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1. Introduction 
The concept of antisense oligonucleotide strategy has been known for over two decades. The 

strategy can be simplified as a method for silencing a bad gene by a short fragment of a single stranded 

DNA. The simplicity of modifying the base sequence of the oligonucleotide to target specific messenger-

RNA makes the strategy superior to existing medicinal treatments. 

An antisense oligonucleotide has to transfer into the interior of the biological cell to be able to 

function as a gene silencing agent. The delivery problem of the oligonucleotide has been considered 

concurrently with oligonucleotide drug development, and it is the main objective of this thesis. The 

problem arises from the large size and hydrophilicity of negatively charged oligonucleotides, which make 

penetration through the lipophilic cell membrane difficult. Proposed solutions to this problem have 

included the use of carriers that can transfer through the cell membrane and deliver oligonucleotide as a 

cargo. Carriers used include liposomes, polymer compositions, viruses, cyclodextrin, dendrimers and 

nanoparticles. Toxicity and immunocompatibility of the carriers have hampered development. In this 

thesis, the possibility of using surface-active agents as oligonucleotide carriers is considered. 

Electrochemical methodology has been applied to biochemical and pharmaceutical studies during 

the last decade. The dependence of the pharmaceutical activity of drugs and their standard Gibbs free 

energy has been considered in many studies and the development of novel experimental techniques has 

taken enormous steps. It is now possible to follow drug partitioning through the lipid monolayer 

immobilized at the interface of aqueous phase and organic solvent using electrochemical techniques. The 

electrified water-organic interface suits well for the oligonucleotide-surfactant study as it enables 

detection of these highly charged species using above mentioned advanced techniques. The liquid-liquid 

interface can also be used as an analytical method for detecting the concentration of the unbound 

surfactant in the aqueous phase. Techniques and methods used in this work include chronoamperometry at 

the supported water-organic interface using micropipette and channel flow configurations; AC-

voltammetry at interfaces modified using Langmuir-Blodgett methodology; scanning electrochemical 

microscopy (SECM) as well as atomic force microscopy (AFM). Calorimetry was used to obtain 

additional information about the energetics of the oligonucleotide-surfactant complexes. 

This work has been divided in two parts: the literature section (Chapters 2-5) and the results section 

(Chapters 6-7).  

Chapters 2-5 constitute the literature part of the thesis. Chapter 2 considers the electrochemistry of 

the liquid-liquid interface and gives a summarized overview of the basis of charge transfer through the 

interface between mutually immiscible phases. The main emphasis has been placed on the interplay 
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between pharmaceutics and electrochemistry. Chapter 3 gives an overview of recent developments in 

antisense oligonucleotide research. This chapter concentrates on the key concepts of the antisense strategy, 

discusses the reasons for using oligonucleotide modifications and considers the delivery problem and 

current status of clinical trials. As the main objective of the work was to test the applicability of surface-

active compounds as oligonucleotide carriers, Chapter 4 considers the interaction between surfactants and 

poly- and oligoelectrolytes. The chapter discusses the effect of the polyelectrolyte and surfactant type on 

the stability of the polyelectrolyte-surfactant complex and the efficiency of the interaction. Chapter 5 

briefly introduces the recent research considering charge transfer in DNA. 

Chapter 6 summarizes the results of Publications I-V. Publications I-II considered complex 

formation between the surfactant and oligo-/polyelectrolytes aiming to find a surfactant type, which forms 

stable complexes with oligonucleotides. In Publication I, the complex formation and applicability of a 

micropipette-supported liquid-liquid interface as an analysis system were first extensively tested with 

polystyrene sulphonate in a proof of concept study prior to utilizing  oligonucleotides.  The method was 

then applied to study of oligonucleotide-surfactant interaction in Publication II. The subject of Publication 

III was kinetics of surfactant-polyelectrolyte binding. The matter was studied with an advanced channel 

flow method using the liquid-liquid interface as an ion-selective electrode. The membrane activity of 

oligonucleotides and their complexes with surfactant were studied in Publication IV using a Langmuir-

Blodgett based method and electrochemical analysis.  Publication V considered charge transfer in 

immobilized DNA. The subject was approached using SECM and AFM methods. Chapter 7 details the 

conclusions of the thesis. 

The subject of the thesis focuses on the interplay between electrochemistry, pharmaceutics and 

bioanalytics. While knowledge of electrochemistry is essential, analyzing the results requires an 

interdisciplinary understanding in the above mentioned research fields. This thesis, including the literature 

part and result section, is responding to that demanding task. 



18

2. Electrochemistry at ITIES 
Electrochemistry at the interface between two immiscible electrolyte solutions (ITIES) differs from 

conventional electrochemical experiments in that the reaction under study occurs at a liquid-liquid 

interface rather than at a typical electrode/electrolyte interface. In addition, charge transfer across the 

immiscible interface is not limited to the study of electron transfer reactions. Ions transferring from one 

phase to the other can also be elegantly studied using standard electrochemical methodology. Thus, a large 

number of ion transfer reactions important to biological systems can be studied using liquid-liquid 

electrochemistry that would be impossible with conventional metal electrodes. The breakthrough for 

experimental studies at ITIES was the demonstration that the interface between two immiscible solvents is 

polarisable and that the Galvani potential difference between two phases, defined as 

=
0

+ ln        (1)      

could be used as a driving force for charge transfer reactions from one phase to another. 1-3 In 

equation 1, 
0
refers to the standard transfer potential of ion i, zi is the charge of the ion i and  is the 

activity of ion i in a phase x. Superscripts o and w refer to the organic and aqueous phase, respectively. 

ITIES electrochemistry 4-8

The main criterion for ITIES used in modern electrochemical measurements is that it should be 

polarisable i.e. there should be a -range where ion transfer from one phase to the other is negligible. 

This criterion limits the choice of the organic solvent and supporting electrolytes that can be used. The 

organic solvent should have a minimal miscibility with the aqueous phase, while its dielectric constant 

should be sufficiently high so that the supporting electrolyte salt is dissociated rather than ion-paired. 

Typical choices for the organic solvent are nitrobenzene (NB), 1,2-dichloroethane (DCE) and 2-

nitrophenyl octylether (NPOE). The latter is considered an environmentally friendly option when 

compared to NB or DCE. The aqueous/organic supporting electrolyte has to be sufficiently 

hydrophilic/hydrophobic for the interface to be polarisable.  

The supporting electrolyte ions have two roles in electrochemical experiments: 1) they carry charge, 

which is beneficial as migration can be neglected when solving the corresponding transport problem for 

ion transfer across the interface; 2) they set the limits for the applicable, polarisable -range, which is 

called the potential window. The potential window increases with increasing hydrophobicity of the 
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organic base electrolyte ions for a given aqueous base electrolyte. The study of ion transfer reactions is 

limited to those that occur within the potential window.  

2.1. Ion transfer 
Electrochemistry at ITIES is most commonly used for studying ion transfer (IT) reactions. IT is 

defined as the transfer of an ion from one phase to the other and the reaction scheme given here is for the 

transfer of an aqueous cation to the organic phase: 

X+(aq)   X+(org)        (2) 

IT of an ion i can be characterized by its standard transfer potential, 
0
, which is a measure of 

 is defined as  

0
=

,
0,

        (3) 

where ,
0,  is the standard Gibbs energy of transfer. For example, 

0

shifts negative when 

the hydrophobicity of an organic phase cation is increased implying that it will remain in the organic 

phase unless a very negative potential difference is applied to the interface. The situation is vice-versa for 

an organic phase anion. The potential at which an ion transfers is a useful intuitive guide to its relative 

lipophilicity.

The kinetics of ion transfer across the interface is generally considered to be very rapid and the rate 

is nowadays assumed to be diffusion limited. However, the subject of ion transfer kinetics was rather 

controversial during the development of modern liquid-liquid electrochemistry, due mainly to uncertainty 

of the interfacial molecular structure. Many interpretations for the interfacial structure have been put 

forward in the past.9 The first proposed model approximated the interfacial region as a compact layer of 

oriented solvent molecules separating two diffuse layers.10,11 The theoretical description of the interfacial 

capacitance, defined as 

=
Q

         (4) 
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 was also derived, and was an extension of the conventional Gouy-Chapman model used to describe 

the metal/electrolyte interface.12 The parameter Q in equation (4) is the thermodynamic charge. Other 

significant models for the interfacial structure include a mixed solvent layer13, which is generally the most 

accepted model. It has been experimentally proven that the potential drop across this kind of interfacial 

layer is negligible.14 Despite the uncertainty concerning the interfacial structure, charge transfer kinetics 

have generally been treated with the Butler-Volmer equation, which is written as 

= 0 0
1

  (5) 

where 0  and 0  refer to forward and backward rate constants, respectively; and is the charge 

transfer coefficient. The compatibility of Equation 5 with experimental results has been satisfactory.9   

Scaling down the size of the interface to the micro-scale (i.e. smaller than the typical thickness of the 

diffusion layer) is advantageous. The lowered ohmic drop, enhanced mass transfer and the possibility of 

performing experiments in micro-environments such as living cells are direct consequences of scaling 

down. Mass transfer of the transferring ion is controlled by spherical diffusion to the micro interface. 

Thus, the current response to a potential step at long times approaches steady state, in contrast to that at a 

conventionally sized interface where it approaches zero. A time-independent current response is obviously 

very desirable in electrochemical sensing applications. The limiting current, iL, obtained after application 

of a potential step to the diffusion limited region can be written as15

= 4         (6) 

where zi is the charge, Di is the diffusion coefficient,  is the bulk concentration of the ion i and r is 

the radius of the interface. Micro-ITIES can be created by either supporting the interface at the end of a 

micropipette16 or at a microhole photoablated in a thin polymer film17. Micro-ITIES has been successfully 

applied for sensing applications such as amperometric ion-selective sensors.15,18

Micro-ITIES has been further scaled down to nanoscale.19 This further reduces the ohmic drop and 

enables the measurement of drastically faster ion transfer kinetics. As the rate of ion transfer is determined 

by both mass transfer and the kinetics of ion transfer across the interface, the significantly enhanced rate 

of mass transfer at nano-ITIES makes it comparable or even faster than the interfacial kinetics and thus 

enables the kinetics to be measured. Nano-ITIES also extends the choice of organic solvent/base 

electrolyte systems that can used beyond those used at conventionally sized interfaces. The very low 
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currents measured make the ohmic drop across the interface negligible enabling measurements in highly 

resistive solvents.20

Another way to attain steady-state in liquid-liquid electrochemical measurements without having to 

decrease the interfacial size to the micron range is to use hydrodynamic electrochemical techniques, where 

convection to the interface is forced.21 This situation can be achieved either by moving the electrode itself 

or forcing the solution to flow past a stationary electrode. Advantages of applying these methods to ITIES 

are the same as for conventional electrode/electrolyte hydrodynamic systems:22 steady state is attained 

quickly and measurements can be done with high precision, as the mass transfer is enhanced compared to 

diffusion as the only mechanism of mass transfer. Time enters the corresponding transport problem either 

as the electrode rotation rate or as the velocity of the solution with respect to the electrode. Hydrodynamic 

electrochemical methods utilized at ITIES include the electrolyte dropping electrode,23 analogous to the 

dropping mercury electrode; the rotating diffusion cell,24 analogous to the rotating disk electrode, the wall-

jet setup 25 and the channel-flow cell.26 This area of electrochemistry at ITIES is still relatively new and 

few studies have been published. Future applications may include amperometric sensors. 

2.2. Pharmaceutical viewpoint to electrochemical methods 
Electrochemical studies at ITIES can be directed to numerous applications such as amperometric ion 

sensors, Marangoni pumps, electro-assisted solvent extraction, thermoelectricity, electrocatalysis, solar 

energy conversion and pharmaceutics.27 In this work, the focus is on the pharmaceutical viewpoint.  

It was long believed that drugs partition through the bio-membrane either in neutral form or as ion 

pairs. This belief was dispelled when it was shown that drug ions can diffuse passively through the 

phospholipid membrane.27 One of the pioneering electrochemical studies concerning pharmacokinetics 

showed that electrochemical measurements could be used to determine the lipophilicity of ionized drugs at 

ITIES.28 It was demonstrated that the drug partition coefficient could be evaluated using the following 

equation: 

ln 0 =
i

0
         (7) 

where the standard ion transfer potential, 
i

0
, can be written for diffusion-limited ion transfer as 

i

0
=

1/2 2
ln       (8) 
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1/2
refers to the half-wave potential and is experimentally determined from simple 

electrochemical methods such as cyclic voltammetry. In cyclic voltammetry, the potential is swept linearly 

and the current response is recorded. The resulting current response depends on the corresponding 

mass transport of the ion to the interface. 

Many electrochemical studies have focused on the voltammetric response of biologically relevant 

compounds. Compounds that have been studied include choline and acetylcholine,29 which have signaling 

roles in neurotransmission; procaine, tetracaine, cocaine etc.30,31, which are local anesthetic drugs; calcium 

antagonists;32 aromatic amines33, dipeptides34, opioids35, which are used for pain relief and metabolites35,

which are intermediate products of metabolism. Arai et al. made a comparison between the 

pharmacological activity of drugs and their ,
0,  and found that especially families of hypnotic, 

anesthetic, cholinergic, and adrenergic drugs showed a strong correlation between the drug lipophilicity 

( ,
0, ) and biological activity.36 The pH-dependence of drug transfer has also been studied.37,38 The 

results predicted which ionic form of the drug will transfer across the interface under given conditions. 

The use of electroanalytical techniques at the liquid-liquid interface has recently been intensively studied 

for the detection of negatively charged heparin, which is a human serum component and is also widely 

used as an anticoagulant in medical treatments.39-42 Heparin adsorption at the interface was found to be 

facilitated by the presence of hydrophobic ammonium cations in the organic phase. 

Drug partitioning studies have been extended to include systems where lipids, typically 

phosphatidylcholines, were adsorbed at ITIES, thus creating a lipid monolayer mimicking half of the 

biological lipid bilayer. Using a monolayer instead of conventional biomimetic bilayers is advantageous as 

the potential distribution across the monolayer can be controlled. Early studies showed that the rate of ion 

transfer across ITIES for most ions decreased significantly upon lipid adsorption.43 However, for some 

systems, the rate of ion transfer was noted to increase.44,45 This discrepancy was explained taking double 

layer effects into account: i.e., the interfacial potential profile changed due to the presence of zwitterionic 

phosphatidylcholines.  

Monolayers formed by the simple adsorption of lipids to the interface are believed to remain in the 

liquid-expanded state and studies show possible solvent incorporation into the monolayer region.47  Due to 

a desire to control the exact state of the monolayer, the Langmuir method was introduced for controlling 

the surface pressure of the adsorbed monolayer.46-48 The Langmuir method was combined with 

electrochemical control of the potential across the interface. However, this experimental arrangement 

suffered from complications due to the large interfacial area and the phospholipid monolayer dissolving 

into the organic phase.  
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The next advance in drug transfer studies came with the introduction of the Langmuir-Blodgett 

method to transfer the lipid monolayer formed at the air-water interface to ITIES.49 Here the lipid 

monolayer is compressed to the desired surface pressure at the air-water interface and then transferred to 

the surface of an electrochemical cell suitable for liquid-liquid studies by simply dipping the cell through 

the monolayer as shown in Figure 1. Transfer of the monolayer to the interface was made possible by 

using an immobilized organic phase. The Langmuir-Blodgett method enabled full control of the state of 

the monolayer formed at the interface and for the first time, ion transfer across the interface modified by 

the monolayer could be investigated as a function of the state of the monolayer, i.e., whether it was in a 

liquid-expanded, liquid-condensed or collapsed state. This experimental approach has been used for 

studying partitioning and adsorption of drugs to the lipid monolayer using AC-voltammetry and AC-

impedance: electrochemical techniques more sensitive than simple cyclic voltammetry. A surface pressure 

dependence, i.e. a dependence on the state of the monolayer, was demonstrated for the rate of drug 

transfer. 50

Figure 1. Schematic illustration of the Langmuir-Blodgett method applied to liquid-liquid 

interfaces. The electrochemical half-cell is dipped through the lipid monolayer formed at the air-water 

interface. The potential difference between the water and the immobilized organic phase (shown as the 

dark grey compartment of the electrochemical cell) could then be fully controlled. Reproduced in part 

with permission from reference 50. Copyright 2001 American Chemical Society.

Another way to study biological systems using electrochemical techniques at ITIES is to utilize 

ultramicroelectrodes (UME) or scanning electrochemical microscope (SECM) techniques in the proximity 

of interesting biological surfaces. SECM has been widely used during the last ten years and a review has 
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been published on the subject.51 The traditional SECM tip is a micro-sized metal electrode (UME) 

surrounded by a thin, well defined layer of insulating material, typically glass. In a typical SECM 

experiment, the measurement is performed in so-called feedback mode: the SECM tip is immersed in the 

solution containing a redox mediator, R. The UME is biased at a potential in the diffusion-limited region 

for the oxidation of R to O: 

R  +  ne-

The potential is chosen such that the rate of the reaction is limited by the diffusion of R to the tip. If the tip 

is sufficiently far away from the substrate (surface under study), the current is given by equation (6) 

similarly to the diffusion limited current at micro-ITIES. When the tip is brought in close proximity to the 

substrate (within a few tip radii), the tip current response is dependent on the nature of the substrate. If the 

substrate is conductive, the product O formed at the SECM tip diffuses to the substrate and is reduced 

back to R, thus increasing the current response at the SECM tip. This additional flux of R at the tip is 

called positive feedback (see Figure 2). If the substrate is an insulator, it blocks the diffusion of R species 

to the tip and the current is lower than the limiting current recorded far away from the substrate under 

study. This response is called negative feedback.  

Figure 2. Feedback mode of the SECM operation. (A) The UME tip is far from the substrate. (B) 

Positive feedback: species R is regenerated at the substrate. (C) Negative feedback: diffusion of R to 

the tip is hindered by the substrate. 51 Reproduced by permission of the PCCP Owner Societies. 

http://dx.doi.org/10.1039/b612259k

The metallic SECM probe can be replaced with a micropipette containing a liquid phase (usually 

organic) and a liquid-liquid interface is then formed upon immersion of the micropipette into the aqueous 

phase. With this approach, SECM can be extended to study ion partitioning in biological systems. 
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Pioneering work was done by Amemiya and Bard who measured potassium ion fluxes through gramicidin 

channels incorporated in bilayer-membranes.52 In a related study, drug adsorption to monolayer 

membranes was probed.53

As can be readily seen from the preceding section, electrochemistry at ITIES provides a very 

powerful tool for studying charge transfer and adsorption processes in biological systems. Research in this 

area is still in its infancy and much knowledge and new studies are needed for techniques to be available 

to the pharmaceutical community. In this work, electrochemical methodology at ITIES has been utilized 

for studying different aspects of antisense oligonucleotide delivery through the lipid membrane. 

Electrochemical techniques were used both for studying complex formation of oligonucleotides with 

possible future delivery agents and the interaction of such complexes with lipid monolayer membranes. 

Model compounds were used in the proof of concept studies to minimize expense. SECM together with 

atomic force microscopy (AFM) was used for studying the nano-sized DNA architectures immobilized on 

silicon. As the subject area is rather broad, an overview of oligonucleotide delivery and complex 

formation with the surfactant is given in the following two chapters and the subsequent chapter gives a 

short overview of DNA-mediated charge transfer. The last chapters summarize the experimental work and 

results of this thesis. 
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3. Overview of antisense strategy 
There is a high mortality associated with diseases resulting from errors in the genetic code. These 

diseases vary from cancer to HIV. Traditionally, the symptoms have been treated with many different 

strategies. Their development has been both expensive and time consuming. The nucleic acid based 

therapies are novel approaches, which treat the cause rather than the effect of the disease. These therapies 

include antisense oligonucleotides, ribozymes, RNA interference, aptamers and other type of gene 

therapies. In this overview, the focus is purely put on the antisense oligonucleotide strategy, whose 

successful implementation would be of great interest for medicinal companies and research groups since 

this single strategy can be used to treat patients with very different problems.  

The basis of antisense strategy was discovered some decades ago, when Zamecnik and Stephenson 

found that a short fragment of single stranded DNA inhibited the replication of Rous Sarcoma virus.54

Such a single stranded fragment of DNA, around twenty nucleotides long, is nowadays called an antisense 

oligonucleotide (AON) (Figure 3).  
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Figure 3. A fragment of oligonucleotide with four different bases: G, C, T or A. One unit of 

oligonucleotide, a s: 1) a sugar, 2) the base and 3) an 

internucleotide linkage between two sugars. 

The inhibition is achieved with AONs which have a complementary base sequence targeting the 

sequence of messenger-RNA (mRNA), which delivers the disease-provoking genetic code from the 

nucleus to the ribosome. The transcription of the genetic code of DNA into synthesized mRNA has been a 

hot topic during recent years, as Roger D. Kornberg was awarded a Nobel prize for his studies on the 
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subject.55,56,57  AON hybridizes to the target mRNA through Watson-Crick base pairing, disables the 

building of the disease-causing protein (which the mRNA codes for) and activates RNase-H, which 

hydrolyses the RNA strand of the heteroduplex and thus cleans the improper genetic material away from 

the cell. While RNase-H activation is preferable, with new AON modifications, the mode of action can 

also be based on other mechanisms. These include translational arrest of the diseases causing genetic code 

by steric hindrance of ribosomal activity.58,59The idea of the antisense strategy is presented in Figure 4.  

Figure 4. Antisense strategy: The gene is silenced by the oligonucleotide, which hybridizes to the 

target and prevents protein synthesis. (1)  Normal protein translation without AON. (2)  (5) Different 

routes to silence the gene. The route (2), where the AON activates RNase H is the most desired and 

effective route for AON to inhibit the protein synthesis. Reproduced with permission from 58.

Copyright 2006 Wiley-Blackwell. 

Designing the most effective AON is not simple and requires knowledge of the secondary structure of the 

target mRNA. The effective AON should target the sites where mRNA is accessible for hybridization,60

which usually are those located at the terminal end, internal loops, joint sequences, hairpins and bulges of 

10 or more consecutive nucleotides.61 Many algorithms have been tested for the determination of the 

secondary structure and the most efficient ON sequences.60,61 Companies such as ISIS Pharmaceuticals 
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have performed screening and testing by a gene-walking method, where hundreds of AONs are tested 

against one target mRNA, but this kind of method is inefficient and usually only 2-5 % of screened ONs 

are found to function as antisense reagents.62

3.1. Modifications 
The natural form of the oligonucleotide (ON), phosphodiester, has unfavorable properties, the most 

s

non-bridging oxygens of the phosphate bridge can be replaced with a sulphur, producing a 

phosphoromonothioate oligodeoxynucleotide.63 (Figure 5) This modification is often referred to as a first 

generation oligonucleotide and it meets the requirements of the antisense strategy very well. These 

requirements include serum stability, binding affinity to the target, aqueous solubility and RNase-H 

activation.  

While the cellular uptake of phosphorothioates is low, it has been reported to be higher than the 

uptake of other first or second generation AONs.64 Regrettably, it has been noted that phosphorothioates 

also perform many non-sequence-specific events leading to the toxicity of the oligonucleotide.63,65,66 

Earlier, it was believed these effects arise from the polyanionic nature of the phosphorothioate.67 Later 

studies proved that some specific base motifs produce most of the non-sequence-specific effects. These 

include the CG base motif, which induces the production of various cytokines and chemokines65 and the 

motif of four contiguous guanosine residues, which form a so-called G-tetrad trough the combination of 

Watson-Crick and Hoogsteen base-pair formation. These G-rich phoshorothioates have a high affinity to 

heparin binding proteins.68 If these undesired motifs are necessary for the phosphorothioate to function as 

was originally intended, some modifications can be made to the backbone of the oligonucleotide to 

prevent side effects. To inhibit side effects of the CG-motif, cytosines of the CpG-motif can be replaced 

with 5-methylcytosines, and cytosines and guanosines of the CpG- -O-methyl 

cytosines and guanosines, respectively.63,65  In addition, internucleotide linkage between C and G is often 

replaced with a neutral methylphosphonate linkage.69 The G4-motif can be improved by replacing one or 

more guanosines of the motif by 7-deazaguanosine. Despite disadvantages, the phosphorothioate

modification is the most widely performed chemical modification of AONs. 

Due to the limitations of phoshorothioates and to further enhance the nuclease resistance and 

binding affinity, other modifications have also been suggested. Promising results have been obtained with 

-O-methyl phosphorothioate antisense oligodeoxynucleotides (2OMe AON) both in animal studies70,71

and in vitro studies.72 This modification is less toxic than the phosphorothioate counterpart. Also it has 

been shown that the 2OMe AON is considerably more efficient in inducing the antisense effect than the 

comparable phoshorothioate modification. The phoshorothioate linkage seems to be critical for the 
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function of 2OMe AON, as in a study, 2OMe AONs with phosphodiester linkage performed clearly 

weaker than the corresponding 2OMe phosphorothioate AONs.73  The drawback of the 2OMe AON 

modification is that it does not induce RNase-H activation.74 It has been further shown that any 

substitution to the 2'-position of the ribose ring will block the RNase-H activity.75 In order to combine the 

advantages of the first generation phosphorothioate AONs and the 2OMe modification, a chimeric ON 

-bridging 

oxygen was replaced with sulfur (phosphorothioate linkages

nucleotides carrying the 2OMe modification. The end blocks prevent degradation of the AONs and the 

central gap residues between 2OMe modified segments were reported to be sufficient for activation of 

RNase-H.76

Methylphosphonates (MP) and peptide nucleic acids (PNA) are electrostatically neutral ON analogs, 

which belong to the group of most studied AON modifications. MPs are ON analogs, whose 

internucleotide linkages have been replaced with methylphosphonate. PNAs are RNA analogs with 2-

aminoethylglycine backbone. They hybridize well and resist nucleases but posses poor aqueous solubility 

and cellular delivery. 64,77,78 In addition, PNAs do not activate RNase-H74.

Locked nucleic acid oligodeoxynucleotides (LNA) are maybe the most promising AON candidates 

modification pre-organizes the oligonucleotide backbone, allowing the oligonucleotide to bind special 

targets and has been shown to hybridize with the target as well as inhibit specific gene expression.78 While 

it cannot activate RNase-H alone due to conformational change it affects, a chimeric LNA with a central 

gap containing phosphodiester/phosphorothioate residues has been shown to have an extraordinary high 

target affinity and improved RNase-H activation.74,79 However, in vivo-study has shown profound 

hepatotoxicity for multiple LNA-modified AON sequences.80

As the activity of the AON depends on numerous factors such as base sequence, secondary structure 

of AON and target organ, it is probable that no universally applicable backbone modification exists. 

Therefore, it is possible that the modification of the AON has to be optimized for each case, if maximum 

efficiency is desired.  
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Figure 5. Backbone modifications. B refers to one of the four possible base units. 

3.2. Systemic and cellular delivery 
The rationale of the antisense strategy is clever. The same strategy can be applied to numerous 

genetic diseases, cancer and HIV. However, certain critical limitations exist concerning the biodistribution 

and the cellular delivery of the oligonucleotides. To be successfully transferred to target cells, the 

oligonucleotide has to fulfill certain requirements: 1) it has to be resistant against serum; 2) it should not 

have any non-specific interactions with serum components; 3) it has to target specific organs and transfer 

trough the endothelial barrier of this organ; 4) once inside the desired organ, the oligonucleotide has to 

penetrate the cell membrane of the target cells and get rid of the possible carrying agent.  

The first two conditions were dealt with in the previous chapter and it can be concluded that 

problems of serum stability and non-specific interactions can largely be solved with the proper backbone 
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modification. New interaction problems might arise, however, with the use of positively charged carrier 

agents, which have been shown to interact with albumin and other plasma proteins. The interaction 

decreases the residence time of the AON-carrier complex in the blood circulation.81

The third condition is still largely unsolved and is the most challenging one. In most organs, the 

structure of endothelia is tight. It has been reported that most of the naked phosphorothioate 

oligonucleotides65,73, as well as poly-L-lysine/DNA complexes82, accumulate rapidly into the liver, which 

is the organ eliminating toxins from the blood circulation. Intermediate concentrations have been reported 

to been found in kidney, spleen and bone marrow. Most organs mentioned above have endothelia with 

large meshes enabling the extravasation of molecules ranging from 0.1 to 1 m.83 The specificity to target 

organs (e.g. brains, tumors) could be achieved by delivery agents, which are specified to target desired

destinations.  

The biggest effort within AON research has concentrated on resolving the fourth requirement, i.e. to 

overcome the undesired propensity of the cell membrane to act as a barrier for antisense oligonucleotide 

activity in most cases. The original function of the cell membrane is to segregate the intracellular and 

extracellular matter. The extracellular surfaces of most cell membranes are negative under physiological 

conditions due to negatively charged lipids and proteins and the interior of the membrane is hydrophobic. 

Both are factors that complicate the partitioning of the negatively charged hydrophilic molecule into the 

cytoplasm. Partitioning of the oligonucleotide into the nucleus (if necessary) is less problematic in so far 

as the oligonucleotide has transferred through the outer cell membrane.84

found in cellular nuclei and cytoplasm without any carrier. The most accepted mechanism of ON transfer 

is via endocytosis.85 While the most serious problem for the ON s passive diffusion through the lipophilic 

cell membrane is the negative charge that phosphodiesters (unmodified form of ON) and 

phosphorothioates (first generation AON) carry, surprisingly the neutral forms of the modified ONs 

(methylphosphonates and PNA) have even weaker cellular uptake. This results from the fact that neutral 

ONs bind weakly to the cell surface proteins and thus exhibit weaker adsorptive endocytosis than anionic 

ONs.86

Penetration through the cell membrane can be improved by carriers. Carriers bind to the 

oligonucleotide physically or chemically. They have a high affinity to incorporate into the cell membrane 

and deliver oligonucleotides as a cargo. The most well-known delivery agents are cationic liposomes,87

and these are commercially available (e.g. Lipofectin®). Liposomes are phospholipid bilayer membranes 

surrounding an internal aqueous compartment and they act as ON transfection agents either by 

internalizing the ON inside the aqueous compartment or forming a spontaneous complex with ON driven 
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by electrostatic interactions. Usually a cationic liposome consists of cationic lipids such as N-(2,3-

(dioleyloxy)propyl)-N,N,N-trimethyl ammonium chloride (DOTMA) or N-(1-(2,3-dioleoyloxy)propyl)-

N,N,N-trimethylammonium methylsulfate (DOTAP) with neutral unsaturated helper lipids such as 

dioleylphosphatidylethanolamine (DOPE).88 It has been shown that the optimal amount of cationic lipid in 

the oligonucleotide-liposome complex is approximately half of the negative charges of the 

oligonucleotide.89 Internalization of the liposome-oligonucleotide complexes has been proposed to occur 

via the endocytic pathway.90 Critical factors in the internalization and release processes are the negatively 

charged proteins at the outer surface of the membrane, which enable interaction with the positive 

liposomes. Negatively charged lipids at the inner surface of the membrane form neutral lipid pairs with 

cationic lipids of the liposome at the endocytic stage and act as releasers of the anionic nucleic acid. Many 

in vitro studies have proved the effectiveness of the liposome-mediated oligonucleotide transfection 

protocol.91,92 Some concerns have arisen because of the toxicity of high concentrations of lipids, which 

have to be used for efficient transfection. It has been shown that lipids (especially DOPE) are toxic 

towards macrophages, which are critical in the control of the immune system.93 In addition, liposomes 

have been shown to interact non-specifically with various components of the serum and thus alter the 

success of transfection.94

Another widely studied group of delivery agents are polymer and polyion compositions. Poly-L-

lysine conjugated with a membrane receptor-specific transfection agent is the most well known of this 

group. Such transfection agents employ membrane receptor mediated endocytosis for the uptake in to the 

cell and include asialoorosomucoid (which is a galactose-terminal glycoprotein),95 transferrin96

(specialized to transporting iron into the cell), mannose,97 heparin,98 the transmembrane domain of 

diphteria toxin99 and adenovirus.100,101  Traditional poly-L-lysine-DNA complexes have been shown to 

localize to membrane-bound vesicles shortly after uptake and ultimately traffic to lysosomes, which 

represents a significant loss of delivery material. This problem can be avoided by conjugating the poly-L-

lysine to adenoviruses and toxins, which are membrane-disruptive materials and capable of escaping the 

lysosomes.101 However, the limitation of these approaches is the problem of immunocompatilibity, as 

these natural or synthetic haptens (small molecules which can elicit an immune response) with a linear 

polycation dramatically increases the immunoresponse and thus in vivo use might cause immunotoxicity 

and side effects.102 Hence, the polymeric carrier development has been allocated to non-viral systems.  

Several other polymeric carriers have been studied, such as polyethyleneimine,103 poly-L-lysine 

without a viral carrier, dendrimers104 and cyclodextrin105. Highly branched polymers are the most efficient 

delivery agents, though they are also the most toxic.83 In most applications, one polymer (e.g. 

polyethyleneimine) has been grafted with another polymer (e.g. polyethyleneoxide) to maximize the 
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benefits of different polymers.102 Often this is done to decrease interactions with blood constituents. 

Recently, research has focused on the applicability of cyclodextrins for ON transfer due to their unique 

ability to associate with other molecules. They have a hydrophilic outer surface and a hydrophobic central 

cavity, which is possible to derivatize with hydroxyl groups. The interaction properties of cyclodextrins 

with oligonucleotides are not as straightforward as those of spontaneously forming lipid complexes.105

Problems with polymeric carriers have been similar to other systems: the best results have been achieved 

with the most toxic compounds.  

Polymeric as well as inorganic nanoparticle formulations have been suggested for delivery 

purposes.106,107 The most promising of the nanoparticle based transfection agents are the 

superparamagnetic nanoparticles, whose delivery to the target site can considerably be improved by an 

external magnetic field.107 

Physical methods, such as electroporation108, shockwaves109 and ultrasound110, may prove useful 

techniques for improved ON delivery. Electroporation is a delivery technique that utilizes high intensity 

electric fields to destabilize lipid bilayers. Shockwaves and ultrasound are techniques, where acoustic 

high-energy pressure pulses cause transient pore formation in cell membranes (cavitation). 

Requirements for the delivery agents are strict. It seems that in many cases compromises are 

inevitable for the agents to be safe enough for patients. Thus, in most clinical trials none of the delivery 

agents are used due to lack of knowledge.111,112  

One potentially safe group of delivery agents that has not been studied widely is a group of 

positively charged surfactants. These have been used for numerous medicinal purposes for many years and 

should not pose the same kind of safety risks as liposomes. In addition, surfactants are very membrane-

active compounds. For these reasons, this work studies the use of surfactant compounds as delivery agents 

for oligonucleotides. Chapter 4 gives background information on surfactants and their interaction 

properties with polyionic and oligoionic compounds. 

3.3. Antisense targets and clinical trials 
Clinical trials in patients have recently begun to study the safety, patient tolerance and efficiency of 

antisense therapy. Most of the clinical trials with AONs are performed with the simplest forms of 

antisense ONs, typically phosphorothioates, without a carrier. Although some base-motifs discussed 

within this chapter have shown serious side effects in animal models, most AON drugs have generally 

been well tolerated. Dose-dependent side effects include thrombocytopenia, hypotension, asthenia and 

fever.113
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The first antisense drug has already achieved US Food and Drug Administration (FDA) approval. 
111,114 This AON drug is sold with a brand name, Vitravene , and it is used against cytomegalovirus 

(CMV) retinitis in people with AIDS. It is applied directly to the eye through intravitreal injections and 

thus can function without a carrier. Many other clinical trials are on-going.115

The important focus of antisense therapy is on anti-cancer treatment.116,117 The mode of action is 

mostly based on oligonucleotides, which decrease the expression of the oncoproteins (proteins that are 

coded for by a viral oncogene which has been integrated into the genome of a eukaryotic cell and that is 

involved in the regulation or synthesis of proteins linked to tumorigenic cell growth) or are focused on cell 

signaling molecules implicated in cancer initiation or progression.118 Since Vitravene®, Genasense is the 

most studied and still very promising AON, whose target has been implicated in many cancers.118 It is one 

of very few AONs, which have reached phase III in clinical trials. The issue, which might harm its 

success, is the CpG motif it contains.  

Many other targets for AONs in anti-cancer treatment have also reached advanced phases in clinical 

development (melanoma, myeloma, lung cancer, leukemia).119As the phase I trials have  concentrated on 

the safety of AON drug, the problem in phase II has been the efficiency of the drug either because the 

AON is not reaching the target tissue (delivery& stability problems) or it does not cause the effect, even if 

it does reach the target. It seems that these kinds of molecular treatments only tilt the balance between 

survival and death, and thus it is not probable that antisense therapy replaces traditional chemotherapy. 117

It may instead offer a synergistic way to improve the success of traditional treatments with novel gene 

technology.  

At the moment, no medicinal treatments exist for the most common human genetic disease, 

polycystic kidney disease. AONs have given positive results in a first-phase clinical trial study and they 

have been proposed to replace dialysis or kidney transplantation treatments that are, at the moment, the 

only available treatments.120 Viruses are also the target of AON treatments in phase I-III clinical trials 

(HIV, Hepatitis C/B, West Nile Virus).121 Other on-going clinical trials for antisense drugs include the 

reduction of cholesterol and triglyserides in patients with high cholesterol as well as novel treatments for 

asthma and diabetes.115,121

Despite the few numbers of FDA approved AON drugs, there are rather recent success among other 

nucleic acid based drugs. Aptamers are molecules that bind to specific target molecules. Macugen®

belongs to the class of nucleic acid based aptamers and it gained FDA approval in 2005.122 This gives an 

indication that breakthroughs might already be close with other nucleic acid formulations. Only the future 

will reveal how many of the currently tested antisense drugs will proceed through clinical trials to 

commercial use. 
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4. Overview of surfactant-polyelectrolyte interaction 
Surfactants are surface-active compounds consisting of two parts: a hydrophilic head and a 

hydrophobic tail. Due to their dual nature, they form numerous structures in aqueous solution. The most 

typical of these are micelles, where hydrophobic tails of the surfactants are packed together and 

hydrophilic head groups are oriented towards a bulk aqueous phase. Micelles are formed if the 

concentration of the solution exceeds a certain threshold value. This minimum is called the critical micelle 

concentration (CMC) and it is characteristic of a given surfactant. CMC depends on numerous factors 

such as the structure, charge and size of the head group, the length of the tail and the salt concentration of 

the solution.  

Polyelectrolytes are macromolecules with covalently bound charged groups. Due to their high 

charge density, they have a tendency to carry a counter-ion cloud. This phenomenon is called counter-ion 

binding. The most well known counter-ion condensation theory was developed by Manning.123 The theory 

approximates the polyelectrolyte chain as an infinite line charge with the charge density . The charge is 

characterized with the charge density parameter,  defined as 

=
2

0

        (10) 

where e is the elementary charge, 0 is the permittivity of the surrounding (aqueous) solution, k is 

the Boltzmann constant, T is the absolute temperature and b is the distance between neighbouring charges.

The permittivity of the solution is assumed to be uniform and equal to the bulk value. In the Manning 

theory, the charge density parameter , describes the behaviour of the polyelectrolyte counter-ions. In the 

case of monovalent ions, the counter-ions condense on the polyelectrolyte if the initial value of is more 

than 1. The condensation occurs until the parameter decreases to unity. The theoretical explanation for 

the phenomenon is that the phase integral, which describes the energy in the system, is diverging when 

> 1.  Physically, this can be interpreted as the instability of such systems. When  < 1, the behaviour of 

the counter-ions can be treated with the Debye-Hückel theory124. This is the case for the uncondensed 

counter-ions as well as for polyelectrolytes having a low charge density.   

In the following, the system of both a polyelectrolyte and surfactant of opposite charge in the 

aqueous solution will be considered. Oppositely charged surfactants are trapped in the electrostatic field 

surrounding the polyelectrolyte similarly to small counter-ions. This phenomenon was known already in 
125-128 Initially, it was 

assumed that the interaction between the surfactants and polyelectrolyte is purely electrostatic and the 
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surfactants are bound to the polyelectrolyte stoichiometrically with one surfactant attaching to one binding 

site. Later, it was discovered that the effect of hydrophobic interaction is strong, and the tendency of the 

surfactant tails to avoid water and bundle together is significant. Binding is believed to occur through the 

micellisation induced by a polyelectrolyte, which means that non-polar parts of the bound surfactants 

accumulate together and form aggregates, so called mini-micelles (Figure 6).129 Alkyl chains of the 

surfactants are gathered to a hydrophobic core and their polar head groups are spread on the interface. 

Mini-micelles are considerably smaller than the conventional micelles of the corresponding surfactants. 

Some polyelectrolyte monomers interact with the polar head groups of the surfactants and hydrated 

alkylgroups, decreasing the free energy of the interface.126 Other monomers form loops to the surrounding 

aqueous phase.  

Binding is co-operative: after one surfactant is bound, the next one binds more easily due to 

hydrophobic interaction. The interaction between surfactants and polyelectrolyte is strong and it starts 

typically at concentrations that are orders of magnitude below the CMC of the corresponding surfactant. 

The surfactant concentration at the onset of binding is called the critical aggregation concentration (CAC).  

Some properties of the polyelectrolytes strengthen the surfactant binding. If the polyelectrolyte is 

hydrophobically modified, the hydrophobic parts of the polyelectrolyte attract the surfactant tails and thus 

add to the attractive interaction between the surfactant and polyelectrolyte. In some cases, the attraction of 

the surfactant tails is so strong that surfactants and polyelectrolytes of the same charge also have a 

tendency to form complexes.130-132

Figure 6. Schematic structure of a polyelectrolyte-surfactant complex. Reproduced with permission 

from 129 . Copyright 1984 American Chemical Society.  
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For most polyelectrolyte-surfactant systems, binding continues until the stoichiometric ratio of 

bound surfactants to charged groups is reached. This is often followed by precipitation of the neutralized 

complex.133 Polyelectrolytes containing hydrophobic domains such as polystyrene sulphonate are most 

likely to precipitate. 

4.1. Factors affecting surfactant-polyelectrolyte interaction 
Many of the properties of a polyelectrolyte-surfactant solution are composition-dependent. 

Therefore the experimental techniques, which have been utilized for surfactant-polyelectrolyte research, 

have been numerous. The most common are potentiometric titration,134, microcalorimetry135  and 

techniques that are used to measure the surface tension,136,137 conductivity,138 light scattering,139 NMR-

spectra,133 and fluorescence.140

The effect of the surfactant chemical composition on the interaction has been extensively studied. 

The surfactant alkyl chain length influences the polyelectrolyte-surfactant interaction in a similar manner 

as in the formation of micelles: the longer the chain length, the more favourable is the micelle/complex 

formation.141 CAC decreases with increasing surfactant alkyl chain length, i.e. the strength of the 

interaction is strongest with long alkyl chain lengths. The head group size affects the binding such that 

increasing the size decreases the interaction forces between the polyelectrolyte and surfactants. This is due 

to the increased steric hindrance140 as well as electrostatic screening142: bulky alkyl chains coil in the head 

group region and thus screen the charge of the surfactants. Cationic gemini surfactants are the latest group 

of interest.143,144 They are dimeric surfactant molecules consisting of two hydrocarbon chains and two 

polar groups linked with a spacer. Interaction of the polyelectrolyte has been found to be much stronger 

with the gemini surfactant than with a single-chained surfactant and the interaction force is strongly 

dependent on the spacer length.145    

Polyelectrolyte properties such as charge density, hydrophobicity and flexibility have a significant 

influence on the binding. With polyelectrolytes having a high charge density such as polystyrene 

sulphonates and oligodeoxynucleotides, the driving force for the association is primarily the electrostatic 

interaction and secondarily the hydrophobic interaction between the surfactant hydrocarbon tails. The 

lower the charge density of the polyelectrolyte, the more important is the hydrophobic effect of the 

surfactant tails. Hydrophobic domains of the polyelectrolytes participate in the binding process by 

interacting with the surfactant alkyl groups in the interfacial region. This is seen as lower CAC values 

compared to the case of a hydrophilic polyelectrolyte.125 CAC is also highly dependent on the 

polyelectrolyte concentration.146
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Although the size of the polyelectrolyte was previously thought to be irrelevant, it has now been 

shown that decreasing the size of the polymer increases CAC and decreases the co-operativity of binding, 

when the polymer size is below the threshold value.134,147 For polyphosphates, this value is ca. 35 

monomer units.147 NMR studies have revealed that relatively rigid polyelectrolytes like polystyrene 

sulphonate form loose complexes with ionic surfactants, whereas flexible polyelectrolytes like polyacrylic 

acid form compact globules.148

The effect of temperature on the hydrodynamic radius of the surfactant polyelectrolyte complex has 

been studied and was found to be important.139 Increasing the temperature as well as the salt concentration 

decrease the radius of the complex. The salt apparently screens the electrostatic interactions and also 

stabilizes the bound micelles in the complex. 

4.2. DNA-surfactant interaction 
If correctly chosen, cationic surfactants should be well suited for oligonucleotide delivery as they 

bind to poly- and oligoions already at very low concentrations, shield most of the negative charges of the 

oligonucleotide and should consequently make it more likely to be incorporated into a hydrophobic lipid 

membrane. Up to date, most of the research has been conducted with polyionic double-stranded DNA 

(dsDNA) strands. The surfactant types, for which interaction with dsDNA has been studied, include n-

alkyltrimethyl ammonium149-152 and alkanediyl- -bis-(dimethylalkylammonium153,154) salts. These 

surfactants prefer a micellar structure to a liposomal one in the aqueous phase. The interaction of cationic 

surfactants with dsDNA is very similar to their interaction with oppositely charged polyelectrolytes and 

can be described with the co-operative models discussed in the previous section. The structure of the 

complexes can be approximated as shown in Figure 6. However, dsDNA differs from traditional 

polyelectrolytes in many respects. dsDNA is more rigid and has a definite structure in the aqueous phase. 

This might affect the structure of the dsDNA-surfactant complex. Also, the base sequence has been shown 

to alter the structure.155 Some published studies describe dsDNA-surfactant complexes as globular 

compact structures.151,152 Dynamic light scattering studies have shown that the size of this globule is 

around 80 nm.156 The experimental degree of binding of the surfactant was shown to be slightly less than 

the stoichiometric value151,157 whereas some theoretical studies suggest that it is possible to invert the 

charge of dsDNA, if the surfactant is sufficiently hydrophobic.158,159 This would be useful in dsDNA 

delivery since the carrier complex has to be able to penetrate the anionic cell membrane. Many of the 

above-mentioned properties of dsDNA-surfactant complexes are not valid for the less studied flexible 

oligonucleotides. In particular, the end effects have to be taken into account in the case of short 

oligoelectrolytes, which have reduced co-operativity to the binding of surfactants.147
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Although there is no in vivo -data available for cellular delivery properties of 

dsDNA/oligonucleotide -surfactant complexes, the membrane activity of the dsDNA complexes has been 

modelled with biomembrane mimics. These include phospholipid vesicles160, hydrophilic silicon oxide 

surfaces161 and supported phospholipid films162. Naked dsDNA was shown not to adsorb at all to 

negatively charged or neutral cell membrane mimicking surfaces.162 The adsorption was clearly 

observable when the cationic surfactant was present. The interaction was described as an incorporation of 

the dsDNA-surfactant complex into the hydrophobic interior of the membrane. For cellular delivery, this 

might not be sufficient, since the dsDNA/oligonucleotide has to be delivered to the cytoplasm in order to 

function as a drug. However, this might not prove to be problematic, as it has been proposed that negative 

lipids in the cytoplasmic wall of the cell membranes act as dsDNA/oligonucleotide releasers.160
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5. Charge transfer in DNA 
Publication V of this thesis considers the concept of lateral charge transfer in immobilized DNA 

layer on a silicon substrate. 

Barton et al were the first to provide experimental proof of DNA-mediated charge transfer.163 Using 

an assembly containing tethered metallointercalators, the group showed that when electrons are conducted 

along the DNA molecule, damage can appear up to 200 Å away from the site where the charge transfer 

was initiated.164 Charge transfer through DNA from electron donor to electron acceptor is very sensitive to 

perturbations in base-pair structure, i.e., the DNA base- -stack, which is formed when DNA adopts a 

-stack. It has been 

shown that charge transfer is inhibited by intervening DNA mismatches and bulges as well as by DNA-

binding proteins that interfere with base pair stacking.165-169 Other studies propose that charge transfers 

through the DNA double-strand over long distances using a hopping mechanism.170,171 This mechanism 

proposes guanines (Gs) as carriers of the positive charge. According to these studies, the rate of the 

transfer is strongly dependent on the distances between individuals Gs. Electrical transfer has been shown 

to occur in short DNA molecules, in bundles and networks. Transfer is blocked in long single molecules 

that are attached to surfaces.172

The possibility to detect oxidative damage through long range DNA mediated charge transfer has 

been considered.173 This technology has already been applied in the development of a biosensor which can 

detect single base mutations in DNA.174 The device is based on a monolayer of thiol-terminated DNA 

duplexes assembled on a gold surface. A redox-active intercalator bound at the periphery of the DNA film 

is used to probe the DNA charge transfer. The reduction of the intercalator can be detected 

electrochemically when the DNA is fully Watson-Crick base-paired. If base-mismatches or other 

perturbations in the DNA -stacking exist, the intercalator reduction will be attenuated.  The sensitivity of 

the methodology can be further increased by a coulometric readout strategy with oxidation of the 

intercalator by ferricyanide present in the solution.169 The intercalator is not catalytically active and cannot 

be oxidized, when the DNA contains a base-pair mismatch. Another example utilizing DNA mediated 

charge transfer for sensing applications includes the detection of protein binding to DNA containing 

binding sites.168 

Although many hurdles remain, DNA mediated charge transfer offers a useful means of developing 

small and more sensitive biological probes for obtaining genomic information. Potential applications 

include the use of electrochemical methods to detect mismatches in DNA structure for pharmaceutical 

diagnostics, as well as the design of molecules that can carry out therapeutic DNA repair. Progress in this 
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area is dependent on further development in the fabrication of the electrode probes to useful arrays and the 

pre-treatment of the complex genomic DNA samples.175

Another field where charge transfer in DNA is receiving wide interest is in DNA nanoelectronics. 

This area of research makes use of the unique molecular recognition and structuring properties of 

DNA176,177,178 to create novel, controllable electronic devices. To improve conductivity, the DNA sequence 

can be modified with metal ions or metallic nanoparticles179. Future applications envisioned use metal-

doped DNA as nanoelectronic building blocks, in self-assembled hybrid nano-sized networks.  

There has been an enormous amount of interest in the concept of charge transfer in DNA assemblies. 

In Publication V, the concept was probed with short fragments of DNA immobilised on silicon substrate. 

Particular interest was directed towards the effect of both the hybridized flat structures of Si-dsDNA and 

unorganized Si-ssDNA on the rate of the charge transfer. 
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6. Experimental setup and results 
The aims of the experimental part of the thesis can be divided into two categories. In the first case, 

the aim is to study the potential of surfactants as oligonucleotide carrying agents. This includes studies of 

the stability of oligonucleotide surfactant complexes, the kinetics of surfactant binding and the membrane 

activity of naked oligonucleotides and surfactant oligonucleotide complexes. The results may help the 

oligonucleotide drug development to progress towards successful oligonucleotide cargo technology as 

well as extract important details of the surfactant oligonucleotide interaction from the fundamental point 

of view. In the second case, the aim is to show the capability of modern electrochemical methods to 

extract information from the biological environment as well as to fine-tune these methods for solving 

complex biological problems. 

6.1. Equilibrium studies 
The first part of the experimental study considers the chemical equilibrium of the surfactants and 

oligoelectrolytes (short polyelectrolytes). Surfactant equilibrium and interaction properties (theory 

discussed in Chapter 4) were studied using both polystyrene sulphonates (PSS) of different lengths and 

oligonucleotides as the oligoelectrolyte compound. The purpose was to obtain information on the 

equilibrium conditions of the surfactant-oligoelectrolyte complexes and on the stability of the complexes.  

The equilibrium studies were achieved using a micro-sized liquid-liquid interface introduced in 

Chapter 2. This interface configuration has previously been utilized for studying cation binding to 

DNA.180 The liquid-liquid interface was in most cases formed at the end of the micropipette filled with 

organic solvent and dipped into an aqueous phase. In part of the studies, a microhole laser-drilled polymer 

membrane attached to the end of the measurement cell was used to support the liquid-liquid interface. In 

that case, the organic phase was immobilized with polyvinylchloride (PVC) as shown by Liljeroth et al.49

The micropipette setup is shown in Figure 7. 
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Figure 7. The experimental setup of the micropipette configuration. 

The organic phase was either 1,2-dichloroethane (DCE) (micropipette) or 2-nitrophenyloctylether 

(NPOE) (microhole). The equilibrium concentrations of bound and free surfactants were obtained by an 

amperometric potential step method. The diffusion of the complex-bound surfactants was assumed to be 

negligible compared to the diffusion of free surfactants, which enabled the direct use of equation (6) for 

analyzing the steady-state current.  

The results were analyzed using the model developed by Satake and Yang for estimating the degree 

of binding in co-operative binding reactions.181

= 0.5 1 +
1

1 2+4

                                                       (11)            

This model treats the polyelectrolyte as a linear array of binding sites and takes into account the co-

operativity of the binding procedure. cf is the concentration of the unbound surfactants. K is the intrinsic 

binding constant and is a function of the electrostatic interaction between the surfactant and the polymer. 

Kw can be calculated as following 

     | =0.5 = ( ) 1        (12) 

where | =0.5 is the free surfactant concentration when the degree of binding is 0.5. The slope of 

the binding isotherm determines the co-operativity parameter, w, which is a function of the hydrophobic 

interaction between adjacent bound surfactant molecules.  
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The surfactants studied in Publication I were cetylpyridinium chloride (CPC), dodecylpyridinium 

chloride (DPC), cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide 

(DoTAB) and tetradecyltrimethylammonium bromide (TTAB). These differ both in the length of the 

surfactant tail and the nature of the head group. The main conclusion from the differing tendencies of the 

mentioned surfactant configurations was that the binding affinity increases with increasing surfactant 

chain length. The result is in agreement with previous studies.182

The polyelectrolyte used in Publication I was polystyrene sulphonate (PSS) of three different chain 

lengths. The analyzed amperometric titration results are shown in Figure 8. The model described well the 

binding in the low binding degree region. The deviation from the theory was due to the phase separation 

near the saturation point of the polyelectrolyte. The co-operative equilibrium constant Kw, and co-

operativity constant w, both increased as a function of polyelectrolyte size while the intrinsic equilibrium 

constant K, was essentially the same for all PSS, which shows that complexes of long polyelectrolytes are 

energetically more favourable than complexes of shorter oligoelectrolytes. This results from the more 

effective shielding of the hydrophobic polyelectrolyte-surfactant complex core from aqueous surroundings 

that is achieved with long polyelectrolytes. The behaviour of the shortest polyelectrolyte, only 9 monomer 

units long, differed essentially from others. The parameter w was lowest indicating an energetically less 

favourable structure for this complex. Possibly more than one polyelectrolyte chain took part in the 

complex aggregate formation, as suggested in previous studies.183 The co-operativity of binding was 

decreased when the base electrolyte concentration was increased to 100 mM. In this case, the high base 

electrolyte concentration screens the short-range hydrophobic interaction between surfactant tails. 
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Figure 8. The experimental binding isotherms and the corresponding fitted Satake Yang curves for 

three NaPSS samples of different chain lengths with molar masses 1800, 4600, and 18,000 g mol 1 of 

two different salt concentrations. Reprinted from Publication I, Copyright 2004, with permission from 

Elsevier. 

The thermodynamics of binding was studied using microcalorimetry. The binding was shown to be 

an exothermic process with a favourable entropy change. The entropy change was lowest in the case of the 

9 monomer long PSS, indicating that mini-micelle formation is not a significant factor in surfactant 

binding to short oligoelectrolytes. 

In conclusion, Publication I showed that amperometric measurements using a microinterface as a 

detector interface can be used to directly measure the binding degree for surfactant binding  to oligo- and 

polyelectrolytes. This is an improvement to earlier described potentiometric methods125,128,141, as the 

introduced methodology enables the use of significantly smaller volumes and the measurements are quick 

and straightforward.   

Publication II considered the surfactant-oligonucleotide binding equilibrium. CPC, already widely 

used in pharmaceutical applications such as mouthwashes, was used as the complexing agent. The effect 

of phosphorothioate modification (1st generation ON), in which one of the non-bridging oxygens of the 

sugar phosphate backbone of the oligonucleotide is replaced with sulphur, was studied. Two different base 

sequences were used, -CCC CAT TCT AGC AGC CCG GG- -GCC GAG 
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GTC CAT GTC GTA CGC- (ODN2/MOD2). ODN refers to phosphodiester and MOD refers to 

phosphorothioate.  

The experimental normalized binding isotherms and corresponding fitted Satake Yang curves are 

presented in Figure 9. The co-operativity equilibrium constant, Kw, was found to be significantly higher in 

the case of phosphorothioates, which shows that the CP phosphorothioate complexes are energetically 

more favourable than complexes of phosphodiester and CP. This is explained by the modified charge 

distribution of the phosphate backbone due to different polarizability and the larger size of the sulphur 

atoms.  

Base sequence had a surprisingly strong effect on binding. The co-operativity was affected most. 

The parameter w was clearly higher for ODN2 and MOD2 than ODN1 and MOD1, which is most 

probably due to the differing tendencies of oligonucleotides to form hairpin loop and dimer structures. 

Differences in K were insignificant. 
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Figure 9. The experimental normalized binding isotherms and corresponding fitted Satake Yang 

curves for (A) MOD1 and ODN1 and (B) MOD2 and ODN2. The enthalpy change in calorimetric 

measurements as a function of concentration ratio ct/co for complexation of (C) MOD1, ODN1 and (D) 

MOD2, ODN2 at 25°C. Reprinted from Publication II, Copyright 2004, with permission from 

Elsevier. 

Calorimetric studies were performed at a lower concentration range than the corresponding 

amperometric measurements due to endothermic CP micelle deformation reaction. The trends noted in the 

calorimetric studies were analogous to those already seen in the electrochemical studies: CP had a higher 

binding affinity to phosphorothioates than to natural oligonucleotides, which is evidenced by lower Gibbs 

free energies for phosphorothioates. Some base sequence specificity was also seen. The formation of 

phosphodiester oligonucleotide-CP complexes was clearly entropy driven, while enthalpy and entropy had 

an effect of the same order of magnitude on the Gibbs free energy in the case of phosphorothioate 

modifications. 

In conclusion, Publication II considered the thermodynamics of surfactant binding to 

oligonucleotides. , this was the first time that the binding of simple 

surfactant molecules to short ssDNA fragments was approached analytically. Earlier studies have either 
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been analytical studies of surfactant molecules binding with large dsDNA149-154, or in vitro studies 

following the transfection efficiency of the DNA-surfactant complex.184,185 In  publication II, it was shown 

that the surfactant binding affinity and the surfactant-oligonucleotide complex stability differ for natural 

oligonucleotides and those with the phosphorothioate modification. This knowledge is essential in 

antisense oligonucleotide technology, since the stability of the complex has a significant influence on 

cellular delivery of oligonucleotides.  

6.2. Complexation kinetics 
Relatively few studies have considered the kinetics of the surfactant-polymer/polyelectrolyte 

interaction due mainly to the high reaction rate of the association reaction. The methods that have been 

used for studying this difficult phenomenon include relaxation techniques such as ultrasonic186,

temperature jump187 and pressure jump methods188. Such methods are capable of studying rather slow 

dissociation of surfactants from the complex, but cannot follow a fast association process. In 

pharmaceutical applications, the kinetics of the interaction of two components is insignificant, provided it 

is sufficiently fast. However from a fundamental point of view, the subject is interesting. Thus in 

Publication III, hydrodynamic electrochemistry at ITIES is utilized for generating a system capable of 

following the kinetics of a fast homogenous reaction, such as surfactant binding to polyelectrolyte. The 

basics of hydrodynamic electrochemistry are presented in Chapter 2. 

For measuring the kinetics of surfactant binding to polyelectrolyte, a channel flow arrangement was 

utilized, which enables control of the residence time of the oligoelectrolyte and surfactant by modifying 

the flow velocity in the channel. Different kinds of channel configurations have been proposed for 

combining two flow streams in a controlled manner, such as the flow injection channel and the confluence 

reactor.189-191 In Publication III, the kinetics of the surfactant-polyelectrolyte interaction was studied with a 

new channel flow configuration, where surfactant solution was continuously injected into a flow of 

polyelectrolyte solution and the amount of un-associated surfactant was measured at an ion-selective 

detector-electrode. The configuration of the channel flow cell used in Publication III is shown in Figure 

10. 
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Figure 10. The flow cell configuration. CE1, CE2, RE1, and RE2 denote the aqueous and organic 

counter and reference electrodes, respectively. Reproduced with permission from Publication III. 

Copyright 2005 American Chemical Society. 

The rate of surfactant ion transfer across ITIES (width, ws) is controlled by the mass transfer in the 

channel and the rate of the homogenous association reaction. The association reaction could be modelled 

as a homogenous second-order reaction as the surfactant concentration was kept sufficiently low such that 

binding was limited only to the low binding degree region. In this region, the binding is perfectly non-co-

operative. Two different approaches were used for modelling the second-order kinetics. Simple analytical 

theory assumed that flow rate only determines the residence time of the polyelectrolyte and surfactant. 

Another approach was a finite-element simulation of the full convective diffusion equation, which 

included the homogeneous chemical reaction. 

The analytical solution overestimated kinetic parameters due to the approximations made in the 

residence time evaluation. However, the equilibrium constants determined were similar in the analytical 

and numerical finite-element solutions and of the same order of magnitude as the intrinsic equilibrium 

constant of CP binding to PSS describing the equilibrium in a non-co-operative system (Publication I). 

The simple reversible second-order theory explained the results surprisingly well. This can be 

rationalized by the low concentration of the surfactant used. In this case, only few surfactant molecules 

associate with the empty binding sites of the polyelectrolyte and the co-operativity, which is a typical 

property of the polyelectrolyte-surfactant system, was assumed to have only a minor effect on the 

association of CP and PSS. The experimental results and fits to the analytical model are shown in Figure 

11. 
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Figure 11. Experimental results and fits to the analytical model. Empty triangles, filled circles, empty 

circles, and filled triangles refer to PSS0, PSS5, PSS10, and PSS97, respectively. Solid lines refer to 

the reversible model discussed in the text. Reproduced with permission from Publication III. 

Copyright 2005 American Chemical Society. 

In conclusion, Publication III introduced a channel flow method where a liquid-liquid interface was 

used as a detector electrode. This kind of electrode was described earlier by Liljeroth et al.192 In 

Publication III, the detector electrode was combined with a novel channel flow configuration, which 

enabled controllable injection from the smaller side stream into the mainstream and thus the following of 

the complexation reaction of the polyelectrolyte and surface active agent for the first time. The 

configuration of the channel was a modification of that introduced by Gooding et al.189,190 

6.3. Membrane activity of oligonucleotide-surfactant complex 
Study of the incorporation of the oligonucleotide-surfactant complex into a lipid membrane is a 

natural extension of the previous studies considering the properties of the oligonucleotide-surfactant 

complex. The work presented in Publication IV utilizes electrochemistry at ITIES for studying the 

interactive properties of oligonucleotides and a natural cell membrane mimicking the phospholipid 

monolayer. The overview of development of the electrochemical techniques for studying ion transfer 

processes through biomembrane mimicking phospholipid interfaces was presented in Chapter 2. 
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In previous works, the membrane activity of surfactant-oligonucleotide complexes have been 

studied using silicon oxide surfaces,161 phospholipid vesicles160 and supported phospholipid films.162 The 

approach used in Publication IV was to employ a phospholipid monolayer supported on the surface of the 

immobilized organic gel and follow the membrane interaction of the oligonucleotide and surfactant by 

voltammetric methods. This approach has been successfully utilized for studying the membrane activity of 

peptides.193

The phospholipid monolayer was prepared using the Langmuir-Blodgett technique, which enables 

control of the lipid packing at the air-water interface by movable barriers. The electrochemical cell (Figure 

12) was dipped through the monolayer compressed to a surface pressure at which the lipid packing is in 

the liquid-condensed state. The substances under study were added to aqueous phase and their membrane 

activity was followed by cyclic and AC-voltammetry. 

Figure 12. A schematic drawing of the electrochemical cell. Reprinted from Publication IV, 

Copyright 2006, with permission from Elsevier. 

The capacitance of the monolayer as a function of was extracted from the AC-voltammetry 

results. With the aid of theoretical modeling based on the solution of the Poisson-Boltzmann equation, the 

capacitance values give information on the interfacial adsorption of the oligonucleotides and their 

surfactant complexes. 
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The molecules used in this study were the same as those used in Publication II: CPC, ODN1/2 and 

MOD1/2. The lipids used were zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and negatively 

charged 1,2-dipalmitoyl-sn-glycero-3-[phospho-L-serine] (sodium salt).  

The experimental capacitance curves are shown in Figure 13. The oligonucleotide proved not to 

interact with the neutral or negatively charged lipid membrane. When oligonucleotides were complexed 

with the surfactant, the membrane activity of oligonucleotide clearly increased, as concluded from the fact 

the capacitance increased and the surface charge decreased as a function of complexation degree. It was 

concluded that the complexes were incorporated to the phospholipid domain. The internalization did not 

require reversal of the negative charge of the oligonucleotide. However, complexed MOD1 did not adsorb 

to the lipid domain and it was assumed that MOD1 preferred stable complexes with the surfactant over 

internalization as the equilibrium constant K is highest for MOD1 (shown in Publication II).  
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Figure 13. Experimental capacitance curves: (A) ODN1. The solid lines represent data obtained in 

the presence of naked oligonucleotide and the dashed lines represent those obtained in the presence of 

the complexed oligonucleotides with the CP/oligonucleotide concentration ratios of 0.24, 0.71 and 

0.96 from bottom to top. The dotted lines represent the response for the compressed lipid monolayer 

with only base electrolytes in the aqueous compartment and the dash-dot-dot line shows the bare 

interface without lipid monolayer, (B) ODN2, (C) MOD1 and (D) MOD2. The lines are assigned as in 

(A). Reprinted from Publication IV, Copyright 2006, with permission from Elsevier. 

In conclusion, publication IV utilized the Langmuir-Blodgett method in combination with modern 

electrochemical techniques to study the membrane activity of the oligonucleotides. The technique used 

was earlier presented by Liljeroth et al.49 For the first time, differences in the lipid monolayer 

internalization of naked and complexed ONs and their phosphorothioate modifications were studied 

systematically using analytical methodology. The results show that cationic surfactants enhance the 
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internalization of the oligonucleotides into the phospholipid membrane with possibly a very similar 

mechanism to that shown for oligonucleotide delivery via liposomes.90 However, results do not show 

whether the oligonucleotides can escape from the lipid vesicles, which has been a problem with many 

delivery systems. Nonetheless, this may not be an issue with a surfactant-based delivery system, since the 

inner cell surface is rich with negative lipids, which associate with positive surfactants and possibly act as 

oligonucleotide releasers.90

6.4. Lateral Charge in DNA-monolayer immobilized on the Si(111) 
electrode 

Surface-bound DNA is important in analytical applications and nanotechnology, as it is a potential 

future material for constructing nanoarchitectures. Knowledge of the charge transport in the DNA-

monolayers is essential, for the immobilized DNA monolayers to be used as components in sensor 

applications. In Publication V, SECM was used to verify the possibility of charge transport in the DNA 

monolayers, which are covalently bound to a Si(111) surface. The protocol shown in Figure 14 was used 

in the synthesis of DNA on the silicon surface. 
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Figure 14. Synthesis of oligonucleotides on silicon surfaces. (1) Alkylation of hydrogen terminated 

silicon with 4,4'-dimethoxytrityl-1-undecenol [DMT = dimethoxytrityl]. (2) Solid-phase 

oligonucleotide synthesis resulting in 3'-tethered, protected ssDNA strands. P = NC(CH2)2. (3) 

Deprotection of the ssDNA with gaseous dimethylamine to remove the protecting groups including 

the cyanoethyl groups on the phosphate backbone. (4) Hybridisation with the complementary strand to 

form dsDNA. (5) Equilibration of the surface-bound DNA with metal complex. Reprinted from 

Publication V, Copyright 2007, with permission from Elsevier. 

SECM studies were performed in amperometric mode, where the current response of the tip is 

measured as a function of the distance between the tip and the silicon surface (see Figure 15). The 

corresponding plots of tip current versus tip distance from the substrate, so-called approach curves provide 

quantitative information on the conductivity of the substrate.  



56

Figure 15. Illustration of the SECM experiment to determine surface charge transport rates between 

metal complexes bound to DNA. The tip reaction perturbs the equilibrium between freely diffusing 

and surface bound mediator leading to a flux of charge/material across the surface. (b) Different 

possible interpretations of the apparent surface diffusion coefficient as measured by the SECM 

experiment (a): (i) redox hopping between fixed centres, (ii) physical diffusion, (iii) long-range 

electron transfer mediated by dsDNA and (iv) injection of electrons or holes into the underlying 

silicon leading to positive feedback. Reprinted from Publication V, Copyright 2007, with permission 

from Elsevier. 

The reaction at the SECM tip is 

Osoln + e-  ->  Rsoln        (13) 

The depletion of oxidized mediator (O) and accumulation of reduced mediator (R) in the 

tip/substrate gap favours the reduction of surface-bound molecules. 

Rsoln + Osurface -> Osoln + Rsurface      (14) 

The apparent surface diffusion coefficient, Dsurf, for the lateral charge transport was determined by 

fitting experimental current vs. distance curves to an appropriate model. It is known that electron transport 
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by hopping between redox sites follows , it is equivalent to physical diffusion 

of molecules.194, 195 The values of Dsurf extracted from the SECM experiment were therefore interpreted in 

terms of the different possible underlying mechanisms of charge transport (Figure 15): (i) electron 

hopping between fixed, neighbouring redox sites; (ii) physical diffusion, in which the molecules are 

mobile on the surface or may detach and re-adsorb following diffusion in the solution; (iii) long-range 

electron transfer between well-separated sites via injection of charge into the DNA molecules; and (iv) 

charge injection into the underlying semiconductor substrate. 

SECM approach curves were measured for Fe(CN)6
4 , Ir(Cl)6

3 , Ru(bipy)3
2+, Co(bipy)3

3+ and 

Ru(NH3)6
3+ (hexacyanoferrate(II) anion, hexachloroiridate(III) anion, Tris(bipyridine)ruthenium(II) 

cation, Tris(bipyridine)cobalt(III)) cation and hexaammineruthenium(III) cation) at Si(111)/dsDNA 

surfaces. The two anionic redox mediators produced only negative feedback. This is attributed to the 

Donnan exclusion of the negatively charged species from the polyanionic Si/DNA film. No measurable 

feedback was observed for Ir(Cl)6
3 at Si(111)/dsDNA surfaces, although it has an increased redox 

potential. In contrast to Ir(Cl)6
3 , a significant positive feedback was observed using Ru(bipy)3

2+ as 

mediator. This effect was observed independently of the presence of DNA on the surface, i.e., also on 

hydrogen-terminated and undecyl-monolayer covered Si electrode, which shows that in the system any 

DNA oxidation effect was obscured by hole injection into the valence band of the underlying Si substrate. 

It was concluded that the standard redox potential of Ru(bipy)3
2+is sufficiently positive to invert the 

surface locally as positive feedback was also observed at n-Si substrates. 

When the approach curve measurement was performed in the presence of Ru(NH3)6
3+, it was noted 

that DNA molecules on top of the organic monolayer have a clear effect on the approach curve increasing 

the positive feedback response. The extent of positive feedback increased after hybridisation. In the 

absence of DNA, the approach curves were indistinguishable from those obtained at insulating substrates. 

This indicated that the regeneration of the mediator is slow at the underlying Si surface. The positive 

feedback observed must therefore be at least partly due to lateral charge transport in the Si/DNA film. 

Figure 16 shows feedback approach curves for 0.50 mM Ru(NH3)6
3+ at  pSi/DNA surfaces. 
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Figure 16. Feedback approach curves for 0.50 mM Ru(NH3)6
3+ at pSi/DNA surfaces. The electrolyte 

was 20 mM Tris buffer at pH 7.5 and the tip radius was 5 μm. The tip potential was -0.3 V vs. SCE. 

The symbols are the experimental data and the lines are the fitted curves. (a) pSi/dsDNA, (b) 

pSi/ssDNA and (c) pSi/PG-DNA. dsDNA and ssDNA indicate hybridised and single-stranded DNA. 

PG-DNA indicates single stranded material prior to deblocking of the phosphates and nucleobase 

protecting groups. The theoretical responses for diffusion-controlled positive feedback (metallic 

substrate) and pure negative feedback (insulating substrate) are also shown as dashed and thin solid 

lines. Reprinted from Publication V, Copyright 2007, with permission from Elsevier. 

In previous studies, various electroanalytical techniques have been employed to detect hybridization 

of DNA immobilized on electrode surfaces.196,197 In  Publication V, charge transfer on the DNA covalently 

bound on silicon surface was studied using SECM methodology. A semi-analytical description of the 

SECM feedback experiment with lateral charge transport on the substrate was developed and used to 

analyse steady-state approach curves in solutions of various metal complex mediators at Si(111)/DNA 

substrates. The mechanism of this process was elucidated for DNA films equilibrated with different metal 

ion complexes. The inverse dependence of the effective first-order heterogeneous rate constant at the 

substrate on bulk mediator concentration predicted by theory was confirmed using the p-Si(111)/dsDNA/ 

Ru(NH3)6
3+ system. Ru(NH3)6

3+ bound to surface-immobilised ssDNA molecules was found to transport 

charge across the surface with an apparent diffusion coefficient of (0.85 ± 0.3) · 10-5 cm2 s-1, which is 
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similar to the diffusion coefficient value in solution. The rate of charge transport increased after 

hybridisation to (2.2 ± 0.3) · 10-5 cm2 s-1. This high apparent diffusion coefficient is interpreted in terms of 

a combination of physical diffusion of the metal complexes on the surface and electron injection into the 

underlying semiconductor. In the Si/dsDNA system, the DNA strands lie almost parallel to the surface and 

therefore lateral charge transport can be facilitated. In the case of Si/ssDNA, there is little structure in the 

films as shown by AFM (Figure 17) and the apparent diffusion coefficient was comparable to the value in 

the bulk solution. 

Figure 17. AFM images of ssDNA-PG (before) and ssDNA after deblocking with methylamine (Fig. 

14). (a) 1 · 1 μm tapping mode AFM image of ssDNA-PG; the underlying step/terrace structure of the 

Si(111) surface is visible on the right-hand side. The grayscale for the AFM image is 0 2 nm. The 

inset shows an in-air STM image at -2 V bias and 0.3 nA tunnelling current of the Si(111) C11 OH 

monolayer showing steps (0.3 nm) equal to the monoatomic step height on Si(111) H: this indicates 

the monolayer covers the surface uniformly. (b) 500 · 500 nm tapping mode image of the ssDNA 

surface after deblocking the cyanoethyl protecting groups on the phosphate backbone with 

methylamine. The grayscale for the AFM image is 0 1 nm. Reprinted from Publication V, Copyright 

2007, with permission from Elsevier. 
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7. Conclusions 
There were two major aims for this work. The first one was to showcase the versatility of 

electrochemical techniques for studying biological problems. The second was the utilization of 

electrochemistry for studying surfactant-mediated anti-sense oligonucleotide delivery. These goals were 

fulfilled successfully and new information was extracted on biological systems relevant to the 

pharmaceutical community. In the first part of this work, electrochemical techniques at micro-scale and 

hydrodynamic liquid-liquid interfaces were utilized for studying the thermodynamic stability and kinetics 

of complex formation for surfactants and oligonucleotides and their model compounds. The capability of 

the micropipette method to study the complex formation was proved using polystyrene sulphonate as a 

model compound. The experimental results were fitted successfully to Satake-Yang model and the results 

were compared with the relevant literature. The results with oligonucleotides were promising as they 

showed that oligonucleotides and cetylpyridinium cations form stable complexes with binding degrees 

close to unity. Thus, the charge of the oligonucleotide is effectively shielded in these complexes. 

Formation of the complexes is thermodynamically favourable in aqueous environments. Binding of 

cetylpyridinium to oligonucleotide starts at much lower cetylpyridinium ion concentration in the case of 

phosphorothioate based oligonucleotides compared with the unmodified phosphodiesters. Binding is 

entropy driven in the case of phosphodiesters while enthalpy and entropy induce effects of same order of 

magnitude in the case of phosphorothioates.  The base sequence of the oligonucleotide has a clear effect 

on the binding thermodynamics, most probably due to the different tendencies of oligonucleotides to form 

loop, hairpin and other secondary structures.   The kinetics of surfactant binding to the oligonucleotide  

were studied as a homogenous second order reaction, which was possible, as the concentration of the 

surfactant was kept sufficiently low for binding to be limited to the non-co-operative low binding degree 

region.  The results were analyzed with the analytical theory and simple second-order model. The simple 

theory explained the results surprisingly well due to low surfactant concentration that was used. The 

membrane activity of the complexes was studied using an artificial membrane built by a Langmuir-

Blodgett technique combined with electrochemical methods. The results were analyzed using the solution 

of the Poisson-Boltzmann equation. It was concluded that the surfactant-oligonucleotide complexes 

incorporated into the lipid membrane with the exception of one oligonucleotide-surfactant complex with 

the phoshorothioate backbone. The stability of the complex was concluded to be a critical factor affecting 

the complex  phospholipid membrane interaction: the more stable the complex, the more difficult is its 

incorporation into the phospholipid region. The complexes that penetrated the membrane did not require 

absolute shielding of the negative charges of the oligonucleotides. Knowledge of the charge transport in 

the DNA monolayers is essential, when immobilized DNA monolayes are used as components in sensor 

applications or electronic devices. SECM was used to verify the possibility of charge transfer in DNA 
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monolayers, which are covalently bound to a Si(111) surface. It was concluded from the positive SECM 

feedback that the charge transfers in the dsDNA monolayer laterally. As AFM images showed, the ssDNA 

films on silicon have a random structure and the charge transfer rate was comparable to the value of the 

bulk solution. The results with dsDNA are very promising for future sensor technology. As a whole, this 

work showed that with the modern electrochemical techniques it is possible to take a close analytical 

perspective of the complex biological problems.  
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