob/ob and POKO mice 
livers had increased levels of medium chain PCs when compared with WT and 
PPARγ2 KO mice. Unsaturated long-chain TGs were enriched in POKO and 
ob/ob livers. Lipidomic profiling in adipose tissue revealed similar levels of 
short-, medium- and long-chain TGs in POKO and ob/ob mice. Polyunsaturated 
long-chain TGs were enriched in POKO and ob/ob mice as compared to WT and 
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PPARγ2 KO mice. Lipidomic data from skeletal muscle showed that 4-week-old 
ob/ob mice had increased short- and medium-chain TGs as compared to other 
genotypes. Muscle from POKO and PPARγ2 KO mice contained more long-
chain TGs than WT and ob/ob muscles. Interestingly, the levels of ceramides 
and lysoPCs increased similarly in both ob/ob and POKO mice. Taken together, 
lipdomic analysis of relevant tissues from 4-week-old mice suggested abnormal 
accumulation of TGs and the resulting lipotoxicity may contribute to the severity 
of the metabolic syndrome in 16-week-old POKO mice. These studies and more 
specifically, the differences observed between the liver, serum and muscle, may 
also indicate the possibility of a hierarchical order of organs with respect to fat 
deposition and lipid-induced toxicity. 
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Figure 4.6. Lipidomic profiling of 4-wk-old mice islets from wild type, PPARγ2 KO, ob/ob 
and POKO mice (n = 5–8). No significant lipids with ANOVA p-values < 0.05 were found. 
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We further investigated the 4-wk-old lipidomics data using chemometric 
approaches to find which specific lipid variables are responsible for the 
separation of the four genotypes. Serum lipid profiles from four genotypes were 
used to demonstrate the usefulness of exploratory analysis. PCA analysis was 
performed to detect outlier samples and check whether samples of same 
genotypes are clustered together. X-block was autoscaled prior to PCA analysis. 
Separation of four genotypes was not very clear (Figure 4.7A) and more fine 
clusters were obtained using PLS/DA analysis. Outliers detected in PCA were 
removed prior to PLS/DA. The data were preprocessed by autoscaling X-block 
data and mean-centering Y-block data. Cross validation (contiguous block cross 
validation method) and Q2 scores were used to optimise the PLS/DA model. 

The variable importance in the projection (VIP) values (Wold et al. 1987) 
were computed to identify most important lipid species contributing to 
separation of four genotypes in the PLS/DA model. Top scoring VIP lipid 
variables responsible for separation each group were found. For instance, VIP 
plot of serum lipidomics for wild type is shown in Figure 4.8. Top VIP scoring 
lipids from the plot are SM(d18:1/22:0), SM(d18:1/24:1), TG(58:9), PE(36:2) 
and PE(38:6e). Similar VIP analysis was also performed on other genotypes to 
find their respective variables responsible for the separation among the 
genotypes. 
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Figure 4.7A, B. Exploratory analysis of serum lipidomic data in the ob/ob mice model for 
four genotypes. Legends WTS, PGS, OBS and POS represent wild type, PPARγ2 KO, 
ob/ob and POKO mice respectively. 
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Figure 4.8. VIP analysis of serum lipidomic data for wild type group. 

4.4.2 Lipidomic characterization of low and high HDL-C subjects 

Low levels of high density lipoprotein cholesterol (HDL-C) is a recognised risk 
factor for heart disease. However, the mechanisms of how low HDL-C is 
contributed to cardiovascular diseases are still unknown. Here, lipidomics was 
utilised to study HDL derived from well characterized high and low HDL-C 
subjects. The study comprised 47 subjects: 24 low-HDL subjects and 23 high-
HDL subjects who were participants of the Health 2000 Health Examination 
Survey. The subjects represented the extreme ends of HDL-C levels (≤ 10th and 
≥ 90th percentiles) and the HDL-C limits were as follows: for low-HDL-C men ≤ 
1.03 mmol/l, low-HDL-C women ≤ 1.23 mmol/l, high-HDL-C men ≥ 1.79 mmol/l, 
and high-HDL-C women ≥ 2.24 mmol/l. Subjects with diabetes, alcohol abuse, 



4. RESULTS AND DISCUSSION 

62 

or malignancy were excluded. Alcohol abuse was defined as >160 grams of 
alcohol / week for women and >310 grams of alcohol / week for men. 

Non-targeted lipidomic analysis was performed on low and high HDL-C 
subjects (Publication III) to uncover the differences in lipid composition and the 
resulting information was used to reconstitute HDL particles computationally. 

Univariate analysis from both clinical measurements and lipidomic profiles 
was performed in order to find the parameters characterising low and high HDL-
C subjects. Clinical and biochemical characteristics of low and high HDL-C 
subjects are summarised in (Table I, Publication III) and lipid species selected 
based on p-values (p < 0.0001) from student t-test between high and low HDL-C 
subjects are summarised in Table S1 of Publication III. Box plots for the most 
abundant lipids from lysoPC, SM, ChoE, ethanolamine plasmalogen (PEp) and 
TG classes are shown in Figure 4.10. 

Supervised classification model was built for clustering and discrimination 
using partial least squares discriminant analysis (PLS/DA). The random subsets 
cross validation method and Q2 scores were used to optimise the models. Based 
on the cross-validation, the model with two latent variables and Q2 = 0.51 was 
selected. PLS/DA scores plot revealed clear separation between the two HDL-C 
groups (Figure 4.9A). Additionally, VIP analysis was performed to discover 
lipid variables responsible for the observed separation. Identified lipids with VIP 
value greater than two were further explored using fold changes and hierarchical 
clustering analysis. Heat map of fold changes with both samples and lipid 
variables ordered by hierarchical clustering is shown in Figure 4.9B. The 
clustering was based on Euclidean distance measure. We found that top VIP 
lipid variables from PLS/DA model formed two predominant clusters: mostly 
low HDL-C subjects and mostly high HDL-C subjects. Few mis-clustered 
samples may partly be attributed to individual variability. The fold changes in 
heat map were reflecting lipid profile changes relative to the average intensity of 
lipids within low HDL-C subjects. Bar plot in Figure 4.9B shows the mean fold 
change value of top VIP lipids within HDL-C subjects as compared to low HDL-
C subjects. 

Linear association of top VIP lipid variables with measured clinical variables 
were investigated using correlation analysis. Pearson correlations were 
computed between clinical and lipid variables. Both clinical and lipid variables 
were clustered using hierarchical clustering (Figure S3, Publication III). 
Interesting correlations were observed between lipid variables and HDL-C 
clinical parameters. Concentrations of TG molecular species were negatively 
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correlated with HDL-C concentration, while the SM and lysoPC lipid species 
were positively correlated with HDL-C parameter. However, PCs did not show 
any general trend in correlation with HDL-C parameter. We further investigated 
HDL-C concentration with some top lipid variables in both low and high HDL-C 
subjects (Figure S4 and S5, Publication III). Positive correlations between 
SM(d18:1/16:0) and HDL-C were similar in low HDL-C subjects (r = 0.71, p = 
0.0001) and high HDL-C subjects (r = 0.71, p = 0.0001). Interestingly, positive 
correlation between lysoPC(18:0) and HDL-C in low HDL-C subjects (r = 0.54, 
p =0.006) disappeared in high HDL-C subjects (r = -0.06, p = 0.78). We 
observed no correlation of TG(16:0/18:1/20:1) with HDL-C in low HDL-C 
subjects (r = 0.06, p = 0.75) and negative correlation in high HDL-C subjects (r 
= -0.43, p = 0.04). Additionally, linear association was also investigated for 
ChoEs with HDL-C. No significant correlations were found with concentrations 
for ChoE(18:1) and HDL-C variable either in low HDL-C subjects (r = 0.33, p = 
0.12) or high HDL-C subjects (r = 0.02, p = 0.92). 

The lipidomic level studies enabled to have a closer look at the molecular 
level details which are used in the simulation studies. While TLC or HPLC 
methods may serve as a valuable tool to analyse class-specific changes, 
lipidomics analysis not only guided to reconstitute HDL particle using 
simulation studies but also enabled us to investigate lipid molecular composition 
(Publication III). All previous simulations in the field have been based on either 
a single-component lipid particle composed of phosphatidylcholines lipids, or a 
two-component mixture of phosphatidylcholines and cholesteryl esters. 
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Figure 4.9 A. Partial least squares discriminant analysis (PLS/DA) of lipidomic profiles for 
low HDL-C and high HDL-C subjects. PLS/DA scores plot with two different HDL-C 
groups are indicated. B. Hierarchical clustering on most important VIP variables and 
samples in the heat map reflecting fold changes of lipids relative to mean intensity within 
low HDL-C group. 
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Figure 4.10. Box plots of the most abundant lipids within the TG, lysoPC, SM, ChoE and 
ethanolamine plasmalogen (PEp) classes. Concentrations are shown in mmol/l [lipid] / 
mg/dl [apoA-I]. 
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5. SUMMARY AND CONCLUSIONS 
Modern MS-based analytical technologies have generated wealth of information 
in lipidomics studies. The information presented many challenges for 
bioinformaticians due to its complexity. The goal of this thesis was to address 
such challenges in the context of non-targeted lipidomics studies based on 
UPLC/MS experimental methodologies. 

A bioinformatics approach for the construction of lipid database for major 
classes of lipids is presented. Each lipid entry in the database was assigned with 
relevant information such as lipid names including short names, SMILES, 
scores, molecular weight, monoisotopic mass, isotope distribution (Publication I). 
The database was customised for UPLC/MS experiments by incorporating the 
information such as retention time range, adducts and main fragments to screen 
for potential lipids. This database information facilitated greatly building of 
experimental tandem MS libraries for different biological tissues. An example of 
such spectral libraries was built for different lipoprotein fractions (Publication VI). 

Non-targeted metabolomic studies are often challenged by the presence of 
unknowns and hence present an additional challenge for the interpretation of 
experimental data. Frequently used supervised classification methods were 
employed for the functional prediction of class labels for unknown lipids to 
facilitate exploratory analysis as well as simplify the identification process 
(Publication II). As lipidomics goes beyond detecting the complete inventory of 
lipids, a new strategy called pathways instantiation is proposed to understand 
lipids in the context of pathways and thereby providing insights for the 
phenotype characterization (Publication I). 

Lipid profiling was successfully applied to study mouse models in the context 
of POKO mice (Publication IV and V) and humans in the context of high and 
low HDL-C subjects (Publication III). Chemometric methods such as principal 
component analysis (PCA) and partial least squares and discriminant analysis 
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(PLS/DA) were employed for exploratory analysis as well as biomarker 
discovery in the context of different phenotypes such as characterization of high 
and low HDL-C subjects (Publication III) and POKO mice (Publication IV). 

5.1 Future perspectives 

While bioinformatics strategies presented herein facilitate lipidomic studies, the 
existing lipid informatics methods need to be extened to include more complex 
lipids and their mass spectra to databases to facilitate screening lipids such as 
steroids and glycolipids. The computational methodologies can be developed for 
the classification of unidentified metabolites for other analytical platforms. The 
novel tools are expected to integrate lipidome data with other omics level 
information in a context-dependent manner and thereby establishing lipid 
networks for underlying phenotypes. The complexity of lipidomes and their 
regulation at multiple levels makes their study a challenge for bioinformaticians 
and computational biologists. 



 

68 

REFERENCES 
Anisimova, M., and Z. Yang. 2007. Multiple Hypothesis Testing to Detect Lineages under 

Positive Selection that Affects Only a Few Sites. Mol. Biol. Evol. 24(5): 1219–1228. 

Apollonio, L. G., D. J. Pianca, I. R. Whittall, W. A. Maher, and J. M. Kyd. 2006. A demonstration 
of the use of ultra-performance liquid chromatography-mass spectrometry 
[UPLC/MS] in the determination of amphetamine-type substances and ketamine 
for forensic and toxicological analysis. J. Chromatogr. B 836(1–2): 111–115. 

Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57(1): 289–300. 

Bennet, R. D., and E. Heftmann. 1962. Thin-layer chromatography of sterols. J. Chromatogr. 
9(9): 359–62. 

Bijlsma, S., I. Bobeldijk, E. R. Verheij, R. Ramaker, S. Kochhar, I. A. Macdonald, B. van 
Ommen, and A. K. Smilde. 2005. Large-Scale Human Metabolomics Studies: A 
Strategy for Data (Pre-) Processing and Validation. Anal.Chem. 78(2): 567–574. 

Brown, M. P. S., W. N. Grundy, D. Lin, N. Cristianini, C. W. Sugnet, T. S. Furey, M. Ares, 
and D. Haussler. 2000. Knowledge-based analysis of microarray gene expression 
data by using support vector machines. Proc.Natl. Acad. Sci. USA 97(1): 262–267. 

Brugger, B., G. Erben, R. Sandhoff, F. T. Wieland, and W. D. Lehmann. 1997. Quantitative 
analysis of biological membrane lipids at the low picomole level by nano-
electrospray ionization tandem masspectrometry. Proc. Natl. Acad.Sci. USA 
94(6): 2339–2344. 

Caffrey, M., and J. Hogan. 1992. LIPIDAT: A database of lipid phase transition temperatures 
and enthalpy changes. DMPC data subset analysis. Chem. Phys. Lipids 61(1): 
1–109. 

Cai, Y.-D., X.-J. Liu, X.-b. Xu, and G.-P. Zhou. 2001. Support Vector Machines for 
predicting protein structural class. BMC Bioinformatics 2(1): 3. 

Churchwell, M. I., N. C. Twaddle, L. R. Meeker, and D. R. Doerge. 2005. Improving LC-
MS sensitivity through increases in chromatographic performance: Comparisons 
of UPLC-ES/MS/MS to HPLC-ES/MS/MS. J. Chromatogr. B 825(2): 134–143. 

Cotter, D., A. Maer, C. Guda, B. Saunders, and S. Subramaniam. 2006. LMPD: LIPID 
MAPS proteome database. Nucl. Acids Res. 34(suppl_1): D507–510. 



 

69 

Cutler, R. G., J. Kelly, K. Storie, W. A. Pedersen, A. Tammara, K. Hatanpää, J. C. Troncoso, 
and M. P. Mattson. 2004. Involvement of oxidative stress-induced abnormalities 
in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. 
Proc.Natl. Acad. Sci. USA 101(7): 2070–2075. 

Druilhet, R. E., M. L. Overturf, and W. M. Kirkendall. 1975. Structure of neutral glycerides 
and phosphoglycerides of human kidney. Int. J. Biochem. 6: 893–901. 

Duda, R. O., P. E. Hart, and D. G. Stork. 2001. Pattern Classification, John Wiley & Sons, 
New York. 

Ejsing, C. S., E. Duchoslav, J. Sampaio, K. Simons, R. Bonner, C. Thiele, K. Ekroos, and 
A. Shevchenko. 2006. Automated Identification and Quantification of 
Glycerophospholipid Molecular Species by Multiple Precursor Ion Scanning. 
Anal. Chem. 78(17): 6202–6214. 

Ejsing C.S., J.L. Sampaio, V. Surendranath, E. Duchoslav, K. Ekroos, et al. 2009. Global 
analysis of the yeast lipidome by quantitative shotgun mass spectrometry. 
PNAS 106(7): 2136–2141. 

Ekroos, K., I. V. Chernushevich, K. Simons, and A. Shevchenko. 2002. Quantitative profiling 
of phospholipids by multiple precursor ion scanning on a hybrid quadrupole 
time-of-flight mass spectrometer. Anal. Chem. 74(5): 941–949. 

Fahy, E., S. Subramaniam, H. A. Brown, C. K. Glass, A. H. Merrill, Jr., R. C. Murphy, C. 
R. H. Raetz, D. W. Russell, Y. Seyama, W. Shaw, T. Shimizu, F. Spener, G. van Meer, 
M. S. VanNieuwenhze, S. H. White, J. L. Witztum, and E. A. Dennis. 2005. A 
comprehensive classification system for lipids. J. Lipid Res. 46(5): 839–862. 

Fahy, E., S. Subramaniam, R. C. Murphy, M. Nishijima, C. R. H. Raetz, T. Shimizu, F. Spener, 
G. van Meer, M. J. O. Wakelam, and E. A. Dennis. 2009. Update of the LIPID 
MAPS comprehensive classification system for lipids. J. Lipid Res. 50(Supplement): 
S9–14. 

Fahy, E., M. Sud, D. Cotter, and S. Subramaniam. 2007. LIPID MAPS online tools for 
lipid research. Nucl. Acids Res. 35(suppl_2): W606–612. 

Farcomeni, A. 2008. A review of modern multiple hypothesis testing, with particular attention 
to the false discovery proportion. Stat. Methods Med. Res. 17(4): 347–388. 

Fernandis, A. Z., and M. R. Wenk. 2009. Lipid-based biomarkers for cancer. J. Chromatogr. B 
877(26): 2830–2835. 

Fisher Box, J. 1987. Guinness, Gosset, Fisher, and Small Samples. Stat. Sci. 2(1): 45–52. 



 

70 

Gopalacharyulu, P. V., E. Lindfors, C. Bounsaythip, T. Kivioja, L. Yetukuri, J. Hollmén, 
and M. Orešič. 2005. Data integration and visualization system for enabling 
conceptual biology. Bioinformatics 21(Supplement 1): i177–185. 

Gray, S., and A. Vidal-Puig. 2007. Adipose Tissue Expandability in the Maintenance of 
Metabolic Homeostasis. Nutr. Rev. 65(s1): S7–S12. 

Griffiths, W. J. 2003. Tandem mass spectrometry in the study of fatty acids, bile acids, 
and steroids. Mass Spectrom. Rev. 22(2): 81–152. 

Gupta, S., M. R. Maurya, D. L. Stephens, E. A. Dennis, and S. Subramaniam. 2009. An 
Integrated Model of Eicosanoid Metabolism and Signaling Based on Lipidomics 
Flux Analysis. Biophys. J. 96(11): 4542–4551. 

Hackl, H., M. Maurer, B. Mlecnik, J. Hartler, G. Stocker, D. Miranda-Saavedra, and 
Z. Trajanoski. 2004. GOLD.db: genomics of lipid-associated disorders database. 
BMC Genomics 5(1): 93–98. 

Han, X., and R. W. Gross. 2001. Quantitative Analysis and Molecular Species Fingerprinting 
of Triacylglyceride Molecular Species Directly from Lipid Extracts of Biological 
Samples by Electrospray Ionization Tandem Mass Spectrometry. Anal. Biochem. 
295(1): 88–100. 

Han, X., and R. W. Gross. 2005a. Shotgun lipidomics: Electrospray ionization mass 
spectrometric analysis and quantitation of cellular lipidomes directly from crude 
extracts of biological samples. Mass Spec. Rev. 24(3): 367–412. 

Han X, Gross RW. 2005b. Shotgun lipidomics: multidimensional MS analysis of cellular 
lipidomes. Expert Review of Proteomics 2: 253–64 

Hand, D. J., H. Mannila, and P. Smyth. 2001. Principles of Data Mining. MIT Press. 

Haynes, C. A., J. C. Allegood, H. Park, and M. C. Sullards. 2009. Sphingolipidomics: 
Methods for the comprehensive analysis of sphingolipids. J.Chromatogr. B 
877(26): 2696–2708. 

Hermansson, M., A. Uphoff, R. Kakela, and P. Somerharju. 2005. Automated Quantitative 
Analysis of Complex Lipidomes by Liquid Chromatography/Mass Spectrometry. 
Anal. Chem. 77(7): 2166–2175. 

Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components. 
J. Educ. Psychol. 24: 417–441. 



 

71 

Houjou, T., K. Yamatani, M. Imagawa, T. Shimizu, and R. Taguchi. 2005. A shotgun 
tandem mass spectrometric analysis of phospholipids with normal-phase and/or 
reverse-phase liquid chromatography/electrospray ionization mass spectrometry. 
Rapid Comm. Mass Spectrom. 19(5): 654–666. 

Joachims, T. 1998. Text Categorization with Support Vector Machines: Learning with Many 
Relevant Features. Proc. ECML-98, 10th European Conference on Machine 
Learning: 137–142. 

Jolliffe, I. T. 1986. Principal Component Analysis. Springer-Verlag, New York. 

Joyce, A. R., and B. O. Palsson. 2006. The model organism as a system: integrating 
'omics' data sets. Nat. Rev. Mol. Cell. Biol. 7(3): 198–210. 

Junker, B., C. Klukas, and F. Schreiber. 2006. VANTED: A system for advanced data 
analysis and visualization in the context of biological networks. BMC Bioinformatics 
7(1): 109. 

Kaluzny, M., L. Duncan, M. Merritt, and D. Epps. 1985. Rapid separation of lipid classes in 
high yield and purity using bonded phase columns. J. Lipid Res. 26(1): 135–140. 

Kanehisa, M., and S. Goto. 2000. KEGG: Kyoto Encyclopedia of Genes and Genomes. 
Nucl. Acids Res. 28(1): 27–30. 

Kanehisa, M., S. Goto, S. Kawashima, Y. Okuno, and M. Hattori. 2004. The KEGG resource 
for deciphering the genome. Nucl. Acids Res. 32(Database issue): D277–280. 

Katajamaa, M., J. Miettinen, and M. Orešič. 2006. MZmine: toolbox for processing and 
visualization of mass spectrometry based molecular profile data. Bioinformatics 
22(5): 634–636. 

Katajamaa, M., and M. Orešič. 2007. Data processing for mass spectrometry-based 
metabolomics. J. Chromatogr. A 1158(1–2): 318–328. 

Katajamaa, M., and M. Orešič. 2005. Processing methods for differential analysis of 
LC/MS profile data. BMC Bioinformatics 6(1): 179–190. 

Keseler, I. M., J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T. Paulsen, M. 
Peralta-Gil, and P. D. Karp. 2005. EcoCyc: a comprehensive database resource 
for Escherichia coli. Nucl. Acids Res. 33(suppl_1): D334–337. 

Khaselev, N., and R. C. Murphy. 2000. Structural characterization of oxidized phospholipid 
products derived from arachidonate-containing plasmenyl glycerophosphocholine. 
J. Lipid Res. 41(3): 564–572. 



 

72 

Koutnikova, H., T.-A. Cock, M. Watanabe, S. M. Houten, M.-F. Champy, A. Dierich, and 
J. Auwerx. 2003. Compensation by the muscle limits the metabolic consequences 
of lipodystrophy in PPAR gamma hypomorphic mice. Proc. Natl. Acad. Sci. USA 
100(24): 14457–62. 

Krieger, C. J., P. Zhang, L. A. Mueller, A. Wang, S. Paley, M. Arnaud, J. Pick, S. Y. Rhee, 
and P. D. Karp. 2004. MetaCyc: a multiorganism database of metabolic pathways 
and enzymes. Nucl. Acids Res. 32(suppl_1): D438–442. 

Leandro, C. C., P. Hancock, R. J. Fussell, and B. J. Keely. 2006. Comparison of ultra-
performance liquid chromatography and high-performance liquid chromatography 
for the determination of priority pesticides in baby foods by tandem quadrupole 
mass spectrometry. J. Chromatogr. A 1103(1): 94–101. 

Leavell, M. D., and J. A. Leary. 2006. Fatty Acid Analysis Tool (FAAT): An FT-ICR MS 
Lipid Analysis Algorithm. Anal. Chem. 78(15): 5497–5503. 

Lesnefsky, E. J., M. S. K. Stoll, P. E. Minkler, and C. L. Hoppel. 2000. Separation and 
Quantitation of Phospholipids and Lysophospholipids by High-Performance 
Liquid Chromatography. Anal. Biochem. 285(2): 246–254. 

Lu, Y., S. Hong, and C. Serhan. 2006. Lipid Mediator Informatics-Lipidomics: Novel 
Pathways in Mapping Resolution. AAPS Journal 8(2): E284–E297. 

Lusis, A. J. 2000. Atherosclerosis. Nature 407(6801): 233–241. 

Mann, H. B., and D. R. Whitney. 1947. On a test of whether one of two random variables 
is stochastically larger than the other. Ann. Math. Stat. 18: 50–60. 

Matthew Barker, W. R. 2003. Partial least squares for discrimination. J. Chemometr. 
17(3): 166–173. 

McHowat, J., J. H. Jones, and M. H. Creer. 1997. Gradient elution reversed-phase 
chromatographic isolation of individual glycerophospholipid molecular species. 
J.Chromatogr. B 702(1–2): 21–32. 

Menendez, J. A., and R. Lupu. 2007. Fatty acid synthase and the lipogenic phenotype in 
cancer pathogenesis. Nat. Rev. Cancer 7(10): 763–777. 

Merrill, J., Alfred H., M. C. Sullards, J. C. Allegood, S. Kelly, and E. Wang. 2005. 
Sphingolipidomics: High-throughput, structure-specific, and quantitative analysis 
of sphingolipids by liquid chromatography tandem mass spectrometry. Methods 
36(2): 207–224. 



 

73 

Michalec, C., M. Sulc, and J. Mestan. 1962. Analysis of Cholesteryl Esters and Triglycerides 
by Thin-Layer Chromatography. Nature 193: 63–64. 

Miller, R. G. 1981. Simultaneous statistical inference. Springer Verlag, New York. 

Mitchell, T. 1997. Machine Learning. McGraw Hill, New York. 

Myoung Hee Lee, G. H. L., Jong Shin Yoo,. 2003. Analysis of ceramides in cosmetics by 
reversed-phase liquid chromatography/electrospray ionization mass spectrometry 
with collision-induced dissociation. Rapid Comm. Mass Spectrom. 17(1): 64–75. 

Navas-Iglesias, N., A. Carrasco-Pancorbo, and L. Cuadros-Rodríguez. 2009. From lipids 
analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st 
century. Part II: Analytical lipidomics. Trac-trend Anal. Chem. 28(14): 393–403. 

Ogiso, H., T. Suzuki, and R. Taguchi. 2008. Development of a reverse-phase liquid 
chromatography electrospray ionization mass spectrometry method for lipidomics, 
improving detection of phosphatidic acid and phosphatidylserine. Anal. 
Biochem. 375(1): 124–131. 

Orešič, M., V. A. Hänninen, and A. Vidal-Puig. 2008. Lipidomics: a new window to 
biomedical frontiers. Trends Biotechnol. 26(12): 647–652. 

Panganamala, R. V., L. A. Horrocks, J. C. Geer, and D. G. Cornwell. 1971. Positions of 
double bonds in the monounsaturated alk-1-enyl groups from the plasmalogens 
of human heart and brain. Chem. Phys. Lipids 6(2): 97–102. 

Pearson, K. 1896. Mathematical contributions to the theory of evolution. III. Regression, 
heredity and panmixia. Philos. Trans. Royal Soc. 187: 253–318. 

Pietiläinen, K. H., M. Sysi-Aho, A. Rissanen, T. Seppänen-Laakso, H. Yki-Järvinen, J. Kaprio, 
and M. Orešič. 2007. Acquired Obesity Is Associated with Changes in the Serum 
Lipidomic Profile Independent of Genetic Effects- A Monozygotic Twin Study. 
PLoS ONE 2(2): e218. 

Pulfer, M., and R. C. Murphy. 2003. Electrospray mass spectrometry of phospholipids. 
Mass Spectrom. Rev. 22(5): 332–364. 

Rosen, E. D., P. Sarraf, A. E. Troy, G. Bradwin, K. Moore, D. S. Milstone, B. M. Spiegelman, 
and R. M. Mortensen. 1999. PPAR[gamma] Is Required for the Differentiation of 
Adipose Tissue In Vivo and In Vitro. Mol. Cell 4(4): 611–617. 

Schwudke, D., J. Oegema, L. Burton, E. Entchev, J. T. Hannich, C. S. Ejsing, T. Kurzchalia, 
and A. Shevchenko. 2005. Lipid Profiling by Multiple Precursor and Neutral Loss 
Scanning Driven by the Data-Dependent Acquisition. Anal.Chem. 78(2): 585–595. 



 

74 

Shi, Y., and P. Burn. 2004. Lipid metabolic enzymes: emerging drug targets for the treatment 
of obesity. Nat. Rev. Drug Discov. 3(8): 695–710. 

Snedecor, G. W., and W. G. Cochran. 1989. Statistical Methods, Iowa State University Press. 

Snyder, F. 1999. The ether lipid trail: a historical perspective. Biochimica et Biophysica 
Acta (BBA) – Molecular and Cell Biology of Lipids 1436(3): 265–278. 

Song, H., F.-F. Hsu, J. Ladenson, and J. Turk. 2007. Algorithm for Processing Raw Mass 
Spectrometric Data to Identify and Quantitate Complex Lipid Molecular Species 
in Mixtures by Data-Dependent Scanning and Fragment Ion Database Searching. J. 
Am. Soc. Mass Spectrom. 18(10): 1848–1858. 

Spearman, C. 1904. The proof and measurement of association between two things. Amer. J. 
Psychol. 15: 72–101. 

Spiegelman, B. M. 1998. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. 
Diabetes 47(4): 507–514. 

Ståhlman, M., C. S. Ejsing, K. Tarasov, J. Perman, J. Borén, and K. Ekroos. 2009. High-
throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. 
J. Chromatogr. B 877(26): 2664–2672. 

Sud, M., E. Fahy, D. Cotter, A. Brown, E. A. Dennis, C. K. Glass, A. H. Merrill, Jr, R. C. 
Murphy, C. R. H. Raetz, D. W. Russell, and S. Subramaniam. 2007. LMSD: 
LIPID MAPS structure database. Nucl. Acids Res. 35(suppl_1): D527–532. 

Taskinen, M. R., T. Kuusi, E. Helve, E. A. Nikkila, and H. Yki-Järvinen. 1988. Insulin therapy 
induces antiatherogenic changes of serum lipoproteins in noninsulin-dependent 
diabetes. Arteriosclerosis 8(2): 168–177. 

Thomas M.C., T.W. Mitchell, D.G. Harman, J.M. Deeley, J.R. Nealon, and S.J. Blanksby 
2007. Ozone-Induced Dissociation: Elucidation of Double Bond Position within 
Mass-Selected Lipid Ions. Analytical Chemistry 80: 303–11 

van Meer, G. 2005. Cellular lipidomics. EMBO J. 24(18): 3159–3165. 

Vance, D. E., and J. E. Vance. 2008. Biochemistry of lipids, lipoproteins and membranes. 
Elsevier, Hungary. 

Vapnik, V. 1995. The nature of statistical learning theory. Springer-Verlag, New York. 



 

75 

Wang, C., H. Kong, Y. Guan, J. Yang, J. Gu, S. Yang, and G. Xu. 2005. Plasma 
Phospholipid Metabolic Profiling and Biomarkers of Type 2 Diabetes Mellitus 
Based on High-Performance Liq uid Chromatography/Electrospray Mass 
Spectrometry and Multivariate Statistical Analysis. Anal. Chem. 77(13): 4108–4116. 

Watson, A. D. 2006. Thematic review series: Systems Biology Approaches to Metabolic 
and Cardiovascular Disorders. Lipidomics: a global approach to lipid analysis in 
biological systems. J. Lipid Res. 47(10): 2101–2111. 

Weininger, D. 1988. SMILES, a chemical language and information system. 1. Introduction 
to methodology and encoding rules. J. Chem. Inform. Comput. Sci. 28(1): 31–36. 

Wenk, M. R. 2005. The emerging field of lipidomics. Nat. Rev. Drug Discov. 4(7): 594–610. 

Wilcoxon, F. 1945. Individual comparisons by ranking methods. Biometrics Bull. 1: 80–83. 

Wilson, I. D., J. K. Nicholson, J. Castro-Perez, J. H. Granger, K. A. Johnson, B. W. Smith, 
and R. S. Plumb. 2005. High Resolution Ultra Performance Liquid Chromatography 
Coupled to oa-TOF Mass Spectrometry as a Tool for Differential Metabolic Pathway 
Profiling in Functional Genomic Studies. J.Proteome Res. 4(2): 591–598. 

Wold, S., K. Esbensen, and P. Geladi. 1987. Principal Component analysis. Chemometr. 
Intell. Lab. Syst. 2: 37–52. 

Yetukuri, L., K. Ekroos, A. Vidal-Puig, and M. Orešič. 2008. Informatics and computational 
strategies for the study of lipids. Mol. BioSyst. 4(2): 121–127. 

Zemski Berry, K. A., and R. C. Murphy. 2004. Electrospray ionization tandem 
mass spectrometry of glycerophosphoethanolamine plasmalogen phospholipids. 
J. Am. Soc. Mass Spectrom. 15(10): 1499–1508.  
 
 
 
Publications  II and VI are not included in the PDF version.  
Please order the printed version to get the complete publication 
(http://www.vtt.fi/publications/index.jsp). 
 

 

 

http://www.vtt.fi/publications/index.jsp


 

 

 
 

 

 Series title, number and 
report code of publication 
 
VTT Publications 741 
VTT-PUBS-741 

Author(s) 
Laxmana Rao Yetukuri 
Title 

Bioinformatics approaches for the analysis of 
lipidomics data 

Abstract 
The potential impact of lipid research has been increasingly realised both in disease treatment and 
prevention. Recent advances in soft ionization mass spectrometry (MS) such as electrospray 
ionization (ESI) have permitted parallel monitoring of several hundreds of lipids in a single experiment 
and thus facilitated lipidomics level studies. These advances, however, pose a greater challenge for 
bioinformaticians to handle massive amounts of information-rich MS data from modern analytical 
instruments in order to understand complex functions of lipids. The main aims of this thesis were to 1) 
develop bioinformatics approaches for lipid identification based on ultra performance liquid 
chromatography coupled to mass spectrometry (UPLC/MS) data, 2) predict the functional annotations 
for unidentified lipids, 3) understand the omics data in the context of pathways and 4) apply existing 
chemometric methods for exploratory data analysis as well as biomarker discovery. 

A bioinformatics strategy for the construction of lipid database for major classes of lipids is 
presented using simplified molecular input line entry system (SMILES) approach. The database was 
annotated with relevant information such as lipid names including short names, SMILES information, 
scores, molecular weight, monoisotopic mass, and isotope distribution. The database was tailored for 
UPLC/MS experiments by incorporating the information such as retention time range, adduct 
information and main fragments to screen for the potential lipids. This database information facilitated 
building experimental tandem mass spectrometry libraries for different biological tissues. 

Non-targeted metabolomics screening is often get plagued by the presence of unknown peaks and 
thus present an additional challenge for data interpretation. Multiple supervised classification methods 
were employed and compared for the functional prediction of class labels for unidentified lipids to 
facilitate exploratory analysis further as well as ease the identification process. As lipidomics goes 
beyond complete characterization of lipids, new strategies were developed to understand lipids in the 
context of pathways and thereby providing insights for the phenotype characterization. Chemometric 
methods such as principal component analysis (PCA) and partial least squares and discriminant 
analysis (PLS/DA) were utilised for exploratory analysis as well as biomarker discovery in the context 
of different disease phenotypes.  
ISBN 
978-951-38-7402-5 (soft back ed.) 
978-951-38-7403-2 (URL: http://www.vtt.fi/publications/index.jsp) 

Series title and ISSN Project number 
VTT Publications 
1235-0621 (soft back ed.) 
1455-0849 (URL: http://www.vtt.fi/publications/index.jsp) 

 

Date Language Pages 
May 2010 English 75 p. + app. 106 p. 

Name of project Commissioned by 
  

Keywords Publisher 
Lipids, Lipidomics, Bioinformatics, Lipid 
pathways, High density lipoproteins, k-nearest 
neighbours, Liquid chromatography/mass 
spectrometry, Principal component analysis, 
Partial least squares and discriminant analysis, 
Obesity, Support vector machines, LipidDB 

VTT Technical Research Centre of Finland 
P.O. Box 1000, FI-02044 VTT, Finland 
Phone internat. +358 20 722 4520 
Fax +358 20 722 4374 

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp


 

 

 



Dissertation	 	 VTT PUBLICATIONS 741
VTT CREATES BUSINESS FROM TECHNOLOGY
�Technology and market foresight • Strategic research • Product and service development • IPR and licensing 
• Assessments, testing, inspection, certification • Technology and innovation management • Technology partnership

• • •  VTT PU
B

LIC
A

TIO
N

S 741	
B

ioin


for


m
atics approac










h
es for t


h

e anal



ysis o

f lipid
o

m
ics 

d
ata



ISBN 978-951-38-7402-5 (soft back ed.) 	 ISBN 978-951-38-7403-2 (URL: http://www.vtt.fi/publications/index.jsp)
ISSN 1235-0621 (soft back ed.)		  ISSN 1455-0849 (URL: http://www.vtt.fi/publications/index.jsp)

Laxmana Rao Yetukuri 

Bioinformatics approaches for the 
analysis of lipidomics data

Lipid research has recently gained increased attention due to their involvement in 
numerous diseases including diabetes, obesity, atherosclerosis and Alzheimer’s dis-
ease. Modern technological advancements in mass spectrometry allowed us to study 
several hundreds of lipids at a time. This level of investigation not only provides 
insights into the specific roles of lipid molecular species in the health and disease, 
but also facilitates in identifying potential biomarkers for prevention and treatment 
of human health. These developments, however, comes with a set of informatics 
challenges in terms of handling the data. This thesis mainly deals with some of the 
challenges associated with this kind of lipid research in the context of liquid chro-
matography/mass spectrometry methods. The presented informatics methods herein 
assist in identification of molecular species, their functional class prediction, and 
data interpretation in biological pathway context and data analysis

http://www.vtt.fi/publications/index.jsp
http://www.vtt.fi/publications/index.jsp

	Abstract
	Preface
	List of publications
	Author’s contribution
	Contents
	List of abbreviations
	1. INTRODUCTION
	1.1 Aims of the thesis

	2. LITERATURE REVIEW
	2.1 Lipid analysis using LC/MS techniques
	2.2 UPLC/MS-based non-targeted lipidomic analysis
	2.3 Data processing tools for lipid analysis
	2.4 Lipid databases
	2.5 Lipid pathway resources

	3. METHODS
	3.1 Lipid analysis using UPLC/MS platform
	3.2 Lipid database construction
	3.3 Lipid pathways
	3.4 Modeling with supervised and unsupervised methods
	3.5 Statistical hypothesis testing

	4. RESULTS AND DISCUSSION
	4.1 Lipid identification
	4.2 Functional class label prediction of unidentified peaks
	4.3 Reconstruction of lipid pathways
	4.4 Lipid profiling applications and data analysis

	5. SUMMARY AND CONCLUSIONS
	5.1 Future perspectives

	REFERENCES
	PUBLICATION I
	PUBLICATION III
	PUBLICATION IV
	PUBLICATION V



