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List of symbols and abbreviations 

 

A  magnetic vector potential 

a  nodal value of the magnetic vector potential 

B  magnetic flux density 

E  electric field strength 

H  magnetic field strength 

sbh  distance from the inner surface of the stator to the top of the stator bars 

J  current density 

mi  current of the thm  phase 

eddyk  eddy factor 

el  effective length of the machine 

eL  end winding inductance of a phase 

s
ewP  resistive loss of stator end winding 

s
sbP  resistive loss in the slot-embedded part of stator winding 

s
tP  total resistive loss of stator winding 

 bQ  number of bars of the winding in the solution region 

ssQ  number of symmetry sectors 

mQ  number of stator phases 

R  DC resistance of a phase 

bR  DC resistance of a bar 

eR  end-winding DC resistance of a phase  

strR  DC resistance of a strand  

nS  cross-section area of the thn  bar of the winding 

t  time 

b
nu  potential difference of the thn bar  

mu  voltage of the thm  phase  

  conductivity 

  reluctivity 
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  permeability  

  electric scalar potential 

  angular frequency of time variation 

  solution region 

 

 

Abbreviations 

2-D two-dimensional 

3-D three-dimensional 

AC alternating current 

CIM cage induction motor 

DC direct current 

DFIG doubly-fed induction generator 

FEA finite-element analysis 

FED finite-element discretisation 

FEM finite-element method 

HBM harmonic-balance method 

PWM pulse-width modulation 

rms root mean square (effective value) 

THA time-harmonic analysis 

TSA time-stepping analysis 
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1 Introduction 

1.1 Background 

The efficient, reliable, and economical design of electrical machines has been a standard 

demand for researchers and engineers since the very beginning of electrical engineering. 

As a result, electrical machines have good efficiency. For example, in Finland 

approximately 65% of electrical energy is consumed by electrical motors and practically 

all electricity is produced by rotating electrical machines. Even a small improvement in 

efficiency can give a significant amount of financial savings. To design even more 

efficient machines requires accurate knowledge of the magnetic field distribution and 

consideration of the detailed electromagnetic phenomena. One of these phenomena is 

eddy currents in the windings of electrical machines. It is an interesting field of 

engineering to design even more efficient and reliable electrical machines. 
 

The development of solution methods and high-speed computers has made it possible to 

solve ever more complicated electromagnetic field problems. The finite-element method 

has proved an efficient tool when dealing with complicated geometries such as electrical 

machines (Chari & Silvester 1971). Two-dimensional (2-D) approximation has proved to 

be a powerful tool in the analysis of radial-flux electrical machines. With sinusoidal 

approximation (time-harmonic analysis), the problem can be greatly simplified and the 

model can be very time-efficient. However, it cannot consider properly the rotation, and 

magnetic saturation of the machine. A time-discretised finite-element analysis is required 

to model these phenomena more accurately. 
 

The speed control of electrical motors is needed in many applications in industry. As a 

consequence, frequency converters to supply electrical machines are becoming more 

popular (Boglietti et al. 1996). When a motor is supplied from an inverter, the control of 

the motor becomes easier and more accurate, but this makes the supply voltage non-

sinusoidal, which means that it contains a set of harmonics (Fouladgar & Chauveau 

2005). These additional voltage harmonics inject flux harmonics into the motor and 

produce current harmonics. Speed control produces significant energy savings in many 

pump, fan, and compressor applications, but in electrical machines, the amount of power 

loss increases significantly (Arkkio 1991, Hilderband & Roehrdanz 2001, Lee et al. 2004, 

Oberretl 2007). 
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In the multi-conductor windings of electrical machinery and devices, the proper 

estimation of eddy currents is needed for successful design. It is very important to model 

the eddy currents in the form-wound multi-conductor winding accurately and analyse and 

optimise them at the design stage in order to have an efficient and reliable machine. The 

machine designers can move in the wrong direction if they neglect or underestimate the 

effects of eddy currents by considering them with simplified analytical calculations. 

 

1.2 Objectives 

The main objective of the thesis is to develop accurate numerical models for considering 

eddy currents and circulating currents in the form-wound multi-conductor windings of 

electrical machines. The results of models with sinusoidal and non-sinusoidal supplies are 

analysed in order to estimate the contribution of eddy-current effects to power losses. The 

local hot spots are predicted from the loss analysis. Two types of induction machines are 

considered in order to study the eddy-current effects in form-wound multi-conductor 

stator and rotor windings.  

 

1.3 Scientific contribution 

 Combined finite-element circuit model is developed for time-harmonic analysis 

of eddy currents in form-wound multi-conductor windings. This model can also 

be used to study circulating currents between parallel conductors. It is applied to 

the stator winding of a 1250-kW cage induction motor and to both the stator and 

rotor windings of a 1.7-MW doubly-fed induction generator. The time-harmonic 

finite-element method (FEM) is mainly used to compute initial values for time-

discretised FEM, but, because of its time efficiency, it can also be used to study 

the eddy currents and circulating currents caused by the fundamental harmonic. 
 

 Time-discretized finite-element circuit model is developed to analyse the eddy 

currents and circulating currents in form-wound multi-conductor windings. The 

method is applied to the same machines as the time-harmonic approximation 

above. The finite-element model that is developed is used to study the effects of 

eddy currents caused by the higher harmonics from the stator and rotor slottings 

and the rotation of the rotor. The high-frequency components mainly cause 

eddy-current losses in the conductor near to the air gap. 
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 Time-discretised FEM is used to study the effects of eddy currents in form-

wound stator windings resulting from the non-sinusoidal supply. A pulse-width-

modulated (PWM) voltage source is used to supply the stator of a 1250-kW cage 

induction motor. The significance of the modelling of eddy currents in the stator 

winding is further weighted because of the inverter supply. 
 

 Time-discretised FEM is used to study the effects of eddy currents as a result of 

the frequency-converter supply in the form-wound rotor winding of a 1.7-MW 

doubly-fed induction generator. Because of the higher value of the self-

inductance of the rotor winding with respect to stator inductance, the additional 

eddy-current loss in the rotor caused by the PWM supply remains small. 
 

 The radial distance from the inner surface of the stator to the first bar in a stator 

slot has remarkable effects on the losses and it is found to be an important design 

parameter in minimising the losses in the stator winding. According to the 

results, the eddy-current loss in a bar can be dangerously large and has to be 

modelled properly in the design of a machine. 
 

 The circulating currents in the parallel stator conductors are modelled and 

implemented in order to study the effect of the transposition of the form-wound 

winding. A systematic transposition reduces the circulating currents to a 

negligible level.  

 

1.4 Structure of the dissertation 

The thesis is organised in the following way: 

 Chapter 1 includes the background, motivation, and aim of the work. The 

scientific contributions and a short summary of the publications are presented. 

 Chapter 2 presents a literature study of eddy currents in multi-conductor 

winding. 

 Chapter 3 presents the methods of analysis. It consists of an overview of the 

electromagnetic field, the basic equations, and the finite-element analysis of 

eddy currents in the stator and rotor winding of electrical machines. 

 Chapter 4 presents the simulations and numerical results of the eddy currents of 

form-wound stator windings for the 1250-kW cage induction motor and of the 

stator and rotor windings of the 1.7-MW doubly-fed induction generator (DFIG). 

13



  

This chapter also contains a verification of the eddy-current model and power 

balance to justify the methods. 

 The results are discussed and summarised in Chapters 5 and 6. 

 

The publications that are included are reprinted at the end of the dissertation.  

 

1.5 Publications 

Publication P1 

The basic mathematical formulations are presented in publication P1. The basic equations 

are derived in matrix form to be implemented in the time-harmonic finite-element model. 

The calculation of eddy-current and circulating-current losses in the multi-conductor 

stator winding of a cage induction motor is presented. In the model, the eddy-current 

formulation of the series and parallel connected stator bars is solved, together with the 

circuit and field equations, using a 2-D time-harmonic approximation. The eddy-current 

loss distribution of the stator bars and the quantitative results of eddy-current and 

circulating-current losses were studied with two different conductor arrangements inside 

the stator slots. The radial position of the stator bars was pointed out as a design 

parameter to build up a more efficient and reliable machine. The eddy-current model was 

verified with an analytical method. 
 

The paper was developed and written by Islam. Professor Arkkio contributed by means of 

comments, suggestions, and his expertise in the field of finite-element analysis. Pippuri 

and Arkkio implemented the analytical method for verification. Pippuri contributed by 

writing the verification part and making the study of German literature. Perho contributed 

with valuable comments and discussion. 

 

Publication P2 

A time-discretised finite-element method is developed to study the eddy-current effects 

of multi-conductor form-wound stator winding resulting from the fundamental and high-

frequency magnetic flux in a cage induction motor. The Backward Euler method is used 

to discretise the time dependence of the electromagnetic field, circuit variables, and the 

motion of the rotor. The motor is supplied from a sinusoidal voltage source. To study the 

eddy-current losses produced by the high-frequency flux resulting from the stator and 
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rotor slots and motion of the rotor, the results are compared with the results from the 

time-harmonic model. The model was verified with an analytical method. 
  

The paper was developed and written by Islam. Professor Arkkio contributed by means of 

comments, suggestions, and his expertise in the field of finite-element analysis. 

 

Publication P3 

Publication P3 presents the eddy-current effects of a form-wound multi-conductor stator 

winding of a 1250-kW cage induction motor resulting from a non-sinusoidal supply 

voltage. The time-discretised finite-element model developed in publication P2 is used. A 

pulse-width-modulated (PWM) voltage is used to supply the motor. To study the eddy-

current losses caused by the high-frequency flux generated from the PWM supply, the 

results are compared with the results obtained from a sinusoidal voltage supply. 
  

The paper was developed and written by Islam. Professor Arkkio contributed by means of 

comments, suggestions, and his expertise in the field of finite-element analysis. 

 

Publication P4 

Publication P4 searches for an energy-efficient power supply for an inverter-fed cage 

induction motor under different light-load conditions. The fundamental harmonic 

terminal voltage is reduced from its rated value and the value of the slip is adjusted to 

achieve a particular load condition. Loads of 25%, 50%, and 75% of the rated load are 

studied. If the load is less than 50%, a significant amount of loss can be reduced if there 

is a possibility of adjusting the DC-link voltage. 
 

The paper was developed and written by Islam. Professor Arkkio contributed by means of 

comments, suggestions, and his expertise in the field of finite-element analysis. 

 

Publication P5 

Publication P5 studies the finite-element discretisation (FED) needed for the proper 

analysis of eddy currents in the form-wound stator winding of a 1250-kW cage induction 

motor. To study the accuracy of the FED, the number of finite elements per bar is 

increased by making a more detailed subdivision over the bar height and width. Two 

main supply conditions for a cage induction motor, sinusoidal and PWM are considered. 
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The paper was developed and written by Islam. Professor Arkkio contributed by means of 

comments, suggestions, and his expertise in the field of finite-element analysis. 

 

Publication P6 

Publication P6 studies the eddy currents in the form-wound stator and rotor winding of a 

doubly-fed induction generator. The time and space dependence of the field and circuit 

variables and the motion of the rotor are modelled with time-discretised finite-element 

analysis. The stator is supplied from a sinusoidal voltage source, as it is connected to the 

grid. The rotor is supplied with a PWM supply from a constant DC-link voltage. To 

compare the effects of eddy currents resulting from the frequency-converter supply, a 

sinusoidal voltage source in the rotor supply is also considered. The additional eddy-

current loss caused by the PWM supply is small compared to the loss resulting from a 

sinusoidal supply. 
 

The paper was developed and written by Islam. Professor Arkkio contributed by means of 

comments, suggestions, and his expertise in the field of finite-element analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16



  

2 Literature study 

The time variation of the magnetic field induces eddy currents causing a non-uniform 

distribution of current density on the cross-section of a conductive body. This results in 

an increase in the resistive loss as compared with the DC resistive loss (Lammeraner and 

Štafl 1966). The eddy currents are one of the main problems encountered in designing 

electrical equipment such as electrical machines, transformers, or inductors. 

Consequently, their determination has been an interesting topic for researchers and 

engineers since the very beginning of electrical engineering. The eddy-current problem is 

more often recognised as a skin-effect problem, but if there are several current-carrying 

conductors then the problem is a combination of skin and proximity effects. In a multi-

conductor system, the skin effect is defined as the phenomenon in which the current 

density in a current-flowing conductor is crowded towards the surface because of its own 

time-varying magnetic field. When the current density of a conductor is influenced by the 

magnetic field of a neighboring current-carrying conductor, the phenomenon is called the 

proximity effect. Both the skin and proximity effects cause a non-uniform current 

distribution called the eddy-current effect. A general overview on the existing literature 

of published articles and books of the eddy-current problems is presented in this chapter. 

The overview is presented in chronological order. 
 

The “depth of penetration” or “skin depth” (Lammeraner & Štafl 1966, Stoll 1974) is 

probably the most commonly used analytical term that defines geometrical parameters 

used to understand the eddy-current effects. For a sinusoidally varying magnetic field, in 

a conducting material of a semi-infinite plate with a surface on the x-y plane, the variation 

of the current density in the z-direction can be presented as (Bastos & Sadowski 2003) 

0( , ) e cos( )zJ z t J t z          (1) 

where 0J  is the surface current density,   is the frequency, and   is the skin depth 

defined as 

0 r

2
 

          (2) 

where   is the conductivity, 0  is the magnetic permeability of free space, and r  is the 

relative permeability of the conducting material. The equations are based on the 

assumption of a quasi-steady state, with a constant frequency, and with the electric and 
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magnetic conductivities of the materials under consideration remaining constant. At a 50-

Hz supply frequency, the depth of penetration is about 9.4 mm for a copper conductor.  
 

The first analytical formulation of eddy currents in slot-wound conductors was 

introduced by Field (1905) at the beginning of the 20th century. A qualitative description 

of the effects of eddy currents was presented. The types of conductors were limited to 

solid and infinitely stranded or laminated ones and the winding arrangement was such 

that there were no conductors of different phases in the same slot. The author studied the 

effect of eddy currents resulting only from the leakage flux that passes circumferentially 

from one stator tooth to another through the conductors. The effect of the main flux that 

passes from the air gap to the stator slot radially was omitted from the study. 
 

Gilman (1920) presented analytical calculations of the eddy currents for a finite number 

of stranded conductors that are embedded in a slot, as well as the phase relation of the 

strands. The author also pointed out the fact that the main flux that enters the top of the 

slot adjacent to the air gap causes the eddy-current loss. He suggested that this loss can be 

regulated by using overhanging tooth tips, sunken coils, or magnetic wedges. However, 

the eddy-current loss resulting from the main flux was not considered in that study. 

Dwight (1945) presented a power series in frequency by developing the ratio of effective 

resistance to DC resistance in a flat conductor of finite width. 
 

Richter (1951) studied the effect of eddy currents for a given main flux with analytical 

formulations for different kinds of simple models. Another important study can be found 

in Oberretl (1969), where the author gives thirteen rules to minimise the losses of 

electrical machines. Rule number seven mainly prescribes the position of the stator coil 

and rotor bar. The conclusive rule is based upon the analysis of the so-called analogue 

network method (Oberretl 1963, Oberretl 1969). The method solves the partial-

differential equation by making an analogue network with semiconductor diodes, a 

capacitor, and resistors (Oberretl 1969). For an open stator slot, the ratio between the 

width of the stator slot and the height from the inner surface of the stator to the top of the 

stator bar must be less than or equal to three. However, the rule seems to be defined for 

too wide a range. 
 

Lammeraner & Štafl (1966) and Vogt (1972) mainly summarised the basic principles of 

analytical eddy-current loss calculation for the solid and stranded conductors of electrical 

machines. They calculated the eddy-current losses of the coil analytically, as well as 
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defining the effective resistance and resistance coefficient (the ratio between the effective 

resistance and the DC resistance). An overview of the analytical formulations of eddy 

currents is presented by Stoll (1974) for one- and two-dimensional problems. 
 

However, the analytical method is mostly restricted to studying the effect of the 

circumferential flux. There are some analytical formulations for a given radial main flux 

(Richter 1951). In addition to the leakage flux, the time-varying main flux that penetrates 

into the slot from the air gap produces an additional eddy-current loss (Gilman 1920, 

Demerdash et al. 1975). However, an exact analytical model is unfortunately not possible 

because of the complicated geometry of the slot region and nonlinearities of the magnetic 

iron core (Dabrowski & Demenko 1988).  
 

With the development of computers, the invention and usability of different kind of 

numerical methods have increased. There are different kinds of numerical formulations or 

approaches to handling multi-conductor eddy-current problems. To reduce the memory 

requirement or computational time, the numerical achievements from the early years of 

electromagnetic FEM are still useful. The trade off between the accuracy and 

computational time is always a concern even with the availability of the fast computers 

and software packages.   
 

Silvester proposed the modal network theory to consider skin effect in a flat conductor 

(1966). Instead of solving a differential or integral equation directly, the author attempted 

to find the normal modes of the current distribution from the Eigen-value problem and 

then solve the skin-effect problem by using an equivalent network. The theory was 

applied to calculate the AC resistance and reactance of an isolated conductor (Silvester 

1967). The author applied the theory to a complicated conductor shape (Silvester 1968). 

By using this theory he also predicted the skin effect of multi-conductor and multi-phase 

systems (Silvester 1969, Silvester et al. 1972). 
 

Demerdash & Hamilton (1972a) modelled the magnetic field of a four-pole 699 MVA 

and of a two-pole 733 MVA turbo-generator. They used finite-difference techniques 

based on magnetic vector potential formulation (Demerdash et al. 1972) to study the 

eddy-current loss resulting from the main flux and rotor asymmetry (Demerdash & 

Hamilton 1972b). Long & Hamilton (1975) presented a simplified technique to calculate 

the eddy-current loss induced in stator conductors by the radial flux of cylindrical rotor 

synchronous generators. The losses in the stator conductors were calculated from the 
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solution of the air-gap flux-density waveform. The technique combined the vector 

potential with the grid modelling method. They eliminated the stator conductors from the 

slots during the load conditions and neglected the effect of leakage flux in order to 

simplify the problem. This means that the influence of the eddy currents on the magnetic 

field distribution in the slot was neglected. Carpenter (1975) used a coupled network 

approach and McWhirter et al. (1979) used Fredholm integral equations to handle the 

eddy-current problem. 
 

Finite-element analysis is widely used and is probably the most efficient tool to model 

eddy currents in multi-conductor windings. Chari & Csendes (1977) presented a 2-D 

finite-element analysis of the skin effect in a current-carrying conductor. The authors 

made a comparison of the results with the traditional one-dimensional analysis. 

Demerdash & Nehl (1979) made a comparative evaluation between the finite-element 

and finite-difference techniques. The article covered the aspects of effectiveness, 

numerical accuracy, and implementation, as well as computer storage and execution time. 

For solving a non-linear electromagnetic field problem, the finite-element method was a 

better option compared to the finite-difference method. 
 

The superposition approach was used by Preis et al. (1982) and Preis (1983) to calculate 

the eddy-current loss in a multi-conductor system. The superposition method assumes 

that it is possible to find a finite-element solution of the field if the current density in the 

field equation is given. For N  conductors, the problem can be solved by solving the field 

equation N  times. Each time, a different conductor is assumed to carry a unit current 

density instead of the source current, while the net current in all the other conductors is 

assumed to be zero. The final solution is obtained in a straightforward manner from the 

principle of superposition. However, the approach is useful only if the system is totally 

linear. 
 

Konrad (1981, 1982) presented what is probably the most popular method based on 

integrodifferential approach. In this approach, both the vector potential and the source 

current are treated as unknown. The total current density is the summation of the source 

current density and the induced current terms. By making a surface integral over the 

cross-section of the conductor, the source current density term can be presented as a 

function of the total current and an integral term and replaced in the field equation. The 

field equation can then be solved for a given total current of the conductor. Since there 
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are a differential term and an integral term in the field equation, the approach was named 

an integrodifferential approach. To make a comparative study between the superposition 

and integrodifferential approaches, Konrad et al. (1982) implemented the same problem 

with both the approaches. The authors found an added advantage of the 

integrodifferential formulation in that it was a direct method requiring neither iteration 

nor Eigen functions to solve the linear steady-state skin-effect problem in multi-

conductor systems. 
 

Weiss & Csendes (1982b) presented another approach by adding an extra equation for 

each conductor for multi-conductor busbars. The source current in the field equation was 

kept unknown and two unknowns (source current-density vector and magnetic vector 

potential) were solved from differential and algebraic equations. This means that they 

built up a coupled system to solve a classical steady-state skin-effect problem. The same 

method was applied to solve the skin-effect problem for an inverse “T-slot” problem 

(Weiss & Csendes 1982a). In this article, they generalised the formulation to include both 

the multi-conductor busbars and slot-embedded conductor. The formulation to calculate 

the eddy-current loss from the current density in a multi-conductor system was presented 

by Weiss et al. (1983). This coupled-system approach was used to solve different kinds of 

applications of multi-conductor eddy-current problems. For example, the approach was 

used by Weiss & Garg (1985) for axi-symmetric geometry with rotational symmetry. In 

multiple excited magnetic systems, the transient (Garg & Weiss (1986), Weiss & Garg 

(1989)), and steady-state (Weiss & Garg 1988) electromagnetic field problems were 

solved for arbitrary terminal voltages. The steady-state solution was obtained with time-

harmonic approximation and time-discretised FEM was used to solve the transient 

problems. 
 

Dabrowski & Demenko (1988) presented a hybrid method to analyse the eddy-current 

loss in the rectangular bars in the stator slot of an electrical machine as a result of the 

main flux. The technique was called a hybrid one because of its connection of numerical 

and analytical calculations. An analytical formulation was developed that was based on 

the damping coefficient that was obtained from reluctance-network based numerical 

calculations. In their study, they neglected the isolating gap between the bars and used the 

constant amplitude of flux for a slot pitch. 
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Tsukerman et al. (1992) proposed a general formulation to deal with time-dependent 

eddy-current diffusion problems. The electromagnetic field was computed in 2-D and the 

circuit equation with terminal voltage for each conductor was taken into account. The 

global system of equations was constructed by adding an extra integral equation to link 

the field and circuit equations where the loop currents were expressed in terms of total 

current. The approach is based on the integrodifferential finite-element formulation with 

the conventional loop-current method of circuit theory. As a numerical example of the 

proposed formulation, they considered three rectangular busbars with eddy currents and 

external circuit connection.  
 

The harmonic losses in the stranded conductor generally found in AC machines were 

investigated by Salon at al. (1993) using finite-element analysis (FEA) with circuit 

constraint. An analytical formula was developed and compared with the finite-element 

analysis for a given flux density, frequency, and conductivity. The analytical formula 

ignores the effect of eddy currents on the field. At lower frequencies, the agreement 

between the FEA and the closed-form analytical formula was good, but at high 

frequencies, the results did not agree well. 
 

An overview of the numerical formulations of 2-D eddy-current problems was presented 

by Tsukerman et al. (1993a). The authors explained a way of handling eddy-current 

problems with and without the circuit equation. The article presented a procedure for how 

to solve the filamentary problem in which conductors are composed of thin filaments and 

the current distribution is predetermined. In this case, the current density is not a function 

of the vector potential. They also presented the eddy-current problems for solid 

conductors where the current density is unknown because it is related to the magnetic 

vector potential. A survey of the transient eddy-current problems was presented by 

Tsukerman et al. (1993b) with different kinds of finite-element formulations. The article 

went through the time-discretised finite-element analysis and short descriptions of 

different types of system solvers and their efficiency, and, finally, included some 

numerical examples. 
 

Krawczyk & Tegopoulos (1993) published a book that gives a very good summary of the 

numerical modelling of eddy currents. The book starts with a survey of the previous work 

and continues with quantities to describe the eddy-current problems, for example, field 

variables and potentials. Different kinds of mathematical formulations and their basic 
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principles are explained. A description of different methods, such as the finite-difference, 

finite-sum, finite-element and boundary-element methods, is presented. The book also 

presents a way to handle some special boundary value problems, nonlinearities, and eddy 

currents resulting from the motion, and explains how to understand the effects by means 

of pre- and post-processing. 
 

For time dependent eddy-current problem with arbitrary external connection, the stability 

of the time-stepping finite-element method was examined by Tsukerman (1995). He 

found that the backward Euler method is stable, while the Crank-Nicolson method 

generates undamped or in some cases even divergent oscillation.  
 

To solve the multi-conductor eddy-current problems in the windings of electrical 

machines using finite-element analysis, a detailed enough finite-element discretisation is 

required. As a consequence, the size of the problem increases with an increase in the 

number of nodes. To cope with the size of the problem, the elimination of the inner nodes 

from the stator slots was used in the traditional finite-element formulation (Szücs & 

Arkkio 1999). Szücs (2000) implemented macro-elements in the finite-element analysis 

(Kladas & Razek 1988a, 1988b) to solve the multi-conductor eddy-current problems. An 

in-depth literature study regarding multi-conductor eddy-current problems can be found 

in Szücs (2001). The thesis presented the finite-element formulation of the multi-

conductor windings of electrical machines and made a major contribution regarding how 

to reduce the size of the problem by eliminating the inner nodes from the winding region 

and combining that with FEA.  
 

Sullivan (2001) presented a squared-field-derivative (SFD) method to calculate the eddy-

current loss in round-wire or litz-wire transformer or inductor windings. The method 

analysed the losses by analytical equation from a two-dimensional or three-dimensional 

field in multiple windings. However, there were a number of assumptions that limit the 

scope of the formulation. The method considered only the proximity effect, while the 

skin effect was neglected by assuming that the wire diameter is smaller than the skin 

depth. The effect of the parallel windings and their position, which might create 

circulating currents among the parallel strands, was not considered. 
 

Joksimović & Binder (2003) made an analysis of additional no-load losses resulting from 

a non-sinusoidal supply in a high-speed cage induction motor. They also built a prototype 

16,200-rpm, 270-kW motor to compare the calculated results. Their investigation claims 
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that the eddy-current losses in the stator winding are the main additional loss of an 

inverter-fed motor. The PWM voltage supply injects voltage harmonics to the motor and 

causes additional high-frequency current components. In general, these harmonic 

components increase the additional losses in the stator winding significantly. The authors 

calculated the effect analytically, as well as numerically. However, the influence of eddy 

currents in the stator winding was difficult to model, so only the best-case and worst-case 

situations were considered. 
 

The current distribution and power-loss analysis of the multi-conductor winding of 

electromagnetic gear was presented by Patecki et al. (2004). The multi-conductor system 

was modelled by means of 3-D FEM. The differential equations were formulated using a 

magnetic vector potential and electric scalar potential. The presented results show that the 

uneven current distribution resulting from the skin effects changes the winding 

resistances significantly. They proposed dividing the so-called massive conductor into 

two or four parts to reduce the skin effect. However, the authors did not mention anything 

about the finite-element discretisation of the windings in their consideration of the skin 

effects. 
 

Lee et al. (2004) presented the loss distribution of a three-phase induction motor. The 

motor was supplied from a PWM voltage source. The simulation was performed by the 

variable time-discretised finite-element method and the results were compared with 

experimental results. However, the experimental results were only presented for the bar 

losses in the rotor and the details of the measurements were missing from the article. The 

stator copper loss was calculated from the current flowing in the wire and its resistance 

and the stray load losses were assumed to be 1.5% of the motor output (IEEE112). The 

main focus was on the efficiency of the motor as a result of the PWM supply. The authors 

compared the results with respect to the sinusoidal supply. Considering the motor 

efficiency, the authors even recommended not using PWM inverters for driving motors.  
 

Fouladgar & Chauveau (2005) studied the temperature rise in an asynchronous motor as a 

consequence of the non-sinusoidal voltage supply. The stator and rotor current harmonics 

were calculated using a time-stepping FEM. The electrical and mechanical losses were 

introduced into a heat-transfer equation to calculate the temperature distribution. The 

Fourier decomposition of a particular pulsed-voltage signal was used for comparison with 

the sinusoidal approximation. They measured the temperature rise in a rotor bar. The 
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temperature was up to 5% higher because of the harmonics presented in the voltage 

supply. The homogenisation technique was used to consider the loss resulting from eddy 

currents in random-wound stator windings. However, the eddy-current effect was 

neglected in the stator field equations. 
 

Zheng et al. (2005) investigated the current distribution in the windings of a four-

quadrant transducer (4QT). The 4QT prototype was built for the torque and speed control 

of the internal combustion engine of hybrid electric vehicles. Because of the high base 

frequency (300 to 400 Hz) of the transducer, the eddy-current effect in the stator and 

rotor winding was modelled to calculate the copper losses using 2-D FEM. A commercial 

FEM software package, Ansoft, was used for modelling and simulation.  
 

To consider the skin and proximity effects of multi-turn windings in 2-D finite-element 

analysis, a frequency-domain homogenisation technique was used (Gyselinck & Dular 

2005, Gyselinck & Robert 2005). In the frequency-domain technique, the complex 

reluctivity tensor was used in the stiffness matrix to consider the proximity effect 

(Moreau et al. 1998). To consider the skin effect, the DC resistance was replaced by the 

complex skin effect impedance in an electrical circuit equation related to the winding 

current and voltage. The frequency-domain technique was extended to the time-domain 

homogenisation technique (Gyselinck & Robert 2005, Gyselinck et al. 2007). In the time-

domain technique, additional induction components were added through magnetic vector 

potential components in order to take the proximity effect into account. The time-domain 

skin effect was taken into account by considering the auxiliary currents in the electrical 

circuit equations. As an example of the applications, the winding of an inductor was 

modelled using homogenisation techniques (Gyselinck & Dular 2005, Gyselinck & 

Robert 2005, Gyselinck et al. 2007) in the 2-D finite-element method.  
 

The time-domain homogenisation technique was also used in 3-D finite-element models 

to consider the eddy-current effect in the core (Gyselinck & Dular 2004) and in the 

winding (Sabariego et al. 2008) of an inductor. With the homogenisation technique, the 

eddy-current problem can be solved much more economically with a reasonable mesh 

size, without fine discretisation of the composite materials (El Feddi et al. 1997). 
 

An efficient harmonic-balance method (HBM) was presented by Ausserhofer et al. 

(2007) to determine the steady-state solution of non-linear eddy-current problems. A 

similar kind of approach was also presented by Ciric et al. (2007) using the name 
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‘efficient harmonic method’. The authors increased the efficiency of the calculation 

method by combining the HBM (Yamada & Bessho 1988, Yamada et al. 1989) and the 

fixed point method (Bíró & Preis 2006). To further improve its efficiency, Ciric et al. 

(2007) restricted the number of harmonics so that it was low and added more harmonics 

only if needed. The harmonic-balance method was combined with FEM and named as the 

so-called harmonic-balance finite-element method. The vector potentials, flux densities, 

applied currents, and magnetic reluctivities are approximated as harmonic solutions and 

solved as nonlinear eddy current problems (Yamada et al. 1991). By using this method, 

saturation and hysteresis (Lu et al. 1990), as well as motion and external circuit (Lu et al. 

1991), were taken into account.  
 

To determine the eddy currents and losses in large axi-symmetric filter air coils built with 

a special type of turn, a finite-element method based procedure was presented by Preis et 

al. (2008). To take into account the non-uniform current distribution between the 

different layers by retaining the axi-symmetry, they used a one-component vector 

potential combined with circuit equation. They proposed a simplified method to take into 

account the parallel stranding of the wires. The proposed method neglected the 

circulating currents between the parallel strands. The wires in the cable were stranded in 

layers only. A simplified scheme for the cross-section of the cable was also introduced to 

reduce the number of finite elements.  

 
Conclusion of the literature study 

The survey of the published literature has indicated that the eddy-current problem in the 

multi-conductor winding of electrical machines is very important. The recent trend and 

applications towards inverter-driven motors increases the importance of the problem 

further. Most of the recent relevant works were subjected to reduce the computational 

time and memory requirement. There are several formulations to handle the large 

numerical problem more economically. Before those formulations, some authors 

developed methods restricted to a couple of conductors only. Clearly, there is a lack of a 

comprehensive method or simulation tool to analyse the effects of eddy currents and 

circulating currents in the multi-conductor windings of electrical machines. In most of the 

available simulation tools, these effects are neglected from the field equation and 

considered as post-processing or neglected totally considered as insignificant effects.  

 

26



  

3 Methods 

3.1 Overview of the electromagnetic field 

The time variation of the magnetic field induces eddy currents in a conducting material. 

The phenomenon can be realised from the law of Faraday (Eq. 3). The assumptions used 

to consider eddy currents in the windings of electrical machines with 2-D finite-element 

analysis (FEA) are not different from the most common assumptions used when 

investigating electrical machinery. In this case, the modified Maxwell’s field equations 

can be represented as (Chari & Silvester 1980, Krawczyk & Tegopoulos 1993) 

  
t


  


B

E         (3) 

   H J         (4) 

  J E         (5) 

  B H         (6) 

where      E   is the electric field strength 

            B   is the magnetic flux density 

             t    is the time 

            H   is the magnetic field strength 

            J    is the current density 

                is the permeability of the material 

                is the conductivity of the material 

There are three potential formulations in electromagnetic field analysis (Demenko 2006):  

a) Magnetic scalar-electric vector potential ( -T) 

b) Magnetic - electric vector potential (A-T) 

c) Magnetic vector potential – electric scalar potential (A- ).  

In the dissertation the A-  formulation is used which is well adopted for 2D problems.  

The magnetic vector potential is defined as  

           B A          (7) 

The electric scalar potential   can be obtained from Eqs. (3) and (7) 

t


  

A

E         (8) 

In the quasi-static case, the magnetic vector potential A  is 

1
( )


  A J         (9) 
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The current density is given by 

t
  

   

A

J         (10) 

The divergence of the current density satisfy the condition 

0 J          (11) 

The equations for the vector and scalar potentials are obtained by substituting Eq. (10) in 

Eq. (9)  

1
( ) 0

t
  




     

A

A       (12) 

More details can be found in Arkkio (1987) and Szücs (2001). 

 

3.2 Basic equations  

3.2.1 Electromagnetic field 

The basic equation governing the electromagnetic field in the 2-D model (Yatchev 1995, 

Islam et al. 2007, Islam & Arkkio 2009a, Islam & Arkkio 2009b) is 
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where A  is the magnetic vector potential having only one non-zero component. In 2D 

FEM, it is represented by zA zA e ,   is the reluctivity, el  is the effective length of the 

machine,  bQ is the number of bars of the winding in the solution region, and j  is a 

function to relate the nodal point of bar j 

  
1 if the point belongs to bar             

0   otherwise                                           j

j



 


 

ju  is the potential difference of bar j. 

 

3.2.2 Form-wound multi-phase winding 

The voltage equation of a bar is 
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where, bR  is the DC resistance of a bar of length el , mQ  is the number of phases, and nj  

is the function to relate between the bar n and phase j 
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1 if bar  belongs to a positive coil side of phase 

1  if bar  belongs to a negative coil side of phase 

0 otherwise                                                            
nj

n j

n j

 


 

nS is the cross-sectional area of the thn  bar of the winding.  

The voltage equation of a phase is 
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     ; 1,...., mm Q    (15) 

where ssQ  is the number of symmetry sectors, mi  is the phase current of the thm  phase, 

eR  is the end-winding DC resistance of a phase, and eL  is the end-winding inductance of 

a phase. The bar equation is strongly coupled with the field and phase equations. For a 

cage induction motor, the form-wound phase winding is present only in the stator. The 

rotor cage is a special form of winding that can be modelled with a voltage equation of 

bar, and, instead of the phase equation, the equation for the end rings that connects the 

parallel rotor bars (Arkkio 1987, Islam et al. 2007, Islam & Arkkio 2009a).  

 

3.3 Numerical discretisation 

3.3.1 Finite-element discretisation 

The fundamental idea of finite-element analysis (FEA) is to subdivide the region into 

small sub-regions called finite elements. To model the eddy currents and circulating 

currents in the windings with FEA, all the stator bars connected in series and parallel 

should be considered. As a result, finite-element discretisation of every bar is an essential 

requirement. To take the effects of eddy currents into account accurately, a detailed 

enough finite-element discretisation of the bar is required (Reichert et al. 1988). 

 

3.3.2 Time-dependence 

The time-dependent field equations have to be solved by discretisation in time, in 

addition to spatial discretisation. The analysis can be greatly simplified if the field varies 

sinusoidally in time. In this case, the time dependence can be eliminated from the 

equations by using complex field quantities. In a 2D case, the vector potential and current 

density are  

j
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where   is the angular frequency of the time variation. The assumption of sinusoidal 

time variation is valid only in a steady state for a linear system without motion. In a real 

electrical machine, a sinusoidally time-varying source does not induce a sinusoidally-

varying magnetic field. However, to simplify the solution procedure, the sinusoidal 

approximation is often also used for non-linear cases. A detailed derivation of the basic 

equations with sinusoidal approximation to the matrix form of equations of a cage 

induction motor can be found in Islam et al. (2007). 
 

In a non-linear system, the true time-dependence can be solved by a time-discretised 

finite-element method. A generalised first-order finite difference procedure is used for the 

time-stepping. If k and k+1 denote two successive instants of time, the vector potential 

and phase current at the th( 1)k   instant of time are 
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where t is the length of the time step and   is a weighting parameter between 0 and 1. 

The three most popular values used for  are: 0 – direct Euler method; 0.5 – Crank-

Nicolson (trapezoidal) method, and 1 – Backward Euler method (Yatchev 1995, Islam & 

Arkkio 2008a).  

 

3.3.3 Modelling of motion 

The equations of the stator and rotor fields are written in their own coordinate systems. 

The solutions of the two field equations are forced to be continuous over the air gap. The 

rotor is rotated at each time step through an angle corresponding to the mechanical 

angular frequency. The finite elements in the air gap are modified to allow the continuous 

motion of the rotor (Davat et al. 1985, Arkkio 1990). The Galerkin method is applied to 

the basic equations and formulated to a matrix form of the global system of equations. A 

detailed enough finite-element discretisation is considered in the slot region to consider 

eddy and circulating currents. The Crank-Nicolson method is found to be unstable when 

considering eddy currents in the winding and the Backward Euler method (  =1) is used 

to discretise the equations of the machine in time.  
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3.3.4 Matrix form of equations 

The system of equations is solved by the Newton-Raphson method for the thi  non-linear 

iteration. At a certain time step k+1, the system of equations for the cage induction motor 

is  
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A detailed derivation of the basic equations with time-harmonic FEA to the matrix form 

of equations (Eq. 19) can be found in Islam et al. (2007) and with time-discretised FEA in 

Yatchev et al. (1995) and Islam & Arkkio (2008a). 
 

The system of equations for the DFIG is (Islam & Arkkio 2009): 
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where  ( )
1

i
ka P  is the sub-matrix of the Jacobian matrix related to the nodal values of the 

vector potentials, r T( )D  and s T( )D are the sub-matrices related to the bar voltages of the 

rotor and stator of the field equation. rD , rC , r T( )K G , r T( )G K , and r
bC  are the sub-

matrices related to the rotor circuits. sD , sC , s T( )K G , s T( )G K , and s
bC  are the sub-

matrices related to the stator circuits.  
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s
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u  are the 

increments of the vector potential nodal values, rotor phase currents, potential differences 

of the rotor bars, phase currents, and potential differences of the stator bars, respectively. 
 

A more detailed description can be found in Arkkio (1987), Islam & Arkkio (2008a), and 

Islam & Arkkio (2009).  

 

3.4 Equations for loss analysis 

3.4.1 Resistive losses 
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The resistive stator losses in the part of the stator winding embedded in the slots (Yatchev 

1995, Islam et al. 2007) is 
s
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where the total current density in the stator bar i is 
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The end-winding resistive loss has been calculated from the DC resistance of the end 

winding and phase current 
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The total resistive loss of the stator winding is 

s s s
t sb ewP P P          (24) 

Similarly, for the resistive losses in the part of the rotor winding embedded in the rotor 

slots of a DFIG 
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where the total current density in the rotor bar i is 

r

e

iu

t l
 

  
 z

A
J e        (26) 

The formulation for the resistive loss calculation of the rotor cage can be found in Arkkio 

(1987) and Islam & Arkkio (2008b). 

 

3.4.2 Eddy-current loss  

The difference between the total resistive loss and the DC resistive loss, calculated from 

the total DC phase resistance sR  and phase current, is the total eddy-current loss of the 

stator winding 

  s s 2
eddy t

1

( )
mQ

i
i

P P R i


         (27) 

The eddy-current losses in the rotor winding are calculated in exactly the same way as for 

the stator winding. For the cage rotor, the resistive losses in the rotor bars are mainly 

caused by currents induced because of electromagnetic field and considered as eddy-

current losses. 
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3.4.3 Eddy factor 

The eddy-current loss arises as a result of the non-uniform current distribution in the bars. 

This causes the effective resistance to exceed its DC value (Lammeraner 1966). The DC 

resistance means the resistance calculated from the DC voltage and current. This effective 

resistance is defined as AC resistance (Silvester 1967, Szücs 2001, Islam et al. 2007). The 

eddy factor ( eddyk ) is defined as the ratio between the AC and DC resistance (Salon et al. 

1993), which is obtained from the resistive losses 

2
sb AC AC

eddy 2 2
DC DC DC

P i R R
k

i R i R R
         (28) 

The eddy factor in Eq. (28) is calculated for the slot embedded part of the winding. As a 

result, ACR  and DCR  used in this equation represent the resistances for the slot embedded 

part of the winding, only. 

 

3.4.4 Circulating-current loss   

A circulating current is the difference between the instantaneous average current of the 

strands and a particular strand current (Lähteenmäki 2002, Islam & Arkkio 2008a). The 

circulating-current loss is the difference between the total resistive loss of the winding 

and the ideal resistive loss, assuming that every strand has the same current flowing 

through it (Lähteenmäki 2002, Islam & Arkkio 2006, Islam & Arkkio 2007). To take into 

account the circulating current between the parallel strands in the phases, each parallel 

strand is modelled using Eq. (15). A new sub-indexing of the phases is created. The 

supply voltage is identical for the parallel strands belonging to a phase but different 

currents are produced because of the different strand positions in the slots. 

Mathematically, the circulating-current loss ( ccP ) can be represented as  

 2 2str str
cc

1 1

m N

ij ij i
i j

P R I R I
 

 
   

 
       (29) 

where m  is the number of phases, N  is the number of parallel strands in one phase, str
ijR  

is the DC resistance of strand j  of phase i , str
ijI  is the rms current in strand j  of phase i , 

iR  is the DC phase resistance, and I  is the total rms current in phase i . 
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4 Results 

4.1 Cage induction motor 

4.1.1 Simulated motor 

A 1250-kW, 3-phase, 50-Hz, 690-V, delta-connected cage induction motor is considered. 

Table 1 provides the data of the motor. 
 

Table 1: Data of the machine that was studied 

Number of pole pairs 

Number of parallel branches 

Number of parallel strands in a coil 

Number of stator slots 

Number of rotor slots 

Number of teeth in a coil pitch 

Inner diameter of the stator core (mm) 

Outer diameter of the rotor core (mm) 

Effective length of the machine (mm) 

Rated slip (%) 

3 

3 

3 

72 

86 

10 

670 

663 

810 

0.365 

 

The winding arrangement of a phase with transposition is presented in Figure 1. A bar is 

defined as that part of a strand that is embedded in a slot. The bars are connected in series 

in a particular strand. Same colour bars belong to a strand (Figure 1) and they are 

connected in series. There are 3 parallel connected copper strands (red, green and blue), 

which together make an effective turn. There are 6 effective turns, which results in 18 

bars per slot. For a double-layer winding, every coil side consists of 3 effective turns. The 

coil pitch is 10 slot pitches. Thus, the coils are chorded 5/6 to reduce the harmonic 

contents. Every bar of the stator is modelled separately and the connection matrices are 

introduced to make a strong coupling with those bars to a particular strand which belongs 

to a particular phase, as well as to the field equation. The stator bars were transposed 

systematically from one coil to the next one in order to minimise the circulating currents 

among the parallel strands (Islam et al. 2007, Islam & Arkkio 2008a).  
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Figure 1: Winding arrangement of a phase of the motor. 

 

A second-order isoparametric finite-element discretisation is used to simulate the 

electrical machine. The finite-element discretisation of the stator conductor region when 

the number of elements in a bar is 4 is presented in Figure 2a and when the number of 

elements in a bar is 8 in Figure 2b. The dimensions and numbering of the stator bars in a 

slot are presented in Figure 2c. The accuracy of the finite-element discretisation is 

analysed in Section 4.1.6. Figures 2a and 2b are selected based on this analysis. Using the 

symmetry, only a half of the electrical machine is solved with the finite-element solver.  
 

The flux-density distribution of the computed region is presented in Figure 3 using 

magnetic equipotential lines at the rated load. The time-discretised FEM model required 

6.4 hours of CPU time to simulate a 0.4-second transient time using a 0.05-ms time-step 

size. There were 43 557 nodes in the FE model. A Pentium 4, dual core 2.6 GHz 

computer was used for the simulation. When modelling the laminated cores of the 

electrical machines, magnetisation curves and loss data from EN 10106:2007 M400-50A 

grade steel sheets were used. In the time harmonic calculation, a modified B-H curve is 

used (Arkkio 1987, Eq. (47)). 

35



  

 

Figure 2: The conductors in the stator slot: a) 4 finite elements in a bar, b) 8 finite elements in a 
bar, and c) dimensions and numbering of the stator bars in a slot. 
 

 

Figure 3: The flux-density distribution is presented using magnetic equipotential lines. 
 

4.1.2 Voltage supply 

The motor is supplied from a voltage source. In time-harmonic finite-element analysis, 

only a sinusoidal voltage source is used. In time-discretised analysis, in addition to the 

sinusoidal supply, the PWM voltage supply is used as a non-sinusoidal supply source for 

the motor. The PWM supply is obtained by applying sinus-triangle comparison. A third 

harmonic is injected into the sinusoidal modulating signal to increase the fundamental 

harmonic and to reduce the harmonic contents (Grant et al 1985, Holmes & Lipo 2003, 
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Meco-Gutiérrez et al. 2007) from the PWM supply. The switching frequency (the triangle 

carrier frequency) of the PWM supply is 2 kHz for the simulations. A higher switching 

frequency in the frequency-converter supply may require a shorter time step compared to 

the one used for sinusoidal supply. 

 

4.1.3 Position of the conductors in a slot 

The radial distance of the stator bars from the inner surface of the stator, i.e. the outer 

surface of the air gap, is one of the very important design parameters regarding losses 

(Oberretl 1969), especially the eddy-current losses of the stator winding. The radial 

position of the coil sides is changed by increasing the distance from the inner surface of 

the stator to the top of the stator bar, sbh , from 0.8 mm to 25.8 mm by increasing the 

stator slot height from 73.0 mm to 98 mm. The outer diameter of the machine is increased 

to keep the thickness of the yoke constant. The constant distance (1.7 mm) from the 

bottom of the stator bars to the bottom of the slot is maintained throughout all of the 

simulations (Figure 2c). Changing the geometry changes the leakage flux. The input 

voltage is adjusted to keep the fundamental harmonic of the air-gap flux density constant 

(0.711 T). A rectangular and fully open stator slot geometry with a non-magnetic wedge 

(Figure 2) is used for the simulations (Islam et al. 2007, Islam & Arkkio 2008a, Islam & 

Arkkio 2009a).  

 

To investigate the effects of the radial position of the stator bars, eddy-current effects are 

presented in Figure 4 as a function of sbh  for a sinusoidal supply with time-harmonic and 

time-stepping analysis. To study the effects of a PWM supply, the eddy-current effect is 

also presented in the same figure (Figure 4) as a function of sbh  for the PWM supply. The 

effect of the PWM supply is studied with time-discretised finite-element analysis only. 

The eddy-current effect eddy( 1)k   is defined as the relative difference between the AC 

and DC resistance ( AC DC 1R R  ) (Islam et al. 2007, Islam & Arkkio 2008a, Islam & 

Arkkio 2009a).  
 

For the sinusoidal supply, a distance of the stator bars from the inner surface of the stator 

that is greater than 7.0 mm eliminates most of the eddy-current losses that it is possible to 

reduce by adjusting the position of the coils. A small improvement is possible until 14.0 

mm, but after that the eddy-current loss remains constant. For the PWM supply, the small 

improvement seems continuous after 7.0 mm.  
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Figure 4: Eddy-current effects as a function of the distance from the inner surface of the stator to 
the top of the stator bar, sbh , for the PWM and sinusoidal supplies. For the sinusoidal supply, 
both the time-harmonic analysis (THA) and time-stepping analysis (TSA) are considered. For all 
those cases, the stator winding is transposed and the fundamental harmonic air-gap flux density is 
0.711 T. 
 
When the machine is supplied from a sinusoidal voltage source, the main source of eddy-

current losses in the stator winding is the rotor-slot harmonics acting in the region close 

to the tooth tips. When increasing the distance, hsb, the conductors are removed from the 

active zone of the rotor-slot harmonics, and the losses caused by the slot harmonics 

vanish.  
 

When the machine is supplied from a PWM voltage, a significant part of the eddy-

currents are generated by the high-frequency flux associated with the non-sinusoidal 

supply. When increasing the distance hsb, the leakage inductance of the slot increases, and 

the harmonic stator currents and the high-frequency flux in the conductor region 

decrease. However, they never vanish completely from the stator conductors. 
 

The different behaviours of these two main sources of losses explain the differences in 

the losses observed as functions of the parameter hsb. However, for any kind of supply, 

the situation can be disastrous if the stator coils are placed very close to the air gap. At 

small values of sbh , the rotor-slot harmonics generate significant losses in the stator bars. 

This effect is relatively independent of the supply modes. The result presented in Figure 3 

is based on the results in publications P1, P2, and P3. By using the magnetic slot wedge, 

the eddy-current loss of the stator winding can be reduced. The effect of magnetic slot 
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wedges on the eddy currents is studied in publications P1-P3. The magnetic slot wedges 

are commonly used in cage induction machines with form-wound stator windings. 

 

A thermal analysis was performed by Prof. Arkkio, using the public domain software 

FEMM (Meeker 2009) to study the possible hot spots of the stator winding. Figure 5 

presents the temperature rise of a slot when the motor is supplied from a PWM voltage 

supply and the distance from the inner surface of the stator to the top of the stator bar, 

sbh , is equal to 7.8 mm. The maximum and average temperature rise of the slot-embedded 

stator winding is presented as a function of sbh  in Figure 6. The maximum temperature, 

i.e. hot spot is always in the top most bars of the slots. 

 

 

Figure 5: Temperature rise distribution of the stator bars in a slot when the motor is supplied from 
a PWM voltage source. The distance from the inner surface of the stator to the top of the stator 
bar, sbh , is equal to 7.8 mm. 
 
The results of the 2-D thermal analysis indicate that the temperature rise can be 

dangerous if the stator winding is very close to the air gap.  The analysis is performed on 

the basis of the average loss density of each stator bar. The losses are obtained from the 

finite-element analysis of the 1250-kW motor (Table 1) after considering the eddy 

currents in the stator winding. A constant temperature boundary condition is assumed for 

the iron core. The heat conductivity of the insulation layer is 0.25 W/mK  and the heat-

transfer coefficient at the air surface at the slot opening is 35 2W/m K  (Saari 1998). 

 

39



  

0

15

30

45

60

75

90

0 2 4 6 8 10 12

Distance from the inner surface of the stator to the top of the stator bar, mm

T
em

pe
ra

tu
re

 r
is

e 
(K

)

Maximum

Average 

 

Figure 6: The maximum and average temperature rise in the stator slot is presented as a function 
of the distance from inner surface of the stator to the top of the stator bar, sbh . The motor is 
supplied from PWM voltage source. 
 
 
4.1.4 Circulating currents and transposition 

A circulating current is the difference between the average current of the strands and a 

particular strand current (Lähteenmäki 2002, Takahashi et al. 2003). The systematic 

transposition of the stator bars is a well-known solution for the reduction of the 

circulating currents and their losses (Bennington et al. 1970, Baodong et al. 1995, Dexin 

et al. 2000, Haldemann 2004). To observe the phenomenon, the currents in all the three 

parallel strands of ‘phase A’ are plotted as a function of time for the sinusoidal supply. 

Figure 7 presents the strand currents without any transposition. Figure 8 presents the 

strand currents when the stator bars are transposed systematically (Islam & Arkkio 

2008a). The circulating currents can be reduced practically to zero using the systematic 

transposition of the stator bars. However, it may be difficult to use such slot numbers and 

bar numbers as would allow the perfect transposition. 
 

Without transposition, the rms current is higher in one strand and lower in another strand 

by about 14%. As a consequence, the total resistive loss of the stator winding remains 

almost the same with and without the transpositions. Because of this higher strand current 

of ‘A1’, the loss in this strand is 30.6% higher than the average losses of the strands. This 

would overheat the strand. With the PWM supply, the percentage of loss increase for a 

particular strand compared to the average value is similar to that with the sinusoidal 

supply. 
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Figure 7: The strand-current variation of “phase A” with time for the non-transposed stator 
winding. The motor is supplied from a sinusoidal voltage source.  
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Figure 8: The strand-current variation of “phase A” with time for the transposed stator winding. 
The motor is supplied from a sinusoidal voltage source. 
 
4.1.5 Optimum PWM supply for the motor at light load 

An induction motor is designed to maintain high efficiency when it runs in the region 

over 75% of the rated load (Benbouzid et al. 1997, Xue et al. 2006). When the 

requirement of the load is changed to a light load, the efficiency of the motor becomes 

lower. With a changing load, control of the voltage is a possible technique to improve the 

efficiency (Lipo 1971, Jian et al. 1983). At no-load or a light load, a significant amount of 

losses can be reduced (Mohan 1980, Asghar & Ashfaq 2003). The study is performed for 

an inverter-fed motor. Control algorithms are used in commercial electric drives that 

optimise the losses by minimising the stator current based on an analytical motor model. 

To include the eddy-current losses in the optimisation, a more comprehensive loss model 
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would be needed. As a first attempt, the fundamental harmonic voltage at the terminal is 

reduced from its rated voltage (690 V) by keeping the DC-link voltage constant (975 V). 

The modulation is changed by changing the flux-weakening frequency (Islam & Arkkio 

2008b) of the PWM supply. The slip is adjusted to reach a particular load while changing 

the fundamental harmonic terminal voltage. The stator resistive loss remains almost the 

same and there is very little scope for the reduction of the total resistive loss (Publication 

P4).  
 

Next, the fundamental harmonic terminal voltage is reduced from its rated voltage by 

reducing the DC-link voltage for the same modulation at the rated load. The reduction of 

the stator resistive losses is presented in Figure 9 as a function of the fundamental 

harmonic terminal voltage for 25%, 50%, and 75% of the rated load. The reduction of the 

losses is calculated by comparing the losses at the rated voltage (690 V). The total 

electromagnetic loss of the motor can be reduced significantly by changing the DC-link 

voltage together with the fundamental harmonic terminal voltage. The result presented 

here is the conclusive result of publication P4. 

 

-60

-40

-20

0

20

40

60

200 300 400 500 600 700

Fundamental harmonic line-to-line voltage (V)

R
ed

u
ct

io
n 

of
 s

t.
 r

es
. 

lo
ss

 (
%

)

25% load

50% load

75% load

 

Figure 9: The reduction of stator resistive losses in percent compared to the losses at the rated 
voltage (690 V) presented as a function of the fundamental line-to-line voltage. The study is 
carried out for 25%, 50%, and 75% of the rated load for the PWM supply.  

 

4.1.6 Accuracy of the finite-element discretisation 

To compute the eddy-current loss in the stator winding accurately, finite-element 

discretisation is an important issue. The stator bars must be discretised with a detailed 

enough mesh. To study the accuracy of the finite-element discretisation, the number of 
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elements per bar is increased by making more subdivisions over the bar height and width.  

On the basis of the number of finite-element layers, the discretisation in the direction of 

the bar height can be divided into three cases. Figure 10 presents the finite-element 

discretisation for all the three cases.  

 

Figure 10: Finite-element discretisation of a bar in stator winding. 

 

For case A, there is only one layer over the height. In a similar way, making a two- and 

three-layer finite-element discretisation over the bar height leads to case B and C. For 

each case, the number of finite elements is increased by making more subdivisions in the 

bar width. Figure 11 presents the dependency of the eddy-current loss of the stator 

winding on the finite-element discretisation as a function of the number of finite elements 

in a stator bar. The eddy-current losses are presented for the sinusoidal supply in Figure 

11a and for the PWM supply in Figure 11b.  
 

The results are computed when the motor is at the rated load and the distance from the 

inner surface of the stator to top of the stator bars, sbh , is equal to 7.8 mm. The number of 

rotor slots is adjusted from 86 to 84 to reduce the symmetry sector. This adjustment 

increases the eddy-current losses about 0.2 kW since the slot harmonics are different. 

This is considered as a harmless modification when the objective is to compare the 

effects of the different finite-element discretisations. 
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b) 

Figure 11: Eddy-current loss as a function of the number of finite elements in a bar for: a) a 
sinusoidal and, b) a PWM supply. The study is carried out at the rated load.  
 

The accuracy of the eddy-current loss calculations is improved by increasing the number 

of finite elements. For the sinusoidal supply, the maximum improvement is 2.0% of the 

eddy-current loss of the stator winding. This is only 0.28% of the total stator resistive 

loss. By moving from a single layer to double layer, the accuracy is increased already 

0.21% of the stator resistive loss. For the PWM supply, by moving from a single layer to 

a double layer, the accuracy is improved by 6.7% of the eddy-current loss, which is 2.8% 

of the stator resistive loss. So the single-layer finite-element discretisation does not 

provide an accurate enough solution. In cases B and C, by increasing the number of finite 

elements, the improvement in accuracy is very small. For both the supplies, case B, in 
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which the number of finite elements is 8 (Fig. 2b), provide a compromise, regarding the 

computational complexity and accuracy. For the sinusoidal supply, case A, in which the 

number of finite elements is 4 (Fig. 2a), can also be used with a considerable accuracy. 

More details can be found in publication P5. 

 

4.2 Doubly-fed induction generator 

4.2.1 Simulated machine 

A 1.7-MW doubly-fed induction generator (DFIG), which has a 3-phase, 50-Hz, 690-V, 

delta-connected stator winding and a 3-phase, star-connected rotor winding, is 

considered. The data of the generator are presented in Table 2.  
 

Table 2: Data of the machine that was studied. 

Number of pole pairs 

Number of stator parallel branches 

Number of rotor parallel branches 

Number of parallel strands in a stator coil 

Number of parallel strands in a rotor coil 

Number of stator slots 

Number of rotor slots 

Number of teeth in a stator coil pitch 

Number of teeth in a rotor coil pitch 

Inner diameter of the stator core (mm) 

Outer diameter of the rotor core (mm) 

Effective length of the machine (mm) 

Rated slip (%) 

2 

4 

1 

1 

1 

48 

60 

10 

15 

515 

509 

780 

–10 

 

There are 10 effective turns in a stator slot and only one strand in a stator phase, which 

means there are 10 bars per slot. For a double-layer winding, every coil side consists of 5 

effective turns. A rotor phase contains only one strand. There are 4 effective turns in a 

rotor slot, which means 4 bars per slot. The dimensions of the rotor slot are presented in 

Figure 12a and those of the stator slot in Figure 12b.  
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a)      b) 

Figure 12: Dimensions of a) rotor slot, b) stator slot for the 1.7-MW DFIG. 

 

The rated frequency of the rotor, i.e. the slip frequency, is –5 Hz since the rated slip of 

the generator is –10%. The rotation speed changes with the wind speed. The speed range 

of operation for the generator is from 1350 to 1950 rpm. The variation of slip within this 

generator speed range is from +10% to –30%. The slip range +10% to –10% belongs to 

the power optimisation region. In this region, the output energy is mainly optimised by 

adjusting the turbine speed as a function of wind speed (Hansen et al. 2003). 
 

The output power varies in a manner approximately proportional to the third power of the 

generator speed (Miller 1997, Tapia et al. 2003). From –10% to –30% is the power 

limitation region, where the output power is limited to its rated value (Nunes et al. 2004, 

Seman et al. 2006a, Seman 2006). A second-order isoparametric finite-element 

discretisation is used to simulate the electrical machine. Using the symmetry, only a 

quarter of the electrical machine is solved with the finite-element solver. The flux density 

distribution of the generator is presented in Figure 13 using magnetic equipotential lines 

at the rated load. The time-discretised FEM model required 3 hours of CPU time to 

simulate a 0.6-second transient time using a 0.05-ms time-step size. There were 12 515 
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nodes in the FE model. A Pentium 4, dual core 2.6 GHz computer was used for the 

simulation. The Newton-Raphson method typically converged in 3-5 iterations. 

 

 

Figure 13: The flux-density distribution is presented using magnetic equipotential lines. 
 

4.2.2 Effects of the rotor supply 

Even though the DFIG is supplied from a static frequency converter to the rotor phases 

(Iov et al. 2003, Ledesma and Usaola 2005), the rotor of the generator is supplied from a 

sinusoidal voltage source to get reference data for the frequency converter supply. The 

stator voltage is sinusoidal as it is directly connected to the grid via a main transformer 

(Kanerva et al. 2005, Seman et al. 2006b).  
 

The DFIG is controlled by supplying the rotor winding from a back-to-back frequency 

converter (Seman et al. 2006c). This connection brings a lower inverter cost, improves 

the efficiency, and allows the power factor of the wind turbine system to be controlled 

accurately (Müller et al. 2002). Most DFIG wind-turbine systems use a constant DC-link 

voltage (Arnalte et al. 2002, Nunes et al. 2004, Seman 2006) in the rated operating range. 

In the simulation, the rotor is supplied from a pulse-width-modulated (PWM) voltage 

source. For different rotor speeds, different fundamental harmonic (FH) voltages are 

obtained from a constant DC-link voltage (975 V) by changing the modulation (Islam and 

47



  

Arkkio 2008b). The eddy-current effects ( eddy 1k  ) of the rotor winding as a function of 

the generator speed are presented in Figure 14 and those of the stator winding in Figure 

15 for both the sinusoidal and PWM supplies of the rotor. The operation points for 

different speeds are obtained by adjusting the input parameters manually based on the 

results of the time-harmonic analysis. This creates some hazy variation in the results of 

the time-discretised analysis. 
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Figure 14: Eddy-current effects eddy( 1)k   of the rotor winding are presented as a function of 

speed when the rotor of the DFIG is supplied from a sinusoidal or PWM voltage source. The shaft 
powers and torques of the simulation points are shown in Figure 16.  
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Figure 15: Eddy-current effects eddy( 1)k   of the stator winding are presented as a function of 

speed when the rotor of the DFIG is supplied from a sinusoidal or PWM voltage source. The shaft 
powers and torques of the simulation points are shown in Figure 16.  
 
The additional eddy-current loss in the rotor of the DFIG resulting from the PWM supply 

is small compared to the resistive rotor loss of the sinusoidal supply. To compare the 
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results, the fundamental harmonic of the rotor terminal voltage is kept equal to the 

sinusoidal supply for a particular speed. The shaft power and air-gap torque are presented 

in Figure 16, both for the PWM and sinusoidal supplies of the rotor as a function of 

generator speed.  
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Figure 16: The shaft power and air-gap torque are presented as a function of rotational speed, 
both for the PWM and sinusoidal supplies of the rotor. 

 

4.3 Verification 

4.3.1 Comparison with an analytical model 

To verify the time-harmonic and time-discretised eddy-current models, the eddy factor 

calculated for the 1250-kW cage induction motor (Table 1) is compared with the results 

from the analytical calculations. The motor is supplied from a sinusoidal voltage source. 

The number of finite elements per bar is 4 (Figure 2a) for the finite element simulations. 

In the analytical formulation, the conductor was modelled using Maxwell’s equations 

assuming that flux in the slots is one-dimensional. More details can be found in 

Lammeraner et al. (1966) and Vogt (1983). According to the assumptions of the 

analytical model, the following conditions are applied during the calculations in the 

finite-element models: 
 

1. The relative permeability of the core and shaft is very large and constant ( 910 ).  

2. The stator windings are totally transposed, meaning there are no circulating 

currents in the parallel windings.  
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3. The conductors in the slot are lifted high enough ( sbh  equal to 27.8 mm) for the 

effects of the radial main flux to be neglected. 

4. The motor is at the blocked rotor condition, meaning that there are no higher 

harmonics resulting from the stator and rotor slottings or movement of the rotor. 
 

Figure 17 presents the eddy factor variation for the analytical, time-harmonic and time-

stepping methods as a function of frequency. Figure 18 presents the difference in the 

analytical eddy factor in relative value as a function of frequency. The frequency is varied 

from 10 Hz to 1000 Hz.  
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Figure 17: Verification of the developed numerical methods with an analytical one. Eddy factors 
are presented as a function frequency. 
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Figure 18: The percentage of the relative difference to the analytical eddy factors presented as a 
function of frequency. 
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The results of the time-harmonic and time-discretised finite-element methods agree well 

with the results of the analytical calculation. At the rated frequency, the relative 

difference is only 0.027%. The relative difference increases with an increase in frequency 

but even at 1000 Hz, the difference is only 1.43% for the time-harmonic and 1.0% for the 

time-discretised finite-element methods. 

 

4.3.2 Power balance  

After consideration of the eddy currents in the windings, the power balance is studied to 

justify the finite-element analysis (FEA). The small relative errors in power balance 

justify that the eddy-current model works properly and is compatible with the other 

formulations used for the FE model. The torque is calculated according to the equation 

for finite-element analysis derived by Coulomb (1983). The shaft power is calculated 

from the torque and rotational speed of the machine. In the FEA, the iron core is 

modelled as a non-conducting and non-linear material having a single valued 

magnetisation curve. An estimate for the iron losses is obtained as post-processing using 

empirical models (Arkkio 1987, Belahcen & Arkkio 2008) based on the Steinmetz 

formula. As a result, the core losses are not included in the power balance. 

 

Cage induction motor 

The power balance of the cage induction generator is studied after considering the eddy 

currents in the stator winding. The results from the power balance of the time-discretised 

FEA are presented in Table 3. These results are calculated when the motor is supplied 

from a sinusoidal voltage source. The relative error is calculated as a percentage of the 

input power. 
 

Table 3. Power balance of the cage induction motor (CIM). 

 

Input power (kW) 

Stator resistive loss (kW) 

Rotor resistive loss (kW) 

Shaft power (Coulomb’s method) (kW) 

Relative error (%) 

No-load

6.264

1.799

1.272

3.170

0.367

Rated load 

1209.92 

9.59 

6.29 

1194.41 

0.031 

Locked-rotor

1318.29

414.48

909.28

00.00

0.415
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The agreement of the power balance of the cage induction motor after the inclusion of the 

eddy currents in the stator winding is very good. At the rated load, the relative error is 

only 0.031%. At no-load, the relative error is 0.367% and at the locked-rotor condition it 

is 0.415%. 

 

Doubly-fed induction generator 

The power balance of the DFIG is considered for justification after consideration of the 

eddy currents both in the stator and rotor windings. The power balance of the time-

discretised FEA is presented in Table 4. These results are calculated when both the stator 

and rotor supply are sinusoidal.  
 

Table 4. Power balance of the doubly-fed induction generator (DFIG). 

 

Input power to the stator (kW) 

Power fed through slip rings (kW) 

Stator resistive loss (kW) 

Rotor resistive loss (kW) 

Shaft power (Coulomb’s method) (kW) 

Relative error (%) 

No-load

–11.815

0.000

2.074

0.476

–14.350

0.127

Rated load 

–1529.93 

–131.24 

13.23 

25.16 

–1700.01 

0.029 

Locked-rotor

1621.012

0.003

570.043

1051.160

00.00

0.012

 

The agreement of the power balance of the doubly-fed induction generator after the 

inclusion of the eddy currents both in the stator and rotor winding is very good. At the 

rated load, the relative error is only 0.029%. At no-load, the relative error is 0.127% and 

at the locked-rotor condition it is 0.012%. 
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5 Discussion 

The scientific contributions of the dissertation listed in Section 1.3 are discussed one by 

one in Section 5.1. The discussion is started with a short summary of the contribution 

made by the work in every first paragraph and its significance in every second paragraph. 

Section 5.2 discusses the drawbacks of the methods that were developed and Section 5.3 

contains proposals for future work. 

 
5.1 Summary and significance 

The time-harmonic finite-element method was developed to model eddy currents in the 

form-wound multi-conductor windings of electrical machines. The series and parallel 

connected bars were taken into account in the field and circuit equations. The equations 

were solved together as a strongly coupled system. The model was applied to the stator 

winding of a cage induction motor and the stator and rotor winding of a doubly-fed 

induction generator (DFIG). The model was also used to study the circulating currents 

between the parallel paths of the electrical machines.  
 

The time-harmonic method was mainly developed to compute the initial values for time-

discretised FEM. Such a numerical tool has not been found in the literature. Even though 

the time-harmonic model is computationally efficient, it cannot consider the higher 

harmonics resulting from the stator and rotor slots, the rotation of the rotor, and 

saturation. The time-harmonic model gives quite reliable current versus speed behaviour 

for both CIM and DFIG. However, the problems in modelling harmonic fields can be 

clearly seen when predicting the torque versus speed behaviour of CIM. Machine 

designers should be careful if they use only this tool for design purposes when 

considering eddy currents. The tool can be used reliably to study the currents circulating 

between the parallel paths of the electrical machine. 

 

A time-discretised FEM was developed to consider eddy and circulating currents in the 

form-wound multi-conductor windings of electrical machines. Similarly to the time-

harmonic model, the series and parallel connected bars were taken into account in the 

field and circuit equations. The equations were solved together as a strongly coupled 

system at every time step. The Backward Euler method was used for the time 

discretisation. The method was used for the stator winding of a cage induction motor and 

for the stator and rotor winding of a DFIG. The effects of eddy currents resulting from 
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the higher harmonics generated by the stator and rotor slottings and the rotation of the 

rotor were studied. To study the effects, the results obtained from the time-discretised 

FEM model were compared with the results obtained from the time-harmonic FEM. 
 

The time-discretised FEM that was developed provides a more comprehensive numerical 

tool to study the electromagnetic field and losses considering eddy currents and 

circulating currents in the series and parallel connected windings. In the literature, a time-

discretised FEM model was also found to consider eddy currents in the multi-conductor 

windings of an electrical machine (Yatchev et al. 1995). Their model considered series-

connected bars only and was not used to model the currents circulating in the parallel 

bars. Later on, Szücs (2001) used that model (Yatchev et al. 1995) and implemented 

macro-elements in the finite-element analysis for the stator winding of a cage induction 

motor. The main focus of his work was to study the savings of computation time and 

memory by using macro-elements. Studying the eddy-current effects both in the stator 

and rotor winding of a DFIG by solving the system of equations as strongly coupled 

includes some novelty. The time-discretised FEM model can take proper consideration of 

the higher harmonics that are generated from the stator and rotor slots, the rotation of the 

rotor, and magnetic nonlinearity. The developed numerical method can be used as a tool 

to design a more efficient and reliable electrical machine by studying the eddy currents 

properly. 

 

The time-discretised finite-element method was used to study the eddy-current effects in 

form-wound stator windings caused by a non-sinusoidal supply. A pulse-width-

modulated (PWM) voltage supply was used to supply the stator in the simulation of the 

cage induction motor. The PWM supply was obtained by using sinus-triangle 

comparison. To study the effect of the PWM supply on the eddy currents, the motor was 

first supplied from a PWM voltage source and then from a sinusoidal voltage source with 

an equal fundamental harmonic. The additional eddy-current loss in the stator winding of 

the motor was rather large because of the PWM supply.  
 

In the literature, it can be found from the measurement of the total losses (Arkkio 1991, 

Joksimović & Binder 2003) or from the temperature rise test (Fouladgar & Chauveau 

2005) that the non-sinusoidal supply increases the eddy-current losses in induction 

motors. However, there has not hitherto been a comprehensive numerical tool to consider 

the eddy currents in the winding for studying these effects properly. If a motor is used for 
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a variable-speed application, the machine designer should be aware of it early in the 

design process, especially because of the eddy currents in the winding. It is possible to 

design a more efficient and reliable machine for a particular frequency converter supply. 

The optimum supply can be obtained for the particular machine by making simulations 

and analysing the results.  

 

Time-discretised FEM was used to study the effect of the frequency-converter supply on 

the eddy currents in the form-wound rotor winding of a doubly-fed induction generator 

(DFIG). A similar PWM voltage source to that used to supply the stator of the cage 

induction motor was used to supply the rotor of the DFIG. To estimate the effect of the 

frequency converter on the eddy-current loss, a sinusoidal supply with an equal 

fundamental harmonic was also used to supply the rotor. 
 

The additional eddy-current loss produced by the frequency converter in the rotor of the 

DFIG compared to the sinusoidal supply was very small (Publication P6). A cage 

induction motor with 3.2-mm-high copper conductors produced a significant additional 

eddy-current loss in the stator winding when supplied from a PWM voltage source with a 

2-kHz switching frequency and 975-V DC-link voltages (Publication P3). With the same 

switching frequency and DC-link voltage, and much higher (16.5-mm) copper 

conductors, the additional eddy-current loss in the rotor winding of the DFIG was 

negligible. Because of the large inductances of the rotor winding compared to the ones of 

the stator, much higher conductors can be used in the rotor winding of a DFIG than in the 

stator winding of an inverter-fed cage induction motor. 

 

The effect of the radial distance from the inner surface of the stator to the position of the 

first stator bar ( sbh ) on eddy currents was studied. The study was carried out using the 

time-harmonic and time-discretised finite-element methods. Both the sinusoidal and 

PWM voltage supplies were used to study this parameter using time-discretised FEM. 

The study was performed by placing the coils very close to the air gap and gradually 

increasing the distance. The parameter ( sbh ) was found to be a very important design 

parameter. The consequences would be dangerous if the coils were very close to the air 

gap. 
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The importance of the position of the coil has been understood earlier (Richter 1951, 

Oberretl 1969). Different kinds of simple analytical methods to study the eddy current 

effects for a given main flux can be found in Richter (1951). Oberretl (1969) gave 

thirteen rules to minimise the stray load losses in induction motors. Rule number seven 

described the position of the stator coil in a stator slot by clarifying its relationship to the 

slot width. For an open stator slot, the ratio between the width of the slot and the height 

from the inner surface of the stator to the top of the stator coils must be less than or equal 

to three. To keep the ratio equal to or less than one is not economical or practical when 

building a machine. An acceptable value for distance, sbh , can be studied both from the 

loss and thermal points of view. If a 10% increase in the resistive losses is allowed 

related to the sbh  variation, the minimum distance of the stator coil from the air gap is 

about 6 mm. The IEC 60034-1 (2004) standard specifies for motors within the power 

range 200–5000 kW that the highest average temperature allowed for a class 155 

insulation is 145 °C. The maximum temperature within the insulation can be 155 °C. This 

gives a 10 degrees difference between the maximum and average temperatures. It can be 

seen from Figure 5 that the 10 degree temperature difference is reached at a sbh value of 6 

mm. Both the loss and thermal points of view lead to the 6 mm minimum distance. The 

rule given by Oberretl (1969) seems to be defined for too wide a range. 

 

The circulating currents in the parallel stator conductors were modelled using both time-

harmonic and time-discretised FEM. The effect of circulating currents was studied for the 

form-wound multi-conductor winding of a cage induction motor. A transposition 

technique was also developed by modifying the connection matrix between the bars and 

parallel strands. The systematic transposition of the stator winding reduced the circulating 

currents between the parallel strands to practically zero.  
 

Studies of circulating currents in form-wound windings based on 2-D FEM analysis were 

not found in the literature. The circulating currents seem to be mainly induced by the 

fundamental flux. Therefore, the time-harmonic model gives a reliable estimation to 

study the circulating currents. The method that was developed can also be used to study 

the circulating currents of random-wound windings of electrical machinery. However, the 

problem size may become too high to study the circulating currents for a practical 

random-wound winding machine.  
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5.2 Drawbacks of the methods 

The drawbacks of the methods that were developed are listed below: 

 The developed methods are so-called brute force methods. The methods require 

the detailed finite-element discretisation of the problem region for proper 

modelling. The requirements of computation time and memory are increased with 

an increasing number of bars or conductors. If there is a very high number of 

series and parallel connected conductors, it might be impossible to model the 

phenomena. The homogenisation technique or macro elements could be used to 

study for a large number of conductors. 

 The methods need very detailed data regarding the winding construction of the 

machine. It may be difficult to get these data because of the confidentially 

matters. 

 The iron core was modelled as non-conducting and non-linear material with a 

single value magnetisation curve. The iron losses were obtained as post-

processing and were not included in the field equation. Dlala (2008) has 

developed a magneto-dynamic vector hysteresis model for the steel laminations of 

rotating electrical machines. The model could be combined with the eddy-current 

methods that were developed to obtain a more comprehensive numerical method. 

The accuracy, efficiency, stability, advantages and disadvantages of the different 

finite-element formulations related to core-loss modelling have been investigated 

by Dlala (2009). 

 

5.3 Future work 

Several applications related to eddy currents in the windings of electrical machines were 

studied using the time-harmonic and time-discretised finite-element circuit models 

developed here. Using these methods, it would be possible to study even more 

phenomena with comparatively little effort. These tasks are listed below as future work: 

 The method can be applied to different kinds of electrical machines to obtain 

general rules for the placement of the coils in the slot of the machine. 

 Search for an optimal height and width of the bars by changing the number of 

parallel strands and by reorganising the bars, as well as the strands, of the coils. 

 Search for an optimal height and width of the stator slots by changing the bar 

height. 
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 Study a high-speed machine, in which random-wound winding is more common. 

Studying the randomisation by considering both the eddy currents and circulating 

currents would be interesting. 

 Search for an optimal transposition of stator winding for electrical machines for 

which systematic and perfect transposition is not possible.  

 Study different kinds of non-sinusoidal supplies to find an optimum supply. 

 This method can be used to identify a simple stator loss model for the control 

algorithm used in frequency converters. 
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6 Conclusions 

Time-harmonic and time-discretised finite-element circuit models were developed to 

calculate the eddy currents in the form-wound multi-conductor windings of electrical 

machines. The methods were applied to the stator winding of a 1250-kW cage induction 

motor and to both the stator and rotor windings of a 1.7-MW doubly-fed induction 

generator (DFIG). The bars connected in series and parallel were discretised and 

identified in the mesh generator program. In time-harmonic FEM, the system of 

equations was solved with the Newton-Raphson iteration method for the steady-state 

solution. In time-discretised FEM, the Newton-Raphson iteration method was used to 

solve the system of equation at every time step. The time-discretisation was performed 

using the Backward Euler method.  
 

The radial distance from the inner surface of the stator to the top of the stator winding 

was found to be an important design parameter. The severity of this parameter was 

presented by performing a simulation with finite-element eddy-current models. The 

circulating currents were also modelled in the parallel stator conductors of a cage 

induction motor. A transposition of the conductors was implemented to reduce the 

circulating currents. The eddy-current effects in the form-wound multi-conductor stator 

winding of the cage induction motor with a non-sinusoidal supply were studied. A pulse-

width-modulated (PWM) voltage supply was achieved by sinus triangle comparison and 

used to supply the motor. A PWM supply produces a significant amount of additional 

eddy-current losses in the form-wound stator winding of the cage induction motor, 

compared to the sinusoidal supply. Sinusoidal and PWM supplies with an equal 

fundamental harmonic were used for two different simulations to compare the results. 

Similar sinusoidal and PWM voltages were used to supply the rotor winding of the DFIG 

as well. The additional eddy current losses in the form-wound rotor winding resulting 

from the PWM supply are small compared to the sinusoidal supply. 
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