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The global demand of mining products has increased during recent years, and there is pressure to improve the efficiency of
mines and concentration processes. This thesis focuses on froth flotation, which is one of the most common concentration
methods in mineral engineering. Froth flotation is used to separate valuable minerals from mined ore that has been crushed,
mixed with water and ground to a small particle size. The separation is based on differences in the surface chemical
properties of the minerals. Monitoring and control of flotation processes mainly relies on the on-line analysis of the process
slurry streams. Traditionally, the analysis is performed using X-ray fluorescence (XRF) analyzers that measure the
elemental contents of the solids in the slurries.

The thesis investigates the application of visual and near-infrared (VNIR) reflectance spectroscopy to improve the on-line
analysis of mineral flotation froths and slurries. In reflectance spectroscopy the sample is illuminated and the spectrum of
the reflected light is captured by a spectrograph. The main benefits of VNIR reflectance spectroscopy with respect to
XRF-based analysis are the relatively low cost of the equipment required and the easy and fast measurement process. As a
consequence, the sampling rate of the reflectance spectrum measurement is radically faster than in the XRF analysis.
Data-based modeling is applied to the measured VNIR spectra to calculate the corresponding elemental contents. The
research is conducted at a real copper and zinc flotation process.

The main results of the thesis show that VNIR reflectance spectroscopy can be used to measure temporal changes in the
elemental contents of mineral flotation froths and slurries in the analyzed process. Especially the slurry measurements from
the final concentrates provide accurate information on the slurry contents. A multi-channel slurry VNIR analyzer prototype
is developed in this thesis. When combined with an XRF analyzer, it is able to measure the slurry lines with a very fast
sampling rate. This considerably improves the monitoring and control possibilities of the flotation process. The proposed
VNIR analyzer is adaptively calibrated with the sparse XRF measurements to compensate for the effect of changes in other
slurry properties. The high-frequency slurry analysis is shown to reveal fast grade changes and grade oscillations that the
XRF analyzer is unable to detect alone. Based on the new measurement, a plant-wide study of the harmful grade oscillations
is conducted in order to improve the performance of the flotation process.
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Kaivosteollisuuden tuotteiden kansainvälinen kysyntä on lisääntynyt viimeisten vuosien aikana, minkä seurauksena
kaivokset ja rikastamot pyrkivät nostamaan suorituskykyään. Väitöskirjassa keskitytään vaahdotusrikastukseen, joka on yksi
yleisimmistä rikastusmenetelmistä. Vaahdotuksessa murskatusta ja veteen sekoitettuna hienoksi jauhetusta malmista
erotetaan arvomineraalit hyödyntäen eroja mineraalien pintakemiallisissa ominaisuuksissa. Vaahdotusprosessin monitorointi
ja säätö perustuu pääosin prosessin lietevirtausten on-line-pitoisuusanalyysiin. Perinteisesti pitoisuusanalyysiin käytetään
röntgenfluoresenssianalysaattoreita, jotka mittaavat lietteen kiintoaineen alkuainepitoisuuksia.

Väitöskirjassa tutkitaan näkyvän ja lähi-infrapuna-alueen heijastusspektroskopian soveltamista mineraalivaahdotuksen
vaahtojen ja lietteiden pitoisuusmittausten parantamiseen. Heijastusspektroskopiassa näyte valaistaan ja heijastuneen valon
spektri mitataan spektrometrillä. Heijastusspektroskopian tärkeimmät edut röntgenfluoresenssiin perustuvaan analyysiin
verrattuna ovat tarvittavan laitteiston suhteellinen edullisuus sekä mittauksen helppous ja nopeus. Tästä johtuen
reflektanssispektrimittauksen mittaustaajuus pystytään nostamaan huomattavasti korkeammaksi kuin
röntgenfluoresenssianalyysissä. Lietteen alkuainepitoisuusarvot lasketaan mitatusta spektridatasta datapohjaisilla
mallitusmenetelmillä. Tutkimus keskittyy todellisen kupari- ja sinkkivaahdotusprosessin lietevirtausten analysointiin.

Väitöskirjan päätuloksena osoitetaan, että näkyvän ja lähi-infrapuna-alueen heijastusspektroskopia soveltuu
mineraalivaahdotuksen vaahtojen ja lietteiden alkuainepitoisuuksien vaihteluiden mittaamiseen tarkasteltavassa prosessissa.
Varsinkin rikastelietteistä mitatuista spektreistä pystytään tarkasti laskemaan vastaavat pitoisuudet. Väitöskirjassa kehitetään
monikanavainen prototyyppilaitteisto, joka mittaa lietteen heijastusspektrin ja yhdistettynä
röntgenfluoresenssianalysaattoriin analysoi lietelinjan pitoisuudet hyvin korkealla näytteenottotaajuudella. Tämä parantaa
merkittävästi vaahdotusprosessin monitorointi- ja säätömahdollisuuksia. Lietteen ominaisuuksien vaihteluiden vaikutukset
analyysiin eliminoidaan kalibroimalla pitoisuuslaskentaa harvoilla röntgenfluoresenssimittauksilla. Työssä osoitetaan, että
korkeataajuisesta heijastusspektrianalyysistä voidaan havaita sellaisetkin nopeat pitoisuusmuutokset ja värähtelyt, joita
pelkällä röntgenfluoresenssianalysaattorilla ei pystytä mittaamaan. Uutta pitoisuusmittausta sovelletaan työssä myös koko
prosessin kattavaan haitallisten värähtelyiden analyysiin, jonka tavoitteena on prosessin suorituskyvyn parantaminen.
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Chapter 1

Introduction

The worldwide demand for mining products peaked during the years 2006–2008,
causing the metal and ore prices to rise accordingly. As a result, mineral deposits
with poorer ores became economically feasible as well. New mining operations were
planned and the operation of old ones could be extended by exploiting the existing ore
reserves more carefully. The current economic recession, however, affected drastically
the consumption and prices, which together with the lower grade ores emphasizes the
importance of the concentration process performance. At the same time, tightened
environmental requirements encourage the operations to strive for better sustain-
ability. In concentration plants utilizing froth flotation, which is one of the most
typical ore beneficiation methods, the more effective operation generally means that
less valuable minerals are allowed in the tailings and the concentrate grade should
be maximized, whereas the consumption of flotation chemicals and energy should be
minimized.

1.1 Background and Motivation
The on-line analysis or assaying of the process streams in a flotation circuit forms the
basis for process monitoring and control as well as for the evaluation of the concentra-
tion performance at the plant (McKee, 1991; Wills and Napier-Munn, 2006). On-line
process analyzers utilizing X-ray fluorescence (XRF) have traditionally been used for
assaying the streams particularly in base metal mineral processing (Braden et al.,
2002; Cooper, 1976). The analysis is based on the measurement of the characteristic
fluorescent radiation emitted by different elements when excited with high-energy
X-ray radiation. However, the sequential measurement of several slurry lines by the
same device and the time taken by the XRF analysis have restricted the sampling
rate of the analysis especially in larger flotation plants that process complex ores.

Flotation froth structure and color analysis by machine vision has been widely
studied as a supplemental method for analyzing the state of flotation cells (see e.g.
Bartolacci et al., 2006; Kaartinen et al., 2006b; Liu and MacGregor, 2008; Morar
et al., 2005). It is generally accepted that froth color and mineral grade correlate
in certain flotation processes. However, there are very few real process applications
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2 1. Introduction

where the color information had been used for analyzing the grade of froths or slurries.
Instead, other froth characteristics like froth speed and bubble size have proven to
be more reliable and useful variables for process monitoring and control purposes.

The measurement of color in general has recently been improved by the develop-
ment of devices in the field of reflectance spectroscopy. Especially the properties of
imaging spectrographs capable of hyperspectral imaging in visible and near-infrared
wavelengths have significantly developed during the last decade. Some of the new
possibilities enabled by these devices are utilized in this thesis.

1.2 Objectives and Scope of the Thesis
The thesis considers the reflectance spectral analysis of mineral flotation froths and
slurries. The main objective is to evaluate the usefulness of the color information
for analyzing the elemental contents of the slurries, and to apply the improved grade
measurements to flotation process monitoring and control. The primary improvement
aimed for is the shortening of the presently rather long sampling interval of a typical
XRF analyzer.

The emphasis of the research is on the development of techniques for the on-line
analysis of real flotation process streams instead of extensive laboratory testing or
deep theoretical discussions. For this purpose, the measurements are mainly con-
ducted at an operating concentration plant (Pyhäsalmi mine, Inmet Mining Cor-
poration). The analysis is restricted to the copper-zinc ore processed at the plant.
However, all the developed measurement devices and data processing methods can
readily be generalized to other flotation processes, and the presented results can be
used to evaluate the suitability of the approach to other ore types.

The spectral measurements in this thesis cover the visible and near-infrared
(VNIR) range (400–1000 nm), which is a necessary restriction in order to maintain
the low cost of the measurement instruments. The results of the on-line XRF ana-
lyzer at the plant are utilized as reference values for both calibrating and validating
the reflectance spectral measurements.

Data-based modeling has an important role throughout the whole thesis, and
special effort is put into the proper selection of the most suitable calibration meth-
ods. The data modeling challenges stem on one hand from the generally difficult
interpretability of reflectance spectra, and on the other hand from the varying and
unpredictable behavior of flotation slurry properties. As a way of dealing with these
issues, recursive modeling is intensively utilized.

1.3 Contributions of the Thesis
The main contribution of this thesis is the combination of VNIR reflectance spec-
troscopy with XRF analysis in order to create a novel and improved method for
assaying mineral flotation froths and slurries. More specifically, the thesis contains
the following contributions:
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• Froth analysis
– comparison of the RGB color and VNIR reflectance spectral measurements

for assaying the final zinc concentrate froth (Publication I)
– first reported application of VNIR reflectance spectroscopy for increasing

the sampling rate of an XRF analyzer (Publication I)
– comparison of the properties of zinc concentrate froth and slurry reflec-

tance spectra (Publication I)
• Slurry analysis

– first real process environment results showing the good precision of the
VNIR reflectance spectral assaying in the final zinc concentrate slurry
(Publication II) and in the final copper concentrate (Publication V)

– evaluation of the VNIR slurry analysis performance in the other main zinc
and copper flotation slurries (Publication V)

– significant improvement in the assaying of final zinc concentrate (Publica-
tion II) and final copper concentrate (Publication V) by combining VNIR
reflectance spectral measurements with the XRF analysis

– novel analysis of the high-frequency properties of the final concentrate
grades based on the developed high-frequency VNIR slurry assay (Publi-
cations II and V)

– evaluation of the error distribution parameters of the high-frequency VNIR
assay with respect to XRF (Publication VII)

– plant-wide oscillation analysis of the copper flotation circuit based on the
high-frequency VNIR assay (Publication VI)

• Algorithm development
– two novel recursive local modeling algorithms for capturing rare process

failures (Publications III and IV)
– new orthogonal signal correction (OSC) kernel algorithm (Publication IV)
– new on-line algorithm for plant-wide oscillation detection and analysis in

general industrial processes (Publication VI)

1.4 Publications
The thesis consists of seven publications (appended to the end). This section sum-
marizes their contents and lists the author’s contributions.

1.4.1 Summaries
Publication I The determination of mineral froth grades based on the VNIR re-
flectance spectrum of the final zinc concentrate froth at the Pyhäsalmi concentration
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plant is studied in this publication. A partial least squares (PLS) model is estimated
from XRF and VNIR spectrum data to predict the elemental contents from the spec-
tra. The results indicate that the VNIR spectra give slightly better elemental grade
estimates for copper, zinc and iron than the RGB color data used for comparison.
Based on the results, the reflectance spectrum measurement is suggested as a comple-
mentary method to improve the sparse XRF assays with more frequent data. Initial
laboratory results for the final zinc concentrate slurry spectrum analysis are presented
as well, referring to the possibility of even more accurate grade measurements directly
from the spectra of the mineral slurries.

Publication II This article introduces the application of VNIR reflectance spec-
troscopy to the elemental assaying of mineral flotation slurries. Laboratory measure-
ments are first presented to demonstrate that large grade differences are clearly seen
in the VNIR spectra. The structure and installation of an on-line slurry spectrum
analyzer prototype is then described. The measurement results from the final zinc
concentrate slurry of the Pyhäsalmi concentration plant show that the main elemen-
tal grades of the slurry can be reliably predicted from the VNIR spectra. However,
the PLS calibration model has to be recursively updated with the XRF assays to
maintain a good prediction accuracy. The proposed method complements the XRF
analyzer by reducing the sampling interval from around 15 minutes to ten seconds.
This enables the detection of rapid changes and oscillations in the grades and thus
substantially improves the process monitoring capabilities at the plant.

Publication III This article deals with the estimation of small elemental grades
when using the slurry spectrum analysis developed in Publication II. Typically, the
normally very small elemental grades in the concentrates increase significantly in
the case of a process disturbance. The ordinary recursive PLS model is replaced in
this article by a novel local modeling approach utilizing orthogonal signal correction
(OSC) preprocessing and local PLS models. The developed modeling method is based
on adaptively updated calibration database and on the ad hoc calculation of the PLS
model. The performance of the modeling approach is demonstrated in the copper
grade of the final zinc concentrate. It is shown that the developed method predicts
the start of a new process failure with significantly better precision that the ordinary
recursive PLS model.

Publication IV This publication addresses the same issue of sudden grade changes
related to process failures as Publication III. The database of the previous approach
is, however, replaced with pre-calculated but recursive local PLS models, which to-
gether cover the whole response data range. The benefits of the multimodel structure
are a faster prediction calculation and a smaller memory consumption since no data
points have to be stored. The developed algorithm is applied to the same copper
grade data as in Publication III, and the results are compared to static and recursive
PLS models. It is shown that the method is able to predict the critical first pro-
cess failure value with clearly better precision than the other methods. Finally, the



1.4. Publications 5

high-frequency estimation of the copper grade is presented as a supplement for the
ordinary XRF analyzer.

Publication V A multi-channel slurry VNIR spectrum analyzer is introduced in
this publication. Based on the principles presented in Publication II, the analysis is
extended to cover several slurry lines simultaneously. Seven slurry lines of the zinc
and copper flotation circuits at Pyhäsalmi are analyzed. Large data sets of spec-
tra and XRF assays are collected from all the lines and the shape of the spectra as
well as the prediction precisions of the recursive PLS models are compared between
the lines. The results show that the average VNIR spectrum mainly indicates the
sphalerite/chalcopyrite (i.e. zinc/copper) ratio of the average grades in the slurry.
Especially the copper and zinc concentrates with high sphalerite and chalcopyrite
grades result in distinctive spectra. Accordingly, the best grade predictions are ob-
tained from the two concentrates for the same reason. The high-frequency assay
performance is demonstrated for these slurries as a method to detect oscillations and
grade drops.

Publication VI This article presents the utilization of the high-frequency VNIR
slurry analysis developed in Publications II and V for detecting oscillations in the
Pyhäsalmi copper flotation circuit. For this purpose, a recursive extension of a data-
based signal analysis method, singular spectrum analysis (SSA), is derived and ap-
plied to grade, flow rate and level signals of the circuit. The aim of the study is to
detect and analyse the origins and spreading of the oscillations on-line in order to
pinpoint the source and to eliminate it. This will improve the performance of the
circuit. It is shown that the oscillations can be effectively detected by the proposed
method and that the structural similarity between the oscillatory signal and the other
process signals can be quantified in real time.

Publication VII The third slurry analyzer prototype with a more straightforward
slurry sampling is described and utilized in this publication. The benefits of the high-
frequency slurry assay are demonstrated for high- and low-frequency oscillations as
well as for large grade changes in the zinc and copper concentrates. An on-line
estimate for the VNIR assay error distribution with respect to the XRF values is
presented. The estimate enables the evaluation of the assay confidence limits and the
degradation rate of the estimate if no new XRF samples are available for calibration.

1.4.2 Author’s Contributions
Publication I The author is responsible for the froth data modeling and results as
well as the slurry data analysis. He also wrote the entire manuscript. Jani Kaarti-
nen was in charge of the measurement arrangements and Prof. Heikki Hyötyniemi
supervised the research. Both co-authors commented on the manuscript.



6 1. Introduction

Publication II The author performed the modeling and analysis of the on-line
data and produced the corresponding results. Jani Kaartinen is responsible for the
measurements and results of the laboratory experiments as well as for the construction
of the on-line slurry analyzer prototype. The author wrote the manuscript except for
Sections 2.2-2.4 and 3.1, which were written by Kaartinen. Prof. Heikki Hyötyniemi
supervised the research.

Publications III and IV The author is responsible for the contents of the pub-
lications and he wrote all the text. Prof. Heikki Hyötyniemi supervised the research
and commented on the manuscripts.

Publication V The author is responsible for the analysis and modeling of the data
as well as for the results obtained. The slurry analyzer prototype was designed in
collaboration with Jani Kaartinen. The author wrote the whole manuscript except
for Section 2.2 which was mainly contributed by Kaartinen.

Publication VI The author is solely responsible for the whole publication.

Publication VII The author is responsible for the contents of the publication and
wrote the manuscript. Prof. Heikki Hyötyniemi commented on the manuscript and
supervised the research.

1.5 Structure of the Thesis
This thesis is an article dissertation consisting of a compendium part and seven publi-
cations. The compendium can be divided into two major parts: Chapters 2–5 provide
a concise literature survey in order to familiarize the reader with the background of
the presented research, and Chapters 6–8 summarize and discuss the work originally
presented in the publications. In more detail, Chapter 2 gives a short introduction to
froth flotation in mineral processing, Chapter 3 deals with the basic concepts of re-
flectance spectroscopy, Chapter 4 surveys the literature published on the application
of color and spectral measurements in mineral engineering, and Chapter 5 summa-
rizes the data-based multivariate methods relevant to this work. The measurement
arrangements and modeling methods used in the publications are presented in Chap-
ter 6, whereas Chapter 7 discusses the results obtained. Finally, Chapter 8 concludes
the whole research work.



Chapter 2

Froth Flotation in Mineral
Processing

The purpose of mineral concentration is to separate valuable minerals from the
gangue. The variety of concentration methods include froth flotation, gravity con-
centration and magnetic and electrical separation, among others. One of the most
important methods is flotation: over 90% of base metals are concentrated using flota-
tion (Matis and Zouboulis, 1995). Froth flotation was patented already in 1906, but
still the very complex surface chemical mechanisms taking place in the flotation cells
are not completely understood, even though a lot of research has been conducted on
the subject (for recent studies, see e.g. Chau, 2009; Englert et al., 2009; Kracht and
Finch, 2009).

The purpose of this chapter is to familiarize the reader with the basic concepts
of froth flotation as a mineral processing method. Main emphasis is on the con-
trol aspects of flotation processes, and a concise introduction to the Pyhäsalmi pro-
cess is presented as well. Several textbooks (e.g. Fuerstenau et al., 2007; Matis and
Zouboulis, 1995; Rao, 2004) focusing on different aspects of flotation are available for
more information.

2.1 Principle of Flotation
Froth flotation is the most important and versatile of the concentration methods since
it can be applied to a wide variety of ores and particle sizes by selecting the correct
flotation chemicals. The separation by flotation is based on the different surface
chemical properties of the valuable and gangue mineral particles. Before the actual
separation, mineral slurry is formed by grinding the ore with water. The slurry is
then treated with flotation chemicals specific to the processed ore. The flotation
chemicals can be divided into three main classes (Crozier, 1992): collectors attach to
selected mineral particles and make them hydrophobic (i.e. water-repellant); frothers
form and stabilize the froth layer; and finally modifiers, activators and depressants are
used to balance the flotation environment and to enhance or subdue the floatability
of specific minerals.

7
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The treated slurry is processed in flotation cells (Figure 2.1) where air is pumped
to the bottom of the cell and heavy mixing is applied. Because of the hydrophobic
nature of the mineral particles to be separated, they attach to the rising air bubbles
and are lifted to the surface of the cell. There the slurry forms a stable froth layer
which can be skimmed or allowed to overflow from the cell. In direct flotation,
valuable mineral particles are lifted to the froth and tailings are removed from the
bottom of the cell, whereas in reverse flotation tailings are collected by the froth. A
detailed description of the flotation cell operation principle and mechanical structure
is given, for example, by Gorain et al. (2007).

Slurry feed

Tailing

Froth layer

Rotor

Air feed

Concentrate

Figure 2.1: The basic structure of a froth flotation cell. (The CAD
image Courtesy of Outotec Minerals Oy)

The separation achieved by a single flotation cell is usually not adequate to fulfill
the final concentrate requirements. Consequently, typical flotation circuits consist of
several interconnected flotation stages which contain several flotation cells each. The
different flotation stages have specialized operating profiles and parameters. Possible
flotation circuit flowsheet structures are discussed with more detail by Wills and
Napier-Munn (2006), and as an example the structure of the Pyhäsalmi copper and
zinc flotation circuits is presented in Section 2.3. The current flotation plant design
principles have recently been reviewed by Mendez et al. (2009).
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2.2 Control of a Flotation Process
Flotation circuits are traditionally considered as one of the most challenging indus-
trial processes to control. This section briefly introduces the general control and
monitoring issues faced in flotation plants. Especially the importance of the accu-
rate on-line grade measurements (assays) of the flotation slurry streams is addressed
as they are essential for control, process monitoring and circuit performance evalua-
tion. The text is mainly based on the publications by McKee (1991) and Wills and
Napier-Munn (2006).

2.2.1 Control Objectives
The metallurgical performance of a flotation process is determined by its capability
to collect the valuable minerals from the incoming ore (i.e. recovery) as well as by
the relative amount of the valuable mineral in the final product (i.e. grade). There is,
however, a trade-off between these two properties since better recovery usually means
lower grade and vice versa. Even though in reality the changing input ore properties
constantly cause variations in the process, a theoretical steady state relationship
between grade and recovery is often illustrated by a simple grade-recovery curve
(Figure 2.2).

Concentrate grade

Recovery

optimizing
control

stabilizing
control

set point
control

Figure 2.2: The trade-off between the concentrate grade and recovery
of a flotation process as well as the different control objectives. (Modified
from Wills and Napier-Munn, 2006)

It is generally accepted that the starting point in flotation circuit control is to
stabilize the operation of the process. This involves the stabilization of the slurry
levels in the flotation cells and pump sumps as well as the regulation of air and
reagent flows. After that, the target should be to reach the desired operating point
on the grade-recovery curve, which typically means the maximization of recovery
without going under a given concentrate grade limit. A more optimized control
system would further move the operation of the circuit to a higher grade-recovery
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curve (see Figure 2.2). The ultimate goal of the control, however, is to maximize the
economic profit of the plant. The economic optimum is highly circuit dependent and
varies also with time, as, for example, concentrate prices and operating costs change.
In practice the grade and other property variations of the input ore constantly change
the grade-recovery curve, and the goal of advanced control is to maximize the profit
of the operation in spite of the disturbances (Laurila et al., 2002).

Even though automatic control systems are commonly used in concentration
plants, fully automated mineral flotation processes capable of long-term unattended
operation are scarce. This emphasizes the difficulty of flotation control, mainly caused
by the complexity of the chemical and physical phenomena involved and by the vari-
ations of ore types, flotation response and throughput of the circuit. Consequently,
the automatic control systems require human operators who monitor the operation
and, if necessary, adjust the set points and alarm limits of the control system. The
role of the operators is especially important in the cases of measurement equipment
malfunction or during major disturbances like power failures.

2.2.2 Grade Measurements
Originally, mineral grade measurements of the process flows were performed by col-
lecting samples and analyzing them visually by microscope or more accurately in the
laboratory (Braden et al., 2002). However, process monitoring and control based on
these methods was hindered by the subjectivity and difficulty of the visual inspection
and by the delay of the laboratory analysis. On-line chemical analysis of the slurry
streams was made possible by the development of the X-ray fluorescence (XRF) slurry
analyzers in the early 1960s. On-stream analysis together with computers capable for
process control calculations allowed the development of first on-line control systems.

The on-line XRF analyzers can be classified to two main types: on-stream and
in-stream. The on-stream type consists of one centralized analyzer and requires
separate sample lines that transfer the slurry from the sampling locations of the
flotation circuit to the analyzer. The advantage of the centralized structure is that
one analyzer probe can be used to provide assay information from many slurry lines.
In addition, specially designed flow cells producing a controlled and reproducible
turbulent slurry flow can easily be installed in the sample streams. This ensures good
sample presentation, which is an essential prerequisite for a reliable slurry analysis
by XRF. In in-stream analysis, on the other hand, each analyzer contains its own
analyzer probe, which is typically installed directly in the measured process flow.
Consequently, flow conditions may be inconsistent and the slurry samples are less
representative. In most cases a centralized analyzer is also a more cost-effective
solution for large flotation plants, where the number of slurry lines is high. (Cooper,
1976)

Recovery of the plant can be calculated if the volume and contents of the incoming
ore and the final concentrate are known. A good indicator of decreased recovery is the
increased concentration of the valuable minerals in the tailing flows. This typically
implicates a disturbance in the process that leads to direct financial losses in the form
of discarded valuable minerals. As a result, the tailing flows of the flotation plant
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are carefully monitored by on-line analyzers. Obviously, the contents of the feed and
final concentrate streams are also monitored to ensure that the requirements for the
process efficiency and quality of the products are fulfilled. Additional assays in other
process flows are used to monitor the proper operation of the individual flotation
banks and to provide measurements that are used in the process control by human
operators as well as by the automatic control system.

The economic effect of the on-line analysis in flotation plants has been investigated
for example by Cooper (1976), and the importance of the analysis accuracy by Flintoff
(1992). In addition to accuracy, Remes et al. (2007) studied the influence of analysis
speed and sampling rate on the flotation control. They showed that the economic
performance of a flotation process is significantly dependent on the sampling rate of
the analysis, since faster sampling enables faster control actions as well. This result
gives a good starting point for the work presented in this thesis.

2.3 The Pyhäsalmi Concentration Process
The measurements reported in this thesis were conducted at the Inmet Mining Corpo-
ration’s Pyhäsalmi zinc, copper and sulfur mine located in Pyhäjärvi town in central
Finland. The Pyhäsalmi ore contains mainly sulfides, namely pyrite, sphalerite and
chalcopyrite. The main gangue minerals are barite and carbonates (see Table 2.1).
In 2008 the annual production of the mine was about 1.4 million tonnes. The ore
is currently mined underground between the 1050 m and 1416 m levels, and then
crushed and hoisted to the surface for concentration. (Inmet Mining Corporation,
2009)

Table 2.1: The average composition of the ore concentrated at the Pyhä-
salmi concentration plant. (Inmet Mining Corporation, 2008, 2009)

Mineral Formula Portion (%) Usage Notes
pyrite FeS2 65 sulfur
sphalerite ZnxFe1-xS 4 zinc x = 0.95
chalcopyrite CuFeS2 3 copper
pyrrhotite Fe1-yS 3 (gangue) y = 0–0.17
barite BaSO4 - (gangue)
carbonates -CO3 - (gangue)

The concentration process at Pyhäsalmi contains three consecutive flotation cir-
cuits, one for separating each of the main products: copper (chalcopyrite), zinc (spha-
lerite) and sulfur (pyrite). The flotation is preceded by a semi-autogenous grinding
stage, after which the particle size of the ore is about 65%—74 µm, meaning that
65% of the milled particle mass passes through a sieve with an aperture of 74 µm.
(Inmet Mining Corporation, 2008)

The flowsheets of the copper and zinc flotation circuits are quite similar (Fig-
ure 2.3): They both consist of rougher, scavenger, middlings flotation and cleaner
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flotation stages. The initial separation of the valuable minerals is performed in
roughing, and the concentrates are pumped to cleaning. In scavenging, slowly float-
ing particles of the rougher tailings are lifted to the middlings flotation banks to
improve recovery, whereas the tailings are led to the final tailings of the circuit. The
concentrate of the first middlings flotation cells is pumped to cleaning, whereas the
rest of the concentrate is circulated back to the beginning of the stage. The copper
circuit contains four cleaning stages and the zinc circuit three. The final tailings
of the copper circuit are used to feed the zinc circuit, and the final tailings of the
zinc circuit are further processed in the sulfur flotation circuit. Depending on the
ore properties, a regrinding stage may be included in the zinc circuit to improve the
recovery of sphalerite.

Cleaning

Middlings flotation

Roughing Scavenging

Zn
concentrate

Cu
concentrate

Cleaning

Middlings flotation

Roughing Scavenging

Feed
Cu
tailing

Zn
tailing

Regrinding

Copper Circuit Zinc Circuit

Figure 2.3: The general flowsheets of the copper and zinc flotation cir-
cuits at Pyhäsalmi.

The control of the Pyhäsalmi flotation process is highly automated. An essential
part of the control is the centralized Outotec Courier R© 6 SL on-stream XRF analyzer,
which provides the elemental content measurements of the main slurry streams. Based
on these, the automatic control system regulates, for example, the flotation reagent
addition rates. (Wills and Napier-Munn, 2006)



Chapter 3

Reflectance Spectroscopy

Reflectance spectroscopy studies the light reflected, scattered or emitted from the tar-
get as a function of wavelength (Clark, 1999). The fundamental concept in reflectance
spectroscopy is the interaction of incident light with the measured surface. Complex
theories describing different special cases of the phenomenon exist, and a large num-
ber of applications especially in food, agricultural and pharmaceutical industry are
based on the reflectance of light.

There are several reasons that make reflectance spectroscopy a tempting alter-
native, especially in the visible and near-infrared regions, for the more traditional
methods (Hindle, 2008; Siesler, 2008): very little (if any) sample preparation is re-
quired; the measurement is fast; the instruments are relatively low-cost; no harmful
radiation is used; contact with the investigated target is not necessary; the measure-
ment is non-destructive. The main downside of reflectance spectroscopy is the large
number of factors affecting the shape of the obtained spectra, which hinders the direct
interpretation of the results.

This chapter provides a concise introduction to the basics of reflectance spec-
troscopy in order to provide some theoretical background for the reflectance spectral
analysis conducted in this thesis. The main emphasis of the discussion is on diffuse
reflectance spectroscopy, which takes place, for example, when light is scattered and
reflected from particulated mineral samples. The general aspects of diffuse reflectance
form the core of the discussion, but mineralogy specific theory and applications are
presented as well. The approach in this chapter leans towards the more theoretical
research conducted by the remote sensing community, whereas the next chapter re-
views the importance of color measurements as an additional measurement in more
practical mineral processing applications. Quite interestingly, the two starting points
seem to converge into one in the very topic of this thesis.

3.1 Preliminaries
Spectroscopy can be performed in many wavelength ranges of the electromagnetic
spectrum. The optical range, which covers the wavelengths between X-rays and radio

13



14 3. Reflectance Spectroscopy

waves, is further investigated here. The International Electrotechnical Commission1
defines the optical range from wavelengths around 1 nm to 1 mm and divides it
into ultraviolet (UV, 1–400 nm), visible (VIS, defined as the range that causes a
direct visual sensation, i.e. around 400–780 nm) and infrared (IR, optical wavelengths
larger than the visible range) radiation. The infrared radiation can further be divided
into near infrared (NIR), short-, mid-, and long-wavelength infrared (SWIR, MWIR,
LWIR, respectively) and far-infrared radiation (FIR) (D’Amico et al., 2009). The
NIR range is typically considered to cover the wavelengths starting from the end of
the visible range (780 nm) and ending to 2500 nm (Ingle Jr. and Crouch, 1988).
However, the terminology and the exact wavelength ranges are not standardized, and
several variations exist (see e.g. Clark, 1999; D’Amico et al., 2009).

The research in this thesis utilizes the combined visible and near infrared (VNIR)
reflectance spectroscopy. According to a common practice the VNIR range is consid-
ered to mean the wavelengths from 400 to 1000 nm, even though it is not a standard
term (Clark, 1999). An advantage of the VNIR range is that the light can be detected
by ordinary silicon-based sensors (D’Amico et al., 2009), which especially in the case
of imaging spectroscopy means that low-cost CCD detectors can be used.

In reflectance spectral analysis the sample is typically stimulated with electromag-
netic radiation, and the light intensity received from the sample is measured (Ingle Jr.
and Crouch, 1988). If the incident light and reflected light have same angle with re-
spect to the surface normal, the reflectance is said to be specular. Diffuse reflectance,
on the other hand, takes place in powdered samples and matte surfaces, where the in-
cident light is reflected to all directions from the surface because of scattering. When
photons encounter granular material (e.g. grained mineral), they either reflect from
the grain surfaces, pass through the grain or are absorbed. The photons that reflect
from or refract through a particle may encounter other particles and finally be scat-
tered away from the surface and reach the detector (Figure 3.1). Surfaces may also
emit photons by themselves. In the following section, some of the main theoretical
models used to describe diffuse reflectance are introduced.

AbsorbedScattered

Figure 3.1: Scattering and absorption of light in a granular material.

1http://www.electropedia.org/
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3.2 Diffuse Reflectance Models
The theoretical consideration of the reflectance phenomenon is a complex problem
that does not have an unambiguous solution. The propagation of electromagnetic
waves is described by the Maxwell equations (see e.g. Hapke, 2005). However, they
cannot be solved in the general case that would cover all reflectance problems, and
thus phenomenological laws with strict assumptions of the light and surface properties
are more commonly used in practical applications.

This section presents two theories for light propagation and reflectance, mainly to
be considered in selecting of a suitable preprocessing method for reflectance spectral
data. The subject is more rigorously presented by Hapke (2005). For the following
discussion, three quantities related to the interaction of light and a surface are in-
troduced (Osborne et al., 1993): reflectance R, transmittance T and absorbance A.
Reflectance of the surface is defined as the intensity ratio of the reflected IR and
indicent I0 light:

R = IR
I0
. (3.1)

Transmittance, on the other hand, describes the relative amount of intensity that
passes through the sample:

T = IT
I0
, (3.2)

where IT is the transmitted intensity. Finally, absorbance is defined as

A = log
(
I0

IT

)
= log

( 1
T

)
. (3.3)

3.2.1 Beer-Lambert Law
The absorption of light traveling in a homogenenous and non-scattering medium is
described by the Beer-Lambert law, which states that the intensity I of the light is
exponentially decreasing with respect to the distance b:

I = I0e
−kb, (3.4)

where I0 is the original intensity of the light and k the linear absorption coeffi-
cient (Griffiths and Dahm, 2008). The absorption coefficient is assumed to be linearly
dependent on the concentration of the absorbent (k = ac), and thus a linear relation-
ship between the concentration c and absorbance A of a sample with the thickness b
can be derived:

A = log
(
I0

IT

)
= acb, (3.5)

where a is the molar absorptivity of the absorber (Osborne et al., 1993).
In practice, there are several factors that violate the assumptions of the Beer-

Lambert law (Osborne et al., 1993). Scattering, for example, should not be neglected
especially in granular materials.
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In the case of reflectance of light from a surface of a thick sample, absorbance of
the surface is calculated as:

A = log
(
I0

IR

)
= log

( 1
R

)
. (3.6)

This can be combined with (3.5) to obtain a linear relationship between the log(1/R)
transformed reflectance and absorbent concentration c (Workman Jr., 2008):

log
( 1
R

)
∝ c. (3.7)

3.2.2 Kubelka-Munk
The Kubelka-Munk (K-M) theory describes the interaction of light and a surface
using two light fluxes in opposite directions. The material is characterized by the
absorption coefficient k and the scattering coefficient s. Assumptions of the K-M
theory are that the surface of the sample is infinitely large (no edge effects), the light
scattering particles are evenly distributed, particle dimensions are small with respect
to the sample thickness and that the whole sample is homogeneously illuminated with
a monochromatic diffuse light source (Ciani et al., 2005).

In the special case of diffuse reflectance (the sample thickness is assumed infinitely
large), the K-M theory reduces into a simple form:

k

s
= (1−R)2

2R ≡ f(R), (3.8)

where f(R) is the K-M function (Osborne et al., 1993). Since k = ac, the relation
between the reflectance and concentration can be written as:

f(R) = ac

s
, (3.9)

indicating that the K-M function is linearly proportional to the concentration of the
absorbing substance in the sample.

3.3 Reflectance Spectroscopy in Mineralogy
Optical reflectance spectroscopy of minerals is based on the distinctive absorption
properties of the different mineral species. In the following, the theory of absorp-
tion in minerals is briefly introduced, and some mineralogy-related applications of
spectroscopy are presented.

3.3.1 Theory
The key concept in optical reflectance spectral analysis of minerals is absorption,
and there are several wavelength dependent absorption mechanisms. The two main
causes for absorption are electronic and vibrational processes. Clark (1999) provides
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a concise review of the subject, and a more detailed discussion is given by Burns
(1993). The following review is based on these two publications.

Electronic absorption occurs when the incident photon is absorbed by a molecule
in the sample, and one or more electrons are moved to higher energy levels. When
the electrons return back to the lower energy levels, they emit photons. However, the
emitted photons do not typically have the same wavelength as the incident photons,
meaning that the incident wavelength is absorbed. Several electronic processes cause
absorption in mineral structures: crystal field transitions, electron transfer between
transition metal ions, and charge transfer between transition metal ions and anions.
The lattice structure and electrons shared with several atoms increase the possible
absorption energies, resulting in diverse spectral features of minerals.

Vibrational absorption is related to the vibration of the molecule: the chemi-
cal bonds between the atoms act like springs connecting mass points (the atoms),
and the energy of the absorbed photon causes the whole molecule to vibrate. Each
molecule has a set of fundamental vibration modes that correspond to the possible ab-
sorption frequencies. The vibrational absorbance in minerals is characterized by the
vibrational modes of the mineral structure. Depending on the molecular structure,
different vibrations are possible. The frequencies of the fundamental modes typically
reside in the MWIR region, but overtones and combinations of them may affect also
the higher frequency regions like visible and near-infrared. Especially carbonates and
minerals with water or hydroxyl groups are prone to vibrational absorption.

The particle size of the mineral sample has an effect on the absorption properties as
well. If the reflectance phenomenon is dominated by multiple scattering, the intensity
of the reflected light decreases as the particle size increases. However, depending on
the wavelength range and the type of mineral, also the opposite can be true as
demonstrated in Section 6.1.

3.3.2 Applications
A traditional and broad application area of reflectance spectroscopy is remote sensing
(see e.g. Campbell, 2006; Rencz, 1999), where the light reflected from Earth’s or
planetary surfaces is studied. The measurements are performed from aircraft or
satellites, or by telescopes in the case of planetary targets. While the spectra can be
used to analyze different aspects of the surface (vegetation, hydrology, agriculture),
the mineralogy-related information obtained can be used, for example, to produce
mineral maps (Hook et al., 1999) or to study the geology of planets (Bell III et al.,
1999). A personal discussion about the history of hyperspectral remote sensing of
Earth provided by Goetz (2009) indicates that the main motivation in the field has
been the mineralogical mapping of soils and outcrops. For example, the remote
sensing of ophiolites (regions of Earth’s oceanic crust that have been lifted to the
surface) has been intensively investigated (Khan and Mahmood, 2008).

In astronomical studies remote sensing is often the only way to analyze the com-
position of planets, satellites, asteroids and other astronomical surfaces. Bell III
et al. (1999) review the topic and emphasize the importance of optical reflectance
spectroscopy in measuring the mineralogy of planetary surfaces. The studied wave-
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length range is typically from 300 to 3500 nm, where the intensity of the sunlight
is the largest. Recent studies on the subject have been published, for example, by
Fornasier et al. (2008) and Cloutis et al. (2008).

The application of reflectance spectroscopy to ore analysis in mineral exploration
and mineral engineering is discussed in detail in the next chapter.



Chapter 4

Color and Spectral Measurements
in Mineral Engineering

Monitoring of flotation processes in many flotation plants is partially based on the
visual inspection of the froth appearance and color by the human operators. It is
a generally accepted fact that especially the color of froth in some mineral flotation
processes correlates with the mineral contents (Bartolacci et al., 2006; Gebhardt
et al., 1993; Hätönen, 1999; Liu et al., 2005). This has motivated the utilization of
machine vision for analyzing the froth properties to gain additional information on
the state of the process. Machine vision has also been applied to automatic detection
and mineral quantification of rock samples and ore transported on belt conveyors.
Reflectance spectroscopy is further used in more recent studies especially as a rapid
method to analyze mineral exploration drill cores.

This chapter reviews the importance of color measurements in practical mineral
processing applications, starting from the earlier studies utilizing regular video cam-
eras and ending in the latest research with advanced spectrographs. At the same
time, the versatility of analysis methods in mineral engineering based on the proper-
ties of reflected light is demonstrated. The applications summarized in this chapter
form the starting point for the research conducted in the thesis.

4.1 Froth Image Analysis
The most common application of machine vision in mineral flotation is the froth image
analysis. In these studies, cameras are installed on top of the flotation cells and the
froth structure is extracted from the froth images. Segmentation of the images has
been an important image processing step already from the first studies (Symonds
and De Jager, 1992), followed by the extraction of froth features like bubble size,
bubble shape, mineral load on bubbles, etc. (Bonifazi et al., 1998; Cipriano et al.,
1998; Kaartinen et al., 2006b; Sadr-Kazemi and Cilliers, 1997). Algorithms for froth
speed and bubble collapse rate have also been presented and correlations of these
variables with froth grades have been calculated (Cipriano et al., 1998; Holtham and
Nguyen, 2002; Kaartinen et al., 2006b).

19
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Another popular approach for analyzing the images is to calculate the features
as statistical properties of the image data. For example, the (fast) fourier transform
(FFT) (Moolman et al., 1994), gray level dependence matrix (Moolman et al., 1995) or
multivariate image analysis (MIA) (Bartolacci et al., 2006; Liu et al., 2005) methods
can be used.

Usually the initial aim of the froth image analysis is to classify the state of the
froth phase and to evaluate how well the process is performing. This information
can be used to assist the process operators, especially the less experienced ones,
when deciding the required control actions. Ultimately the goal of these studies is to
utilize the visually measured features in automatic feedback control.

4.1.1 The Importance of Color
Whereas the segmentation-based algorithms clearly do not fully utilize the image color
information, some of the statistical methods do, at least indirectly. Liu et al. (2005)
actually state that the morphological properties of the froth are not highly correlated
with the color information, which they further assume to mainly describe the froth
mineral contents. As a consequence, they separately analyze the color information
and morphology of the froth images by an advanced MIA algorithm combined with
wavelet analysis and PCA in order to describe how healthy the froth is. The results
are utilized in a simulated feedback control scheme in the following work (Liu and
MacGregor, 2008) with promising results.

In addition to the image analysis, pure color measurements of the froths and
slurries have been analyzed as well. Earlier studies only consider the intensity of
the light reflected from the froth. For example, Moolman et al. (1994) show that
in a copper flotation bank the intensity histogram can be used to quantify the froth
copper grade. However, later the color information in the images is extracted in the
full red, green and blue (RGB) color space and typically used as a part of the features
in the image analysis process (Cipriano et al., 1998; Morar et al., 2005).

Kaartinen et al. (2006b) use an RGB camera-based machine vision system in a
zinc flotation circuit to measure different morphological and color features of the froth
in the rougher stage at the Pyhäsalmi concentration plant. They demonstrate the
general correlations between the image variables and process measurements during
a long period of normal operation. Especially the red color of the froth is shown
to correlate with the final zinc grade as well as with the other properties of the
froth. The camera measurements—among them the red color value—are further
utilized in an automatic expert controller for regulating the addition of the activator
chemical (copper sulfate). It is shown that the process performance and thus also the
profitability of the plant were significantly improved after the implementation of the
controller.

4.1.2 Commercial Products
The research efforts briefly summed above have led to a few commercial froth im-
age analyzer products: ACEFLOT (Cipriano et al., 1998), JKFrothCam (Holtham
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and Nguyen, 2002), SmartFroth (Morar et al., 2005), Outotec’s FrothmasterTM and
Metso Minerals’ VisioFroth. The overall structure and operation principle of all these
products is quite similar, since in every one of them an RGB camera is mounted on
top of a flotation cell and the captured images are processed on a computer to extract
both the morphological froth features as well as the color of the froth.

4.2 Froth and Slurry Assaying Based on Color
The most interesting studies regarding the topic of this thesis are the ones where
pure color measurements are utilized for assaying purposes in flotation plants. When
focusing only on the color of the minerals, the analysis can be extended from flotation
froths to mineral slurries and dry mineral measurements. Among the first publica-
tions in this area are the works by Gebhardt et al. (1993) and Oestreich et al. (1995).
As with the image analysis approach, these early studies have limitations related to
the color measurement devices. Gebhardt et al. (1993) use a sensor that can measure
color as an adjustable linear combination of the red, green and amber reflectance
values. This scalar is correlated with the mineral contents of dry pure mineral and
mineral mixture samples as well as with mineral-loaded flotation froths both in labo-
ratory and in plant conditions. The studied minerals are quartz, pyrite, chalcopyrite
and molybdenite. The results show quite strong and surprisingly linear relations
between the measured color values and the weight ratios in the sample mineral mix-
tures. A linear relation was found as well between the froth color signal and the
chalcopyrite-pyrite and chalcopyrite-molybdenite ratios in real plant tests, whereas
the molybdenite-chalcopyrite ratio was reflected nonlinearly in the color value. In
general, however, it was shown that the color measurements can readily reveal at
least the larger changes in mineral contents of the dry mineral mixtures and froths
in case of these minerals.

Oestreich et al. (1995) continued the research by utilizing RGB video cameras
in the analysis of chalcopyrite-molybdenite mixtures. One important addition intro-
duced in the study was the usage of color vector angle, a scalar measure of the ratio
of two pre-defined colors, “chrominance red” and “chrominance blue”, present in the
measured color. The color vector angle was shown to be less affected by the changes
in lighting and shadow variations as well as to correlate better with the mineral con-
tents than the original RGB values. Another addition was to extend the analysis
to mineral slurries, whose color was also shown to correlate with the mixture ratio.
However, only artificial mixture samples were measured and the variation range in
the chalcopyrite-molybdenite ratio was as large as from 0 to 100 percent.

Color analysis has been investigated also in coal flotation as a method to estimate
the contents of the froth. There the interest is especially in the ash content, and
for example Hargrave et al. (1996) have shown that correlations exist between the
gray level distribution and ash content of coal flotation froth. Color analysis has
been extended to tin flotation as well, for example by Hargrave and Hall (1997), who
showed that the relative redness value of the flotation froth can be used to estimate
the grade.



22 4. Color and Spectral Measurements in Mineral Engineering

If only the color is measured, a spectrometer can be used instead of an RGB
camera to obtain more accurate color information. Surprisingly, very few studies
are published on the application of spectroscopy in the analysis of mineral flotation
froths or slurries. One preliminary attempt to measure and analyze the visible range
spectrum of zinc flotation froths was presented by Kaartinen (2001). However, be-
cause of problems with measurement arrangements and dirty conditions, only a small
amount of data was gathered which prevented a proper analysis. Another spectrum
based approach initially concentrating on dry mineral mixtures has been introduced
and commercialized by Blue Cube Systems, as discussed in the following section.

4.2.1 Commercial Products
Even though the color analysis in mineral flotation grade estimation has given promis-
ing results in scientific studies, only few actual products utilizing the concept are on
the market. South African based Blue Cube Systems1 manufactures a set of products
for on-line measuring the grades of dry, slurry or filter cake form mineral mixtures.
The technology is based on diffuse reflectance and transmission spectroscopy ap-
parently in the visible and near-infrared wavelength range. A set of representative
calibration samples is required to form the so-called fingerprints of the different min-
erals present in the mixtures. However, no proper scientific publications explaining
the technical details of the modeling methods or spectral measurements are available.

Initially the system was applied to dry mineral mixtures (Reyneke et al., 2003),
where the spectra of dry samples of rutile and zircon rich mineral mixtures were mea-
sured in laboratory conditions and compared with grain counting results. Relatively
good estimation results were obtained for validation data, and especially the main
mineral grades were predicted with a good accuracy. De Waal and Du Plessis (2005)
demonstrated the method in the on-line measurement and control of a high tension
roll separator test circuit, mainly to emphasize the possibilities of automatic control.
Additionally, De Waal (2007) discussed the technology and some available products
at a very general level. A case-study application of the The BlueCube MQi slurry
analyzer to platinum slurry is described in (Blue Cube Systems Ltd, 2009). For a
small number of samples, good precision and accuracy is obtained in measuring the
chromite and platinum group metal contents of the slurry.

Based on the reviewed literature, the Blue Cube technology requires an initial
calibration with known mineral mixtures, after which the mineral composition mea-
surements can be conducted on-line and in-stream at real concentration plants. The
analysis results are directly available and the sampling interval is short. However, no
proper studies of the long term accuracy of the product are published.

1http://www.bluecubesystems.com
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4.3 Other Color Measurements
Other applications of the color measurements are commonly utilized in mineral en-
gineering as well. Mainly the purpose is to determine the contents of ores either in
mineral exploration or during the concentration process.

4.3.1 Rocks on Conveyors
An initial color-based analysis on mineralogy and lithology of rocks in mineral engi-
neering was published by Marschallinger (1997), who used the color information to
automatically classify rocks in RGB images. The purpose was to provide a faster and
less tedious way to quantify the amount and spatial distribution of different minerals
in rock samples. Casali et al. (2001) applied the RGB image analysis of rocks on a
conveyor belt feeding a grinding circuit to determine the ore work index for grind-
ability estimation. Several rock-specific features including color were calculated from
RGB images, and a neural network was used to obtain the lithological composition of
the rocks with a good precision. This information was further utilized in estimating
the operating work index and in evaluating the efficiency of the grinding circuit. A
corresponding study reported by Tessier et al. (2007) analyzed the more challenging
nickel mineral system with both dry and wet samples.

Reflectance spectroscopy has been only recently utilized for ore analysis on con-
veyor belts. The study by Goetz et al. (2009) introduced a measurement setup where
visible and NIR (350–2500 nm) reflectance spectroscopy is applied to determine the
amount of gangue minerals in copper ore samples and the oxide contents of limestone.
The measurement uses a PLS calibration model with X-ray diffraction (XRD), XRF
and cation exchange capacity (CEC) analyses as the reference data. Good validation
results are obtained for the laboratory measurements (R2 ranging from 0.66 to 0.9),
suggesting that the method could be used in real process conditions as well. Another
laboratory study describing the usage of VNIR reflectance spectroscopy for detecting
gangue from zinc and copper ore is reported by Pietilä and Haavisto (2009). They em-
phasize the importance of correct preprocessing and apply a PLS-based discriminant
analysis (PLS-DA) to classify the samples with a good precision.

At least three commercial spectral measurement systems suitable for rock classi-
fication on conveyor belts are available: VisioRock (Metso Minerals) (Guyot et al.,
2004), the QS series (ASD) used by Goetz et al. (2009) and Solbas (ABB). The first
one, VisioRock, utilizes RGB cameras and is mainly used to determine the particle
size of the rocks, whereas the latter two are based on the combined visible and NIR
reflectance spectroscopy.

4.3.2 Drill Cores and Mineral Exploration
Core drilling is a mineral exploration method used to determine the abundance of
minerals in possible deposits and to spatially map the location of the ore. The
core samples are traditionally analyzed in laboratory by, for example, XRD. The
analysis involves extensive sample preparation with splitting, crushing and drying of
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the core pieces. Kruse (1996) suggested the usage of NIR reflectance spectroscopy as
an alternative method for split core analysis. The study showed that it is possible
to produce mineralogical maps of drill cores based on the reflectance spectra. The
detected minerals were kaolinite, illite, montmorillonite and chlorite, the first three
of which have strong absorption bands in the NIR region.

Taylor (2000) further analyzed the ground drill core samples with visible and NIR
(350–2500 nm) reflectance spectroscopy, and compared the results to XRD analysis.
The main minerals were muscovite, illite, pyrite, quartz and carbonates. Even though
quite weak correlations between the reflectance spectrum and XRD analysis results
were obtained, the study concluded that the reflectance spectroscopy is a quick and
cost-effective method to analyze the drill cores.

In mineral exploration, reflectance spectroscopy of drill cores and surface samples
is utilized, for example, by Squire et al. (2007), who study the spatial mineral distri-
bution of an Au-Cu deposit. An analogous study is reported by Yang et al. (2005).
Commercial drill core analyzers based on reflectance spectroscopy are available as well
(see e.g. Mauger and Huntington, 2005), and several portable spectrometer systems
for more general measurement purposes can be found.



Chapter 5

Data-Based Multivariate Methods

Linear multivariate regression methods are a common choice for data-based analysis
of spectral measurements. Chemometrics (see e.g. Gemperline, 2006) studies the uti-
lization of mathematics and statistics to data obtained from chemical systems, and
the interpretation of high-dimensional spectral measurements with linear multivari-
ate methods is one of the most typical applications in the field. In all the related
publications, multivariate regression is extensively applied to the analysis of the mea-
sured VNIR reflectance spectral data of the flotation froths and slurries. In addition,
the plant-wide oscillations in the copper circuit are analyzed in Publication VI with
a recursive version of singular spectrum analysis (SSA), which is strongly related to
principal component analysis (PCA).

This chapter reviews the most common multivariate regression methods and dis-
cusses the data preprocessing and evaluation of results. The emphasis of the chapter
is on the importance of the data covariance structures. Basically all the presented
regression models can be calculated from the covariances, even if the original data
are unknown. This property is further utilized when adaptive or recursive calculation
of the regression models is discussed. Data preprocessing as well as regression model
evaluation and validation are briefly summarized, and SSA is introduced in order to
provide the reader with sufficient knowledge for the rest of the study.

5.1 About Data
Consider a set of n random variables {X1, X2, . . . , Xn} that is distributed according
to the multivariate probability distribution function f(x1, x2, . . . , xn). The mean and
variance of each random variable are denoted as µXi and σ2

Xi
, respectively. The mean

values of the variables can be collected as the elements of the mean vector

µx =
[
µX1 µX2 · · · µXn

]T
. (5.1)

The covariance of two random variables is defined as

rXiXj = E
[
(Xi − µXi)

(
Xj − µXj

)]
, (5.2)
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and the covariance matrix of the multivariate distribution is

Rx =


rX1X1 rX1X2 . . . rX1Xn

rX2X1 rX2X2 . . . rX2Xn
... . . . ...

rXnX1 rXnX2 . . . rXnXn

 . (5.3)

The covariance matrix (5.3) describes the linear correlation structure of the set of
random variables: The diagonal elements of Rx are the variances of the individual
variables, and the non-diagonal elements contain the covariances between all possible
random variable pairs in the set.

Typically in practical modeling problems, only a finite number of samples of the
random variables is available, whereas the data distributions are unknown. Thus the
multivariate probability distribution parameters (5.1) and (5.3) have to be estimated
from the data. Assuming that x = [x1 x2 · · · xn]T represents one sample of the
random variables {X1, X2, . . . , Xn}, and a data set of N samples is collected as the
rows of the data matrix

X =
[
x(1) x(2) · · · x(N)

]T
, (5.4)

the sample mean is calculated as

µ̂x =
[
µ̂X1 µ̂X2 · · · µ̂Xn

]T
= 1
N

N∑
k=1
x(k). (5.5)

If normal distribution is assumed and the samples are independent, then (5.5) is the
maximum likelihood estimate of µx (Anderson, 2003).

The covariance structure of the probability distribution can also be estimated from
the data. Depending on the scaling and centering of the data inX, different measures
of the association between the variables can be defined. According to Basilevsky
(1994), the general term for the group of matrices describing the covariance structure
is association matrix. The possible types of association matrices with non-centered
data are inner product matrix (original data) or cosine matrix (data scaled to unit
variance). However, other kinds of nomenclature also exist (Carroll et al., 1997). If
mean-centered data are used, the possible association matrices are covariance matrix
(data mean-centered) and correlation matrix (data scaled to unit variance and mean-
centered) (Basilevsky, 1994; Carroll et al., 1997; Jackson, 2003). The data origin
as well as units and scaling of the individual variables affect whether the covariance
or correlation matrices should be used as the starting point of multivariate analysis
(Jackson, 2003).

In the rest of this work, the data vectors in X are assumed to be appropriately
preprocessed (as further discussed in Section 5.4), and the general term sample co-
variance matrix (or just covariance matrix) is used for the estimate

R̂x = 1
N
XTX. (5.6)
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In the case of normally distributed variables and assuming that the data are indepen-
dent and mean-centered, (5.6) is the maximum likelihood estimate of Rx (Anderson,
2003). The normalization directly by the number of samples N in (5.6) leads to a
biased estimate of the real covariance, if also the subtracted mean is estimated from
the data (Anderson, 2003). However, if the data set is large, the bias can be assumed
negligible.

The sample cross-covariance between two multivariate datasets, X and Y , is
further measured by the cross-covariance matrix

R̂xy = 1
N
XTY . (5.7)

The elements of (5.7) represent the sample covariances between the individual com-
ponents of x and y.

5.2 Multivariate Regression Methods
The aim in multivariate regression is to find a linear mapping B between the n-
dimensional predictor vector x and the m-dimensional response vector y:

y = Bx+ e, (5.8)

where e is the modeling error. The mapping is estimated using N samples collected
from both predictor and response variables, and stored in the matrix B. Assuming
that the predictor data are collected in the N rows of matrix X and the response
data in the N rows of matrix Y , the full matrix equation is

Y = XBT +E, (5.9)

where E = [e(1) e(2) · · · e(N)]T contains the error vectors for each predictor and
response sample pair.

The common property of the multivariate regression models presented in the fol-
lowing is that they estimate such model matrix B that keeps the modeling error E
small in some sense. An existing model matrix can be used to predict the response
for a new predictor sample:

ŷ = Bx. (5.10)

5.2.1 Multivariate Least Squares
The least squares (LS) solution for the multivariate regression model estimation is
simply to minimize the sum of squared modeling errors for each response variable:

bLS,i = arg min
b∗LS,i

{(
yi −Xb∗LS,i

)T (
yi −Xb∗LS,i

)}
= arg min

b∗LS,i
{eTi ei}, (5.11)

where bLS,i is the i:th column of the LS model matrix BLS = [bLS,1 bLS,2 · · · bLS,m].
The vectors yi and ei are the i:th columns of Y and E, respectively.
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The LS model matrix can be easily calculated using the pseudoinverse of X
(Martens and Næs, 1989):

BLS =
(
XTX

)−1
XTY = X+Y . (5.12)

Essentially, (5.12) is formed by the inverse of the predictor covariance matrix and
the cross-covariance matrix of the predictors and reponses:

BLS = R̂−1
x R̂xy. (5.13)

If two or more variables in X are linearly dependent, the inverse R̂−1
x does not ex-

ist, and the LS estimate cannot be calculated. This kind of collinearity commonly
appears in spectroscopy because of smooth spectral curves. When noisy data are
utilized in practice, the variables can typically be only almost collinear, which leads
to numerical problems in the inversion of the covariance matrix. As a result, the LS
estimate obtained may not be accurate nor stable (Martens and Næs, 1989). One of
the simplest strategies (Basilevsky, 1994) to deal with the collinearity is ridge regres-
sion, where a small positive quantity is artificially added to each diagonal element of
the predictor sample covariance matrix (Hoerl and Kennard, 1970). However, ridge
regression does not take into account the structure of the data, and is therefore consid-
ered merely as a technical trick to make the covariance matrix invertible (Basilevsky,
1994; Hyötyniemi, 2001).

5.2.2 Principal Component Regression
Principal component regression (PCR) (Basilevsky, 1994; Martens and Næs, 1989)
handles the collinearity issue by first performing principal component analysis (PCA)
(Basilevsky, 1994; Wold et al., 1987) of the predictor data and then connecting the
PCA scores to the response variables using multivariate LS estimation. In PCA, the
data matrix X of rank d is decomposed into a sum of d outer products of score and
loading vectors:

X = t1p
T
1 + t2pT2 + · · ·+ tdpTd = TP T (5.14)

The loading vectors or principal component directions P = [p1 p2 · · · pd] can be in-
terpreted as unit vectors indicating the orthogonal directions of maximum variance in
X. Accordingly, the score vectors in T = [t1 t2 · · · td] give the weighting coefficients
of the loadings for each data point inX. The importance of each principal component
(PC) is measured by the variance λi of the corresponding score vector ti. Normally the
PCs are ordered according to the variance they capture, that is, λ1 ≥ λ2 ≥ . . . ≥ λd.

There are two main approaches for calculating PCA: the nonlinear iterative par-
tial least squares (NIPALS) algorithm that operates on the original data matrix X,
and the eigenvalue decomposition of the data covariance matrix R̂x. The NIPALS
algorithm was originally developed by Wold (1966), and is commonly utilized also in
PLS calculation. It has been shown that the NIPALS solution is equal to the one
obtained by the eigenvalue method (Geladi and Kowalski, 1986).
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The eigenvalue method is based on the fact that the eigenvalue decomposition of
the data covariance gives the PCA loadings as eigenvectors:

R̂x = PΛP T , (5.15)

and the eigenvalues on the diagonal of Λ = diag{λ1, λ2, . . . , λd} indicate the variance
captured by each PC. Thus the PCA loadings can be determined without utilizing
the actual data matrix X. Given the data, the score vectors are further obtained as

T = XP . (5.16)

The advantage of PCA is that it effectively captures the structural collinearities
in the predictor variables. It can be assumed that the first PCs contain the relevant
data structure, whereas the last ones can be interpreted as noise. The dimension of
the original data can thus be efficiently reduced by using only the l < d main PCs to
approximate X:

X ≈ t1pT1 + t2pT2 + · · ·+ tlpTl = TlP
T
l (5.17)

The space spanned by the selected loadings Pl = [p1 p2 · · · pl] is the PCA subspace.
PCR utilizes the orthogonality of the scores when calculating the regression; in-

stead of using the original predictors, the selected main score variables are utilized
in the LS mapping:

Y = TlB̃
T
PCR +E, where B̃PCR =

(
T Tl Tl

)−1
T Tl Y . (5.18)

The PCR estimate for the mapping B in (5.9) is obtained by combining (5.18)
with (5.16):

BPCR = PlB̃PCR = Pl
(
T Tl Tl

)−1
T Tl Y = Pl

(
P Tl X

TXPl
)−1

P Tl X
TY (5.19)

Again, the mapping can be written using the covariances R̂x and R̂xy instead of the
data matrices:

BPCR = Pl
(
P Tl R̂xPl

)−1
P Tl R̂xy. (5.20)

Since the loadings are obtained using (5.15), only the covariances R̂x and R̂xy are
required to calculate the PCR model.

The advantage of PCR over LS solution is that the collinearity problem is effec-
tively avoided by PCA. Because only the main principal components with eigenvalues
larger than zero are utilized in the LS model included in PCR, the score covariance
matrix is always invertible. Moreover, the PCA results can be used to analyze the
structure of the predictor data, which may increase the interpretability of the model.
The downside of PCR is that it is more complex to calculate, and some relevant
information may be lost by the omitted principal components (Geladi and Kowalski,
1986). Additionally, the latent variables in PCR are determined from the predictor
data only, even though also the response data should be considered.
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5.2.3 Partial Least Squares
Partial least squares (PLS) (Geladi and Kowalski, 1986; Martens and Næs, 1989; Wold
et al., 2001) is the main multivariate regression method used in Publications I–V and
VII, and is thus more thoroughly discussed here. PLS was originally introduced by
Wold (1965) and improved by Wold et al. (1983), and has since then become a
standard method in chemical applications (Bjørsvik and Martens, 2008; Gemperline,
2006). In comparison to PCR where only the predictor data structure is taken into
account, PLS models the structure of both the predictor and response data. This may
improve the regression model performance in situations where the predictor contains
a large variance component which is not related to the changes in the responses.
However, the calculation process of PLS is more complicated than that of PCR.

In PLS, a set of l latent variables is used to approximate the predictor data:

X = TP T + F , (5.21)

where the N × l matrix T contains the PLS scores of the predictors, and P (n × l)
the corresponding PLS loadings. The residuals are collected in F . The orthogonal
predictor scores T are related to the predictor data by predictor weights in the n× l
matrix W ∗:

T = XW ∗. (5.22)
It is further assumed that the predictor scores can be used to explain the response
data as well:

Y = TCT +E = XW ∗CT +E = XBPLS +E, (5.23)
where C contains the response weights, BPLS is the final PLS mapping matrix, and
the equation follows the standard multivariate regression form (5.9). (Wold et al.,
2001)

The idea of PLS is to find such latent variables T that maximally describe the
covariance of X and Y with respect to the number of latent variables l. Thus,
PLS provides the means to capture the predictor and response covariance by using
the minimal number of latent variables. As a result, the obtained regression model
remains as simple as possible. (Höskuldsson, 1988)

The calculation of a PLS model can be realized either with the NIPALS algorithm
or with a kernel algorithm (Dayal and MacGregor, 1997b; Lindgren and Rännar,
1998). NIPALS (Wold et al., 2001) is the classical method introduced by Wold
(1965) and involves an iterative calculation of the latent structure from the predictor
and response data matrices (except in the special case where m = 1). The typical
version of the NIPALS algorithm is given for example by Wold et al. (2001).

The kernel algorithms, on the contrary, replace the iteration by calculation of
the eigenvalues of covariance matrix products (Lindgren and Rännar, 1998). The
idea was originally presented by Höskuldsson (1988), and some of the first actual
kernel algorithms were published by Glen et al. (1989a,b) and Lindgren et al. (1993).
According to Lindgren et al. (1993) the first PLS predictor weight vector w∗1 is ob-
tained as the main eigenvector of R̂xyR̂

T
xy, and the first response weight c1 as the

main eigenvector of R̂TxyR̂xy. After determining the first PLS latent direction, the
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covariance matrices have to be deflated before calculating the next latent direction.
It has been shown that less computations are needed in the kernel approach than
in NIPALS, meaning that the computational speed of the kernel algorithm is faster
(Dayal and MacGregor, 1997a; De Jong and Ter Braak, 1994; Lindgren et al., 1993).

The typical structures of NIPALS and kernel based PLS algorithms are given in
Table 5.1. Both algorithm versions start with the initialization of the data structures.
After that, the vectors spanning the latent variables are calculated one by one in a
sequential manner. The data structures are deflated by subtracting the effect of
the previously obtained latent variables before the next latent variable is computed.
Finally the PLS model is obtained from the PLS loadings.

Table 5.1: Comparison of the structure of NIPALS and kernel approaches
for PLS calculation (based on Dayal and MacGregor (1997a)).

NIPALS-based approach Kernel approach

1. Preprocess the data in X and Y .
2. Initialize X1 ←X and Y1 ← Y

3. For each latent variable i = 1, . . . , l:
(a) Compute the i:th PLS weights

(w∗i , ci), loadings (pi) and scores
(ti) iteratively from Xi and Yi.

(b) Deflate at least Xi by subtracting
the effect of computed latent vec-
tors, and substitute the result to
Xi+1. Yi can either be deflated
as well or substituted as such to
Yi+1.

(c) Go to step 3a to compute the next
latent variable.

4. Calculate the final PLS mapping as
BPLS = W ∗CT .

1. Preprocess the data in X and Y .
2. Calculate the covariance matrices R̂x

and R̂xy.

3. Initialize R̂1
x ← R̂x and R̂1

xy ← R̂xy.
4. For each latent variable i = 1, . . . , l:

(a) Compute the i:th PLS weights
(w∗i , ci) and loadings (pi) with
a kernel algorithm e.g. using
the eigenvalue decomposition of
R̂TxyR̂xy and the predictor covari-
ance R̂x.

(b) Deflate R̂ix and R̂ixy by subtract-
ing the effect of the computed la-
tent vectors and substitute the re-
sult to R̂i+1

x and R̂i+1
xy .

(c) Go to step 4a to compute the next
latent variable.

5. Calculate the final PLS mapping as
BPLS = W ∗CT .

As mentioned above, the NIPALS iteration is avoided by the kernel algorithm.
However, step 4a (Table 5.1) of the kernel approach (computing of the PLS loadings)
requires the calculation of the largest eigenvector of a covariance matrix product
(Lindgren et al., 1993). This typically involves the power method or a singular value
decomposition (SVD) algorithm (Dayal and MacGregor, 1997a).

After initialization, the kernel version uses only the covariance matrices, whereas
NIPALS requires the actual data matrices. This is an advantage of the kernel method,
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especially if the number of data samples N is large compared to the data dimensions
(n and m), because computing with the small covariance matrices is faster and less
memory consuming than dealing with the large data matrices. Kernel algorithms
optimized for large dimensions and small number of data samples have been presented
as well (Rännar et al., 1994, 1995).

Another advantage of the kernel approach is the easy implementation of a recursive
PLS algorithm. This fact is essential for the applications presented in this thesis, and
it is further discussed in Section 5.3.

More recently, Trygg and Wold (2002) have enhanced the PLS approach by com-
bining it with orthogonal signal correction (OSC) preprocessing (Wold et al., 1998)
(see Section 5.4.2) to increase the interpretability of the regression model. The idea
of the orthogonal projections to latent structures (OPLS) algorithm is to separate the
variation in X that is orthogonal to Y (and thus, is not explaining Y ) before calcu-
lating the PLS model. This simplifies the PLS model and improves the data analysis
since the non-correlated part of X can be separately examined. Furthermore, an ex-
tension of the OPLS named kernel-based orthogonal projections to latent structures
(K-OPLS) has been published by Rantalainen et al. (2007). K-OPLS utilizes the
kernel approach of PLS to deal with nonlinear data.

5.2.4 Local Modeling
The utilization of local models in multivariate regression is a vast and vaguely defined
field of data-based modeling. In most cases the idea is to compensate for nonlinearities
in the data by dividing both the predictor and response space into regions where
linearity assumption approximately holds (Pérez-Marín et al., 2007).

Local modeling methods are in this study classified in two main categories: A)
methods utilizing a database and ad hoc modeling; B) methods utilizing a set of pre-
calculated local models. In type A methods, a database of predictor and response
samples is maintained. For each new unknown predictor, the most similar (i.e. closest)
predictor samples in the database are selected into a training data set, and a local
regression model Blocal is estimated based on them. The model is then utilized
in (5.10) to predict the response for that sample. In type B methods, a set of local
models B1,B2, . . . ,BNlocal is calculated to cover the global data space. When a
prediction is needed, a weighted average of the local model predictions is calculated.
Figure 5.1 illustrates the point.

The type A local modeling methods have been more common in NIR spectroscopy
(Davies and Fearn, 2008; Pérez-Marín et al., 2007) than those of type B. The first
algorithm that utilized local modeling for NIR data was CARNAC (Davies et al.,
1988), where the new prediction was calculated as a weighted average of the training
set responses. Additionally, Fourier transformation was used to compress the spectral
information in order to improve the speed of the calculation. A more sophisticated
version of the algorithm (CARNAC-D) was developed more recently (Davies and
Fearn, 2008). Locally weighted regression (LWR) was introduced by Cleveland (1979)
as a data smoothing method, and then combined with PCR for usage in local modeling
(Naes and Isaksson, 1992; Wang et al., 1994). The training set selection in LWR is
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Figure 5.1: (a) Type A local modeling methods calculate a new local
regression model for each unknown predictor, whereas (b) type B methods
use a pre-calculated set of local regression models.

performed in the PCR score space, which improves the modeling results. Local PLS
models are utilized in LOCAL, a commercially available local modeling approach
specially designed for NIR data (Shenk and Westerhuis, 1997). Finally, locally-biased
regression combines PLS and OSC to determine a local bias-correction for a global
PLS model (Fearn and Davies, 2003).

Local modeling in a more general application field have extensively been discussed
by Atkeson et al. (1997), who use the term “lazy learning” to describe type A local
modeling methods. The word “lazy” refers to the fact that the model is computed
only when a new prediction has to be calculated.

The disadvantages of type A local methods are that a large database has to be
maintained and that the prediction model has to be estimated every time a new
prediction is calculated. The type B local modeling methods avoid both of these
problems by calculating the local models in advance. This involves proper clustering
of the data, which can be performed by a suitable algorithm (see e.g. Barakat et al.
(2004); Naes and Isaksson (1991); Shen et al. (2004)). For each cluster, a simple
regression model (e.g. PCR or PLS) is calculated and the models as well as their
locations in the data space are stored. A new prediction is obtained by calculating
the relevance or validity of each local model with respect to the new predictor in the
predictor space, and then weighting the local model predictions accordingly.

In addition to chemometrical applications (Barakat et al., 2004), type B local
methods have been utilized for control engineering as well (Murray-Smith and Jo-
hansen, 1997). In particular, Schaal and Atkeson (1998) and Vijayakumar et al.
(2005) have developed iterative local data learning algorithms for high-dimensional
robot control.

In Publications III and IV, type A and B local modeling methods, respectively,
are applied to the modeling of the VNIR reflectance spectral data. However, there
the motivation for local modeling stems from the adaptive updating of the calibration
model instead of data nonlinearities.
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5.3 Recursive Identification
The multivariate modeling methods in Section 5.2 were presented in batch or off-
line mode, meaning that a set of data {X,Y }, or the covariance matrices Rx and
Rxy calculated from the data, are assumed to be available prior to modeling. The
selected model parameters are then identified and a fixed model matrix B based
on the statistical properties of the whole data set is obtained. However, especially
in process industry applications, one is often interested in modeling the process on-
line, which involves simultaneous data collection and model calculation. Typically
the statistical properties of process signals tend to change in time because process
operating point, raw material properties, external factors etc. vary. Since the system
is time varying and the signals are not stationary, a fixed model is not adequately
describing the system for longer time periods. Instead, recursive identification is used.

Recursive identification (Ljung and Söderström, 1983) is based on the updating of
the model parameters every time new data are available. General forms of recursive
identification algorithms are presented and the well-known recursive least squares
(rLS) algorithm is discussed in detail by Ljung and Söderström (1983) and Ljung
(1999).

The recursive modeling approach presented in this thesis, however, utilizes the
recursive updating of the covariance matrices with new data. From the covariances,
the regression models are then calculated as presented in Section 5.2. The basic
recursive algorithm for a sample covariance matrix is

R̂x(k) = R̂x(k − 1) + γ(k)[x(k)xT (k)− R̂x(k − 1)], (5.24)

where
x(1),x(2), . . . ,x(k), . . . (5.25)

is a sequence of data samples x indexed by k, R̂x(k) is an estimate of the covariance
Rx after k samples and γ(k) is a scalar gain. The recursion (5.24) follows the general
form where at each step the momentary error of the estimate (x(k)xT (k)−R̂x(k−1))
multiplied by gain (γ(k)) is subtracted from the old estimate (R̂x(k − 1)) to obtain
the new estimate.

5.3.1 Exponential Forgetting
The tracking of time varying statistical properties of a signal essentially involves
forgetting of the old data: one wants to estimate the current value of the statistics as
accurately as possible, not the average of all the previous values. The most common
forgetting scheme — probably because of its easy implementation in recursive form —
is the exponential forgetting. The off-line counterpart of exponential forgetting is a
weighted average calculation, where the sample weights are decreasing exponentially
as the sample index decreases. The sample covariance matrix estimate of the samples
x(1),x(2), . . . ,x(k) with exponential forgetting is

R̂x(k) =
[
k∑
i=1

λk−i
]−1 k∑

i=1
λk−ix(i)xT (i). (5.26)
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The scalar forgetting factor λ, 0 < λ < 1, is typically selected slightly smaller than
one.

The recursive form of the weighted sum (5.26) equals to the selection of gain as

γ(k) = 1− λ
1− λk (5.27)

in (5.24). After the initial transient k � 0, and the gain can be approximated by a
constant value γ(k) ≈ γ = 1− λ. This results in the recursive form

R̂x(k) = R̂x(k − 1) + (1− λ)[x(k)xT (k)− R̂x(k − 1)]
= λR̂x(k − 1) + (1− λ)x(k)xT (k),

(5.28)

as given in (Ljung, 1999). In some cases only the structure of the covariance matrix
is of importance, and the scaling can be omitted. For example, the eigenvector
directions used in PCA and PLS remain the same regardless of the scaling. The
unscaled exponentially weighted covariance estimate is (Ljung, 1999)

R̂x(k) =
k∑
i=1

λk−ix(i)xT (i), (5.29)

which corresponds to the simple recursion

R̂x(k) = λR̂x(k − 1) + x(k)xT (k). (5.30)

The scaled and unscaled estimates of the cross-covariance matrixRxy are correspond-
ingly updated by replacing x(k)xT (k) with x(k)yT (k) in (5.28) and (5.30).

Recursive exponential forgetting can be used more generally as a low-pass filter
for an arbitrary signal a:

afilt(k) = λafilt(k − 1) + (1− λ)a(k). (5.31)

The effect of the selected forgetting factor can be evaluated by calculating the
memory time constant:

T0 = 1
1− λ. (5.32)

T0 describes how long (in sampling intervals) the system is assumed to remain con-
stant. (Ljung, 1999)

5.3.2 Recursive Partial Least Squares
Recursive calculation of the LS, PCR and PLS regression models with exponential
forgetting can in principle be realized by combining the (scaled or unscaled) recursive
updating of the covariance matrices (Equations (5.28) or (5.30)) with the kernel al-
gorithms of the respective regression models presented in Section 5.2. However, this
approach is not truly recursive in the sense that every updating step requires the cal-
culation of a new regression model from the covariances. For the least squares model,
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the common rLS algorithm with efficient matrix inversion (Ljung, 1999) should be
used instead. For recursive PCR (rPCR) or PCA (rPCA), the suggested framework
requires computationally intensive calculations after each updating step as well. One
first needs to perform the eigenvalue decomposition of the covariance (for PCA) and
then to compute the matrix product (5.20) including a matrix inversion. In the liter-
ature, several alternative algorithms for recursive PCA with improved computational
properties have been presented (Erdogmus et al., 2004; Li et al., 2000). If the com-
putational efficiency is of importance, then these algorithms provide a better starting
point for rPCR.

Recursive PLS (rPLS) is, however, typically realized by the presented approach,
where the covariance matrices are updated recursively and a kernel method is then
used to obtain the final mapping matrix BPLS (Dayal and MacGregor, 1997b; Miletic
et al., 2004). Initially, recursive calculation of PLS was proposed by Helland et al.
(1991), whose idea was to augment a fixed size representation of the old data with the
new data, and then to apply NIPALS to these augmented matrices. Qin (1993, 1998)
improved the algorithm by introducing on-line adaptation with a moving window and
exponential forgetting, block-wise adaptation and application principles to dynamic
and nonlinear regression. At the same time, the rPLS algorithm based on recursively
updated covariance matrices and kernel PLS was presented by Dayal and MacGregor
(1997a,b). The algorithm utilizes the unscaled covariance matrix recursion (5.30) and
the improved kernel PLS algorithm (Dayal and MacGregor, 1997a). Separate mean-
centering of the variables is avoided in the algorithm by augmenting the predictor
data with a constant variable:

x̃ =
[
xT 1

]T
, (5.33)

and by using the augmented data instead of the original. This kind of mean-centering
is a standard method in linear regression (Gemperline, 2006; Martens and Næs, 1989),
and when combined to recursive regression methods it provides a compact way to
adaptively compensate for the effect of the possibly changing data mean.

In this thesis, the rPLS algorithm by Dayal and MacGregor (1997a) is used as the
main regression method in Publications II–VII, and the adaptive mean-centering is
utilized in Publications II and VII.

5.4 Data preprocessing
The aim of data preprocessing is to improve the modeling performance by modifying
the measured data before model calculation. When dealing with linear regression
model structures, one purpose of the preprocessing is to linearize the relationship
between predictors and responses. Another important aim is to eliminate from data
such variation that is unrelated to the modeling problem at hand.

5.4.1 Linearity Pursuit
There are two main methods to handle the nonlinear relationship of the predictor
and response data: 1) applying a nonlinear transformation to the predictor and/or
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response data, or 2) using extra predictor variables (Martens and Næs, 1989). In spec-
troscopy, the nonlinear transformation can be selected based on theoretical models
for the specific measurement setup. A common transformation in diffuse reflectance
spectroscopy is to use the absorbance log(1/R) instead of the measured reflectance R.
This is motivated by the linear relationship (3.5) between the absorbent concentra-
tion and the absorbance derived from the Beer-Lambert law (Norris, 1983; Osborne
et al., 1993). The log(1/R) transformation is used in Publications III, IV, V and
VII. Another theory-based transformation for linearity is the Kubelka-Munk function
(3.8).

5.4.2 Preprocessing Methods
Generally, the most basic preprocessing of multivariate data includes mean-centering
and variance normalization of each predictor and response variable. Especially for
PCR (or PCA), the mean-centering of the predictor data is typically essential. If the
mean-centering is omitted, the data mean dominates the direction of the first PC and
affects the rest of the PCs as well (see e.g. Li et al., 2000).

In the field of spectroscopy, common preprocessing techniques are standard normal
variate (SNV) and multiplicative scatter correction (MSC). Both of the methods are
meant to reduce the data variance caused by scattering effects (Fearn et al., 2009;
Gemperline, 2006). SNV is based on normalization of each spectrum by standardizing
each intensity value, that is, by subtracting the sample mean intensity of the spectrum
and dividing the result by the sample standard deviation of the intensities. MSC
(Fearn et al., 2009; Geladi et al., 1985), on the other hand, normalizes the spectra by
compensating for the additive and multiplicative effects caused by scattering. Other
popular preprocessing methods for spectral data include the calculation of first and
second derivative, baseline correction and smoothing (Gemperline, 2006; Martens and
Næs, 1989).

All the abovementioned preprocessing methods are based on the modification
of the measured spectral data X independent of the corresponding responses Y .
Since the aim of the analysis is to model Y linearly from X, a natural starting
point for preprocessing would be to only remove such variation from X that is not
explaining Y . This idea was proposed by Wold et al. (1998), who also named it
as orthogonal signal correction (OSC). In the original OSC, the NIPALS algorithm
is applied to finding the largest variance directions in X that are as orthogonal as
possible to Y . The most important such directions are then removed from X and
the resulting data are further used in model calculation, usually by PLS.

Several variations of the original OSC algorithm have been presented, for example
by Sjöblom et al. (1998), Anderson (1999), Fearn (2000) and Westerhuis et al. (2001).
Furthermore, the same idea is utilized in the O-PLS and K-OPLS algorithms (see
Section 5.2.3). Some of the OSC algorithms were tested and compared by Svensson
et al. (2002). They showed that OSC preprocessing does not significantly improve the
prediction performance if PLS is used for the actual modeling. However, the removal
of OSC components leads to simpler PLS models, because less latent variables are
required to reach the same prediction error. Additionally, the interpretation of the
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model is improved since also the uncorrelated variance captured by OSC can be
analyzed. These benefits are obtained by the O-PLS algorithm as well (Trygg and
Wold, 2003).

The OSC algorithm proposed by Fearn (2000) is used as the starting point in
Publication IV, where a kernel version of OSC is derived. The kernel OSC is further
combined to the recursively updated covariance matrices to obtain a recursive OSC
preprocessing algorithm.

5.5 Model Evaluation and Validation
The quality of an estimated regression model should be evaluated with respect to
the intended usage. Usually the aim in regression is to predict the response of new
predictor samples without knowing the real response values. In such a case, a natural
method to evaluate the model quality is to measure the error between the predic-
tions ŷ and measured predictors y:

ê = y − ŷ. (5.34)

Model validation is typically based on the estimation of the statistical properties
of the estimation error (5.34) from a validation data set. The standard criterion
used is the mean square error (MSE) (Martens and Næs, 1989), which is the sample
average of the squared estimation errors:

MSEi = 1
N

N∑
i=1

ê2
i (k), i = 1, . . . ,m, (5.35)

where i indexes the m output variables. MSE can be divided into two parts: error
caused by random variation (sample variance of ê) and the systematic error (squared
sample mean or bias of ê). Typically also the square root of MSE, root mean square
error (RMSE), is calculated. If the bias term is neglected, RMSE corresponds to the
sample standard deviation of ê.

An alternative method to evaluate the model is to measure the proportion of
response variance explained by the predicted values. This coefficient of determination
is denoted by R2 and calculated as

R2
i = 1−

∑
ê2
i (k)∑(yi − µyi)2 , i = 1, . . . ,m, (5.36)

where µyi is the average of yi (Wold et al., 2001). In the case of crossvalidation,
that is, when separate data sets are utilized for model estimation and validation, the
coefficient of determination for the validation data is denoted by Q2 (Wold et al.,
2001).

5.6 Singular Spectrum Analysis
Singular spectrum analysis (SSA) (Golyandina et al., 2001) differs from most of the
other data-based methods presented in this chapter because it is used to analyze time
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series data. However, the idea of PCA is strongly incorporated into the calculation
of SSA as shown below. SSA decomposes the original time series into orthogonal
components which typically represent oscillations, trends and noise of the signal. The
decomposition is used to analyze the structure of the time series and to reproduce a
modified version (e.g. without noise) of the original series. Forecasting based on the
SSA decomposition is possible as well.

The introduction of SSA is usually connected to the publication by Broomhead
and King (1986), but also earlier studies applying the same idea can be found (see
e.g. Kumaresan and Tufts (1980)). SSA has been especially popular in climatology
for extracting trends and oscillations from noisy signals (Rodó et al., 1997; Vautard
and Ghil, 1989; Yiou et al., 1994). It is, however, utilized also in other fields like
physics (Marrelli et al., 2001), economics (Hassani et al., 2009) and telecommuni-
cations (Tzagkarakis et al., 2009), to mention a few. In process industry, SSA has
been applied for example to signal preprocessing in system identification (Aldrich
and Barkhuizen, 2003) and to analyze the nature of process dynamics (Jemwa and
Aldrich, 2006).

5.6.1 Algorithm
The basic SSA algorithm presentation given here follows mainly the one by Golyan-
dina et al. (2001), who divide the analysis into two main stages: decomposition and
reconstruction. The analyzed signal is assumed to be represented by an N samples
long time series g = [g(1) g(2) · · · g(N)]T .

Decomposition: The decomposition phase starts with the selection of an integer
window length L, 1 < L < N . Then all the possible sets of L consecutive samples
in g, that is, lagged vectors zT , are embedded as the K = N − L + 1 rows of the
trajectory matrix Z:

Z =



zT (1)
zT (2)

...
zT (K − 1)
zT (K)

 =



g(1) g(2) · · · g(L)
g(2) g(3) · · · g(L+ 1)
g(3) g(4) · · · g(L+ 2)
... ...

g(K) g(K + 1) · · · g(N)

 . (5.37)

As a direct result of the embedding procedure, the trajectory matrix is a Hankel
matrix meaning that the values on each skew diagonal are constant.

The trajectory matrix is then treated as any data matrix containing multivariate
data samples: each column corresponds to a variable, and each row to a sample of
an L-dimensional data vector zT . In particular, PCA (or SVD) is used to decompose
the trajectory matrix into a sum of d elementary matrices according to (5.14):

Z = Z1 +Z2 +Z3 + . . .+Zd, (5.38)

where d equals the rank of Z, and each elementary matrix is the outer product of
the corresponding PCA loading pi and score ti column vectors:

Zi = tip
T
i . (5.39)
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As a result of PCA, each loading vector pi describes a typical L samples long
structure present in the time series g and can be interpreted as an ’eigensignal’. By the
nature of PCA these eigensignals are orthogonal, and arranged in a descending order
according to the data variation they represent. Moreover, each lagged vector z(k) of
the original time series (i.e. the whole trajectory matrix Z) can be reconstructed by
a linear combination of the eigensignals.

Reconstruction: As discussed by Golyandina et al. (2001), the eigensignals in SSA
typically represent trend components, oscillatory components, or noise components
of the original time series. In the reconstruction phase of SSA the interesting com-
ponents {i1, . . . , ip} (say, the main oscillations) are grouped and used to calculate an
estimate of the trajectory matrix:

Ẑ = Zi1 + . . .+Zip . (5.40)

Finally the original signal is reconstructed by averaging the estimates of the same
signal value on every skew diagonal of Ẑ. The averages are collected as the samples
of the reconstructed signal ĝ. This last phase is referred to as diagonal averaging.

The kernel formalism used for the multivariate regression algorithms in Section 5.2
can be applied to SSA as well. The covariance that captures the necessary statistics
is now the covariance matrix of the lagged vectors:

R̂z = 1
K
ZTZ. (5.41)

Based on the covariance the structure (loadings P ) of the signal can be extracted
by PCA, even though the actual trajectory matrix would not be available. This idea
is further utilized in Publication VI, where a recursive version of SSA is derived for
on-line characterization of signal structures.



Chapter 6

Measurements and Modeling

The experimental part of the research was conducted at the operational concentration
plant of Pyhäsalmi Mine Oy. Mainly two types of data were collected from the
flotation process: the VNIR reflectance spectral measurements of the flotation froths
and slurries, and the XRF analysis of the slurries. Several prototype devices were
developed for the VNIR reflectance measurements, whereas the XRF results were
obtained from the XRF analyzer regularly used at the plant. Based on the analysis
of the data, the information content of the VNIR spectra regarding the elemental
contents of the froths and slurries was evaluated, and the XRF assays were used as
reference values.

In this chapter, the background of the proposed analysis approach is discussed,
and the measurement arrangements and data collection methods utilized in the pub-
lications are summarized. The application of the data analysis methods is presented
as well.

6.1 Preliminary Discussion
Before reviewing the actual measurement arrangements used in the course of this
research, it is worthwhile to evaluate some of the starting points for the analysis.
The general optical properties of the main minerals present in the Pyhäsalmi ore (see
Table 2.1) can be analyzed using database laboratory spectra. Figure 6.1 shows the
hemispherical VNIR reflectance spectra of the five main minerals in two size classes
drawn from the ASTER spectral library data (Baldridge et al., 2009).

Even though the spectra are from dry mineral samples, as opposed to mineral
slurries or froths, some observations can be made:

• Sphalerite (the zinc-bearing mineral) and barite (gangue mineral) have generally
higher reflectance than the other minerals, meaning that they should dominate
the spectra of the real mineral mixtures.
• None of the minerals have sharp absorbance regions in the analyzed wavelength

range, which suggests that the spectrum analysis can be focused on the overall
shape of the spectra.
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Figure 6.1: The laboratory VNIR spectra of the main minerals in two
particle size classes. The data were acquired from the ASTER spectral
library (Baldridge et al., 2009). For pyrrhotite, only the smaller particle
size class data were available.

• Particle size affects strongly the overall reflectance of the sample. In addition,
the effect is mineral dependent: in pyrite and chalcopyrite, samples with smaller
particles are less reflective, whereas for sphalerite and barite the opposite is
true. As a result, unknown changes of the particle size distribution disturb the
spectral measurements.

The VNIR reflectance spectra of the froth and slurry samples are determined by
the mineral composition of the sample, whereas the XRF analyzer is measuring the
elemental contents of the slurries. Thus, in order to combine these two measurement
approaches, some assumptions on the mineralogy of the sampled froths and slurries
has to be made. In the case of Pyhäsalmi ore, the zinc and copper contents are
in direct relationship to the amounts of sphalerite and chalcopyrite, respectively.
However, the zinc/iron ratio of sphalerite affects the optical properties of the mineral,
which disturbs the spectral measurement. Unknown changes of the gangue mineral
concentrations and particle size distribution of the slurry feed are possible sources
of error as well. Throughout the thesis, it is assumed that these changes are rather
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smooth because of the mixing taking place in the comminution process preceding
the flotation, so that the adaptive calibration of the spectral measurement is able to
compensate for their effect.

6.2 XRF Slurry Assays
The XRF assay data for all the publications were obtained directly from the XRF
analyzer of the plant (Outotec Courier R© 6 SL). The structure of the analyzer is a
centralized one, meaning that continuous slurry samples from the process streams
are transferred to the analyzer by the primary sampling pipes. A multiplexer then
samples each primary line in turn for the analysis, which is performed by a single
X-ray tube and spectrometer. The assays are calculated from the measured XRF
spectra using a multivariate regression model. The model calibration is based on
laboratory measurements.

At Pyhäsalmi the XRF analyzer is measuring 14 slurry lines, but the most critical
lines are assayed twice during the measurement cycle. This increases the sampling
interval of a typical line to around 18 minutes. The secondary sampling of the ana-
lyzer lasts about 30 seconds, during which the slurry sample for the actual analysis
is collected. Correspondingly, the XRF assays thus represent the elemental contents
of the slurry averaged over the 30 second time period. The most important ele-
ments measured are iron, copper and zinc, as well as the solid content of the slurry.
In addition, an estimate for the sulfur content is calculated from the measurement
results.

6.3 Imaging VNIR spectrographs
The VNIR spectrum was measured with the Specim ImSpector V10 spectrograph
connected to a monochrome CCD camera (Basler A102f). The spectrograph is based
on a prism-grating-prism (PGP) structure (Aikio, 2001), which disperses the light
measured from a target line to its spectral elements (Figure 6.2). The horizontal axis
of the gray scale image acquired from the CCD camera corresponds to the location
along the target line, and the vertical axis indicates the spectral wavelength. Thus
the intensity of a pixel in the image describes the intensity of the corresponding
spectral component in the light measured from a short part of the target line. A
complete hyperspectral image can be obtained by sweeping the spectrograph over
a target or letting the targe slide past the spectrograph (e.g. when measuring the
spectra of objects that are moving on a belt conveyor).

Two spectrograph versions were utilized in the measurements performed in the
publications. The first one had normal optics and was capable of measuring the
spectra of a line as described above. It was used for the froth measurements in
Publication I and in the first slurry analyzer prototype described in Publication II
(see Section 6.5). In the second version, the optics was replaced by a fiber bundle,
whose common end was attached to the spectrograph and aligned so that the fibers
were located horizontally in a row. This enabled the concurrent spectral measurement
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Figure 6.2: The internal structure of the prism-grating-prism imaging
spectrograph. (Courtesy of Specim)

of the targets seen by each of the fibers. The fiber optic version was used in the
second and third slurry analyzer prototypes described in Publications V and VII
(see Section 6.5), where several slurry lines were simultaneously analyzed.

The wavelength range of both spectrographs was 400-1000 nm, and the spectral
resolution 5 nm. The same CCD camera was used in both spectrographs with a reso-
lution of 1280x960, that is, every image captured with the normal optics spectrograph
contained 1280 spectra with 960 wavelength values. In the fiber optics version, each
fiber covered about 25 pixel columns in the final image and contained 960 wavelength
values. The CCD camera was used in the 8 bit mode, meaning that each pixel had
256 possible intensity values. The fiber optics spectrograph contained 10 fibers, each
7.5 m long and with a collimator lens in the end.

6.4 Froth VNIR Measurements
The froth analysis tests for this study were performed on the last zinc cleaner cell
at the Pyhäsalmi concentration plant. The spectrum of the froth was measured
using the VNIR spectrograph with normal optics, and the spectrograph was installed
on top of the cell pointing directly down. The spectrograph was located next to
an existing RGB froth camera (Figure 6.3), which is part of the multicamera system
(Kaartinen, 2001; Kaartinen et al., 2006b) installed earlier on the concentration plant.
The halogen light of the froth camera system was used to illuminate the froth also for
the spectral measurements, and the spectrograph was connected to a laptop computer
to store the spectra. As shown in Figure 6.3, the spectrum measurement line was
positioned in the froth area measured by the RGB camera, thus ensuring that the
same froth was analyzed by both spectrograph and RGB camera.

The length of the spectrograph line on the froth surface was about 30 cm, even
though some variations occurred because of the changes in the height of the froth.
The line length was much larger than the diameter of an average bubble, so that each
captured spectrum image contained spectra from the brighter bubble centers as well
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Figure 6.3: The spectrograph was installed next to an existing RGB
froth camera on top of the final zinc cleaning cell.

as from the darker regions between the bubbles. Thus an average of the spectra in
one captured image provided a good estimate of the momentary average spectrum of
the froth.

The froth spectrum measurement and analysis is discussed in Publication I. Be-
sides Publication I, an initial report of the measurement setup and of the preliminary
results is given by Kaartinen et al. (2006a).

6.5 Slurry VNIR Measurements
After the initial laboratory tests described in Publications I and II, the spectrum
of the mineral slurries was measured on-line from the real process streams at the
Pyhäsalmi concentration plant. The slurry measurement system was gradually de-
veloped during the work described in this thesis, and three prototypes are presented
in the following.

6.5.1 Prototype I
The first on-line VNIR spectral measurements of the slurry were conducted using the
imaging spectrograph with normal optics. An additional slurry flow was continuously
sampled from the primary sampling flow of the XRF analyzer at the concentration
plant and led through a jet flow cell with a sapphire window as presented in Figure 6.4.
The cell was designed to create a turbulence in the slurry flow so that a representative
sample was presented in front of the window at all times. A similar kind of cell is
used in the Courier R© analyzers to present the sample for the XRF analysis.

The primary sample flow of the XRF analyzer is a continuous slurry flow that is
sampled from the corresponding process flow (Figure 6.4). A simple vertical cutter
sampler was used to fork the small continuous side flow for the spectral analysis from
one of the the primary sample flows. While the typical flow rate in the primary
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Figure 6.4: The first (single-channel) slurry measurement prototype. An
additional slurry flow was sampled from one of the primary sample flows
of the XRF analyzer, and the slurry was analyzed through the jet flow cell
window.

sample loop of the XRF analyzer is about 200–400 l/min, the rate of the spectral jet
flow cell side flow was about 60 l/min.

The spectral measurement system consisted of the imaging spectrograph, a 12 V
halogen lamp and a web camera which was used to remotely monitor the flow condi-
tions in the jet flow cell. Additionally, a small dry instrument air feed was directed to
the cell window to prevent condensation. The measurement geometry was arranged
so that the spectrograph was pointed perpendicularly to the cell window, whereas
the illumination light angle was about 45◦ to reduce reflections from the glass of the
window. The measurement instruments and a desktop computer were installed in a
slightly over-pressurized protective housing to prevent the mineral dust and slurry
splatters from disturbing the measurements.

A more detailed description of the first prototype is given in Publication II. Data
measured by the prototype are analyzed and reported in Publications II, III and IV.

6.5.2 Prototype II
In the second slurry measurement prototype, the VNIR spectrum measurement was
extended to cover several slurry lines simultaneously, that is, a multi-channel mea-
surement was obtained. The prototype utilized the fiber optic version of the imaging
spectrograph. Sample cutters were installed into altogether seven slurry lines right
before the secondary sampling (multiplexer) of the XRF analyzer, and the sampled
slurry was analyzed using individual jet flow cells. A small measurement box contain-
ing a collimator lens, halogen lamp, web camera and air feed was attached to each
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jet flow cell as shown in Figure 6.5. One branch of the spectrograph fiber bundle
was connected to each collimator lens so that a single spectral image contained the
spectra of all the seven slurry lines.
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Figure 6.5: The second (multi-channel) slurry measurement prototype.

The internal structure of the measurement box was quite similar to prototype I,
except that the spectrograph was replaced by the collimator lenses connected to the
fibers. The collimator lenses were selected so that they captured the light reflected
from the center area of the round cell windows. In this prototype, silver coated
reflector halogen lamps (Osram Ministar) were utilized to maximize the amount of
infrared illumination.

The halogen lights were connected to adjustable voltage sources so that the overall
intensity of the reflected light could be set to the same level in all slurry lines. This was
important since the common CCD sensor in the spectrograph was used to capture all
the spectra, and large differences in the intensities would have reduced the numerical
accuracy of the measurements.

The second prototype is described in Publication V and the data measured by it
are utilized in Publications V and VI.

6.5.3 Prototype III
The third slurry measurement prototype was developed to prevent the blockages that
occurred in prototype II because of the small sample flows. The additional sampling
of the slurry was omitted, and instead a larger jet flow cell was designed and installed
directly to the primary sample flow of the XRF analyzer (Figure 6.6). This structure
has two advantages: 1) the blockage problems caused by the extra sampling and the
small flow rates through the jet flow cells are avoided, and 2) the analyzed sample is
more representative since one sampling stage is omitted.
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Figure 6.6: The third slurry measurement prototype, where the jet flow
cells are installed directly to the primary slurry flows (Publication VII).

The third prototype is described and applied in Publication VII. It is currently
in use at the Pyhäsalmi concentration plant as well.

6.6 Data Analysis
All the publications related to this thesis are based on analysis of data measured
from the Pyhäsalmi concentration process. In Publications I–V and VII, multi-
variate regression is used to predict the elemental contents of the slurries, and in
Publication VI time series of the concentration process measurements are analyzed
by a new recursive singular spectrum analysis algorithm in order to detect plant-wide
oscillations.

6.6.1 Multivariate Regression
The mineral flotation froth and slurry spectra are analyzed in this thesis mainly
by multivariate regression methods. Especially the connection between the VNIR
spectra and the elemental grades obtained from the XRF analyzer is modeled by
several regression techniques typically based on PLS. The aim and basic setting of
the modeling problem remains quite similar throughout the work: The fast spectral
measurements of froth or slurry are used as predictors and the sparse XRF samples
as the response data. For model estimation, the spectral samples corresponding to
the XRF assays are collected by assuming a constant delay between the XRF and
VNIR measurements, and the model is either directly or recursively estimated from
these predictor-response pairs. The regression model is then applied to the rest of
the VNIR spectra to predict the elemental grade changes between the XRF assays.



6.6. Data Analysis 49

The froth spectra in Publication I are modeled by the standard PLS, even though
the model is periodically recalculated from a fixed number of latest measurements.
This compensates for the nonstationarity that was detected in the measured data.
Recursive and static modeling are compared for slurry spectrum analysis in Publica-
tions II and IV, and the rest of the publications use solely recursive models.

The most common modeling method is recursive PLS, which is realized by recur-
sive updating of the data covariance matrices and the kernel PLS algorithm (Dayal
and MacGregor, 1997a) as explained in Section 5.3. The covariance matrices are
updated with exponential forgetting after each new XRF sample is received, and a
new PLS model is calculated from the updated covariances. The new model is used
to predict the grades from the VNIR spectra until the next XRF sample is available.
This approach was detected to work well especially for predicting the final concentrate
grades, and it is utilized in Publications II and V–VII.

Recursive updating with exponential forgetting is only suitable for data with
representative variation. In mineral flotation some elemental grades, however, stay
normally very low for long periods, and increase significantly only in the case of a
failure in the flotation process as wrong minerals are left to the slurry. The prediction
of these sudden changes is important from the control point of view, since they
typically indicate either loss of valuable minerals or decrease of the final product
grade. To improve the detection of the process failure cases, two alternative modeling
methods based on local modeling were developed in Publications III and IV.

The first new modeling approach (continuous locally weighted regression, CLWR)
presented in Publication III is based on type A local modeling (see Section 5.2.4),
where a calibration database is stored. Every time a new prediction is required, a
subset of data is selected and a new PLS model is estimated. Adaptation to statistical
changes is performed by on-line updating the database. Instead of discarding the
oldest data, however, the diversity of the database is maintained by replacing one
of the two most similar database samples with the new sample. This ensures that
the database covers the whole response range at all times. To improve the sample
selection process, OSC preprocessing is applied to the data. The details of the CLWR
algorithm can be found in Publication III.

Type B local modeling is utilized in the second new modeling approach for the
process failures, as presented in Publication IV. The algorithm is based on local re-
cursive OSC and PLS models and named as recursive multimodel (rMM) approach.
Separate local rPLS models are reserved for the normal operation and for the process
failures, and the models are updated with the corresponding data based on the re-
sponse values. Gaussian weighting functions linked to each local model indicate how
important each calibration sample is when updating the model. Correspondingly,
the weighting is also used when the rMM prediction is calculated as the weighted
average of the local model predictions. The prediction weight is determined as the
Mahalanobis distance between the model center and the query point in the OSC
preprocessed predictor space.

CLWR and rMM algorithms utilize local modeling in a novel way. Instead of
compensating for data nonlinearities, which typically is the motivation for a local
modeling approach, the data space is now divided to local regions in order to prevent
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the forgetting of the rare but locally different data samples. At the same time, the
models are adaptively updated. The closest match to the rMM algorithm in the
literature is the locally weighted projection regression (LWPR) algorithm presented
by Vijayakumar et al. (2005), which utilizes local PLS models as well. The LWPR
algorithm is, however, meant for very high dimensional data and primarily targeted
for highly nonlinear problems.

The usage of the multivariate regression methods in the publications is summa-
rized in Table 6.1. It is evident that the rPLS approach is mostly used because of its
simplicity and good performance especially on the large elemental grades of the final
concentrates.

Table 6.1: The usage of the different multivariate regression methods in
the publications. In Publication VI, data produced by the rPLS are used
as the starting point for the oscillation analysis.

LS PLS rPLS CLWR rMM
Publication I x x
Publication II x x
Publication III x x
Publication IV x x x
Publication V x
Publication VI (x)
Publication VII x

6.6.2 Oscillation Analysis
Data-based detection of oscillations from industrial process signals is often performed
off-line using autocorrelation functions or Fourier transformations of the signals (e.g.
Hägglund, 1995; Thornhill and Hägglund, 1997; Thornhill et al., 2003, 2002; Xia et al.,
2005). For the on-line analysis of copper circuit signal structures in Publication VI,
a new algorithm named recursive singular spectrum analysis (rSSA) is developed. It
combines the ordinary SSA (Section 5.6) with exponential forgetting (Section 5.3.1).
The main idea of the rSSA algorithm is to maintain an up-to-date SSA decomposition
of the concentration process signals on-line. A possible oscillatory period of a signal
is indicated by small changes in the signal structure, and the other signals oscillating
in the similar way are assumed to share the same SSA structure.



Chapter 7

Results

The main results in this thesis are related to the analysis of the froth and slurry
VNIR reflectance spectra. Especially the determination of slurry elemental contents
from the VNIR measurements are investigated. The main application of the spectral
measurement is the high-frequency slurry assay that is obtained by combining the
VNIR measurements with the sparse XRF assays. This chapter summarizes the
results obtained in the publications.

7.1 Froth Analysis
The froth analysis reported in Publication I is one of the first studies where VNIR
reflectance spectroscopy is utilized in assaying mineral froths. The main result in the
publication is that the elemental contents of the zinc concentrate slurry predicted
from the VNIR spectra are more accurate than the predictions from the RGB data
obtained by a regular camera. However, the difference is small for iron and zinc,
whereas the VNIR spectra clearly improve the prediction of the copper content.

As stated in Publication I, the problem with the used measurement setup is that
only the froth from one of the four final zinc concentration cells is measured by the
spectrograph, while the XRF analyzer assays the whole concentrate stream where the
concentrates from all the four cells are mixed. Depending on the conditions in the
cleaner cells their froth grades may differ, which obviously disturbs the comparison
of the VNIR spectra and XRF results.

Another difficulty is the rather long temporal and spatial distance between the
two measurements. As it turned out later with the slurry VNIR measurements (Pub-
lication II), the slurry grades typically contain high-frequency variations with a con-
siderable amplitude. This means that the precise synchronization of the VNIR and
XRF measurements is of utmost importance in order to form an accurate model for
the slurry grades. However, the measurement setup used in Publication I prevents
the proper determination of the time delay between the VNIR and XRF analyzers,
since the zinc concentrate is transferred through slurry pipes and a pump sump before
it is sampled for the XRF assay. In addition, the changing slurry flow speed causes
the delay to vary.

51
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The froth study in Publication I presents also the factor loadings of the PLS
model used. It is detected that all the main loadings are smooth with respect to
the wavelength, which indicates that the overall shape of the spectrum is more im-
portant than some specific narrow wavelength ranges in determining the elemental
grades. This is in agreement with the visual inspection of the dry mineral spectra
in Section 6.1. However, as many as six latent variables are required for the model,
which indicates that also the fine structure of the spectrum is meaningful.

7.2 Slurry Analysis
The major contribution of this thesis is in the analysis of the slurry grades from the
VNIR reflectance spectra. For the first time, on-line studies of the slurry VNIR spec-
tra are presented and the possibilities for the VNIR-based assaying are investigated.
The analysis is started with the final zinc concentrate of the Pyhäsalmi concentration
plant and then extended to other slurries in both zinc and copper flotation circuits.

7.2.1 Zinc Concentrate
Initial results obtained for the VNIR reflectance spectrum analysis of the mineral
slurries are reported already in Publication I. The spectra of slurry samples obtained
from the final zinc concentrate at the Pyhäsalmi concentration plant were measured in
laboratory and compared to the froth spectra obtained during the sample collection.
The slurry spectra are detected to strongly resemble the froth spectra, which indicates
that also the slurry spectrum can be used to measure the grades.

Publication II describes the actual combination of on-line spectral measurements
of the slurry with XRF assays. The results presented in the publication form one
of the key contributions of the thesis: The VNIR reflectance spectrum of the zinc
concentrate slurry is shown to provide the information required for accurate prediction
of the elemental grades. This forms the basis on which the work in the following
publications (III–VII) is founded. Additionally, as reviewed in Section 4.2, scientific
reports presenting proper applications of VNIR spectrographs to the on-line analysis
of mineral flotation slurries have not been published before.

At the same time, the measurement principle where slurry is flowing through a
jet flow cell and the VNIR reflectance spectrum is acquired through the cell window
is demonstrated to work. Publication II also illustrates the necessity for updating
the calibration model; the prediction ability of a static PLS model is very good for
a fixed data set where every other sample is used for estimation and every other for
validation, but the model quickly degrades after the estimation data period. The
adaptive updating is realized by recursive PLS calibration, which suits well for the
task: the modeling and prediction can be performed on-line, and the predictions
obtained are even more precise.

The VNIR assaying for the typically small copper contents of the zinc concentrate
slurry is improved in Publications III and IV. As discussed in Section 6.6.1, the
main contribution in these two publications consists of the two new local modeling
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algorithms which are designed to store the process failure information even though
the model is continuously updated with new data. The algorithms clearly improve
the accuracy of the VNIR assay in the case of sudden increases of the copper content,
while the performance during normal operation remains at the same level as with
the regular rPLS model. The importance of the result is that it enables the rapid
detection of process failures, which should be dealt with as soon as possible to prevent
financial losses in the form of reduced concentrate quality or valuable minerals lost
in the tailings.

7.2.2 Other Slurry Lines
The analysis was augmented to other slurry lines at Pyhäsalmi by the installation of
the second slurry analyzer prototype. The resulting comparison of the VNIR spectra
properties and assay performance in the most important slurry lines of both zinc and
copper circuits is presented in Publication V. The major differences of the average
slurry contents between the lines are clearly seen in the average spectra of the ana-
lyzed slurries. Especially the zinc and copper concentrates have distinguished average
spectra which are dominated by the optical properties of sphalerite and chalcopyrite,
respectively.

The precision of the VNIR measurement in different lines was measured by cal-
culating the coefficient of determination between the VNIR and XRF measurements.
As expected, the best results are obtained for the zinc and copper concentrate slur-
ries, where the relevant minerals (i.e. sphalerite and chalcopyrite) form the majority
of the solids. The pyrite-rich tailings are more difficult to assay from the VNIR spec-
tra, and only the iron and zinc contents of the copper middlings tailing are captured
with a good precision.

7.3 Applications
The results discussed in the previous section indicate that the flotation concentrate
slurries in both zinc and copper circuits of the Pyhäsalmi concentration plant can
be assayed by the VNIR reflectance spectroscopy. The exploitation of the developed
VNIR measurement is reported partly in all the related publications and is summa-
rized in this section.

7.3.1 High-Frequency Assays
An advantage of the reflectance spectroscopy is the fast sampling of the spectra as
opposed to the XRF analyzer with a sampling interval of around 10–20 minutes.
The froth and slurry VNIR spectra were sampled every five to ten seconds in all
the measurements of this work, which together with the up-to-date calibration model
enabled the calculation of the high-frequency assay. Already in Publication I the froth
is assayed from the dense VNIR measurements in order to fill in the gaps between the
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sparse XRF analyses. However, a proper high-frequency assay of the zinc concentrate
was obtained by the slurry analysis reported in Publication II.

Figure 7.1 reproduces the high-frequency assay results of the final zinc concentrate
for iron, copper and zinc grades from Publication II. The XRF sampling frequency
was doubled during the data collection, so that every other XRF sample could be
saved for validation purposes. The rPLS model was updated using the estimation
XRF samples, and the latest model was used for calculating the high-frequency VNIR
assay on-line. A sliding 30-second average of the VNIR spectrum samples was calcu-
lated after every VNIR sample in order to mimic the 30 second long sampling of the
XRF analyzer. As a result, the unfiltered VNIR assay in Figure 7.1 estimates the
XRF analyzer with an interval of ten seconds.
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Figure 7.1: The high-frequency VNIR assay of iron, copper and zinc
contents of the final zinc concentrate for a short time period. Also the
low-pass filtered assay and the XRF data are shown. (Reproduced from
Publication II)

The main observation that can be derived from the obtained high-frequency assay
is that the elemental contents of the slurry at Pyhäsalmi can contain significantly large
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short term changes that cannot be detected by the XRF analyzer alone. During the
period illustrated in Figure 7.1, a major zinc grade drop takes place. However, the
high-frequency peak-to-peak amplitude of the zinc grade is as large as two percentage
points. Based on this result, the following observations can be derived:

• Accurate synchronization of the XRF and VNIR sampling is crucial to obtain
reliable data for multivariate regression calculation. As demonstrated in Publi-
cation II, already a temporal difference of 20 seconds between the two sampling
methods significantly decreases the modeling performance.
• XRF analyzer assay is only an instantaneous sample of the slurry grade, and

thus does not necessarily accurately match with the more averaged slurry con-
tents. The low-pass filtered VNIR assay, on the other hand, captures the longer
term grade changes reliably.
• The discussion about the deficient sampling in froth VNIR analysis (Section 7.1

and Publication I) is supported by the slurry results. A more precise calibration
sampling would most probably improve the accuracy of the froth VNIR analysis
as well.

The two local modeling structures developed in Publications III and IV for de-
tecting the sudden increases of small slurry grades could also be used to produce
the high-frequency slurry assay. This capability is demonstrated in Publication IV,
where the sharp increase of the final zinc concentrate copper grade is detected from
the high-frequency assay before the following XRF measurement.

The analysis was further extended to the final copper concentrate slurry line in
Publication V, where the usability of the high-frequency assay is demonstrated in
the case of sudden grade drops and rapid grade oscillations. The latter case (see
Figure 7.2) led to a full-scale study of signal oscillations in the Pyhäsalmi copper
flotation circuit, as reported in Publication VI. A summary of the results is given in
the next section.

Even though the high-frequency assay could readily be utilized in automatic pro-
cess control, in this thesis the main emphasis is on providing the improved grade
information for the process operators. To evaluate the momentarily accuracy of the
measurement, an on-line estimate of the VNIR assay error distribution was developed
(Publication VII). The basic idea is to compare the VNIR assays calculated by a set
of previous PLS models to the new XRF sample before each updating step. From
this data, an estimate for the VNIR assay error distribution as a function of the PLS
model age is obtained. From the error distribution it is easy to compute, for example,
the confidence limits for the VNIR estimate.

As a result of the work described in this thesis, the high-frequency VNIR assays
of the most important elements (zinc, copper and iron) of the final copper and zinc
concentrate slurries are in continuous use at the Pyhäsalmi concentration plant. The
assays are available for the process operators on the automation system screens to-
gether with the corresponding XRF measurements. In addition, color-coded arrow
displays illustrating the current change in the slurry grades are visible on the screens
as demonstrated in Publication VII. Feedback from the operators indicates that the
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Figure 7.2: The high-frequency VNIR assay reveals well the grade oscil-
lations in the final copper concentrate. (Reproduced from the data used
in Publication V)

most important benefit of the new assay is the reduced sampling interval: for ex-
ample, the high-frequency assay shows the response to manual control actions more
rapidly than the XRF analyzer.

7.3.2 Oscillation Detection
The VNIR assay of the slurries enables for the first time the high-frequency on-line
analysis of concentrate grades. As shown in Section 7.3.1 and by the results of Pub-
lications II, V and VII, the concentrate grades may occasionally contain oscillations
on varying frequencies. In general, oscillations in industrial processes reduce the
process performance and indicate that the process is not optimally controlled. In
Publication VI, the applicability of the high-frequency VNIR assay is demonstrated
by analyzing the oscillations detected in the copper assay of the final copper concen-
trate. The target of the research is to pinpoint the cause of the oscillations and to
return the process back to steady operation.

The oscillatory analysis was based on the rSSA algorithm which estimates the
on-line structure of the process signals. The results show that during the oscillations,
structurally the most similar signal to the final copper grade is the flow rate of the
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final concentrate. However, the same oscillatory structure is found also in other parts
of the process. The most probable cause is narrowed down to the level control of the
second cleaner stage, where the oscillating slurry level causes periodical grade changes
to the feed of the final cleaner stage. Moreover, the oscillations are transmitted to
other parts of the circuit by the tailing slurry feedbacks.
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Chapter 8

Conclusions

This thesis focused on the application of VNIR reflectance spectroscopy to the anal-
ysis of mineral flotation froths and slurries. The main objective was to determine if
the reflectance spectral information could be used to improve the elemental assaying
of the flotation slurries. Mineral flotation is one of the most commonly used concen-
tration methods, and the analyses of the slurry contents in the different parts of the
process form the basis for the monitoring and controlling of a flotation plant.

Initially, VNIR spectra of the froth in a final zinc concentrate cell were measured
and a data-based model was estimated to connect the spectra to the elemental con-
tents of the final zinc concentrate slurry. The model was able to predict the elemental
contents, and slightly better results were obtained with the VNIR measurements than
with the RGB data obtained from the froth camera. However, the later study of the
slurry VNIR spectra indicated that more accurate modeling would be possible if the
quality of the calibration samples could be improved.

The main contributions of the thesis were obtained from the VNIR reflectance
spectrum analysis of the flotation slurries. Several on-line measurement device pro-
totypes were developed during the work, and it was shown that in the studied copper-
zinc flotation process the VNIR spectra of the concentrate slurries accurately correlate
with the elemental contents. Since the VNIR spectra can easily be measured with a
short sampling interval (five to ten seconds) as compared to the XRF analyzer, where
the sampling interval is around 15 minutes, the assay interval of the slurries can be
radically reduced by predicting the elemental contents from the VNIR spectra.

It was detected, however, that a fixed calibration model does not adequately
capture the changes in the slurries for longer time periods. Instead, adaptive updating
of a recursive PLS model with the XRF measurements was necessary in order to utilize
the spectral measurement in real process applications. As a result, the developed
VNIR slurry analyzer uses both VNIR and XRF measurements to generate a high-
frequency slurry assay. The disadvantage of the adaptive calibration is that the VNIR
measurement is not capable of operating on its own for longer periods of time. On
the other hand, the advantage is that the assay is robust to even large variations in
the mineralogy, particle size distribution and other properties of the processed ore
which typically hinder the analysis of flotation processes.

59
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Additionally, the suitability of the VNIR measurement for the most important
slurries at the copper-zinc flotation plant was investigated. It was shown that the
tailing slurries with small valuable mineral concentrations are more difficult to analyze
because of the small changes in the slurry color. Expanding the analysis range to
longer wavelengths (e.g. the whole NIR range) could improve the results in small
concentrations.

During the thesis work, two novel algorithms utilizing local modeling were de-
veloped. The algorithms were designed to capture sudden increases in small copper
contents of the final zinc concentrate. The sudden changes in the slurry contents
typically indicate a process disturbance, which should be detected as soon as possible
to prevent the loss of valuable minerals. The algorithms combine recursive updating
of the regression model with longer-term memory of the exceptional grade levels. It
was shown that they improve the detection of the process failures with respect to the
standard recursive PLS algorithm.

The high-frequency assay of the copper and zinc concentrates developed in this
thesis reveals for the first time how the grades behave between the sparse XRF
measurements. Surprisingly large and rapid variations were detected in both concen-
trates, which explains the need for accurate synchronization of the XRF and VNIR
measurements. The variations also indicate that the XRF samples do not necessarily
represent the average slurry grades as well as the low-pass filtered VNIR assay does.

The VNIR slurry assays were demonstrated to accurately reveal sudden grade
changes and oscillations of the concentrate grades. Especially faster oscillations that
would be completely missed by the XRF analyzer because of the long sampling in-
terval can be measured by the new assay. The application of the VNIR assay to
oscillation analysis was demonstrated in the thesis by a study of the plant-wide os-
cillations detected in the copper circuit. For this purpose, a novel on-line algorithm
based on the singular spectrum analysis was developed. The oscillations visible in the
final copper concentrate grade were traced to the oscillating level of one of the cleaner
cell banks. Such oscillations are typically caused by poorly tuned unit controllers or
by malfunctioning process equipment, and they may disturb the optimal control of
the processes.

Analysis of other minerals than the ones present in the copper-zinc ore of Py-
häsalmi were beyond the scope of this work. However, the developed VNIR mea-
surement system and the analysis methods are applicable to other flotation processes
as well. Even though the laboratory spectra of the studied minerals did not show
any clear absorption bands in the VNIR range, the VNIR assay was shown to work
adequately in the case of the Pyhäsalmi ore. This suggests that a wide variety of
other minerals could be detected by the same method as well.

In addition to the extension of the reflectance spectral analysis to other mineral
types, also the utilization of a broader wavelength range would be an interesting
future research objective. Especially the spectra over the whole NIR range would
certainly contain more information than the narrower VNIR range applied in the
thesis. Furthermore, a proper study should be conducted on the effect of the particle
size distribution on the shape of the reflectance spectra.
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More generally, the results of this thesis show that reflectance spectroscopy def-
initely is a promising measurement technique for analyzing mineral flotation froths
and slurries also in real process environment. The advantages of the approach are
relatively easy sample preparation and low cost of the equipment combined with the
fast measurement process. On the other hand, the effect of varying slurry properties
on the spectra hinders the analysis and decreases the long-term performance of an
independent VNIR analysis. However, with a proper adaptive calibration, the spec-
tra can be interpreted correctly to produce an accurate prediction of the changes in
the target contents.
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