
TKK Research Reports in Computer Science and Engineering A
Espoo 2009 TKK-CSE-A3/09

FACILITATING ALGORITHM VISUALIZATION

CREATION AND ADOPTION IN EDUCATION

Doctoral Dissertation

Ville Karavirta

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission

of the Faculty of Information and Natural Sciences for public examination and debate in Auditorium

AS1 at Helsinki University of Technology (Espoo, Finland) on 14th of December, 2009, at 12 noon.

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Teknillinen korkeakoulu
Informaatio- ja luonnontieteiden tiedekunta
Tietotekniikan laitos

Distribution:
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
P.O.Box 5400
FI-02015 TKK
FINLAND
URL: http://www.cse.hut.fi/
Tel: +358-9-470 23228
Fax: +358-9-470 23293
E-mail: vkaravir@cs.hut.fi

© Ville Karavirta
Cover photo ©iStockphoto.com/Viorika

ISBN 978–952–248–169–6
ISBN 978–952–248–170–2 (PDF)
ISSN 1797–6928
ISSN 1797–6936 (PDF)
URL: http://lib.tkk.fi/Diss/isbn9789522481702/

Multiprint Oy
Espoo 2009

AB
ABSTRACT OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY

P. O. BOX 1000, FI-02015 TKK
http://www.tkk.fi

Author Ville Karavirta

Name of the dissertation

Manuscript submitted 29.5.2009 Manuscript revised 6.11.2009

Date of the defence 14.12.2009

Article dissertation (summary + original articles)Monograph
Faculty
Department
Field of research
Opponent(s)
Supervisor
Instructor

Abstract

Keywords algorithm animation, effortlessness, algorithm animation language, XAAL

ISBN (printed) 978–952–248–169–6

ISBN (pdf) 978–952–248–170–2

Language English

ISSN (printed) 1797–6928

ISSN (pdf) 1797–6936

Number of pages 120 + app. 100

Publisher Department of Computer Science and Engineering

Print distribution Department of Computer Science and Engineering

The dissertation can be read at http://lib.tkk.fi/Diss/isbn9789522481702/

Facilitating Algorithm Visualization Creation and Adoption in Education

X

Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
Software Systems
Professor Susan Rodger
Professor Lauri Malmi
Docent Ari Korhonen

X

The research question of this thesis is: How can we develop algorithm animations (AA) and AA systems further to
better facilitate the creation and adoption of AA in education?

The motivation for tackling this issue is that algorithm animation has not been widely used in teaching computer
science. One of the main reasons for not taking full advantage of AA in teaching is the lack of time on behalf of the
instructors. Furthermore, there is a shortage of ready-made, good quality algorithm visualizations.

The main contributions are as follows:

• Effortless Creation of Algorithm Animation. We define a Taxonomy of Effortless Creation of Algorithm
Animations. In addition, we introduce a new approach for teachers to create animations by allowing effortless
on-the-fly creation of algorithm animations by applying visual algorithm simulation through a simple user
interface.

• Proposed Standard for Algorithm Animation language. We define a Taxonomy of Algorithm Animation
Languages to help comparing the different AA languages. The taxonomy and work by an international
working group is used to define a new algorithm animation language, eXtensible Algorithm Animation
Language, XAAL.

• Applications of XAAL in education. We provide two different processing approaches for using and
producing XAAL animations with existing algorithm animation systems. In addition, we have a framework
aiding in this integration as well as prototype implementations of the processes. Furthermore, we provide a
novel solution to the problem of seamlessly integrating algorithm animations with hypertext. In our approach,
the algorithm animation viewer is implemented purely with JavaScript and HTML. Finally, we introduce a
processing model to easily produce lecture slides for a common presentation tool of XAAL animations.

AB
VÄITÖSKIRJAN TIIVISTELMÄ TEKNILLINEN KORKEAKOULU

PL 1000, 02015 TKK
http://www.tkk.fi

Tekijä Ville Karavirta

Väitöskirjan nimi

Käsikirjoituksen päivämäärä 29.5.2009 Korjatun käsikirjoituksen päivämäärä 6.11.2009

Väitöstilaisuuden ajankohta 14.12.2009

Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)Monografia
Tiedekunta
Laitos
Tutkimusala
Vastaväittäjä(t)
Työn valvoja
Työn ohjaaja

Tiivistelmä

Asiasanat algoritmianimaatio, vaivattomuus, algoritmianimaatiokieli, XAAL

ISBN (painettu) 978–952–248–169–6

ISBN (pdf) 978–952–248–170–2

Kieli Englanti

ISSN (painettu) 1797–6928

ISSN (pdf) 1797–6936

Sivumäärä 120 + liit. 100

Julkaisija Tietotekniikan laitos

Painetun väitöskirjan jakelu Tietotekniikan laitos

Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/isbn9789522481702/

Algoritmivisualisaatioiden luomisen ja käyttöönoton helpottaminen opetuksessa

X

Informaatio- ja luonnontieteiden tiedekunta
Tietotekniikan laitos
Ohjelmistojärjestelmät
Professori Susan Rodger
Professori Lauri Malmi
Dosentti Ari Korhonen

X

Tämän työn tutkimuksen lähtökohtana oli tutkimuskysymys: Miten algoritmivisualisaatioiden luomista ja
käyttöönottoa opetuksessa voidaan helpottaa visualisaatioita ja niiden tuottamiseen käytettyjä välineitä kehittämällä?

Motivaationa tutkimukseen on, että algoritmianimaatio ei ole saavuttanut suurta suosiota opettajien keskuudessa.
Pääsyy tähän on, että opettajilla ei ole tarpeeksi aikaa animaatioiden luomiseen. Lisäksi valmiista, korkealaatuisista
animaatioista on pulaa.

Työn keskeiset tulokset ovat seuraavat:

• Algoritmianimaatioiden vaivaton luonti. Ensin työssä tutkitaan miten animaatioiden tekemisestä saataisiin
vähemmän vaivalloista. Tähän kysymykseen etsitään ratkaisua määrittämällä tapa mitata
animaatiojärjestelmien vaivattomuutta. Lisäksi esitellään järjestelmä, MatrixPro, joka on vaivaton
luentotyökalu opettajille.

• Ehdotus standardiksi algoritmianimaatiokieleksi. Työkaluksi järjestelmien yhteisen
algoritmianimaatiokielen kehittämiseen määrittelemme taksonomian algoritmianimaatiokielten arvioimiseen.
Tätä taksonomiaa käytetään hyödyksi määriteltäessä laajennettava algoritmianimaatiokieli (XAAL, eXtensible
Algorithm Animation Language). Kielen määrittelyssä käytetään hyväksi myös kansainvälisen työryhmän
visiota yhteisestä algoritmianimaatiokielestä.

• XAAL-kielen käyttö opetuksessa. Työssä esittelemme toteutuksen joukolle työkaluja, joka mahdollistaa
XAAL-animaatioiden käytön ja luomisen algoritmianimaatiojärjestelmillä. Lisäksi esittelemme uuden tavan
liittää animaatioita hyperdokumentteihin. Lopuksi esittelemme mallin tuottaa helposti luentokalvoja yleiselle
esitystyökalulle XAAL-animaatioista.

Preface

“
A book like this is largely the work of one person. There’s no other single human being

who’s spent as much time as I have thinking about it, persevating over it, changing the

same sentence back and forth between two different versions over and over.”
– Steve Krug, Don’t make me think!

While the above quote from Steve Krug is spot on, there are a number of

people without who this thesis would never have been done. First and foremost

I would like to thank my supervisor Professor Lauri Malmi and instructor

Docent Ari Korhonen for providing the facilities to do this work. Their input

and feedback to the work during this process has been highly valuable. Ari

was also the one who hired me as a research assistant back in 2002. This work

has been done in the Software Visualization Group and Computer Science

Education Research Group and I would like to thank all former, current, and

future colleagues.

I am also grateful to the participants of the ITiCSE XML Working Group

for the discussions and ideas during the intensive five-day spell in Portugal. I

would especially want to thank Tom Naps and Guido Rößling for giving me the

chance to be part of the group. Tom also read and gave insightful comments

on an early draft.

Furthermore, I wish to thank my friends and family for the tremendous

support over the years. My greatest gratitude goes to Linda for being special.

Finally, I would like to thank the pre-examiners Professor Scott Grissom

and Professor Pierluigi Crescenzi for their comments to improve this work.

And it is an honor to have Professor Susan Rodger as my opponent.

Otaniemi, 6.11.2009

Ville Karavirta

vii

List of publications and the

contributions of the author

This thesis consists of an introduction and the following publications [P1] - [P7]

[P1] Petri Ihantola, Ville Karavirta, Ari Korhonen, and Jussi Nikander. Tax-
onomy of effortless creation of algorithm visualizations. In Proceedings of the
2005 International workshop on Computing Education Research (ICER), pages
123–133, New York, NY, USA, 2005.

This paper introduces a taxonomy of effortless creation of algorithm visu-
alizations and evaluates some of the existing AV systems. All the authors of
the paper contributed evenly on all parts of the paper.

[P2] Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo St̊alnacke.
MatrixPro - A tool for on-the-fly demonstration of data structures and algo-
rithms. In Proceedings of the Third Program Visualization Workshop (PVW),
pages 26–33, The University of Warwick, UK, 2004.

In this paper, an algorithm animation system called MatrixPro is intro-
duced. The system supports on-the-fly creation of animations using visual
algorithm simulation. The work presented in this paper included significant
constructive part. The author of this thesis implemented the system based
on the Matrix algorithm simulation framework. The authors of the paper
contributed evenly in writing of the paper, while the main contribution of
Karavirta was in the section describing the system.

[P3] Ville Karavirta, Ari Korhonen, Lauri Malmi, and Thomas Naps. A
Comprehensive Taxonomy of Algorithm Animation Languages. Journal of
Visual Languages and Computing (accepted).

This paper introduces a taxonomy of algorithm animation languages. In
addition, there is an evaluation of several existing AA languages.

A first version of the taxonomy was presented in the Master’s thesis of
the author of this thesis. Karavirta, Korhonen, and Malmi published a pol-
ished version of the taxonomy in a conference paper. Finally, this paper was
extended significantly to the current version by all the authors.

ix

[P4] Thomas Naps, Guido Rößling, Peter Brusilovsky, John English, Duane
Jarc, Ville Karavirta, Charles Leska, Myles McNally, Andrés Moreno, Rock-
ford J. Ross, and Jaime Urquiza-Fuentes. Development of XML-based tools
to support user interaction with algorithm visualization. SIGCSE Bulletin,
37(4):123–138, 2005.

This paper discusses requirements for a common algorithm animation lan-
guage to be used by multiple AA systems. It gives examples and specifications
for the different elements of AA. The author’s main contributions were in the
specification of the graphical primitives and transformations on them, as well
as the parts of the paper discussing them.

[P5] Ville Karavirta. Integrating algorithm visualization systems. In Pro-
ceedings of the Fourth Program Visualization Workshop (PVW), volume 178
of Electronic Notes in Theoretical Computer Science, pages 79–87, 2007.

This paper describes a new algorithm animation language called Extensible
Algorithm Animation Language, Xaal. In addition, the paper shows how
Xaal can be used to transfer algorithm animations between AA systems.
The work presented in this paper included significant constructive part. The
author of this thesis is the sole author of this work.

[P6] Ville Karavirta. Seamless merging of hypertext and algorithm anima-
tion. ACM Transactions on Computing Education, 9(2):1–17, 2009.

This paper presents an algorithm animation viewer implemented purely
using HTML and JavaScript making this solution suitable to be used in hy-
pertext learning material due to the advanced interaction possibilities between
learning material (HTML) and the animation. The work presented in this pa-
per included significant constructive part. The author of this thesis is the sole
author of this work.

[P7] Ville Karavirta, Guido Rößling, and Otto Seppälä. Automatic gener-
ation of algorithm animations for lecture slides. TKK Technical Reports in
Computer Science and Engineering, B, TKK-CSE-B7, 2009.

In this paper, we present a process to easily generate algorithm animations
in lecture slide format with an existing AV system. The work presented in this
paper included significant constructive part.

Karavirta and Seppälä presented the initial idea of automatic lecture slide
generation in a previous paper where both of the authors contributed equally.
For this version, the author of this thesis implemented the Xaal language to
Animal with the help of Rößling, as well as the Xaal to Open Document
Format transformation. The writing of the paper was done collaboratively
among the authors.

Contents

I Introduction and Background 1

1 Introduction 3
1.1 The Problem and Research Questions 4
1.2 Main Contributions and Structure of this Thesis 7

2 Software Visualization 9
2.1 Information Visualization . 9
2.2 Software Visualization and Algorithm Animation 11

2.2.1 Roles in Software Visualization 12
2.2.2 Algorithm Animation Language 14

2.3 Taxonomies of Software Visualization Systems 14

3 Algorithm Animation 17
3.1 History of Algorithm Animation 17
3.2 Research Questions in Algorithm Animation 18

3.2.1 Scope: What Platform Should be used? 19
3.2.2 Content: What is visualized? 21
3.2.3 Form: How to integrate the use of animations to teaching? 22
3.2.4 Method: How the animation is generated? 23
3.2.5 Interaction: How to make animations interactive? 26
3.2.6 Effectiveness: Are Algorithm Animations Effective? . . . 28

3.3 Visualizations and Teachers . 32

II Effortless Algorithm Animation 35

4 Taxonomy of Effortless Creation of Algorithm Visualizations 37

5 MatrixPro 41

III Algorithm Animation Languages 45

6 Features of Algorithm Animation Languages 47
6.1 Representation Format . 48
6.2 Level of Abstraction . 48
6.3 Animation . 49

xi

6.4 Programming Concepts . 50
6.5 Interaction . 51

7 Taxonomy of Algorithm Animation Languages 53

8 Proposal for Standard Algorithm Animation Language 57
8.1 ITiCSE XML Working Group 57
8.2 Xaal . 60

8.2.1 Taxonomic Evaluation 62

IV Applications of Xaal in Education 69

9 Xaal in Algorithm Animation Systems 71
9.1 Implementation Approaches . 71
9.2 Using Xaal Animations . 73
9.3 Producing Xaal Animations . 75
9.4 Implementation-based Evaluation 76

10Algorithm Animations as Online Learning Material 79
10.1 Main Features . 80
10.2 Underlying Technologies . 82

11Algorithm Animations as Lecture Material 85
11.1 First Prototype . 85
11.2 The Process of Generating Slides 86

V Discussion and Conclusions 89

12Discussion 91
12.1 Research Questions Revisited 91

12.1.1 Effortless creation of AV 91
12.1.2 System independent description of AVI 92
12.1.3 Processes to use the AVI in AA systems 92
12.1.4 Processing the AVI for different learning situations. . . . 94

12.2 Critical Overview . 95

13Conclusions 99
13.1 Benefits of This Work . 99
13.2 Future Work . 100

Bibliography 103

Part I

Introduction and Background

1

Chapter 1

Introduction

Due to the rapidly increased performance of computerized devices, software

products have grown to be more and more complex. As a result, software

developers need to understand very large parts of the software. At the same

time, people are constantly required to be more efficient at whatever they

do. To help software developers achieve this, various Software Visualization

(SV) tools have been developed. Software Visualization can be defined as “the

visualization of artifacts related to software and its development process” [32].

Many different areas of software engineering can apply and benefit from

Software Visualization. Software developers can get insights on the class or

package structures of an object-oriented software. UML diagrams are a good

example of an often used visualization [99]. SV tools can also provide detailed

information of the state of the program through visual debuggers. In addition,

developers can test their software using visual testing [78]. On the other hand,

algorithm developers and researchers can get a better view of the behaviour

of algorithms through visualizations. In education, students can use visualiza-

tions to help them understand and learn new concepts in software development

and algorithmics. Project managers can get an overview of the progress of a

software project from visualizations of the software evolution.

In general, SV can be divided into visualizing the structure, behaviour, and

evolution of software. Structure is the visualization of static parts and relations

of the system. Behaviour is the visualization of the program execution with

real or abstract data. Finally, evolution is the visualization of the development

process of the software. [32]

3

4 Chapter 1. Introduction

Algorithm animation (AA)1 is one form of visualization of behaviour where

the goal is to visualize the execution of an algorithm [32]. The main purpose of

algorithm animation development is aimed toward use in educational context.

This is also the focus in this thesis, although the ideas can be applied to

different areas of SV, as well.

1.1 The Problem and Research Questions

Algorithm animation has been used in education for a few decades with the

goal of helping students to learn the difficult concepts of data structures and

algorithms. In a survey by Naps et al. [95], most of the 93 respondents stated

that they believe visualizations to help students learn computing concepts.

Only five indicated neutral or no opinion while none disagreed with the helpful

effect of visualizations.

Recent studies indicate that to be educationally effective (i.e. aid students’

learning) algorithm visualizations cannot be merely passive animations, the

users must interact with the animation [50, 95]. This discovery has led to the

development of a wide variety of interactive visualization tools.

The confidence of teachers and the demonstrated learning benefits of ani-

mations have not helped AV to reach a wide audience. To the disappointment

of the AV system developers, most of the AV tools have been used only in

the institutions they were developed in. According to the survey by Naps et

al. [95], the key reasons for not adopting AV are the following.

• Teachers do not have time to search for good examples.

• Teachers do not have time to learn the new tools.

• Teachers do not have time to develop visualizations.

• Teachers feel there is a lack of effective development tools.

Furthermore, there is a shortage of ready-made, good quality algorithm visu-

alizations usable in teaching [125].

As the hope of the AV developer community is to get visualizations more

widely into use among educators, the main research question we will tackle in

this work is:
1Another term widely used is Algorithm Visualization (AV). Some see this as a wider topic, but in this

work, we will use both terms interchangeably to refer to the definition of Algorithm Animation.

Chapter 1. Introduction 5

Figure 1.1: a) The current situation of AV systems where every system has its own format
for describing the algorithm visualization information (AVI). b) The wanted situation where
every system is using the same AVI format.

How can we develop algorithm animations and AA systems fur-

ther to better facilitate the creation and adoption of AA in education?

As the main problems with disseminating the use of visualizations we see

the large number of separate visualization applications and the lack of reuse of

existing visualization. This is also partly the reason for the current shortage of

good quality ready-made visualizations. The visualization applications provide

different approaches to creating animations. In addition, for students using

these animations, the systems provide different interaction methods. Each of

these systems has its own internal format for storing the animations and the

same visualization cannot be used in many systems (see Figure 1.1a). The

reuse of created resources between applications is a natural requirement in

many environments. For example, sharing presentation slides is common. A

situation where all the presentation tools would only read/write their own

format would make everyday usage more difficult. Thus, we will approach

the research question by examining the description and usage of algorithm

visualization information (AVI), that is, the information needed to visualize an

algorithm. This takes four forms and divides the research to aim at answering

four questions:

• What is effortless creation of AVI? As one of the main reasons for

not using visualizations is the lack of effective tools, we will explore what

6 Chapter 1. Introduction

makes an algorithm animation system effortless. With this information,

novel approaches to AV production can be introduced. The aim is, that

although creating good examples will remain difficult, it should be difficult

because of pedagogical considerations instead of the limitations of the

available tools.

We will start by exploring what makes an algorithm animation system ef-

fortless and introduce a taxonomy of effortless creation of AV (Formulative-

taxonomy, FT2). This was carried out by thoroughly analyzing responses

on a survey to users of AV systems. We will also introduce a new approach

for teachers to create algorithm visualization using visual algorithm sim-

ulation, thus allowing effortless use in a limited application area (Descrip-

tive system, DS and Concept implementation, CI).

• How to specify a system independent description of AVI? The

introduction of a system independent format to describe AVI would allow

all the AV systems to use the same visualizations (see Figure 1.1b).

In the second part of this work, we will analyze the languages used by the

existing AV systems to store the visualizations and aim at identifying the

key features of algorithm animation languages (Review of literature, DR).

We summarize the results of the analysis by introducing a taxonomy of

algorithm animation languages (FT). This taxonomy together with the

work of an international working group is used to specify a proposal for

a standard algorithm animation language, Xaal (eXtensible Algorithm

Animation Language) (Formative-standards, FG). Furthermore, we use

the newly defined taxonomy to evaluate the Xaal language (Evaluative-

other, EO).

• How can we process the AVI to use in AA systems? A survey

by Bassil and Keller concluded that integration of SV tools and import-

ing/exporting visualizations from SV tools are the main challenges for

the future of SV tool builders [6]. Understandably, merely having a stan-

dard language for AVI is not enough. Thus, we need to provide processes

that enable importing/exporting visualizations. Evidently, all the created

visualizations would then be available for all the AV systems.

2For each part of this work, we will refer to the applied research approaches and methods in software
engineering defined by Glass et al. [38].

Chapter 1. Introduction 7

For the proposed standard to be useful, we will introduce two different

processes on how to add Xaal import/export to existing AV systems

(Formulative-process, FP). In addition, we introduce a framework that

implementing this in AV systems (Formulative-framework, FF).

• How can we process the AVI for different learning situations?

According to Rößling et al., merging visualizations into hypertext is an

important step in allowing online learning and promoting the use of

AV [119]. Our aim is to make this merging as seamless as possible for

the students. Another learning situation (where AV is used) is lectures.

Typically, this requires the teacher to switch between lecture slides and

an AV system. Here, we aim at providing the teacher with the possibility

to use the animations in the lecture slides, thus ensuring the coherency

of the learning materials.

For the hypertext merging, we will first do a literature review on require-

ments of a visualization system (DR). Based on these requirements, we

will introduce a proof of concept implementation of a seamless way to

merge visualizations into hypertext (DS and CI). For the lecture use, we

apply the Xaal framework to introduce an approach to use Xaal ani-

mations in lecture slides (DS and CI).

It has to be mentioned that this is a software engineering thesis, although

the main application area is in education. So we are not as much considering

the pedagogical aspects as we are interested in software to be used in educa-

tion. Furthermore, this thesis incorporates a significant amount of constructive

work. The applicability of the framework and the introduced integration ap-

proaches have been tested by proof of concept implementations with enough

functionality to see that the ideas could be thoroughly implemented.

1.2 Main Contributions and Structure of this Thesis

The following points summarize the main contributions of this work as well as

introduces the contents of the different parts of this thesis.

• Part II: Effortless Creation of Algorithm Animation. In Publica-

tion [P1], we define a Taxonomy of Effortless Creation of Algorithm Ani-

mations. This work is summarized in Chapter 4. In Publication [P2] (sum-

8 Chapter 1. Introduction

marized in Chapter 5), we introduce a new approach for teachers to create

animations by allowing effortless on-the-fly creation of algorithm anima-

tions by applying visual algorithm simulation through a simple user in-

terface.

• Part III: Proposed Standard for Algorithm Animation language.

We define a Taxonomy of Algorithm Animation Languages to help com-

paring the different AA languages (Publication [P3] and Chapter 7).

The taxonomy and work by an international working group (Publica-

tion [P4] and Section 8.1) is used to define a new algorithm animation

language, eXtensible Algorithm Animation Language, Xaal. Xaal is

introduced in Publication [P5] and in Section 8.2.

• Part IV: Applications of Xaal in education. We provide two differ-

ent processing approaches for using and producing Xaal animations with

existing algorithm animation systems. In addition, we have a framework

aiding in this integration as well as prototype implementations of the pro-

cesses (Publication [P5] and Chapter9). Furthermore, we provide a novel

solution to the problem of seamlessly integrating algorithm animations

with hypertext (Publication [P6] and Chapter 10). In our approach, the

algorithm animation viewer is implemented purely with JavaScript and

HTML. Moreover, we introduce a processing model to easily produce lec-

ture slides for a common presentation tool from Xaal animations (Pub-

lication [P7] and Chapter 11).

Finally, Part V discusses and concludes the results of this thesis.

Chapter 2

Software Visualization

This chapter briefly defines the concepts used in the rest of this thesis. We

start by defining the field of Information Visualization and proceed to Soft-

ware Visualization (SV) and Algorithm Animation (AA). Furthermore, we

discuss the different roles in the SV production process as well as taxonomies

to characterize SV systems.

2.1 Information Visualization

Information visualization (IV) is “the use of computer-supported, interactive,

visual representations of abstract data” [25]. The goal of IV is to amplify

cognition, that is, aid the understanding of some aspects of the data. Without

going into too much details about human perception, some of the reasons why

visualizations can amplify cognition were explained by Larkin and Simon [73]:

• Visualizations group related information together, reducing the searching

for needed elements.

• Visualizations use location to group information, reducing the required

matching of symbolic labels.

• Visualizations support large number of perceptual inferences, which are

easy for humans.

Information visualization can also be considered as an adjustable process of

mapping data to visual views. This process can be modeled by the reference

model of Figure 2.1 [25]. In the reference model, raw data is data typically in

some domain specific format. By applying data transformations on the raw

9

10 Chapter 2. Software Visualization

data, relational descriptions in the form of data tables are achieved. Through

visual mappings, these data tables are mapped to visual structures. Visual

structures combine the spatial substrates, graphical primitives, and graphical

properties. Finally, after view transformations, the view intended for a human

observer is achieved. Throughout this thesis, this will be the underlying model

when discussing the creation process of algorithm visualizations.

Figure 2.1: Information Visualization reference model [25].

To better convey the steps of the reference model, Figure 2.2 gives an ex-

ample from the educational world. In the example, raw data is a pile of exams

and assignment solutions done by students. This data can be transformed

through a possibly laborious data transformation to a data table that con-

tains the exam points, assignment points, and course grades of the students.

The data table is useful when the teacher publishes the results for students.

However, if the teacher wants to see how the final examination points corre-

late with the assignment points, a visual mapping to a scatter plot is useful.

Finally, through view transformations, interaction can be added by adjusting

the visualization to highlight students who got a certain grade from the course.

Figure 2.2: Example of the Information Visualization reference model. The process illus-
trated is from exams on paper → exam and assignment points → visualization of points →
visualization with points with certain grade highlighted.

Chapter 2. Software Visualization 11

2.2 Software Visualization and Algorithm Animation

Software Visualization can be defined as “the visualization of artifacts related

to software and its development process” [32]. As mentioned earlier, SV can be

divided in visualizing the structure, behaviour, and evolution of software [32]:

• Structure is the visualization of static parts and relations of the system.

The information visualized is available by statically analyzing the source

code without executing it. Examples of structure visualization are pretty

printing, control flow graphs, and UML class diagrams, just to mention

a few.

• Behaviour is the visualization of the program execution with real or ab-

stract data. Topics of behaviour visualization are dynamic architecture

visualization, algorithm animation, visual debugging, and visual testing.

Of these, algorithm animation is of special interest in this thesis. In al-

gorithm animation, the goal is to visualize the behaviour of an algorithm

as opposed to Program Visualization (PV) where the aim is to visualize

the implementation details.

• Evolution is the visualization of the development process of the software.

Evolution visualization can be, for example, visualizing software metrics

changes, visualizing structural changes, or visualizing software archives

such as CVS or Subversion.

Maletic et al. [79] discuss the information visualization reference model

in the context of software visualization. In SV, the raw data is source code,

documentation, execution trace, and so on. Data tables can be abstract syntax

trees, dependency graphs, or class/objects relationships. Visual structures are

the visualizations specific to some visualization software.

Algorithm animation can also be mapped to the reference model of Fig-

ure 2.1. An example is shown in Figure 2.3. Typically, the raw data is the

source code (which can be pseudo code) of an algorithm. From this, the data

(tables) are constructed using some AV system. The data tables are in the

form of an algorithm visualization information (AVI), which we define as the

information needed to visualize an algorithm by some AV system. AVI can be,

for example, in the form of text, images, or video. An algorithm visualization

system is a tool capable of creating and interpreting an AVI and mapping it to

12 Chapter 2. Software Visualization

visual structures. The system can be interacted with to form the view. This

is only one possible way for the algorithm animation process to work, and the

actual model depends heavily on the animation specification approach of the

AA system. Thus, the way the mappings are specified and what the AVI looks

like will be discussed more in the following chapters.

Figure 2.3: Example of algorithm animation in the Information Visualization reference
model. The process illustrated is from pseudo code of an algorithm → animation as Ani-

malScript [113] → visualization in Animal [114] → zoomed visualization playing in An-

imal.

The software visualization community has not agreed upon one definition

for the field. The most common of the other definitions is by Price et al. [102]

who have defined software visualization as “the use of the crafts of typography,

graphic design, animation, and cinematography with modern human-computer

interaction technology to facilitate both the human understanding and effective

use of computer software.” They divided SV into two separate fields: algo-

rithm visualization and program visualization. Program visualization is the use

of visualization to enhance the human understanding of computer programs.

Algorithm visualization (AV) is the visualization of a high-level representation

of a piece of code. They further divided AV into static algorithm visualization

and algorithm animation (AA). Algorithm animation is a dynamic algorithm

visualization. The dynamic behavior can range from a series of static pictures

to an animation requiring interaction from the user. The problem with this

disjoint division of SV is that the line between algorithm visualization and pro-

gram visualization has become fuzzy – PV systems include AV functionality

and vice versa.

2.2.1 Roles in Software Visualization

The four different roles of persons who take advantage of software visualiza-

tion have been introduced by Price et al [102]. Programmer is a person who

develops the algorithm or program – the raw data of the reference model of

Chapter 2. Software Visualization 13

Figure 2.1 – without considering whether or not it is (going to be) visualized.

SV software developer is a person who designs and implements software for

SV. This software typically handles transforming the raw data to data (tables)

and mapping them to visual structures. A person creating the visualization

is called visualizer. Ideally, a visualizer configures how the SV software does

the transformation and mapping using the existing features implemented by

the SV software developer. Finally, the person using the visualization is ad-

dressed as user. The user interacts with the view transformations. In practice,

these roles are often overlapping and it is common that, for example, the SV

software developer is also a visualizer and a programmer.

In this thesis, the main focus is on the educational use of SV. Thus, the

persons involved are student and instructor. When considering the roles in

SV, the usual case is that student is the user and instructor has the rest of the

roles. However, for example, in a situation where the students are required to

create their own visualizations, the student is in the role of visualizer. In this

thesis, we will use the terms student and instructor and indicate which of the

SV roles we are discussing, unless it is clear from the context.

Until recently, the instructor has often been in the role of the developer.

This stems from the fact that many of the visualization systems are not widely

used outside the original university where they were developed. Usually, sys-

tem development is a task that requires a lot of effort and understanding of

the underlying system. Thus, to gain wider audience, SV systems need to

allow the instructor to be able to work only in the roles of programmer and

visualizer.

When considering the student using the visualization, research has shown

that passively viewing algorithm animations does not have a significant effect

on learning outcomes [50]. Therefore, engagement (activity) by the student is

needed for a tool to be pedagogically useful. The different levels of engagement

according to the engagement taxonomy [95] are viewing, responding, changing,

constructing, and presenting. Viewing is passive watching of an animation

where student only controls the visualization’s execution. In responding, the

student is engaged by asking questions about the visualization. Changing re-

quires the student to modify the visualization, for example, by changing the

input data. In constructing, the student is required to construct his/her own

algorithm animation. At the highest level, presenting, the student presents

14 Chapter 2. Software Visualization

a visualization for an audience. Engagement will be discussed more in Sec-

tion 3.2.5.

2.2.2 Algorithm Animation Language

Throughout this thesis we will talk about algorithm animation languages (AAL,

or simply language). With this term we mean a textual representation de-

scribing an algorithm animation or visualization. The language should have

a well-defined set of concepts, syntax, and semantics defined in the language

specification. An algorithm animation language is one type of algorithm visu-

alization information. Thus, in the reference model of Figure 2.1, an algorithm

animation language is a way to store the data (tables).

2.3 Taxonomies of Software Visualization Systems

It is difficult to choose a proper tool for software visualization from the vast

amount of different SV tools supporting different features, target scope, and

interaction techniques. The best suitable tool depends heavily on the type

of the task. To help this process, taxonomies characterizing SV tools have

been defined [11, 68, 79, 84, 85, 102, 107, 134]. In the following, we will briefly

introduce these taxonomies. However, we suggest the interested reader to read

the cited articles to get a deeper understanding of the taxonomies.

One of the most well-known ways to categorize and evaluate Software Vi-

sualization systems is the Taxonomy of Software Visualization by Price et

al. [102]. The taxonomy defines a structure of characteristics of SV systems

that consists of six categories. These categories and the questions they should

answer are the following.

• Scope — “What is the range of programs that the SV system may take as

input for visualization?”

• Content — “What subset of information about the software is visualized

by the SV system?”

• Form — “What are the characteristics of the output of the system (the

visualization)?”

• Method — “How is the visualization specified?”

Chapter 2. Software Visualization 15

• Interaction — “How does the user of the SV system interact with and

control it?”

• Effectiveness — “How well does the system communicate information to

the user?”

The classification scheme by Myers [84] concentrates on program visualiza-

tion systems. The taxonomy has two dimensions: the program aspect (is code

or data illustrated) and the display style (static or dynamic visualization). In

a later version of the taxonomy [85], a third level, algorithm, was added to the

program aspect.

Brown [11] introduced a taxonomy which had three dimensions: content,

persistence, and transformation. Content ranges from direct representation of

code or data in the program to synthetic images showing information gathered

not directly from the code. Persistence ranges from display of the current state

only to displays showing the complete history of the information. Transfor-

mation ranges from discrete changes to incremental continuous changes.

Roman and Cox [107] have five categories: scope (answers the question

What aspect of the program is visualized?), abstraction (What kind of infor-

mation is conveyed by the visualization?), specification method (What mecha-

nisms does the animator use to construct the visualization?), interface (What

facilities does the system provide for the visual presentation of information?),

and presentation (How does the system convey information?).

Stasko and Patterson [134] introduced a model with four characteristics:

aspect, abstractness, animation, and automation. Aspect is the aspect of the

program that is visualized, for example, program code or data structures.

Abstractness is the level of abstraction of the visualization. Animation refers

to whether or not the system supports animation in the strict sense that the

authors specify. Automation characterizes the level of automation provided

for the visualizer.

Kraemer and Stasko [68] presented a characterization on two levels: visu-

alization task being performed and the purpose of the visualization. Another

task oriented framework was introduced by Maletic et al. [79]. Although the

framework is developed from the point of view of large-scale software systems,

it can be applied to algorithm animation as well. The categories and the

questions they aim at answering are the following.

16 Chapter 2. Software Visualization

• Tasks — Why is the visualization needed?

• Audience — Who will use the visualization?

• Target — What is the data source to represent?

• Representation — How To represent it?

• Medium — Where to represent the visualization?

As can be seen, the taxonomies have quite similar categories with slight

differences in the terminology and the highlighted characteristics. Only the

frameworks by Kraemer and Stasko and Maletic et al. are significantly differ-

ent. In the end, the choice of a taxonomy depends on the needs. For example,

the taxonomy by Myers provides a simple way to classify the systems, whereas

the taxonomy by Price et al. offers a comprehensive way to analyze systems.

Chapter 3

Algorithm Animation

This chapter will introduce history of algorithm animation, as well as relevant

research questions in the evolution of AA. We will conclude the chapter with

a discussion on teachers and visualizations.

3.1 History of Algorithm Animation

The research on algorithm animation is often considered to have begun from

the Sorting out Sorting video [3] by Ronald M. Baecker in 1981. It was a

30 minutes long video animating the behavior of nine different sorting algo-

rithms. However, the first algorithm animations we are aware of were created

in 1966 by Ken Knowlton, who made a movie about list processing using the

L6 programming language [64]. More of the early work was done by Hopgood

who presented a set of films on hash tables in 1974 [44]. In 1975, Baecker pre-

sented two systems that made it “possible for an instructor to produce short

quick-and-dirty single-concept film clips with only hours of effort” [2].

The field has evolved a lot since the first videos and systems were intro-

duced. The first well-known computerized system was BALSA (Brown AL-

gorithm Simulator and Animator) [16]. BALSA is an interactive algorithm

animation framework that has a support for multiple dynamic views of an

algorithm and the data structures associated to it. It introduced the inter-

esting events paradigm where algorithm code was annotated at interesting

points by calling a separate animator. Another recognized system of the early

years of algorithm animation is TANGO (Transition-based ANimation Gener-

17

18 Chapter 3. Algorithm Animation

Figure 3.1: History of some Algorithm Animation and Program Visualization Systems. The
vertical positioning is merely for improving readability.

atiOn) [129]. It is an AA system that introduced the path-transition paradigm

and supported smooth animation, a feature first included in Animus [33]. Color

and sound were first used by Zeus [13]. Another of the significant features was

3D graphics, first used in POLKA-3D [135] and Zeus3D [14].

Since the early days, numerous algorithm animation systems have been

developed (see, e.g., [1, 15, 24, 49, 58, 69, 83, 92, 114, 128]). Figure 3.1 shows

a timeline of the various AA systems. Plenty more systems exist, but the

contributions of the selected systems will be briefly mentioned in this chapter.

3.2 Research Questions in Algorithm Animation

This section will briefly introduce the key knowledge about developing and

using algorithm animation systems acquired over the few decades. Naturally,

it is not possible to go through all research, and we will thus focus on the

most important topics relevant to our research goals. The rationale for these

questions is that to cover a wide range of topics, we have chosen one ques-

tion for each category of the Taxonomy of Software Visualization by Price et

al. [102]. In our opinion, these questions highlight the relevant current and

existing research in the field.

Chapter 3. Algorithm Animation 19

3.2.1 Scope: What Platform Should be used?

In the past, selecting an algorithm animation system could depend on the

platform the system used. This was illustrated as one subcategory in the

Taxonomy of Software Visualization.

Earlier systems were often targeted on some specific platform(s). For ex-

ample, POLKA used C++ and X window system [133], POLKA-3D Silicon

Graphics GL [133], HalVis [41] was implemented using Asymmetrix Toolbook,

which was for Microsoft Windows 3.0, and Alvis [49] and AlvisLive [48] using

.NET.

The current situation is that a system needs to be platform independent

to be used [109]. This had led to the uprising of a multitude of Java-based

systems, such as Animal [114], JAWAA [1], JAZ [9], MatrixPro, Jeliot 3 [83],

ViLLE [103], and so on. Thus, the advice for system developers nowadays is

to use Java or open web standards like HTML and JavaScript [117] and to

integrate them with hypertext. Technologies capable of this will be discussed

in the following.

Java Applets Early work on algorithm visualization in hypertext has been

done by Ross and Grinder [109]. In their hypertextbooks, the inclusion of vi-

sualizations is done using Java applets. This is currently a common way used

in, for example, WinHIPE [137], JAWAA [1], LeonardoWeb [10], ViLLE [104],

and TRAKLA2 [80]. In addition, there is a multitude of topic-specific anima-

tions implemented as applets.

There are some problems in using applets. First of all, they require a plugin

to be installed. Luckily, this is already installed on almost all computers. In

addition, the permissions of applets are limited, unless signed and trusted by

the user. A minor usability issue is the slow startup of the Java plugin and

thus the visualization. When integrating with HTML, the biggest problem is

that communication between HTML and the applet is difficult at best. For

example, updating information (such as points gained by a student) in the

HTML, based on user actions in the applet, cannot be done reliably. This

is a problem, for example, in TRAKLA2, which has been worked around by

showing the updated points in the applet until the HTML page is refreshed

by the user.

20 Chapter 3. Algorithm Animation

Java Web Start Visualization systems using Java Web Start include Ani-

mal [114], Jeliot 3 [83], JHAVÉ [92], and MatrixPro [58]. Of these, Jeliot 3

and Animal have been integrated with Moodle, which is a popular learning

environment [82, 122].

In principle, Web Start applications are similar to applets, but they are

launched through a link or a button instead of embedding into a web page.

As with applets, communication between HTML and visualization is almost

impossible. For example, dynamic documentation in browser that is changed

based on the state of the visualization is difficult to achieve. To solve this, for

example, JHAVÉ includes documentation within Java. Although this solution

works, real browsers are better at rendering HTML than Java. The main

advantage of Web Start is that the same tool can be used as a traditional

application.

(Other) Rich Internet Application Technologies Several rich internet applica-

tion (RIA) technologies have been introduced lately. These technologies allow

creating complex applications that run in web browsers. For an overview,

best practices, and comparisons of technologies, see [98]. One of the most

prominent technologies is JavaScript. A multitude of JavaScript libraries aid-

ing in web development have been developed, and new ones are popping up

constantly. Some of the most well-known libraries include Dojo1, Prototype2,

Scriptaculous3, jQuery4, and YUI5, just to mention a few. In algorithm an-

imation, JavaScript has been used in WinHIPE to change images on a web

page and thus allowing viewing of animations [89].

When building rich internet applications, JavaScript is not the only choice.

In fact, the Java based technologies can be considered as RIA technologies.

In addition, there is an increasing number of promising technologies available.

The most potential candidates include Adobe Flash and Flex6, Microsoft Sil-

verlight7, and Sun Microsystems JavaFX8.

1http://www.dojotoolkit.org/
2http://prototypejs.org/
3http://script.aculo.us/
4http://jquery.com/
5http://developer.yahoo.com/yui/
6http://www.adobe.com/products/flex/
7http://silverlight.net/
8http://www.javafx.com/

Chapter 3. Algorithm Animation 21

Adobe’s Flash and Flex provide technology for building cross-platform

RIAs. Flash is used to visualize sorting algorithms in the Flash version of

Sorting out Sorting by [37]. The tools for developing applications are quite

sophisticated and powerful. However, the tools are commercial software prod-

ucts developed by Adobe. Another rising technology is Microsoft Silverlight,

which uses many of the same technologies as the .NET framework making it

suitable for developers familiar with .NET. However, Silverlight is not cross-

platform compatible. Finally, we mention JavaFX, a family of products from

Sun Microsystems based on Java technology. However, this technology is not

ready for production use at the moment. On a positive side, Sun plans on

releasing parts of the JavaFX family as open source. It should also be men-

tioned that, in the end, JavaFX applications are included in hypertext as Java

applets.

In general, the newer RIA technologies have not been much utilized in

algorithm animation. Thus, they have potential for future research and more

creative solutions.

Other Technologies There are also other methods used to incorporate AA

into hypertext. Ross’s original hypertextbooks included videos [109]. Accord-

ing to current knowledge, the problem with videos is that they provide almost

no interaction between the user and the visualization. Despite this, screen-

casting, that is, capture of actions on a computer screen often with audio

explanation [51], is becoming more and more popular on the web. However,

we are not aware of using screencasting to replace algorithm animations.

3.2.2 Content: What is visualized?

In the taxonomy of Price et al., the subcategories of Content measured things

like support for visualization of program and algorithm. Although algorithm

animation has typically focused on visualizing the data in the algorithm, lately

the visualization of both code and data has become increasingly popular.

Code visualization is a mapping between the changes in the code and the

visualization of the data. Code visualization can be done in various ways, for

example, by highlighting single code lines or showing several codes of the same

algorithm on different abstraction levels [17]. In addition to highlighting the

22 Chapter 3. Algorithm Animation

current line, the code visualization can show things such as executed lines of

codes (distinguished from the ones not executed) and the lines executed just

before the current line [67]. More and more AV systems nowadays include

pseudocode like presentation of the algorithm and highlight the current line

of code. The inclusion of pseudocode has in fact been found to guide students

to spend more time with the visualization [123].

In algorithm animation, the lower extreme of data being visualized is a

system that uses only graphical primitives to describe the data structures.

An example of such a system is SAMBA [131]. The other extreme is a sys-

tem that visualizes only high level data structures, like, for example, Matrix-

Pro [58]. These different approaches have both benefits and drawbacks. By

using graphical primitives, the system can visualize almost any kind of struc-

tures, but the creation of such animations can require quite a lot of effort.

On the other hand, systems using data structures can provide an effortless

way to create the animation, but are typically limited to the set of structures

supported by the system.

Animations often include other elements besides code and data structures.

In explanatory visualization, the idea is to include an explanation in every

step of the visualization [19]. Blumenkrants et al. take this even further by

introducing narrative visualizations where AVs are created as stories with a

plot [8]. In addition, their visualizations include voice narration.

Typically, AVs have been constructed with the mindset that the same visu-

alization is suitable for all users. Adaptivity has been long used, for example, in

adaptive hypermedia [20]. In adaptive visualization, the basic idea is to adapt

the visualization content to the users profile [22]. Adaptive visualization has

been used, for example, in WADEIn II together with explanations [22]. Loboda

et al. have also presented a distributed framework for adaptive explanatory

visualization [77].

3.2.3 Form: How to integrate the use of animations to teaching?

In the original taxonomy, Medium was one subcategory of Form that focused

on the target medium of the system. Here, we take a broader point of view

and consider the different ways to integrate animations into teaching and the

medium used. Hundhausen et al. presented a taxonomy of scenarios of AV use

Chapter 3. Algorithm Animation 23

in education identifying the following scenarios: lectures, study, assignments,

class discussion, labs, office hours, and tests [50].

In most use scenarios, studies researching the effect of visualizations on

learning have been carried out. Many of these studies will be introduced in

Section 3.2.6. Naps et al. state that few teachers tightly integrate visual-

izations with other parts of their courses [95]. Lahtinen suggests that to get

students use visualizations, all course material and learning situations – course

website, printed materials, assignments, and lecture slides – should point the

students to visualizations of the topic [71]. Furthermore, Kehoe et al. hypoth-

esize that animations are pedagogically more valuable when used ”in open,

interactive learning situations [...] than in closed exam-style situations” [61].

Crescenzi and Nocentini have integrated visualizations into a traditional

textbook [29]. The textbook they use [28] contains descriptions of the algo-

rithms, analyzes them, and points the readers to the visualizations presented

using ALVIE system. In addition to the textbook, visualizations are used on

all the engagement levels (see Section 3.2.5) on their CS2 course. Another

system that comes with examples for a textbook [31] is LeonardoWeb [10].

Finally, the JFLAP system [7] has a supporting book that goes through the

concepts of automata theory using JFLAP [106].

A report of an international working group proposed enhancements to gen-

eral learning management systems (LMS) to better support computer science.

One of their scenarios is integration of visualizations and visualization systems

into an LMS [117]. For visualization system developers, the report suggests to

use Java or open web standards like HTML and JavaScript. An earlier simi-

lar report focused only on how to merge visualizations and hypertext to add

pedagogical value for both students and teachers [119]. Thus, web can be seen

as the main target medium for visualizations. Technologies for developing for

the web were discussed in Section 3.2.1.

3.2.4 Method: How the animation is generated?

In the taxonomy by Price et al., Visualization Specification Style describes the

way visualizations are specified. In the original taxonomy, this was measured

using terms like hand-coded, library, and automatic. However, since the tax-

onomy was introduced, many different visualization specification styles have

24 Chapter 3. Algorithm Animation

emerged. Thus the list above is out-dated and we will introduce an alternative

categorization in the following. The list is loosely based on [110]. It should be

noted, that many of the current systems include several of the techniques.

Topic-Specific Animation Topic-specific animations are, as the name suggests,

built specifically for some topic. Usually these are stand-alone animations in-

stead of algorithm animation systems. For example, the software packages by

Khuri and Hsu concentrate on image compression algorithms [63], EVEGA [62]

and IAPPGA [144] concentrate on graph algorithms, and GASP-II on geomet-

ric algorithms [126]. Not much can be said about this approach in the context

of the visualization reference model introduced in the previous chapter, since

the form of the animation data depends completely on the way the animation

is implemented.

Direct Manipulation In direct manipulation [127], the animation is specified

by manipulating graphical objects. In the context of the reference model, the

mappings from raw data to data rows and to visual structures is done through

creating and manipulating graphical objects. The raw data in this case can be,

for example, a pseudo code of an algorithm in a book or merely a mental model

of the visualizer. The concept of direct manipulation was first introduced in

Dance [130]. Examples of other AA systems using direct manipulation are

Animal [114], JAWAA editor [1, 101], and ALVIS [49].

Visual algorithm simulation [65] takes direct manipulation one step fur-

ther by allowing the animation to be specified by manipulating concrete data

structures through visualizations. In visual algorithm simulation, data struc-

tures can be thought as data rows. The mapping to visual structures is done

automatically, and the data rows can be modified by manipulating the vi-

sual structures. Animation systems using visual algorithm simulation include

MatrixPro [58] and MA&DA [69].

API-based Generation In API-based generation, the animations are gener-

ated through method invocations of an application programmer’s interface

(API). The method invocations are typically included when something in-

teresting happens, thus this approach is often called the interesting events

paradigm. The raw data in this case is the program making the API calls.

Chapter 3. Algorithm Animation 25

These calls create the data rows, which are then used to create the visual

structures.

The first system using API-based generation was BALSA [16] followed

by Zeus [12] and TANGO [129]. Later systems using this approach include

JCAT [15, 90], JHAVÉ’s API to generate GaigsXML [81, 91], and Animal’s

API [118].

Scripting-based Generation In scripting-based generation, the animations are

described using some intermediate format, usually a textual format. Com-

mands using this format are then outputted from the execution of the visual-

ized algorithm. Thus, the implementation of the algorithm is the raw data and

the transformations to data tables are specified by the output of commands.

SAMBA [131] was the first system to introduce the scripting-based generation.

Examples of other systems offering scripting-based generation are ALVIE [29],

Animal [113], JHAVÉ [92], JAWAA [1], and JSAMBA [128]. Often, API-

based generation is used to create scripts, thus offering an alternative, often

more convenient way to use scripting-based generation.

Declarative Visualization Declarative visualization specifies the visualization

by declaring mappings between a program state and a graphical representa-

tion. This is done by using mathematical expressions. Examples of this ap-

proach are Pavane [108] and the ALPHA language [30] used in the Leonardo

system [27]. For example, in Pavane the mapping is defined as several sim-

ple mappings, each mapping being a collection of rules. These rules describe

logical relationship between the input and output spaces: v : Q(v) ⇒ P (v).

Code Interpretation Code interpretation is also a popular style due to its

effortlessness. In this approach, the visualizations are automatically gener-

ated from a program code (raw data). Systems using code interpretation are

typically visual debuggers or program visualization tools. Examples of such

systems include Jeliot 3 [83] and jGrasp [42, 52] that automatically visualize

Java programs. ViLLE [103, 104] allows automatic creation of visualizations

in multiple languages from simple Java programs. WinHIPE [100, 139] allows

automatic creation of visualization from a functional programming language.

This topic of visualization specification styles is relevant for the implementa-

26 Chapter 3. Algorithm Animation

tion strategies of adding system independent AVI support to existing systems.

In discussion in Chapter 12, we will consider how these different approaches

fit to the idea of data exchange among systems.

3.2.5 Interaction: How to make animations interactive?

In the taxonomy of Price et al., temporal control, speed, and direction had their

own subcategories, but the support for them in the analyzed systems was rare.

However, today all these are seen as requirements for AV systems [120, 121]

and are included in most systems. There is even a design pattern for how to

implement reverse execution [111]. Still, AV system developers have strived

to make visualizations more interactive, especially since the Engagement tax-

onomy [95] was introduced by an ITiCSE Working Group in 2002. It has

gained almost a standard like recognition in the field. The taxonomy defined

the different levels of engagement as the following.

No viewing is the lowest level on the taxonomy. On this level, no visualization

is used.

Viewing is the core level of engagement. It is passive watching of an ani-

mation. However, the student can have controls to move backward/forward

in the visualization, change the speed, etc. It should be noted, that viewing

is included in all of the higher levels of engagement and is supported by all

visualization systems.

Responding adds engagement by asking the student questions about the vi-

sualization. The question can be, for example, “What will happen in the next

step of the algorithm?”. The main idea is that students use the visualization

to find the answer for the questions.

Responding has been used in many visualization systems. The first we are

aware of is IDSV [54] in 1999. IDSV engaged students in different ways by

requiring, for example, them to click the node visited next in a tree traversal

algorithm. Other systems supporting responding include JHAVÉ [92, 93],

ViLLE [103], Teaching Machine [18], and Animal [114]. In Animal, the

support for popup questions is achieved by an extension which offers tool

independent support for responding [116]. This extension has been used also

in Jeliot 3 [86] and an extension to TRAKLA2 [56].

Chapter 3. Algorithm Animation 27

Changing requires the student to modify the visualization. This can be, for

example, changing the input data of the algorithm allowing the student to

explore the algorithm’s behavior in different situations.

AV systems supporting this level of interaction include Alvis [49], ALVIE [29],

and DsCats [24] where the student can give their own input to the algorithms.

Furthermore, some algorithms in JHAVÉ allow custom input by students.

Constructing level requires the student to construct his/her own algorithm

animation. This can be done, for example, in terms of direct manipulation

in some algorithm animation system. It should be noted, that coding of the

algorithm is not a requirement on this level.

In MA&DA [69], PILOT [4], and TRAKLA2 [80], students are given a data

structure and an algorithm, and they are expected to solve the exercise by

simulating algorithm. That is, they are constructing an algorithm animation.

Other systems that have been used to require students to construct animations

include WinHIPE [137], JHAVÉ, and ALVIE.

Presenting At the highest level, presenting, the student presents a visualiza-

tion for an audience. This can be, for example, a situation where a student

presents a visualization for the instructor and peers. The visualization can be

made by the student or a third-party.

Nearly all AV systems can be used to present animations. However, some

have more features designed to support this level of engagement. Animal

supports presenting by having features for changing the animation speed and

the magnification, a slider for fast navigation, a table of contents view to

jump to points of interest, and generators to enable animation creation on-

the-fly [112]. Alvis has a presentation pointer which allows pointing to objects

in the animation, the markup pen to dynamically annotate the animation,

and the presenter can dynamically change the animation as it is executing.

MatrixPro [58] has the possibility of on-the-fly use, automatic node labeling

in data structures, and a library of ready-made data structures.

Changes and extensions to the taxonomy have been proposed. For example,

it has been suggested that the constructing level be divided into constructive

simulation and code-based constructing and viewing be divided into active

viewing and passive viewing [75].

28 Chapter 3. Algorithm Animation

Another extension has been proposed by Myller et al. [87]. They consider

the engagement taxonomy in the context of program visualization, where they

argue that four additional levels should be added. These levels are the follow-

ing.

• Controlled viewing is a higher level of viewing, where the student can

control the visualization, for example, by changing its speed or selecting

objects to inspect.

• Entering input is the next highest level after controlled viewing. On this

level, the student should be able to enter input to a program or parameters

to a method.

• On the modifying level (higher than changing in the original ET), modifi-

cations to the visualization are done, for example, by changing the source

code or input data.

• Reviewing is the highest level of interaction in the extended taxonomy.

On this level, visualizations are viewed for giving comments and feedback

on the visualization itself.

Since these suggested extensions have not yet received a wide recognition

like the original taxonomy, we will use the original engagement taxonomy in

the rest of this thesis.

3.2.6 Effectiveness: Are Algorithm Animations Effective?

An important question in pedagogical use of algorithm visualizations is their

effectiveness in students’ learning. The hypothesis by Hundhausen et al. [50]

and Naps et al. [96] is that animations are effective, if they are interactive

enough. Not all research on the levels of the engagement have been conclusive

by finding statistically significant results supporting this hypothesis, though.

In this work, usage of animation is taken as a presumption and thus we

will not examine many evaluation studies comparing no viewing with viewing.

Still, we feel obligated to introduce one of the first studies that compared

reading from textbook to text with animation [132]. In the post-test, questions

about the algorithm were asked. The results of the test showed no significant

differences, but the trend favored the group with animation.

The following introduces some of the effectiveness studies done over the

years. Note, that the studies presented here include only experiments com-

Chapter 3. Algorithm Animation 29

paring different levels of the engagement taxonomy. We have not included

pseudo-experimental studies (i.e. that had no control group) where different

engagement levels have not been compared. In addition, we focus on experi-

ments that compare learning outcomes instead of other variables like attitude

or time spent. More thorough surveys of the evaluation studies related to the

engagement taxonomy can be found in [50, 138].

no viewing - viewing - changing 1994 Already in 1994, a study that com-

pared levels no viewing, viewing, and changing was performed [76]. The

results showed improvement in learning outcomes as the level of engage-

ment increased. The difference between no viewing and changing was

statistically significant.

no viewing - viewing - responding 1999 Byrne et al. [23] compared lev-

els no viewing, viewing, and responding. The no viewing was further

divided to no animation and prediction without animation. The results

show a trend towards benefit of animations and responding.

viewing - responding 2000 In 2000, an experiment comparing levels view-

ing and responding was conducted [53]. The results of the survey found

no statistically significant differences. However, the data indicated that

the students working on level responding scored better on difficult topics,

but poorly overall.

viewing - changing 2000 The HalVis system was used in an experiment

comparing levels viewing and changing [41]. The viewing group used

TANGO [129]. The results report (statistically significant) better learning

outcomes for the changing group.

no viewing - viewing - responding 2003 Grissom et al. [39] experimented

to compare levels no viewing, viewing, and responding using JHAVÉ. The

results show that learning improves as the level of student engagement

increases. The difference between no viewing and responding was statis-

tically significant.

viewing - constructing 2003 Hübscher-Younger and Narayanan did an ex-

periment with student constructed representations9 of algorithms and

viewed peer-created representations [45]. The results showed significantly

better learning results for the students authoring visualizations.
9These representations were not necessarily visual in the sense of algorithm animation.

30 Chapter 3. Algorithm Animation

viewing - changing - constructing 2006 Lauer [74] reports on a compari-

son of levels viewing, changing, and constructing. The group using chang-

ing performed slightly worse on average, but the difference was not sta-

tistically significant.

viewing - constructing 2007 In 2007, a study comparing levels viewing and

constructing was conducted [137]. The study detected (in some topics,

statistically significant) improvements in learning results on the higher

level.

viewing - changing 2007 Myller, Laakso, and Korhonen compared levels

viewing and changing in a collaborative environment [88]. Their results

indicated that students in changing performed better, although the re-

sults were not statistically significant. A second experiment by the same

authors in 2008 again compared levels viewing10 and changing. This time

they found statistically significant differences between the learning out-

comes in favor of the level changing [70].

viewing - responding 2009 Taylor et al. compared students using passive

and predictive animations of graph algorithms [136]. They conclude that

students working on the responding level learned better than students

viewing passive animations. It is unclear, though, whether or not their

results were statistically significant.

Table 3.1 summarizes the results of the surveys introduced above. Notably,

no evaluations have been done comparing the level of presenting with the other

levels. Presenting AVs has been researched, though, for example, in [46, 47]. In

addition, comparisons between responding and the higher levels of engagement

seem to be missing as well.

When looking at a larger number of studies including those comparing view-

ing and no viewing, the results are encouraging. In a meta-study of educational

experiments using visualizations, 24 experiments were examined and in 46%

of those a significant result was found where the visualization had a positive

impact [50]. Only one experiment reported a significant result in the opposite

direction.

Although the meta-study by Hundhausen et al. claimed that the engage-

ment with the visualization is more important than the content of the visu-
10The paper discusses an extended version of the engagement taxonomy. However, the controlled viewing

level they use is, in a sense, a slightly higher level of viewing.

Chapter 3. Algorithm Animation 31

T
ab

le
3.

1:
S
tu

d
ie

s
co

m
p
ar

in
g

th
e

le
ve

ls
of

th
e

E
n
ga

ge
m

en
t

T
ax

on
om

y.
In

th
e

ta
b
le

,
∼

in
d
ic

at
es

a
st

u
d
y

w
it

h
n
o

ob
se

rv
ed

d
iff

er
en

ce
s

in
le

ar
n
in

g
ou

tc
om

es
,
(+

/-
)

in
d
ic

at
es

a
st

u
d
y

w
h
er

e
h
ig

h
er

le
ve

l
of

en
ga

ge
m

en
t

se
em

s
to

im
p
ro

ve
/d

eg
ra

d
e

le
ar

n
in

g
ou

tc
om

es
,
an

d
+

in
d
ic

at
es

a
st

u
d
y

w
h
er

e
th

e
le

ar
n
in

g
ou

tc
om

es
on

th
e

h
ig

h
er

le
ve

l
of

en
ga

ge
m

en
t

w
er

e
st

at
is

ti
ca

lly
si

gn
ifi

ca
n
tl

y
h
ig

h
er

.

v
ie

w
in

g
re

sp
o
n
d
in

g
ch

a
n
g
in

g
co

n
st

ru
ct

in
g

p
re

se
n
ti

n
g

n
o

v
ie

w
in

g
(+

)
L
aw

re
n
ce

[7
6]

(+
)

B
y
rn

e
et

al
.
[2

3]
+

L
aw

re
n
ce

[7
6]

(+
)

B
y
rn

e
et

al
.
[2

3]
+

G
ri

ss
om

et
al

.
[3

9]

(+
)

G
ri

ss
om

et
al

.
[3

9]

v
ie

w
in

g
(+

)
B

y
rn

e
et

al
.
[2

3]
+

H
an

se
n

et
al

.
[4

1]
+

H
ü
b
sc

h
er

-Y
ou

n
ge

r

∼
Ja

rc
et

al
.
[5

3]
(+

)
L
aw

re
n
ce

[7
6]

an
d

N
ar

ay
an

an
[4

5]

(+
)

G
ri

ss
om

et
al

.
[3

9]
(-

)
L
au

er
[7

4]
∼

L
au

er
[7

4]

(+
)

T
ay

lo
r

et
al

.
[1

36
]

(+
)

M
y
ll
er

et
al

.
[8

8]
(+

)
U

rq
u
iz

a-
F
u
en

te
s

[1
37

]

+
L
aa

k
so

et
al

.
[7

0]

re
sp

o
n
d
in

g

ch
a
n
g
in

g
(+

)
L
au

er
[7

4]

co
n
st

ru
ct

in
g

p
re

se
n
ti

n
g

32 Chapter 3. Algorithm Animation

alization [50], other contributing factors have been studied as well. General

problems with experimental settings (e.g. multiple variables and lack of con-

trol group) were present in several experiments [40]. In addition, according to

the same survey, there are often animation specific problems, such as usabil-

ity issues, lack of student training, low quality animations, and inappropriate

difficulty of topics. A survey of successful experiments found narrative and

textual contents, feedback to students’ answers, and student centered design

as common features [138]. Rhodes et al. propose a system called VizEval

for easing the evaluation of visualization effectiveness [105]. In their study,

they experimented how some perceptual/cognitive characteristics affected the

detection of changes in animations.

3.3 Visualizations and Teachers

A well known fact brought up by many of the articles about algorithm visual-

ization is that visualizations are not as widely adopted by teachers as hoped by

AV system developers. Mainly, this belief is based on the most comprehensive

survey on teachers and visualizations that was reported by an ITiCSE working

group in 2002 [95]. Here, we will summarize the key findings; the interested

reader should read the cited article. The report consists of three different sur-

veys (named pre-conference survey, Grissom survey, and index card survey in

the report) with a total of 186 responses.

Teachers’ attitudes towards visualizations are positive. In the pre-conference

survey, all respondents strongly agreed (59%) or agreed (41%) with visualiza-

tions being helpful for students. In the index card survey, 43% strongly agreed,

49% agreed, and 8% were neutral or had no opinion. The major benefits

teachers believe visualizations have can be categorized to creating discussion,

anecdotal evidence of ”benefit” for student, and improved teaching experience.

The top reasons were

• teaching experience is more enjoyable (90%)

• improved student participation (86%)

• anecdotal evidence of class being more fun for students (83%)

Despite the positive attitude, frequent use of visualizations is quite rare. In

the Grissom survey, over half of the respondents used dynamic visualizations

Chapter 3. Algorithm Animation 33

in classroom only a few times per term, while 13% never used dynamic visual-

izations. Outside of classroom, 23% never used dynamic visualizations. In the

pre-conference survey, 97% used at least occasionally during lectures, while

two-thirds made visualizations available outside class. The main reasons for

not using are lack of time and effective tools, with the top reasons mentioned

were

• no time to search for good examples (93%)

• no time to learn the new tools (90%)

• no time to develop visualizations (90%)

• lack of effective development tools (83%)

The time required to find good examples can be largely explained by the

findings of a survey of existing visualizations [125]. The survey concludes that

there is a lack of ready-made, good quality visualizations, especially on more

difficult topics.

In another survey for teachers about program visualization, 61% of the 61

respondents were aware of visualization tools [21]. Of those who were aware,

71% used such tools in their teaching. When asking about their interest of us-

ing visualizations in teaching, only 41% of the respondents were very interested

or interested, while 59% were only somewhat interested. On a side note, the

responses revealed that 89% thought explanations would make visualizations

more valuable, and 89% thought adaptivity would be valuable.

34 Chapter 3. Algorithm Animation

Part II

Effortless Algorithm Animation

35

Chapter 4

Taxonomy of Effortless Creation

of Algorithm Visualizations

The effort and time needed to create algorithm visualizations is one of the

main reasons for educators not adopting AV in their teaching. Thus, in this

chapter, we will consider the effortless creation of algorithm visualizations.

In the first step of this research, we identified that there are either specific,

low effort systems or general, high effort systems [59]. That research was,

however, our subjective view of the topic. The next step of the research was

a survey targeting computer science educators [60]. The survey resulted in

an initial set of measures for effortlessness. Finally, based on that data, we

introduced a Taxonomy of Effortless Creation of Algorithm Visualizations (see

Publication [P1]). The main categories of the taxonomy are briefly introduced

in the following, for a more detailed discussion, see Publication [P1].

Category Scope This category measures how wide the application area of

the visualization system is. The taxonomy defines four levels: lesson-

specific, course-specific, domain-specific, and non-specific with non-specific

systems having the widest scope. For example, a lesson-specific system

can only be used on one lecture whereas course-specific can be used on

most lectures on a single course.

Category Integrability This category measures the features that make the

system easy to integrate into an educational setup. This includes features

such as ease of installation, documentation, course management support,

and integration into hypertext. From a software engineering point of

37

38 Chapter 4. Taxonomy of Effortless Creation of Algorithm Visualizations

view, most of these are simple to implement to a visualization system.

However, integration into hypertext is one of the most difficult. Thus, we

will present our solution for this in Chapter 10.

Category Interaction This category measures the interaction provided by

the system. It distinguishes two types of interaction: producer-system

interaction and visualization-consumer interaction. Producer-system in-

teraction measures the level of preparation needed for different tasks such

as lecture examples or creating an exercise for examination. Visualization-

consumer interaction measures the level of interaction (or engagement)

provided for the user of the visualization.

Publication [P1] includes evaluations of four systems (Animal [114],

JAWAA [1], Jeliot 3 [83], and MatrixPro) as an example of using this taxon-

omy. These four were selected due to their different perspectives for learning

and teaching. In addition, we required them to fulfill certain criteria, mainly

the systems should have similar application areas, be freely available, be still

developed further, be platform independent, and provide ways to create ani-

mations instead of just viewing them. The main finding in the evaluation is

that there are no generic systems that can be used without prior preparation

(see Figure 4.1). We believe this to be true for the existing AA systems, al-

though the evaluation included only four systems. Thus, the final question in

the article is, can such a system be developed? The AA systems are headed

to this direction by developing more ways the systems can be used without

prior preparation and for wider application areas. In the next chapter, we will

introduce the MatrixPro system that is course-specific and that can be used

on-the-fly.

Chapter 4. Taxonomy of Effortless Creation of Algorithm Visualizations 39

Figure 4.1: Evaluation of effortlessness of four AA systems. A single system might support
several levels of producer-system interaction, but only the most typical level is marked.

40 Chapter 4. Taxonomy of Effortless Creation of Algorithm Visualizations

Chapter 5

MatrixPro

Publication [P2] introduces a new algorithm animation system called Matrix-

Pro (see Figure 5.1) that allows on-the-fly creation of algorithm animations.

It is based on the Matrix algorithm simulation framework [66]. The follow-

ing will briefly summarize the main features of the system. A more detailed

description can be found in Publication [P2].

In MatrixPro, the animations are created using visual algorithm simula-

tion [65]. In this approach, the user manipulates visualizations of the underly-

ing structure and creates a sequence of simulation steps. These steps include

basic variable assignments, reference manipulation, and operation invocations

such as insertions and deletions. All the operations are done using direct ma-

nipulation, that is, by drag and dropping. In the reference model of Figure 2.1

on page 10, visual algorithm simulation is different from the other approaches.

There is no raw data1, and the data tables are created and modified through

interacting with the visual structures or the view.

The main window of MatrixPro is shown in Figure 5.1. The main function-

ality of the system is in the toolbar on the left and the menubar (not shown

in the figure). The toolbar is an essential component which enables users to

modify the created animations. Through the toolbar the user can modify the

animation easily, for example, by changing the granularity of the animation

sequence. In addition, the toolbar (as well as the menubar) contains controls

for moving backward and forward in the animation.

1Unless one wants to think the mental model of the person doing the simulation as the raw data.

41

42 Chapter 5. MatrixPro

Figure 5.1: MatrixPro main window. On the left is the toolbar that allows manipulation of
the animation, generated through dragging and dropping items in the visualization view on
the right.

The area of visualizations contains the visualizations of the data structures

that the user can interact with in terms of visual algorithm simulation. The

simulation consists of drag and drop operations which can be carried out by

picking up the source and moving it onto the target. Each single operation

performs the proper action for the corresponding underlying data structure.

An action is proper if the underlying data structure object accepts the change

(e.g., change of a key value in a node or change of a reference target).

The main features of the system are the following.

On-the-fly usage The most important feature of MatrixPro is the ability

to use the system on-the-fly. This is achieved by combining the visual

algorithm simulation and a library of ready-made data structures that

can be animated. For example, insertion to a B-tree can be demonstrated

by simply drag and dropping keys on the B-tree visualization.

Customized animations The system supports customization of animations

Chapter 5. MatrixPro 43

in two ways. The instructor can use whatever input data he/she wants.

In addition, the granularity level of the animation can be changed, that

is, how large steps are shown when playing the animation.

Storing and Retrieving Animations Although the system supports on-

the-fly usage, some instructors still want to prepare their animations in

advance. For this purpose, MatrixPro supports storing and retrieving of

the created animations. The animation can be stored as serialized Java

objects or exported as Scalable Vector Graphics (SVG) [141]. In addi-

tion, single steps in the animation can be exported as Portable Network

Graphics (PNG) or TEXdraw2 pictures.

Customizable user-interface The user interface of MatrixPro can be easily

customized by changing the set of toolbar objects. This allows it to fit

the needs of various users. For example, when demonstrating ready-made

animations on lecture, the instructor probably needs only the animation

controls and the visualization view.

Library MatrixPro includes a library of data structures that can be used to

produce animations making the production process less error-prone.

The fact that MatrixPro can be used on-the-fly without prior preparation

makes it effortless to use. However, as Figure 4.1 illustrates, the scope of

MatrixPro is limited. Thus, this system is not the answer for the general

question of the Taxonomy of effortless creation of algorithm animations: can

a generic systems that can be used without prior preparation be developed?

Yet, it is a step towards the killer-application, the problem now becomes how

to generalize this system to other application areas? This will be a future

research problem.

2See http://www.ctex.org/documents/packages/graphics/texdraw.pdf for details on TEXdraw.

44 Chapter 5. MatrixPro

Part III

Algorithm Animation

Languages

45

Chapter 6

Features of Algorithm

Animation Languages

This chapter shows the main characteristics of the algorithm animation lan-

guages. As stated earlier, we see algorithm animation language as a textual

representation describing an algorithm animation or visualization and it should

have a well-defined set of concepts, syntax, and semantics.

The distinction between algorithm animation languages and other lan-

guages is slightly fuzzy. The main principle is that a language has to have

something specifically designed for animating algorithms to be considered an

algorithm animation language. This can be, for example, data structures and

operations on them, coding concepts, or interaction. These features are often

missing from general purpose graphical description languages. Typically, how-

ever, another strong indicator is that there is an algorithm animation system

that uses the language.

While reading this chapter, the reader should keep in mind that we deal

with the languages, not the systems. Some of the features considered might

be available in a system, but not through the language the system uses. In

addition, the reader should note that this introduction will not state every

feature of the languages, only the ones that are most common or distinctive.

Also, the examples shown of the languages are often not complete with all the

details required in the language and they most likely cannot be used as-is in any

system. For descriptions of the languages themselves, see Publication [P3] or

the cited articles.

47

48 Chapter 6. Features of Algorithm Animation Languages

6.1 Representation Format

The first noticeable feature is the format of the language. All the languages

we are discussing have a textual format. Listing 6.1 gives a simple example of

AnimalScript [113], the scripting language of Animal.

1 circle "C" (150, 100) radius 30 color black filled fillColor

red depth 3

2 move "C" along line (130, 80) (130, 170) within 200 ms

Listing 6.1: Example of graphical primitives and basic animation in AnimalScript.

In the recent languages, XML as a format has become more and more

popular because it makes it easy for software to process the data using the

multitude of different tools available. Listing 6.2 gives an example of an XML

format, GraphXML [43].

1 <node name="example">

2 <position x="20" y="20"/>

3 <size width="20" height="10"/>

4 </node>

5 <node name="example2">...</node>

6 <edge source="example" target="example2">

7 <path type="polyline">

8 <position x="10" y="5"/>

9 <position x="30" y="5"/>

10 <position x="30" y="20"/>

11 </path>

12 </edge>

Listing 6.2: Example of GraphXML showing node geometry example.

6.2 Level of Abstraction

A distinguishing characteristic of the languages is the level of abstraction they

use to describe the animations. One extreme is the languages that use graphi-

cal primitives to describe the animations. This approach allows the visualizer

to visualize almost anything he/she wants to. Listing 6.3 gives an example of

graphical primitive visualization in JAWAA [1].

Chapter 6. Features of Algorithm Animation Languages 49

1 rectangle r1 10 10 100 50 black blue

2 oval o1 10 10 100 50 black orange

Listing 6.3: An example of JAWAA graphical primitives.

The other extreme is the animation languages that describe the anima-

tion using data structures. Listing 6.4 gives an example of using a stack in

GaigsXML [91].

1 <snap>

2 <title>Stack example</title>

3 <stack>

4 <list_item color="red">

5 <label>Item 1</label>

6 </list_item>

7 <list_item color="black">

8 <label>Item 2</label>

9 </list_item>

10 </stack>

11 </snap>

Listing 6.4: Example of GaigsXML showing a stack example.

It should be noted, that it is typical for the languages with graphical prim-

itives to have some data structures as well. For example, JAWAA, mentioned

in the example above, includes several data structures as well as the graphical

primitives.

6.3 Animation

Since we are dealing with algorithm animation, the languages support also

animating the visualizations. Again, animation by modifying the graphical

primitives is the lowest level of abstraction. Listing 6.5 shows an example of

graphical primitive animation of SAMBA [131].

1 circle c1 0.8 0.8 0.1 red half

2 rectangle r1 0.1 0.9 0.1 0.1 blue solid

3 comment Exchanging circle and rectangle!

4 exchangepos c1 r1

Listing 6.5: Example of Samba command language.

50 Chapter 6. Features of Algorithm Animation Languages

The other approach is again to modify the data structures using some of

the operations specified for them. Listing 6.6 gives an example of animating

an array in SALSA [49].

1 create array a1 with 3 cells

2 set a1[0] to 1

3 set a1[1] to 6

4 set a1[2] to 11

5 make a1[2] say "swapping me with 6"

6 swap a1[1] with a2[2]

Listing 6.6: Example of SALSA commands.

Listing 6.7 gives an example of using high-level data structure operations in

DsCats language [24]. In the example, keys are inserted into a B-Tree in two

steps. Finally, a key is deleted from the tree. Note also the pause operation

that requires the user to interact with the animation by restarting the play.

1 OPTION DS B-TREE

2 INSERT 20 15 30 2 18 24 70 3 45

3 INSERT 10

4 PAUSE -- End of inserts

5 DELETE 24

Listing 6.7: DsCats command language example. The figure represents the data

structure after the operations are executed.

30

5315

18 7045

1032 1815 4530 7053

103

It should also be noted that not all the languages describe animations as

modifications done to the visual objects. For example, GaigsXML approaches

animation by allowing the visualizer to specify discrete snapshots of the state

of the data structures. These snapshots are then visualized by the system.

6.4 Programming Concepts

Some of the languages support the creation of animations using programming

constructs such as variables, conditionals, and loops. Listing 6.8 shows an

example of the AnimalScript2 [115] programming concepts.

Chapter 6. Features of Algorithm Animation Languages 51

1 array "values" (10, 10) length 5 int {3, 2, 4, 1, 7}

2 int pos = 1

3 int minIndex = 0

4 arrayMarker "pos" on "values" at Index pos label "pos"

5 arrayMarker "minIndex" on "values" at Index minIndex label "

minIndex"

6 while (pos < 5) {

7 if (values[pos] < values[minIndex]) {

8 minIndex = pos ;

9 moveMarker "minIndex" to position pos within 5 ticks

10 }

11 pos = pos + 1

12 moveMarker "pos" to position pos within 5 ticks

13 }

14 arraySwap on "values" position 0 with minIndex within 10

ticks

Listing 6.8: An example of programming concepts of AnimalScript2 [115]. The figure

shows the array before (above) and after (below) the elements are swapped.

73421

71423

6.5 Interaction

Interaction is another feature of some of the animation languages. SALSA, for

example, includes a command to request input data from the user. Listing 6.9

gives an example of this asking the user to give an integer value for variable

var1 and integer values for elements in array arr1.

1 input var1 as integer between 1 and 20

2 input elements of arr1 as integers

Listing 6.9: Example of SALSA input command.

GaigsXML supports another kind of interaction requiring users of the visu-

alization to respond to pop-up questions specified in the language. Listing 6.10

gives an example of the specification of a question in GaigsXML. Animal has

also been extended to support this kind of interaction [116].

52 Chapter 6. Features of Algorithm Animation Languages

1 <show>

2 <snap>

3 ...

4 <question_ref ref="0"/>

5 </snap>

6 ...

7 <questions>

8 <question type="MCQUESTION" id="0">

9 <question_text>What will the value of node A be in the

next step?</question_text>

10 <answer_option>3</answer_option>

11 <answer_option is_correct="yes">8</answer_option>

12 <answer_option>5</answer_option>

13 </question>

14 </questions>

15 </show>

Listing 6.10: Example of interactive questions in GaigsXML.

Chapter 7

Taxonomy of Algorithm

Animation Languages

Based on the features present in the existing algorithm animation languages

and to allow easier comparison of the languages, a taxonomy of algorithm

animation languages was defined. The first version of the taxonomy was pub-

lished in [55] and an extended version in [57]. The current version is presented

in Publication [P3] and we only summarize it here. Figure 7.1 illustrates the

two top levels of the taxonomy.

Figure 7.1: Taxonomy of Algorithm Animation Languages.

The main categories of the taxonomy are Visualization, Dynamics, User

Interaction, and MetaLanguage. These categories are illustrated in Figure 7.2.

In the following, we will briefly describe the main categories of the taxonomy.

For a more detailed discussion, see Publication [P3]. The article also evaluates

53

54 Chapter 7. Taxonomy of Algorithm Animation Languages

some of the algorithm animation languages introduced in the previous chapter

using the taxonomy, here we only summarize the findings of the evaluation.

Figure 7.2: Top-level categories of the Taxonomy of Algorithm Animation Languages.

Category Visualization The category Visualization describes the features of

the language used to create static visualizations for describing one state in

the animation. In essence, it considers the variety of supported object types,

that is, the building blocks used in the animation as well as ways to posi-

tion and style the objects. Visualization has three subcategories: vocabulary,

positioning, and style.

Category Dynamics The category Dynamics describes the level and versatility

of animation effects available in the language and how the final animation can

be customized through the language. These are the ways the visualizations can

be changed when moving from state to state. Dynamics has five subcategories:

data structure (DS) concept operations, sequencing, timing, animation effects,

and programming constructs.

Chapter 7. Taxonomy of Algorithm Animation Languages 55

Category User Interaction The category User Interaction describes the type

and level of interaction provided for the end-user of animations that can be

specified using the language. User Interaction has four subcategories: Control,

Responding, Changing, and Annotation. When using the taxonomy, emphasis

should be placed on distinguishing between the interaction provided by the

tool and interaction supported by the language. This distinction is not always

clear, as the language implementations may be tied to visualization systems.

However, the key issue in this regard is that the language specification includes

interactive features and actions that can be stored into a file containing the

animation script, regardless of how a system presents them to the user.

Category MetaLanguage The category MetaLanguage describes the support

of features that are not directly related to algorithm animation but instead

are useful in the animation creation process. These are features that are

not directly visible to the end user. The subcategories in MetaLanguage are

comments, debug, extensible, localization, metadata, import/export, and syntax

specification.

Summary and Discussion In this section, we have introduced a Taxonomy

of Algorithm Animation Languages. As a result, we have a more detailed

overview of the features and properties of the languages. In Publication [P3] we

evaluated several algorithm animation languages. For comparison purposes

we also evaluated Scalable Vector Graphics (SVG) [141]. The evaluation done

could be summarized by stating again that there are languages supporting

graphical primitives and languages supporting data structures. In addition,

SVG has the most advanced features in many of the categories, especially

when SVG is used together with ECMAScript1. However, SVG is missing the

data structures that are essential in AA. Some other useful findings from the

evaluation include:

• Integration of multimedia into algorithm animation languages is lacking.

• There is virtually no support for ADT operations on non-linear data

structures such as trees and graphs.

• Programming constructs are rarely present in AALs, and are nowhere

near as rich as programming constructs of real programming languages.
1SVG documents can include ECMAScript [35] code and is often used this way.

56 Chapter 7. Taxonomy of Algorithm Animation Languages

• There is a clear lack of user interaction features in AALs.

The evaluation of the languages is straightforward, although it requires

quite deep knowledge and understanding of the evaluated languages. In the

future, as AA languages are developed further and new features emerge, this

taxonomy is likely to be outdated. In such case, updates to the taxonomy

should be made.

Chapter 8

Proposal for Standard

Algorithm Animation Language

In this chapter, we will introduce our proposal for a standard algorithm anima-

tion language. The work is based on the report of an ITiCSE Working Group

(Publication [P4]), and we will start this chapter by describing the report and

move on to our proposed language, Xaal (eXtensible Algorithm Animation

Language).

8.1 ITiCSE XML Working Group

In the Conference on Innovation and Technology in Computer Science Educa-

tion (ITiCSE) 2005 a working group titled “Development of XML-based Tools

to Support User Interaction with Algorithm Visualization” convened to come

up with XML specifications to support algorithm animation. The group vi-

sioned a set of features of a common algorithm animation language and wrote

a report that introduces them (see Publication [P4]). In addition, the report

discusses a proposed architecture for adding support for an XML specification

to existing visualization systems. This architecture is presented in Figure 8.1.

The various parts of the architecture are responsible for handling differ-

ent aspects of the data that is to be visualized. The responsibilities are the

following.

• Elaborator connects interesting events with objects. For example, con-

necting event insert 6 to an instance of binary search tree object.

57

58 Chapter 8. Proposal for Standard Algorithm Animation Language

Figure 8.1: The proposed architecture of adding XML specification support to visualization
systems [97].

• Synchronizer augments the output of the elaborator by adding peda-

gogical hooks. These hooks are questions, narratives, control flow, and

metadata related to the current interesting event.

• Graphics Decorator adds graphical information about the layout to the

output of the synchronizer.

The output of the graphics decorator is called complete visualization specifi-

cation. This visualization specification includes all information needed to view

a visualization in a visualization system. The complete visualization specifica-

tion can possibly be adapted for a visualization system using an adapter. The

data in the different points of the process are:

• Interesting events are conceptual level actions on an object that can be

visualized. These events can be hierarchically organized so that upper

level events include series of lower level events. For example, binary

search tree insert can consist of creating a new node, finding a correct

position for the new node by traversing the tree, and connecting the new

Chapter 8. Proposal for Standard Algorithm Animation Language 59

node to the correct position in the tree. The interesting events can be

produced by executing a program or by a visualization author.

• High level objects are used to describe the targets of the interesting events.

Typically, in the field of algorithm animation, these are data structures.

• Questions can be associated with events in the visualization. These ques-

tions can be, for example, prediction-style questions.

• Narrations can be used to attach descriptions (text, graphics, and audio)

related to the event.

• Control flow specification can be used to associate (pseudo)code lines

with the event to be visualized.

• Metadata can be used for providing additional information.

• Graphical primitives specification is used to attach information on how

the event should be visualized in terms of graphical primitives and trans-

formations on them.

In the next section when we discuss Xaal, we have adopted some of the

ready defined and suitable parts of the WG specifications in order to support

the international goal of a uniform algorithm animation language specification.

However, most of the aspects of AA were not formally defined by the working

group. Thus, not all of these specifications are used as a part of the new

language.

Due to the fact that the working group did not come up with definite

specifications, the development of the specifications has continued in different

projects. The next section will introduce our proposal for a standard algo-

rithm animation language. The other project by the members of the working

group has been done by Loboda et al. [77]. They have specified two XML lan-

guages for specifying visualizations and content. They suggest a distributed

framework for visualization that is based on the interesting events produced

by a program or an algorithm. For describing the content, they have specified

c-XML and for the visualization, v-XML.

As the main reason for two different projects continuing the work of the

WG we see the lack of further meetings by the WG members. Originally, the

hope was to convene again a year after the original working group [97]. This,

however, did not happen.

60 Chapter 8. Proposal for Standard Algorithm Animation Language

8.2 Xaal

Based on the Taxonomy of Algorithm Animation Languages and the work by

the ITiCSE Working Group, we have defined a new AA language, Xaal (eX-

tensible Algorithm Animation Language). Xaal is defined as an XML lan-

guage by specifying the allowed document structure. XML makes it easy for

any software to process data using the multitude of different tools and architec-

tures available today. In addition, transforming XML documents to different

XML formats or text is relatively simple and flexible using XSLT (Extensible

Stylesheet Language Transformations).

The following will briefly introduce the most important features of Xaal.

The reader should note that this text is merely an overview of the language.

For a more detailed discussion, see Publication [P5] and [55], and for the actual

XML schemas, see the Xaal website1.

Graphical Primitives The basic graphical components that can be com-

posed to represent arbitrarily complex objects (e.g., a tree or a graph data

structure) are graphical primitives. The graphical primitives in Xaal are

as specified by the working group, where the following primitives have

been defined: point, polyline, line, polygon, arc, ellipse, circle and circle

segment, square, triangle, rectangle, and text.

Data Structures Xaal supports the usage of data structures to specify the

visualizations, lowering the effort needed to produce them. The set of

structures is basically the same as, for example, in JAWAA [1]: array,

graph, list, and tree. What distinguishes Xaal from the other AA lan-

guages is the support for different approaches of existing algorithm anima-

tion languages, by allowing all structures to contain an optional graphical

presentation indicating how the structure should be visualized.

Animation A crucial part of the algorithm animation language is the anima-

tion functionality. The animation operations in Xaal have been divided

in three groups: graphical primitive transformations (for example, ro-

tate), elementary data structure operations (for example, replace), and

abstract data structure operations (for example, insert). Every abstract

operation can contain the same transformation on a lower level of ab-

straction as graphical primitive transformations and as elementary data
1http://xaal.org/

Chapter 8. Proposal for Standard Algorithm Animation Language 61

structure operations. However, these are both optional. An example of

these abstraction levels can be seen in Listing 8.1.

1 <delete target="BST">

2 <key value="C"/>

3 <elementary>

4 <remove target="nodeC"/>

5 <remove target="edgeCA"/>

6 <replace target="edgeMC">

7 <edge from="nodeM" to="nodeA"/>

8 </replace>

9 </elementary>

10 <graphical>

11 <!-- operation as graphical operations -->

12 </graphical>

13 </delete>

Listing 8.1: Example of different levels of abstraction in animation. The delete operation

is included as elementary operations as well as graphical operations for systems not capable

of using the data structure operations. The figure on the left is before the delete and on

the right after it.

PA

M

P

A

C

M

After the initial version of the specification was released, we have added

some features to the language. Questions were added due to their central role

in student engagement. For the questions, the specification by the working

group was adopted. Another addition were markers that allow pointing to

some (parts of) data structures such as array indexes. These are mainly used

to track variables in algorithms and were adapted from the AnimalScript

specification [113].

The Xaal specification can be seen as the complete visualization specifi-

cation of the working group. As far as we know, it is the only such language

specification currently available. However, a Xaal document is not required

to include all the aspects but all can be included when wanted. We have de-

fined an XML Schema for Xaal. To make the language more modular, we

have divided the schema into several XML Schema documents roughly corre-

sponding to the different aspects indicated by the working group. This kind

of modularity makes it possible to more easily change or reuse some parts of

this language in other languages and algorithm animation systems.

62 Chapter 8. Proposal for Standard Algorithm Animation Language

8.2.1 Taxonomic Evaluation

In this section we will use the taxonomy defined in Publication [P3] to eval-

uate Xaal. In addition, we will include the evaluation of SVG and compare

Xaal with SVG. Reason for using SVG is that in Chapter 7 we concluded

SVG having the richest set of features in many of the categories. Note, that

the evaluation results in this section differ slightly from the ones presented

in Publication [P3] since here we consider the latest version of Xaal avail-

able online at http://xaal.org/, while the publication evaluates the version

published in [55].

Vocabulary Table 8.1 indicates that Xaal can be considered semantically

complete in the sense that it supports graphical primitives as well as data

structures. SVG, on the other hand, supports only graphical primitives. Hy-

pertext and sound are supported by both.

Table 8.1: Evaluation of the languages in category Vocabulary.

Language DS Concepts DS Com-
ponents

Graphical
primitives

Multimedia

H
y
p
er

te
x
t

S
ou

n
d

Xaal Tree, graph, ar-
ray, list

Node, refer-
ence

Yes Xhtml Audio
files

SVG None None Yes Yes Audio
files

Positioning Evaluation of Xaal in category Positioning is in Table 8.2. Like

many of the existing AA languages, Xaal supports 2 dimensions with the

additional depth setting for overlapping objects. Layout for data structures

can be specified in Xaal but this is not required. This allows it to be used in

tools that support automatic layout as well as in tools where the layout must

be user specified. Except for layout, features in SVG are quite similar in this

category.

Chapter 8. Proposal for Standard Algorithm Animation Language 63

Table 8.2: Evaluation of the languages in category Positioning.

Language DS concept layout Multiple
Views

Coord-
inates

Dimen-
sions

Group-
ing

O
ri

en
ta

ti
on

V
is

u
al

si
ze

A
u
to

m
at

ic
L
ay

ou
t

M
an

u
al

L
ay

ou
t

Xaal Yes No Yes Optional No Absolute,
relative

2.5 yes

SVG N/A N/A N/A N/A No Absolute,
relative

2 yes

Style Evaluation of Xaal in category Style is in Table 8.3. Xaal supports

colors as RGB values and some predefined color names (the same 17 colors

as in CSS2 [142]). Compared to existing AA languages, the styling options

in Xaal are more than adequate. However, SVG has a more diverse set of

styling options, and including these in Xaal remains a future challenge.

The advanced feature compared to the existing AA languages is the support

for reusable and extensible stylesheets. These are not, however, as versatile as

in SVG due to the more limited styling functionality of Xaal.

Data Structure Operations The languages are evaluated in category Data

Structure Operations in Table 8.4. Compared to the existing AA languages,

Xaal has quite a rich set of data structure operations. However, these require

advanced features from the system implementing the language. SVG, on the

other hand, lacks the data structures and operations on them. Thus, it has no

features that make it especially suitable for algorithm animation.

Sequencing and Timing The languages are evaluated in categories Sequencing

and Timing in Table 8.5. Xaal supports both granularity control and con-

currency, being the only language to do so. In Timing, Xaal has the typical

possibilities to set the delay and duration of an animation. However, SVG

is even more versatile as the animation operations can be set a minimum or

maximum duration, number of repeats, repeat duration, key times, etc.

64 Chapter 8. Proposal for Standard Algorithm Animation Language

T
ab

le
8.3:

E
valu

ation
of

th
e

lan
gu

ages
in

category
S
tyle.

L
a
n
g
u
a
g
e

C
o
lo

rs
F
ill

sty
le

F
o
n
t

L
in

e
sty

le
O

p
a
city

S
h
a
p
e

S
ty

le
sh

e
e
ts

Family

Size

Variant

X
a
a
l

P
red

efi
n
ed

,
R

G
B

S
olid

,
n
on

e
Y

es
Y

es
B

old
,
italic

W
id

th
,

color,
d
ash

ed
,
arrow

-
h
ead

s

Y
es

Y
es

Y
es

S
V

G
P

red
efi

n
ed

,
R

G
B

S
olid

,
gra-

d
ien

t,
p
at-

tern

Y
es

Y
es

W
eigh

t,
sm

all-
cap

s,
italic,

ob
liq

u
e,

stretch

Y
es

Y
es

Y
es

Y
es

Chapter 8. Proposal for Standard Algorithm Animation Language 65

Table 8.4: Evaluation of the languages in category Data Structure Operations.

Language ADT operations DS Implementation
Operations

DS Component
Operations

Xaal Insert, delete, search Create, remove, replace None

SVG None None None

Table 8.5: Evaluation of the languages in categories Sequencing and Timing.

Language Sequencing Timing

G
ra

n
u
l.

co
n
tr

ol

C
on

cu
rr

en
cy

Xaal yes yes delay, duration

SVG no yes delay, duration, min, max, repeat, key times

Animation Effects The languages are evaluated in category Animation Effects

in Table 8.6. In both languages, all the style properties (see Category Style)

can be changed. In Xaal, the graphical primitive transformations available

are the ones defined by the ITiCSE XML Working Group. Thus, Xaal fulfills

the requirements for an algorithm animation language as seen by the interna-

tional AA community. However, these features are not as versatile as in SVG

which also includes skew and matrix transformations.

Table 8.6: Evaluation of the languages in category Animation Effects.

Language Attributes Transformations

S
ty

le
E

ff
ec

ts

V
is

ib
il
it
y

R
ot

at
e

S
ca

le

T
ra

n
sl

at
e

Xaal yes show/hide, opacity yes yes yes

SVG yes opacity yes yes yes

66 Chapter 8. Proposal for Standard Algorithm Animation Language

Table 8.7: Evaluation of the languages in category Programming Constructs.

Language Elements Control Flow

D
ec

la
ra

ti
on

s

E
x
p
re

ss
io

n
s

A
ss

ig
n
m

en
ts

T
y
p
es

S
eq

.
st

at
em

en
ts

B
ra

n
ch

in
g

L
o
op

s

S
u
b
ro

u
ti

n
es

Xaal Element IDs no no no yes no no no

SVG yes yes yes yes (boolean, strings,
custom types)

yes yes yes yes

Programming Constructs As can be seen from Table 8.7, programming con-

structs are not supported in Xaal. They are not common in other algorithm

animation languages either. Only few of the most recent languages like Ani-

malScript2 and SALSA have support for expressions and control flow struc-

tures such as branching and loops. SVG with ECMAScript has all the features

of the full programming language.

User Interaction The evaluation of Xaal in category Interaction is repre-

sented in Table 8.8. Xaal supports pausing the animation and responding

to questions. Plain SVG includes no User Interaction. However, when used

together with ECMAScript, SVG can be considered to support any kind of

interaction. For example, interaction on responding level can be implemented

by showing questions for the student. In general, interaction features in AA

languages are not common. Thus, interaction is typically left to the tool im-

plementing the language.

Table 8.8: Evaluation of the languages in category User Interaction.

Language Control Responding Changing Annotation

Xaal pause yes no no

SVG yes yes yes yes

MetaLanguage Evaluation of Xaal in category MetaLanguage is in Table 8.9.

In Xaal, we decided not to use any standard for the metadata due to the

Chapter 8. Proposal for Standard Algorithm Animation Language 67

sheer complexity of such standards. Xaal has, however, support for more

metadata than the existing AA languages. We also believe that including a

small but specified amount of metadata is more beneficial than allowing arbi-

trary metadata, as done in SVG. Again, in future versions, we might decide

to also endorse some metadata standard. Another interesting notion is that

import/export functionality is not offered in any AAL.

Table 8.9: Evaluation of the languages in category MetaLanguage.

Language Comm Debug Ext Local Meta I/E Spec

Xaal yes no no yes yes no XML Schema

SVG yes no yes yes yes yes XML DTD

68 Chapter 8. Proposal for Standard Algorithm Animation Language

Part IV

Applications of Xaal in

Education

69

Chapter 9

Xaal in Algorithm Animation

Systems

To gain some support from the algorithm animation community, we have de-

signed a set of tools aiding in the usage of Xaal in existing and future algo-

rithm animation systems. In this chapter, we will introduce different processes

to add Xaal support as well as discuss our proof of concept implementations

of these.

9.1 Implementation Approaches

We have a prototype implementation of the language and transformations

to/from various existing algorithm animation languages. In the following, we

will briefly describe these prototypes and discuss the advantages and disad-

vantages of the different solutions, as well as state the level of Xaal features

supported.

The center of the Xaal implementation is Xaal Objects (XO) (see Fig-

ure 9.1). This is a collection of Java classes that correspond to the different

elements and attributes in Xaal documents. The Xaal objects hierarchy can

be generated in multiple ways, the most natural of which is the Xaal parser.

The Xaal objects and Xaal parser prototype implementations support most

of the elements and functionality specified in the language. The tools also

include a graphics decorator able to add graphical information to the data

71

72 Chapter 9. Xaal in Algorithm Animation Systems

structures used. One major lack of the current parser is that it does not

behave well when the source document is not well-formed XML.

Like the XML Schema definitions of Xaal, the parser is modular. For each

of the aspects of the visualization pipeline proposed by the working group,

there is a parser module that handles the relevant information. This allows

easy reuse of the parts in other contexts. In addition, by enabling/disabling

only some modules in the parser, the information can be filtered to fit different

needs. Furthermore, the parser is extensible allowing the addition of new

modules for additional language features in the future.

The existing AV systems can implement adapters that convert the Xaal ob-

ject hierarchy into an animation in that particular system. By implementing a

generator, the existing systems can generate the object hierarchy and serialize

it as Xaal. These concepts are illustrated in Figure 9.1.

Parser

Serializer

Adapter

XAAL Objects

Document

XAAL

Generator

AA System

Figure 9.1: Integrating Xaal with existing AA systems using an object hierarchy.

This solution requires no major modifications to the existing systems, and

thus the workload of implementing Xaal remains fairly low. Another advan-

tage is that the document has to be parsed only once. There is, however,

one extra step in the process compared to the direct approach of parsing

the Xaal document directly into the AV system. However, implementing a

Xaal parser for each system would not be sensible, and thus the extra pro-

cessing is not considered a major issue.

Another way to integrate Xaal with existing systems is to transform it to a

format of the target system using XSLT [140]. This method provides a simple

solution to import Xaal documents into existing AV systems that have an

algorithm animation language. It can also be used to export different formats

from a system that supports Xaal.

The benefit of this approach is that the XSLT stylesheets are quite simple

to write for a person who knows the syntax of Xaal, the target language,

Chapter 9. Xaal in Algorithm Animation Systems 73

and XSLT. Moreover, the target system need not be changed at all. This

makes it possible to use Xaal in systems that are not open-source. On the

negative side, this approach requires parsing of three files: the stylesheet, the

Xaal document, and the generated AV system document. In addition, XSLT

is somewhat limited in programming-like features making the transformation

of some language features quite cumbersome.

9.2 Using Xaal Animations

To support the adoption of Xaal, we have also made it possible to use

these animations in existing visualization systems as well as in different learn-

ing/teaching situations (see Figure 9.2).

Figure 9.2: The possible ways to benefit from the Xaal animations.

The first transformations done were to Scalable Vector Graphics (SVG),

AnimalScript [113] and the scripting language of JAWAA 2.0 [1]. These

transformations are done using the XSLT approach. These were done to eval-

uate the appropriateness of the XSLT based transformations as well as get

74 Chapter 9. Xaal in Algorithm Animation Systems

some experience on how the Xaal language translates to other languages. As

it turned out, the XSLT approach is not suitable for transforming complete an-

imations. Single static states in the animation using only graphical primitives

were implemented well enough. However, major problems arise when trying

to use features like relative coordinates in the animation or how to draw data

structures.

As the MatrixPro was introduced as part of this work, a natural choice

was to have an adapter capable of importing Xaal animations into it. This

was done using the object hierarchy approach. Due to the fact that MatrixPro

works only with data structures and operations on them, this solution supports

only these aspects of the Xaal specification.

The last one of the existing animation systems that we worked with was

JHAVÉ [92]. JHAVÉ is not an AV system but rather an environment for

different AV systems called AV engines. In [94], AV developers were encour-

aged to create new visualizers for JHAVÉ. Thus, we created a visualization

engine for the environment that was capable of viewing Xaal animations.

This solution originally supported only graphical primitives and discrete an-

imation. However, David Furcy at UW-Oshkosh has continued the work by

adding smooth animation to the engine. In addition, he has developed a series

of Xaal animations for a completely different topic: mathematics. An exam-

ple is presented in Figure 9.3. These examples are currently available online in

the production version of JHAVÉ. This gives us indication that the Xaal lan-

guage, although aimed at data structures and algorithms, is not restricted to

this field.

For merging with hypertext to be used in online learning, we have proposed

an approach to use a JavaScript and HTML based Xaal viewer to achieve

seamless integration between learning material and animations. This approach

will be introduced in more detail in Publication [P6] and Chapter 10.

To promote the usage of AV on lectures, we propose a solution for au-

tomatically creating lecture slides from Xaal animations. This solutions is

described in detail in Publication [P7] and Chapter 11.

Chapter 9. Xaal in Algorithm Animation Systems 75

Figure 9.3: Example of an algorithm animation of graphing a parabola in JHAVÉ using the
Xaal visualizer.

9.3 Producing Xaal Animations

As important as being able to use Xaal animations, is the ability to create

them. Where does one get Xaal animations, then? The first possibility is

to write the XML by hand. Although this is possible, it obviously is not the

most effortless choice of creating animations. Especially since there are several

other choices available.

The tools supporting Xaal allows the generation of Xaal objects through

a Java API. This can then be serialized into XML. Of course the Xaal source

can be directly written by a program, as done in the animations on mathe-

matics in JHAVÉ.

An effortless way to create Xaal animations is to use an extended version

of MatrixPro and create animations simply by dragging and dropping keys and

nodes into various data structures and export the animation as Xaal. This

approach, however, is limited to the selection of data structures and algorithms

shipped with the MatrixPro system.

76 Chapter 9. Xaal in Algorithm Animation Systems

Another source of animations is to use the existing GaigsXML animations

used in JHAVÉ. In addition, new animations can be created with the Java

API provided in JHAVÉ [91]. These GaigsXML animations can be trans-

formed into Xaal using an XSLT stylesheet. This stylesheet is probably the

most comprehensive in that it supports nearly all features of the GaigsXML

language.

The final choice is to use the proof of concept implementation of Xaal gen-

erator in Animal [114] as described in Publication [P7]. This way the multi-

tude of existing Animal generators can be used, and new generators created.

This and the GaigsXML transformation provide ways to reuse existing anima-

tions; a possibility we see extremely important.

9.4 Implementation-based Evaluation

Although the language does not include some of the most complex features that

came up (for example, programming concepts), Xaal is still quite a complex

language. The current prototype implementation is a good indicator of this,

since the original aim of this thesis was to provide a full implementation.

However, that was not achieved due to the limited time to finish the thesis.

Nevertheless, we can consider the feasibility of Xaal as an intermediate

language. The main problem in the implementation are the different levels

of abstraction. Transformations of animations from one abstraction level to

another are bound to lose some information. In addition, unless the source

format includes all the necessary information, it is difficult to transform ani-

mations between different levels of abstraction. Another problem is caused by

languages such as GaigsXML, where the structure of the language is based on

snapshots of the animation. Since Xaal presents the animation as modifica-

tions to the elements, conversion of animation between these languages would

probably require some complex XSLT templates. However, we believe that

this could definitely be implemented.

Another way to evaluate implementation is to consider the number of lines

of code. This method has been used to evaluate the Pavane visualization

system [26]. In the Pavane evaluation, the system was considered the better

the fewer the required lines of code were. In our case, we can consider how

many lines of code it takes to create the adapters or generators. The status

Chapter 9. Xaal in Algorithm Animation Systems 77

at the time of writing is shown in Table 9.1. As can be seen, the adapters

typically require fewer lines of code. The main reason we see behind this is

that there are many helper classes available for adapters, while the generators

need to use whatever is available in the source system. The exception is

GaigsXML→Xaal generator that is implemented using the XSLT approach.

For comparison, the Xaal→XaalXML serializer is almost 1400 lines.

Table 9.1: The number of lines of code of the various adapters and generators implemented.

Adapter LoC Generator LoC

Xaal → JHAVÉ 963 Animal → Xaal 2580

Xaal → Matrix 418 GaigsXML → Xaal 241

Xaal → ODF 443 Matrix → Xaal 2923

78 Chapter 9. Xaal in Algorithm Animation Systems

Chapter 10

Algorithm Animations as

Online Learning Material

As discussed in Section 3.2.3, merging algorithm animations into hypertext

is an important topic in promoting animations in teaching. In addition, self-

study has been reported to be the most typical usage scenario with online

visualizations [72]. For these reasons, we introduced our approach to merge

animations into hypertext.

Our solution for merging algorithm visualizations with hypertext for on-

line learning is an AV viewer implemented using only HTML and JavaScript

presented in Publication [P6]. The viewer has been implemented based on

analyzing the requirements for algorithm animation systems in the literature.

This literature and the requirements are introduced in the article while this

chapter summarizes the main features.

Figure 10.1 shows the animation viewer in the Safari browser. In the fig-

ure, number 1 marks the surrounding HTML document. This document can

contain any HTML. Number 2 shows the animation controls. Here, we have

the controls to rewind and move backwards and forwards in the animation.

Number 3 indicates the actual animation window where the contents of the

animation are visualized. Number 4, in turn, indicates the settings panel for

the animation viewer. Finally, number 5 marks the dynamic HTML documen-

tation that is included in the Xaal document and shown next to the visual-

ization. These parts, the main functionality they offer, and the technologies

used will be briefly introduced in this chapter.

79

80 Chapter 10. Algorithm Animations as Online Learning Material

Figure 10.1: Xaal viewer in a browser showing the main parts of the animation viewer and
related documentation. Texts are from http://en.wikipedia.org/wiki/B-tree.

10.1 Main Features

The most important feature is that adding the viewer to an HTML page is

simple. After downloading the viewer1, all it requires is a couple of lines

of JavaScript code. However, there are plenty other features in the viewer

implemented based on the requirements analysis.

Customizing the Viewer The customization features of the viewer can be

roughly divided into two groups: customization that can be done by the end-

user (i.e. the student) and done by the person who includes the viewer into

the hypertext (i.e. content author, typically a teacher). Students can change

options such as toggle smooth animation on or off, change the magnification by

zooming in or out, and, if the animation is internationalized (the Xaal anima-

tion contains the textual content in multiple languages), change the language

from the viewer. The teacher can change the appearance of the viewer and

content shown by the viewer easily by modifying the default CSS stylesheet

or by using a different CSS.

Integrating and Interacting with Hypertext Since the whole animation viewer

is based on JavaScript and HTML, integration with hypertext is simple and

1The viewer is open source and can be downloaded from http://code.google.com/p/jsxaal/.

Chapter 10. Algorithm Animations as Online Learning Material 81

natural. Static documentation can be provided outside the viewer and each

step in the animation is allowed to include a description that can be arbitrary

XHTML, including JavaScript. Interaction from the HTML with the viewer is

easy to achieve. This could be used, for example, to show a structural overview

of the animation in HTML, and allow student to jump to some position in the

animation by clicking the HTML link.

Student Engagement The viewer supports three kinds of user engagement:

• Pop-up questions Requiring users to respond to questions during the

animation was another requirement for an AA viewer. The Xaal lan-

guage and the viewer support typical question types such as multiple

choice and multiple select questions as specified by the working group [119].

When showing the question, the animation cannot be moved backwards

or forwards. When the student answers the question, feedback is given

immediately and the answers to the questions are stored in the animation

in the client’s browser and can be submitted to a server.

• Changing Input Data Allowing users to specify their own input was

one of the requirements. Again, since we are working with HTML and

JavaScript, allowing this in the viewer is extremely simple in cases where

the animation uses data structures. This is because all scripts included

in the HTML document can interact with the animation viewer and thus

with the data structures in the animation.

• User Annotations The users of the animation can add their own anno-

tations to the animation. These can be drawn by selecting the annotation

tool and color from the settings panel. Each step in the animation can

contain an arbitrary number of annotations. The annotations are stored

in the animation file and played back when moving in the animation.

If a teacher wants to store the student answers to the interactive questions,

this can be done by adding a server-side back-end. Communication with a

server requires the implementation of a simple JavaScript ”interface”. Thus,

the viewer can be integrated with any server-side technology that can handle

AJAX requests.

82 Chapter 10. Algorithm Animations as Online Learning Material

History View Showing past and previous steps can be done simply by writing

one line of JavaScript when adding the animation into the HTML page. Any

number of steps can be added arbitrarily far in the history or future. The title

and scaling of the steps can also be specified. Another configuration option is

the ability to specify a different input file for each view. This makes it possible

to add multiple synchronized viewers that could, for example, add a display for

a different sorting algorithm. Thus, a comparison of algorithms – a ”feature”

already available in Sorting out Sorting video [3] – is possible.

Importing/Exporting other formats Another requirement was to be able to

view animations in several formats. Since modern web-browsers support XSLT

processing [140], the viewer supports import from other formats through XSLT.

This way any XML-based algorithm animation format that can be translated

to Xaal can be viewed with the viewer. Currently this is implemented for

the GaigsXML language [91]. Exporting the animations is currently not sup-

ported. However, single animation frames can be exported as Scalable Vector

Graphics (SVG) [141] in browsers that support SVG.

10.2 Underlying Technologies

The decision to implement the viewer in JavaScript was backed by many rea-

sons. First, by using JavasSript we do not depend on commercial software

provided by any corporation but we are using open source libraries. Second,

JavaScript works on all platforms without any plugins, whereas, for example,

Silverlight is not available on Linux at the time of writing. In addition, our

approach can use any server side components. Finally and most importantly,

for the JavaScript approach, the technology has come a long way since the

1990s and is mature, widely used, and supported by an ever-growing number

of useful libraries. And, with the ongoing JavaScript engine performance war

between TraceMonkey (used in future versions of Firefox), SquirrelFish (fu-

ture versions of Safari) and V8 (Google Chrome) developers, JavaScript as a

platform can only get better.

The implementation of the viewer is based on three JavaScript libraries.

The lowest level of these libraries is Prototype2, which offers, for example,
2http://www.prototypejs.org/

Chapter 10. Algorithm Animations as Online Learning Material 83

AJAX support as well as advanced features for dynamically manipulating

the client-side HTML. The visualizations are drawn using Prototype Graphic

Framework (PGF)3, a Prototype based framework that allows drawing arbi-

trary data on various browsers. PGF supports multiple rendering technologies

for different browsers: Scalable Vector Graphics (SVG), HTML Canvas ele-

ment, and Vector Markup Language (VML). These different renderers can be

used through a single programming interface. The animation features in our

viewer use Scriptaculous4, an animation framework based on Prototype. The

animation is achieved by extending Scriptaculous’s effects to modify graphical

objects drawn using PGF.

When discussing web applications, the size of the files required is essential.

The total size of the viewer and the required libraries is slightly over 400

kilobytes. This size can be reduced by minimizing the files. Then, the viewer

will end up in loading approximately 200 kilobytes. Naturally, all of this can

be cached by the browser and loaded only once.

3http://prototype-graphic.xilinus.com/
4http://script.aculo.us/

84 Chapter 10. Algorithm Animations as Online Learning Material

Chapter 11

Algorithm Animations as

Lecture Material

It comes as no surprise that generic presentation tools such as Microsoft Pow-

erpoint and Open Office Impress are often used by teachers to prepare lecture

slides. Typically, algorithm animations are added to lecture slides. These

presentation tools are easy to use and familiar to many teachers. However,

”the lack of support for specific data structures such as lists makes animation

generation both awkward and time-consuming” [114]. Furthermore, surveys

show that demonstrations during classroom lectures are the most frequent use

of visualizations by teachers [95] as well as considered the most beneficial by

students [72].

These were our main motivations when deciding to find a solution to au-

tomating the generation of AAs as lecture material. Publication [P7] intro-

duces our solution in detail, and in this chapter we will summarize the results.

11.1 First Prototype

Our first attempt at a prototype was introduced in [124]. The solution was

based on a Java program generating graph descriptions in dot format. The

graph descriptions were transformed to Scalable Vector Graphics (SVG) using

GraphViz [36]. The SVG files were then converted to Open Document Format

(ODF) format using XSLT stylesheets. More specifically, the Java program

generated example cases of the Kruskal’s algorithm.

85

86 Chapter 11. Algorithm Animations as Lecture Material

The prototype solution was successful in showing that this kind of slide

generation is possible to do. In addition, it was able to automatically generate

questions as notes on the slides that a teacher can use to make lectures more

interactive. However, the approach taken had several problems:

• The usage required third-party tools like GraphViz and Saxon to be in-

stalled. This makes it unlikely that teachers adopt it, since cumbersome

installation is one of the reasons for not using visualization tools [109].

• The use of XSLT to generate the slides limits the applicability to simple

cases due to the nature and limitations of XSLT.

• Most importantly, the approach supports no reuse of existing animations.

As there are a number of animations in repositories for the existing sys-

tems, teachers should be able to benefit from those.

The last problem is directly related to the goal of this thesis to allow tool

independent visualizations used in many systems. For this reason, we have

continued the work by enabling the transformation of Xaal animations to

lecture slides. This process will be introduced in the following section.

11.2 The Process of Generating Slides

We visioned a process where the lecture slides could be generated directly

from a visualization system. For this, Animal with its collection of animation

generators on various topics seemed a suitable choice. The final process is

illustrated in Figure 11.1. The Xaal language implementation in Animal

is used to allow generation of Xaal animations using the existing Animal

generators. The resulting Xaal document is then transformed to lecture slides

in ODF format. These slides can then be opened in OpenOffice Impress, as

illustrated in Figure 11.2.

Figure 11.1: The process of generating lecture slides from Animal through Xaal.

Chapter 11. Algorithm Animations as Lecture Material 87

This solution provides an effortless way to create customized and customiz-

able lecture animations. Customized in the sense that in Animal, the genera-

tors can be configured (for example, change input data) using a graphical user

interface. Customizable in the sense that the slides can be easily modified in

Impress.

Figure 11.2: An example of an algorithm animation from the bubble sort generator in
Animal transformed to a set of Open Office Impress slides.

Although we did this using Animal, there are no obstacles in using the

same Xaal2ODF transformation to export lecture slides from, say MatrixPro.

Hopefully, this will create easy enough option for many visualization system

developers to include lecture slide generation on the feature list of their system.

Technically, the solution uses ODFDom library, a part of the ODF Toolkit1.

This library provides a Java API to create the different elements in the ODF

document. It should be noted, that this same approach could be taken to

generate slides for Microsoft PowerPoint using, for example, OpenXML4J li-

brary2.

1http://odftoolkit.org/
2http://openxml4j.org/

88 Chapter 11. Algorithm Animations as Lecture Material

Part V

Discussion and Conclusions

89

Chapter 12

Discussion

In this chapter, we will summarize our work and address the research ques-

tion “How can we develop algorithm animations and AA systems further to

better facilitate the creation and adoption of AA in education?”. We start by

revisiting the four sub-questions set in the introduction and discuss how they

contribute to solving the research problem. We end this chapter with a critical

overview of this work.

12.1 Research Questions Revisited

12.1.1 Effortless creation of AV

To make the algorithm animation production more effortless, we started re-

searching what is effortless production. In the first step we identified that there

are either specific, low effort systems or general, high effort systems [59]. This

research was, however, only our subjective view of the subject. The next step

was a survey targeting computer science educators [60]. The survey resulted

in an initial set of measures for effortlessness. Finally, in Publication [P1] we

introduced a taxonomy of effortless creation of algorithm animations and we

now have knowledge of what makes an AV system effortless.

In the first step of the research on effortlessness, we found that Matrix [66]

allowed effortless creation of animations. However, it was a research proto-

type demonstrating the features of the framework and not suitable for end-

users. Thus, we developed a Matrix-based application, MatrixPro (see Pub-

lication [P2]). MatrixPro was designed to support on-the-fly demonstrations

91

92 Chapter 12. Discussion

without the need to prepare all the examples before lectures. The most im-

portant feature supporting this was the automatic animation of several ready

made data structures, thus the system is effortless to use for the narrow scope

it was designed, namely in math examples.

12.1.2 System independent description of AVI

To answer the question of how to develop a system independent description of

algorithm visualization information (AVI), we first developed a taxonomy of

algorithm animation languages presented in Publication [P3]. The taxonomy

is based on the features of the existing algorithm animation languages.

Combining the work of a report of an international working group presented

in Publication [P4] and the taxonomy, we designed a new animation language

called Xaal (eXtensible Algorithm Animation Language). The use of these

two elements as source ensured that the language is not designed from the

view point of one system. Thus, what distinguishes Xaal from many of the

existing AA languages is that it supports both of the two main approaches in

the existing AA languages: graphical primitives and data structures. Thus, it

is the first and only animation language at the moment that can be considered

as a complete visualization specification.

Furthermore, the language has a modular design and consists of several

XML Schemas. This makes it possible to use only parts of the language and

to extend it. Finally, the language has already been used in mathematics

outside of its intended scope of data structures and algorithm. We see this as

an important indication of its suitability to algorithm animation.

12.1.3 Processes to use the AVI in AA systems

To support the usage of Xaal in existing algorithm animation systems, we

have implemented a modular and extensible parser. In addition, we have im-

plemented various adapters and generators between Xaal and other algorithm

animation languages. The current selection of formats was presented in Fig-

ure 9.2 on page 73. As can be seen, AV systems that can be used to create

Xaal animations are MatrixPro, Animal, and JHAVÉ. In addition, we have

a limited transformation from SVG to Xaal. Xaal documents can then be

transformed to Open Document Format, AnimalScript, JAWAA, and SVG,

Chapter 12. Discussion 93

viewed with a JHAVÉ visualization plugin, or opened in MatrixPro. Thus, we

already have several different formats available for the same animation.

When considering the current implementation from the effortlessness point

of view, we can say that we have made it possible to transform animations from

an effortless system (MatrixPro) to a more general purpose tool (Animal).

This allows us, for example, to easily create an example of a complex topic,

say B-Tree in MatrixPro, transform it to AnimalScript and customize the

animation with Animal. In addition, as the JHAVÉ system is intended as a

visualization platform, Xaal implementation for that platform is a good step

towards more general tool integration.

In Section 9.2, we introduced two different processing pipelines to imple-

ment Xaal support: 1) parsing the Xaal document into a set of (Java)

objects and transforming that, and 2) transforming the Xaal document us-

ing XSLT. A future challenge is to implement Xaal support and thus data

exchange among more systems. Thus, the following considers the suitability of

the two processing pipelines for the different visualization specification styles

introduced in Section 3.2.4.

Topic-Specific Animation As topic-specific animations are not animation

systems, it probably is not worth the effort to implement any data ex-

change with such animations.

Direct Manipulation Direct manipulation as a visual specification style can

be implemented in a multitude of ways. Thus, it is not feasible to spec-

ulate how the data exchange with such a system could be implemented

as it depends completely on the system architecture. For example, the

Xaal import/export in MatrixPro is implemented by transforming an an-

imation between the internal object hierarchy of Matrix and the Xaal ob-

ject hierarchy.

API-based Generation In API-based generation there is some program-

ming API that can be used to generate the animations. Thus, the natural

method for implementing data exchange in such cases is to transform the

Java object hierarchy to suitable method calls of the API.

Scripting-based Generation In scripting-based generation, the animation

system has some scripting language (or, algorithm animation language)

that it understands. Thus, using XSLT to transform Xaal documents

94 Chapter 12. Discussion

into this scripting language is the most sensible option. However, trans-

forming the object hierarchy might be a useful solution as well, especially

if there are significant differences between Xaal and the target language.

When transforming an animation from the scripting language to Xaal,

XSLT is a suitable solution if the scripting language is XML. Otherwise,

it requires a parser of the scripting language.

Declarative Visualization In declarative visualization, the visualization is

specified by declaring a mapping between a program state and a graph-

ical representation. Generally, transforming between this mapping and

Xaal is not a suitable approach, since Xaal does not have a program

state attached. Thus, the best approach is again completely dependent

on the system architecture.

Code Interpretation Implementing data exchange with a tool that uses

code interpretation is not meaningful from Xaal to the system. The

other way around it could be beneficial. However, the implementation

depends completely on the architecture of the system.

From the discussion above, we can summarize that it is not obvious in most

of the cases how the data exchange is best implemented. The best approach

is typically dependent on the architecture of the animation system. However,

in the case of API-based generation and Scripting-based generation, natural

choices are transforming the Java object hierarchy and XSLT transformations,

respectively. It should be noted, that often systems have more than one visu-

alization specification style so there will be different possibilities to implement

Xaal support as well.

12.1.4 Processing the AVI for different learning situations.

The last question was how to process the same animation for different learn-

ing situations. With the same source animation, the coherency of learning

materials can be ensured.

Our goal was to support both hypertext materials and lecture slides. The

seamless integration of Xaal animations into hypertext was presented in

Chapter 10. This purely JavaScript and HTML based animation viewer of-

fers better interaction between the hypertext and animation than any of the

Chapter 12. Discussion 95

existing AV systems. In Chapter 11, we introduced a process and tools to

effortlessly create lecture slides from Xaal animations.

12.2 Critical Overview

Both of the taxonomies presented in this work can be criticized by claims of

misplaced subcategories that should be under some other category. In addi-

tion, the labels of the categories are easy to pick on. For this, our defense

is that all the categories arose from the data collected. Furthermore, no tax-

onomy can be correct and is always bound to be an objective interpretation

of the topic. There are more than one way to create the characterization,

ours being one way. The important point to consider is whether or not the

taxonomy is suitable for the task, and we feel both of them are.

It would be easy to criticize the taxonomy of effortless creation of AV by

stating that the categories do not measure the effort required to create an

animation with a system. In a sense this is true and the taxonomy measures

more like applicability. However, choosing the right tool that can be applied to

the task at hand is important from the effortlessness point of view. As stated

in Publication [P1], in the future the taxonomy should be extended to contain

more categories. These should include topics like usability.

Similar criticism can be pointed towards the taxonomy of algorithm ani-

mation languages. Some features of the existing languages might require their

own subcategory. However, we have included categories for the main features

leaving out some of the most detailed ones. Furthermore, the taxonomy is

intended to be extended in the future as it will be outdated at some point as

AA languages are further developed.

The usefulness of the Xaal language itself can be questioned as well.

Whether or not it is useful remains to be seen, but the large number of suc-

cessful prototypes supports its applicability. In addition, having Xaal already

incorporated in two other systems besides our MatrixPro is an indication of it

being useful. Finally, we must mention that Xaal is the first implementation

of a vision of a working group of AV system developers.

The number of other options is limited. The obvious one is to continue

as before by having every system have its own AA language and, in some

rare cases, make 1-to-1 mappings between languages. This means reinventing

96 Chapter 12. Discussion

the wheel by always starting from scratch. Other option would have been to

develop further some of the existing languages. However, the working group

consisting of many AV system developers made the decision to work towards

a new language.

A more detailed question about Xaal asked by the careful reader could

be: where are the abstract data structures? At its current state, the language

has only basic data structures and the underlying data structure has to be

specified as a property. This was a design choice at this point to limit the

scope of this work, but in the future we see there being many data structures

added as extensions.

What would we do now differently? For the graphical primitives specification

of the working group, the choice of using SVG [141] to specify the graphical

primitives could have been a more beneficial way. The choice of developing

our own specification was taken perhaps too hastily. As Duval and Verbert

state, “the decision to develop a new standard[s] is sometimes taken too quickly

and that, when possible, existing generic standards should be profiled” [34].

Using SVG would have the benefit of having many people already familiar

with the specification. However, the choice of using our own specification can

be defended by the fact that we now have a consistent specification where all

parts use the same conventions. Having, for example, the coordinates specified

differently for graphical primitives than data structures would be confusing.

Furthermore, the SVG specification is so extensive that an AA language would

only need a fraction of its capabilities.

Another matter that, in hindsight, might have been solved differently is

related to the status of the implemented tools. Currently, most of the tools are

on prototype level. Thus, instead of trying out so many transformations, we

might have benefited from concentrating on few and make them more complete

and well documented. The clear benefit of trying out many different format

transformations is that we now know Xaal is suitable for many different uses.

Where is the evaluation? The introduction of new educational tools typically

requires an evaluation of whether or not they are useful for the learners, that

is, are the learning results better with the tools than without them or with

another tool. In our case, however, we have introduced enabling technology

Chapter 12. Discussion 97

to ”do the old thing” – visualize algorithms – that can be used to more easily

create visualization and merge them with online learning material and lecture

material. Thus, we see that the results of the previous studies (see Chapter 3)

gives guidelines on whether or not this is pedagogically sensible. In addition,

we believe that the educational effectiveness of an algorithm visualization de-

pends more on the content of the visualization than on the system used to

view it.

Whether or not our solution better facilitates creation and adoption of AA

in education remains to be seen. There is no way to evaluate the possible

increase in usage of visualizations by teachers due to this work, although it

would have been a suitable evaluation for this research.

The Bigger Problems with Dissemination There are still bigger problems in

the dissemination of algorithm visualization tools. Most of the tools have

been developed in a research project and end up being research prototypes.

Typically, they add some new feature compared to the existing systems, or

simply combine the tried and tested features. And most of the time the work

is started from scratch instead of continuing the work by others. This has

resulted in an increasing number of AV tools, making it difficult for teachers

to choose the best tool for their need.

The nature of academic funding makes it difficult to get resources for pol-

ishing a research prototype to become a software product. When the funding

for the project ends or the student working on the project graduates, the de-

velopment of the tool often ends as well. Thus, many of the AV systems are

not developed further after the required articles have been published. Clearly,

there is a risk of that happening with the tools developed in this work as well.

Some of the successful education tools such as JFLAP [106] and BlueJ [5]

come with a supporting book and resources for teachers. This help in inte-

grating tools into teaching might be crucial in the dissemination of the tools.

The lack of pedagogical guidelines in adopting the tools can possibly be ex-

plained that many of the AV tools are developed by software engineers instead

of people with pedagogical background. Thus, a future challenge of this work

is to create documentation on how to create pedagogically effective animations

using Xaal and the related tools.

98 Chapter 12. Discussion

Chapter 13

Conclusions

We will conclude this work by summarizing the benefits of this work for three

parties concerned: teachers, AV system developers, and students. Finally, we

will introduce some future ideas and directions.

13.1 Benefits of This Work

In addition to discussing how this work has met the original goals, it is impor-

tant to have some benefits for the possible end-users of the products of this

work. The following subsections will discuss the benefits for three groups of

end-users: teachers, AV system developers, and students.

Benefits for Teachers For teachers, we see clear benefits. With MatrixPro

and Animal generators, teachers can effortlessly create algorithm animations

for the topics supported by the tools. The animations can then be included

in slides to be used on lectures, a feature mentioned to be beneficial for both

teachers and students. In addition, teachers can give the animations to stu-

dents to work on outside of class, for example, by integrating them into hyper-

text learning materials with the tool presented in this work. Naturally, lecture

slides and hypertext integration can be achieved from any of the systems that

now (and in the future) support Xaal. Furthermore, the possibility to reuse

visualizations is beneficial for teachers, since the technology presented here

enables choosing from a wider range of ready-made visualizations for various

AV systems.

99

100 Chapter 13. Conclusions

Benefits for AV System Developers At the current state, we see AV system

developers as the group benefiting most of this work. The taxonomy of AA

languages can be used to compare the properties of existing AA languages and

to get ideas for future directions of AA languages.

The Xaal language and the supporting tools provide a way to add import

and export support of different formats into existing systems with manageable

effort. These formats naturally include the lecture slide generation which can

be a good way to promote an AV system. Furthermore, the Xaal anima-

tions can be used in hypertext, providing AV systems a way to integrate their

animations in electronic learning material more seamlessly.

In the long run, having a common core that many authors contribute ex-

tensions would be an ideal situation. However, acceptance of Xaal needs

marketing and promotion, as well as a more polished implementation of the

tools. Still, having two AV systems other than the author’s supporting Xaal is

a good start to the right direction.

Benefits for Students Students are the end-users of educational materials such

as algorithm animations. Hopefully, they are the ones who eventually benefit

from this work. The way we see it, better lecture material for teachers will

benefit the students. In addition, engaging online learning material using the

JavaScript viewer can aid students learning the topics. However, the work pre-

sented here is mainly enabling technology, and it is up to teachers/visualizers

to use and create high quality content that benefits the students.

13.2 Future Work

As can be seen in the evaluation of Xaal in the Section 8.2.1, it does not

have all the necessary features at this point. We have numerous improvements

and ideas for the future of the language, and here we will write down some

of the most interesting ones. The most urgent requirement is naturally to

finish the prototype implementation of the parser and the adapters and gen-

erators. This includes creating documentation for the language specification

with rich examples. This would enable others to more easily use/implement

the language.

Chapter 13. Conclusions 101

The language itself could be extended to include programming concepts

and thus allow the definition of algorithms and program visualization. This

could be achieved, for example, by allowing o:XML1 notation to be included

in Xaal documents. Another alternative would be to allow JavaScript to be

included into the document and offer DOM bindings for the different Xaal ob-

jects. Furthermore, the high-level data structures should be created as exten-

sions to the language. Another direction for the language would be to specify

light-weight variations of the language that could more easily be implemented

by different tools. This approach has been taken, for example, with SVG by

specifying SVG Tiny [143] for cellphones.

On a wider perspective, it would be good to see a community of visualization

tool developers/visualizers working more together. Things that the community

could develop include reusable modules for common features for AV systems

to use. A good example of this is the AVInteraction package [116] that has

been used in other systems as well. Other possible modules are, for example,

graph drawing and animation information storing.

The last interesting future direction would be to get insight whether or

not visualizations are so unused as AV system developers think. The existing

usage surveys are over five years old. The question is, have the extensive

efforts changed the situation? Collecting such data is always tricky. Some

ways to do that would be to trace the usage of the AV systems by enabling, for

example, automatic updates. Furthermore, a good repository with advanced

search functionality, usage logging, and aggressive marketing would gain some

insights into this. This is something the AlgoViz project2 is already aiming

at.

1o:XML is an XML language for object-oriented programming, see http://www.o-xml.org/.
2http://algoviz.org/

102 Chapter 13. Conclusions

Bibliography

[1] Ayonike Akingbade, Thomas Finley, Diana Jackson, Pretesh Patel, and

Susan H. Rodger. JAWAA: easy web-based animation from CS0 to ad-

vanced CS courses. In Proceedings of the 34th SIGCSE technical sympo-

sium on Computer science education, SIGCSE’03, pages 162–166. ACM

Press, 2003.

[2] Ronald M. Baecker. Two systems which produce animated represen-

tations of the execution of computer programs. In Proceedings of

the fifth SIGCSE technical symposium on Computer science education,

SIGCSE’75, pages 158–167. ACM Press, 1975.

[3] Ronald M. Baecker. Sorting out sorting. Narrated colour videotape, 30

minutes, 1981.

[4] Ryan Shaun Baker. PILOT: An interactive tool for learn-

ing and grading, 2000. Senior Thesis. Available online at

http://www.cs.cmu.edu/~rsbaker/pilot.pdf (November 10, 2009).

[5] David J. Barnes and Michael Kölling. Objects First with Java - A Prac-

tical Introduction using BlueJ, Fourth edition. Prentice Hall / Pearson

Education, 2008.

[6] Sarita Bassil and Rudolf K. Keller. Software visualization tools: Sur-

vey and analysis. In Proceedings of the 9th International Workshop on

Program Comprehension, IWPC’01, pages 7–17, Washington, DC, USA,

2001. IEEE Computer Society.

[7] Anna O. Bilska, Kenneth H. Leider, Magdalena Procopiuc, Octavian

Procopiuc, Susan H. Rodger, Jason R. Salemme, and Edwin Tsang. A

103

104 Bibliography

collection of tools for making automata theory and formal languages

come alive. SIGCSE Bulletin, 29(1):15–19, 1997.

[8] Marina Blumenkrants, Hilla Starovisky, and Ariel Shamir. Narrative

algorithm visualization. In Proceedings of the 2006 ACM symposium on

Software visualization, SoftVis’06, pages 17–26, New York, NY, USA,

2006. ACM.

[9] Giancarlo Bongiovanni, Pierluigi Crescenzi, and Gabriella Rago. JAZ:

Java Algorithm visualiZer. a multi-platform collaborative tool for teach-

ing and testing graph algorithms. In Sixth International Conference in

Central Europe on Computer Graphics and Visualization, pages 73–80,

1998.

[10] Vincenzo Bonifaci, Camil Demetrescu, Irene Finocchi, Giuseppe F. Ital-

iano, and Luigi Laura. Portraying algorithms with Leonardo Web. In

Mike Dean, Yuanbo Guo, Woochun Jun, Roland Kaschek, Shonali Krish-

naswamy, Zhengxiang Pan, and Quan Z. Sheng, editors, Web Informa-

tion Systems Engineering, WISE’05 Workshops, volume 3807 of Lecture

Notes in Computer Science, pages 73–83. Springer, 2005.

[11] Marc H. Brown. Perspectives on algorithm animation. In Proceed-

ings of the ACM Conference on Human Factors in Computing Systems,

SIGCHI’88, pages 33–38, Washington DC, USA, May 1988. ACM Press.

[12] Marc H. Brown. Zeus: a system for algorithm animation and multi-view

editing. In Proceedings of IEEE Workshop on Visual Languages, pages

4–9, Kobe, Japan, October 1991.

[13] Marc H. Brown and John Hershberger. Color and sound in algorithm

animation. Computer, 25(12):52–63, 1992.

[14] Marc H. Brown and Marc A. Najork. Algorithm animation using 3D in-

teractive graphics. In Proceedings of the 6th annual ACM symposium on

User interface software and technology, UIST’93, pages 93–100, Atlanta,

Georgia, United States, 1993. ACM Press.

[15] Marc H. Brown and R. Raisamo. JCAT: Collaborative active textbooks

using Java. Computer Networks and ISDN Systems, 29(14):1577–1586,

1997.

Bibliography 105

[16] Marc H. Brown and Robert Sedgewick. A system for algorithm anima-

tion. In Proceedings of the 11th annual conference on Computer graphics

and interactive techniques, SIGGRAPH’84, pages 177–186. ACM Press,

1984.

[17] Marc H. Brown and Robert Sedgewick. Techniques for algorithm anima-

tion. IEEE Software, 2(1):28–39, January 1985.

[18] Michael Bruce-Lockhart, Theodore Norvell, and Pierluigi Crescenzi.

Adding test generation to the Teaching Machine. ACM Transactions

on Computing Education, 9(2):1–14, 2009.

[19] Peter Brusilovsky. Explanatory visualization in an educational pro-

gramming environment: Connecting examples with general knowledge.

Human-Computer Interaction. Lecture Notes in Computer Science.,

876:202–212, 1994.

[20] Peter Brusilovsky. Adaptive hypermedia. User Modeling and User-

Adapted Interaction, 11(1–2):87–110, March 2001.

[21] Peter Brusilovsky, Jonathan Grady, Michael Spring, and Chul-Hwan Lee.

What should be visualized?: faculty perception of priority topics for

program visualization. SIGCSE Bulletin, 38(2):44–48, 2006.

[22] Peter Brusilovsky and Tomasz D. Loboda. WADEIn II: a case for adap-

tive explanatory visualization. In Proceedings of the 11th annual SIGCSE

conference on Innovation and Technology in Computer Science Educa-

tion, ITICSE’06, pages 48–52, New York, NY, USA, 2006. ACM.

[23] Michael D. Byrne, Richard Catrambone, and John T. Stasko. Evaluating

animations as student aids in learning computer algorithms. Computers

& Education, 33(4):253–278, 1999.

[24] Justin Cappos and Patrick Homer. DsCats: Animat-

ing data structures for CS2 and CS3 courses. Techni-

cal paper published online, 2002. Available online at

http://www.cs.arizona.edu/dscats/dscatstechnical.pdf (Novem-

ber 10, 2009).

106 Bibliography

[25] Stuart K. Card, Jock D. Mackinlay, and Ben Shneiderman, editors. Read-

ings in information visualization: using vision to think. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1999.

[26] Kenneth C. Cox and Gruia-Catalin Roman. An evaluation of the Pa-

vane visualization system. Technical Report WUCS-94-09, Washington

University in St Louis, 1994.

[27] Pierluigi Crescenzi, Camil Demetrescu, Irene Finocchi, and Rossella

Petreschi. Reversible execution and visualization of programs with

LEONARDO. Journal of Visual Languages and Computing, 11(2):125–

150, April 2000.

[28] Pierluigi Crescenzi, Giorgio Gambosi, and Roberto Grossi. Strutture di

dati e algoritmi. Progettazione, analisi e visualizzazione. Pearson Edu-

cation Italia, 2006.

[29] Pierluigi Crescenzi and Carlo Nocentini. Fully integrating algorithm

visualization into a CS2 course.: a two-year experience. In Proceedings

of the 12th annual SIGCSE conference on Innovation and Technology

in Computer Science Education, ITiCSE’07, pages 296–300, New York,

NY, USA, 2007. ACM Press.

[30] Camil Demetrescu and Irene Finocchi. Smooth animation of algorithms

in a declarative framework. Journal of Visual Languages and Computing,

12(3):253–281, 2001.

[31] Camil Demetrescu, Irene Finocchi, and Giuseppe F. Italiano. Algorithms

and Data Structures (in Italian). McGraw Hill, 2004.

[32] Stephan Diehl. Software visualization: Visualizing the Structure, Be-

haviour, and Evolution of Software. Springer New York, 2007.

[33] Robert A. Duisberg. Animated graphical interfaces using temporal con-

straints. In Proceedings of the SIGCHI conference on Human factors in

computing systems, CHI’86, pages 131–136, New York, NY, USA, 1986.

ACM.

[34] Erik Duval and Katrien Verbert. On the role of technical standards

for learning technologies. Learning Technologies, IEEE Transactions on,

1(4):229–234, Oct.-Dec. 2008.

Bibliography 107

[35] Ecma International. ECMAScript language specification, 3rd ed. Tech-

nical report, Ecma International, December 1999.

[36] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C. North,

and Gordon Woodhull. Graphviz – open source graph drawing tools.

Lecture Notes in Computer Science, 2265/2002:594–597, 2002.

[37] David Furcy, Thomas Naps, and Jason Wentworth. Sorting out sorting:

the sequel. In Proceedings of the 13th annual conference on Innovation

and Technology in Computer Science Education, ITiCSE’08, pages 174–

178, New York, NY, USA, 2008. ACM.

[38] R. L. Glass, I. Vessey, and V. Ramesh. Research in software engineer-

ing: an analysis of the literature. Information and Software Technology,

44(8):491 – 506, 2002.

[39] Scott Grissom, Myles F. McNally, and Tom Naps. Algorithm visual-

ization in CS education: comparing levels of student engagement. In

Proceedings of the 2003 ACM symposium on Software visualization, Soft-

Vis’03, pages 87–94, New York, NY, USA, 2003. ACM Press.

[40] Judith S. Gurka and Wayne Citrin. Testing effectiveness of algorithm

animation. In Proceedings of the 1996 IEEE Symposium on Visual Lan-

guages, pages 182–189, Washington, DC, USA, 1996. IEEE Computer

Society.

[41] Steven R. Hansen, N. Hari Narayanan, and Dan Schrimpsher. Helping

learners visualize and comprehend algorithms. Interactive Multimedia

Electronic Journal of Computer-Enhanced Learning, 2(1), May 2000.

[42] T. Dean Hendrix, James H. Cross, II, and Larry A. Barowski. An exten-

sible framework for providing dynamic data structure visualizations in a

lightweight ide. In Proceedings of the 35th SIGCSE technical symposium

on Computer Science Education, SIGCSE’04, pages 387–391, New York,

NY, USA, 2004. ACM.

[43] Ivan Herman and M. Scott Marshall. GraphXML - an XML-based graph

description format. In Graph Drawing, pages 52–62, 2000.

108 Bibliography

[44] F. R. A. Hopgood. Computer animation used as a tool in teaching

computer science. In Proceedings of the IFIP Congress, pages 889–892,

1974.

[45] Teresa Hübscher-Younger and N. Hari Narayanan. Dancing hamsters

and marble statues: characterizing student visualizations of algorithms.

In Proceedings of the 2003 ACM symposium on Software Visualization,

SoftVis’03, pages 95–104, New York, NY, USA, 2003. ACM.

[46] Christopher D. Hundhausen. Integrating algorithm visualization tech-

nology into an undergraduate algorithms course: ethnographic studies

of a social constructivist approach. Computers & Education, 39(3):237

– 260, 2002.

[47] Christopher D. Hundhausen and Jonathan L. Brown. Designing, visu-

alizing, and discussing algorithms within a CS 1 studio experience: An

empirical study. Computers & Education, 50(1):301 – 326, 2008.

[48] Christopher D. Hundhausen and Jonathan Lee Brown. What you see is

what you code: A ”radically-dynamic” algorithm visualization develop-

ment model for novice learners. In Proceedings IEEE 2005 Symposium

on Visual Languages and Human-Centric Computing, 2005.

[49] Christopher D. Hundhausen and Sarah A. Douglas. Low-fidelity al-

gorithm visualization. Journal of Visual Languages and Computing,

13(5):449–470, October 2002.

[50] Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko. A

meta-study of algorithm visualization effectiveness. Journal of Visual

Languages and Computing, 13(3):259–290, June 2002.

[51] The EDUCAUSE Learning Initiative. 7 things you

should know about screencasting. Technical report, ED-

UCAUSE Learning Initiative, 2006. Available online at

http://www.educause.edu/ir/library/pdf/ELI7012.pdf (November

10, 2009).

[52] Jhilmil Jain, James H. Cross II, T. Dean Hendrix, and Larry A.

Barowski. Experimental evaluation of animated-verifying object viewers

Bibliography 109

for Java. In Proceedings of the 2006 ACM Symposium on Software Vi-

sualization, SoftVis’06, pages 27–36, New York, NY, USA, 2006. ACM

Press.

[53] Duane J. Jarc, Michael B. Feldman, and Rachelle S. Heller. Assessing the

benefits of interactive prediction using web-based algorithm animation

courseware. In The proceedings of the thirty-first SIGCSE technical sym-

posium on Computer science education, pages 377–381, Austin, Texas,

2000. ACM Press, New York.

[54] Duane Jeffrey Jarc. Assessing the Benefits of Interactivity and the In-

fluence of Learning Styles on the Effectiveness of Algorithm Animation

using Web-based Data Structures Courseware. Doctoral dissertation, The

George Washington University, 1999.

[55] Ville Karavirta. XAAL - extensible algorithm animation language.

Master’s thesis, Department of Computer Science and Engineering,

Helsinki University of Technology, December 2005. Available online

at http://www.cs.hut.fi/Research/SVG/publications/karavirta-

masters.pdf (November 10, 2009).

[56] Ville Karavirta and Ari Korhonen. Automatic tutoring question gen-

eration during algorithm simulation. In Anders Berglund and Mattias

Wiggberg, editors, Proceedings of the 6th Finnish/Baltic Sea Conference

on Computer Science Education, pages 95–100, 2006.

[57] Ville Karavirta, Ari Korhonen, and Lauri Malmi. Taxonomy of algorithm

animation languages. In Proceedings of the 2006 ACM symposium on

Software Visualization, SoftVis’06, pages 77–85, New York, NY, USA,

September 2006. ACM Press.

[58] Ville Karavirta, Ari Korhonen, Lauri Malmi, and Kimmo St̊alnacke. Ma-

trixPro – A tool for on-the-fly demonstration of data structures and al-

gorithms. In Proceedings of the Third Program Visualization Workshop,

PVW’04, pages 26–33, The University of Warwick, UK, July 2004.

[59] Ville Karavirta, Ari Korhonen, Jussi Nikander, and Petri Tenhunen. Ef-

fortless creation of algorithm visualization. In Proceedings of the Second

110 Bibliography

Annual Finnish / Baltic Sea Conference on Computer Science Educa-

tion, pages 52–56, October 2002.

[60] Ville Karavirta, Ari Korhonen, and Petri Tenhunen. Survey of effort-

lessness in algorithm visualization systems. In Proceedings of the Third

Program Visualization Workshop, PVW’04, pages 141–148, The Univer-

sity of Warwick, UK, July 2004.

[61] Colleen Kehoe, John T. Stasko, and Ashley Taylor. Rethinking the

evaluation of algorithm animations as learning aids: an observational

study. International Journal of Human-Computer Studies, 54(2):265–

284, 2001.

[62] Sami Khuri and Klaus Holzapfel. Evega: an educational visulalization

environment for graph algorithms. In Proceedings of the 6th annual con-

ference on Innovation and Technology in Computer Science Education,

ITiCSE’01, pages 101–104, New York, NY, USA, 2001. ACM.

[63] Sami Khuri and Hsiu-Chin Hsu. Interactive packages for learning image

compression algorithms. SIGCSE Bulletin, 32(3):73–76, 2000.

[64] Kenneth C. Knowlton. L6: Bell telephone laboratories low-level linked

list language. 16 mm black and white sound film, 16 minutes, 1966.

[65] Ari Korhonen. Visual Algorithm Simulation. Doctoral dissertation (tech

rep. no. TKO-A40/03), Helsinki University of Technology, 2003.

[66] Ari Korhonen and Lauri Malmi. Matrix — Concept animation and algo-

rithm simulation system. In Proceedings of the Working Conference on

Advanced Visual Interfaces, AVI’02, pages 109–114, Trento, Italy, May

2002. ACM Press, New York.

[67] Ari Korhonen, Erkki Sutinen, and Jorma Tarhio. Understanding al-

gorithms by means of visualized path testing. In Stephan Diehl, ed-

itor, Software Visualization: International Seminar, pages 256–268,

Dagstuhl, Germany, 2002. Springer.

[68] Eileen Kraemer and John T. Stasko. The visualization of parallel sys-

tems: An overview. Journal of Parallel and Distributed Computing,

18(2):105 – 117, 1993.

Bibliography 111

[69] Markus Krebs, Tobias Lauer, Thomas Ottmann, and Stephan Trahasch.

Student-built algorithm visualizations for assessment: flexible genera

tion, feedback and grading. In Proceedings of the 10th annual SIGCSE

conference on Innovation and Technology in Computer Science Educa-

tion, ITiCSE’05, pages 281–285, New York, NY, USA, 2005. ACM Press.

[70] Mikko-Jussi Laakso, Niko Myller, and Ari Korhonen. Analyzing the ex-

tended engagement taxonomy in collaborative algorithm visualization.

Journal of Educational Technology & Society, 2008. Accepted for publi-

cation.

[71] Essi Lahtinen. Integrating the use of visualizations to teaching pro-

gramming. In H.-M. Järvinen and K. Alamutka, editors, Proceedings of

Methods, Materials and Tools for Programming Education Conference,

pages 7–13, Tampere, Finland, 2006.

[72] Essi Lahtinen, Hannu-Matti Järvinen, and Suvi Melakoski-Vistbacka.

Targeting program visualizations. In Proceedings of the 12th annual

SIGCSE conference on Innovation and Technology in Computer Science

Education, ITiCSE’07, pages 256–260, New York, NY, USA, 2007. ACM.

[73] Jill H. Larkin and Herbert A. Simon. Why a diagram is (sometimes)

worth ten thousand words. Cognitive Science, 11(1):65–100, 1987.

[74] Tobias Lauer. Learner interaction with algorithm visualizations: view-

ing vs. changing vs. constructing. In Proceedings of the 11th annual

SIGCSE conference on Innovation and Technology in Computer Science

Education, ITiCSE’06, pages 202–206, New York, NY, USA, 2006. ACM

Press.

[75] Tobias Lauer. Reevaluating and refining the engagement taxonomy. In

Proceedings of the 13th annual conference on Innovation and Technology

in Computer Science Education, ITiCSE’08, page 355, New York, NY,

USA, 2008. ACM.

[76] Andrea Lawrence, Albert Badre, and John T. Stasko. Empirically eval-

uating the use of animations to teach algorithms. In Proceedings of the

1994 IEEE Symposium on Visual Languages, St. Louis, MO, pages 48–

54, 1994.

112 Bibliography

[77] Tomasz D. Loboda, Atanas Frengov, Amruth N. Kumar, and Peter

Brusilovsky. Distributed framework for adaptive explanatory visualiza-

tion. In Proceedings of the Fourth Program Visualization Workshop,

PVW’06, volume 178 of Electronic Notes in Theoretical Computer Sci-

ence, pages 145–152, Amsterdam, The Netherlands, 2007. Elsevier Sci-

ence Publishers B. V.

[78] Jan Lönnberg, Ari Korhonen, and Lauri Malmi. MVT — a system for

visual testing of software. In Proceedings of the Working Conference on

Advanced Visual Interfaces, AVI’04, pages 385–388, May 2004.

[79] Jonathan I. Maletic, Andrian Marcus, and Michael L. Collard. A task

oriented view of software visualization. Proceedings of First Interna-

tional Workshop on Visualizing Software for Understanding and Analy-

sis, pages 32–40, 2002.

[80] Lauri Malmi, Ville Karavirta, Ari Korhonen, Jussi Nikander, Otto

Seppälä, and Panu Silvasti. Visual algorithm simulation exercise sys-

tem with automatic assessment: TRAKLA2. Informatics in Education,

3(2):267–288, 2004.

[81] Myles McNally, Thomas Naps, David Furcy, Scott Grissom, and Chris-

tian Trefftz. Supporting the rapid development of pedagogically effective

algorithm visualizations. Journal of Computing Sciences in Colleges,

23(1):80–90, 2007.

[82] Andrés Moreno. Program animation activities in moodle. In Proceedings

of the 13th annual conference on Innovation and Technology in Computer

Science Education, ITiCSE’08, pages 361–361, New York, NY, USA,

2008. ACM.

[83] Andrés Moreno, Niko Myller, Erkki Sutinen, and Mordechai Ben-Ari.

Visualizing programs with Jeliot 3. In Proceedings of the International

Working Conference on Advanced Visual Interfaces, AVI’04, pages 373

– 376, Gallipoli (Lecce), Italy, May 2004. ACM.

[84] Brad A. Myers. Visual programming, programming by example, and

program visualization: a taxonomy. SIGCHI Bulletin, 17(4):59–66, 1986.

Bibliography 113

[85] Brad A. Myers. Taxonomies of visual programming and program visu-

alization. Journal of Visual Languages and Computing, 1:97–123, 1990.

[86] Niko Myller. Automatic generation of prediction questions during pro-

gram visualization. In Proceedings of the Fourth Program Visualization

Workshop, PVW’06, volume 178 of Electronic Notes in Theoretical Com-

puter Science, pages 43–49, Amsterdam, The Netherlands, 2007. Elsevier

Science Publishers B. V.

[87] Niko Myller, Roman Bednarik, Erkki Sutinen, and Mordechai Ben-Ari.

Extending the engagement taxonomy: Software visualization and col-

laborative learning. ACM Transactions on Computing Education, 9(1),

March 2009.

[88] Niko Myller, Mikko Laakso, and Ari Korhonen. Analyzing engagement

taxonomy in collaborative algorithm visualization. In Proceedings of

the 12th annual SIGCSE conference on Innovation and Technology in

Computer Science Education, ITiCSE’07, pages 251–255. ACM, 2007.

[89] Fernando Naharro-Berrocal, Cristóbal Pareja-Flores, J. Ángel Velázquez-

Iturbide, and Margarita Mart́ınez-Santamarta. Automatic web publish-

ing of algorithm animation. Upgrade, II(2):41–45, 2001.

[90] Marc Najork. Web-based algorithm animation. In Proceedings of the 38th

conference on Design automation, DAC’01, pages 506–511, Las Vegas,

Nevada, United States, 2001. ACM Press.

[91] Thomas Naps, Myles McNally, and Scott Grissom. Realizing XML-

driven algorithm visualization. In Proceedings of the Fourth Program

Visualization Workshop, PVW’06, volume 178 of Electronic Notes in

Theoretical Computer Science, pages 129–135, Amsterdam, The Nether-

lands, 2007. Elsevier Science Publishers B. V.

[92] Thomas L. Naps. JHAVÉ: Supporting Algorithm Visualization. Com-

puter Graphics and Applications, IEEE, 25(5):49–55, 2005.

[93] Thomas L. Naps, James R. Eagan, and Laura L. Norton. JHAVÉ: An

environment to actively engage students in web-based algorithm visual-

izations. In Proceedings of the SIGCSE Session, pages 109–113, Austin,

Texas, March 2000. ACM Press, New York.

114 Bibliography

[94] Thomas L. Naps and Guido Rößling. JHAVÉ – more visualizers (and

visualizations) needed. In Proceedings of the Fourth Program Visualiza-

tion Workshop, PVW’06, volume 178 of Electronic Notes in Theoretical

Computer Science, pages 33–41, Amsterdam, The Netherlands, 2007.

Elsevier Science Publishers B. V.

[95] Thomas L. Naps, Guido Rößling, Vicki Almstrum, Wanda Dann, Rudolf

Fleischer, Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles Mc-

Nally, Susan Rodger, and J. Ángel Velázquez-Iturbide. Exploring the role

of visualization and engagement in computer science education. SIGCSE

Bulletin, 35(2):131–152, June 2003.

[96] Thomas L. Naps, Guido Rößling, Jay Anderson, Stephen Cooper, Wanda

Dann, Rudolf Fleischer, Boris Koldehofe, Ari Korhonen, Marja Kuitti-

nen, Charles Leska, Lauri Malmi, Myles McNally, Jarmo Rantakokko,

and Rockford J. Ross. Evaluating the educational impact of visualiza-

tion. SIGCSE Bulletin, 35(4):124–136, December 2003.

[97] Thomas L. Naps, Guido Rößling, Peter Brusilovsky, John English, Duane

Jarc, Ville Karavirta, Charles Leska, Myles McNally, Andrés Moreno,

Rockford J. Ross, and Jaime Urquiza-Fuentes. Development of XML-

based tools to support user interaction with algorithm visualization.

SIGCSE Bulletin, 37(4):123–138, December 2005.

[98] Tom Noda and Shawn Helwig. Rich internet applications, best

practices report. Technical report, UW E-Business Consor-

tium, University of Wisconsin-Madison, 2005. Available online at

http://www.uwebc.org/opinionpapers/docs/RIA.pdf (November 10,

2009).

[99] Object Management Group. Unified Modeling Language (UML), version

1.5, 2003.

[100] Cristóbal Pareja-Flores, Jamie Urquiza-Fuentes, and J. Ángel Velázquez-

Iturbide. WinHIPE: an ide for functional programming based on rewrit-

ing and visualization. ACM SIGPLAN Notices, 42(3):14–23, 2007.

[101] Willard C. Pierson and Susan H. Rodger. Web-based animation of data

structures using JAWAA. In Proceedings of the 29th SIGCSE Technical

Bibliography 115

Symposium on Computer Science Education, SIGCSE’98, pages 267–

271, Atlanta, GA, USA, 1998. ACM Press, New York.

[102] Blaine A. Price, Ronald M. Baecker, and Ian S. Small. A principled

taxonomy of software visualization. Journal of Visual Languages and

Computing, 4(3):211–266, 1993.

[103] Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski.

ViLLE — a language-independent program visualization tool. In Ray-

mond Lister and Simon, editors, Seventh Baltic Sea Conference on Com-

puting Education Research, volume 88 of CRPIT, pages 151–159, Koli

National Park, Finland, 2007. ACS.

[104] Teemu Rajala, Mikko-Jussi Laakso, Erkki Kaila, and Tapio Salakoski.

Effectiveness of program visualization: A case study with the ViLLE

tool. Journal of Information Technology Education: Innovations in Prac-

tice, 7:15–32, 2008.

[105] Philippa Rhodes, Eileen Kraemer, Ashley Hamilton-Taylor, Sujith

Thomas, Matthew Ross, Elizabeth Davis, Kenneth Hailston, and Keith

Main. Vizeval: An experimental system for the study of program visu-

alization quality. In Proceedings of the Visual Languages and Human-

Centric Computing, pages 55–58, Washington, DC, USA, 2006. IEEE

Computer Society.

[106] Susan H. Rodger and Thomas W. Finley. JFLAP: An Interactive Formal

Languages and Automata Package. Jones & Bartlett Publishers, 2006.

[107] Gruia-Catalin Roman and Kenneth C. Cox. A taxonomy of program

visualization systems. IEEE Computers, pages 97–123, December 1993.

[108] Gruia-Catalin Roman, Kenneth C. Cox, C. Donald Wilcox, and

Jerome Y. Plun. Pavane: A system for declarative visualization of

concurrent computations. Journal of Visual Languages and Computing,

3(2):161–193, 1992.

[109] Rockford J. Ross and Michael T. Grinder. Hypertextbooks: Animated,

active learning, comprehensive teaching and learning resources for the

web. In Stephan Diehl, editor, Software Visualization: International

Seminar, pages 269–283, Dagstuhl, Germany, 2002. Springer.

116 Bibliography

[110] Guido Rößling. Animal-Farm: An Extensible Framework for Algorithm

Visualization. Phd thesis, University of Siegen, Germany, 2002. Available

online at http://www.ub.uni-siegen.de/epub/diss/roessling.htm

(November 10, 2009).

[111] Guido Rößling. A first set of design patterns for algorithm animation.

In Proceedings of the Fifth Program Visualization Workshop, PVW’08,

volume 224 of Electronic Notes in Theoretical Computer Science, pages

67–76, Amsterdam, The Netherlands, 2009. Elsevier Science Publishers

B. V.

[112] Guido Rößling and Tobias Ackermann. A Framework for Generating

AV Content on-the-fly. In Proceedings of the Fourth Program Visual-

ization Workshop, PVW’06, volume 178, pages 23–31, Amsterdam, The

Netherlands, 2007. Elsevier Science Publishers B. V.

[113] Guido Rößling and Bernd Freisleben. Program visualization using An-

imalScript. In Proceedings of the First Program Visualization Work-

shop, PVW’00, pages 41–52, University of Joensuu, Finland, 2000.

[114] Guido Rößling and Bernd Freisleben. ANIMAL: A system for supporting

multiple roles in algorithm animation. Journal of Visual Languages and

Computing, 13(3):341–354, 2002.

[115] Guido Rößling, Felix Gliesche, Thomas Jajeh, and Thomas Widjaja. En-

hanced expressiveness in scripting using AnimalScript 2. In Proceedings

of the Third Program Visualization Workshop, PVW’04, pages 10–17,

The University of Warwick, UK, July 2004.

[116] Guido Rößling and Gina Häussage. Towards tool-independent interac-

tion support. In Proceedings of the Third Program Visualization Work-

shop, PVW’04, pages 110–117, The University of Warwick, UK, July

2004.

[117] Guido Rößling, Lauri Malmi, Michael Clancy, Mike Joy, Andreas Kerren,

Ari Korhonen, Andrés Moreno, Thomas Naps, Rainer Oechsle, Atanas

Radenski, Rockford J. Ross, and J. Ángel Velázquez Iturbide. Enhanc-

ing learning management systems to better support computer science

education. SIGCSE Bulletin, 40(4):142–166, 2008.

Bibliography 117

[118] Guido Rößling, Stephan Mehlhase, and Jens Pfau. A java API for cre-

ating (not only) AnimalScript. In Proceedings of the Fifth Program

Visualization Workshop, PVW’08, volume 224 of Electronic Notes in

Theoretical Computer Science, pages 15 – 25, Amsterdam, The Nether-

lands, 2009. Elsevier Science Publishers B. V.

[119] Guido Rößling, Thomas Naps, Mark S. Hall, Ville Karavirta, An-

dreas Kerren, Charles Leska, Andrés Moreno, Rainer Oechsle, Susan H.

Rodger, Jaime Urquiza-Fuentes, and J. Ángel Velázquez-Iturbide. Merg-

ing interactive visualizations with hypertextbooks and course manage-

ment. SIGCSE Bulletin, 38(4):166–181, 2006.

[120] Guido Rößling and Thomas L. Naps. A testbed for pedagogical re-

quirements in algorithm visualizations. In Proceedings of the 7th An-

nual SIGCSE Conference on Innovation and Technology in Computer

Science Education, ITiCSE’02, pages 96–100, Aarhus, Denmark, 2002.

ACM Press, New York.

[121] Guido Rößling and Thomas L. Naps. Towards intelligent tutoring in

algorithm visualization. In Second International Program Visualization

Workshop, PVW’02, pages 125–130, Aarhus, Denmark, 2002. University

of Aarhus, Department of Computer Science.

[122] Guido Rößling and Teena Vellaramkalayil. First steps towards a

visualization-based computer science hypertextbook as a moodle module.

In Proceedings of the Fifth Program Visualization Workshop, PVW’08,

volume 224 of Electronic Notes in Theoretical Computer Science, pages

47 – 56, 2009.

[123] Purvi Saraiya, Clifford A. Shaffer, D. Scott McCrickard, and Chris

North. Effective features of algorithm visualizations. In Proceedings of

the 35th SIGCSE technical symposium on Computer Science Education,

SIGCSE’04, pages 382–386, New York, NY, USA, 2004. ACM.

[124] Otto Seppälä and Ville Karavirta. Work in progress: Automatic genera-

tion of algorithm animations for lecture slides. In Proceedings of the Fifth

Program Visualization Workshop, PVW’08, volume 224 of Electronic

Notes in Theoretical Computer Science, pages 97–103, Amsterdam, The

Netherlands, 2009. Elsevier Science Publishers B. V.

118 Bibliography

[125] Clifford A. Shaffer, Matthew Cooper, and Stephen H. Edwards. Algo-

rithm visualization: a report on the state of the field. In Proceedings of

the 38th SIGCSE technical symposium on Computer Science Education,

SIGCSE’07, pages 150–154, New York, NY, USA, 2007. ACM Press.

[126] Maria Shneerson and Ayellet Tal. GASP-II: a geometric algorithm an-

imation system for an electronic classroom. In Proceedings of the thir-

teenth annual symposium on Computational Geometry, SCG’97, pages

379–381, New York, NY, USA, 1997. ACM.

[127] Ben Shneiderman. Direct manipulation: A step beyond programming

languages. IEEE Computer, 16(8):57–69, Aug. 1983.

[128] John T. Stasko. Jsamba – java version of the SAMBA anima-

tion program. Available online at http://www.cc.gatech.edu/gvu/

softviz/algoanim/jsamba/.

[129] John T. Stasko. TANGO: A framework and system for algorithm ani-

mation. IEEE Computer, 23(9):27–39, 1990.

[130] John T. Stasko. Using direct manipulation to build algorithm animations

by demonstration. In Proceedings of Conference on Human Factors and

Computing Systems, pages 307–314, New Orleans, Louisiana, USA, 1991.

ACM, New York.

[131] John T. Stasko. Using student-built algorithm animations as learning

aids. In The Proceedings of the 28th SIGCSE Technical Symposium on

Computer Science Education, pages 25–29, San Jose, CA, USA, 1997.

ACM Press, New York.

[132] John T. Stasko, Albert Badre, and Clayton Lewis. Do algorithm anima-

tions assist learning? An empirical study and analysis. In Proceedings of

the INTERCHI Conference on Human Factors on Computing Systems,

pages 61–66, Amsterdam, Netherlands, 1993. ACM Press, New York.

[133] John T. Stasko and Eileen Kraemer. A methodology for building

application-specific visualizations of parallel programs. Journal of Par-

allel and Distributed Computing, 18(2):258–264, 1993.

Bibliography 119

[134] John T. Stasko and Charles Patterson. Understanding and character-

izing software visualization systems. In The Proceedings of the IEEE

Workshop on Visual Languages, pages 3–10, Seattle, WA, USA, 1992.

[135] John T. Stasko and Joseph F. Wehrli. Three-dimensional computation

visualization. Proceedings of the 1993 IEEE Symposium on Visual Lan-

guages, pages 100–107, Aug 1993.

[136] David Scot Taylor, Andrei F. Lurie, Cay S. Horstmenn, Menko B. John-

son, Sean K. Sharma, and Edward C. Yin. Predictive vs. passive anima-

tion learning tools. In Proceedings of the 40th ACM technical symposium

on Computer Science Education, SIGCSE’09, pages 494–498, New York,

NY, USA, 2009. ACM.

[137] Jaime Urquiza-Fuentes and J. Ángel Velázquez-Iturbide. An evaluation

of the effortless approach to build algorithm animations with WinHIPE.

In Proceedings of the Fourth Program Visualization Workshop, PVW’06,

volume 178 of Electronic Notes in Theoretical Computer Science, pages

3–13, Amsterdam, The Netherlands, 2007. Elsevier Science Publishers

B. V.

[138] Jaime Urquiza-Fuentes and J. Ángel Velázquez-Iturbide. Pedagogical ef-

fectiveness of engagement levels - a survey of successful experiences. In

Proceedings of the Fifth Program Visualization Workshop, PVW’08, vol-

ume 224 of Electronic Notes in Theoretical Computer Science, pages 169

– 178, Amsterdam, The Netherlands, 2009. Elsevier Science Publishers

B. V.

[139] J. Ángel Velázquez-Iturbide, Cristóbal Pareja-Flores, and Jaime

Urquiza-Fuentes. An approach to effortless construction of program an-

imations. Computers & Education, 50(1):179 – 192, 2008.

[140] W3C. XSL Transformations (XSLT) 1.0 specification. W3C Recommen-

dation, World Wide Web Consortium, 1999.

[141] W3C. Scalable Vector Graphics (SVG) 1.0 specification. W3C Recom-

mendation, World Wide Web Consortium, 2001.

[142] W3C. Cascading Style Sheets, CSS 2.1 specification. W3C Candidate

Recommendation, World Wide Web Consortium, July 2007.

120 Bibliography

[143] W3C. Scalable Vector Graphics (SVG) Tiny 1.2 specification. W3C

Recommendation, World Wide Web Consortium, 2008.

[144] Mingshen Wu. Teaching graph algorithms using online java package

IAPPGA. SIGCSE Bulletin, 37(4):64–68, 2005.

