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ABSTRACT 

 

Sustainability is now a necessity to process industry. Therefore the safety, health, and 

environmental (SHE) evaluations are required in process design and operation. Various 

methods for assessing safety and environmental friendliness have been presented in 

literature. However, occupational health evaluations have received much less attention 

even though each year more people die from work-related diseases than are killed in 

industrial accidents. 

 

Inherent occupational health assessment is an approach to reduce hazards by choosing 

healthier chemicals and process concepts. I.e. inherent occupational health relies on the 

healthier and safer properties of chemical substances, process conditions, operations, and 

work procedures in a process. This thesis presents new systematic approaches for 

evaluating inherent occupational health of chemical processes in process development 

and design. 

 

In the R&D stage, the Inherent Occupational Health Index (IOHI) is proposed based on 

healthier and safer reaction chemistries, properties of compounds present, and process 

conditions such as pressure, volatility, exposure limits, and temperature etc.  

 

In the preliminary design stage, chronic health risk is calculated due to exposure to 

fugitive airborne emissions based on flow sheet data and precalculated process modules’ 

emission, estimated process plot areas, and wind velocities. Health Quotient Index (HQI) 

is used as a health indicator to compare the estimated chemical concentrations to their 

exposure limits.  

 

In the basic engineering stage, the Occupational Health Index (OHI) utilizes detailed 

fugitive emission calculations based on piping and instrumentation diagrams. The method 

evaluates quantitatively chronic inhalation risks to noncarcinogens and carcinogens, acute 

inhalation risk, and qualitatively dermal/eye risk.  
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For fugitive exposure estimation new methods were developed. Three approaches for 

estimating chemical concentration due to fugitive emissions are proposed based on 

simple PFD, detailed PFD, and PID, which were tested on the actual Borealis Polymers 

plant in Porvoo. A more realistic approach was developed for estimating health risks of 

fugitive occupational exposure by using statistical meteorological data.  

 

Finally the integration of the inherent occupational assessment methods with the existing 

computer aided design tools was studied. Also the correlation between index-based SHE 

assessment techniques was analyzed to find out, if any interdependency exists between 

SHE characteristics at the inherent level.  

 

Keywords: inherent occupational health, process development, process design, inhalative 

exposure, fugitive emission, health risk, index method. 
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1. INTRODUCTION 

 

Sustainability is defined as ‘meeting the needs of the present without compromising the 

ability of future generations to meet their own need’ (Anon, 1987). A generally accepted 

division of sustainability is to divide it into economic, environmental, and social 

sustainability. From company point of view corporate responsibility is the term used to 

cover these aspects. Health and safety are an important part of the corporate 

responsibility in social sustainability. Therefore workers’ health and safety are among the 

sustainability indicators used (Al-Sharrah et al., 2010).  

 

Both voluntary and legal requirements related to sustainability have been imposed. 

Responsible Care, which was introduced in 1988, commits the members of Chemical 

Manufacturers Association to improve safety, health, and environmental (SHE) 

performance (Hook, 1996). EU directives have also affected process development and 

design so that SHE aspects have to be taken into consideration in earlier phase. For 

example, the IPPC was enacted to achieve a high level of protection of the environment 

for sustainable development on the basis of what is achievable with the best techniques 

available in the individual industrial sectors falling within the scope of the directive 

(O’Malley, 1999). Meanwhile the REACH legislation is necessary to protect lives and 

workers’ health besides the environment. The European Agency for Safety and Health at 

Work (EU-OSHA) was set up in 1996 to make Europe’s workplaces safer, healthier, and 

more productive. The European Risk observatory was then set up in 2005 as an integral 

part of the EU-OSHA. It describes factors and anticipates changes in the working 

environment and their likely consequences to health and safety (EU-OSHA, 2010). It 

aims to identify new and emerging risks and to promote early preventive action. SHE 

considerations in process development and design have therefore become important 

because of legal requirements, company image, and economic reasons. 

 

Due to increasing production volumes and higher knowledge about the danger potentials 

of chemical substances and processes, safety and environmental issues started to get into 

public, regulatory, and industrial focus during the 1960s. Much effort was put on 
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developing safety technologies for reducing the probability of accidents by installing add-

on control systems. End-of-pipe technologies were introduced for converting industrial 

effluents into less dangerous substances and control systems were adopted to keep 

processes in a safe state. However, with these add-on technologies, hazards still remained 

in the processes and accidents were bound to happen because of the hazards persisted. 

The add-on systems are also costly; estimates show that in the oil and chemical 

industries, 15 to 30% of capital cost was spent on safety and pollution prevention 

measures already in the 1980’s (Kletz, 1985).  

 

Following the largest peacetime explosion of the Flixborough disaster in Britain in 1974, 

the concept of inherently safer design was introduced. Inherent SHE is a way of reducing 

hazards by choosing safer chemicals and process concepts, whereas add-on systems only 

reduce the risks by keeping the hazards under control. In principle an inherently safe, 

environmentally friendly, and healthy plant or activity cannot, under any circumstances, 

cause harm to people or environment (Mansfield, 1996). Protective equipment may fail 

and human may create errors. Therefore designing a fundamentally safer, 

environmentally friendlier, and healthier plant is more appealing and should be made as 

the first choice by designers and engineers. This idea has already been discussed a lot in 

process safety (Kletz, 1985) and clean technology (Ashford, 1997), but not in health 

aspect in process design even though Kletz proposed that. This is astonishing since it is a 

known fact that each year more people die from occupational related diseases than by 

industrial accidents (Wenham, 2002).  

 

In fact occupational health aspect has not been widely researched in the design of 

chemical plants, but active work has been done dominantly from medical point of view. 

CPI involves hazardous chemical substances as main products, byproducts, intermediates, 

wastes or raw materials. Such potential risks to health must be clearly recognized and 

considered in the design of the facility. Although more is understood now about some 

occupational hazards than in the past, every year new chemicals and new technologies are 

being introduced which present new and often unknown hazards to both workers and the 

community. Therefore on 1 June 2007, the EC enforced REACH that requires anyone 
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manufacturing or importing a chemical substance to be placed on the market in the EU, in 

quantities above 1 tonne per year, to register that substances for the uses to which it will 

be put. Also the hazardous effects of these chemicals need to be reported. 

 

1.1 Aims of the Study 

Since the obvious aim is to reduce the hazards and not just to control the risks, this 

principle has to be introduced also to the consideration of occupational health aspect in 

process design. Therefore the aim of the study is to develop methodologies for assessing 

occupational health hazards during the development and process design phases of 

chemical processes based on the inherent safety principles.  

 

In Chapter 2, the concepts of health and safety are described. Statistics on occupational 

injuries and diseases are presented and how occupational health differs from process 

safety is explained to instill understanding on the major subject of the study. Inherent 

safety concept and its evolvement towards environmental and health aspects are also 

discussed before inherent occupational health definition is introduced. Chapter 3 

discusses health hazards and risks as well as primary chemical route of exposure and 

exposure assessment in chemical industries. Chapter 4 describes lifecycle stages of a 

typical chemical process with a focus on development and design phases. Chapter 5 

summarizes the existing occupational health-related assessment methods for chemical 

industries and discusses several important methods in this area. Chapter 6 presents the 

Process Route Healthiness Index as the first formally published methodology for inherent 

occupational health assessment and its weaknesses, which motivated this research study. 

Chapters 7, 8, and 9 discuss in detail the methods developed for the research and 

development, preliminary design, and basic engineering stages. This is the main 

contribution of the thesis. Chapter 10 describes the development of methods for 

estimating fugitive emissions in preliminary design and basic engineering stages based on 

data from simple process flow diagrams (PFDs), detailed PFDs, or piping and 

instrumentation diagrams (PIDs). Chapter 11 discusses chemical concentrations 

calculation due to fugitive emissions as well as air flow rate estimation for the same 

stages as in Chapter 10. For more realistic health risk assessment, worker exposure 
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estimation approach based on local wind distribution data is also covered in Chapter 12. 

Chapter 13 describes the feasibility and framework for integrating the methods with the 

existing computer aided design tools. In Chapter 14, the correlation between SHE 

characteristics is studied. A universal index that capable of evaluating all the SHE aspects 

in the case study is proposed. Chapter 15 presents the layout of the overall approach for 

occupational health evaluation in process development and design. The thesis is finally 

wrapped up with conclusions in Chapter 16. 
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2. HEALTH AND SAFETY 

 

2.1 The Concepts of Health and Safety 

Before inherent occupational health concept is introduced, it is necessary to understand 

the related terms of health and safety.  

 

Hazard is a chemical or physical condition that has a potential to cause damage (Crowl 

and Louvar, 2002).  

Risk is a measure concerning both the likelihood and magnitude of loss (Crowl and 

Louvar, 2002). These terms will be widely used below and therefore their difference is 

emphasized. 

 

Health in general is defined as a state of physical and mental well-being (as an opposite 

to illness) (Princeton Encyclopedia, 2010).  

Occupational health is the protection of the bodies and minds of people from illness 

resulting from materials, processes, or procedures used in the workplace (Hughes and 

Ferrett, 2008) and its aim is the promotion and maintenance of the highest degree of 

physical, mental, and social well-being of workers in all occupations by preventing 

departures from health, controlling risks, and the adaptation of work to people and people 

to their jobs (ILO, 1950).  

OSHA (OECD, 2008) defines an occupational disease or illness as any abnormal 

condition or disorder, other than one resulting from an occupational injury, caused by 

exposure to factors associated with employment. Occupational diseases concern with a 

disease contracted as a result of an exposure over a period of time to risk factors arising 

from work activity. 

 

Safety is the prevention of accidents (Crowl and Louvar, 2002) through hazards 

identification and their elimination.  

Accident is defined as any unplanned event that results in injury or ill health of people or 

loss to property, plant, materials, or the environment or a loss of a business opportunity 

(Hughes and Ferrett, 2005).  
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Occupational safety is the protection of people from physical injury from accidents at 

work (Hughes and Ferret, 2008).  

An occupational injury is any personal injury, disease, or death resulting from an 

occupational accident (ILO, 1998) e.g. instantaneous exposure in the working 

environment (National Safety Council, 1999).  

Process safety (or loss prevention) can be defined as the prevention of accidents through 

the use of appropriate technologies to identify and eliminate the hazards of a chemical 

plant (Crowl and Louvar, 2002). 

 

Consequently occupational safety and health is the discipline dealing with the prevention 

of injuries and diseases of workers resulting from the materials, processes, or procedures 

used in the workplace (ILO, 1997; Hughes and Ferrett, 2008). The two words are 

normally used together and the borderline between health and safety is ill defined. Quite 

often, the classification of health and safety hazards is used to define the difference in 

duties between the industrial hygienist and the safety professional within a given 

organization (Talty, 1988). Figures 1 and 2 summarize the concepts of health and safety. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Health concept 

 

 

HEALTH 

occupational health 

long-term exposure 
in day-to-day work 
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Figure 2. Safety concepts 

 

2.2 Occupational Health vs. Occupational/Process Safety  

Occupational health differs from occupational safety and process safety in terms of 

several criteria; the exposure pattern, duration of event, exposure scenario, and process 

state. The details about the differences are described in Papers 1 and 2, and are 

summarized in Table 1.  

 

Table 1. Occupational health vs. occupational/process safety criteria 

Criteria Occupational health Occupational safety Process safety 

Exposure pattern Chronic (repeated) Acute (single) Acute (single) 

Event duration Long-term Short-term Short-term 

Exposure scenario Routine activity Accident, routine activity Accident, loss of containment 

Process state Normal Normal Abnormal 

 

From Table 1, occupational health is related to normal everyday work activities and long-

term exposure to chemicals. Occupational safety also is concerned with normal activity, 

but short-term accident due to physical hazards. Meanwhile process safety refers to major 

accidents, loss prevention, and acute short-term exposure in abnormal situations. The 

SAFETY 

occupational safety 

occupational accident 

process accident 

occupational injury process safety 

injury to people 
loss of property 
loss to environment 
loss to business 
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occupational health and safety hazards directly affect human’s life only compared to 

process safety hazards, which also have interest on the plant, property, and cost. The 

nature of risk is also different; since airborne toxic substances are harmful at much lower 

concentrations than merely corrosive and flammable ones, their effects extend to much 

greater distances. These imply that although the occurrence of occupational health effect 

is long-term and less dramatic, the impact could be more serious in the long run than the 

occurrence of safety-related events. The insidious nature of occupational disease is the 

reason for it rarely reaches the news and is not well publicized as the industrial accident 

cases. 

 

Health effects can be divided into acute and chronic effects due to short-term and 

prolonged exposures, respectively. Occupational health mainly deals with chronic 

exposure as a result of regular operations and day-to-day (routine) working activities. In 

large-scale process industry, chronic exposure is mainly contributed by fugitive 

emissions. Acute exposure may also occur in large-scale process industry primarily due 

to periodic emissions, which are mainly from occasional but acceptable working practices 

e.g. manual operations as described in Paper 4. Here occupational health assessment 

covers both chronic and acute occupational exposures as presented in Figure 3. Acute 

effects due to major process accidents such as loss of containment, fire, and explosion are 

the subjects of process safety, hence beyond the scope of the research (see Figure 3). 

 

2.3 Occupational Injuries and Diseases 

The concept of occupational health was first introduced by Bernadino Ramazini, an 

Italian physician, who suggested a rule in the 17th century for evaluating whether a 

workplace-induced factor could be the cause of a disease in an individual (Harbison and 

McCluskey, 2001). 
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Figure 3. Occupational health vs. occupational/process safety 

 

Still nowadays, hundreds of millions of people throughout the world are working under 

circumstances that are unsafe and/or foster illnesses. They are exposed to a multitude of 

workplace hazards such as chemicals, extreme temperature, and noise. More than two 

million people worldwide die of occupational injuries and work-related diseases each 

year according to International Labour Office (ILO) (Eijkemans, 2005). Eijkemans 

(2005) states that the figure might be vastly under-estimated due to poor reporting and 

varying recording criteria. In the EU27 alone, there are an estimated 167 000 work-

related fatalities every year. About 159 000 are attributable to work-related diseases, of 

which 74 000 may be linked to workplace exposure to hazardous substances (ILO, 2005). 

 

Almost one-quarter of the workers in the EU are exposed to recognized cancer-causing 

chemicals, whilst 22% of all workers self-report breathing fumes and vapors for at least 

one-quarter of their working time (Levy, 2004). It is also reported that in the EU, 

dangerous substances contribute significantly to the 350 million working days lost due to 

occupational illnesses (Paoli and Merllie, 2001). 

 

• Low probability/frequency (1/year) 
• High immediate consequence (e.g., fire) 
• Short-term exposure and effect 
• Direct effect: property & people 
• Local/spread (domino effects) 
• Accident 
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• Intermediate probability/frequency (1/month) 
• Moderate immediate consequence (e.g. fall, burn) 
• Short-term exposure and acute effect 
• Direct effect: human 
• Local (normally with low dilution) 
• Normal but rare activities/conditions (e.g. scaffolding, cleaning) 
• Accident (occupational safety) 

• High probability/frequency (1/day) 
• No immediate consequence  
• Long-term exposure and effect 
• Direct effect: human 
• Local/throughout production area (diluted) 
• Normal, everyday activities/conditions   
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In Finland alone, almost 6 800 recognized or suspected cases of occupational diseases (28 

cases per 10 000 employed in all occupations) were notified to the Finnish Register of 

Occupational Diseases in 2005. Meanwhile in chemical, pulp and paper industry 83 cases 

per 10 000 employees were reported in 2006. The statistic of the occupational disease 

cases in Finland is presented by the Finnish Institute of Occupational Health (2010).  

 

2.4 Inherent Safety vs. Extrinsic Safety (Add-on) 

The losses and occupational injuries and diseases can be reduced by diminishing risks. 

Risk can be reduced by decreasing the hazards (i.e. hazard potential) or by managing the 

hazards by add-on or administrative systems (Figure 4). The levels from the highest to 

the lowest order of effectiveness are inherent safety, engineered or add-on controls, and 

procedural or administrative controls. This is known as layer of protection analysis 

(LOPA) (CCPS, 2009). If add-on safety relates to prevention of risk of accidents 

(prevention of likelihood and magnitude), inherent safety concerns with prevention of 

hazards (prevention of hazard potential in a system) through the use of more benign 

chemicals and technologies. The idea of inherent safety is to avoid problems by solving 

them at their roots rather than to manage the consequences. This is in contrast to the 

traditional safety that relies on the add-on control systems, which keep the plant hazards 

under control (extrinsically safer) rather than being intrinsically safer. 

 

Inherent safety is the first layer and most important strategy, because it deals with the 

elimination or reduction of the inherent hazards at source (i.e. hazard potential). The 

subsequent layers of protection are frequently used to mitigate the consequences and 

protect the receptors of the already-accepted hazard, but they do not reduce the hazard 

potential. 

 

Inherent safety ideology started to develop in 1970’s. Professor Trevor Kletz was the first 

to propose the concept in 1971 (Khan and Amyotte, 2003); the idea however, remained 

latent until the explosion at Flixborough four years later. Kletz (1976) delivered the idea 

on the inventory reduction to avoid Flixborough type of explosions, but the word 

‘inherently safer’ was not used. The inherent safety principles were then formalized. In 



 11 

1977, Kletz gave an annual Jubilee lecture ‘What you don’t have, can’t leak’, which 

devoted entirely to inherently safer design. 

 

Inherently safer design (ISD) is a different way of thinking in designing chemical 

products and processes. Applying the concept at the very beginning of a project allows a 

safe product to be chosen instead of a hazardous one. Then a route that avoids the use of 

hazardous raw materials or intermediates can be selected (Kletz, 1998). The basic 

decision on e.g. reaction chemistry affects the hazard potential of a plant more than the 

initial choice of technology (Anon, 1988), because manipulation of chemistry and 

physics of the materials is more effective to prevent accidents than dependence on 

additional elements to stop incipient incidents (CCPS, 1993). Among the earlier methods 

developed to quantify the inherent safety of a chemical process route is the Prototype 

Index of Inherent Safety; PIIS (Edwards and Lawrence, 1993), Inherent Safety Index; ISI 

(Heikkilä et al., 1996), and i-Safe (Palaniappan et al., 2002). Other existing inherent 

safety assessment methods are mentioned in Papers 1 and 4. Once the chemistry has been 

decided, intensified equipment that does not require large inventories can be chosen 

during the flow sheet development (Kletz, 1998). 

 

Basically the strategies to the inherently safer design of processes and plants discussed 

above have been grouped by Kletz (1984, 1991) into four major strategies:  

 

Minimization or Intensification 

Use smaller quantities of hazardous substances (either material or energy content). 

 

Substitution 

Replace a hazardous material or process with a less hazardous one. 

 

Moderation or Attenuation 

Use materials under less hazardous form, which can be accomplished either by physical 

(i.e. dilution) or by chemical (i.e. less severe process conditions) strategies (also called 

Limitation of Effects). 



 12 

Simplification 

Design processes or facilities which eliminate unnecessary complexity, thereby reducing 

the opportunities for error, and which are forgiving of errors that are made (also called 

Error Tolerance). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Hazard and risk management strategies 

 

2.4.1 Adoption of inherent safety concept to health 

Workers do not create hazards if the working guidelines are proper and they are followed. 

In many cases the hazards are built into the workplace (Kletz, 1991). It is therefore 

important to make work safer by designing an inherently safer workplace rather than try 

to get workers to adapt to unsafe conditions. This rationale of the inherent safety concept 

makes it interesting for adoption on the environmental and health aspects. Kletz (1984) 

proposed that the concept also applies to the prevention of pollution (environmental 

aspect) and the avoidance of small continuous leaks into the atmosphere of the workplace 

(health aspect), but he did not evolve it further. 

 

The adoption of the inherent concept to health started later than safety and environment. 

A group from Loughborough University was the first to exclusively work on inherent 

Hazard potential 

Add-on (protective) systems 

Procedural controls 

Remaining risk 

Losses, occupational injuries 
and diseases 
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occupational health subject. Johnson (2001) developed in her Master thesis a method 

called the Occupational Health Hazard Index (OHHI) for assessing the occupational 

health hazards in design concepts. The aim was to quantify the health hazards of 

chemical synthesis routes like the PIIS and ISI for inherent safety. The next development 

was the Process Route Healthiness Index (PRHI) published in Paper 1 in 2006 and further 

development was the Inherent Occupational Health Index (IOHI). The first version of the 

method was published by Hassim et al. (2006). Then the method was further developed in 

Paper 2. 

 

Paper 2 defines the concept of inherent occupational health for the first time. Inherent 

occupational health is a prevention of occupational health hazards (i.e. chemical or 

physical condition) that have the potential to cause health damage to workers by trying to 

eliminate the use of hazardous chemicals, process conditions, and operating procedures 

that may cause occupational hazards to the employees. Here inherent occupational health 

hazards can be defined as a condition, inherent to the operation or use of material in a 

particular occupation or environment, that can cause death, injury, acute, or chronic 

illness, disability, or reduced job performance of personnel by an acute or chronic 

exposure (Paper 2). 

 

There are twofold aims of inherent occupational health (Paper 2): Firstly to reduce the 

hazards from inherent properties of chemicals (such as toxicity and high vapor pressure) 

by using friendlier chemicals or the chemicals in safer physical condition (such as lower 

temperature) to eliminate the exposure. Secondly to reduce such process steps or 

procedures which involve inherent danger of exposure to the chemicals. Examples of 

such operations are some manual operations where the worker is in close contact with the 

material, such as the manual handling and dosing of chemical, emptying, and cleaning of 

the equipment etc. For reducing the occupational hazards, evaluation methods are of 

prime importance. In the following chapters, the hazards and the methods for their 

evaluation are discussed in more detail. 
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3. HEALTH HAZARDS AND RISKS FACTORS 

 

It is important to distinguish between hazard and risk terms since they are often confused. 

Health hazard refers to damaging potential only, which is described by the inherent health 

properties. The level of health risk in chemical plant is determined by: a) the potential for 

harm and b) the potential for exposure. The potential for harm is a function of the toxicity 

characteristics of chemicals present in the workplace. The exposure is determined by 

materials’ physical properties (e.g. volatility), operating and workplace conditions, 

leaking tendency of equipment, working activities (duration and frequency), and human 

behavior. 

 

3.1 Health Hazards 

Hazard is a chemical or physical condition (substance, activity, or process) that has the 

potential to cause damage to people, property, or the environment (Crowl and Louvar, 

2002; Hughes and Ferrett, 2005). Hazards that might affect workers’ health can be 

divided into five major categories of physical, chemical, biological, 

ergonomic/mechanical, and psychosocial (Hartley, 1999; Negash, 2002). The focus of 

this study is the chemical and some physical hazards. The other categories cannot be 

evaluated due to the limited data available in the early stages of design. At the early 

design stage e.g. R&D, chemical health hazards are evaluated from toxicity properties of 

materials whereas physical health hazards are based on process conditions e.g. operating 

temperature that may cause burn. Later hazards from inhalative exposure to airborne 

chemicals can be evaluated. 

 

3.2 Health Risks 

Risk is the likelihood and the magnitude of damage caused by hazards (Crowl and 

Louvar, 2002; Hughes and Ferrett, 2005). It can be controlled on several levels (Figure 

4). Health risk can be defined as the probability that an individual exposed to a chemical 

substance may experience an adverse health effect subsequent to the exposure (Kumar et 

al., 1994). The effect can be either acute or chronic depending on the duration of 

exposure; short-term or long-term, respectively. In principle chemicals will only be a risk 
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to health once human are exposed to them even though the hazard is basically present all 

the time because of their presence. 

 

3.2.1 Route of exposure 

Route of exposure describes the way chemicals enter an organism after contact. No 

chemical can harm human until it has actually contacted with or entered the body. The 

possible routes of exposure are through inhalation, skin or eye contact, ingestion, and 

accidental injection.  

 

Respiratory system is the most common route for gases, vapors, aerosols, mists, fumes, 

and small particulates to enter the body. Therefore inhalation is considered as a very 

important source of exposure occupationally (Lipton & Lynch, 1994). In large scale 

chemical industries handling volatile or dusty compounds such as most petrochemicals 

and solvents, inhalation is a primary route for exposure. Physical properties of materials 

(i.e. boiling point), process conditions (i.e. temperature), equipment types, dilution, as 

well as work activities influence exposure to chemicals through inhalation. The 

significant impact of inhalation to cause health hazards in process industries is also 

recognized by Tyler et al. (1996), when they selected inhalation route in assessing 

toxicity hazards in the Toxicity Hazard Index. Papers 2, 3, and 6 discuss the evaluation of 

inhalative exposure. 

 

Skin or eye contact is also typical in chemical plants, especially those that deal with 

heavy and less volatile substances, though its occurrence is not as frequent as inhalation 

(Papers 2 and 4). Skin effects - either absorptive, corrosive, or scalding, may be caused 

by liquids spillage, leakage, or splash. Even though they can be very severe, they are 

usually confined to a very short distance from the release point, whereas inhalation 

effects affect a wider area of working environment.  

 

Ingestion is the least common entry route into the body. Despite this, ingesting chemicals 

by accident may still happen. Typically, chemical exposure via ingestion route may occur 

through eating or smoking with contaminated hands. Injection is a common type of 
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exposure in laboratories and hospitals, but rare in chemical industries. As for skin contact 

and ingestion, poor hygiene practices and work procedures appear to be the notable 

cause. Overall, the ingestion and injection exposures are small and always ranked behind 

inhalation and skin contact as contributors to the total dose. 

 

3.2.2 Exposure assessment 

Exposure is defined as contact of an organism with a contaminant (Watts, 1997). An 

exposure assessment is used to evaluate the risk from chemical exposure as discussed in 

Paper 6 and elsewhere by e.g. von Grote (2003). Chemical exposure is determined by the 

quantity of the substance that is exposed to the organism and the duration of the 

chemical’s presence. For inhalation route, air concentration is used to express the 

quantity of airborne chemicals, which are the most common exposure agents in chemical 

industries (Lipton and Lynch, 1994). Often only the quantification of concentration level 

is done, without the time dimension. For example, the establishment of chemicals’ 

threshold limits is based mostly on this thinking. Paper 6 however uses both 

concentration and intake-based exposure risk estimations. 

 

It is important to define ‘exposure’ in more detail - here the term pertains to external 

exposure. This can be defined as the amount of the substance inhaled, in contact with the 

skin, or ingested. It does not refer to concentration within the body, which is consistent 

with some measure of absorbed dose or intake. Chronic exposure by inhalation is the 

main focus of the study because it represents the routine occupational exposures (8h per 

day). Here dermal exposure is evaluated as a result of short-term exposure from manual 

operations, which normally concerns liquids and solids (see Chapter 9.5.2). The exposure 

assessment approaches are based on the information available in each stage. PFD is the 

minimum level of process information needed to enable exposure quantification for a 

proposed plant. However even this requires specialized method, which has been 

developed in Paper 3. Details about the assessment stages are discussed in Chapter 4. 

 

Papers 5 and 6 give several examples of the existing occupational exposure models such 

as the EASE (Friar, 1996), POEM (PSD, 1992), and EMKG (ECHA, 2008). The models 
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however, are not suitable for design stage assessment of large petrochemical plants. They 

are more relevant for indoor work facilities and are task-oriented. Also, they are best 

applied on existing plants. In this study, the exposure assessment is approached based on 

reasonable worst-case scenarios. Only exposures from normal operation are considered. 

Exposures which result from accidents, malfunctions, or misuse are excluded from the 

assessment. 

 

3.2.3 Assumptions in the exposure assessment 

Due to lack of information in process development and design stages and to avoid 

underestimation of risk, reasonable worst-case scenarios are assumed when assessing the 

chemical exposure:  

 

a) For chronic inhalative exposure, fugitive emission is the only chemical release source 

considered. 

b) For fugitive emissions, the rate is assumed constant with time; the method does not 

consider level of maintenance but employs ‘average’ leak rates.  

c) No personal protective equipment is considered. 

d) All chemical concentrations inhaled by the exposed workers are absorbed by the 

body. 

e) Perfect mixing to air takes place; local concentration differences are not considered. 

This requires at least moderate wind speed or ventilation. 

f) For acute inhalative exposure, only emissions from routine works are considered e.g. 

manual operations.  

 

3.3 Different Levels of Inherent Health Study 

The study of inherent health can be made in three levels (see Figure 5): 

 

i) Inherent health hazard potential 

Inherent health hazard potential includes hazards of materials in a process that are 

potentially harmful to health. However, leak or exposure aspect is not yet considered. 

Therefore the focus of the very early assessment is typically on material’s toxicity. 
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ii) Inherent leak hazard potential 

In petrochemical plants, process materials may escape from the system through flanges, 

valves etc. through fugitive emissions. In this case the materials (hazard) are no longer 

contained but they are released into air. The inherent release rate depends on the 

complexity of process, the types of equipment involved, and physical properties of fluids. 

No specific protection layers are considered; therefore the evaluation of material release 

sources (leak potential) is still a hazard and not a risk-level study. 

 

iii) Inherent exposure potential and risk 

Chemical exposure assessment requires information on chemical concentration (a 

function of leak rate and dilution), exposure (a function of frequency and duration of 

exposure), protective equipment, and type of work procedure (e.g. manual operation 

close to the emission source). Here protective equipment is not considered because 

inherent point of view is used, giving worst-case scenario. Only at this level, some 

protective layers and human aspect start to get involved, thus allowing health risk to be 

quantified.  

 

Basically the development of the indices was based on this inherent level division. The 

index evolves from a hazard-based to a risk-based assessment as progressing from the 

R&D to basic engineering stage. The presented levels also agree with the LOPA concept 

(see Chapter 2.4). In the case of reducing health hazard and risk of process plants, the 

first strategy is to avoid hazardous substances and process conditions (inherent health 

hazard potential). Next is to have a simple plant with less leak sources (inherent leak 

hazard potential). If inherent leak potential is too large, it is possible to install a better 

protective layer using leakless or less-leaking fittings. Finally the effect of dilution by 

ventilation or wind and the exposure time through work procedures are considered 

(inherent exposure risk). 
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Figure 5. Levels of inherent health study 
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4. PROJECT PHASES IN DEVELOPMENT AND DESIGN 

 

A process goes through various stages of evolution. Progression through these stages can 

simply be termed as the process lifecycle. A typical chemical process goes through 

lifecycle stages of research and development, design, construction, operation, retrofitting, 

and finally decommissioning The design stages can further be divided into process 

preliminary design, basic engineering, and detailed engineering (Hurme and Rahman, 

2005). As the project is started, the chemical synthesis route is selected in research and 

development phase. In preliminary design, process structure is created, material and heat 

balances are calculated, and flow sheet diagrams are generated. The process piping and 

instrumentation diagrams etc. are then created in basic engineering phase. In detailed 

engineering phase, detailed documents and drawings for procurement and construction 

are made. The stages are distinguished mainly by the information available on the process 

as summarized in Table 2.  

 

The search for inherently safer process options should begin early. As plant lifecycle 

progresses, the major viewpoint changes from a chemical to an engineering one (Koller, 

2000). Although the inherent safety principles can be incorporated at any stage of process 

lifecycle, the best results will only be achieved if it is implemented during the earliest 

stages of process development, since many of the decisions are conceptual and 

fundamental (Figure 6, Paper 1). The advantages are discussed in Papers 1 and 2.  

 

At the design stage, process engineers and designers have maximum degrees of freedom 

in the plant and process specification (Figure 6; CCPS, 1993). However the lack of 

information especially in early design complicates hazards evaluations and decision-

making in general. This is called the design paradox (Hurme and Rahman, 2005). 

Assessments should become step-by-step more quantitative and precise as the design 

becomes more detailed. An assessment method claiming to be applicable during the 

whole rather than at a specific point of the design process therefore neither has a fixed 

region nor a fixed viewpoint (Koller, 2000). Therefore, the aim of the study is to develop 

a series of methods for the earlier stages of R&D, preliminary design, and basic 
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engineering. The idea is to provide a package of assessment tools that can be used 

flexibly. The methods can be used also in series. Basic engineering is the last step where 

there is still large freedom of making conceptual changes and to adopt ISHE principles 

(Hurme and Rahman, 2005).  

 

Early SHE assessment will not only benefit from the SHE performance, but it also will 

reduce the overall plant costs (Edwards and Lawrence, 1993; Kletz, 1998; Shah et al., 

2003). Also the cost of fixing a problem (changes) is lower at earlier lifecycle phases – 

the cost folds ten times as progressing through each phase (Kletz, 1988) (Paper 2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The design paradox and inherently safer design (Hurme and Rahman, 2005) 
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Table 2. Information availability at different design stages (Paper 2) 

R&D design Process predesign Basic engineering Detailed engineering 
- First process concept - All in R&D stage - All in R&D and  - All in R&D, predesign, 
- Process block  - Flow sheet (simple    predesign stages   and basic engineering stages  
  diagram   or detailed) - PI diagram  - Detailed equipment,  
- Reaction steps - Mass/energy  - Process data on    piping and  
- Types of chemicals   balances   equipment, piping    instrumentation 
- Physical/chemical/  - Operating conditions   and instrumentation - Equipment sizing 
  toxicity properties - Major unit  - Plant layout - Mechanical design/ 
- Reaction conditions   operations - Preliminary working    engineering 
- Stoichiometric     procedures - Structural, civil, and  
  equations     electrical engineering 
- Product yield   - Design of ancillary  
       services 
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5. CONSIDERING HEALTH IN DESIGN IN GENERAL 

 

Most of the existing inherent safety methods discussed earlier include human health 

effects in the assessment. Mostly only chemical’s toxicity hazard is considered. The basis 

for toxicity assessment varies significantly within the different methods. The methods use 

either threshold values for acute toxicity or chronic toxicity or EU hazard symbols or 

NFPA ratings. Koller et al. (2001) found no correlation between these methods in 

evaluating health impacts. Therefore they are not suitable for occupational health hazard 

assessment because of their limitation and inconsistency. 

 

There are several methods available for health hazard assessment in chemical process as 

shown by Table 3 and discussed in Papers 1 and 2. The methods however, are more 

diversified due to the complicated underlying principle of the aspect itself. Even though 

they have been developed for the purpose of health assessment; the scope, approach, and 

considered aspects vary. The review of 51 chemical ranking and scoring systems 

demonstrates that there was no consensus regarding an appropriate framework for 

evaluating adverse impacts to human health from exposure to chemicals (Davis et al., 

1994). The methods specifically assessing inherent occupational health during chemical 

process design do exist but are very few. 

 

The two basic types of health studies are the substance and process-type indices as 

presented in Table 3. Majority of the methods developed earlier are chemical substance-

based and they are widely known as hazard indices. Hazard indices aim to rank 

substances in a process by their hazard potential. They take into account the volatility and 

the toxicity of a substance. Several examples of such indices are given in Table 3 under 

‘chemical substance-based’ category. As for process-based assessment, the methods are 

more disparate. Basically, the methods can be classified into those which:  

 

Category 1 – health aspect is addressed only as part of the safety and/or environmental 

assessments. 



 24 

Category 2 – health is not being evaluated from the occupational context. For example, 

some of them focus only on the acute hazards due to accidental chemical release, some 

concern with the effects on public community, and some address the environmental 

health impacts. 

Category 3 – occupational health assessment is not suitable for process screening during 

the early design stage, but is intended for process operation. 

Category 4 – health impacts are adapted in an existing Life-Cycle Assessment (LCA) 

method. 

Category 5 – inherent occupational health assessment is feasible during the design stage 

of chemical processes. 

 

EHS (Koller et al., 1999; 2000) is one of the earliest methods that consider health aspect 

from occupational point of view besides evaluating safety and environmental hazards. 

They acknowledged the fact that health assessment is usually based on an exposure-effect 

relationship for the workplace. However the method only assesses the effects and not the 

exposure – they claimed that information required for exposure assessment is not 

available at early design phases. 

 

The most detailed method for assessing SHE aspects is the INSET Toolkit (INSIDE 

Project, 2001). The toolkit evaluates the health criteria of chemical process route based 

on the hazardous material properties relating to health effects, the likely fugitive emission 

rate of the material as well as the chance that people are exposed to this. For chemical 

properties, the Health Harm Factor (HHF) is determined from R-phrase and qualitative 

classification. The Leak Factor (LF) is provided to estimate the fugitive release rate from 

process equipment and manual activities. The R-phrase classification and the LF score 

are very brief and incomprehensive. The potential exposure is assessed by estimating the 

number of equipment leak points and locations where manual-handling operations will be 

carried out in the process. 

 

The disadvantage of INSET Toolkit is its complexity and requirement of detailed 

information. It demands a lot of works including process screening, optimization, and 
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further evaluation to reduce process inventories and complexity (Malmén, 1997; Ellis, 

1997). The need for analyzing complex issues such as transport hazards, siting, and plant 

layout, makes the method unattractive for early design stages, but is more suitable for 

later phases when more process information is available.  

 

Johnson (2001) developed a methodology called the Occupational Health Hazard Index 

(OHHI) to assess the occupational health of alternative process concepts. The framework 

of the OHHI is similar to the Process Route Healthiness Index (PRHI), which was later 

developed by Hassim and Edwards (2006) as an improvement to the OHHI. The OHHI 

includes unnecessary criteria for occupational health evaluation e.g. material’s 

flammability and reactivity. It evaluates exposure aspect poorly i.e. fugitive emission in a 

process is considered from one sample connection only – this makes the accuracy of the 

method questionable. 

 

Since there are no directly suitable health evaluation methods available for process 

development and process design steps, new methods have been developed for this 

purpose as discussed in Chapters 7, 8, and 9. 
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Table 3. Example of health assessment methods 

Type Method Reference 

Chemical substance-based: Vapor Hazard Index (VHI) Pitt (1982) 

 Extraordinary Hazardous Substances (EHS) TCPA (1987) 

 National Fire Protection Agency ranking (NFPA) NFPA (1989) 

 Substance Hazard Index (SHI) API (1990) 

 Safety Factor (SF) Martel (2004) 

 Index of Toxicity (IT) Martel (2004) 

Process-based:    

     Category 1 Emission Limit Swiss LRV (1985) 

 KEMI Swedish National 

  Chemicals Inspectorate (1995) 

 Waste Reduction Algorithm (WAR) Mallick et al. (1996) 

 CHEMS Swanson et al. (1997) 

 Health Hazard Score (HHS) Sheng and Hertwich (1998) 

 EURAM Hansen et al. (1999) 

 Environmental, Health & Safety Index (EHS) Koller et al. (1999, 2000) 

 Hazard Identification and Ranking (HIRA) Khan and Abbasi (1998, 2001) 

 Substance, Reactivity, Equipment and Safety  Shah et al. (2003) 

 Technology (SREST)  

 Inherent Benign-ness Indicator (IBI) Srinivasan and Nhan (2007) 

     Category 2 Dow Chemical Exposure Index (Dow CEI) Dow Chemicals (1988) 

 Toxicity-based Scoring (TBS) Hovarth et al. (1995) 

 Sustainable Process Index (SPI) Narodoslawsky and  

  Krotscheck (1995) 

 Toxicity Hazard Index Tyler et al. (1996) 

 Concentration/Toxicity Equivalency (CTE) Jia et al. (1996) 

 Integrated Risk Analysis Gurjar and Mohan (2003) 

     Category 3 COSHH Essentials Maidment (1998) 

     Category 4 Human Toxicity Potential (HTP) Hertwich et al. (2001) and 

   McKone and Hertwich (2001) 

 EDIP Hellweg et al. (2005) 

     Category 5 Occupational Health Hazard Index (OHHI) Johnson (2001) 

 INSET Toolkit INSIDE Project (2001) 

 Process Route Healthiness Index (PRHI) Hassim and Edwards (2006) 
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6. PRHI AS THE FIRST INDEX DEVELOPMENT 

 

The first methodology, formally published in the area of inherent occupational health 

assessment for chemical processes is called the Process Route Healthiness Index (PRHI). 

The aim of the method is process route selection during the R&D stage based on 

information from reaction chemistries and block diagram only. However the method aims 

to be very comprehensive and it becomes therefore complicated and lengthy. The index 

includes wide range of factors in a single evaluation stage. The PRHI also requires plenty 

of information and some of the information is not available during the early process 

design stage. Basically the PRHI comprises of several subindices of the Inherent 

Chemical and Process Hazard Index (ICPHI), Health Hazard Index (HHI), Material Harm 

Index (MHI), Worker Exposure Concentration (WEC), and Occupational Exposure Limit 

(OEL). The HHI, MHI, and OEL are appropriate for the R&D stage because they require 

for data which are already available such as the chemicals’ OSHA Health Effects list, 

NFPA value for health, and workplace exposure limit, respectively. However the ICPHI 

and WEC need data beyond the R&D stage such process operations, maintenance works, 

process leak points, and worker exposure. This information is only available once the 

process progresses to the later stages such as pre-design and detailed engineering. Due to 

its complex steps, the PRHI is not suitable for a simple and quick application in the early 

lifecycle stage. It is also inflexible as a result of the data requirements for the application. 

Despite of its weaknesses, PRHI served as the starting point for further research. 

 

The lessons learnt from the PRHI are the following: 

a) The method should be dedicated to the particular design stage to ensure simplicity. 

b) The method should require only the information available in the stage of study to 

ensure applicability. 

c) The method should include aspects that are related to occupational health only. 

Process safety (loss prevention) related aspects should be excluded. 

 

Based on these findings the improved index methods developed were specific to each 

process development and design lifecycle stage as discussed in the next chapters. 
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7. THE EVALUATION AT RESEARCH AND DEVELOPMENT STAGE 

 

7.1 Stage Aim and Tasks 

Research and development stage (R&D) is an important stage where the chemical route is 

selected based on the economic, technical, and SHE criteria. The stage starts when the 

desired product is fixed and a number of viable process routes are searched or created for 

analysis. Chemical process route may be defined as the raw material(s) and the sequence 

of reactions that convert them to the desired product(s) (Edwards and Lawrence, 1993). 

The choice of route fixes the chemicals present and to great extent the operating 

conditions in the plant. The other tasks also involve the laboratory and bench scale 

experiments to acquire required chemical and physical data. The pre-feasibility study of 

the new route is done in the end. Detailed tasks are given in Table 2.  

 

At the R&D stage, much of the detailed information is still missing because the process is 

not yet designed (see Figure 6). Reaction chemistries and process block diagram are 

produced for potential synthesis routes to the desired product. Chemicals involved in the 

process, their reactions, and basic reaction conditions can be determined. Basic data on 

the chemicals (physical, chemical, and toxicity properties) needs to be obtained from the 

literature or measured. 

 

7.2 Inherent Occupational Health Index 

Paper 2 presents the Inherent Occupational Health Index (IOHI) developed for the 

inherent occupational health evaluation in the R&D stage. The health hazards can be 

estimated on inherent level based on the data available at R&D stage i.e. reaction steps, 

types of chemicals, physical/chemical/toxicity properties, and reaction conditions.  

 

7.2.1 Principle of the index 

The aim of the IOHI is to consider inherent health hazards that are assessed from normal 

process operations, not for accidents such as loss of containment which are covered by 

inherent safety methods. The method provides hazard and not risk-based process 

evaluation since no protective layers and human aspect are considered. The IOHI method 
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is reaction step-oriented. Therefore a whole reaction step is considered as one entity. The 

main objective of the method is to rank alternative chemical process routes for the 

production of the desired product by their health level. Both the acute and chronic effects 

are considered (Paper 2).  

 

The index is based on the data available in the R&D stage. Only chemical and health 

properties and reaction operating conditions are used (Table 2) because of their 

availability and their ability to represent the occupational health hazards in inherent level. 

The factors available are the chemicals present, their chemical properties (boiling point, 

toxicity, corrosiveness, and phase), the process pressure, temperature, and mode e.g. 

batch mode of the main process item (typically reactor). The Inherent Occupational 

Health Index composes of two subindices: Index for Physical and Process Hazards (IPPH) 

and Index for Health Hazards (IHH), representing potential exposure and harm, 

respectively. 

 

7.2.2 Physical and process hazards evaluation 

The Physical and Process Hazards subindices (IPPH) describe the potential of physical 

properties of materials, process conditions, and the type of process to cause exposure 

hazard at the workplace. 

 

The choice of process operation mode will contribute to workplace exposure. Batch 

processes are more hazardous compared to continuous and semi-continuous, because they 

usually require more frequent manual operations e.g. chemical handling potentially 

exposing people to chemicals and involve higher number of workers.  

 

Material phase subindex is selected, because it affects much on the way a chemical will 

be handled and exposed to. Solids are often transported in bags or drums and are 

processed manually e.g. manual loading or bag emptying. This tends to result in higher 

material releases compared to fluid handling in enclosed piping and equipment, in which 

liquids and especially gases are commonly handled. 
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Material volatility is another important subindex that influences the propensity of a 

substance to become airborne and subsequently becomes susceptible for exposure. 

Volatility of a liquid can be characterized by its vapor pressure or boiling point, whereas 

dustiness characteristic can be used for solid.  

 

Operating pressure subindex is selected because it plays a vital role in releasing materials 

from the process. A higher pressure poses a higher potential of fugitive emissions through 

leakages. A higher-pressure process may also present a safety hazard to workers when 

performing maintenance works such as opening connections. 

 

The significance of corrosion in causing chemical releases in chemical plants is well 

known and therefore is included in the index. At the R&D stage the subindex is evaluated 

based on the compatible construction materials, in which the chemical will be contained 

or handled.  

 

Temperature subindex is chosen not only because it affects vaporization of a liquid 

material upon releases (e.g. due to/after a leak), but it also has possibility of causing burn 

accidents. Details about the IPPH subindices are discussed in Paper 2 and the subindex 

values are presented in Table 2 of Paper 2. 

 

7.2.3 Health hazards evaluation 

The Health Hazards subindices (IHH) focus on the health hazard of chemicals as a result 

of exposure. The potential effects depend upon chemicals’ toxicity level and the severity 

of impact. Therefore IHH has both an exposure limit based subindex (IEL), giving 

information on the chronic hazards of chemicals in the working air and the R-phrase 

based subindex (IR) that describes the type of health effect caused by the chemicals. The 

R-phrases are classified based on the severity of the adverse health effects, which are 

further divided into chronic and acute. Many earlier scoring systems do not include 

measures of severity at all. This may yield misleading results since the severity of effect 

may vary from a temporary to a serious chronic effect. That is why two pertinent 
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parameters were selected for evaluating the inherent toxicity hazard of the chemicals in 

the process, as described. Details of the IHH are presented in Table 3 of Paper 2. 

 

7.3 Weighting of the Subindices  

In an index system, the weighting of different parameters describes their importance and 

it can be based on e.g. statistical data or expert judgment on their significance (Edwards 

et al., 1996). Such guideline however, is not available for occupational health. In IOHI 

the allocation of the penalties is based on the degree of potential hazards or the 

probability of exposure; the higher the hazard or the probability, the higher the penalty. 

The level of the consequences caused by the exposure determines the range of penalties 

assigned. The penalty range set for the IHH parameters is higher than that for the IPPH 

parameters because it is believed that the toxicity represents the main direct health hazard 

of the chemicals. More about the weighting is explained in Paper 2. 

 

The penalty score of the IPPH parameters is between 0-3 or 1-3. Corrosiveness however, is 

assigned with a smaller score because it poses a lower risk for direct hazard exposure. 

 

In the IHH index the chemicals with chronic toxicity effect have a higher range of penalty 

(maximum value of 5) in comparison to those with acute effect (maximum value of 4). 

The chronic toxicity was penalized by more severe scale because of its more problematic 

nature, such as the latency period involved before the long-term health effects appear, 

which makes the counter measures are often too late.  

 

The penalties are summarized in Tables 2 and 3 of Paper 2. The justification behind the 

penalty assignation and other relevant information can be found in Paper 2. Instead of the 

weighting of factors proposed in this work, the user may tailor the method by applying 

weightings, which describe their own opinion or the company policy. 
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7.4 Calculation of the Inherent Occupational Health Index 

The IOHI method is reaction step-oriented. Therefore a whole reaction step is considered 

as one entity (Paper 7). The IOHI for each process route is calculated as a sum of the two 

factors. 

 

IIOHI = IPPH + IHH                 (1) 

 

The IPPH and IHH are calculated by summing up the penalty for all subindices. 

 

IPPH = IPM + IP + IT + max(IMS) + max(IV) + max (IC)            (2) 

where IPM is process mode, IP is pressure, IT is temperature, IMS is material state, IV is 

boiling point, and IC is corrosiveness subindices.  

 

IHH = max(IEL) + max(IR)                (3) 

where IEL is exposure limits and IR is R-phrases subindices.  

 

The process conditions determine the process mode (IPM), temperature (IT), and pressure 

(IP) subindices. The other factors are penalized based on the dominant (i.e. most 

hazardous) chemical in the reaction step. The maximum penalty (worst case) received by 

any chemical in the reaction step will be chosen to represent the subindex for that 

particular reaction step. The IPPH and IHH scores are finally added up to obtain the net 

IOHI index value for a process route.  

 

The IOHI can be calculated using three different types of calculations; additive-type, 

average-type, and worst case-type. The additive-type calculation sums up the subprocess 

indices to get the route index value. The index value for the route can also be calculated 

by averaging the subprocess indices. This eliminates the influence of the number of 

subprocess on the route index value. The worst case-type takes the highest penalty of 

each subindex to represent the worst potential hazard of the route. This aspect has been 

discussed relatively little in literature earlier. In almost all the earlier index-based 

methods, the way of calculating the process route index is the additive approach. 
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However, this approach has been criticized by Gupta and Edwards (2003) for being much 

affected by the number of steps in the route. Therefore the alternative ways of calculating 

the index, which exclude the influence of the number of steps, were proposed in Paper 2. 

The effect of the method of calculation is discussed in the case study (Chapter 7.6). 

Details about the index calculation types are discussed in Paper 2.  

 

Several authors have criticized the concept of producing single figure (net score) as a 

final index value, because it can lead to an information loss problem (e.g. Hendershot, 

1997; Gupta and Edwards, 2003). Even so, the approach is still widely used in index-

based methods for early design stage, because it enables easy and quick comparison of 

hazard level in different processes, hence helping in decision-making (Khan and Abbasi, 

1998). Subindices values of the processes can also be compared to get more insight on 

single criteria as proposed by Gupta and Edwards (2003) through their simple graphical 

method.  

 

7.5 Standard Setting for the Inherent Occupational Health Index 

Since the index value is meaningless as an absolute number without a reference, the 

index cannot be used to determine the level of inherent health hazard as such. Therefore, 

the applicability of the IOHI is extended by providing the standard setting for the index. 

The standard was created to have four categories: safe, moderately safe, moderately 

hazardous, and hazardous. The standard was set up based on the penalty of the 

subindices. For the ‘safe’ category, the standard was created by summing up all 

subindices penalty between 0 and 1. Depending on the subindices, penalty between 1 and 

2 was totaled up for the ‘moderate’ category, which is further refined into moderately 

safe and moderately hazardous categories. Penalty between 2 and 5 was added up for the 

‘hazardous’ category. The scales for the IOHI standard are provided in Paper 2 (Table 9). 

 

7.6 Case Study 

To demonstrate the method, Paper 2 presents a case study on methyl methacrylate 

(MMA) process route selection. This case study has been widely used earlier to illustrate 
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inherent SHE assessment methods, such as the PIIS and ISI. MMA can be synthesized 

via various routes (Nagai, 2001). The six routes commonly used as case study are: 

a) Acetone cyanohydrin based route (ACH) 

b) Ethylene via propionaldehyde based route (C2/PA) 

c) Ethylene via methyl propionate based route (C2/MP) 

d) Propylene based route (C3) 

e) Isobutylene based route (i-C4) 

f) Tertiary butyl alcohol based route (TBA) 

 

Additional information about the processes is given by Gupta and Edwards (2003) and 

Rahman et al. (2005). Sugiyama (2007) collected more current data on these routes and 

reported different yield for TBA second subprocess. 

 

The IOHI index was calculated for the six processes using additive-type, average-type, 

and worst case-type calculations. The index value received by each route is: 

a) Compared to each other to establish the process ranking, and 

b) Compared against the standard to determine the level of the inherent occupational  

health hazard. 

 

The results show that C2/PA and C3 routes are bad in all types of calculations. ACH 

route is the worst in averaging type of calculation. The best routes are either C2/MP or 

TBA in all types of index calculations; which one is the best depends on the type of 

calculation.  

 

The case study done shows that in additive calculation the routes with more steps get 

worse index values. The additive calculation mostly reflects the process complexity. 

Therefore the averaging and worst case calculation approaches give better analysis on the 

other characteristics of the routes. The comparison of the index values to the standard 

setting (Table 9 in Paper 2) reveals that all the MMA processes are moderately 

hazardous. Many of the routes however, have dangerous subprocesses. Detailed 

discussion about the findings is presented in Paper 2.  
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8. THE EVALUATION AT PRELIMINARY DESIGN STAGE 

 

8.1 Stage Aim and Tasks 

Preliminary design is often done only for one or two most promising process concepts 

based on a pre-feasibility study done earlier. At this stage, the basic process concept is 

further developed into process flow sheet diagrams (PFDs). More accurate estimations of 

cost, profitability, and SHE aspects are made to find out if the project is still promising 

(Hurme and Rahman, 2005). 

 

8.2 Hazard Quotient Index Method 

A more accurate evaluation of inherent health hazards is possible at this stage based on 

the information available from process flow sheets. Here a method called the Hazard 

Quotient Index (HQI) was developed, which intends to evaluate the risk of chemical 

exposure to workers due to exposure to airborne volatile chemicals in the process area. 

The index is presented in Paper 3 and summarized in Paper 7. The method can be used 

either with simple PFDs or detailed PFDs. Simple PFDs consist of process drawing and 

process descriptions only without exact material balance. These concept sketches can be 

found in patents or encyclopaedias. From detailed PFDs, data on mass and energy 

balances and actual operating conditions is available. Information like major unit 

operations is obtainable from both types of PFDs, offering copious insights about health 

risks in a chemical process. The information availability is presented in Table 2 (Chapter 

4). 

 

8.2.1 Principle of the index 

The HQI method focuses on fugitive emissions from piping and equipment (Paper 3). 

Fugitive emissions are the origin of the continuous background exposure of workers 

especially in chemical plant industries (Lipton and Lynch, 1994). The idea of the method 

is to estimate the occupational inhalative exposure, which concerns adult workers in good 

health, with an average 8 hours of exposures per day. The HQI is developed based on the 

following assumptions: 
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a) Inhalative exposure from fugitive emissions is the only exposure source considered; 

this is a valid first assumption for large-scale continuous plants with few manual 

operations. 

b) The emission rate is constant with time; the method does not consider level of 

maintenance but employs ‘average’ leak rates. 

c) All chemical concentrations inhaled by the exposed workers are absorbed by the body 

(worst-case scenario). 

d) Perfect mixing to air takes place. Local concentration differences are not considered. 

This requires at least moderate wind speed or ventilation. 

 

The HQI method allows for comparison of alternative processes by ranking them based 

on the risks value. It can also be used to determine the health risk of a single process. 

 

8.3 Development of the Index Method 

The HQI method is developed based on the four standard steps in risk assessments (EPA, 

1989):  

 

a) Hazard identification involves identification of chemicals present and their 

characteristics, as well as leak sources in the process. Process materials are 

determined from reaction chemistries for simple PFDs or mass balances for detailed 

PFDs. Chemical properties, such as physical state can be obtained from safety or 

mass balances sheets. 

b) Exposure assessment evaluates potential exposure of the chemicals to receptors and 

the route of intake. In chemical plants, workers’ exposure to chemicals may be 

contributed by fugitive emissions, periodic emissions, and other exposures. Here, 

only fugitive emissions are considered. Fugitive emissions are the main source of 

background exposure to workers in chemical processes dealing with airborne 

chemicals (Lipton & Lynch, 1994). Also, only inhalation exposure is assessed due to 

insufficient information on manual operations as sources of dermal/eye exposure. 

Both periodic emissions and other routes of exposures are included in the next stage 

method (Chapter 9). 
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c) Toxicity assessment involves the acquisition and evaluation of toxicity data for each 

chemical. Threshold exposure limits are used because of their easy availability for a 

wide range of chemicals. Here, HTP 8h values (HTP Values, 2007) are used since the 

study concerns continuous exposures to fugitive emissions. 

d) Risk characterization gives a qualitative or quantitative expression of risk by 

combining information on exposures and toxicity. Commonly, the risk is quantified 

by comparing the actual or estimated exposure values to the threshold exposure limits 

by hazard quotient (Roach, 1994). 

 

The formulation of the HQI is based on the standard hazard quotient approach; that is the 

ratio of the predicted exposure concentration to the reference exposure limit (Roach, 

1994; Mower, 1998). For chemicals mixture, chemicals are assumed to have additive 

effects. This will be further described in Chapter 8.5.2. 

 

8.4 Estimation of Fugitive Emissions and Concentrations 

Leak rate 

To calculate the concentration, data on the amount of fugitive emissions potentially 

emitted from the process is required. A method was developed in Papers 3 and 5 for 

estimating the fugitive emissions. A method for estimating the average air flow rate in 

chemical plants during the preliminary design stage is proposed in Paper 3, which is 

applicable for both simple and detailed PFDs. Since no information on the numbers and 

types of fugitive emission sources is available, a standard module approach was 

developed in Paper 5. Processes were divided into standard modules such as distillation, 

flash etc. systems and the typical number of leak sources was estimated. The methods for 

simple and detailed PFDs are discussed in detailed in Chapter 10. 

 

Dilution 

Chemicals leaked into process area are diluted by ventilation for indoor or wind for 

outdoor facilities. Ventilation rates or air change rates are widely published for indoor 

facilities (e.g. Lipton and Lynch, 1994, Jayjock, 1997).  However, majority of 

petrochemical plants are located outdoor and the chemicals are diluted by wind. The 
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chemical leaks dilution in outdoor facility is estimated based on the estimation of average 

floor area of the standard process modules and their average height, as well as the wind 

speed. This approach is a simplification since many actual data is still lacking at the 

conceptual phase. The air flow rate estimation is discussed in Chapter 11 and Paper 5 in 

more detail.  

 

Concentration 

Exposure risk to chemicals can be assessed based on chemical concentration or intake as 

discussed later in Chapter 12. The latter one is more realistic, but the reference intake 

limits are not available for many chemicals (Paper 7). Therefore, concentration-based risk 

estimation is used, which is a common approach as discussed earlier. The average 

chemical concentration in air (at the downwind edge of the plot area) is estimated from 

fugitive emission rate, estimated plot area, average height of emission sources, and wind 

speed in Chapter 11 (Eq. 6). 

 

8.5 Calculation of the Hazard Quotient Index 

Various exposure limits data are published for the chemicals by regulatory bodies and 

organizations (Paper 6). Here the Finnish limit values (HTP) are used (HTP Values, 

2007). For occupational setting, reference limit values are provided for both long-term 

(8h) and short-term (15min) exposures. For the HQI, the 8h values are used to estimate 

chronic exposure such as the risk of continuous exposures to fugitive emissions. The 

index can be applied to a single chemical as well as to chemicals mixture. 

 

8.5.1 Single chemical 

For a single chemical, the HQI is calculated based on the following equation: 

 

 

HQIi =
Ci

CELi

                  (4) 

where Ci is the concentration of chemical i and CELi is the occupational exposure limit.  
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8.5.2 Chemicals mixture 

The Health Quotient Index for a chemicals mixture (HQImix) can also be calculated: 

 

 

HQImix =
Ci

CELi
∑                  (5) 

 

Most often, chemical processes deal with chemicals mixture. Therefore exposure to 

chemicals mixture is rather a rule than the exception, and health risk assessments should 

in principle focus on mixtures and not on single chemicals (Feron et al., 2002). The effect 

of a mixture may be less than the effects of its individual components (an antagonistic 

effect) or the effect of the components may be additive; i.e. the effect of the mixture may 

be greater than the sum of the effect of the individual components (synergistic effect) 

(McCarty and Borgert, 2006).  

 

According to Omae (2006), the effects should be assumed as additive when there is no 

reliable evidence that the effects of the chemicals are non-additive. This has been 

practiced by several well-established bodies such as the American Conference of 

Governmental Industrial Hygienists (ACGIH) and the Japan Society for Occupational 

Health (JSOH) (Nielsen and ∅vreb∅, 2008). The approach is conservative, but the 

simplest that can be used for assessing the overall risk due to a mixture of chemicals 

(Calamari and Vighi, 1993). This assumption is made also in the environmental impact 

assessment (Cave and Edwards, 1997; Gunasekera and Edwards, 2006).  

 

8.6 Risk Characterization 

Paper 6 discusses the benchmarks for interpreting the HQI index value. HQ value < 1 is 

commonly used to indicate acceptable risk (Table 7). However even below an 

occupational exposure limit, when exposure is greater than one-tenth the limit, there is 

still the small risk that some employees may be adversely affected (Roach, 1994). The 

benchmark (HQ < 0.1) is often applied to carcinogens. Detail discussion on the risk 

estimation and the benchmarks is given in Paper 6. In principle however, the quantitative 

value obtained for the index does not provide a value for the probability of harm as the 
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result of exposure. The HQI is basically a measure of the safety margin, which is 

reflected in the size of the HQI - the smaller the HQI, the larger the margin of safety. The 

method steps are shown in Figure 7. 

         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Flow chart of the overall assessment steps (Paper 3) 

 

8.7 Case Study 

The Health Quotient Index method was calculated for six process routes for MMA 

manufacturing in Paper 3 by using the simple PFD approach. First the processes were 

divided into process modules shown in Table 1 in Paper 3. The number of the modules is 

summarized in Table 2 (Paper 3). 
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Results in Table 3 of Paper 3 show that none of the chemicals in the routes have 

concentrations exceeding their threshold limits (HQIi < 1). This indicates the exposure 

risk to any of the chemicals is in acceptable level in all the process routes based on this 

benchmark. The same finding was also obtained for the HQImix of the combined impact 

(Table 4 of Paper 3). C2/MP route posses the lowest chemical exposure risk followed by 

TBA and i-C4 routes. ACH process presents a moderate level of hazard among the 

alternatives, which is mainly contributed by the significant emission rate of acetone 

cyanohydrin (Table 3 of Paper 3). Both the C2/PA and C3 routes receive the high index 

values due to the presence of toxic chemicals formaldehyde and hydrogen fluoride, 

respectively. Even though the concentrations of both species are below their threshold 

limits, the HQIi however, is much closer to the benchmark compared to the other species 

in the processes. 

 

The resulting ranking order of the processes is compared to those obtained from the PRHI 

and the IOHI (Table 4). The result shows that HQImix and IOHI rank the routes in similar 

way although IOHI cannot separate the two worst routes. PRHI gives different ranking 

except for the worst route. This indicates that both methods, HQI and IOHI are relatively 

consistent in this case study. Further discussion is given in Paper 3. The application of the 

HQI method to characterize the risk of a single process is discussed in Paper 7.  

 

Table 4. Comparison of occupational health indices (normalized) (Paper 3) 

Process HQImix Rank order IOHI Rank order PRHI Rank order 

ACH 4.77 4 2.63 4 9.95 5 

C2/MP 0 1 0 1 2.36 3 

C2/PA 6.89 5 10 5-6 8.55 4 

C3 10 6 10 5-6 10 6 

i-C4 1.16 3 2.11 3 1.39 2 

TBA 1.03 2 1.58 2 0 1 

              Bold represents the ranking order of the process that agrees with the order given by the HQImix 

 

The HQI index values are then compared to the IOHI and PRHI values calculated for the 

MMA case study in Papers 1 and 2. The values of the indices are correlated pair wisely 
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by linear regression (see Figure 2 of Paper 3). The comparison shows that the HQImix and 

IOHI correlate best. The correlation between the others is worse. This is understandable 

since these methods are developed for subsequent design stages. The correlation between 

indices is also discussed in Chapter 14. 
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9. EVALUATION AT BASIC ENGINEERING STAGE 

 

9.1 Stage Aim and Tasks 

A plant construction project starts with basic engineering. The main task is to make the 

piping and instrumentation diagrams (PIDs) to the accepted for design (AFD) stage and 

to complete all equipment process datasheets. All process data for equipment is defined 

(Hurme and Rahman, 2005).  

 

At this stage, more detailed process data becomes available. The main process document 

generated is the PIDs. Process data on equipment, piping, and instruments is also 

available. Other useful produced documents for the health hazards evaluation are 

preliminary layout and preliminary work procedures (see Table 2). 

 

9.2 Occupational Health Index 

In Paper 4 a method called the Occupational Health Index (OHI) is proposed. The 

method focuses on health risk estimation based on the data from the PIDs to give 

quantitative and qualitative background for analyzing occupational health problems to 

support risk elimination or reduction. 

 

9.2.1 Principle of the index 

The goals of the OHI are to: a) identify occupational risks; b) estimate level of 

occupational risks to workers; and c) give quantitative and qualitative support for risk 

reduction (Paper 4).  

 

The characteristics behind the OHI development are: a) the method relies on the data 

availability in the PIDs; b) the assessment takes into account the realistic aspects of 

operations under normal conditions (such as local wind conditions etc.); and c) the 

evaluation addresses both the long-term (chronic) and short-term (acute) exposures in 

routine work (Paper 4). 
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9.3 Development of the Index 

The OHI method is a combination of qualitative and quantitative assessments. As more 

process information is now accessible from PI and plot diagrams, additional factors have 

been included in the index method. In comparison to the HQI, the OHI extends the 

assessment by incorporating dermal exposures, acute exposures, and manual operations 

(Figure 8). All the aspects are more comprehensively and realistically assessed. The 

factors are applicable to both fluids and solids-handling processes except for the acute 

inhalative exposures, which can only be evaluated for fluids. The assessment will result 

in four indicators on the occupational health risk of the process. Risk estimation of the 

three inhalation-based exposures gives numerical (quantitative) results, whereas the 

dermal-based exposure risk is presented non-numerically (qualitative). Instead of 

summing up the results to get one net score value, the results of the subindices are 

presented separately to allow the sources of hazard to be easily identified and 

distinguished. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Principle of evaluation in the OHI method 

 

9.4 Chronic Exposure Risk 

Chronic exposure refers to continuous exposure. In contrast to the HQI, it is now possible 

to evaluate the inhalative risk of exposures not only to fluids but also to dusts. To make 

the results more transparent, the carcinogens are evaluated separately from the non-

carcinogens. Also different benchmarks are often used for these compounds. 
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9.4.1 Calculation of chemical concentration 

The overall approach for calculating the chemical concentrations in air is somewhat 

similar to that for the preliminary design stage. However, the fugitive emissions and air 

flow rates are now estimated more accurately. Precalculated process modules are not 

used. Neither is the estimated plot area. This is because the real piping and equipment 

details are available from the PIDs and they are considered in quantifying the fugitive 

emissions. The emission rates are therefore determined based on specific types of piping 

components instead of service type. Details are in Chapter 10. The emission factors for 

fluids and dusts are summarized in Tables 3 and 4 of Paper 5, respectively. 

 

The air flow rate within the process is calculated based on the real process area, 

obtainable from plot plan. The local wind speed should be used upon the data availability 

(Paper 6). The concentration estimation is further discussed in Papers 4 and 5 and 

Chapter 11.  

 

9.4.2 Non-carcinogens 

A non-carcinogenic effect refers to any adverse response to a chemical that is not cancer. 

The exposure risk to non-carcinogens can be calculated for a single substance (HQInc-i) 

and a mixture of chemicals (HQInc-mix) based on Eqs. (4) and (5). Like in the HQI 

method, the chemicals in the mixture are assumed to have additive effects. An 

explanation about this subindex is provided in Paper 4.  

 

9.4.3 Carcinogens 

A carcinogen is a substance that is capable of causing cancer. Cancers are relatively slow 

to develop and usually require prolonged exposure to carcinogens. In the OHI, the 

carcinogenic risk is assessed separately from the non-carcinogens to get specific 

information about the cancer risk. This is required since the main objective of the OHI is 

not to compare and rank several processes, but to assess the selected process and improve 

it in a more detailed manner. Unlike the non-carcinogens, the exposure risk is calculated 

for individual carcinogen (HQIc-i) rather than as a mixture (Paper 4) based on Eq. (4). 
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For chronic risk assessment, the occupational exposure limit (CEL) in Eqs. (4) and (5) 

refers to the long-term reference limit value (8h) as explained in Chapter 8.3. The intake-

based reference limit, known as a slope factor is available for many common carcinogens 

as reported by the EPA (IRIS, 1995). Upon the data availability, the carcinogen exposure 

risk may also be calculated based on the intake expression. This is elaborated in Paper 6 

and Chapter 12.3.  

 

9.5 Acute Exposure Risk 

In assessing acute risk, potential hazards resulting from short time inhalative and dermal 

exposures are evaluated. Only exposures due to routine, normal process operations are 

considered as earlier.  

 

9.5.1 Inhalative exposure 

For calculating the inhalative exposure risk subindex, the concept of the hazard quotient 

is used again. The source of exposures is not fugitive emissions anymore, but periodic 

emissions with considerably larger release amount. Manual operations and sampling 

points are among the potential sources of acute exposures in chemical plants. The 

subindex can be calculated for a single substance (HQIa-i) and chemicals mixture (HQIa-

mix) based on Eqs. (4) and (5). However here, instead of fugitive emissions-based 

concentration, chemical’s equilibrium vapor concentration (Ceq) is used. Also the 

reference limit data required is for the short-term exposure.  

 

Ceq can be calculated by adiabatically flashing the stream at atmospheric pressure. This 

corresponds to a situation where a pressurized liquid stream is discharged e.g. for 

emptying a system or sampling. In case liquid is below atmospheric boiling point, the 

equilibrium concentration in air can be calculated through the bubble point at process 

temperature. Alternatively as a simplification, the Ceq can be estimated based on the 

atmospheric vapor pressure of individual chemicals at 20 °C. The estimation of the Ceq is 

discussed in Paper 4.  
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9.5.2 Dermal/eye exposure  

The adverse effects caused by skin exposure can occur locally within the skin or 

systemically (i.e. related to the whole body) due to absorption through the skin and 

distribution over body system (Cherrie & Robertson, 1995). Generally dermal/eye effects 

are local when exposure to hazardous agents is large and within a short period of time. 

This normally concerns liquids and solids. Systemic effects following continuous 

exposure (chronic) commonly involve vapours or gases. For airborne chemicals the most 

important systemic exposure route is the inhalation (van Hemmen & Brouwer, 1995). 

This has already been considered earlier by the inhalative exposure index.  

 

In larger scale chemical processes, continuous skin contact to liquids and solids is not 

common because materials in the process are mainly well contained, the number of 

manual operations is small, and protective clothing is used. Potential rather than actual 

exposure is used here as the worst-case assumption.  

 

Due to limited dermal/eye exposure data available, a qualitative risk evaluation approach 

is proposed using matrix system in Paper 4. First the frequency of exposure is determined 

from Table 5, then the exposure risk is obtained from Table 6.  
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Table 5. Probability and frequency of dermal/eye exposure (Paper 4) 
Prob/freq of 
exposure Descriptions Example(s) 

None - No chance of dermal contact during normal job activities - Online sampling 
 - No chance of accidental dermal contact - Sophisticated fully automated sampling 
   (no manual handling of chemicals, chemicals are totally    system 
    contained, no chance of failures/leakages, etc.)   
Improbable/ - No dermal exposure during typical job activities, but short - Closed sampling system but still there 
Low contact   periods of exposure on occasion after which all contact   is a chance for leaking 
   surfaces would be washed  
 - Incidental/occasional dermal contact of a minor nature  
   such as splashes  
 - The frequency of dermal contact is low (rare)  
  - Upon contact, the probability for exposure is low   
Possible/ - Manual handling/contact with chemicals daily (routine  - Samples are collected directly from valve/ 
Daily    activity)   line. There is a possibility of spillage,  
contact - The contact/exposure is expected   which consequently causing exposure to 
 - Upon contact, the probability for exposure is intermediate   workers when they handle the sample 
    - Contact with contaminated tool/surface 
Probable/ - Handling/contact with chemicals continuously (routine  - Scooping/weighing samples manually 
Continuous    activity)    
contact - The contact/exposure is expected  
  - Upon contact, the probability for exposure is high   

 

Table 6. Risk matrix for dermal/eye exposure (Paper 4) 

Probability/frequency Low toxicity Moderate toxicity High toxicity 
of exposure R21, 36, 38 R24, 34, 43, 48, 68 R27, 35, 39, 41 
Impossible/ No risk No risk No risk 
Zero contact No action No action No action 
Improbable/ Negligible Minor risk Moderate risk 
Low contact No action Monitoring needed Measure needed 
Possible/ Minor risk Moderate risk Serious risk 
Daily contact Monitoring needed Measure needed Measure necessary 
Probable/ Moderate risk Serious risk Intolerable risk 
Continuous contact Measure needed Measure necessary Immediate measure 

 

9.6 Interpretation of the Index Results 

Since the results of the assessment are presented separately, different benchmarks are 

used to characterize the risk of each health aspect as summarized in Table 7. The 

background of the benchmarks is given in Paper 4 and further discussed in Paper 6. The 

benchmarks are not definitive, but are guidelines only.  
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Table 7. Benchmarks for interpreting the OHI assessment results (Paper 4) 

Subindex Exposure  Exposure  Calculation Application Benchmark of 

  duration source approach   acceptable risk 

HQInc Long-term Fugitive  Hazard  Individual chemical, < 1 

(noncarcinogen)  emissions quotient Mixtures  

HQIc Long-term Fugitive  Hazard  Individual chemical < 0.1 (concentration) 

(carcinogen)  emissions quotient  < 10-4 (intake) 

HQIa Short-term Manual  Hazard  Individual chemical, < 5 000 

  operations quotient Mixtures  

Dermal/eye risk Short-term Manual  Qualitative Individual chemical Qualitative  

    operations     risk level 

 

9.7 Case Study 

In Paper 4 the OHI method was demonstrated on a product distillation system of toluene 

hydrodealkylation (HDA) process. In the process, toluene is reacted with hydrogen to 

produce benzene (the desired product) and methane. Sketch of the process is given in 

Figure 1 of Paper 4.  

 

For chronic exposure risk assessment, fugitive emissions were first estimated by 

analyzing the number of leak points from the column’s PID (Figure 2 in Paper 4). The 

total fugitive emissions estimate in each stream was then multiplied with the stream’s 

weight composition from the PFD to obtain the emission rate of each substance in the 

process. Plot area and height of the distillation system were determined from the layout 

plan before the chemical concentrations were finally calculated. The concentration-based 

risk estimation for a mixture of non-carcinogens as well as the carcinogen (benzene) 

reveals that based on Table 7, the exposure risk is acceptable (Table 8). The intake-based 

risk, which was also calculated for benzene, was found to be slightly exceeding the 

acceptable risk. The result is expected, since the intake risk-based benchmark (slope 

factors) is stricter than the concentration risk-based benchmark (exposure limits) as 

discussed in Paper 6.  

 

As an improvement high rating valves and closed sampling points are chosen. By these 

measures the cancer risk can be reduced well below the benchmark (Table 6 in Paper 4). 
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The acute inhalative exposures from the manual sampling points also exceed the 

benchmark (Table 8). The sampling points are the major health problem of this process. 

Therefore healthier sampling systems e.g. using sample coolers and closed sampling 

systems are needed. The assessment results are summarized in Table 8. Also a more 

elaborate analysis of risks through hazard quotient (HQ) is possible as discussed in Paper 

6 (Tables 1 and 2). 

 

Table 8. Summary of results from occupational health assessment 

Aspect  Subindex Results Benchmark Conclusion Action 

Chronic exposure  HQInc-mix  0.00034  < 1 Acceptable risk - 
risk (noncarcinogen)           
Chronic exposure  HQIc-i 0.07  < 0.1 Acceptable risk - 
risk (carcinogen) Risk 5.3x10-4  < 10-4 Non acceptable High rating  
        risk valves needed 
Acute exposure  HQIa-mix 212 000 < 5 000 Non acceptable Closed  
risk (inhalation)       risk sampling needed 
Acute exposure Risk Toluene:Low toxicity Qualitative  Minor risk Closed  
risk (dermal)  Benzene:Moderate risk level Moderate risk sampling needed 
                   toxicity      
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10. FUGITIVE EMISSIONS ESTIMATION METHODS 

 

10.1 Fugitive Emissions 

Fugitive emissions are leaks or releases that occur wherever there are discontinuities in 

the solid barrier that maintains containment. They may occur on process plants from 

diffuse continuous sources of piping equipment (fittings), from equipment which operates 

intermittently such as the relief valves, from the ‘breathing’ of storage tanks, and from 

the activities such as draining and sampling and the opening up of equipment during 

operations or for maintenance (Lees, 1996). They may also be generated from wastewater 

treatment system and procedures like bagging and screening (Lipton and Lynch, 1994). 

Earlier works in fugitive emissions were driven largely by concern on environmental 

pollution. However, the information is equally applicable to health evaluations. The 

scope of this study focuses on the emissions from inside battery limit area (ISBL) (i.e. 

process area) process equipment, since these are the primary source of fugitive emissions 

exposure to process workers at a plant. Besides, fugitive emissions from the other sources 

cannot be easily quantified before the basic engineering stage when the PFDs are the only 

process information available. The ISBL process area is also the main focus in comparing 

different alternative processes. 

 

10.2 Estimation of Fugitive Emissions 

There are four basic techniques available for quantifying fugitive emissions (Paper 5): 

 

a) Direct measurement based on portable gas detectors. It is only applicable to existing 

processes. 

b) Mass balances – Despite its straightforwardness, this technique is not accurate since 

fugitive emissions involve only a very small fraction of material losses. The method 

is suitable only for existing processes. 

c) Engineering calculation which is based on detailed models on material losses 

estimation from equipment or facilities, is complicated and requires detailed inputs 

and usually involves software tools. 
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d) Emission factor - The U. S. Environmental Protection Agency (EPA) has devised 

approaches to estimate fugitive emissions from process equipment based on 

component leak factors (EPA, 1995): 1) Average Emission Factor Approach, 2) 

Screening Ranges Approach, 3) EPA Correlation Approach, and 4) Unit-Specific 

Correlation Approach. 

 

For the early design stage, emission factor is the only feasible technique to estimate the 

fugitive emissions. Among the four approaches in it, the Average Emission Factor is the 

simplest option, which only requires limited process information; screening values are 

not needed like in the other three techniques (Hassim and Hurme, 2008a). This approach 

needs equipment and piping item count as well as average emission factors. Different 

emission factors are established to estimate the emission rates for each component type 

(valve, pump, etc.) in different services (gas/vapor, light liquid, or heavy liquid) (Tables 1 

and 3 in Paper 5). 

 

In a typical petrochemical plant, valves are the main leaking components, generally 

responsible for 60% of the total fugitive emissions (McLellan et al., 1997). Emission 

factors for piping and equipment are established as an ‘average’ value for the component 

type (e.g. typical pump) or as a value for a specific component type (e.g. pump with 

double mechanical seal). The former emission factors are used in the preliminary design 

stage method (since the specific types are not known), whereas the latter ones are used in 

the basic engineering stage method. The emission estimates based on the average 

emission factors are expected to be considerably larger than the actual emission estimated 

with specific emission factors. 

 

10.3 Development of the Estimation Methods for Design Stages 

In Paper 5 three methods for quantifying fugitive emissions have been developed for 

simple PFDs, detailed PFDs, and PIDs. 
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10.3.1 Simple PFDs 

Simple PFDs imply to simplified process diagrams and process descriptions found in 

patents or literature such as encyclopedias. Quantifying fugitive emissions based only on 

this limited process data has not earlier been possible. Therefore, the fugitive emission 

evaluation method was developed based on the idea of precalculated process modules as 

presented in Papers 3 and 5. Precalculated modules refer to a set of fugitive emission 

rates data that has been precalculated for standard modules of chemical processes. The 

standard modules represent regular operations in chemical plants such as distillation, 

reactor, flash, absorption etc. systems (Appendix 1). The precalculated modules emission 

data (Table 9) was created by analyzing the number of potential leak sources in these 

operations. This component data was accomplished by studying typical piping and 

instrumentation diagrams (PIDs) of the process modules. The emission from each module 

stream is calculated in Table 9 for all possible types of service; gas/vapor, light liquid, 

and heavy liquid. The calculation made use of the average emission factors provided by 

the U. S. EPA for traditional component types (Table 1 of Paper 5). ‘Traditional 

component types’ refer to those that have conventionally been reported as sources of 

equipment leak fugitive emissions by the U. S. EPA, e.g. pump, valve, and flange.  

 

The emissions estimation procedure is as follows (Paper 5): First, process flow sheet is 

divided into standard modules. Next, based on process descriptions, chemicals present in 

each module stream are identified before the stream’s service type can be determined. A 

liquid stream is classified under light liquid service if it mainly contains highly volatile 

chemicals (atmospheric vapor pressure of pure chemical > 0.3 kPa). Otherwise, it is a 

heavy liquid. The fugitive emissions from the module streams are determined by 

referring to the precalculated modules data provided in Table 9. The emission rates from 

all module streams are summed up to obtain the total fugitive emissions from a process.  

 

However, since the research concerns with the risk assessment of health hazards, it is 

vital to know the emission rate of the individual chemicals in the process. Due to the 

lacking of detailed mass balance data in this stage, the calculation is done by determining 

the most toxic chemical (‘worst chemical’) to represent the stream emission rate. The 
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‘worst chemical’ is the major stream component with the lowest reference limit value 

(e.g. TLV). For the same ‘worst chemical’, the stream rates are totaled up throughout the 

process. The flow chart of calculation is presented in Figure 9. 

 

Table 9. Fugitive emission rates for typical chemical process modules (Paper 5) 
Process module (fugitive emission rate, kg/h) 

      Normal  Vacuum      Ion     Normal  Vacuum  Total 

Stream Service Absorber Stripper Flash LEX Exch CSTR PFR Distillation Comp 

Feed 1 G/V 0.024 0.117 0 0.057   0.052 0.102 0.059 0.044 0 0.454 

  LL   0.098 0 0.053 0.048 0.044 0.082 0.127 0.036 0   

  HL   0.060 0 0.046 0.025 0.029 0.044 0.082 0.021 0   

Feed 2 G/V            0.110 0.063       

  LL 0.113      0.235   0.088 0.052       

  HL 0.063      0.125   0.046 0.029       

Outlet  G/V 0.109 0.002 0 0.021   0.123   0.163 0.025 0   

 2/3 LL   0.464 0.225   0.055 0.100 0.560 0.271 0.405 0.239   

  HL   0.324 0.127   0.036 0.054 0.378 0.156 0.254 0.137   

  G&LL mix              0.498       

  G&HL mix              0.380       

Outlet  G/V                      

 3/4 LL 0.236 0.159 0 0.301 0.097       0.217 0.139   

  HL 0.134 0.094 0 0.165 0.059       0.137 0.082   

G:Gas; V:Vapor; LL:Light liquid; HL:Heavy liquid; LEX:Liquid-liquid extractor; Ion Exch:Ion exchanger; 

Comp:Compressor 

 

10.3.2 Detailed PFDs 

Detailed PFDs provide also data on mass and energy balances. The approach for 

estimating the fugitive emissions is similar to the method used for simple PFDs.  

However, the way the stream’s service type is determined is different. For a liquid stream 

under operating conditions, the pure chemical vapor pressure of components at 20 °C in 

the mixture is determined. The pure vapor pressure information is readily available, e.g. 

from Material Safety Data Sheets (MSDS). For the chemicals with vapor pressure above 

0.3 kPa (at 20 °C), their weight compositions are summed up. If the total composition is 

≥ 20 wt%, the stream is in a light liquid service; or else, it is a heavy liquid. The 

determination of the stream ‘worst chemical’ is now unnecessary. Instead, the stream 

emission rate is multiplied with the weight composition of the respective components in 

that particular stream. Weight compositions are used throughout the calculation since the 
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EPA emission factor data is weight-based. Similarly, the emissions of the same chemical 

substances throughout the process are totaled up. Step-by-step procedures of calculating 

the fugitive emissions from simple and detailed PFDs are presented in Figure 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 9. Flow chart of fugitive emissions calculation for simple and detailed PFDs 
(Paper 5) 

Determine stream’s 
fugitive emissions rate 
from Table 2 (Paper 5) 

 

Determine fugitive 
emissions rate for each 

chemical, FEi 
 

Total up FEi of the same 
chemical throughout the 

process 

Simple PFDs 
-Determine the most toxic 
chemical to represent the 
stream rate. 

Detailed PFDs 
-Multiply stream rate with 
the respective chemical 
weight composition. 

Identify chemicals present 
in each module stream, i 

Divide PFDs into standard 
modules 

 

Determine stream’s type of 
service 

 

Simple PFDs 
-Gas service =  
gas/vapour stream. 
-Light liquid service = liquid stream 
mainly contains chemicals with 
atmospheric vapour pressure > 0.3kPa. 
-Heavy liquid service = other than gas & 
light liquid services. 

Detailed PFDs 
-Gas service =  
gas/vapour stream. 
-Light liquid service = liquid stream 
contains ≥ 20wt% chemicals with 
atmospheric vapour pressure > 0.3kPa. 
-Heavy liquid service = other than gas  
& light liquid services. 
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10.3.3 PIDs 

A more comprehensive assessment can be done when PIDs are available, since these 

offer piping and equipment details. The fugitive emission rates can be quantified more 

accurately as the real number and type of components are known from PIDs. Therefore 

more accurate emission factors can be used (e.g. pump shaft with single mechanical seal 

or exchanger head), which also contribute to a more accurate estimation. The database 

(Table 3 of Paper 5) was constructed by compiling data from various references (Schroy, 

1979; Carson and Mumford, 1985; EPA, 1995; TCEQ, 2006). Some of the emission 

factors needed to be recalculated in order to ensure they are compatible with the method. 

Emission factors for processes handling solids are also provided (Carson and Mumford, 

1985) (Table 4 of Paper 5). Likewise in detailed PFDs, the emission rate calculated for 

each process stream is corrected with the respective chemical weight composition. The 

flow chart of the method is shown as Figure 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 10. Flow chart of fugitive emissions calculation for PIDs (Paper 5) 
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11. CHEMICAL CONCENTRATIONS DUE TO FUGITIVE EMISSIONS  

Chemical concentration is a necessary data required for calculating the health risk based 

on the HQI (preliminary design stage) and OHI (basic engineering stage) methods. 

During the process preliminary design, the concentration can be estimated using the 

information from simple and detailed PFDs. In the basic engineering stage, PIDs are 

required as discussed in Paper 5. 

 

Before the principle of concentration calculation is discussed, the estimation of air flow 

rate needs to be first explained in detail for PFDs and PIDs. 

 

11.1 Air Flow Rate Estimation for PFDs 

For simple and detailed PFDs, the air flow rate is estimated based on the typical average 

floor area of standard process modules and their average height, as well as the average 

wind speed. The floor areas of standard modules were approximated from a 

petrochemical plot plans (see Table 5 of Paper 5). The estimation procedure assumes 

square shape of plot plan. First the floor areas of all modules (Ai) in the process are 

summed up, Af = ΣAi. Then the width of the square plot is calculated, d = (Af)1/2. 

Subsequently wind cross-section area (An) is determined by assuming the height (h) of 

majority of piping components in petrochemical plants is below 7 meters (Mecklenburgh, 

1985), An = 7d. Finally air volumetric flow rate is calculated by multiplying the process 

vertical area with the wind speed, V = vAn. The real average wind speed is used for the 

location. If not available, the typical wind speed for outdoor facility is 4 m/s (Clement 

Associates, 1982; Baldwin and Maynard, 1998; CCPS, 2000). Figure 11 presents the flow 

chart of the estimation steps for these design stages. 
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Figure 11. Flow chart of air volumetric flow rate calculation for simple and 

detailed PFDs (Paper 5) 

 

11.2 Air Flow Rate Estimation for PIDs 

A plot plan is readily available at the same time when a PID is produced. This document 

is showing the location of the equipment in the plant. Based on the actual process area 

measured from the plot plan, the air flow rate estimate is expected to become more 

accurate compared to the standard module areas approach. Since the process design phase 

is now almost reaching to the end, the location of the plant is known to the designers and 

the average wind distribution data within the location of interest can be obtained. The 

flow chart of the estimation method is presented as Figure 12. 
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from Table 5 (Paper 5) 
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modules, Af = ΣAi 

Calculate the edge width of 
the area, d = (Af)1/2  
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Determine process vertical 
area, An = 7d 

(assume height of piping 
components, h < 7 m) 

Calculate air volumetric flow 
rate, nvAV =  

(where v: average wind speed) 

(typical average v value = 4 
m/s) 
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Figure 12. Flow chart of air volumetric flow rate calculation for PIDs (Paper 5) 
 

11.3 Chemical Concentrations Estimation 

The concentration of chemical in air (C) can be calculated as follows: 

 

 

C =
m

vAn

                 (6) 

where m is fugitive emission rate; v is wind speed; An is the cross-section area of process 

downwind. 

 

The estimation basically utilizes data on fugitive emissions rate, m (the numerator in Eq. 

6) and air flow rate (the denominator in Eq. 6). The first data is discussed in Chapter 10 

and the second data in Chapters 11.1 and 11.2. The calculation assumes full mixing 

condition and the concentration is estimated at the downwind edge of the plot area. 

 

The concentrations estimation approach discussed above is for outdoor petrochemical 

plants, which is the scope of the thesis. For enclosed facilities, the concentrations can be 

Measure the edge width of the 
plant corresponding to the wind 

direction, d 

Measure the height of majority 
piping components, h. If not 
available, assume h = 7 m 

Determine process vertical area, 
An = dh 

(use local average v 
value if available) 

Calculate air volumetric flow 
rate, nvAV =  

(where v: average wind speed) 
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calculated using ventilation rate that depends on air change rate and volume of the space. 

Ventilation rates for indoor facilities are widely published (e.g. Lipton and Lynch, 1994, 

Jayjock, 1997), thus making the estimation easier. 

 

11.4 Case Study 

The concentration estimation approaches developed in this work have been applied on a 

real benzene manufacturing process (Borealis Polymers Oy in Porvoo, Finland). The 

benzene production process can be divided into four main stages: pre-distillation of 

pyrolysis gasoline; second-stage hydrogenation of pyrolysis gasoline; extractive 

distillation; and benzene purification. A schematic diagram of the Porvoo benzene plant 

is presented in Figure 8 in Paper 5.  

 

The concentration of benzene in the plant is estimated based on simple PFD, detailed 

PFD, and PID of the process. Benzene is the substance of interest in the assessment 

because it is a carcinogen and monitored at the plant. The benzene concentration 

estimates are compared to the actual concentration value measured at the plant. There are 

nine measurement points installed throughout the plant (Figure 11 in Paper 5). To 

compare with measured values, a representative downwind sampling point is selected to 

represent the emissions from the whole plant.  

 

The fugitive emissions, air volumetric flow rate estimates, and calculated benzene 

concentrations are presented in Table 10 for the three methods. It is noticed that the 

estimated plot widths in PFD stages differ from the real plot width (84 m). This is 

because the real plots are not always square as assumed in the estimation. Also the area is 

underestimated by the early stage’s method. Therefore the concentrations for PFD stages 

were recalculated based on the real process area as used for the PID (the right most 

column in Table 10). The trend in the concentration estimation results in Table 10 is that 

the earlier stage estimates are larger than the PID stage estimate, which is closer to the 

measured one. When the same plot size is used, the differences in the results are because 

of the usage of different emission factors in the first stages. 
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Also local concentrations in the ISBL area were estimated and compared with measured 

values as shown in Figure 12 in Paper 5. It can be seen that the estimated local values are 

reasonably close to the actual concentrations except for larger concentrations at the three 

lower wind velocities (v < 1 m/s). This is because the estimation model assumes full 

mixing of emissions, which is an invalid assumption with low wind velocities. More 

details on the estimation of the benzene concentration and its comparison with the actual 

measured values are discussed by Pérez (2008). 

 

In another paper the methods were tested on the C2/PA route first subprocess (Hassim 

and Hurme, 2008a). The results show a similar pattern with those in Table 10 - the 

concentration estimates appear to be smaller with later stage methods when more data is 

available (simple PFD > detailed PFD > PID).  

 

Table 10. Benzene concentration estimation at different design stages 

  Fugitive  Plot width Air volumetric  Concentration Concentration  

 emission rate  flow rate (estimated area) (width = 84 m) 

  (kg/h) (m) (m3/s) (ppm-wt) (ppm-wt) 

Simple PFDs 3.3 33* 930 0.31 0.12 

Detailed PFDs 2.3 37* 1026 0.19 0.08 

PIDs 1.2 84 2352 0.045 0.045 

Measured  84  0.040 0.040 
*) Estimated 
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12. OCCUPATIONAL CHEMICAL EXPOSURE AND RISK  

ESTIMATION 

 

In reality, worker exposures to chemicals in outdoor facilities are not constant throughout 

the time. The exposures are expected to be higher when the winds are milder, due to 

poorer dilution. By using wind velocity statistics at the plant location, health risks of 

occupational exposure can be estimated more realistically as probability distributions 

(Paper 6). In addition to the usual process route health characteristics, such as fugitive 

emissions rate, concentration, and risk of exposure, the method also produces data on the 

critical wind speed. This new concept defined in Paper 6 refers to the minimum velocity 

of air necessary to maintain the level of chemicals in exposure limits in local wind 

conditions. The critical wind speed may already provide an idea about the relative 

exposure levels of the process concepts studied. The higher the calculated critical value, 

the higher the wind speed required to keep the chemicals below reference exposure 

limits, thus implying the greater relative exposure risk. Details of the approach are found 

in Paper 6. 

 

12.1 Wind Distribution Prediction  

The wind is never constant. It is influenced by diverse factors, such as the weather 

system, local terrain, and height from surface. Weibull distribution is the best density 

function that can be used to describe the wind speed frequency curve (Patel, 1999). 

Generally, the Weibull cumulative distribution function can be described as: 
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where α is the scale parameter (unit of speed); β is the shape parameter (dimensionless); 

v is wind speed (Patel, 1999). 

 

The wind speed can be corrected to the height of interest since wind speed near to the 

ground changes with height. From the context of occupational exposure, the wind speeds 

of concern are those at the workers’ breathing zone level. At heights closer to the ground, 
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the wind speeds are lower, resulting in higher chemical concentrations. The most 

common expression to correct wind speed with height is the power law as presented in 

Eq. (10) (Patel, 1999): 

 
γ









=

0
0 z

zvv                  (8) 

where v is wind speed estimated at desired height, z; v0 is wind speed measured at the 

reference height, z0; γ is the ground surface friction coefficient (Patel, 1999). 

 

12.2 Concentration-Based Exposure Risk Assessment 

Paper 6 discusses the approaches of estimating the exposure risk to chemicals, which are 

either based on the concentration or the intake. Basically, the concentration-based risk 

assessment is easier and it is more applicable to various chemicals since the reference 

limit values are widely available for a long list of chemicals (e.g. HTP Values, 2007). 

The benchmark of acceptable risk value for this approach is as already discussed in Table 

7 in Chapter 9.6. More elaborate HQ benchmark systems are presented in Paper 6; e.g. a 

method employing R clauses for determining the HQ benchmark (Table 2 of Paper 6). 

 

12.3 Intake-Based Exposure Risk Assessment 

The intake-based assessment is more limited than the HQ-based as it requires slope 

factors, which are available mainly for carcinogens. However the risk estimation is more 

realistic. It also provides a more indicative result of the risk value as opposed to the result 

obtained from the concentration-based approach.  The quantitative risk can be calculated 

as follows (Paper 6): 

 

Risk = CDI x slope factor               (9) 

where CDI is chronic daily intake (mg/kg-day). 

 

The common value of acceptable risk level or the benchmark for occupational 

environment is one cancer case per a ten thousand people per 45-year worktime (Chan et 
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al., 2006). Wherever possible the intake-based approach should be used, especially for 

the carcinogens.  

 

12.4 Case Study 

In Paper 6 the six MMA manufacturing processes were used as a case study to 

demonstrate the method. For more realistic exposure estimation, wind distribution data in 

a seaside location in Finland for year 2007 was used (Figure 13). Chemical exposure 

risks were calculated using both the concentration and intake-based approaches. 
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Figure 13. Annual wind probability distribution at 1.5 m height in the case study 

(Paper 6) 

 

In Paper 6 for the concentration-based approach, hazard quotient index for chemicals 

mixture (HQmix) was calculated for the MMA routes for different wind velocities. The 

results are presented in Figure 14(a). The HQmix value is much larger at lower wind 

speeds and it decreases gradually as the speed is getting higher due to better dilution. The 

corresponding figure based on the yearly cumulative wind speed probability (Figure 2 in 

Paper 6) at a working level is presented as Figure 14(b). The HQmix curves show that the 

C3 route is the most harmful process to health, followed by the C2/PA and ACH. The i-

C4, TBA, and C2/MP routes are clearly healthier. The same trend is shown by the critical 

wind speed (HQ ≤ 1) analysis presented in Table 5 of Paper 6. The C3 exhibits 

significant exposure risk (HQ > 1) for around 623 hours in a year (7.1% of time) whereas 
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the best process C2/MP has only 2 h/a (0.02% of time) chemicals concentration above the 

threshold limit value at this plant location. 

 

The intake-based approach was applied on the C2/PA route. It is the only route 

containing a carcinogenic substance (formaldehyde). Figure 5(a) of Paper 6 shows the 

cumulative probability of getting cancer from the exposure to formaldehyde in the same 

plant location as for the concentration-based assessment. The carcinogenic risk of 

formaldehyde exposure exceeds the benchmark of one cancer case in ten thousand 

persons in 45-year worktime for 98.7% of the year. The HQ < 0.1 benchmark is exceeded 

87% of time. Therefore the intake-based benchmark is stricter. These two benchmarks are 

compared in Paper 6 Table 6. The risk benchmark for the 0.1HQ concentration is 1.3-25 

times larger than the 10-4 benchmark depending on the carcinogen. The ratios vary since 

the occupational exposure limits are often based on different criteria than the slope 

factors as discussed in Paper 6.  

 

The presented methods employing wind distributions and risk benchmarks allow 

foreseeing the potential exposure risk of competing processes already in the process route 

selection stage for a chosen plant location. This allows early actions on route selection or 

the choice of dedicated technology to reduce exposure risks. 

 

Figure 14. The Health Index of chemical mixtures for MMA processes based on: 

(a) wind speed (b) wind speed probability over year (Paper 6) 
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13. ADAPTATION TO COMPUTER SYSTEM 

 

Paper 7 presents the principle of integrating the IOHI, HQI, and OHI methods with the 

existing computer aided design tools. Such integration is obviously needed as most of 

design works are currently done by using CAPE tools such as flowsheeting programs, 

and later 3D design tools.  

 

One principle of the integration is to interface these tools with a spreadsheet tool, in 

which hazard and risk can be calculated using the HQI or OHI methods. For the IOHI 

(R&D stage), simulation results are not yet available, hence only other data sources such 

as safety property database and user input are used. In process flowsheeting stage it is 

also possible to integrate the safety properties database and the standard emission module 

database directly to the flowsheeting program. The data integration principle and data 

flows are presented in Figure 15. 

 

The data requirements and the integration needs of each method are somewhat different, 

since they are intended for different process design stages. The required data (and 

sources) can be classified into five major types of: 

 

a) Health and safety data; MSDS health database. 

b) Fugitive emission related data; standard module database, emission factors database.  

c) Process data; simulation, user input. 

d) Physical property data; MSDS database, flow sheets databank. 

e) Diagram data; block, flow sheet, PI, layout diagrams.  

 

The sources of the data are summarized in Table 11. The configuration of the computer 

system for all the three methods is presented in Figure 15. 
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Figure 15. Configuration of the computer system for the three evaluation methods  

(Paper 7) 

 

Table 11. Data sources for the occupational health assessment 

Stage R&D Process predesign Basic engineering 

Index IOHI HQI OHI 

Process data Temperaturea     

  Pressurea     

  Phasea,b Phased Phased 

  Compositiond Compositiond 

Physical  Boiling point (atm) b,c     

property data Corrosivitya,b Vapor pressure 20°Cb  Vapor pressure 20°Cb  

Health OEL 8-hb HTP 8-hb HTP 8-hb 

data R-phraseb   R phraseb 

    HTP 15-minb 

Fugitive  Standard module  Emission factorsf 

emission data  emission ratese  

Diagram   Modules presentd,g Leak source itemsg 

data   Plot plan areag 

    Manual operationsa 
              aUser input; bSafety sheet (database); cFlowsheeting program databank; dFlow sheet simulator; eStandard  
          emission module database; fEmission factor database; gDiagrams 
 
 
 

ICSC 

R&D 

Block 
diagram 

Std process 
modules 

Process  
predesign 

Flowsheet 

Basic 
design 

Fugitive 
emission data 

PID 3D model 
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14. CORRELATION BETWEEN SHE CRITERIA 

 

In literature several index-based methods have been presented for safety, health, and 

environmental aspects as discussed in Chapters 2 and 5. The methods are much based on 

the same parameters (Table 1 of Paper 8). It would be interesting to know if any 

interdependency exists between the methods. Therefore a correlation analysis was done 

in Paper 8 on the methods. High correlation would mean that the inherent SHE properties 

are dependent on each other. In this case it might be possible to create a universal index 

for all the SHE properties. 

 

14.1 Methodology 

Twelve inherent assessment approaches were chosen for the study; three or four from 

each SHE aspect. The selected methods and the ground for their selection are described 

in Paper 8. The methods are characterized by three major criteria of: a) type of index 

calculation – additive vs. average, b) operating scenario – catastrophic event vs. normal 

operation, and c) time scale – short-term vs. long-term. The characteristics of the methods 

are shown in Table 2 of Paper 8.  

 

14.2 Case Study 

The evaluation was done by using the six process routes for MMA in Paper 8. The 

correlation between the SHE assessment methods was determined by performing pair-

wise linear regression between MMA process route index values. Linear regression was 

considered appropriate, since the index-based methods are mathematically linear. The 

correlation between the methods compared is indicated by the R2 value, which is the 

coefficient of determination. The R2 describes, which amount of the dependency of the 

variable is explained by the other variable.  

 

Each method was paired with other method and the resulting R2 values of pairs were 

determined (Table 3 in Paper 8).  
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Correlation of health indices 

Table 12 presents the correlation of MMA route health index values in normal font (from 

Paper 8) and in italic (from Paper 3). FE is the fugitive emissions rate. Interestingly the 

results differ especially for the HQI and IOHI correlation. The best correlation (R2 = 

0.85) is between HQI and IOHI methods in Paper 3. In Paper 3, the index values for IOHI 

and HQI were based on the three main ACH subprocesses only, whereas in Paper 8 the 

values were based on six ACH subprocesses. All the methods in Table 12 are based on 

additive type calculation except for the HQI, which is based on average toxicity risk 

approach. Therefore the difference in correlation results reflects the additivity problem 

discussed earlier in Chapter 7.4 and Paper 2. When the additivity aspect was diminished 

by considering only the three main process steps in Paper 3 ACH case, the similarity of 

the indices became more evident. However correlation with PRHI is not affected much 

since the index calculation approach was different from IOHI. The nature of the PRHI 

index is less additive than the IOHI. 

 

Table 12. Correlation of MMA route index values of different health methods (R2 value) 

(Papers 3, 8) 

Index PRHI      IOHI       HQI FE 

PRHI - 0.66   0.51 0.72   0.77 0.15 

IOHI   0.24   0.85 0.18 

HQI    0.36 
   (normal fonts are from Paper 8; italics are from Paper 3) 

 

Correlation between SHE criteria 

The average correlation between SHE indices was calculated in Paper 8 to find out if 

inherent SHE characteristics are interdependent. The result is that the safety & health and 

safety & environmental criteria have stronger correlation than health & environment 

(Table 13).  
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Table 13. Average correlation between SHE criteria (Paper 8) 

Criterion 1 Criterion 2 Average R2 

Safety Health 0.78 

Safety Environment 0.78 

Health Environment 0.55 

 

The universal index 

Finally, the possibility of a universal index, that is a single index capable of evaluating all 

the SHE aspects, was studied by using either IOHI, ISI, or IETH index to substitute the 

other two. The outcome of the analysis is that the IOHI or ISI method alone can estimate 

all the SHE properties at least in the MMA case study for route selection with about 95% 

correlation (Table 14). One should remember however that the health aspects do not in 

this case include the fugitive-based inhalative exposures directly. 

 

Table 14. Correlations if only one index is used for all criteria in MMA routes evaluation 

(Paper 8) 

Index 1 Instead of: Average R2 

IOHI ISI and IETH     0.95 

ISI IOHI and IETH     0.94 

IETH ISI and IOHI    0.92 
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15. OVERALL APPROACH FOR HEALTH EVALUATION IN PROCESS 

DEVELOPMENT AND DESIGN 

 

As a summary, an overall approach for occupational health evaluation in chemical 

process development and design is presented in Figure 16. The IOHI method acts as the 

first layer to select the chemical process route with the lowest health hazard potential. 

The selected route can then be analyzed to identify the harmful steps. Inherent safety 

keywords are applied to reduce the hazard level as low as reasonably practicable 

(ALARP). The new IOHI value can be calculated after the modification is made.  

 

The route is then further developed into process flow sheet diagrams (PFDs). The 

inhalative risk of chronic exposure can be calculated based on fugitive emissions, 

dilution, and exposure limits data. Likewise in the IOHI method, inherent safety 

keywords are applied on the risky streams (HQI > 1 or more elaborate criteria in Paper 6) 

to reduce the risk.  

 

After the PIDs of the process are created, the OHI is used to evaluate more aspects of 

health risks. Inhalative chronic exposure risk is calculated similarly as in the HQI but in 

more detail. Manual operations or periodic emissions sources can be analyzed from the 

PIDs. Acute inhalative and dermal exposure risks can be estimated using the OHI. From 

the calculation, hazardous stream or operation can be easily identified. Design 

modifications can be applied based on inherent safety keywords to reduce the risk as low 

as possible.  
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Figure 16. An approach for occupational health evaluation 
 

 

HQI 

 

Create PFDs 

Calculate concentration (fugitive emission, dilution) 

Exposure limits (8h) 

Calculate inhalative chronic risk 

Identify unhealthy stream (HQI > 1 or other criteria) 

Apply design modifications based on IS keywords 

Modification has reached limit 

 

 

 

IOHI Alternative reaction chemistries 

Calculate health hazard 

Select the best route 

Identify unhealthy reaction step (IOHI standard setting) 

Apply design modifications based on IS keywords 

Modification has reached limit 

 

 

 
 

Identify unhealthy stream or operation 

Apply design modifications based on IS keywords 

Modification has reached limit 

 

 

END 

Create PIDs 

Calculate concentration (fugitive emission, dilution) 

Exposure limits (8h) 

Calculate inhalative chronic risk 

Analyse manual operations, periodic emission sources 

 

OHI 

Identify chemical’s dermal-related  

R-phrases 

Identify dermal exposure probability 

Determine risk from matrix 

 

Calculate vapor equilibrium 

concentration 

Exposure limits (15min) 

Calculate inhalative acute risk 

 

R&D 

PFD 

PID 
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16. CONCLUSIONS 

 

Occupational health is an important part of sustainability together with process safety and 

environmental issues. Each year, more people die from work-related diseases than are 

killed in industrial accidents. Therefore health characteristics of processes should always 

be evaluated preferably as early as possible, starting from the inherent level. Basic 

decisions made during the design phase have a major effect on the later performance of 

the process.  

 

This study introduces a new concept; inherent occupational health. Inherent occupational 

health is a prevention of occupational health hazards by trying to eliminate the use of 

hazardous chemicals, process conditions, and operating procedures that may cause 

occupational hazards to the employees. 

 

Methods capable of assessing occupational health hazards of chemical process concepts 

are highly required but lacking. Therefore the aim of this research has been to create 

methods tailored to the first process lifecycle stages. Three occupational health 

assessment methods have been developed for the research and development, preliminary 

design, and basic engineering.  

 

For the process R&D stage, the Inherent Occupational Health Index (IOHI) was 

developed as a qualitative hazard ranking method based on material properties and 

reaction conditions data only. The Hazard Quotient Index (HQI) is proposed for the 

preliminary design stage; HQI focuses on chronic inhalative exposure risk from fugitive 

emissions based on the data from process flow diagrams. For the basic engineering stage 

the Occupational Health Index (OHI) covers additional health risk factors such as acute 

inhalative and dermal exposures due to manual operations based on data from the PIDs. 

Basic engineering is the last step where conceptual changes can still be made at moderate 

costs. The fundamental idea is to introduce methods that are based on the available data 

in each design stage. Therefore the R&D stage method is reaction step oriented, the PFD 

stage method is process module oriented, and the PID method deals with the piping and 
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equipment level. As the project progresses from research and development to basic 

engineering stages, more comprehensive assessments are therefore feasible, hence 

leading to more detailed results. 

 

The IOHI method is based on exposure inherent characteristic (such as physical 

properties of chemicals and operating conditions of process) and harm related aspects 

(exposure limits and R-phrases). The HQI and OHI methods are mainly based on fugitive 

emissions estimates of the process. In the PFDs stages, the emissions are estimated by 

precalculated process modules. When material balance is available in the detailed PFD 

stage the composition data is utilized to give a more accurate estimate. In the PIDs stage, 

fugitive emissions are quantified based on the real number and type of piping and 

equipment components.  

 

Chemical concentrations due to the emissions are calculated based on the typical plant 

cross-section area and wind velocity. The cross-section area is based on the plot area, 

which is a floor area of standard process modules or an actual process area from plot plan 

for the PIDs. Also wind speed data, either real value in the location or average value, is 

required.  

 

The concentration estimation approach was applied on an existing benzene plant. The 

estimated benzene concentration became closer to the actual measured value as the 

methods progressed from simple PFDs to PIDs stage (accuracy: PIDs > detailed PFDs > 

simple PFDs). The results were very satisfying for the PIDs stage (0.045 estimated vs. 

0.04 measured ppm). The estimates from the PFDs were farther from the actual due to the 

underestimated areas of standard process modules and the use of average emission 

factors. 

 

Using real wind distribution data allows a realistic comparison of process concepts at the 

real plant location and an estimation of e.g. the cancer risk quantitatively. Different risk 

evaluation methods and benchmarks were also studied and compared. It turned out that 

the exposure level related risk (concentration-based) evaluations are more applicable. For 
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carcinogens, it is also possible to use quantitative evaluations. For them the quantitative 

risk benchmark (10-4) was found to be stricter than the 0.1HQ benchmark. A new term, 

critical wind speed, was introduced to characterize the wind speed required to keep the 

concentration of chemicals in air below the exposure limits. Also local benzene 

concentrations could be estimated on an existing plant with relatively good accuracy as 

long as the wind velocity was large enough to allow a proper mixing.  

 

The IOHI, HQI, and OHI methods have also been studied for integration with the existing 

computer aided design tools. This is attractive since CAPE tools are commonly used in 

design. The integration can be done through a spreadsheet tool or in the PFD level by 

incorporating the index calculation into a flowsheeting program. New databases are 

needed; health property database and fugitive emissions database (for standard modules 

and PID components). The integration is quite straightforward except in the PID stage 

where more elaborate CAPE tool integration is needed.  

 

The correlation between different stage indices was studied. It was found out that the 

HQI correlates well with IOHI (R2 = 0.85) even though they are designed for different 

stages. The correlation however depends much on how the additive aspect of indices is 

considered. 

 

Also a correlation between SHE criteria was analyzed to find out, if any interdependency 

exists between SHE characteristics at inherent level. It was found out that safety & health 

and safety & environmental criteria were correlated more than health & environmental 

criteria. Since the SHE index methods are very much based on the same parameters, a 

feasibility for a universal index, which is capable of evaluating all the SHE properties, 

was studied. It was found out that the health index IOHI can substitute the safety and 

environmental indices (ISI and IETH) with 95% correlation. Also ISI can substitute the 

others well. It has to be kept in mind however that IOHI is only a partial expression of 

health since it does not include fugitive emissions directly.  
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Finally an overall approach for health evaluation in process development and design was 

proposed. It includes the three indices for the R&D, PFD, and PID stage evaluation. The 

presented approaches allow an early analysis of process routes, concepts, and designs. 

Potential hazards can be foreseen in each design stage so that proactive, rather than 

retrospective actions can be taken. This will potentially reduce both costs and health 

risks, since the health related selections can be done early when there are more degrees of 

freedom left. This will decrease the need for expensive later modifications and excessive 

investments on add-on protective systems. The health level is enhanced on an inherent 

level by reducing the health hazard potential itself. By doing so, protection load is 

transferred from the protective layers into the inherent process related selections. 

 

By using the methods proposed, the legal requirements of choosing the safest chemicals 

and process concepts can be brought into a more systematic practice in process R&D and 

design. 
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APPENDIX 1:  

 
Process streams considered in fugitive emissions quantification for a) absorber; b) liquid-

liquid extractor; c) stripper; d) flash; e) distillation; f) ion exchanger; g) tubular reactor; 

h) stirred tank reactor; i) compressor. 
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