
BULK UPDATES AND CACHE SENSITIVITY

IN SEARCH TREES

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80703628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TKK Research Reports in Computer Science and Engineering A

Espoo 2009 TKK-CSE-A2/09

BULK UPDATES AND CACHE SENSITIVITY

IN SEARCH TREES

Doctoral Dissertation

Riku Saikkonen

Dissertation for the degree of Doctor of Science in Technology to be presented with due

permission of the Faculty of Information and Natural Sciences, Helsinki University of

Technology for public examination and debate in Auditorium T2 at Helsinki University

of Technology (Espoo, Finland) on the 4th of September, 2009, at 12 noon.

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Computer Science and Engineering

Teknillinen korkeakoulu

Informaatio- ja luonnontieteiden tiedekunta

Tietotekniikan laitos

Distribution:

Helsinki University of Technology

Faculty of Information and Natural Sciences

Department of Computer Science and Engineering

P.O. Box 5400

FI-02015 TKK

FINLAND

URL: http://www.cse.tkk.fi/

Tel. +358 9 451 3228

Fax. +358 9 451 3293

E-mail: rjs@cs.hut.fi

c© 2009 Riku Saikkonen

Layout: Riku Saikkonen (except cover)

Cover image: Riku Saikkonen

Set in the Computer Modern typeface family designed by Donald E. Knuth.

ISBN 978-952-248-037-8

ISBN 978-952-248-038-5 (PDF)

ISSN 1797-6928

ISSN 1797-6936 (PDF)

URL: http://lib.tkk.fi/Diss/2009/isbn9789522480385/

Multiprint Oy

Espoo 2009

AB
ABSTRACT OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY

P.O. Box 1000, FI-02015 TKK

http://www.tkk.fi/

Author Riku Saikkonen

Name of the dissertation

Bulk Updates and Cache Sensitivity in Search Trees

Manuscript submitted 09.04.2009 Manuscript revised 15.08.2009

Date of the defence 04.09.2009

£ Monograph ¤ Article dissertation (summary + original articles)

Faculty Faculty of Information and Natural Sciences

Department Department of Computer Science and Engineering

Field of research Software Systems

Opponent(s) Prof. Peter Widmayer

Supervisor Prof. Eljas Soisalon-Soininen

Instructor Prof. Eljas Soisalon-Soininen

Abstract

This thesis examines two topics related to binary search trees: cache-sensitive memory layouts and avl-tree

bulk-update operations. Bulk updates are also applied to adaptive sorting.

Cache-sensitive data structures are tailored to the hardware caches in modern computers. The thesis presents

a method for adding cache-sensitivity to binary search trees without changing the rebalancing strategy. Cache-

sensitivity is maintained using worst-case constant-time operations executed when the tree changes. The thesis

presents experiments performed on avl trees and red-black trees, including a comparison with cache-sensitive

B-trees.

Next, the thesis examines bulk insertion and bulk deletion in avl trees. Bulk insertion inserts several keys in

one operation. The number of rotations used by avl-tree bulk insertion is shown to be worst-case logarithmic

in the number of inserted keys, if they go to the same location in the tree. Bulk deletion deletes an interval

of keys. When amortized over a sequence of bulk deletions, each deletion requires a number of rotations that

is logarithmic in the number of deleted keys. The search cost and total rebalancing complexity of inserting or

deleting keys from several locations in the tree are also analyzed. Experiments show that the algorithms work

efficiently with randomly generated input data.

Adaptive sorting algorithms are efficient when the input is nearly sorted according to some measure of pre-

sortedness. The thesis presents an avl-tree-based variation of the adaptive sorting algorithm known as local

insertion sort. Bulk insertion is applied by extracting consecutive ascending or descending keys from the input

to be sorted. A variant that does not require a special bulk-insertion algorithm is also given. Experiments show

that applying bulk insertion considerably reduces the number of comparisons and time needed to sort nearly

sorted sequences. The algorithms are also compared with various other adaptive and non-adaptive sorting

algorithms.

Keywords cache-sensitivity, cache-consciousness, bulk insertion, bulk deletion, adaptive sorting,

avl tree, binary search tree

ISBN (printed) 978-952-248-037-8 ISSN (printed) 1797-6928

ISBN (pdf) 978-952-248-038-5 ISSN (pdf) 1797-6936

Language English Number of pages 144 p.

Publisher Department of Computer Science and Engineering

Print distribution Department of Computer Science and Engineering

£ The dissertation can be read at http://lib.tkk.fi/Diss/2009/isbn9789522480385/

AB
VÄITÖSKIRJAN TIIVISTELMÄ TEKNILLINEN KORKEAKOULU

PL 1000, 02015 TKK

http://www.tkk.fi/

Tekijä Riku Saikkonen

Väitöskirjan nimi

Eräpäivitykset ja välimuistitietoisuus hakupuissa

Käsikirjoituksen päivämäärä 09.04.2009 Korjatun käsikirjoituksen päivämäärä 15.08.2009

Väitöstilaisuuden ajankohta 04.09.2009

£ Monografia ¤ Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)

Tiedekunta Informaatio- ja luonnontieteiden tiedekunta

Laitos Tietotekniikan laitos

Tutkimusala Ohjelmistojärjestelmät

Vastaväittäjä(t) prof. Peter Widmayer

Työn valvoja prof. Eljas Soisalon-Soininen

Työn ohjaaja prof. Eljas Soisalon-Soininen

Tiivistelmä

Väitöskirja käsittelee kahta binäärisiin hakupuihin liittyvää aihetta: välimuistitietoista solmujen sijoittamista

muistiin sekä avl-puiden eräpäivitysoperaatioita. Eräpäivityksiä myös sovelletaan mukautuvaan järjestämiseen.

Välimuistitietoiset tietorakenteet on sovitettu nykyisten tietokoneiden laitteistotason välimuisteihin. Väitöskirja

esittelee tavan tehdä binäärisistä hakupuista välimuistitietoisia muuttamatta hakupuun tasapainotusmenetel-

mää. Välimuistitietoisuus säilytetään tekemällä puun muuttuessa pahimmassakin tapauksessa vakioaikaisia ope-

raatioita. Väitöskirja esittelee avl- ja punamustilla puilla tehtyjä kokeita, sisältäen vertailun välimuistitietoisiin

B-puihin.

Seuraavaksi väitöskirja käsittelee avl-puiden erälisäys- ja eräpoisto-operaatioita. Erälisäys lisää monta avainta

puuhun kerralla. Väitöskirjassa näytetään, että avl-puun erälisäys tekee pahimmassa tapauksessa logaritmi-

sen määrän kiertoja suhteessa lisättyjen avainten lukumäärään, jos avaimet kuuluvat puussa samaan kohtaan.

Eräpoisto poistaa puusta kokonaisen avainvälin. Jonossa eräpoisto-operaatioita kukin poisto tarvitsee tasoite-

tusti logaritmisen määrän kiertoja suhteessa poistettavien avainten lukumäärään. Lisäksi tutkitaan hakukus-

tannusta ja koko tasapainotuksen kustannusta tilanteessa, jossa lisäyksiä tai poistoja tehdään useaan kohtaan

puussa. Koetulosten mukaan algoritmit toimivat tehokkaasti satunnaisesti tuotetuilla syötteillä.

Mukautuvat järjestämisalgoritmit ovat tehokkaita, kun syöte on ennestään melkein järjestyksessä jonkin

järjestystä kuvaavan suureen mukaan. Väitöskirja esittelee avl-puupohjaisen muunnelman paikallinen lisäysjär-

jestäminen -nimisestä mukautuvasta järjestämisalgoritmista. Erälisäystä sovelletaan keräämällä järjestettävästä

syötteestä peräkkäisiä kasvavia tai väheneviä avaimia. Lisäksi esitellään muunnelma, joka ei tarvitse varsinais-

ta erälisäysalgoritmia. Koetulosten mukaan erälisäyksen soveltaminen vähentää tarvittavia vertailuoperaatioita

ja suoritusaikaa huomattavasti, kun järjestettävä jono on melkein järjestyksessä. Algoritmeja verrataan myös

muihin mukautuviin ja ei-mukautuviin järjestämisalgoritmeihin.

Asiasanat välimuistitietoisuus, erälisäys, eräpoisto, mukautuva järjestäminen, avl-puu, binäärinen

hakupuu

ISBN (painettu) 978-952-248-037-8 ISSN (painettu) 1797-6928

ISBN (pdf) 978-952-248-038-5 ISSN (pdf) 1797-6936

Kieli englanti Sivumäärä 144 s.

Julkaisija Tietotekniikan laitos

Painetun väitöskirjan jakelu Tietotekniikan laitos

£ Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/2009/isbn9789522480385/

ix

Preface

First of all, I would like to thank the supervisor of this work, Professor
Eljas Soisalon-Soininen. He has introduced me to the field of algorithm
and data structure research and provided an environment where I had
the opportunity to concentrate primarily on the research work. He has
been very supportive, and an extremely valuable guide and source of
new ideas for the research.

I am grateful to Professors Tapio Elomaa (Tampere University of
Technology) and Otto Nurmi (University of Helsinki) for their detailed
and valuable comments on the manuscript, and to Professor Peter Wid-
mayer (eth Zürich) for kindly agreeing to be the opponent.

The research presented in this thesis was carried out at the Depart-
ment of Computer Science and Engineering at the Helsinki University
of Technology. I thank the Department, as well as the Helsinki Gradu-
ate School in Computer Science and Engineering and the Academy of
Finland for providing the financial support that enabled me to work on
this thesis.

I would also like to thank the authors (far too many to list here) of
the free open-source software that I used in this work. The most useful
programs were gnu Emacs, Latex and its packages, Gnuplot, the gnu

C compiler, and Perl. Thanks also to the people behind the Debian
gnu/Linux distribution, which has provided a stable operating system
that included all the above software.

Finally, I wish to thank my family and friends for their support
throughout my studies.

Espoo, August 2009

Riku Saikkonen

x

xi

Contents

1 INTRODUCTION 1

1.1 Bulk updates · p. 1
1.2 Cache sensitivity · p. 2
1.3 Adaptive sorting · p. 3
1.4 Organization · p. 4

2 BACKGROUND 5

2.1 Search trees · p. 5
2.2 avl trees · p. 6
2.3 Red-black trees · p. 7
2.4 Internal and external trees · p. 8
2.5 Height-valued trees · p. 10
2.6 Parent links · p. 11
2.7 Relaxed balancing · p. 11
2.8 Bulk updates · p. 12
2.9 Cache-conscious search trees · p. 13
2.10 Adaptive sorting · p. 15
2.11 Finger trees · p. 17

3 CACHE-SENSITIVE BINARY SEARCH TREES 19

3.1 Cache model · p. 19
3.2 Multi-level cache-sensitive layout · p. 21
3.3 Global relocation · p. 24
3.4 Local relocation · p. 29
3.5 Experiments · p. 35

xii

4 BALANCING AVL TREES 43

4.1 The node balancing algorithm · p. 43
4.2 Standard insertion and deletion · p. 44
4.3 An implementation of relaxed balancing · p. 45
4.4 Analysis of node balancing · p. 46

5 BULK UPDATE ALGORITHMS FOR AVL TREES 51

5.1 Single-bulk insertion · p. 51
5.2 Log-squared rebalancing algorithm · p. 52
5.3 Logarithmic rebalancing algorithm · p. 56
5.4 Inserting multiple bulks · p. 73
5.5 Single-bulk deletion · p. 77
5.6 Deleting multiple intervals · p. 84
5.7 Comparison to relaxed balancing · p. 86
5.8 Experiments · p. 87

6 USING BULK INSERTION IN ADAPTIVE SORTING 93

6.1 Simplified finger: Binary saved path · p. 93
6.2 Finding ascending or descending sequences · p. 95
6.3 Bulk-insertion sort in an avl tree · p. 97
6.4 Lazy bulks · p. 98
6.5 The bulk tree · p. 99
6.6 Analysis · p. 101
6.7 Experiments · p. 104

7 CONCLUSION 113

7.1 Cache-sensitive binary search trees · p. 113
7.2 Bulk updates · p. 115
7.3 Application to adaptive sorting · p. 115

REFERENCES 119

xiii

List of Algorithms

3.1 Global relocation · p. 26
3.2 Address translation for aliasing correction · p. 28
3.3 Local relocation · p. 33
4.1 Node balancing · p. 44
4.2 avl tree single insertion in terms of Algorithm 4.1 · p. 45
4.3 avl tree single deletion in terms of Algorithm 4.1 · p. 46
5.1 Single-bulk insertion · p. 52
5.2 Log-squared rebalancing for bulk insertion · p. 53
5.3 Logarithmic rebalancing for bulk insertion · p. 57
5.4 Simple bulk insertion with multiple bulks · p. 73
5.5 Advanced bulk insertion with multiple bulks · p. 76
5.6 Actual bulk deletion in an internal tree · p. 79
5.7 Rebalancing for bulk deletion · p. 80
6.1 Bulk-insertion sort · p. 98

xiv

xv

List of Figures

2.1 Actual insertion and deletion in binary search trees · p. 9
2.2 Binary search tree rotations · p. 10
3.1 Reading a 4-byte word in a hypothetical memory hierarchy · p. 20
3.2 An optimal single-level memory layout for a binary tree · p. 22
3.3 Broken nodes · p. 32
3.4 Effect of global and local relocation on search time · p. 37
3.5 Effect of aliasing correction on search time · p. 39
3.6 Effect of local relocation on insertion and deletion time · p. 40
3.7 Degradation of locality after global relocation · p. 42
4.1 Single rotation case in proof of Theorem 4.1 · p. 47
4.2 Double rotation case in proof of Theorem 4.1 · p. 48
4.3 Special case of double rotation in proof of Theorem 4.1 · p. 49
5.1 Minimum growth of siblings of a path in an avl tree · p. 53
5.2 Maximum growth of siblings of a path in an avl tree · p. 54
5.3 Notation used in Lemmas 5.2 and 5.3 · p. 55
5.4 Example of different rebalancing in [77] · p. 58
5.5 Definitions used in Section 5.3.2 · p. 60
5.6 A position tree in bulk insertion with multiple bulks · p. 74
5.7 Overview of bulk deleting an interval · p. 78
5.8 Storing detached subtrees · p. 81
5.9 Rotations used by bulk insertion · p. 88
5.10 Time spent in bulk insertion · p. 89
5.11 Comparison of approaches for multiple bulks · p. 90
5.12 Rotations used by bulk deletion · p. 92
5.13 Time spent in bulk deletion · p. 92
6.1 Binary saved path construction · p. 94
6.2 Example of created bulks · p. 98
6.3 Comparisons per element used in sorting · p. 108
6.4 Total time used in sorting, integer keys · p. 109
6.5 Total time used in sorting, string keys · p. 110

xvi

xvii

List of Tables

2.1 Comparison of avl and red-black trees · p. 8
3.1 Search time, path lengths and space usage for various trees · p. 38
5.1 Rotations in the logarithmic rebalancing algorithm · p. 57
5.2 Cases for Lemmas 5.6 and 5.7 · p. 61
5.3 Read-set sizes and subtree detachments in bulk deletion · p. 91
6.1 A selection of experimental results on sorting · p. 111

xviii

1

CHAPTER 1

Introduction

T
his chapter gives a brief introduction to the topics of the dissertation
and an overview of the main results. More detailed background

information and references are given in the next chapter.

1.1 Bulk updates

Work for this dissertation began as a continuation of the 2002 article by
Soisalon-Soininen and Widmayer [77] about bulk updates in avl trees.

Bulk updates [2,27,36,46,49,50,54,55,66,68,77–79] are operations
that insert or delete several keys from a search tree in one operation.
Their primary motivation is that bulk updates provide efficient rebal-
ancing when many keys are inserted or deleted from the same location in
the tree. For instance, as will be seen in later chapters, bulk insertions
and deletions in avl trees use O(log m) amortized time for rebalancing
after inserting or deleting m keys in the same location, compared to
O(m) for repeated insertions or deletions of single keys.

Potential applications of bulk updates include data warehouses [40],
differential indexing [46,67,79] (where an index is updated when a bulk
of recent updates is received from a main index) and full-text indexing
of document databases using the inverted index technique [21, 49, 76].
Moreover, this dissertation considers applying bulk insertion to the field
of adaptive sorting, where it serves as an algorithmic tool for optimizing
a search-tree-based adaptive sorting algorithm.

This dissertation examines the bulk insertion and deletion algo-
rithms for avl trees in detail (the article [77] only gave an overview
of the algorithms), and corrects a slight error in the algorithm of [77].
Detailed proofs of the rebalancing complexity that also examine con-
stant factors to some degree are included. In addition, a more efficient

2 INTRODUCTION

rebalancing algorithm is given for the case where new keys are inserted
in several locations in the tree. Finally, experimental results from im-
plementations of the bulk insertion and bulk deletion algorithms are
presented, confirming that the bulk update algorithms are very effi-
cient in practice.

1.2 Cache sensitivity

Experimentation with the bulk update algorithms eventually lead to an
exploration of cache sensitivity in binary search trees, which forms the
second topic of this dissertation. Cache-sensitive data structures are
specially tailored to the hardware caches present in modern comput-
ers. These caches transfer data between different levels of the memory
hierarchy in blocks of, for example, 64 or 4096 bytes. Cache-sensitive
algorithms are assumed to know these block sizes and configure them-
selves accordingly. In cache-sensitive search trees, the primary goal is to
enhance search performance by reducing the number of separate cache
blocks visited on a search path.

The previous research on cache-sensitive search trees has concen-
trated on variants of the B-tree [11, 16, 17, 37, 69–71], but the present
dissertation considers binary search trees. The main result is an algo-
rithm that preserves a cache-sensitive memory layout in any dynamic
binary search tree that uses rotations for balancing (e.g., avl trees and
red-black trees), without changing the complexity of insertion or dele-
tion or the structure of the nodes. The algorithm is based on preserv-
ing a simple memory-layout invariant using a constant-time operation
whenever the tree changes. This algorithm is one-level, i.e., sensitive
to only one cache block size in the memory hierarchy.

The dynamic one-level algorithm is compared to a multi-level ap-
proach that makes a copy of a tree into a more optimized memory layout
which is not preserved during updates; in this algorithm, the main con-
tribution of the dissertation is the consideration of a specific problem
that arises from using multi-level memory layouts with set-associative
caches. The latter approach is also applied to cache-sensitive B-trees,
where experiments show that it gives a slight increase in search perfor-
mance.

The experiments reported in the dissertation apply the techniques
to both red-black and avl trees, and include a comparison with cache-
sensitive B-trees. These indicate that the cache-sensitive memory lay-
outs improve the search performance of binary search trees by 30–50%.

1.3 Adaptive sorting 3

In the experiments, binary search trees did not quite reach the perfor-
mance of the cache-sensitive B-trees. However, in practice there can be
other reasons to use binary search trees than the average-case efficiency
that the experiments study.

Though the idea of studying cache-sensitivity in binary trees, and
especially of using a memory-layout invariant, was derived from the
bulk-update experiments, the specialized topic of cache-sensitive bulk
updates is not considered in this dissertation.

1.3 Adaptive sorting

The final part of the research conducted for this dissertation was to
apply bulk insertion to the field of adaptive sorting. Adaptive sort-
ing [26, 65] studies sorting algorithms that are adaptive to the amount
of order present in the input sequence; that is, they are more efficient
when the sequence is already nearly sorted according to some intuitive
measure of presortedness. Several measures of presortedness exist in
the literature, and the various adaptive sorting algorithms have run-
ning times that depend on the values of one or more of these measures.

This dissertation applies bulk insertion to a variation of the adap-
tive sorting algorithm known as local insertion sort [56]. Local insertion
sort inserts the values to be sorted one by one into a finger search tree,
and finally traverses the tree to read the sorted output. A finger search
tree [14,33,39,44,56] is used to make tree traversal to the next insertion
position efficient when the input data is nearly sorted. Instead of the
finger search tree, which is a complex form of a B-tree, this dissertation
uses a standard avl tree with an auxiliary data structure that works
as a comparison-efficient simplified finger.

Bulk insertion is applied to insert a bulk of consecutive ascending
or descending elements in the input in one operation. The produced
sorting algorithm, called bulk-insertion sort, is shown to be optimal
with respect to a measure of presortedness called Inv (the number of
inversions, or pairs of elements that are in the wrong order, present
in the input), and with respect to a new measure called Bulk , which
captures the adaptivity produced by applying bulk insertions.

In addition to using the bulk-insertion algorithm, the dissertation
also presents a solution where bulks can be inserted as single nodes,
without using an actual bulk-insertion algorithm. This simpler solution,
called the bulk tree, is shown to be optimal with respect to the Bulk
measure.

4 INTRODUCTION

The experiments in the dissertation compare bulk-insertion sort
and the bulk tree with an avl-tree based local insertion sorting algo-
rithm that does not apply bulk insertion, as well as the adaptive sorting
algorithms Splaysort [60] and Splitsort [53], and standard Quicksort and
Merge sort. The experiments study adaptivity with respect to the Inv
measure, and the bulk-insertion methods are shown to be very efficient
when the sequence is nearly sorted. For instance, both of the new al-
gorithms use only slightly more than n comparisons to sort a sequence
of n elements that is already nearly sorted.

1.4 Organization

This dissertation is organized as follows. The next chapter gives back-
ground information on bulk updates, cache sensitivity and adaptive
sorting. Results related to cache-sensitive binary search trees are the
topic of Chapter 3. Chapter 4 gives auxiliary algorithms for balancing
avl trees, which are then used in Chapter 5 in presenting and examin-
ing the bulk-insertion and bulk-deletion algorithms. Chapter 6 applies
bulk insertion to adaptive sorting, and Chapter 7 concludes the disser-
tation.

5

CHAPTER 2

Background

T
his chapter describes various kinds of binary search trees and some
concepts that are used in the following chapters. Also included are

introductions to cache-conscious search trees (for Chapter 3) and to the
problem of adaptive sorting (for Chapter 6).

2.1 Search trees

A search tree is a data structure that is used to represent a totally
ordered set whose elements are called keys. A search tree allows for
inserting new keys, deleting existing ones, and searching for a given
key x. In addition, search trees support searching for the successor (or
next-larger) key: it is easy to find the smallest key k in the tree where
k > x for a given key x.

As is described by any textbook on data structures and algorithms
(e.g., [43]), a search tree is implemented as a set of nodes that form a
tree structure starting from the root node. Each node stores pointers
to other nodes in the tree that are called its children. The tree struc-
ture dictates that every node except for the root has a unique parent,
although links to the parents are typically not explicitly stored, as will
be discussed in Section 2.6 below. A node that has no children is called
a leaf ; other nodes are called internal nodes. A binary search tree limits
the number of children to at most two: the left and right child.

In addition to the key and child pointers, nodes often store one
or more data fields which represent application-specific data associated
with the key of the node. A search operation can then return the data
fields associated with the key that was searched for. The storage of
keys and data fields is discussed further in Section 2.4.

6 BACKGROUND

All search trees satisfy the search-tree property, which imposes an
order for the nodes of the tree. Specifically, for binary search trees:

Definition 2.1 A binary search tree T satisfies the (binary) search-tree
property if, for all non-leaf nodes p in T , the key of the left child of p

is smaller than the key of p, and the key of the right child of p is larger
than or equal to the key of p.∗

Most practical search trees are balanced : a restriction called the bal-
ancing criterion limits the shape of the tree so that in a tree that stores
n elements each root-to-leaf path has length O(log n). Two balancing
criteria are given in Sections 2.2 and 2.3. The height of a tree is defined
to be the length of the longest root-to-leaf path (see Section 2.5).

The binary search trees considered in this thesis are balanced by ex-
ecuting sequences of operations called rotations, which are described in
detail below. Rotations are small constant-time operations that change
the shape of the tree while preserving the search-tree property.

2.2 avl trees

avl trees are the oldest form of balanced search trees, first presented
by G. M. Adelson-Velsky and E. M. Landis in 1962 [1]. However, avl

trees are still widely used in practice.
An avl tree is a binary search tree, balanced using the restriction

that, for every node p, the heights of the children of p must differ by at
most one. This means that the root-to-leaf path length in an n-node
avl tree is Θ(log n), more specifically between log2(n + 1) and about
1.45 log2(n + 1).

Theorem 2.1 The longest root-to-leaf path in a binary search tree with
n nodes contains at least log2(n + 1) nodes.

Theorem 2.2 The longest root-to-leaf path in an avl tree with n nodes
contains at most logΦ(n + 1) ≤ 1.45 log2(n + 1) nodes, where Φ =
(1 +

√
5)/2 is the golden ratio.

Proof. See [1,29], noting that logΦ(n+1) = (1/ log2 Φ) log2(n+1).

∗ With this definition, a possible duplicate key needs to be stored in the right child.

A symmetric definition where duplicates are stored in the left child is also possible.

For clarity and as is common in the literature on search trees, this thesis does not

explicitly consider duplicate keys – they are easy to incorporate into the presented

algorithms if necessary.

2.3 Red-black trees 7

Note that Theorem 2.1 holds for any binary tree, regardless of the
balancing criterion.

In a typical avl tree, each node stores, in addition to the key and
child pointers, a balancing direction that describes the shape of the tree.
The balancing direction in a node p stores one of three values (denoted
“·”, “−” and “+”) that describe how the height of the children of p

differ: either both children have the same height (·) or the left child
is higher (−) or the right child is higher (+). Section 2.5 describes an
alternative to the balancing directions.

2.3 Red-black trees

Red-black trees are binary search trees where the balancing criterion
depends on a color assigned to each node. Each node is conceptually
colored either red or black, such that a parent and child cannot both be
red, leaves are black, and every root-to-leaf path has the same number
of black nodes. Red-black trees were first described by L. J. Guibas and
R. Sedgewick in 1978, although their article [34] was somewhat more
general and used different terminology. They show:

Theorem 2.3 The longest root-to-leaf path in a red-black tree with
n nodes contains at most 2 log2(n + 1) nodes.

Table 2.1 compares avl and red-black trees in terms of complexity.
Perhaps the most important differences are that single deletion in an
avl tree performs O(log n) rotations in the worst case (compared to
O(1) for red-black trees), and the amortized complexity for a sequence
of mixed insertions and deletions is also better in a red-black tree.
However, the worst-case search path is shorter in an avl tree: a root-
to-leaf path in an avl tree has at most 1.45 log2(n + 1) nodes, while
red-black trees can have 2 log2(n + 1). Since the search path length
affects the performance of insertions and deletions as well as searches,
avl trees may be more efficient in applications where deletions are not
very frequent.

Main-memory red-black and avl trees are compared experimen-
tally (using randomly generated input operations) in Chapter 3 on
cache conscious search trees.

8 BACKGROUND

avl trees Height or bal-

Rotations ance changes Ref.

Worst-case insertions O(1) O(log n) [1]

Worst-case deletions O(log n) O(log n) [43]

Amortized, a sequence of

insertions O(1) O(1) [59,77]

deletions O(1) O(1) [77,83]

mixed insertions and deletions O(log n) O(log n) [77,83]

Worst-case search path length 1.45 log2(n + 1) [1, 29,43]

Red-black trees Color

Rotations changes Ref.

Worst-case insertions O(1) O(log n) [34]

Worst-case deletions O(1) O(log n) [80]

Amortized, a sequence of

insertions O(1) O(1) [39]

deletions O(1) O(1) [39]

mixed insertions and deletions O(1) O(1) [39]

Worst-case search path length 2 log2(n + 1) [34]

Table 2.1 Comparison of avl and red-black trees.

2.4 Internal and external trees

Most binary search trees come in two forms: internal and external trees.
In the original internal trees, each node contains an actual key (and any
associated data fields) of a data element stored in the tree – in other
words, the number of elements stored in the tree equals the number of
nodes.

In external∗ or leaf-oriented trees, only leaf nodes store actual ele-
ments, and non-leaf nodes have so-called router keys. These router keys
are used only to look for the appropriate leaf nodes, and can include
keys that are no longer present in the elements stored in the tree.

External avl and red-black trees are somewhat simpler to imple-
ment, but have many more nodes – 2n−1 vs. n, where n is the number
of elements stored in the tree. Because of the smaller space usage, inter-
nal trees are particularly suitable for the adaptive sorting application
of Chapter 6.

∗ The term “external tree” is also often used for trees that are stored on disk.

However, in this thesis, “external” always means leaf-oriented.

2.4 Internal and external trees 9

⇒

(a) External tree insertion

⇒

(b) External tree deletion

(c) Internal tree

insertion

⇒

(d) Internal tree

deletion (leaf)

⇒ ⇒

(e) Internal tree deletion (non-leaf)

Figure 2.1 Actual insertion and deletion in binary search trees. The dotted

lines indicate the nodes that the operation works on.

This thesis considers both internal and external trees, though in-
ternal trees were used in all of the experiments. (Previous articles on
avl-tree bulk updates [55,77] considered only external trees.)

Most insertion and deletion algorithms can be divided into two
stages. In actual insertion or deletion, nodes are inserted or deleted
without regard to keeping the tree in balance. Afterwards, rebalancing
puts the tree in balance, e.g., by performing rotations.

Figure 2.1 shows how actual insertion and deletion are done in
external and internal trees.

In external trees, actual insertion is done by replacing a leaf node
with a new internal node with two children: the old leaf and a new
one (Figure 2.1(a)). Actual deletion deletes a leaf and its parent, and
replaces the parent with its remaining child (Figure 2.1(b)).

In internal trees, actual insertion simply adds a new (leaf) node
to an empty location in the tree (Figure 2.1(c)). Actual deletion is a
bit more complicated, with two cases. When the node to be deleted
is a leaf or has only one child, it is simply removed (Figure 2.1(d)).
Otherwise, deleting a non-leaf node x is done by locating the node y

with the next-larger key (y is the leftmost node in the subtree rooted
at the right child of x), copying the key and possible associated data

10 BACKGROUND

x
y

⇒

y

x

(a) Single rotation to the right at x

x
y

⇒

y

x

(b) Single rotation to the left at x

x
y

z

⇒

z
y x

(c) Left-right double rotation at x

x
y

z

⇒

z
yx

(d) Right-left double rotation at x

Figure 2.2 Binary search tree rotations. The dotted lines indicate the nodes

that the operation works on.

fields to x, and then deleting y (Figure 2.1(e)). Due to the search-tree
property, y has no left child (any left child would have a key between
x and y), and y is deleted by replacing y with its right child (if any).
A symmetric implementation that looks for the next-smaller key of x

is also possible.
Rotations work the same way in both internal and external trees:

4–6 pointers are changed. The four standard rotations are shown in
Figure 2.2.

2.5 Height-valued trees

The bulk update algorithms in Chapter 5 will use the variation of avl

trees called height-valued trees [30], where each node stores the height
of the subtree rooted at the node instead of the balancing direction
used in the standard avl tree.

2.6 Parent links 11

Height-valued trees make bulk operations much simpler, and the
disadvantages are minor. Storing height values requires a small amount
of space in each node – 6 or 7 bits are enough, since a red-black tree of
height 27 − 2 = 126 is full for the first 62 levels, and about 262 nodes
are difficult to fit in any kind of memory. Another minor disadvantage
is that rebalancing operations often need to know the height difference
of the children of a particular node – for instance, to see if the node is
in balance. The height difference of the children of a node p is found
directly from the balancing direction in p, but calculating it from height
values requires looking at both children of p.

There exist various conflicting definitions for the height of a leaf
node. This thesis defines the height of a leaf node to be 0, following what
appears to be the most common definition. The height of a (sub)tree
then equals the number of parent-child links traversed on its longest
root-to-leaf path. As a special case (sometimes encountered in the
algorithms that follow), the height of an empty (sub)tree is −1.

2.6 Parent links

Some implementations of search trees use parent links, where each node
has a link to its parent in addition to the two links to its children. Parent
links make many of the algorithms slightly easier to implement, but
they have a proportionally rather large overhead, especially in small-
node avl trees. They also have the disadvantage that they are more
difficult to maintain in a concurrent environment, since if the parent
changes, all of its children need to be modified to update the parent
links.

All of the algorithms given in this thesis avoid parent links by using
auxiliary stacks when necessary. Sections 2.11 and 6.1 will explain this
further.

2.7 Relaxed balancing

Relaxed balancing [62] is a method for balancing search trees where the
rebalancing operations are decoupled from individual updates. That
is, when using relaxed balancing, the individual insertion and deletion
operations do not perform any rebalancing. For instance, insertion in
binary search trees simply inserts a new node on the leaf level, with no
rotations. Rebalancing is done periodically on the whole tree, either

12 BACKGROUND

as a separate batch operation or as a background process that runs
concurrently with new updates.

Algorithms that use relaxed balancing have been given for vari-
ous kinds of search trees, including avl trees [48, 52, 55, 84], red-black
trees [35, 47] and B-trees [45, 50]. Some solutions apply to multiple
kinds of trees [51, 62]. Though the details vary, each of these has the
same structure of rearranging parts of the tree in a batch process, some
using the usual rebalancing operations (such as rotations) and others
having their own set of rebalancing operations.

Because the concept of relaxed balancing is related to that of bulk
updates, we will return to relaxed balancing in Sections 4.3 and 5.7.

2.8 Bulk updates

Bulk updates, also called group updates or batch updates, insert or
delete a set of keys from the search tree in a single operation.∗ The
primary advantage of bulk updates is that the amount of rebalancing
that needs to be done after a bulk update is considerably smaller than
if repeated single updates were used.

Bulk update algorithms have been presented for, among others, B-
trees [46,50,54,66,68,79], avl trees [55,72,77], red-black trees [36,49],
generalized search trees called stratified trees [78], as well as various
multidimensional structures (e.g., [2, 27]).

As will be explained in Section 5.1, bulk insertion algorithms gen-
erally work by collecting bulks of keys that need to be inserted in the
same location in the tree, and creating balanced subtrees called update
trees out of them. The update trees are inserted into the original tree
as whole subtrees, and rebalancing is performed to bring the tree in bal-
ance. Bulk insertions are thus most efficient when the bulks are large,
i.e., when a large number of new keys lie between two consecutive keys
in the original tree.

Bulk deletion, or interval deletion, algorithms generally delete a
given interval of keys (or a set of several intervals) by looking for sub-
trees that fall completely in the interval and detaching them from the
tree. The tree is then rebalanced at the points where subtrees were

∗ A related bulk operation, bulk loading, constructs a new search tree from a large

amount of data. However, bulk loading is not an update operation and is not

considered in this thesis.

2.9 Cache-conscious search trees 13

detached. Bulk deletion is also most efficient when a large number of
keys falls within an interval, but in addition to efficient rebalancing,
bulk deletion also has the advantage that it is not necessary to look at
each individual node to be deleted. Instead, the detached subtrees can
be saved in an auxiliary structure that serves as a source of new nodes
for subsequent insertions [54]. More detail will be given in Section 5.5.

An important application of bulk insertions is full-text indexing
of document databases using the inverted index technique [21, 49, 76].
Adding a new document into such a database involves inserting entries
to the inverted index for each word that occurs in the document, and
this is naturally represented as a bulk insertion. Other applications of
bulk insertion include data warehouses [40], differential indexing [46,67,
79], where an index is updated when a bulk of recent updates is received
from a main index, and even real-time databases [45]. As noted in the
previous section, bulk updates can also be used in implementing relaxed
balancing.

Chapter 5 presents bulk insertion and bulk deletion algorithms for
avl trees, and Chapter 6 applies bulk insertion to the problem of adap-
tive sorting.

2.9 Cache-conscious search trees

Most current computers have a hierarchical memory system, where a
number of hardware caches are placed between the processor and the
main memory. Caches are small but fast memories that provide faster
access to recently used memory locations. Caching has become an
important factor in the practical performance of main-memory data
structures. Its relative importance will likely continue to increase [37,
71]: processor speeds have increased faster than memory speeds, and
many applications that previously needed to read data from disk can
now fit all of the necessary data in main memory. In data-intensive
main-memory applications, reading from the main memory is often a
bottleneck similar to disk I/O for external-memory algorithms.

There are two types of cache-conscious algorithms. This thesis
focuses on the cache-sensitive or cache-aware model, where the im-
plementation knows the specific parameters of the caches that are in
use and adapts itself to them. In contrast, cache-oblivious algorithms
attempt to optimize themselves to an unknown memory hierarchy.

The most important cache parameters for the current thesis are

14 BACKGROUND

the cache block sizes, i.e., the granularities at which data is stored in
the caches and transferred between levels of the memory hierarchy.
Section 3.1 will discuss the block sizes in detail.

Most of the research on the effect of caching on search trees has
concentrated on variants of the B-tree [4]. The simplest cache-sensitive
B-tree variant is an ordinary B+-tree where the node size is chosen
to match the size of a cache block (which could be, e.g., 64 or 128
bytes) [70]. A more advanced version called the Cache-Sensitive B+-
tree or CSB+-tree [71] increases the fanout of the tree by removing
most of the child pointers and storing the children of a node consecu-
tively in memory. The CSB+-tree has been further optimized using a
variety of techniques, such as prefetching [16], storing only partial keys
in nodes [11], and choosing the node size more carefully [37].

The above structures were optimized to only one level of the cache
(often the one closest to the cpu). B-trees in two-level cache models
(one level of cache plus the Translation Lookaside Buffer or tlb) are
examined in [17,69].

Several B-trees have been proposed in the cache-oblivious model,
including the original rather complex cache-oblivious B-tree [7], its two
simpler variants [8,12], and a string B-tree optimized for longer keys [9].
They are based on weight-balanced B-trees [3], and on an implicit tree
stored in an array (without explicit pointers) called the packed-memory
array [7], whose structure and rebalancing operations are dictated by
the cache-oblivious memory layout. Rebalancing in all four depends on
rebuilding or copying parts of the structure, and most of the complexity
bounds are amortized. Unlike the cache-sensitive B-trees, the cache-
oblivious trees are not direct extensions of the usual height-balanced
B-trees [4] or (a, b)-trees [39].

The node size of a cache-sensitive binary search tree cannot be
chosen as freely as in the B-tree. Instead, the fixed-size nodes are
placed in memory so that each cache block contains nodes that are
close to each other in the tree. Binary search tree nodes are relatively
small; for example, avl and red-black tree nodes can fit in about 16 or
20 bytes using 4-byte keys and 4-byte pointers, so 3–8 nodes fit in one
64-byte or 128-byte cache block. This assumes that the nodes contain
only small keys – larger keys could be stored elsewhere, with the node
storing a pointer to the key.

Caching and explicit-pointer binary search trees have been con-
sidered in [41], which presents a cache-oblivious splay tree based on
periodically rearranging all nodes in memory. This, as well as the
cache-oblivious B-trees, is based on a cache-oblivious memory layout

2.10 Adaptive sorting 15

known as the van Emde Boas layout [7], which is analyzed in detail
in [5].

For the cache-sensitive model, [63, 64] present a one-level periodic
rearrangement algorithm for explicit-pointer binary trees. A similar
one-level layout (extended to unbalanced trees) is analyzed in [6]. A
more complex rearrangement-based one-level layout that optimizes for
space and considers unbalanced trees and non-uniform search patterns
is discussed in [6, 31].

Chapter 3 begins by applying the ideas of [6, 64] in presenting an
algorithm that rearranges a tree into a multi-level cache-sensitive mem-
ory layout, also optimizing an inefficient interaction with set-associative
hardware caches. The presented layout can be considered to be a gen-
eralization of the one-level cache-sensitive layouts of [6, 64] and the
two-level layouts of [17,69] to an arbitrary hierarchy of block sizes.

However, the main topic of the chapter is to explore how a simple
cache-sensitive layout can be preserved in the presence of insertions
and deletions to standard binary search trees, without increasing the
complexity of the update operations.

The experiments reported in [12,69], as well as those in Section 3.5,
support the intuition that multi-level cache-sensitive structures are more
efficient than cache-oblivious ones. A cache-oblivious layout has been
shown to be never more than 44% worse in the number of block transfers
than an optimal cache-sensitive layout, and the two converge when the
number of levels of caches increases [5]. However, the cache-sensitive
model is still important, because the number of levels of caches with
different block sizes is small in practice (at least currently – for instance,
only two in the computer used for the experiments in this thesis).

2.10 Adaptive sorting

Adaptive sorting, or the sorting of nearly sorted sequences, is the prob-
lem of sorting a sequence of values that is already “almost” in sorted
order according to some intuitive notion of presortedness. One such
notion is the number of inversions (pairs of elements in the input that
are not in ascending order): any permutation of n distinct elements has
Inv = 0 to Inv = (n2 − n)/2 inversions.

Any sorting algorithm whose running time depends on the number
of inversions is said to be Inv-adaptive. However, adaptive sorting is
mostly concerned with the concept of optimal adaptivity. All measures
of presortedness (such as Inv) have a lower bound for the number of

16 BACKGROUND

comparisons needed to sort the sequence; for Inv , the lower bound is
Ω(n log(1 + Inv/n)) [56]. A sorting algorithm that reaches the lower
bound up to a constant factor, i.e., sorts a sequence of n keys and
Inv inversions in time O(n log(1 + Inv/n)), is said to be Inv-optimal or
optimal with respect to Inv.

The various measures of presortedness form a hierarchy where some
measures supersede others. For instance, the measure Rem [20] is de-
fined as the minimum number of keys that need to be removed so that
the remaining keys form a sorted sequence. The measure Block [15,65]
is defined as the number of blocks of consecutive elements in the orig-
inal sequence that are also present in the sorted sequence. It has
been shown [15] that any Block -optimal sorting algorithm is also Rem-
optimal.

The hierarchy of measures forms a partial order, as is explained
in more detail in [65]. There exists in some sense a “best” measure,
called Reg, so that any Reg-optimal sorting algorithm would be optimal
with respect to all the other measures. However, it is an open problem
whether a practical Reg-optimal sorting algorithm exists. The practical
adaptive sorting algorithms are optimal with respect to a selection of
measures lower down in the hierarchy, so the full hierarchy remains im-
portant. In addition to [65], which discusses the hierarchy of measures,
the survey [26] gives an overview of research on adaptive sorting. Ex-
perimental studies on adaptive sorting algorithms include [23,24,26,60].

Local insertion sort [56] is an adaptive sorting algorithm that inserts
the values to be sorted into a search tree called a finger tree (described in
the next section), where they will be stored in sorted order. Traditional
local insertion sort inserts the values one by one. However, Chapter 6
applies avl-tree bulk insertion to insert runs of sorted values more
efficiently. For instance, the number of rotations needed to insert a
bulk of m values is O(log m) in the worst case, compared to O(m) for
repeated single insertions.

The measures logDist [42] and Loc [65] are two equivalent mea-
sures of presortedness used to characterize local insertion sort using a
finger tree. Any Loc-optimal algorithm is also Inv -optimal and Block -
optimal [65].

Splaysort [60] is an efficient search-tree-based adaptive sorting algo-
rithm, and the avl-tree-based algorithms of Chapter 6 will be compared
with it in the experiments in Section 6.7. Splaysort simply inserts the
items to be sorted into a Splay tree [75] and produces the sorted data by
traversing the final tree. Splaysort has been shown to be Loc-optimal
via a complex proof [18,19].

2.11 Finger trees 17

2.11 Finger trees

The local insertion sort algorithm must be able to avoid traversing a
root-to-leaf path in the search tree during every insertion. Traversing an
O(log n)-length root-to-leaf path for each of the n values to be sorted
would require O(n log n) time, so the algorithm would be no better
than, e.g., Merge sort, even when the sequence is already fully sorted.

Repeated root-to-leaf path traversal is avoided by applying a fin-
ger [14, 33, 39, 44]. The finger saves the position of the last inserted
value, and the search for the next value begins there. Thus, for ex-
ample, if the next key is the successor of the previous one, it can be
inserted in amortized O(1) time in a typical search tree. Actual finger
trees are B-tree-based and use parent links and sideways links, making
them quite complex to implement.

Adaptive sorting using fingers has been studied based on, among
others, (a, b)-trees [56,58] and avl trees [22,57,82]. Instead of the most
recently inserted key, the finger can also point to the node containing
the largest key, as in [22,82].

Previous avl-tree-based sorting approaches [22,57,82] implemented
the search from the finger to the place of the next key either by mod-
ifying the tree structure and rebalancing operations [82], or by using
a sequence of avl trees with increasing heights, which are sometimes
split and merged together according to specific rules [22,57].

Chapter 6 presents an implementation of the finger that does not
need modifications to the tree nodes and uses a single standard avl

tree – and can therefore apply the avl-tree bulk-insertion algorithm of
Chapter 5.

The simplified finger of Chapter 6 is based on a saved path [61], a
notion used to enhance concurrency when traversing index structures
in databases. The saved path is a stack that stores the previously used
root-to-leaf path. This simplified finger has the disadvantage that it is
not as efficient in the worst case as the full finger tree, because it is not
possible to move sideways in the tree.

In terms of the measures discussed in the previous section, the
simplified finger leads to an Inv -optimal algorithm, while the full finger
tree gives Loc-optimality. Removing sideways links from the full finger
tree, while keeping parent links, results in a finger that is restricted in
the same way, i.e., Inv -optimal but not Loc-optimal. Such a restricted
finger tree is discussed in the context of (a, b)-trees in [39], which also
very briefly mentions the idea of using an auxiliary stack instead of

18 BACKGROUND

parent links. The simplified finger applies this idea to binary trees,
with a focus on optimizing the number of comparisons.

The other avl-tree-based sorting algorithms [22, 57, 82] are also
Inv -optimal but not logDist- or Loc-optimal.

Besides the easier implementation, an advantage of the simplified
finger over the full finger tree is that, because parent or sideways links
are not needed, the tree uses a smaller amount of space per inserted
key. Each node in the internal avl tree used in Chapter 6 stores the
key, two pointers to the children, and the height of the node – a total
of between 3n and 4n pointer-sized words of space if there are n values
to be sorted and keys are pointer-sized or smaller.

The “hand” structure of [10] provides a Loc-optimal finger using an
auxiliary data structure similar to the saved path. However, this struc-
ture is designed for degree-balanced trees such as (a, b)-trees, and not
for rotation-using binary search trees with leaves at different depths.
Moreover, the hand is much more complex to implement than the sim-
plified finger of Chapter 6.

The technique of saving a root-to-leaf path is also used in most
other algorithms in this thesis, such as in the rebalancing phase of
bulk updates considered in Chapter 5. However, the adaptive sorting
application extends the technique to be more like the database saved
path: the simplified finger is stored between separate tree operations
(searches, insertions, deletions) and used when traversing the tree to
find the location of the next operation.

19

CHAPTER 3

Cache-sensitive binary search trees

T
his chapter examines the placement of binary tree nodes in memory
so that search operations are cache-efficient. The chapter begins

by introducing a simple cache model and a multi-level memory layout
optimized for it, as well as an algorithm to produce this layout by mak-
ing a copy of the tree. However, the main focus is on an incremental
algorithm that maintains a single-level cache-sensitive layout by exe-
cuting a constant-time operation whenever the tree is changed. This
algorithm can be applied to any binary search tree that uses rotations
for balancing. The chapter ends with an experimental evaluation of
the various algorithms applied to avl and red-black trees, including a
comparison with cache-sensitive B-trees.

The main results of this chapter appear in the article [73] by the
author and supervisor of this thesis, though with less detail. Please see
Section 2.9 for a short introduction to cache-conscious search trees.

3.1 Cache model

The memory architecture of a typical modern computer consists of sev-
eral levels of fast but relatively small cache memories before the slower
and larger main memory. Data is transferred between consecutive lev-
els of the memory hierarchy in cache blocks, which have a fixed size at
every level.

Figure 3.1 gives an example of a hypothetical memory hierarchy
with two levels of cache memories using 64-byte and 256-byte cache
blocks. When a word of 4 bytes is read from memory and is not present
in either of the caches, the 256-byte cache block containing the word is
first copied from main memory into the larger cache. Then the 64-byte
cache block containing the word is copied from the larger cache to the

20 CACHE-SENSITIVE BINARY SEARCH TREES

cpu
4 bytes

←−
Smaller

cache

64 bytes

←−
Larger

cache

256 bytes

←−
Main

memory

Figure 3.1 Reading a 4-byte word in a hypothetical memory hierarchy.

smaller one, and finally the 4 bytes are read into the cpu from the
smaller cache.

The cache model used in the discussion below consists of a k-level
cache hierarchy with block sizes B1, . . . , Bk (in bytes) at each level.
Also, B0 is defined to be the node size of the tree that is to be laid out
in the cache, in bytes, and Bk+1 = ∞. All nodes are assumed to have
the same size.

In addition to the data caches described above, the mapping of
virtual addresses to physical addresses used by multitasking operat-
ing systems employs another kind of cache: the Translation Lookaside
Buffer or tlb cache. Although the tlb does not work quite like the
other caches, the algorithmic effect is similar: it is faster to fetch two
nodes from the same tlb block than from two separate blocks. The
tlb can thus be modelled as an additional level of cache in the hier-
archy. The block size of the tlb cache is usually the page size of the
computer (e.g., 4096 bytes), although larger blocks are sometimes also
used.

A concrete example of the cache hierarchy is given by the computer
used for the experiments in Section 3.5. Its amd Athlon xp processor
has two levels of data caches: a 64 Kb level 1 (“L1”) cache and a 512 Kb
level 2 (“L2”) cache. However, both caches have 64-byte blocks, so
they only use one level in the hierarchy of the cache model. The tlb

cache uses 4096-byte pages (a small number of 2 Mb and 4 Mb tlb

blocks also exist in the tlb of this processor, but these were not used
in the experiments). The parameters of the full hierarchy used in the
experiments are thus:

k = 2
B0 = 16 (the binary trees used have 16-byte nodes)
B1 = 64 (the block size of the L1 and L2 caches)
B2 = 4096 (the page size of the tlb cache)
B3 = ∞.

The algorithms of this chapter are assumed to know the cache pa-

3.2 Multi-level cache-sensitive layout 21

rameters B1 to Bk. In practice, the parameters can be inferred by
measuring the time taken by selected memory accesses, or from the
cpu model or from metadata stored in the cpu.

The algorithms assume that for i > 1, each block size Bi is an
integer multiple of Bi−1 – but this is trivially satisfied, since the values
of Bi with i > 0 are always powers of 2 in actual hardware caches.
Additionally, if B1 is not an integer multiple of the node size B0, a node
should not cross a B1-block boundary, so that it is never necessary to
fetch two cache blocks from memory in order to access a single node.
To achieve this, the allocation of new nodes must be modified so that
the last (B1 mod B0) bytes of each B1-block are not used.

The main efficiency measure used below to analyze search trees is
the Bi-block search path length:

Definition 3.1 The Bi-block search path length, denoted Pi, 0 ≤ i ≤ k,
is the length of a root-to-leaf path in a tree, measured in the number of
separate cache blocks of size Bi encountered on the path.

Thus, P0 is the traditional search path length in nodes (assuming
that the search ends at a leaf), P1 is the number of separate B1-sized
cache blocks encountered on the path, and so on. Note that traditional
balanced search trees attempt to minimize P0 (of a random search, i.e.,
averaged over all root-to-leaf paths), and that Pi−1 ≥ Pi, since each
Bi−1-block is completely contained in a single Bi-block.

3.2 Multi-level cache-sensitive layout

It is fairly easy to think of a good single-level cache-sensitive layout for
a tree. For instance, assume that four binary search tree nodes fit in a
single cache block (B1 = 4 ·B0). Then the block that contains the root
node should include nodes that are closest to the root, namely its two
children and one of the grandchildren. The next blocks should contain
nodes in a similar arrangement: one node, its children, and one of its
grandchildren in a single block (see Figure 3.2).

The above layout can be generalized to a multi-level layout in a
simple manner. The single-level layout conceptually forms another tree,
where each single-level block is a “super-node” with larger than binary
fanout. Lay out this tree (whose nodes are B1-sized blocks) using the
single-level layout (with block size B2) to produce a two-level layout,
and repeat this for each of the k levels in the memory hierarchy.

22 CACHE-SENSITIVE BINARY SEARCH TREES

...
...

...
...

Figure 3.2 An optimal single-level memory layout for a binary tree, with

B1 = 4 ·B0.

3.2.1 Analysis

The following analysis of the single- and multi-level layouts is restricted
to complete trees, i.e., ones where all root-to-leaf paths have the same
length. This makes the analysis independent of the balancing strategy
of the underlying search tree, since the top part of any balanced binary
search tree (up to the level of the highest leaf) is a complete tree. For
instance, in a red-black tree of height h, the top part of the tree that
forms a complete tree has height at least h/2 (Theorem 2.3). In an avl

tree, the top part has at least height h/1.45 (Theorem 2.2).
The single-level layout described above is optimal with respect to

random searches in a complete binary tree, in the sense that the ex-
pected value of P1 cannot be made smaller:

Theorem 3.1 When the single-level layout described in Section 3.2 is
applied to a complete binary tree, the expected value E[P1] of a random
search is optimal.

Proof. (Outline; see [31] and [6] for detailed proofs that apply to a more
complex situation.) Consider the cache block C that contains the root
node r of the tree. To optimize the B1-block path length, C should be
full and should contain a connected part of the tree [31, Lemma 4.3].
Of all the possibilities for which nodes to place in C, the minimum∑

P1 (where the sum is taken over all root-to-leaf paths) is reached by
using the topmost nodes, i.e., those found with a breadth-first search
starting from r. The same argument applies recursively to each of the
cache blocks containing the children of the nodes in C (i.e., the “grey”
or border nodes in the breadth-first search).

With a non-uniform distribution of searches or an unbalanced tree,

3.2 Multi-level cache-sensitive layout 23

the layout of Section 3.2 is not optimal – [6,31] give optimal and near-
optimal single-level solutions for this more complex case.

On the level of B1-blocks, the multi-level layout is exactly the same
as the single-level layout. Thus:

Theorem 3.2 When the multi-level layout described in Section 3.2 is
applied to a complete binary tree, the expected value E[P1] of a random
search is optimal.

On cache block levels i > 2, the multi-level layout is not optimal. It
is not possible to be optimal on all levels simultaneously [5], because an
optimal level l layout cannot always be created by combining optimal
level l − 1 blocks. The multi-level layout of this chapter resolves the
tradeoff by keeping the optimal lowest-level blocks intact at the cost of
possible suboptimality on higher levels. An improved multi-level layout
could be achieved by analyzing the relative costs of cache misses at each
level. However, this approach would need more information about the
cache than just the block sizes.

The following result can be used to calculate worst-case values of Pi

in the multi-level layout of this chapter, for any level i of a given multi-
level cache hierarchy.

Theorem 3.3 Assume that a complete binary tree of height h has been
laid out in the multi-level layout described in Section 3.2. Then, for
0 ≤ i ≤ k, the worst-case Bi-block path length is

Pi = dh/hie, where h0 = 1
hi = hi−1 · blogdi−1

(Bi/Bi−1 + 1)c
d0 = 2

di =
{

Bi/B0 + 1 if B1 is an integer multiple of B0

(di−1 − 1) · bBi/Bi−1c+ 1 otherwise.

Proof. Consider a cache block level i ∈ {1, . . . , k}. Each level i−1 block
produced by the layout (except possibly for blocks that contain leaves
of the tree) contains a connected part of the tree with di−1 − 1 binary
tree nodes. Each of these blocks can be thought of as a “super-node”
with fanout di−1. A level i block is formed by allocating Bi/Bi−1 of
these super-nodes in breadth-first order (i.e., highest level i − 1 block
first). The shortest root-to-leaf path of the produced level i block has
hi binary tree nodes.

For instance, in the cache hierarchy used in the experiments (k = 2,
B0 = 16, B1 = 64, B2 = 4096), the calculated values are h1 = 2 and
h2 = 6, so a complete tree of height h = 23 = P0 would have worst-case

24 CACHE-SENSITIVE BINARY SEARCH TREES

path lengths P1 = 12 and P2 = 4 (compare these with experimental
average values from Table 3.1: for an avl tree, average P0 = 22.69,
P1 = 10.54, P2 = 3.38).

3.2.2 Cache-oblivious layout

The multi-level layout is similar in structure to the van Emde Boas lay-
out [7] used as the basis of many cache-oblivious algorithms, although
there is a fundamental difference: in the cache-sensitive model, we can-
not choose the block sizes according to the structure of the tree, as is
done in the van Emde Boas layout.

In fact, the van Emde Boas layout is almost a special case of the
multi-level layout, with the fixed block sizes Bi = (22i − 1) · B0 (with
i = 1, . . . , k where k = 4 or k = 5 is enough for trees that fit in main
memory). With these block sizes, the multi-level layout of Section 3.2
is very close to the van Emde Boas layout (as described in, e.g., [6]):
the only differences are that recursive subdivision is done top-down
instead of bottom-up, and some leaf-level blocks may not be full. These
differences are unavoidable: since the van Emde Boas layout is defined
for a complete tree, it is not clear what a bottom-up van Emde Boas
layout should do to a tree with leaves at different depths.

3.3 Global relocation

Algorithm 3.1 will lay out the nodes of a given tree into the multi-level
memory layout of the previous section. This global relocation algorithm
makes a copy of the tree into a newly-allocated memory area. The
algorithm could be used with any kind of tree with fixed-size nodes
(not just binary search trees), as long as the tree is balanced, i.e., root-
to-leaf paths have similar lengths.

The new copy of the tree is still a dynamic tree – children are
reached via explicit pointers (not, for example, by indexing a large ar-
ray) – and the internal structure of the nodes is unchanged. The search,
insert and delete algorithms do not need to be changed in any way to
support the newly relocated tree. However, if updates are performed
without regard to cache-sensitivity, the cache-sensitive memory layout
will degrade over time. Section 3.5 examines this degradation experi-
mentally.

The global relocation algorithm does not modify the old copy of the
tree. The old copy can thus be read freely concurrently with the relo-

3.3 Global relocation 25

cation algorithm, and possibly also used in a multiversion concurrency
control scheme. However, concurrent modifications are not possible.

3.3.1 The algorithm

Algorithm 3.1 works as follows. On the lowest level of the cache hierar-
chy (l = 1), the first block is filled with a breadth-first traversal of the
tree starting from the root. When this “root block” is full, each of its
children (i.e., the “grey” or border nodes in the breadth-first search)
will become the root node of its own level 1 block, and so on. On lev-
els l > 1, level l − 1 blocks are allocated to level l blocks in the same
manner.

The breadth-first search is implemented by using a queue on each
level as follows (please ignore lines 16–18 of Algorithm 3.1 while reading
this description). Each recursive call reloc-block(l, r) fills a new
level l block starting from a given node r and returns any nodes that
did not fit in this level l block (each returned node is a child of one
of the nodes in the block). The node r is first placed in the level l

queue (line 9), which is otherwise empty, and the following step (lines
11–13) is repeated until the current level l block is full: call reloc-

block(l− 1, n) on a node n removed from the level l queue, and place
any nodes returned from the recursive call at the end of the queue.
When the current block is full, all nodes in the queue are returned to
the caller (i.e., to the level l + 1 queue).

Level 0 blocks are defined to be single nodes (consistent with B0

being the node size) – thus, level l = 1 in the algorithm works like a
standard breadth-first search until the level 1 block is full. The algo-
rithm is initialized with l = k + 1 (as Bk+1 was defined to be infinite,
the “level k + 1 block” will never be full) and r = the root of the tree.

Lines 16–18 of Algorithm 3.1 are an additional, optional space op-
timization for the special case where there are not enough nodes to fill
a block. This only happens close to the leaves of the tree, when a node
has fewer descendants than fit in the block. The optimization ensures
that each level l block is at least half full, as follows. If a level l block
was not completely filled, this optimization attempts to allocate the
next available node (taken from the level l + 1 queue) in the remaining
space. If the subtree rooted at the next available node does not fit in
the remaining space, and this remaining space consists of less than one
half of the level l block (line 16), then the attempt is undone and the
remaining space is left empty (line 17).

This optional space optimization actually makes the layout not

26 CACHE-SENSITIVE BINARY SEARCH TREES

relocate(r):
1 A← beginning of a new memory area, aligned at a level k block boundary

2 reloc-block(k + 1, r) {Bk+1 =∞, so this relocates everything}
reloc-block(l, r):

1 if l = 0 then

2 Copy node r to address A, and update the link in its parent.

3 A ← A + B0

4 return children of r

5 else

6 S ← A

7 E ← A + F (A, l)−Bl−1

8 Q ← empty queue

9 put(Q, r)

10 while Q is not empty and A ≤ E do

11 n ← get(Q)

12 c ← reloc-block(l − 1, n)

13 put(Q, all nodes in c)

14 if Q is not empty then

15 A ← start of next level l block (= E + Bl−1)

16 if F (S, l) < Bl/2 then {less than half of the block was free}
17 Free the copies made above, i.e., all nodes at addresses S to A−1.

18 return r {our caller will try to relocate r again later}
19 return remaining nodes in Q

Algorithm 3.1 The global relocation algorithm. The argument r is the root

of the tree to be relocated. The address A of the next available position for

a node is a global variable. F (A, l) = Bl −A mod Bl is the number of bytes

between A and the end of the level l block containing A. To be able to update

the link in a parent when a node is copied, the algorithm actually needs to

store (node, parent) pairs in the queue Q, unless the tree structure contains

parent links; this is left out of the pseudocode for clarity.

3.3 Global relocation 27

quite optimal (in terms of Theorem 3.2) at the leaf level, since a block
may be allocated in Bi/2 space instead of using a new Bi-sized block.
However, this only happens close to the leaves of the tree, so the effect
on large trees is small.

Theorem 3.4 Algorithm 3.1 rearranges the nodes of a tree into a multi-
level cache-sensitive memory layout in time O(nk), where n is the num-
ber of nodes in the tree and k is the number of memory-block levels.

Proof. Each node in the tree is copied to a new location only once,
except that the space optimization (line 17) may undo (free) some of
these copies. This undo only happens when attempting to fill a level l

cache block that was already more than half full, and the layout is
then restarted from the next level l cache block, which is empty. Thus,
an undo concerning the same nodes cannot happen again on the same
level l. However, these nodes may already have taken part in an undo
on a level l′ < l. In the worst case, a node may have taken part in an
undo once on all k memory-block levels. Each of the n nodes can thus
be copied at most k times.

Consider then the queues Q at various levels of recursion. Each
node enters a queue at level l = 1 (line 13, using c from line 4), and
travels up to a level l′ ≤ k + 1, where it becomes the root of a level
l′− 1 subtree and descends to level 0 in the recursion. Thus, each node
is stored in O(k) queues.

3.3.2 Aliasing correction

Some experiments done with the multi-level layout (Section 3.5) indi-
cated that it, as well as other multi-level cache-sensitive layouts, can
suffer from a problem called aliasing, a kind of repeated conflict miss
caused by set-associative hardware caches. The problem appears to be
specific to multi-level cache-sensitive layouts – for instance, [28] reports
that associativity has very little effect on non-cache-optimized search
trees.

Many hardware caches are d-way set associative (d ∈ {2, 4, 8} are
common), that is, there are only d possible places in the cache for a
block with a given address A. Typically certain bits of A specify which
set of d possible locations is used for the cache block. See [38] for a more
detailed explanation of associativity and an evaluation of its effects on
normal non-cache-optimized programs.

A multi-level cache-sensitive layout for a tree can result in inefficient
interaction with set-associative caches as follows. If the multi-level

28 CACHE-SENSITIVE BINARY SEARCH TREES

translate-address(A):
1 for i in 1 to k do

2 u ← (A÷Bi) ·Bi

3 l ← A mod Bi−1

4 t ← (A− u− l)÷Bi−1

5 t′ ← (t + A÷Bi) mod (Bi/Bi−1)

6 A ← u + l + t′ ·Bi−1

7 return A

Algorithm 3.2 Address translation for aliasing correction. If the block sizes

Bi are powers of two as is usual, bit operations can be used instead of ÷
(integer division) and mod. This translation is applied to every address used

in lines 2 and 18 of Algorithm 3.1. The other addresses S, A and E do not

need to be translated, because they are only used to detect block boundaries.

layout is too regular, set associativity may map several cache blocks on
a root-to-leaf path to the same location in the cache. For instance, the
ith cache block in each tlb page is often mapped to the same set of
d locations. If the ith cache blocks of several tlb pages are accessed,
the cache can then only hold d of these blocks, even though the capacity
of the cache is much larger than d blocks.

A straightforward multi-level cache-sensitive layout, including the
one produced by Algorithm 3.1, fills a tlb page (of size Bl for some l)
with a subtree so that the root of the subtree is placed at the beginning
of the tlb page (in its first Bl−1-sized cache block). Then, for example,
when a particular root-to-leaf path is traversed in a search, only d root
nodes of these Bl-sized subtrees can be kept in the set-associative Bl−1-
block cache.

The problem is not specific to tlb pages but to any multi-level
cache hierarchy with set-associative caches on lower levels of the hier-
archy. Also, the root of the Bl- or tlb-sized subtree is not of course
the only problematic node, but the problem is most pronounced at the
root.

Fixing the problem is simple, because the Bl−1-blocks inside a tlb

page (Bl-sized block) can be ordered freely: there is no reason to have
the root of a subtree in the first block of the page. The Bl-sized tlb

page consists of Bl/Bl−1 cache blocks, and the subtree located in the
tlb page can use these cache blocks in any order. We can simply use
a different ordering for separate tlb pages, so the root node of the
subtree will not always be located in the first cache block.

Algorithm 3.2 implements the reordering by performing a cache-
sensitive translation of the addresses of each node allocated by the

3.4 Local relocation 29

global relocation algorithm. Every address A can be partitioned into
components according to the cache block hierarchy: A = Ak . . . A2A1A0,
where each Ai, i ∈ {1, . . . , k − 1}, has log2 Bi/Bi−1 bits of A, and A0

and Ak have the rest. For each level i = {1, . . . , k}, the upper portion
Ak . . . Ai+1 is simply added to Ai, modulo Bi/Bi−1 (so that only the
Ai part is changed).

For example, if Bl is the size of the tlb page, the root of the first
allocated tlb page (Ak . . . Al+1 = 0) will be on the first cache block
(the translated portion A′l = 0), but the root of the second tlb page
(which is a child of the first page) will be on the second cache block
(Ak . . . Al+1 = 1, so A′l = 1) of its page.

It would be enough to apply this correction to those memory-block
levels with set-associative caches on the previous level (i.e., level l in
the above example, since level l − 1 has the set associative cache).
However, it is simpler to do it on all levels, because then the cache-
sensitive algorithms only need knowledge of the block sizes and not any
other parameters of the cache hierarchy. Applying the translation on
every level increases the time complexity of Algorithm 3.1 to O(nk2),
but this is not a problem in practice, since k is very small (e.g., k = 2
was discussed in Section 3.1).

3.4 Local relocation

When insertions and deletions are performed on a tree which has been
relocated using the global algorithm of the previous section, each update
may disrupt the cache-sensitive memory layout at the nodes that are
modified in the update. This section discusses modifications to the
insert and delete algorithms that try to preserve a good memory layout
without increasing the time complexity of insertion and deletion in a
binary search tree that uses rotations for balancing (such as an avl tree
or red-black tree). These algorithms can be used either together with
the global relocation algorithm of the previous section (which could be
run periodically) or completely independently.

3.4.1 The invariant

Local relocation will preserve the following memory-layout property:

Invariant 3.1 For all non-leaf nodes x, either the parent or one of the
children of x is located on the same B1-sized cache block as x.

30 CACHE-SENSITIVE BINARY SEARCH TREES

This property sets an upper limit for the average B1-block path
length (averaged over all root-to-leaf paths in the tree), and so improves
the worst-case memory layout. For simplicity, the proof only considers
a complete binary tree of height h. To see that Invariant 3.1 improves
the memory layout of, e.g., a red-black tree, remember that the top
part of a red-black tree of height h is a complete tree of height at least
h/2 (the bottom part also contains smaller complete trees).

Theorem 3.5 Assume that a complete binary tree of height h has been
laid out in memory so that Invariant 3.1 is satisfied. Then the expected
value of the B1-block path length of a random search is

E[P1] ≤ 2h/3 + 1/3.

Proof. In a specific memory layout, E[P1] is counted over all root-to-
leaf paths in the tree. Thus, an upper bound for E[P1] can be derived
from the worst-case memory layout, in which each B1-sized cache block
contains only the nodes prescribed by Invariant 3.1, i.e., a single leaf or
a parent and child.

Assume that a node p with height h has its child c in the same cache
block in order to satisfy Invariant 3.1. In the worst-case memory layout,
the parent of p is in a different cache block. Consider all possible paths
down from p. In a complete tree, exactly one half of the paths do not go
through c, and on all of these paths, the next cache block encountered
after the one containing p contains a node of height h− 1 (specifically,
the other child of p). The other half of the paths go through the child c,
and on all of these paths, the next cache block contains a child of c,
i.e., a node with height h− 2.

Starting with p = the root of the tree and proceeding recursively
leads to the following recurrence for the expected value of the B1-block
path length:

P (0) = 0

P (1) = 1

P (h) =
1 + P (h− 2)

2
+

1 + P (h− 1)
2

.

Solving this gives E[P1|worst-case memory layout] = P (h) = 2h/3 +
2/9 − 2(−1)h/(9 · 2h) ≤ 2h/3 + 1/3. In any memory layout, E[P1] ≤
E[Pi|worst-case memory layout].

Though it is not required for Invariant 3.1, the memory layout can
be optimized somewhat further with a simple heuristic: in insertion,

3.4 Local relocation 31

a new node should be allocated in the cache block of its parent, if it
happens to have enough free space.

The aliasing problem discussed in Section 3.3.2 does not apply to
local relocation, because the layout produced here is only one-level (and
also less regular than the layout of Section 3.3).

3.4.2 Preserving the invariant

We will call a node x broken if Invariant 3.1 does not hold for it. To
analyze how this can happen, denote N(x) = the set of “neighbors”
of node x, i.e., the parent of x and both of its children (if they exist).
Furthermore, say that x depends on y if y is the only neighbor of x that
keeps x non-broken (i.e., the only neighbor on the same cache block).

Assume that the invariant initially holds in a binary search tree T .
After any structure modification operation (actual insertion, actual
deletion, or rotation) is done in T , some of its nodes can potentially be
broken. To re-establish the invariant, the algorithm given in the next
section is executed after each such operation (i.e., after every rotation
and after nodes are inserted or deleted). The algorithm is given a list
of 1–6 nodes that could potentially have been broken by the (single)
structure modification.

The nodes that can break in a structure modification are exactly
those whose parent or either child changes, since a node will break if
it depends on a node that is moved away or deleted. Figure 3.3 shows
these nodes in detail. Please refer to Section 2.4 for a more detailed
explanation of the various cases in the figure.

3.4.3 Fixing broken nodes

After every rotation, and after each actual insertion or actual deletion,
Invariant 3.1 is re-established by invoking Algorithm 3.3 using the po-
tentially broken nodes given in Figure 3.3.

Algorithm 3.3 uses an additional definition: D(x) is defined to be
the set of neighbors of node x that depend on node x (i.e., will be
broken if x is moved to another cache block). Thus, D(x) ⊂ N(x)
and 0 ≤ |D(x)| ≤ |N(x)| ≤ 3. The algorithm uses the property is
that a broken node b can be moved freely, because D(b) = ∅: all of its
neighbors N(b) are on different cache blocks, as otherwise b would not
be broken.

Each iteration in Algorithm 3.3 first removes any non-broken nodes
from the set B of potentially broken nodes. Then the first available

32 CACHE-SENSITIVE BINARY SEARCH TREES

⇒

(a) External tree insertion

⇒

(b) External tree deletion

(c) Internal tree

insertion

⇒ ⇒

(d) Internal tree deletion (non-leaf)

⇒

(e) Internal tree

deletion (leaf)

⇒

(f) Single rotation

⇒

(g) Double rotation

Figure 3.3 Broken nodes in actual insertion, actual deletion and rotations.

Potentially broken nodes are filled black; the dotted lines indicate the nodes

that the operation works on.

3.4 Local relocation 33

fix-broken(B):
1 while B 6= ∅ do

2 Remove any non-broken nodes from B (and exit if B becomes empty).

3 if a node in N(B) has free space in its cache block then

4 Select such a node x and a broken neighbor b ∈ B. Prefer the x

with the most free space and a b with no broken neighbors.

5 Move b to the cache block containing x.

6 else if a node b ∈ B has enough free space in its cache block then

7 Select the neighbor x ∈ N(b) with the smallest |D(x)|.
8 Move x and all nodes in D(x) to the cache block containing b.

9 else

10 Select a node x ∈ N(B) and its broken neighbor b ∈ B. Prefer a

broken x, and after that an x with small |D(x)|. If there are multiple

choices for b, prefer one with N(b) \ x non-broken.

11 Move b, x and all nodes in D(x) to a newly-allocated cache block.

Algorithm 3.3 The local relocation algorithm. B is a set of potentially

broken nodes which the algorithm will make non-broken; N(B) =
S

b∈B N(b),

where N(b) is the set of neighbors of node b. An implementation detail is that

the algorithm needs access to the parent, grandparent and great grandparent

of each node in B, since the grandparent may have to be moved in lines 8

and 11.

one of three options is executed, and these two steps are repeated until
B becomes empty.

The first option of the three examines the cache blocks of all neigh-
bors of the broken nodes to find a neighbor x with free space in its
cache block. If such a neighbor is found, a broken node b ∈ N(x) is
fixed by moving it to this cache block. If no such neighbor exists, the
second option is to examine the cache blocks of the nodes in B: if one
of them has enough space for a neighbor x and its dependants D(x),
they are moved to this cache block.

Otherwise, the third option is to forcibly fix a broken node b by
moving it and some neighboring nodes to a newly allocated cache block.
At least one neighbor x of b needs to be moved along with b to make b

non-broken; but if x was not broken, some of its other neighbors may
depend on x staying where it is – these are exactly the nodes in D(x),
and they are all moved to the new cache block. It is safe to move the
nodes in D(x) together with x: since they depend on x, none of their
other neighbors are on the same cache block.

Clearly, applying these options repeatedly fixes any amount of bro-
ken nodes:

34 CACHE-SENSITIVE BINARY SEARCH TREES

Theorem 3.6 Assume that Invariant 3.1 holds in all nodes of a tree,
except for a set B of broken nodes. Then giving B to Algorithm 3.3
will establish Invariant 3.1 everywhere.

When reading the following theorem, please recall that |B| ≤ 6
when Algorithm 3.3 is executed after a structure modification.

Theorem 3.7 Algorithm 3.3 moves at most 4|B| = O(|B|) nodes in
memory. The total time complexity of the algorithm is O(|B|2).

Proof. Each iteration of the loop in Algorithm 3.3 fixes at least one
broken node. Line 5 does this by moving one node; line 11 moves
2–4 nodes (b, x, and at most two other neighbors of x), and line 8
moves 1–3 nodes (x and at most two neighbors). There are at most |B|
iterations, and thus at most 4|B| nodes are moved.

Each iteration looks at O(|B|) nodes, making the total time com-
plexity O(|B|2), assuming that the amount of free space in a cache block
can be found in constant time. However, a näıve implementation finds
free space by looking at every node in the B1-block to locate free posi-
tions for nodes. This increases the time complexity to O(|B|2·bB1/B0c),
but may actually be preferable with the small B1 of current processors.
The implementation described in Section 3.5 did this, with B1/B0 = 4.

With larger B1/B0, the bound of the theorem is reached by keeping
track of the number of free positions for nodes in an integer stored in a
fixed location inside the B1-sized block.∗ To find a free node in constant
time, a doubly-linked list of free nodes can be stored in the otherwise
unused free nodes themselves, as is done in [64], and a pointer to the
head of this list stored in a fixed location inside the B1-block.

A slight optimization is possible in the special case in which a leaf
node n with parent p is deleted from an internal avl tree (Figure 3.3(e))
– broken nodes can then be fixed in a simpler way. If p and n are on the
same cache block, then look at the other child n′ of p. If n′ is not on
the same cache block as p, move n′ to the location where n was deleted
from (in an avl tree, n′ must be a leaf node). Otherwise – if p and n

are on different cache blocks, or if n′ does not exist – nothing needs to
be done. However, this optimization does not work for red-black trees,
since there the node n′ might not be a leaf.

∗ A few bits are enough to store this: log2bB1/B0c must be much smaller than, e.g.,

the size of a single child pointer.

3.5 Experiments 35

3.4.4 Space usage

Algorithm 3.3 includes a space-time tradeoff: it sometimes allocates
a new cache block to get two nodes on the same cache block (thus
improving cache locality), even though two existing cache blocks have
space for the nodes. Since the algorithm always prefers an unused
location in a previously allocated cache block, it is to be hoped that
the cache blocks do not become very empty on average.

Instead of moving nodes to a new cache block, it would in some
cases be possible to rearrange all nodes on the existing cache blocks
to re-establish the invariant. However, moving unrelated nodes on the
existing cache blocks “out of the way” of the currently broken nodes is
not practical: moving a node x in memory needs access to its parent
to update the link that points to x. But there is no simple way to find
the parent, because the trees do not contain parent links, as noted in
Section 2.6.

A lower limit for the cache block fill ratio can be obtained from
the property that local relocation preserves: each non-leaf node has at
least the parent or one child accompanying it on the same cache block.
Empty cache blocks should of course be reused by new allocations.

3.4.5 Fixing broken nodes less frequently

In theory it would be possible to execute Algorithm 3.3 less frequently
than was done above. For instance, Algorithm 3.3 could be run after a
full sequence of rotations is done by one insertion or deletion, and not
after each individual rotation. In this way fewer nodes might need to
be moved, since a larger amount of broken nodes gives more freedom
in how to re-establish the invariant. Also, fixing broken nodes after
individual rotations has the disadvantage that the very next rotation
may break some of the nodes that were just carefully fixed.

However, the complexity of Algorithm 3.3 increases in the square
of the number of broken nodes. This approach would thus increase the
total time complexity of insertion and deletion, which is something that
the local relocation approach wanted to avoid.

3.5 Experiments

This section reports on experiments performed on the algorithms of
Sections 3.3 and 3.4 on internal avl and red-black trees. The imple-

36 CACHE-SENSITIVE BINARY SEARCH TREES

mentations were compared to cache-sensitive B+-trees (specifically a
reimplementation of the “full CSB+-tree” of [71]) and to standard B+-
trees with cache-block-sized (B1-sized) nodes – the latter is called a
“cB+-tree” below. The effect of global relocation on the B-trees was
also examined.

The experiments were run on a 2167 MHz amd Athlon xp pro-
cessor, with a 64 Kb level-1 data cache (2-way associative) and a
512 Kb level-2 cache (8-way associative).∗ Each experiment was re-
peated 15 times; all values given are averages of these.

As noted in Section 3.1, the cache parameters were as follows: k =
2, B0 = 16, B1 = 64, B2 = 4096, B3 = ∞. As noted in Section 2.6,
none of the tree implementations had parent links – rebalancing was
done using an auxiliary stack.

The binary tree node size B0 = 16 bytes was reached by using 4-
byte integer keys, 4-byte data fields and 4-byte pointers to the left and
right children. The avl tree balance and red-black tree color informa-
tion was encoded in the otherwise unused low-order bits of the child
pointers.

The nodes of the B-trees were structured as simple sorted arrays of
keys and child pointers. The branching factor of a non-leaf node (with
size B1 = 64 bytes) was 7 in the cB+-tree and 14 in the CSB+-tree.

3.5.1 Search time, path length and space usage

In the experiments reported in Figures 3.4 and 3.5 and Table 3.1, the
tree was first initialized by inserting the keys 1, . . . , n in a random order
(with each permutation equally likely) using single insertions. Then the
cache was “warmed up” with 104 successful searches of random keys
(uniformly distributed in the range [1, n]). Finally, the time taken by
105 searches (again of random keys that were present in the tree) was
measured. The experiment was performed on different kinds of search
trees (each using the same 15 sets of insert and search operations, whose
results were averaged) with and without the relocation algorithms. The
avl trees are not shown in Figure 3.4, since they performed almost
identically to red-black trees (as is seen in Table 3.1).

Figure 3.4 and Table 3.1 show that the search performance of red-
black and avl trees relocated using the global algorithm was close to
the cB+-tree. The local algorithm was not quite as good, but still a

∗ The implementations were written in C, compiled using the gnu C compiler ver-

sion 4.1.1, and ran under the Linux kernel version 2.6.18.

3.5 Experiments 37

105 106 107

0.4

0.5

0.6

0.7

0.8

0.9

1

Keys in tree (n)

Traditional red-black (=1)
Red-black local

Red-black cache-obl. global
Red-black global

cB+ global

(a) Binary trees

105 106 107

0.8

0.85

0.9

0.95

1

1.05

Keys in tree (n)

Plain cB+ (=1)
Red-black global

cB+ global
Plain CSB+

CSB+ global

(b) B-tree variants

Figure 3.4 Effect of global and local relocation on search time. The figures

give the search time relative to (a) the traditional red-black tree, (b) the

cB+-tree. The trees marked “global” have been relocated using the global

algorithm (with aliasing correction where applicable), and “Red-black local”

uses local relocation; the others use neither global nor local relocation.

38 CACHE-SENSITIVE BINARY SEARCH TREES

Search Average path length Memory
time, ns Nodes P1 P2 used, MB

Traditional red-black 2313 22.77 22.61 18.06 153
Red-black local 1597 22.77 13.77 12.72 180
Red-black global cache-obl. 1244 22.77 11.93 6.19 216
Red-black global no ac 1105 22.77 10.56 3.37 173
Red-black global with ac 1007 22.69 10.54 3.38 174

Traditional avl 2303 22.69 22.51 18.01 153
avl local 1589 22.69 13.76 12.80 180
avl global cache-obl. 1240 22.69 11.90 6.17 216
avl global no ac 1100 22.69 10.54 3.38 174
avl global with ac 1005 22.69 10.54 3.38 174

Plain cB+ 1062 9.00 9.00 8.52 149

cB+ global no ac 962 9.00 9.00 3.03 192

cB+ global with ac 864 9.00 9.00 3.03 192

Plain CSB+ 883 7.13 7.13 7.04 206

CSB+ global no ac 851 7.13 7.13 5.08 206

CSB+ global with ac 840 7.13 7.13 5.08 206

Table 3.1 Search time, path lengths and space usage for various trees, all

with n = 107 keys. The trees marked “global” have been relocated using the

global algorithm (with or without aliasing correction = “ac”), and the ones

marked “local” use local relocation; the others use neither.

large (about 30%) improvement over a traditional non-cache-optimized
binary tree. The cache-oblivious layout produced by the global algo-
rithm (Section 3.2.2) was somewhat worse than a cache-sensitive layout,
but about 40–45% better than a non-cache-optimized tree.

Table 3.1 also shows the average path lengths, counted by examin-
ing all paths in the tree, and the amount of memory occupied by the
tree (in megabytes or 220 bytes) after the insertions and possible relo-
cation. It is seen that the B1-block path length P1 explains much of the
variation in search time. In the binary trees, local relocation increased
memory usage by about 18% and global relocation by about 14%. The
implementation of global relocation included the space optimization
given in Section 3.3.1.

Figure 3.5 (as well as Table 3.1) examines the impact of aliasing
correction on global relocation. Aliasing correction had about 10–15%
impact on binary trees and cB+-trees, and about 5% on CSB+-trees
(which do not always access the first B1-sized node of a tlb page).
Especially in the B-trees, global relocation was not very useful without
aliasing correction.

In summary, the multi-level cache-sensitive layout produced by
global relocation improved the search time of binary search trees by
50–55%, cB+-trees by 10–20% and CSB+-trees by 3–5% in these ex-
periments. The local relocation algorithm improved red-black and avl

trees by about 30%.

3.5 Experiments 39

200

400

600

800

1000

105 106 107

S
ea

rc
h

ti
m

e
(n

s)

Keys in tree (n)

Red-black without ac
Red-black with ac
cB+ without ac
cB+ with ac
CSB+ without ac
CSB+ with ac

Figure 3.5 Effect of aliasing correction (= “ac”) on search time.

3.5.2 Insertion and deletion time

Figure 3.6 examines the running time of updates when using the local
algorithm. Here the tree was initialized with n random insertions, and
then 104 + 105 uniformly distributed random insertions or deletions
were performed. The times given are averaged from the 105 updates
(the 104 were used to “warm up” the cache).

The local algorithm increased the insertion time by about 20–60%
for 106 ≤ n ≤ 107 (more with smaller n). The deletion time was
affected less (about 10% faster to 10% slower for 106 ≤ n ≤ 107).
Random deletions in binary search trees produce less rotations than
random insertions, and the better memory layout produced by the local
algorithm decreases the time needed to search for the key to be inserted
or deleted.

3.5.3 Degradation of locality after updates

As described above, the global relocation algorithm produces a good
multi-level layout by making a copy of the tree. A natural question to
ask is how well this layout is preserved when insertions and deletions
are performed, either without regard to cache-sensitivity or when the
local algorithm is used to retain some of the cache-sensitivity.

In the experiment reported in Figure 3.7, the tree was initialized
with n = 106 random insertions. Then the global algorithm was run
once, and a number of random updates (half insertions and half dele-

40 CACHE-SENSITIVE BINARY SEARCH TREES

1000

1500

2000

2500

3000

3500

4000

100000001000000250000

Keys in tree (n)

avl local
Red-black local
Traditional red-black
Traditional avl

(a) Nanoseconds per insertion

1000

1500

2000

2500

3000

100000001000000250000

Keys in tree (n)

Traditional red-black
Traditional avl
Red-black local
avl local

(b) Nanoseconds per deletion

Figure 3.6 Effect of the local relocation algorithm on the time taken by

(a) insertions and (b) deletions.

3.5 Experiments 41

tions) were performed. Finally, the average search time from 105 ran-
dom searches was measured (after a warmup period of 104 random
searches), along with the average B1- and B2-block path lengths at the
end of the experiment. Before about 105 updates after relocation, the
values changed very little; for clarity, the x-axis in Figure 3.7 begins
from 103 updates.

The results indicate that the cache-sensitivity of the tree decreases
significantly only after about n updates have been performed. Though
the local algorithm does not quite match the cache efficiency of the
global algorithm, it keeps a clearly better memory layout than if tradi-
tional non-cache-sensitive updates were used.

42 CACHE-SENSITIVE BINARY SEARCH TREES

600

800

1000

1200

1400

103 104 105 106 107 108

Updates after global relocation

Traditional avl
Traditional red-black
avl local
Red-black local

(a) Search time (nanoseconds)

8

10

12

14

103 104 105 106 107 108

Updates after global relocation

Traditional AVL
Traditional red-black
avl local
Red-black local

(b) Average P1 (B1-sized blocks)

2

4

6

8

10

103 104 105 106 107 108

Updates after global relocation

Traditional AVL
Traditional red-black
avl local
Red-black local

(c) Average P2 (B2-sized blocks)

Figure 3.7 Degradation of locality when random insertions and deletions

are performed after global relocation of a tree with n = 106 initial keys:

(a) average search time from 105 searches, (b) B1-block path length, (c) B2-

block path length.

43

CHAPTER 4

Balancing AVL trees

T
his chapter begins the topic of bulk updates by discussing an al-
gorithm that balances an unbalanced avl-tree node whose children

are in balance but may have a large height difference. The algorithm
is used as a subroutine in the bulk update algorithms of the following
chapters, but can also be used on its own to bring an avl tree into
balance after a sequence of insertions and deletions.

Some of the material in this chapter appears in preliminary form
in the author’s Master’s thesis [72].

4.1 The node balancing algorithm

The avl-tree node balancing algorithm, first presented in [55], balances
an unbalanced node (i.e., a node that does not currently satisfy the avl-
tree balance criterion) provided that both of its children are in balance
(i.e., are valid avl trees). The algorithm can be used, for instance, to
rebalance an avl tree which has unbalanced nodes – with any amount
of imbalance – on a single-root-to-leaf path: simply run the algorithm
bottom-up on all nodes on the path.

As will be shown below, an invocation of the node balancing al-
gorithm on a node n executes O(d) standard rotations, where d is the
absolute height difference of the children of n. The height of the result-
ing subtree is the same or one lower than the original height of n.

The height difference at a node is here defined as hr−hl, where hr is
the height of the right child of the node and hl is the height of the left
child. The term absolute height difference is used for |hr − hl|. Thus, a
node in an avl tree is in balance if the absolute height difference at it
is less than two.

44 BALANCING AVL TREES

balance-node(n):
1 P ← empty stack

2 while n is not in balance do

3 if the current height difference at n > 1 then

4 if the height difference at the right child of n < 0 then

5 double-rotate-rightleft(n)

6 else

7 single-rotate-left(n)

8 else {the height difference at n < −1}
9 if the height difference at the left child of n > 0 then

10 double-rotate-leftright(n)

11 else

12 single-rotate-right(n)

13 push(the new parent of n, P)

14 Update the height value of n.

15 {P now contains the path from n to where n was originally}
16 while P is not empty do

17 n ← pop(P)

18 balance-node(n)

Algorithm 4.1 The node balancing algorithm.

Node balancing, Algorithm 4.1, performs a sequence of rotations at
the unbalanced node n. Each rotation is selected as the one that most
improves the balance at n. The rotation will move node n downward in
the tree: any rotation moves the node at which the rotation is performed
(node x in Figure 2.2) to be a child of one of its original descendants.
In addition, each rotation decreases the height difference at n (this will
be shown in the proof of Theorem 4.2 below). These rotations are
performed until node n is in balance or becomes a leaf (which is always
in balance). At that point, some further imbalance may remain at
nodes on the path up from n to the point where n was originally. This
final imbalance is corrected by calling the algorithm recursively on each
node on this path. As is shown in Section 4.4 below, each recursive call
performs at most one rotation.

4.2 Standard insertion and deletion

The rebalancing strategy of the standard avl-tree insertion and deletion
algorithms (as given by Knuth [43], for example) can be described very
concisely using the node balancing algorithm.

The standard insertion algorithm performs at most one rotation.

4.3 An implementation of relaxed balancing 45

single-insertion(k):
1 Search for k, saving the search path in P [1..n] (where P [1] is the root).

2 Insert a new node with key k as the appropriate child of P [n].

3 for each node P [i] in P from down to up do

4 Update the height value of P [i].

5 if P [i] is in balance and the height value did not change then

6 return {because nodes P [1..i− 1] are already in balance}
7 balance-node(P [i])

Algorithm 4.2 The avl tree single insertion algorithm in terms of Algo-

rithm 4.1.

This rotation is the same that would be done if the node balancing
algorithm were executed bottom-up on every node on the path from the
newly inserted node up to the root of the tree. Similarly, the standard
deletion algorithm performs rotations as if the node balancing algorithm
were executed bottom-up on every node on the path from the parent
of the deleted node up to the root.

Algorithms 4.2 and 4.3 give a more complete description of the
standard algorithms (for internal trees) in terms of the node balancing
algorithm. The standard algorithms perform slightly less computation
than these, because the condition where the algorithm ends can be made
more exact when using a specialized rebalancing algorithm instead of
the generic node balancing algorithm. For instance, the standard single
insertion algorithm can exit immediately after the first rotation is done.
However, Algorithms 4.2 and 4.3 perform exactly the same rotations as
the standard algorithms.

4.3 An implementation of relaxed balancing

The concept of relaxed balancing, described in Section 2.7, brings up
another use for the node balancing algorithm. Relaxed balancing of
avl trees can be implemented using the node balancing algorithm as
follows [55,84]. Each individual insertion and deletion operation should
mark the parent of each new or deleted node by invalidating its height
value (by setting it to −1, for example), but do no rotations.

The rebalancing process (executed periodically or as a concurrent
background process) should traverse the tree in a bottom-up fashion,
e.g., in post-order, and execute the node balancing algorithm on any
nodes whose height value is found to be invalid. After each execution
of the node balancing algorithm on a node n, the height value of the

46 BALANCING AVL TREES

single-deletion(k):
1 Search for k, saving the search path in P [1..n] (where P [1] is the root).

2 if k was not found then

3 return {nothing to delete}
4 if P [n] is a leaf node then

5 l ← n

6 else

7 Starting from the right child of P [n], descend left as far as possible to

find the next-larger node P [l]. Save this search path in P [n + 1..l].

8 Copy the key and data from P [l] to P [n], overwriting those in P [n].

9 Delete P [l] from the tree and from P .

10 for each node P [i] in P from down to up do

11 Update the height value of P [i].

12 if P [i] is in balance and the height value did not change then

13 return {because nodes P [1..i− 1] are already in balance}
14 balance-node(P [i])

Algorithm 4.3 The avl tree single deletion algorithm in terms of Algo-

rithm 4.1. An equivalent implementation finds the next-smaller node instead

of the next-larger one on line 7.

parent of n should be marked as invalid for rebalancing to propagate
upwards. If necessary, e.g., for concurrency, the rebalancing process
may be aborted after any invocation of the node balancing algorithm
(after invalidating the height value of the parent) and later continued
or restarted.

Since relaxed balancing needs to take several insertions and dele-
tions into account, it is closely related to the concept of bulk updates.
This relation will be further explored in Section 5.7.

4.4 Analysis of node balancing

The following two theorems formalize the properties described in Sec-
tion 4.1. Similar results appear in [55], but here the proofs are more
detailed and give some additional properties that are needed in the bulk
update algorithms.

Theorem 4.1 shows that Algorithm 4.1 balances the subtree rooted
at the unbalanced node n. The theorem also gives the new height of
this subtree, as well as some more specific properties that will be used
later. Theorem 4.2 shows that the number of rotations performed is
proportional to the original absolute height difference at n.

4.4 Analysis of node balancing 47

x

y

A B

C

(a)

x′
y′

A

B C

(b)

y′′

A BCx

(c)

Figure 4.1 Single rotation case in proof of Theorem 4.1. (a) Before the

rotation. (b) After a single right rotation at x. (c) After the subtree rooted

at x′ has been balanced, resulting in a subtree BCx containing node x′ and

the nodes of B and C.

Theorem 4.1 Executing the node balancing algorithm on a subtree S,
balanced elsewhere but possibly not at its root, results in a subtree T , all
of whose nodes are in balance. The height of T is the same or one less
than the height of S: hS − 1 ≤ hT ≤ hS. Also, hT = hS only if either
the root of S is initially in balance or both children of the higher child
of the root have the same height. If hT = hS and the root of S is not in
balance, then the children of the root of T will have different heights.

Proof. The proof is by induction on the height of the subtree given to
the algorithm. The base case is trivial: all trees of height less than 2
are in balance (when the height of a leaf is 0), so the algorithm does
nothing. Thus, T = S is in balance and hT = hS . The same applies to
any larger subtrees where the root is initially in balance.

If the root of the subtree is not in balance, the algorithm does one
of four rotations, giving four cases to consider. We first consider the
case shown in Figure 4.1, where a single right rotation is performed –
the single left rotation case is a mirror image of this one. This case
is executed when hA ≥ hB , using the notation of Figure 4.1, and the
height difference at the root x of the subtree is less than −1 (i.e., hy >

hC + 1), which together imply that hB ≥ hC .
The single right rotation results in the tree shown in Figure 4.1(b).

The algorithm proceeds to rebalance the node x′, which is the same
node as the original x, but now lower down in the tree. The height
hx′ = hB + 1, which is smaller than the original height hS = hx ≥
hB +2 (see Figure 4.1(a)). We can thus use the induction hypothesis to
conclude that the algorithm balances the subtree rooted at x′, resulting
in a balanced subtree BCx that contains node x′ and the nodes of B

and C (Figure 4.1(c)). Here hBCx is either hB or hB + 1.
We also need to consider node y′′, the parent of the root of the

subtree BCx . Because hA ≥ hB and node y is in balance, hA is either

48 BALANCING AVL TREES

x

y

z
A

B C

D

(a)

x′y′
z′

A B C D

(b)

y′
z′′

A B

CDx

(c)

Figure 4.2 Double rotation case in proof of Theorem 4.1. (a) Before the

rotation. (b) After a left-right double rotation at x. (c) After the subtree

rooted at x′ has been balanced, resulting in a subtree CDx containing node x′

and the nodes of C and D in some order.

hB or hB +1. Thus, y′′ is in balance and the upward phase (lines 16–18)
of the algorithm will do nothing at y′′.

To complete the proof of the single rotation case, we need to ex-
amine the height of the resulting tree hT = hy′′ .

If hA = hB , the height of the original tree is hS = hA +2 = hB +2,
and hy′′ is either hA +1 = hS−1 (from its left child) or hBCx +1 (from
the right child). The latter is either hB + 2 = hS or hB + 1 = hS − 1.

If hA = hB +1, the height of the original tree hS = hA+2 = hB +3.
As hBCx is either hB or hB +1, we conclude that hy′′ is hB +2 = hS−1.
Therefore, the height hT is either hS or hS − 1. Also, as claimed in
the theorem, hT = hS is possible only in the case where the heights of
the children of the higher child of S are the same, i.e., hA = hB , and
then the children of T have different heights: one of the children is A

(height hA) and hT = hS = hA +2, so the other child must have height
hA + 1. This completes the proof of this case and its mirror image.

The remaining two cases use double rotations and are mirror images
of each other. The case where a left-right double rotation is performed
is shown in Figure 4.2(a) and, after the rotation, in Figure 4.2(b). In
this case, hy ≥ hD + 2 in the terminology of Figure 4.2(a). Because
y is in balance and this rotation is performed only if the right subtree
of y is one higher than its left subtree, hy = hz + 1 = hA + 2. Thus,
hA + 2 ≥ hD + 2 ⇒ hA ≥ hD, and hS = hx = hA + 3.

Since hz = hA+1, either both hB and hC are equal to hA, or one of
them is hA and the other one is hA−1. After the rotation, hy′ = hA +1
and y′ is in balance for both possible values of hB .∗

Next, the algorithm moves on to the subtree rooted at x′. Since

∗ This is true also when a double rotation is done after standard single insertion or

deletion – the only difference here is that hy − hD may be greater than two.

4.4 Analysis of node balancing 49

y′
z′′

A

hA

B

hA

CDx

hA − 1

(a)

y′′

z′′′

A

hA B

hA

CDx

hA − 1

(b)

Figure 4.3 Special case of double rotation in proof of Theorem 4.1. (a) This

is Figure 4.2(c) with heights given below the subtrees for this special case.

(b) After a single right rotation done at z′′ in the upward phase.

hC is either hA or hA−1, and hA ≥ hD, it follows that hx′ is either hA+1
or hA. Thus, if x′ is in balance, z′ is also in balance and we are done.
If x′ is not in balance, we can conclude by the induction hypothesis
that the node balancing algorithm balances the subtree rooted at x′,
resulting in a subtree that we shall call CDx (because it contains node x′

and the nodes of subtrees C and D, see Figure 4.2(c)). The height hCDx

can be hA + 1 or hA or hA − 1.
Now the tree will be in balance and hT = hA+2 = hS−1, except in

the special case where hCDx = hA − 1, which happens only if hx′ = hA

and the height of the subtree rooted at x′ is decreased by the next
iteration of the downward phase. Since hx′ = hA, hC must be hA − 1,
which implies that hB = hA. This special case is shown in detail in
Figure 4.3(a). Node z′′ is not in balance, but the upward phase of the
algorithm will correct this by performing a single right rotation in the
recursive call at z′′, resulting in the tree shown in Figure 4.3(b). The
tree is now in balance, with height hT = hy′′ = hA + 2. This is hS − 1,
which completes the proof of the theorem. Note that hT is always hS−1
in the double rotation cases.

It has been shown in [55] that the node balancing algorithm per-
forms at most 2d rotations, where d is the absolute height difference at
the root of S. The following theorem improves this bound to d−1, and
gives a lower bound.

Theorem 4.2 The node balancing algorithm performs at least
d(d − 1)/3e = Ω(d) rotations and at most d − 1 = O(d) rotations,
where d is the absolute height difference at the root of the subtree given
to the algorithm.

Proof. We will first show that each rotation executed in the downward
phase (lines 2–13 of Algorithm 4.1) decreases the absolute height dif-

50 BALANCING AVL TREES

ference at the node that the algorithm examines. There are again two
cases and corresponding mirror images.

In the right single rotation case, Figures 4.1(a) and 4.1(b), the
absolute height difference at x before the rotation is either hB +1−hC

or hB +2−hC . This is clear from the figure, since node y is in balance
and this case is applied only when hA ≥ hB and the subtree rooted at y

is higher than C, so hB ≥ hC . After the rotation, the absolute height
difference at x′, where the algorithm continues, is hB − hC , which is
clearly smaller than the above.

In the left-right double rotation case, Figures 4.2(a) and 4.2(b), the
absolute height difference at x before the rotation is either hC +2−hD

or hC + 3 − hD. In the former case hC ≥ hB , and hC ≥ hD because
otherwise x would be in balance. Then the absolute height difference
at x′ (|hC−hD|) is two smaller than at x. In the latter case hB = hC +1
and hC ≥ hD − 1. If hC ≥ hD, the absolute height difference at x′ is
three smaller than at x. If hC = hD − 1, the absolute height difference
at x is 2 and at x′ 1, as desired.

Thus, every rotation performed by the downward phase makes the
absolute height difference at the node examined in the loop 1 to 3 levels
smaller. The loop ends when the absolute height difference is smaller
than 2, i.e., the node is in balance. If the original absolute height
difference is d, at most d−1 rotations (and at least d(d−1)/3e rotations)
are performed in the downward phase.

As noted in the proof of Theorem 4.1, the upward phase of the algo-
rithm performs at most one rotation for each iteration of the downward
phase. This rotation is performed only at some of the nodes in which a
double rotation was performed in the downward phase. Furthermore,
the rotation is performed only when the double rotation made the abso-
lute height difference at least two smaller – the only case where a double
rotation decreases the height difference by only one is when hC = hD−1
(above), and then node x′ is in balance, so its height cannot decrease
in the next iteration of the downward phase. The parent of x′ will then
be in balance, and the upward phase will not perform a rotation at the
parent.

Thus, the above figures are not affected by taking into account the
rotations done in the upward phase.

51

CHAPTER 5

Bulk update algorithms for AVL trees

T
his chapter examines bulk insertion and bulk deletion in avl trees.
The chapter focuses on the rebalancing algorithms, since they are

the most complex part of the bulk update operations.
A few of the algorithms given in this chapter (but none of the

proofs) appear in preliminary form in the author’s Master’s thesis [72].
As is described in more detail below, this work builds upon the ar-
ticles [55, 77]. The idea of detaching entire subtrees in bulk deletion
(Section 5.5.2) is based on the article [54] (by, among others, the au-
thor).

5.1 Single-bulk insertion

A bulk-insertion algorithm takes as input a set of new keys and a search
tree, and inserts the keys into the search tree as a single operation.
The bulk-insertion algorithms described in this chapter first sort the
new keys using any sorting algorithm. Then they search in the tree for
the smallest new key, as if doing a single insertion of this key. Instead
of inserting only one key, however, the algorithms will collect all keys
that go to the same place in the tree as the first one (i.e., are smaller
than the next-larger key already present in the tree), and insert them
together.

We will first examine a restricted situation called single-bulk inser-
tion, where all of the keys to be inserted go in the same location in
the tree, which is called a position leaf. This requires that the tree has
no keys whose values are between the smallest and largest keys to be
inserted. The restriction will be removed in Section 5.4 below.

The tree search for the first new key gives the position leaf where
the new keys are to be inserted. In an external tree, this is an actual

52 BULK UPDATE ALGORITHMS FOR AVL TREES

bulk-insert(A):
1 Sort the array A of keys to be inserted.

2 Search in the tree for the smallest key s to be inserted. Save the search

path in P .

3 Form an update tree S from the keys in A.

4 Insert S into the position leaf found in the search.

5 rebalance(S, P)

Algorithm 5.1 Single-bulk insertion of an array A of keys.

leaf node; in an internal tree, it is a null child pointer where a new node
can be inserted.

The bulk insertion algorithm forms a new balanced avl tree, called
the update tree, from the bulk of new keys (and, for an external tree,
the position leaf itself). The update tree is then inserted at the position
leaf (for an internal tree) or in place of it (for an external tree). This
is called the actual insertion.

Creating the update tree is simple. A balanced binary search tree
is formed from a sorted array of keys by placing the middle key at the
root of the generated tree and proceeding recursively with the left and
right halves of the array. This kind of binary tree is a valid avl tree,
since it has leaves on at most two levels: some root-to-leaf paths can be
one node longer than the others, but this is inevitable with an arbitrary
number of nodes.

The next and final step is to rebalance the tree. The next sec-
tion presents a very simple rebalancing algorithm, which will be used
as a component in the more efficient algorithm presented afterwards.
Algorithm 5.1 gives an outline of the bulk-insertion algorithm.

5.2 Log-squared rebalancing algorithm

After actual insertion has been done as specified in the previous section,
the produced avl tree is in balance except possibly at the nodes on the
path from the root of the update tree to the root of the whole tree.
This is because the update tree itself is in balance, and inserting it in
the original tree only affects the heights of the ancestors of the update
tree. Therefore, in single-bulk insertion, the rebalancing algorithm only
needs to make this path balanced.

The node balancing algorithm of Section 4.1 suggests a simple strat-
egy for rebalancing: execute the node balancing algorithm on each node

5.2 Log-squared rebalancing algorithm 53

rebalance(S, P):
1 for each node n in P from down to up do

2 Update the height value of n.

3 if n is in balance and the height value did not change then

4 return

5 balance-node(n)

Algorithm 5.2 The log-squared rebalancing algorithm for bulk insertion.

The argument P is the path up from the parent of the root of the update

tree to the root of the whole tree. This algorithm does not use S, which is a

pointer to the root of the update tree.

·hi + 1

−hi + 2

−hi + 3

−hi + 4

−hi + 5

hi hi

hi+1 = hi

hi+2 = hi + 1

hi+3 = hi + 2

hi+4 = hi + 3

·hi + 1

−hi + 2

·hi + 3

−hi + 4

·hi + 5

hi hi

hi+1 = hi

hi+2 = hi + 2

hi+3 = hi + 2

hi+4 = hi + 4

Figure 5.1 Two possibilities for minimum possible growth of consecutive

siblings of a path in an avl tree. Note that hi+4 ≥ hi + 3 in both cases. The

balancing direction is displayed inside each node.

on the path up from the parent of the update tree to the root of the
whole tree. Algorithm 5.2 includes the optimization that it stops early
if it reaches a node which is in balance and whose height is the same as
in the original tree, since then the ancestors are already in balance.

We will see below that this rebalancing strategy uses O(log2 m)
rotations in the worst case, where m is the number of keys that are
inserted. Note that the number of rotations is log-squared relative to
the height of the update tree, not to the height of the (possibly much
larger) tree in which the insertion is performed. This algorithm was
first presented in [55]. However, the analysis below is more precise
than in that article, including constant factors and giving a sharper
bound than can be inferred from the proofs in [55]. These more precise
results are needed in the analysis of the more efficient bulk-insertion
algorithm presented in Section 5.3.

Figures 5.1 and 5.2 show examples of the extreme cases of the
following lemma. The lemma gives a fact about avl trees which will
be frequently used in the proofs below.

54 BULK UPDATE ALGORITHMS FOR AVL TREES

−hi + 2

+hi + 4

+hi + 6

+hi + 8

hi + 1 hi

hi+1 = hi + 3

hi+2 = hi + 5

hi+3 = hi + 7

Figure 5.2 Maximum possible growth of consecutive siblings of a path in

an avl tree. Note that if hj+1 = hj + 3, then hj+2 is at most hj+1 + 2. The

balancing direction is displayed inside each node.

Lemma 5.1 Consider a path q1, . . . , qn from a leaf q1 to the root qn

of an avl tree. The following hold for the siblings r1, . . . , rn−1 of the
nodes on this path: (a) hri ≤ hri+1 ≤ hri +3, and (b) hri+j ≥ hri +j−1.

Proof. Because of the balance condition of avl trees, the height of a
child is one or two smaller than the height of its parent: hqi

+ 1 ≤
hqi+1 ≤ hqi + 2, and also hri + 1 ≤ hqi+1 ≤ hri + 2. Part (a) follows
directly from this. Part (b) is also trivial if we note that hqi+1 ≥ hqi +1
implies hqi+j ≥ hqi + j. Then hri+j ≥ hqi+j+1 − 2 ≥ hqi+1 + j − 2 ≥
hri + j − 1.

Lemma 5.2 Assume that, in a balanced avl tree, a subtree with height h

is replaced by a balanced subtree with height h + d, where d ≥ 0. Then
Algorithm 5.2 will use at most d2 + 7d/2 + 4 rotations to rebalance the
tree, when called with an argument containing the path upward from the
parent of the replaced subtree.

Proof. First note that if d = 0, the parent is in balance, so Algorithm 5.2
does no rotations. We consider d > 0 in the following.

Denote by ni the node n on iteration i = 1, . . . , N of the loop in
Algorithm 5.2. To find out the number of rotations, we need to consider
the heights of the children of ni. On the first iteration (i = 1), one child
is the replaced subtree and has height s1 = h + d. The other child is
the sibling of the replaced tree, with height h − 1 ≤ h1 ≤ h + 1. On
each subsequent iteration (i > 1), one child of ni will be the result
of the previous iteration (and its height si−1 ≤ si ≤ si−1 + 1 due to
Theorem 4.1), and the other child will be the original sibling of ni−1,
i.e., the ith sibling on the path up from the original replaced subtree –
denote its height by hi (see Figure 5.3).

By Lemma 5.1 the heights hi must grow by at least so much that
hi+j ≥ hi + j − 1. Assuming that node ni is not yet in balance, The-

5.2 Log-squared rebalancing algorithm 55

S

n1

n2

n3

n4

nN

h1

h2

h3

h4

hN

Figure 5.3 Notation used in Lemmas 5.2 and 5.3.

orem 4.1 implies that if si+1 = si + 1 (hT = hS in terms of Theo-
rem 4.1), then si+2 = si+1 (hT = hS − 1 on the next iteration), and
thus si+2j ≤ si + j and si+j ≤ si + dj/2e.

When ni is not yet in balance, si − hi > 1, since initially s1 > h1,
and si − hi decreases by at most 3 in one iteration, because si+1 ≥ si

and hi+1 ≤ hi + 3 (Lemma 5.1). If si−1 − hi−1 > 1, then si − hi > −2,
which means that ni must be in balance before si−hi ≤ −2 is possible.

On the first iteration (i = 1), the height difference s1− h1 ≤ d + 1.
The height difference on iteration i > 1 is

s1+i−1 − h1+i−1 ≤ s1 − h1 + d(i− 1)/2e − (i− 1) + 1

≤ d + 2− b(i− 1)/2c
≤ d− i/2 + 3.

This is≤ 1 when i ≥ 2d+4; thus, the iteration numbered i = 2d+3 must
be the last one. By Theorem 4.2, the number of rotations performed by
each iteration is at most one less than the height difference. Then the
total number of rotations executed before ni is in balance is at most

2d+3∑

i=1

(si − hi − 1) ≤
2d+3∑

i=1

(d− i/2 + 2) = d2 + 7d/2 + 3.

After the first iteration where ni is in balance, the height value of ni

may still need to be increased by one from its original value, and thus
one further rotation may be necessary somewhere higher up in the tree
– the situation is now analogous to single insertion. After this one
rotation, ni will be in balance and the height value will not increase,
and so the next iteration will be the last. Thus, the algorithm executes
at most d2 + 7d/2 + 4 rotations in total.

Theorem 5.1 Algorithm 5.2 uses at most blog2 mc2 + 11blog2 mc/2 +
17/2 = O(log2 m) rotations in the worst case to rebalance the tree after
an update tree with m keys has been inserted in an avl tree.

56 BULK UPDATE ALGORITHMS FOR AVL TREES

Proof. The result is implied by Lemma 5.2: an empty subtree (in an
internal tree) or a single leaf (in an external tree) is replaced by the
update tree, with d = blog2 mc+ 1 in both cases.

It is instructive to compare Algorithm 5.2 with the single-insertion
algorithm in Algorithm 4.2. The rebalancing strategy is essentially the
same, because the node balancing algorithm does not care how much
imbalance the insertion produced. This implies that if only one key
is inserted using bulk insertion, the log-squared rebalancing algorithm
performs the same (zero or one) rotations as the single-insertion algo-
rithm.

5.3 Logarithmic rebalancing algorithm

The simple rebalancing algorithm of the previous section used O(log2 m)
rotations in the worst case, where m is the number of keys that were
inserted. This can be improved by observing that this algorithm repeat-
edly modifies the structure of the update tree: at each step, the node
balancing algorithm uses O(log m) rotations to merge only a relatively
small number of keys from the original tree into the update tree.

The rebalancing procedure in Algorithm 5.3 uses only O(log m)
rotations in the worst case. The idea is to first move the update tree
upward in the tree using rotations that do not modify the update tree.
The rotation selected on each iteration is the lowest possible rotation
that moves the update tree closer to the root – see Table 5.1. After
each such rotation, the node balancing algorithm is used on the node
that was moved off the path from the root of the update tree S to the
root of the whole tree T , to fix any imbalance created by the rotation
outside this path.

This idea was presented in [77], but the algorithm of [77] does not
work correctly in all cases. To fix this problem, the rotation selected by
Algorithm 5.3 is different from [77], where the rotation was always done
at the great grandparent of the update tree: the grandparent needs to
be used instead in cases LLL, RRR, LRR and RLL of Table 5.1. This
change corrects a subtle error in [77]. Figure 5.4 gives an example where
Algorithm 5.3 works better.

Algorithm 5.3 moves the update tree S upward as long as its height
is larger than that of a neighboring unmodified subtree of the whole
tree. This is also necessarily different from [77], which looked only at

5.3 Logarithmic rebalancing algorithm 57

rebalance(S, P):
1 while the sibling of the great grandparent of the root of S exists and its

height ≤ hS − 1 do

2 Execute the rotation from Table 5.1.

3 Do the balance-node operation given in Table 5.1.

4 Update the beginning of P to be in accordance with the performed

rotation.

5 for each node n in P from down to up do

6 Update the height value of n.

7 if n is in balance, the height value did not change and n is not the

lowest or second-lowest node in P then

8 return

9 balance-node(n)

Algorithm 5.3 The logarithmic rebalancing algorithm for bulk insertion. As

in Algorithm 5.2, the argument S is a pointer to the root of the update tree,

and P is the path up from the parent of S to the root of the whole tree.

Tree Operations Result Tree Operations Result

L

L

L

z
y

x

S

Single-rotate-

right(y)

Balance-node(y)

z

y
x

S

R

R

R

z
y

x

S

Single-rotate-

left(y)

Balance-node(y)

z

y
x

S

L

L

R

z
y

x

S

Single-rotate-

right(z)

Balance-node(z)

z

y

x

S

R

R

L

z
y

x

S

Single-rotate-

left(z)

Balance-node(z)

z

y

x

S

L

R

L

z
y

x

S

Double-rotate-

leftright(z)

Balance-node(z)

zy
x

S

R

L

R

z
y

x

S

Double-rotate-

rightleft(z)

Balance-node(z)

z y
x

S

L

R

R

z
y

x

S

Single-rotate-

left(y)

Balance-node(y)

z

y
x

S

R

L

L

z
y

x

S

Single-rotate-

right(y)

Balance-node(y)

z

y
x

S

Table 5.1 Rotations performed in the logarithmic rebalancing algorithm.

The rotation is selected by looking at the left/right directions of the three

child links above the update tree S, giving eight cases (four of which are

mirror images). After the rotation, the node balancing algorithm is called on

the node that was removed from the path up from the root of S.

58 BULK UPDATE ALGORITHMS FOR AVL TREES

S
5

z

y

x

4

4

7

(a)

S
5

z y

x

4 47

(b)

S
5

z

y

x

4 4

7

(c)

Figure 5.4 Example showing how the logarithmic rebalancing algorithm

given here differs from the algorithm in [77]. Heights are given beside the

subtrees. (a) Before an iteration of the upward phase. (b) The algorithm

of [77] performs a right-left double rotation at node x, and now needs to

continue moving the update tree S upward. (c) Algorithm 5.3 executes a

single rotation to the right at node y, after which the tree is in balance.

the height difference at the grandparent. Specifically, the neighbor-
ing subtree is the sibling of the current great grandparent of the root
of S (labeled h4 in Figure 5.3) – it is the subtree closest to S that is
guaranteed to be unmodified by the previously performed rotations.

After the update tree has been moved high enough, the rebalancing
algorithm of Section 5.2 is used to correct any final imbalance (any
remaining imbalance is on the path from the root of the update tree S

to the root of the whole tree T). A minor detail is that the algorithm
of the previous section (Algorithm 5.2) would finish immediately if it
does not need to do any rotations and the height value does not change
on an iteration. Here this optimization is not valid at the parent and
grandparent of the update tree, since the preceding rotations may have
changed the tree at these nodes. Thus, the code in Algorithm 5.3
removes this optimization from the first two iterations of the loop in
Algorithm 5.2.

The rather lengthy proof below shows that Algorithm 5.3 performs
O(hS) rotations in total, where hS = O(log m) is the height of the
update tree. The basic structure of the proof is as follows. We will
see that the phase which moves the update tree upward (lines 1–4) has
O(log m) iterations, each of which consists of one case of Table 5.1. Each
iteration performs “amortized O(1)” rotations in the node balancing
operation, so that the total number of rotations is O(log m). Finally,
any rotations done in the second phase of the algorithm (lines 5–9) will
be shown to fit in this O(log m) bound.

5.3 Logarithmic rebalancing algorithm 59

5.3.1 Complexity: Number of iterations

Lemma 5.3 The upward phase (lines 1–4) of Algorithm 5.3 executes
at most hS iterations of the while loop, where hS is the height of the
update tree.

Proof. Consider the path P up from the root of the update tree S to
the root of the whole tree. Denote the heights of the direct siblings of
the nodes on this path by h1, . . . , hk (see Figure 5.3).

The upward phase of the algorithm considers the height of the
sibling of the great grandparent of S. This is initially h4. Each iteration
of the loop in the algorithm moves the update tree S upward, removing
either the parent, grandparent or great grandparent of S from P (see
Table 5.1). Thus, on iteration j = 0, 1, . . . of the upward phase, the
height of the sibling of the current great grandparent of S will be h4+j .

Because the update tree is inserted at a leaf, h4 ≥ 1 in an internal
tree, or h4 ≥ 2 in an external tree, since the height of a leaf node is
defined to be 0.∗ The first phase of the algorithm ends on the first
iteration j with h4+j ≥ hS , unless the root of the tree is reached before
this. By Lemma 5.1, h4+j ≥ h4 + j − 1, and the first phase must thus
end when j ≥ hS − h4 + 1. Therefore, the number of iterations in the
first phase is at most hS in an internal tree, and at most hS − 1 in an
external tree.

When the update tree contains only one new key, no iterations are
done in the first phase, and Algorithms 5.2 and 5.3 both execute the
same (zero or one) rotations as the single-insertion algorithm.

5.3.2 Complexity: Height differences

This section will examine the heights of the siblings of the update tree
and its parent, grandparent and great grandparent, at the beginning
of any iteration of the first phase of the rebalancing algorithm. Name
these siblings (subtrees) A, B, C and D from down to up, and their
heights hA, hB , hC and hD – see Figure 5.5. (For example, before the
first iteration, hA = h1, hB = h2, etc., using the terms of Lemma 5.3
and Figure 5.3.) Further define d1 = hB − hA, d2 = hC − hB , and
d3 = hD − hC . Note that these are all integers.

∗ This can be seen from Figure 5.1 by setting hi + 1 = 0 and removing the subtrees

with height hi.

60 BULK UPDATE ALGORITHMS FOR AVL TREES

S
hS

A hA

B hB

C hC

D hD

d1 = hB − hA

d2 = hC − hB

d3 = hD − hC

fA: root of A strictly balanced

fB : root of B strictly balanced

g: d3 > 0 on previous iteration

Figure 5.5 Definitions used in Section 5.3.2.

The goal of the proofs in this section is to show that the following
properties hold before and after each iteration of the loop in lines 1–4
of Algorithm 5.3:

−2 ≤ d2 ≤ 3 and
d1 ≥ −2 and

d1 < 0 ⇒ |d1 + d2| ≤ 2.

These properties are essential for the complexity proof in the next sec-
tion. The properties follow from certain invariants, given below in
Lemmas 5.6 and 5.7, that hold before and after each iteration.

Each iteration of the loop in lines 1–4 of Algorithm 5.3 essentially
executes one of the eight cases given in Table 5.1. We will only need
to consider how the subtrees A–C change, and this reduces the eight
cases to the three labeled AB, BC and AC in Table 5.2. The first and
fourth cases in the table lead to the same changes in the subtrees A–C.

The heights calculated in Table 5.2 refer to a variable i, whose
value is either 0 or 1: i = 0 if the height of the subtree given to
balance-node was decreased in the balance-node operation, and
i = 1 otherwise. In the terminology of Theorem 4.1, i = 1 if and only
if hT = hS .

A few additional definitions are needed for the invariants. The
Boolean value fA is defined to be true if both children of the root of
the subtree A have the same height. Similarly fB is true if both children
of the root of B have the same height. The value g is defined to be
true on a particular iteration if, on the previous iteration, d3 was larger
than 0. As will be seen, the value of g restricts the possible values
of d3 on the current iteration – g describes a detail of the shape of the
original tree that may have been hidden by the changes made to the
tree by the previous iteration.

5.3 Logarithmic rebalancing algorithm 61

Before After New heights Name

L

L

L

ShS
A hA

B hB

C hC

DhD

ShS

A B
h′A

C h′B

Dh′C h′A = max{hA, hB}+ i

h′B = hC

h′C = hD AB

L

L

R

S hS
AhA

B hB

C hC

DhD

S hS
Ah′A

B C
h′B

Dh′C h′A = hA

h′B = max{hB , hC}+ i

h′C = hD BC

L

R

L

ShS
A hA

BhB

C hC

DhD

S hS
Bh′A

A C
h′B

Dh′C h′A = hB

h′B = max{hA, hC}+ i

h′C = hD AC

L

R

R

S hS
AhA

BhB

C hC

DhD

S hS

A B
h′A

C h′B

Dh′C h′A = max{hA, hB}+ i

h′B = hC

h′C = hD AB

Table 5.2 Cases for Lemmas 5.6 and 5.7. This is an expanded version of

Table 5.1, describing how the heights of the subtrees A–D change. Mirror

images (RRR, RRL, RLR, RLL) have been omitted. The subtrees in the

second column that contain two subtrees and one node have been balanced by

a call to balance-node. The left/right direction of subtree D is immaterial:

D could just as well be the right child of its parent. AB, BC and AC are

symbolic names for the cases; note that the two cases named AB in the figure

result in the same changes in subtree heights.

62 BULK UPDATE ALGORITHMS FOR AVL TREES

In the following, hA, hB , hC , hD, d1, d2, d3, fA, fB and g will
denote the values before an iteration, and h′A, h′B , h′C , h′D, d′1, d′2, d′3,
f ′A, f ′B and g′ after the one iteration has been executed. In these terms,
the definition of g can be written (d3 > 0 ⇔ g′).

We begin with a couple of facts about d3 and g. All of the cases
in Table 5.2 modify only the first two subtrees A and B – the rest are
always unmodified subtrees of the avl tree as it was before the bulk
insertion. Since h′C = hD in all cases, Lemma 5.1 implies:

Lemma 5.4 The value d3 is in the range 0 ≤ d3 ≤ 3 before every
iteration of lines 1–4 of Algorithm 5.3.

Moreover, by Lemma 5.1, hi+2 ≥ hi + 1, so d3 cannot be 0 on two
consecutive iterations. This gives us the following relation for g and g′.

Lemma 5.5 The following implications are true: ¬g ⇒ g′ and ¬g′ ⇒ g.

Careful examination of Tables 5.1 and 5.2 reveals that case AB
cannot appear after any instance of case BC or AC, because of the
left/right directions possible in the eight cases. Case AB is entered only
when the left/right directions above the update tree S and its parent
are the same: either S is the left child of its parent, which is also the left
child of the grandparent of S (cases LLL and RLL of Table 5.1), or both
are right children (cases RRR and LRR). However, cases BC and AC
(i.e., LLR, RRL, LRL, RLR) all result in situations where the left/right
directions above S and its parent differ. For instance, in the result of
case LRL in Table 5.1, S is the right child of its parent y, but y is the
left child of its parent x. Therefore, lines 1–4 of Algorithm 5.3 actually
execute zero or more instances of case AB first, and some instances of
cases BC and AC afterwards.

We will first see that a relatively simple invariant holds before and
after case AB.

Lemma 5.6 When lines 1–4 of Algorithm 5.3 are executed, the follow-
ing invariant holds before and after case AB in Table 5.2 is applied,
assuming that the great grandparent of the update tree exists:

(−2 ≤ d1 ≤ 3) ∧ (0 ≤ d2 ≤ 3)
∧ (d1 = −2 ∧ d2 = 0 ⇒ ¬fA ∧ ¬g)

Proof. At the beginning of the algorithm, 0 ≤ d1 ≤ 3 and 0 ≤ d2 ≤ 3,
which is sufficient to satisfy the invariant. This follows trivially from
Lemma 5.1, as subtrees A–C are unmodified subtrees of the avl tree.

5.3 Logarithmic rebalancing algorithm 63

A short calculation using the heights given in Table 5.2 shows that
case AB (i.e., cases LLL, RRR, LRR, RLL of Table 5.1) affects d1

and d2 as follows:

d′1 =
{

d2 − i if d1 ≥ 0
d1 + d2 − i if d1 < 0

d′2 = d3

For instance, d′1 = h′B−h′A = hC−max{hA, hB}−i = hC−max{hA, hA+
d1} − i = hC − hA −max{d1, 0} − i = d1 + d2 −max{d1, 0} − i, which
gives the above values.

The requirement 0 ≤ d′2 ≤ 3 holds trivially, since 0 ≤ d3 ≤ 3 by
Lemma 5.4. If d1 ≥ 0, then −1 ≤ d′1 ≤ 3, which satisfies the invariant.
If −2 ≤ d1 < 0, then −2 ≤ d′1 ≤ 2, except in the case where d1 = −2
and d2 = 0 and i = 1 (where d′1 would be −3). But this last case is not
possible, since (d1 = −2 ∧ d2 = 0) ⇒ ¬fA, which means that i must
be 0 due to Theorem 4.1: since d1 = −2, the subtree A is higher than B

(and their common parent is not in balance), and ¬fA means that the
children of the higher subtree have different heights. By Theorem 4.1,
the height of the subtree given to balance-node will then be decreased
(hT = hS − 1) and thus i = 0.

The invariant finally requires establishing ¬f ′A and ¬g′ in the spe-
cial case where d′1 = −2 ∧ d′2 = 0. This occurs only when d1 < 0 and
d3 = 0 (which gives the required ¬g′ by definition) and d2 > 0 (be-
cause ¬g′ ⇒ g by Lemma 5.5, and d2 is equal to the d3 of the previous
iteration). Thus, d′1 = −2 only when d1 = −2 ∧ d2 = 1 ∧ i = 1. The-
orem 4.1 now implies ¬f ′A, since d1 = −2 means that the root of the
subtree given to balance-node was not in balance and i = 1 that the
height of the subtree was not decreased by the node balancing operation
(hT = hS in the terms of Theorem 4.1).

A somewhat more complicated invariant than the one above is
needed to prove that the properties discussed in the start of this section
also hold for the part of the algorithm that executes cases BC and AC.

Lemma 5.7 When lines 1–4 of Algorithm 5.3 are executed, the fol-
lowing invariant holds before and after case BC or AC in Table 5.2 is
applied, assuming that the great grandparent of the update tree exists:

0 ≤ d2 ≤ 3 ∧ d1 ≥ −2 ∧ (d1 = −2 ∧ d2 = 0 ⇒ ¬fA ∧ ¬g)
∨ d2 = −1 ∧ d1 ≥ 0 ∧ (d1 = 0 ⇒ ¬g)
∨ d2 = −2 ∧ d1 ≥ 2 ∧ ¬fB ∧ ¬g

64 BULK UPDATE ALGORITHMS FOR AVL TREES

Proof. Name the three lines of the invariant conditions 1◦, 2◦ and 3◦,
respectively:

1◦ 0 ≤ d2 ≤ 3 ∧ d1 ≥ −2 ∧ (d1 = −2 ∧ d2 = 0 ⇒ ¬fA ∧ ¬g)

2◦ d2 = −1 ∧ d1 ≥ 0 ∧ (d1 = 0 ⇒ ¬g)

3◦ d2 = −2 ∧ d1 ≥ 2 ∧ ¬fB ∧ ¬g

Note that only one of these needs to hold to satisfy the invariant. Con-
dition 1◦ holds initially (i.e., before the first application of case BC
or AC), since the invariant in Lemma 5.6 implies condition 1◦.

First consider whether case BC (i.e., cases LLR and RRL of Ta-
ble 5.1) preserves the invariant. A short calculation using the heights
given in Table 5.2 shows that this case affects d1 and d2 as follows:

If d2 ≥ 0: d′1 = d1 + d2 + i and d′2 = d3 − i

If d2 < 0: d′1 = d1 + i and d′2 = d2 + d3 − i

If condition 1◦ holds before case BC is applied, then d2 ≥ 0, so d′1 =
d1 + d2 + i ≥ −2 and −1 ≤ d′2 = d3 − i ≤ 3 (since 0 ≤ d3 ≤ 3
by Lemma 5.4). If d′2 ≥ 0, then condition 1◦ will be satisfied also
after case BC is executed. The special situation d′1 = −2∧d′2 = 0 is not
possible, since d′1 = −2 only if d1 = −2 and d2 = 0 and i = 0. However,
d2 = 0 means that the subtree given to balance-node is in balance,
and thus balance-node will not perform any rotations, which implies
that i = 1 when d2 = 0 in case BC.

Otherwise, if condition 1◦ holds before case BC and d′2 = −1, then
condition 2◦ will be satisfied: d′2 = d3 − i = −1 only if i = 1 and
d3 = 0, and the last gives ¬g′ by definition. Then d′1 ≥ −1 (since
i = 1), but to satisfy condition 2◦, we need to show that d′1 ≥ 0.
Assuming d′1 = −1 leads to a contradiction: d′1 = d1 + d2 + i = −1
only if d1 = −2 and d2 = 0, which would together imply ¬g (due to
condition 1◦). By Lemma 5.5, ¬g ⇒ g′, but we have derived ¬g′ above
– thus, d′1 cannot be −1. We have thus established that if condition 1◦

holds before case BC is applied, either condition 1◦ or condition 2◦ will
hold afterwards.

If condition 2◦ holds before case BC is applied, then i = 1 since the
subtree given to balance-node is already in balance (d2 = −1), so
balance-node will not perform any rotations. Hence, d′1 = d1 +1 ≥ 1
and −2 ≤ d′2 = d3 − 2 ≤ 1. If d′2 ≥ −1, these values clearly satisfy
either condition 1◦ or condition 2◦. If d′2 = −2, then condition 3◦ is
satisfied as follows. Here d′2 = −2 only if d3 = 0, which gives ¬g′ by
definition. In addition, d′1 = d1 + 1 ≥ 2, because d1 cannot be 0 when

5.3 Logarithmic rebalancing algorithm 65

d3 = 0: if d1 = 0, the invariant gives us ¬g, but this conflicts with the
¬g′ that we just derived, because ¬g′ ⇒ g (Lemma 5.5). Finally, ¬f ′B
holds because the subtree given to balance-node was in balance with
children of different heights (this subtree will be subtree B on the next
iteration, as shown in Table 5.2).

If condition 3◦ holds before case BC is applied, then i = 0 due to
Theorem 4.1 (d2 = −2, so the subtree given to balance-node is not
in balance, and ¬fB). Then d′1 = d1 ≥ 2 and d′2 = d3 − 2. The ¬g

of condition 3◦ implies by ¬g ⇒ g′ (Lemma 5.5) that d3 > 0. Thus,
−1 ≤ d′2 = d3 − 2 ≤ 1. These values satisfy either condition 1◦ or
condition 2◦.

Case BC thus preserves the invariant. Next consider case AC (i.e.,
cases LRL and RLR of Table 5.1). This affects d1 and d2 as follows
(again calculated from the heights given in Table 5.2 – note that d1+d2

= hC − hA):

If d1 + d2 ≥ 0: d′1 = d2 + i and d′2 = d3 − i

If d1 + d2 < 0: d′1 = i− d1 and d′2 = d1 + d2 + d3 − i

If condition 1◦ holds before case AC is applied, we need to consider
three subcases depending on d1 + d2. If d1 + d2 ≥ 0, then 0 ≤ d′1 =
d2 + i ≤ 4 and −1 ≤ d′2 = d3− i ≤ 3. These values clearly satisfy either
condition 1◦ or condition 2◦, since the combination d′1 = 0 ∧ d′2 = −1
is not possible using either value of i.

If d1 + d2 = −1, then i = 1 and ¬f ′B , since the subtree given to
balance-node is already in balance, with children of different heights.
(The subtree resulting from balance-node will be subtree B on the
next iteration, as shown in Table 5.2.) Thus, 2 ≤ d′1 = 1 − d1 ≤ 3
(since d1 < 0) and −2 ≤ d′2 = d3 − 2 ≤ 1. When d′2 ≥ −1, condition 1◦

or condition 2◦ is clearly satisfied. When d′2 = −2, condition 3◦ is
satisfied, since d3 must be 0, which gives ¬g′.

If d1+d2 = −2, then d1 = −2 and d2 = 0, and the invariant gives us
¬fA and ¬g. Then i = 0 by Theorem 4.1. Thus, d′1 = 2, and, because
d3 > 0 from ¬g ⇒ g′ (Lemma 5.5), the condition −1 ≤ d′2 = d3− 2 ≤ 1
holds. This clearly satisfies either condition 1◦ or condition 2◦.

If condition 2◦ holds before case AC is applied, and d1 = 0, then
d1 + d2 = −1. Thus, the subtree given to balance-node is already in
balance, so i = 1. Then d′1 = 1 and −1 ≤ d′2 = d3− 2 ≤ 1 (here d3 > 0,
because d1 = 0 implies ¬g due to the invariant, and ¬g ⇒ g′). These
values clearly satisfy either condition 1◦ or condition 2◦.

If condition 2◦ holds before case AC and d1 > 0, then d1 + d2 ≥ 0
and there are two subcases depending on i. If i = 0, then d′1 = −1 and

66 BULK UPDATE ALGORITHMS FOR AVL TREES

0 ≤ d′2 = d3 ≤ 3, which satisfies condition 1◦. If i = 1, then d′1 = 0 and
−1 ≤ d′2 = d3 − 1 ≤ 2. Condition 2◦ is satisfied if d′2 = −1, because
d3 = 0 ⇔ ¬g′. Otherwise, if 0 ≤ d′2 ≤ 2, condition 1◦ is satisfied.

Finally, if condition 3◦ holds before case AC is applied, then d1 +
d2 ≥ 0, so −2 ≤ d′1 = i−2 ≤ −1 and 0 ≤ d′2 = d3− i ≤ 3 (d3 > 0 due to
¬g ⇒ g′). Condition 1◦ will clearly be satisfied, since the combination
d′1 = −2 ∧ d′2 = 0 is not possible using either value of i.

We have now established that the invariant in the theorem holds
initially and that the cases BC and AC preserve it.

The above invariants can now be used to conclude that the prop-
erties described in the start of this section hold:

Lemma 5.8 The following properties hold when Algorithm 5.3 is begun
and after each iteration of lines 1–4 of the algorithm, assuming that the
great grandparent of the update tree exists: −2 ≤ d2 ≤ 3 and d1 ≥ −2
and d1 < 0 ⇒ |d1 + d2| ≤ 2.

Proof. All three properties follow directly from both of the invariants
in Lemmas 5.6 and 5.7.

5.3.3 Complexity: Number of rotations

We are now ready to examine the number of rotations performed by
the rebalancing algorithm.

Theorem 5.2 After an update tree with m keys and height hS =
blog2 mc has been inserted in an avl tree, Algorithm 5.3 uses at most
7hS + 92 = O(hS) = O(log m) rotations in the worst case to rebalance
the tree.

Proof. First consider the case where no iterations are done in the first
phase (lines 1–4) of the algorithm, i.e., the ending condition hD >

hS − 1 holds initially. Because the update tree is inserted at a leaf,
hD ≤ 6 in an internal tree or hD ≤ 7 in an external tree.∗ Since
the ending condition holds, hS ≤ 6 in an internal tree and hS ≤ 7
in an external tree. The second phase of the logarithmic rebalancing
algorithm (Algorithm 5.3) will do the same rotations as the log-squared

∗ The maximum hD occurs when the update tree is inserted in place of the subtree

marked with hi in Figure 5.2. Then hi = 0 in an external tree, since the update

tree is inserted in place of a single leaf. In an internal tree, hi = −1, because the

position where the update tree is placed contains no nodes, and its height must

be defined to be −1 if the height of a single node is 0.

5.3 Logarithmic rebalancing algorithm 67

algorithm (Algorithm 5.2), so Lemma 5.2 (with d = 7 in both kinds of
trees) can be used to to conclude that at most b72 + 7 · 7/2 + 4c = 77
rotations are done.

Then assume that the first phase executes at least one iteration.
We will see that each iteration requires at most 7 rotations plus some
rotations taken from a “potential” Φ in which previous iterations can
save their leftover rotations.∗

Lemma 5.8 claims that, before any iteration, d1 ≥ −2 and −2 ≤
d2 ≤ 3. Each iteration performs one rotation to move the update tree
upward and a number of rotations in the node balancing operation
(see Table 5.1). By Theorem 4.2, the balancing requires at most d− 1
rotations, where d is the height difference of the subtrees to be balanced.
Here, d = |d1| for case AB in Table 5.2, d = |d2| for case BC, and
d = |d1 + d2| for case AC.

Since d1 does not have a constant upper limit, we will use the
potential Φ to save the d1−1 rotations necessary for cases AB and AC.
The potential will always be at least max{d1 − 1, 0} (if −2 ≤ d1 ≤ 1,
the potential is unnecessary). Initially (at the beginning of the first
iteration), d1 ≤ 3, and we will save two rotations in the potential:
Φ = 2.

If an iteration executes case AB from Table 5.2, and d1 ≥ 0, the
d1 − 1 rotations necessary for balancing are taken from the potential,
possibly reducing Φ to 0. After the iteration, −2 ≤ d′1 ≤ 3 because
of the invariant of Lemma 5.6. The potential may thus need to be
increased by at most 2. One rotation is used to move the tree upward,
so a total of at most 3 rotations in addition to those from the potential
are used by the iteration. This is less than the 7 required for the result
of the theorem.

If the iteration executes case AB but d1 < 0, then −2 ≤ d1 ≤ −1,
and at most one rotation is used in the balancing. After the iteration,
d′1 ≤ 3 because of the invariant of Lemma 5.6, and at most 2 rotations
need to be saved in the potential. Thus, this case uses a total of at
most 4 rotations, including the one for raising the tree upward.

An iteration that executes case BC needs at most 2 rotations for
the balancing, since the invariant of Lemma 5.7 gives −2 ≤ d2 ≤ 3. The
proof of Lemma 5.7 details that either d′1 = d1 + d2 + i or d′1 = d1 + i.
The resulting d′1 may thus be 4 larger than d1 (when d′1 = d1 + d2 + i

and d2 = 3 and i = 1), and 4 rotations need to be saved in the potential
in the worst case. Thus, at most 7 rotations are used.

∗ This proof technique resembles the potential method for amortized analysis [81].

68 BULK UPDATE ALGORITHMS FOR AVL TREES

An iteration that executes case AC needs at most |d1 + d2| − 1 ≤
|d1| + |d2| − 1 rotations for the balancing. If d1 ≥ 0, the d1 − 1 ro-
tations can be taken from the potential, and since −2 ≤ d2 ≤ 3, at
most 3 additional rotations are needed. If d1 < 0, then |d1 + d2| ≤ 2
(Lemma 5.8) and at most one rotation is needed. After the iteration,
d′1 ≤ 4 (since d′1 = i − d1 ≤ 3 or d′1 = d2 + i ≤ 4, as described in the
proof of Lemma 5.7), and at most 3 rotations may need to be saved to
the potential. At most 3 + 1 other rotations were needed, so at most 7
rotations are used in total.

There are at most hS iterations in the first phase, where hS is
the height of the update tree (Lemma 5.3). Since each iteration uses
at most 7 rotations (when the potential is taken into account), and
2 rotations are saved to the initial potential, a total of at most 7hS + 2
rotations are performed by lines 1–4 of Algorithm 5.3.

The first phase of the algorithm finishes when hD > hS−1. Because
hD can increase by at most 3 in one iteration (Lemma 5.1), hS − 3 ≤
hC ≤ hS − 1 or otherwise we would have finished on the previous
iteration. Lemma 5.8 implies that hC − 3 ≤ hB ≤ hC + 2 and hA ≤
hC + 2; thus, hS − 6 ≤ hB ≤ hS + 1 and hA ≤ hS + 1.

The first iteration of the second phase merges the update tree S

with subtree A (the current sibling of S). According to Theorems 4.1
and 4.2, this uses at most |hS − hA| − 1 rotations and results in a
tree SA with height hSA = max{hS , hA} + iSA, where 0 ≤ iSA ≤ 1
(and iSA = 1 if the height was not decreased in the node balancing
operation). Thus, hA ≤ hS + 1 implies that hS ≤ hSA ≤ hS + 2. Only
six rotations are needed in addition to some that can be taken from the
remaining potential (which is d1 − 1, if d1 > 0), which can be seen as
follows. If hA ≤ hS , then hS − hA − 1 rotations are needed. If d1 > 0,
then d1 − 1 = hB − hA − 1 ≥ hS − 6− hA − 1, and at most 6 rotations
in addition to those from the potential are needed. If −2 ≤ d1 ≤ 0, the
potential will not help, but then hS − 6 ≤ hA ≤ hS + 3 (because here
hB ≤ hA ≤ hB + 2) and only 5 or fewer rotations are needed. Finally,
if hA > hS , then hA = hS + 1 and no rotations are needed, since the
subtree SA is already in balance.

The second iteration merges tree SA with its sibling, subtree B,
and here the height difference is at most 8 (the maximum occurs when
hSA = hS + 2 and hB = hS − 6); thus, at most 7 rotations are needed.
The resulting subtree SAB has height hS ≤ hSAB = max{hSA, hB} +
iSAB ≤ hS + 3, where 0 ≤ iSAB ≤ 1.

Since subtree C (the sibling of SAB) has not been modified by
this algorithm, Lemma 5.2 tells us how many rotations the remaining

5.3 Logarithmic rebalancing algorithm 69

iterations use. The original sibling of the root of subtree C had height
at least hC − 1. The current subtree SAB has height at most hC + 6
(the maximum occurs when hC = hS − 3 and hSAB = hS + 3), so the
d of Lemma 5.2 is at most 7, and the remaining iterations will perform
at most 77 rotations. The lemma additionally requires that d > 0,
i.e., hSAB is at least as large as the height of the original subtree at
this position. This is true, since the height of the original subtree is at
most hC + 1 ≤ hS (because it was a sibling of C), and hSAB ≥ hS .

In summary, the first phase (lines 1–4) of the algorithm uses at most
7hS +2 rotations, and the second phase uses at most 6+7+77 = 90 ro-
tations (in addition to those taken from any leftover potential). Thus,
the whole algorithm performs at most 7hS + 92 = O(hS) rotations.
If no iterations are done in the first phase, at most 77 rotations are
done.

The above proof reveals a subtle restriction for the ending condition
of the first phase of the rebalancing algorithm. Intuitively, it would
seem that the only requirement for the ending condition is that, at the
end of the first phase, the height of the update tree S differs by at most
a constant from the height of an unmodified subtree somewhere at most
a constant distance away from the update tree.

However, it can be seen from the above proof that hSAB ≥ hC +1 is
an essential, more restrictive requirement for the ending condition of the
first phase. Since C is an unmodified subtree, the original height of its
parent was either hC +1 or hC +2. Now, hSAB = hC +1 is the smallest
value for hSAB which guarantees that the subtree resulting from the
third iteration of the second phase has height ≥ hC + 2, which means
that that the bulk insertion does not decrease the height of the subtree
at this location. This is important since if the height were decreased,
Lemma 5.2 would not apply, and the situation would be analogous
to single deletion, where O(log n) additional rotations are needed in
the worst case (with n nodes in the whole tree). A height decrease
after a bulk insertion is counterintuitive, but possible: for example, if
hSAB < hC−1, and the children of the root of C have different heights,
Theorem 4.1 states that the height must decrease. However, this cannot
happen with the ending condition chosen in Algorithm 5.3.

5.3.4 Height value changes

To find out the total rebalancing complexity of the bulk-insertion al-
gorithms, we also need to examine the changes that the rebalancing

70 BULK UPDATE ALGORITHMS FOR AVL TREES

algorithms make to the height values of the nodes in the avl tree. We
will begin with an upper bound for the number of height values that
change in one single-bulk insertion.

In the discussion below, a strictly balanced node is a node whose
children have equal heights.

Lemma 5.9 The log-squared and logarithmic rebalancing algorithms
change O(r) + b height values, where r is the number of rotations per-
formed by the rebalancing algorithm, and b ≤ B, where B is the number
of strictly balanced nodes in the search path (i.e., the path from the root
of the whole tree to the parent of the root of the update tree). Moreover,
the b height value changes are done on strictly balanced nodes which
will not be strictly balanced after rebalancing.

Proof. The height value changes done by the rebalancing algorithms
can be classified into four categories: (1) A rotation may change the
height value of the nodes that it modifies. (2) The height value of a
node that was modified by a rotation can change a second time later
(but only once). (3) The height value of a strictly balanced node on
the search path may need to be changed, but the node will not be
strictly balanced after this change. (4) The height value of at most one
additional node on the search path may change.

To classify the height value changes, we need to analyze the indi-
vidual parts of the rebalancing algorithms. We assume that rotations
update the height values of the nodes that they modify – these changes
are in category (1).

In addition to rotations, the node balancing algorithm updates the
height value of the node n that it gets as an argument, and of each node
considered in the upward phase of the algorithm. Any node considered
in the upward phase has taken part in a rotation of the downward
phase, so these changes fall in category (2). The height value change
of node n is classified below.

Each iteration of the first phase of the logarithmic rebalancing al-
gorithm executes a rotation to move one node off the search path. All
height value changes done here are in category (1). In addition, the
node balancing algorithm may update the height value of the node
that was moved off the path (i.e., the node n given to node balancing
algorithm), but this node was just involved in a rotation, so this change
falls in category (2).

Each iteration of the log-squared rebalancing algorithm, and of the
second phase of the logarithmic algorithm, executes the node balancing
algorithm on a node n on the path from the position leaf to the root.

5.3 Logarithmic rebalancing algorithm 71

If n is not initially in balance, a rotation is done at n, and the addi-
tional height value change done by the node balancing algorithm is in
category (2).

However, if the node n is already in balance, then its height value
may need to be changed outside of a rotation. In other words, the
problematic case occurs when the log-squared algorithm, or the second
phase of the logarithmic algorithm, reaches a node which is still in
balance after a height increase in one of its children.

There are two ways in which the height can change. If the node n is
originally strictly balanced and the bulk insertion increases the height
of either child by one, then the height of the resulting node (which is
still in balance, but now not strictly balanced) will increase by one.
This is category (3).

The other situation where the height can change is when the chil-
dren of node n originally have a height difference of one, and the bulk
insertion increases the height of the smaller child by two. After this,
node n will be in balance and the height of n will be one greater. But
this situation can occur only once per single-bulk insertion, since the
resulting height increase is only one, which means that on later itera-
tions, the height of a subtree cannot increase by two. This one change
is classified into category (4).

Since a rotation modifies O(1) nodes, categories (1) and (2) contain
a total of O(r) height value changes. Category (3) contains exactly b

changes, and category (4) includes only one change. Thus, a total of
O(r) + b height values are changed.

We are now ready to analyze the amortized rebalancing complex-
ity of the algorithms for single-bulk insertion. It was noted earlier that
when only one key is inserted using single-bulk insertion, the rebal-
ancing operations performed are the same as for single insertion. The
following theorem thus also applies when some of the bulk insertions
are replaced by single insertions.

Theorem 5.3 Assume that k single-bulk insertions with m1, . . . , mk

keys are performed to an initially empty avl tree. If the logarith-
mic rebalancing algorithm is used, the time complexity of rebalanc-
ing after the ith insertion is O(log ni + log mi) in the worst case, and
O(log max{m1, . . . ,mk}) when amortized over the k insertions, where
ni = m1 + · · ·+ mi−1 is the number of nodes in the tree before the ith
insertion. If the log-squared algorithm is used instead, the bounds are
O(log ni +log2 mi) (worst case) and O(log max{m1, . . . , mk}+log2 mi)
(amortized).

72 BULK UPDATE ALGORITHMS FOR AVL TREES

Proof. Consider the number of height value changes performed by the
algorithms. Neither rebalancing algorithm does more than O(1) work
without either performing a rotation or changing a height value after-
wards, so the amortized time complexity of rebalancing (i.e., of Algo-
rithms 5.2 and 5.3) is the same as the amortized number of height value
changes.

Theorems 5.1 and 5.2 give the number of rotations that are done
in the worst case. This gives the r of Lemma 5.9.

In the worst case, the B of Lemma 5.9 is O(log ni), i.e., the length
of the search path, and the worst-case figures then follow directly from
Lemma 5.9 and Theorems 5.1 and 5.2.

The following potential function is used in the amortized analysis:
Φ(p) = 1, if node p is strictly balanced and a bulk insertion (either the
actual insertion or a rotation done in rebalancing) has been performed
anywhere in the subtree rooted at the node. Otherwise, Φ(p) = 0.
In other words, Φ(p) = 1 in all strictly balanced nodes, except for
those that are part of an update tree which has not been touched by a
subsequent bulk insertion.

On the ith insertion, all strictly balanced nodes on the path from
the root of the tree to the position leaf have either Φ(p) = 1 or are part
of a single update tree from a previous insertion j < i. The strictly
balanced nodes with Φ(p) = 0 cannot be part of more than one update
tree, because then the lower update tree would be the result of a bulk
insertion done in the subtree rooted at the upper update tree.

Thus, the only strictly balanced nodes with Φ(p) = 0 are part of
one update tree from a previous insertion j < i. On insertion i, there
are then at most O(log mj) = O(log max{m1, . . . , mi−1}) such nodes.

Lemma 5.9 states that some strictly balanced nodes may need their
height values changed outside of any rotation, but the nodes will not
be strictly balanced after the height value update. For any node with
Φ(p) = 1, the work needed for the height value update can be taken
from the potential, since the resulting Φ(p) = 0. The new nodes in
the update tree of this bulk insertion will have Φ(p) = 0, since no
bulk insertions have yet been performed below them. As the result
of a rotation, some non-strictly balanced nodes may become strictly
balanced, but then the potential increase Φ(p) = 0 → 1 can be included
in the O(1) work performed by the rotation.

Therefore, on the ith insertion, the only nodes not accounted for
by the potential are the O(log max{m1, . . . ,mi−1}) nodes in an up-
date tree from a previous insertion. Then the B of Lemma 5.9 is
O(log max{m1, . . . ,mk}) in the amortized case. The amortized figures
now follow directly from Theorems 5.1 and 5.2.

5.4 Inserting multiple bulks 73

bulk-insert(A):
1 Sort the array A of keys to be inserted.

2 while there are keys left do

3 Search in the tree for the smallest key s to be inserted. Save the search

path P and the key m of the lowest node where the search descended

to the left child.

4 Form an update tree S from the keys k with s ≤ k < m, and insert it

into the position leaf found in the search.

5 rebalance(S, P)

Algorithm 5.4 Simple approach for bulk insertion with multiple bulks. A is

an array of keys to be inserted.

5.4 Inserting multiple bulks

As noted in Section 5.1, the previous sections assumed that the keys to
be inserted go to the same location (“position leaf”); in other words,
that the tree has no keys whose values are between the smallest and
largest keys to be inserted.

A simple way to remove this restriction is to process each position
leaf separately. Algorithm 5.4 gives the full bulk-insertion algorithm
using this simple strategy. Since the algorithm executes consecutive
single-bulk insertions, the results of Theorem 5.3 apply to it.

Disadvantages of this simple approach are that all of the new keys
are not available in the tree before any rebalancing is done (which could
be important in a concurrent application), and that the algorithm may
do unnecessary rebalancing when several update trees are close to each
other.

The total time complexity of the simple approach can be stated as
follows.

Theorem 5.4 Assume that I bulk insertions that form a total of K ≥
I bulks with m1, . . . , mK keys are performed to an initially empty avl

tree using the logarithmic rebalancing algorithm and the simple approach
for multiple bulks. If the tree has ni keys before the ith bulk insertion,
and the ith bulk insertion forms ki bulks with o1, . . . , oki keys, then the
ith bulk insertion uses O(ki log(ni +

∑
j oj)) time for tree traversal,

O(ki log max{m1, . . . , mK}) amortized time for rebalancing (amortized
over all I bulk insertions), and O(

∑
j oj) time for creating the new

nodes.

Proof. For each of the ki bulks in the ith bulk insertion, the sim-
ple approach for multiple bulks traverses a root-to-leaf path of length

74 BULK UPDATE ALGORITHMS FOR AVL TREES

position leaves

branching nodes

update trees

Figure 5.6 A position tree for bulk insertion with multiple bulks. The

dashed lines represent chains of nodes that form the position tree together

with the nodes drawn in the figure.

O
(
log

(
ni +

∑ki

j=1 oj

))
; more precisely, the length of the jth path is

O(log(ni + (o1 + o2 + · · ·+ oj−1))).
For the rebalancing complexity, we need to ignore the partitioning

of the K bulks into I bulk insertions with k1, . . . , kI bulks,
∑

j kj = K,
because the amortization in Theorem 5.3 is over all single-bulk inser-
tions, not just the ones executed by the ith bulk insertion. Thus, in
terms of rebalancing, the ith bulk insertion performs ki single-bulk in-
sertions, and Theorem 5.3 gives the stated rebalancing complexity.

There are o1 + o2 + · · ·+ oki =
∑

j oj new nodes.

The traversal time O(ki log(ni +
∑

j oj)) is, of course, close to
O(ki log n) if the number of inserted keys is much smaller than the
number of keys already present (

∑
j oj ¿ ni).

A more advanced method that extends the log-squared rebalancing
algorithm is given in [55]. The nodes visited by searching for all of the
position leaves form a tree-shaped subgraph called the position tree,
which consists of all ancestors of the position leaves (see Figure 5.6).
The basic idea of this method is to do rebalancing by traversing the
position tree in a bottom-up manner (e.g., in post-order), applying the
node balancing algorithm at each node. The node balancing algorithm
can also be used at a node where the position tree branches (called a
branching node), as long as the children are processed first: the ap-
proach used by the log-squared rebalancing algorithm works even if
update trees have been inserted under both children of an unbalanced
node.

However, the approach of [55] does not directly work with the log-
arithmic rebalancing algorithm. The upward phase of Algorithm 5.3

5.4 Inserting multiple bulks 75

requires that the siblings it considers are unmodified subtrees of the
original tree, which is not true at the branching nodes. The solution is
to stop the upward phase before each branching node. In other words,
the logarithmic algorithm is used to rebalance the path from an up-
date tree to the nearest ancestor that is a branching node. When both
children of a branching node have been rebalanced using the logarith-
mic algorithm, the node balancing algorithm is used to rebalance the
branching node itself. After this, the subtree resulting from rebalancing
the branching node is treated as a new update tree, and the logarith-
mic algorithm is used to rebalance the path from its parent to the next
branching node (or the root of the tree, if no branching nodes remain).

Algorithm 5.5 gives the method in detail. The algorithm saves the
search path in an array P , and uses two other arrays for additional
book-keeping: m[i] is a maximum limit for the keys that can be placed
below node P [i] in the tree (i.e., the key of the lowest node in P [1..i−1]
in which the search descended to the left child), and b[i] = 1 if the left
child of the branching node at P [i] has already been processed.

The advanced approach traverses each node in the position tree
only a constant number of times: each ancestor a is traversed once when
searching downwards in the tree, and the saved path entry associated
with a may be traversed at most a constant number of times when
searching for subsequent position leaves.

The number of nodes in the position tree is analyzed in [76]:

Lemma 5.10 Let l1, . . . , lk be some leaf nodes, from left to right, in
an avl tree T with n nodes, and let di denote the distance between the
leaves li and li+1 (specifically, the number of nodes with keys between
the keys of li and li+1). The total number of ancestors of l1, . . . , lk is

O

(
log n +

k−1∑

i=1

log di

)
.

Proof. The result is essentially given in Theorem 2 of [76]. There the
distance d′i is defined as the number of leaves l such that key(li) ≤
key(l) ≤ key(li+1). Here the distance di is counted in the number
of intervening nodes (both leaves and internal nodes), which is more
appropriate in an internal tree. The result is asymptotically the same,
since di = Θ(d′i) in an avl tree.

The total complexity of the advanced approach can be stated as
follows, using the above lemma for analyzing the tree traversal.

76 BULK UPDATE ALGORITHMS FOR AVL TREES

bulk-insert(A):
1 Sort the array A of keys to be inserted.

2 while there are keys left do

3 Search in the tree for the smallest key s to be inserted, starting from

the lowest node in the saved search path P , or the root if P is empty.

Save the full search path in P [1..n], where P [1] is the root and P [n] is

the node where the search finished. For each new node P [i] added

to P , set b[i] ← 0 and m[i] ← m[i − 1] (if P [i] is the right child of

P [i− 1]) or m[i]← key of P [i− 1] (otherwise); m[0] =∞.

4 Form an update tree S from the keys k with s ≤ k < m[n], and insert

it into the position leaf found in the search. Update s.

5 P [n + 1] ← the root of the update tree

6 u ← 1

7 while u = 1 do

8 Search upward in P for the branching node, i.e. the lowest node P [i]

such that b[i] = 1 or s < m[i].

9 if no branching node was found then

10 rebalance(P [n + 1], P [1..n])

11 return

12 else {the branching node is P [i]}
13 rebalance(P [n + 1], P [i + 1..n])

14 Remove P [i + 1..n + 1] from P .

15 if b[i] = 0 then {left child of P [i] done}
16 P [i + 1] ← the right child of P [i]

17 b[i] ← 1

18 u ← 0

19 else {both children of P [i] done}
20 balance-node(P [i])

21 Remove P [i] from P .

Algorithm 5.5 Advanced approach for bulk insertion with multiple bulks,

using the logarithmic rebalancing algorithm. A is an array of keys to be

inserted. This code is for internal trees; for external trees, add “n← n− 1”

after line 4.

5.5 Single-bulk deletion 77

Theorem 5.5 Assume that I bulk insertions that form a total of K ≥
I bulks with m1, . . . , mK keys are performed to an initially empty avl

tree using the logarithmic rebalancing algorithm and the advanced ap-
proach for multiple bulks. If the tree has ni keys before the ith bulk in-
sertion, and the ith bulk insertion forms ki bulks with o1, . . . , oki keys,
then the ith bulk insertion uses O

(
log ni +

∑ki−1
j=1 log dj

)
time for tree

traversal, O(ki log max{m1, . . . , mK}) amortized time for rebalancing
(amortized over all I bulk insertions), and O(

∑
j oj) time for creating

the new nodes. The value dj is defined as the number of nodes in T

between the jth and (j + 1)th update tree.

The traversal time of the advanced approach is never larger than
that of the simple approach and is smaller when the update trees are
close to each other. Consider, for instance, the path P from the root
of the tree to the lowest common ancestor of all the position leaves of
the ith bulk insertion. The simple approach traverses P (or a similar
path, if a rebalancing operation changes it) ki times, while the advanced
approach traverses P only once (except possibly when rebalancing).

In a concurrent implementation, it can be useful to make newly
inserted keys available to concurrent readers as soon as possible, before
rebalancing has been completed. It is easy to modify Algorithm 5.5 to
work in two phases: (1) Create and insert all of the update trees, but
do no rebalancing (skip lines 10, 13 and 20 of the algorithm). (2) Do
the rebalancing (run the algorithm again, but skip line 4 and modify
line 3 to stop the search at the roots of the previously created update
trees). The position tree can also be saved in phase (1), so that the
second phase does not need to redo the search. However, these mod-
ifications have a disadvantage: the locality of the algorithm is not as
good, since the position tree is traversed twice and, for example, the
first rotations are done close to the leftmost update tree just after the
rightmost update tree has been inserted.

5.5 Single-bulk deletion

As explained in Section 2.8, a bulk-deletion (or interval-deletion) algo-
rithm takes as input a set of intervals [L,R] of keys to delete from the
search tree. The algorithm deletes all keys in the given intervals and
rebalances the tree.

An outline of the bulk-deletion algorithm of this section was given
in [77], but without many of the details that are present here, for in-
stance with regard to deleting multiple intervals.

78 BULK UPDATE ALGORITHMS FOR AVL TREES

lca

L

R

(a) Before bulk deletion

Pt

Pl Pr

(b) After actual deletion

Figure 5.7 Overview of bulk deleting an interval [L, R]. The black subtrees

will be detached and the black nodes deleted.

5.5.1 Deleting an interval

Single-bulk deletion processes each interval separately, reducing the
problem to that of deleting a single interval [L,R] from the tree. A
single interval is deleted as follows (see Algorithm 5.6). First, locate
the lowest common ancestor (lca) of the interval – this is the highest
node in the tree that will be deleted (see Figure 5.7(a)). The lca is
located at the point where the search paths for L and R diverge to dif-
ferent children, i.e., the highest node whose key is in between L and R.
Denote the key in the lca node by A.

Deletion proceeds by searching for L starting from the left child
of the lca node. Whenever this search descends to a left child from a
node n, the subtree rooted at the right child of n needs to be completely
deleted: its keys are larger than L and smaller than A. Node n also
needs to be deleted (for the same reason), so n is simply replaced with
its left child. Freeing up the memory associated with the deleted nodes
is discussed in Section 5.5.2 below.

The search for L ends when it reaches a leaf or, in an internal tree,
when a node with key L is reached. In the latter case, the node can be
replaced by its left child. When the search ends, the interval [L,A] has
been deleted. The algorithm then starts over from the lca node, now
searching for R in the same way to delete [A, R].

In an external tree, actual deletion is now done and only rebalancing
remains. However, in an internal tree, the lca node itself still needs to

5.5 Single-bulk deletion 79

bulk-delete(L, R):
1 Search for lca: search in the tree for L and R until the search diverges

or either L or R is found.

2 a ← the lca node

3 Pt ← path [r, . . . , a] from root r to lca

4 Pl ← empty path

5 Pr ← empty path

6 if a.key < L or a.key > R then

7 return {There is nothing to delete}
8 if L 6= a.key then {Delete left half }
9 Search for L starting from a.left.

10 if the search goes left from a node n or n.key = L then

11 Mark node n and the subtree n.right as detached from the tree.

12 Replace n with its left child.

13 if n.key = L then

14 Stop the search here.

15 Pl ← the search path

16 dl ← the parent of the highest deleted node

17 if R 6= a.key then {Delete right half }
18 As above, but search for R and detach when going right.

19 Pr ← the search path

20 dr ← the parent of the highest deleted node

21 if either child of a is now empty then

22 Replace a with the other child.

23 Remove a from Pt.

24 else {Need to delete lca by replacing it with its successor}
25 Search for the successor s of a starting from the lowest node in Pr.

26 Delete s as in single deletion, and extend Pr to end at the parent of s.

27 rebalance(Pl, dl)

28 rebalance(Pr, dr)

29 rebalance(Pt, lowest node in Pt)

Algorithm 5.6 Actual bulk deletion of an interval [L, R] in an internal tree.

80 BULK UPDATE ALGORITHMS FOR AVL TREES

rebalance(P, c):
1 for each node n in P from down to up do

2 Update the height value of n.

3 if node c has been reached and n is in balance and the height value

did not change then

4 return

5 balance-node(n)

Algorithm 5.7 Rebalancing for bulk deletion. The argument P is part of a

search path (see Algorithm 5.6), and c ∈ P is a node above which rebalancing

can be stopped if nothing changes in the tree.

be deleted. If either child of the lca was deleted completely, the lca

node can be replaced with its remaining child. But if nodes remain in
both children of the lca, it needs to be replaced by its successor node,
i.e., the node s with the next-larger key. This is done in the same way
as in single deletion (see Section 2.4): move the key and associated data
fields of s to the lca node and replace s by its right child (if any). As
in single deletion, the predecessor node, found under the left child of
the lca, could just as well be used.

Rebalancing needs to be done on the following paths (see Fig-
ure 5.7(b)): (1) the path down from the lca to the position where
the search for L ended (call this Pl); (2) the corresponding path for R

(Pr); and (3) the path up from the lca to the root of the tree (Pt). In
an internal tree, if a successor node s is located and deleted as described
above, the path Pr should be extended to include the parent of s.

The rebalancing algorithm (Algorithm 5.7) is simple: simply use
the node balancing algorithm bottom-up for Pl, Pr and Pt. Above the
highest point where subtrees were detached, rebalancing can stop early
if a node n is already in balance and its height did not change – then
nothing has been done on the path up from n to the beginning of the
path Pl, Pr or Pt.

The rebalancing algorithm is essentially the same as the log-squared
algorithm for bulk insertion (Algorithm 5.2), but, as we will see below,
its complexity is logarithmic when used for deletion instead of insertion.

5.5.2 Detaching subtrees

A major advantage of bulk deletion is that it is not necessary to visit
each individual node that is to be deleted, since actual deletion can
often detach entire subtrees from the tree. However, the allocation of

5.5 Single-bulk deletion 81

· · ·

Figure 5.8 Storing detached subtrees. Each of the roots includes pointers

to its children and to the next node in the linked list.

new nodes needs to be changed slightly to let the nodes of detached
subtrees be available for future insertions. The following discussion
transfers ideas mentioned in [54] to avl trees and out of a database
context.

Conceptually, the root nodes of the detached subtrees need to be
saved in an auxiliary structure, e.g., a linked list. Whenever a new
node needs to be allocated, this structure is first consulted. If it is non-
empty, one of the roots, say node p, is reused as storage for the new
node (otherwise the new node is allocated normally). Node p is removed
from the structure and its children are saved back as new subtrees.

The auxiliary structure consists of a set of roots of subtrees that
contain only deleted nodes. However, the size of the structure can get
quite large, so it is useful to store it implicitly, using the deleted nodes
themselves as storage. The roots in the structure should then form
a linked list, where each root stores, in addition to its left and right
children, a pointer to the next root in the list (e.g., in place of the key,
which is unused in a deleted node) – see Figure 5.8. It is then easy to
remove a node from this linked list and add its children to the front of
the list, in constant time. The order of the roots in the list does not
matter.

In external trees, internal nodes and leaves can be treated in the
same way if they have the same size. If they have different sizes, a
simple solution is to store leaf nodes in a separate linked list. When
adding new subtrees or children to the structure, any leaf nodes can be
added to the front of the leaf-node list instead of the internal-node list.

5.5.3 Analysis

The complexity of the bulk-deletion algorithm is analyzed below to be
logarithmic in the number of deleted keys, when amortized over several
deletions. The article [77] contains a similar result, but the following
proof is more detailed.

Amortization is necessary because of the properties of avl trees.
In the worst case even single deletion may need to execute O(log n)

82 BULK UPDATE ALGORITHMS FOR AVL TREES

rotations, where n is the number of nodes in the tree. This can be
amortized to O(1) rotations per deletion in a sequence of deletions, but
not with mixed insertions and deletions – see Table 2.1.

Definition 5.1 The (deletion) potential ΦD(n) for a node n is:

ΦD(n) =
{

0, if n is strictly balanced
1, otherwise.

The potential ΦD(T) of an avl tree T is the sum of the potentials of
its nodes.

Lemma 5.11 Assume that an interval [L,R] containing m keys is
deleted from an avl tree T with potential ΦD(T). The bulk-deletion
algorithm will use O(log m) + O(ΦD(T) − ΦD(T ′)) rotations to rebal-
ance the tree, resulting in an avl tree T ′ with potential ΦD(T ′).

Proof. Consider the path p1, . . . , pl from the position of L to the left
child of the lca node after actual deletion has been performed. (The
rightward path is similar.) The siblings of p1, . . . , pl are consecutive
siblings of a path in an avl tree, except that some of the original
siblings have been removed (detached) in the actual deletion.

At each point pi where siblings have been removed (including p1),
the height difference di of two consecutive remaining siblings is limited
by the number of siblings removed at this point: di = hpi − hpi−1 ≤
2ji + 1, where ji is the number of siblings (subtrees) that have been
removed (see Lemma 5.1). In addition, the height of the previous node
pi−1 may have been reduced by one (thus increasing di) by the previous
iteration of Algorithm 5.7. Therefore, at most 2ji + 1 rotations need
to be done to fix the imbalance at pi (Theorem 4.2). Each rotation
can increase the potential of a constant number of nodes by 1, so the
amount of work required at pi is O(ji) when the potential is taken into
account.

The height of the subtree rooted at pi after the iteration may be
reduced by one in the balancing (Theorem 4.1). Therefore, even if
no further siblings were removed, a rotation may be needed at every
level above pi, but each of these rotations decreases the potential of the
tree, since they are needed only when the height of the lower child of a
non-strictly balanced node reduces by one.

By the above discussion, the total amount of work required below
the lca (including all jis on both the leftward and rightward paths)
is O(J), where J is the total number of subtrees removed in actual
deletion.

5.5 Single-bulk deletion 83

Consider then the lca node l, having height hl before actual dele-
tion. If neither child node of l was deleted by the actual deletion, then
the height of either child can decrease only by one in the balancing,
and one rotation (and a possible potential increase of 1) is enough to
correct the possible imbalance at l. If one or both child nodes of l were
deleted, which means that a subtree of height at least hl − 3 was de-
tached, then there may be a height difference of at most hl at l. The
work needed to fix the imbalance at l is then at most O(hl) = O(hd),
where hd is the height of the largest detached subtree (which is one
of the grandchildren of l). If one child of l was completely emptied in
actual deletion, Algorithm 5.6 will delete node l altogether, and in this
special case no work is needed to rebalance l.

If both child nodes of l were deleted, it is possible that, after actual
deletion and rebalancing at l, the height of the subtree originally rooted
at l may be much lower than it was before the deletion. Then the
height difference at the parent of l can be at most hl + 2 (the extreme
case occurs when the subtree rooted at l is completely deleted), and
O(hl) = O(hd) work is needed to rebalance the parent of l.

The height of the parent of l (or l itself, if both child nodes of l

were not deleted) can decrease by only one (Theorem 4.1). Thus, above
the parent of l, any further rotations decrease the potential of the tree
(they are, again, needed only when the height of the lower child of a
non-strictly balanced node reduces by one).

The total amount of rotations required for rebalancing, when the
potential is taken into account, is then O(J) + O(hd). If m keys are
deleted in total, the largest detached subtree can have height hd ≤
logΦ(m+1) = O(log m) (where Φ = (1+

√
5)/2, Theorem 2.2). Subtrees

are detached only from the two paths from the positions of L and R to
the lca node l, so there are two sets of consecutive siblings of paths in
the original tree T which can be removed. Due to Lemma 5.1, there can
be at most four siblings of each given height (two on either path). Then
the number of subtrees J = O(log m). The amount of work needed is
then O(J) + O(hd) = O(log m).

Next consider the total time complexity of rebalancing. Recall that
three paths are rebalanced: Pl, Pr and Pt (lines 27–29 of Algorithm 5.6).
On each path, above the highest detached subtree, rebalancing ends if
a node on the path is in balance and its height value does not change.
The discussion in the above proof showed that below the highest de-
tached subtrees rebalancing takes time O(log m). Above this point on
each of the three paths, the rebalancing algorithm does not do more

84 BULK UPDATE ALGORITHMS FOR AVL TREES

than a constant amount of work without either decreasing the potential
accordingly or performing a rotation. This can be seen as follows.

At the original grandparent g of the highest detached subtree (the
parent of a detached subtree is always deleted by line 11 of Algo-
rithm 5.6), the height of g may decrease by at most one if a rotation
does not need to be performed at g, because one child of g is unmod-
ified. The same is true of the parent p of any node where a rotation
was performed. If no more rotations are performed, the only way for
a height decrease of one to propagate upward on the path is when the
height of the higher child of a non-strictly balanced node q decreases.
This, however, makes q strictly balanced, thus decreasing the potential
of q by 1 to account for the necessary height value change.

Therefore, the amortized time complexity of rebalancing after bulk
deletion is asymptotically the same as the number of rotations, and can
be stated as follows.

Theorem 5.6 Assume that a sequence of k single-bulk deletions is per-
formed on an avl tree with n keys, and that m1, . . . , mk keys are deleted
from each interval, with

∑
i mi = n. The amortized complexity of re-

balancing after deleting an interval with m keys is O(log m).

If the interval to be deleted contains only one node, this bulk-
deletion algorithm normally makes the same changes to the tree as the
standard single-deletion algorithm, as did both of the bulk-insertion
algorithms discussed above. (In an internal tree, only the lca is deleted;
in an external tree, only one leaf node.) However, there is one exception
to this: lines 21–23 of Algorithm 5.6 that replace the lca with its child if
the other child is empty do not have an equivalent in the single-deletion
algorithm, though it would be possible to add the same optimization
to single deletion.

The total worst-case time complexity of bulk deletion of an interval
[L,R] with m keys from a tree with n ≥ m keys is O(log n), i.e., it is
dominated by the time taken to traverse the tree searching for L and R.
Contrast this with the O(m log n) time that would be used if each key
was deleted using single deletion.

5.6 Deleting multiple intervals

Consider the case where multiple intervals {[L1, R1], . . . , [Lk, Rk]} are
to be deleted. Two approaches, similar to the simple and advanced
approaches in bulk insertion, are possible.

5.6 Deleting multiple intervals 85

With either approach, it is useful to begin by sorting the intervals
to be deleted and checking for overlap between the intervals. Sorting
makes the tree searches more localized, and the number of intervals can
be reduced if they overlap. For instance, intervals [L1, R1] and [L2, R2]
with L1 ≤ L2 ≤ R1 ≤ R2 can be combined into a single interval
[L1, R2]. Thus, bulk deletion with multiple intervals should begin with
a preprocessing phase that sorts the list of intervals and merges any
overlapping ones.

The straightforward approach is to process each interval separately:
rebalance the tree fully after deleting an interval and before doing actual
deletion for the next interval. In this simple approach, tree traversal is
restarted from the root for each interval.

The remainder of this section will give a sketch of the advanced ap-
proach, which works similarly to Algorithm 5.5, the advanced approach
for bulk insertion. Since rebalancing for bulk deletion is done using only
the node balancing algorithm, as in the log-squared algorithm for bulk
insertion, the additional complications in Section 5.4 arising from the
logarithmic bulk-insertion algorithm are avoided. However, more book-
keeping is involved than in bulk insertion, since bulk deletion needs to
process several paths (in the left and right children of the lca).

Assume first that the algorithm would do all actual deletions one by
one before any rebalancing. Consider the subtree formed by the union of
all paths Pt, Pl and Pr produced by actual deletions of all the intervals
(similar to the position tree in bulk insertion, but with more paths).
Rebalancing can be done by executing the node balancing algorithm
bottom-up on each node in this subtree, for example in post-order, as
in the relaxed-balancing implementation of Section 4.3.

In Algorithm 5.6 for bulk deletion, downward tree traversal searched
for both ends L and R of the next interval, starting from the root of
the tree. Recall from Section 5.4 that the advanced approach for in-
sertion avoids repeating root-to-leaf searches by looking bottom-up at
the search path of the previous operation to find a node where the
downward traversal can be begun. Because the (sorted) intervals to be
deleted are processed from left to right, the search path used in this case
is the rightmost path traversed when deleting the previous interval, i.e.,
Pt concatenated with Pr. The upward traversal can be stopped when
the key of a node is larger than both L and R of the next interval: such
a node is always located above the lca of the next interval.

To improve locality in the tree searches, and to avoid having to
keep track of the whole position tree, the actual bulk deletions and re-
balancing should be interleaved, as was done in the advanced approach

86 BULK UPDATE ALGORITHMS FOR AVL TREES

for bulk insertion. After actual deletion of the interval [Li, Ri], rebal-
ance the produced path Pl as usual. Then look for the next interval
using the saved path PtPr. Assume that the downward traversal starts
from a node p ∈ Pt ∪ Pr; then the portion of the path PtPr below p

can be rebalanced before the downward traversal begins. Rebalancing
for the next interval can proceed in the same way, until a node in the
path PtPr is reached, at which point rebalancing can be continued on
the remainder of the path PtPr. Thus, at most two paths (leading to
L and R) need to be saved at any one time.

A final point for consideration in this sketch of the advanced ap-
proach is the optimization that bottom-up rebalancing can be stopped
early if the tree is not changed at some point (lines 3–4 of Algo-
rithm 5.7). The optimization is also valid here, but as in bulk insertion,
rebalancing needs to be restarted from the next branching node on the
path, i.e., the node p mentioned in the discussion above.

5.7 Comparison to relaxed balancing

When using relaxed balancing, as described in Section 4.3, rebalanc-
ing is decoupled from the actual updates (single insertions and single
deletions). A single rebalancing operation may then need to take into
account several insertions or deletions done in the same part of the tree.
This is closely related to the rebalancing done by a bulk-update algo-
rithm, and it is perhaps instructive to compare the algorithm described
in Section 4.3 with the bulk-insertion and bulk-deletion algorithms of
this chapter.

Bulk update operations have some advantages compared to the
using single insertions and deletions combined with relaxed balancing.
First, bulk insertion directly creates a balanced tree that contains all
insertions to a specific position, while relaxed balancing needs to create
nodes in positions dictated by the order of the elements in the “bulk”.
Relaxed balancing may need to traverse long paths inside the “update
tree” (since the newly created subtree has not yet been balanced) and
even do rebalancing inside the update tree. For instance, if keys are
inserted in sorted order, the new subtree created by relaxed balancing
degenerates into a linked list before rebalancing is performed. Second,
single insertions require a root-to-leaf search for the position of every
new key, unless some kind of finger tree (see Section 2.11) is used. These
advantages are slightly offset by bulk insertion needing to sort the new
keys first.

5.8 Experiments 87

Third, bulk insertion can also make use of the more efficient loga-
rithmic rebalancing algorithm. If single insertions and the relaxed bal-
ancing approach were used to insert keys that would form one bulk, the
rebalancing implied by Section 4.3 would behave like the log-squared
rebalancing algorithm (after the update tree itself has been balanced).

For bulk deletion, the primary advantages are that the deletion of
individual nodes in large subtrees can be deferred because of the detach-
subtree operations, and that the relaxed balancing approach needs to
traverse a subtree many times in order to single-delete all of its nodes. If
the algorithm described in Section 4.3 were used for rebalancing after
actual bulk deletion, the rotations performed would actually be the
same as with the bulk-deletion algorithm, though slightly more book-
keeping would need to be done to keep track of which parts of the tree
need rebalancing.

5.8 Experiments

This section briefly reports on experiments made with the bulk-insertion
and bulk-deletion algorithms. The experiments used internal height-
valued avl trees and the experimental setup described in Section 3.5):
a C implementation running on an amd Athlon xp at 2167 MHz.

In all cases, an initial tree was first formed using 106 single in-
sertions in random order. Then bulk insertion or bulk deletion was
performed using keys that create 10 bulks (or intervals), each of size m,
for m = 1, . . . , 50000. The experiments were repeated 15 times for
each m using new random keys.

5.8.1 Bulk insertion

The log-squared and logarithmic rebalancing algorithms were compared
with each other and with a trivial algorithm that inserts a bulk using
repeated single insertions. Repeated single insertions perform differ-
ently if the keys of a bulk are in random order than if they are first
sorted; both cases were examined here.

Figure 5.9 shows the average number of rotations performed when
inserting 10 bulks of m keys each into the tree (using the simple ap-
proach of Algorithm 5.4). Figure 5.10 gives the average cpu time used
when inserting these 10m keys.

The results in Figure 5.9 are not surprising. The logarithmic algo-
rithm clearly outperformed the log-squared algorithm, and both were

88 BULK UPDATE ALGORITHMS FOR AVL TREES

0

250

500

750

1000

0 50 100 150 200

R
o
ta

ti
o
n
s

u
se

d
to

in
se

rt
1
0
m

k
ey

s

Keys in one update tree (m)

Single insertion, presorted bulk
Single insertion, bulk in random order
Bulk insertion, log-squared algorithm
Bulk insertion, logarithmic algorithm

(a) Small bulks

0

250

500

750

1000

0 10000 20000 30000 40000 50000

R
o
ta

ti
o
n
s

u
se

d
to

in
se

rt
1
0
m

k
ey

s

Keys in one update tree (m)

Bulk insertion, log-squared algorithm
Bulk insertion, logarithmic algorithm

(b) Large bulks

Figure 5.9 Rotations used by bulk insertion.

5.8 Experiments 89

0

200

400

600

0 10000 20000 30000 40000 50000T
im

e
ta

k
en

to
in

se
rt

1
0
m

k
ey

s
(m

s)

Keys in one update tree (m)

Single insertion, bulk in random order
Single insertion, presorted bulk
Bulk insertion, bulk in random order
Bulk insertion, presorted bulk

Figure 5.10 Time spent in bulk insertion. The logarithmic algorithm for

bulk insertion is shown; the log-squared algorithm was only slightly slower.

much better than the linear cost of single insertions. Bulk insertion used
fewer rotations than single insertion for all bulk sizes with more than
a few keys. The cpu times in Figure 5.10 are dominated by creating
the m new nodes; nevertheless, bulk insertion performed considerably
better than single insertion.

Figure 5.11 compares the simple and advanced approaches for mul-
tiple bulks given in Algorithms 5.4 and 5.5. In the previous experiments,
the 10 update trees for each bulk insertion were placed at (uniformly
distributed) random positions in the tree. Here, the distance of one
update tree to the next is fixed: new keys are selected so that there
are exactly a given number of keys in the initial tree between two posi-
tion leaves. The results are averaged for 15 random initial trees (each
containing n = 106 keys) and random positions for the leftmost update
tree.

The values in Figure 5.11 estimate the traversal cost by measuring
the number of key comparisons performed for an update tree size of
m = 10000 (m = 1000 was similar). Comparisons performed while
searching for the end of each bulk were not counted – when creating
an update tree, both implementations compared each new key except
for the first to the maximum key possible at the current position leaf,
both doing 10m− 1 comparisons which are here ignored.

The advanced approach clearly used much fewer key comparisons
for small update tree distances. With large distances, the simple ap-

90 BULK UPDATE ALGORITHMS FOR AVL TREES

0

50

100

150

200

250

300

1 10 100 1000 10000 100000

K
ey

co
m

p
a
ri

so
n
s

in
tr

a
v
er

sa
l

Keys between two update trees of size m = 10000

Simple
Advanced

Figure 5.11 Comparison of simple and advanced approaches for multiple

bulks. The logarithmic rebalancing algorithm was used in all cases. The

y-axis gives the number of key comparisons done during tree traversal when

inserting 10m keys.

proach was somewhat better; the advanced approach traverses search
paths upwards when looking for the next position leaf, but when the
update trees are far from each other a simple root-to-leaf search would
be more efficient.

5.8.2 Bulk deletion

Figure 5.12 gives the average number of rotations performed when delet-
ing 10 non-overlapping intervals of m keys from random locations from
a tree with n = 106 keys, using single-bulk deletions. Figure 5.13 gives
the average cpu time used when deleting the 10 intervals (having a
total of 10m keys), for two versions of bulk deletion: one which de-
taches whole subtrees, and another that visits each individual node to
delete it. The latter is called “Bulk deletion with node deallocation” in
Figure 5.13 and in Table 5.3.

The experiments compare bulk deletion to a simple method in
which single deletions are used to delete the same keys in order from
smallest to largest. Each key is deleted as a separate deletion operation
– that is, a root-to-leaf search is performed for every key. Some sort
of finger tree (see Section 2.11) could be used to make tree traversal in
the single deletions somewhat more efficient, but the number of rota-

5.8 Experiments 91

Number of nodes read Bulk deletion

Single Bulk Bulk del. Subtree Node

m deletion deletion w/dealloc. detachments deletions

1 237 242 242 0.0 10.0

10 384 328 383 34.4 44.4

100 1384 458 1380 67.3 77.3

1000 10476 577 10467 100.3 110.3

10000 100555 695 100549 136.5 146.5

25000 250606 763 250603 150.8 160.8

50000 500615 773 500601 161.9 171.9

Table 5.3 Read-set sizes and subtree detachments in bulk deletion of 10m

keys.

tions would not change. Single-deleting the keys in random order could
make the number of rotations somewhat smaller (as in insertion, see
Figure 5.9), but naturally still linear in the number of deleted keys.

Table 5.3 shows the number of separate nodes read (i.e., the size
in nodes of the read set of the algorithm) during deletion of the 10m

keys, as well as the number of subtree detachments performed by bulk
deletion. Bulk deletion with subtree detachment still deletes some indi-
vidual nodes (e.g., node n in line 11 of Algorithm 5.6) – these are given
in the rightmost column of the table.

The results show that bulk deletion is very efficient: fewer than
120 rotations and a fraction of the single-deletion time was used to
delete 500000 keys. The extremely small running time is explained
by not having to visit most of the individual nodes – the version of
bulk deletion that deallocates each individual node was only about 30%
faster in running time than single deletion, and had about the same
read-set size. For instance, for m = 50000, bulk deletion needed to read
about 773 nodes on average and performed 162 subtree detachments to
delete 10m keys, compared to the 500615 nodes that were read by the
10m = 500000 single deletions.

92 BULK UPDATE ALGORITHMS FOR AVL TREES

0

200

400

600

800

1000

1200

0 50 100 150 200

R
o
ta

ti
o
n
s

u
se

d
to

d
el

et
e

1
0
m

k
ey

s

Keys in one interval (m)

Single deletion
Bulk deletion

(a) Small bulks

0

20

40

60

80

100

120

0 10000 20000 30000 40000 50000

R
o
ta

ti
o
n
s

u
se

d
to

d
el

et
e

1
0
m

k
ey

s

Keys in one interval (m)

Bulk deletion

(b) Large bulks

Figure 5.12 Rotations used by bulk deletion.

0

50

100

150

0 10000 20000 30000 40000 50000

T
im

e
ta

k
en

to
d
el

et
e

1
0
m

k
ey

s
(m

s)

Keys in one update tree (m)

Single deletion
Bulk deletion with node deallocation
Bulk deletion

Figure 5.13 Time spent in bulk deletion. The values for “Bulk deletion”

are very small, in the range 0.03–0.10 ms.

93

CHAPTER 6

Using bulk insertion in adaptive sorting

T
his chapter examines the application of bulk insertion in an adap-
tive sorting algorithm. The chapter begins by discussing a finger

structure adapted to avl trees, and then explains how to find bulks
to be inserted using the bulk-insertion algorithm. The next topic is
an alternative approach that uses bulks but does not need an actual
bulk-insertion algorithm. The chapter finishes with analytical and ex-
perimental results about the new algorithms.

The reader is referred to Sections 2.10 and 2.11 for brief introduc-
tions to adaptive sorting and finger trees.

Some of the results presented in this chapter appear in [74] by the
author and supervisor of this thesis. However, the published article has
much less detail, especially regarding the implementation, and does not
include the bulk tree (but includes some analytical results on so-called
composite measures of presortedness that are not present here).

6.1 Simplified finger: Binary saved path

Section 2.11 explained that a finger is a pointer to a node in the search
tree, using which other nearby nodes can be accessed without starting
the search from the root. In search-tree-based adaptive sorting, the
finger is used as a starting point for finding the place of the next key
to be inserted.

As described in Section 2.11, this chapter will present a simplified
finger structure that is less complex to implement than a full finger,
but not quite as effective. This simplified finger structure for avl trees
(actually for any binary search tree) will be called the binary saved
path, because it resembles the saved path used in database systems.

94 USING BULK INSERTION IN ADAPTIVE SORTING

(node, dir, ip)

1 (a, left,−)

2 (b, left,−)

3 (c, right, b)

4 (d, right, b)

5 (e, left, d)

6 (f, right, e)

7 (g, right, e)

8 (h, left, g)

a

b
c

d
e

f
g

h

Figure 6.1 Binary saved path construction: When the search advances to

the left child of node h, the new entry pushed onto the binary saved path is

(h, dir(h), ip(h)) = (h, left, g).

The saved path [61] is a stack that stores the last accessed root-to-
leaf path of a B-tree. For each node on the root-to-leaf path, the saved
path contains a pointer to the node and the minimum and maximum
router keys of the node (as well as some additional data related to
concurrency). The saved path is used by all search tree operations: a
search for a key k begins by examining the saved path in a bottom-up
fashion, looking for the lowest node that covers k, i.e., k is greater than
or equal to the minimum router and smaller than the maximum. A
standard downward tree search is then begun from the node from this
entry (in the worst case, at the root).

Examining an entry in the traditional saved path requires two com-
parisons: k is compared to the minimum and maximum routers. In
internal binary trees, the number of comparisons can be reduced to
one as follows. (Internal trees are better suited for adaptive sorting
than external trees because of their smaller space usage, as noted in
Section 2.4.)

Like the saved path, the binary saved path is a stack that describes
a root-to-leaf path in the binary tree. Each entry in the binary saved
path describes a parent-to-child edge in the tree – for instance, “the
left child of node p”. Specifically, each entry is a triple

(p, dir(p), ip(p)),

where dir(p) is either left or right and denotes the direction of the edge
down from node p (i.e., which child of p is the next entry on the path),
and ip(p), the indirect parent of p, is the lowest node above p where the
direction is different from dir(p). (See Figure 6.1.) The lowest entry of
the path generally points to the node that was last inserted.

6.2 Finding ascending or descending sequences 95

The maximum and minimum router keys are found directly from
each entry. For an entry (p, left, ip(p)), the maximum router is the key
of p and the minimum is the key of the indirect parent. For an entry
(p, right, ip(p)), the minimum router is the key of p and the maximum
is the key of the indirect parent.

Theorem 6.1 Using the binary saved path, the lowest entry in the path
that covers a key k can be found using at most s key comparisons, where
s is the number of entries in the path.

Proof. For an entry in the saved path to cover key k, k needs to be
between the key of the node p in the entry (the “direct parent”) and
the key of the indirect parent ip(p) (which is one of the nodes higher
up on the saved path). The key k is compared with the indirect parent
first, because if this comparison fails, the saved path entries between the
indirect and direct parents can be skipped: none of them can cover k

because of the indirect parent.
Each entry on the saved path thus gives a new minimum or max-

imum limit for k, so k needs to be compared to each entry at most
once.

A rotation done on a node p which is on the saved path can make the
saved path structure invalid. However, it is straightforward to update
the saved path after each rotation to reflect the change in the tree
structure: the saved path should finally contain the path from the root
to the previously inserted node. For example, if the saved path contains
an entry “left child of node p”, a right single rotation done at p should
remove this entry from the path.

6.2 Finding ascending or descending sequences

A subproblem that arises in using bulk insertion for sorting is how to
find the sequence of keys to be inserted. Given a list of keys K1, . . . Kn,
and minimum and maximum key values s and g, where s < K1 <

g, the problem is to find the longest ascending or descending prefix
K1, . . . , Km where each key is in the given range: s < Ki < g for
i = 1, . . . ,m, 1 ≤ m ≤ n. When s and g are consecutive keys already
present in a search tree, K1, . . . , Km can all be inserted in the same
location in the tree. As is usual in adaptive sorting, it is assumed that
the input data does not contain duplicate keys.

96 USING BULK INSERTION IN ADAPTIVE SORTING

If K1 < K2, we look for an ascending prefix. A trivial way of
finding the end m of the prefix uses two comparisons per element: one
to see if the key is larger than the previous one, and another to see if
the key is smaller than g. This requires at most 2m− 2 comparisons to
find a prefix with m keys. If K1 > K2, a descending prefix is found in
the same manner. To simplify the presentation, K1 < K2 is assumed
below.

After finding one prefix K1, . . . , Km and bulk-inserting it, the al-
gorithm is repeated for the remaining keys Km+1, . . . , Kn, now possi-
bly with different values of the limits s and g. In this way, the keys
K1, . . . , Kn are split into ascending or descending sequences (called
bulks) within the given limits.

The number of comparisons can be reduced from 2m − 2 to m +
O(log m) per sequence of length m as follows. Assuming that the pre-
fix is ascending, it is not necessary to compare every element to the
maximum. Instead, a variation of exponential and binary search [58] is
applied, first comparing only the second, fourth, 8th, 16th, 32nd, . . .

key to the maximum. When one of these comparisons fails (say, the
32nd key is above the maximum), a binary search is done in the last
interval (e.g., keys 17 to 31) to find the last element below the max-
imum. Whenever an element Ki that is smaller than the maximum
is found, in either the exponentially increasing search or in the binary
search, we need to ensure that the prefix K1, . . . , Ki is ascending be-
fore continuing. To achieve m+O(log m) comparisons, the “ascending-
comparisons” Ki−1 < Ki must not be repeated. This is done simply
by saving the index a before which the sequence K1, . . . , Ka is known
to be ascending.

However, the above approach may use more than m ascending-
comparisons when finding a single prefix of m keys. For example, if the
32nd key is below the maximum in the exponentially increasing search,
we then check that keys 17 to 32 are ascending. Assume that the 31st
key is not larger than the 30th; then a binary search for the maximum
is done in keys 17 to 30. We then find that the last element below the
maximum is actually the 17th key, and create a bulk of size m = 17,
but we have used 31 + O(log m) comparisons.

When finding all ascending or descending sequences in K1, . . . , Kn,
repeating any of the ascending-comparisons is avoided by saving the
index a for the next sequence. In the example, when searching for the
next sequence starting from the 18th key, we know from the current
value of a that all keys up to the 30th are ascending. A flag is also
saved noting whether the sequence up to a is ascending or descending.

6.3 Bulk-insertion sort in an avl tree 97

Theorem 6.2 Given limits s and g and a list of keys K1, . . . , Kn,
finding maximal ascending or descending sequences of consecutive keys
where each key k satisfies s < k < g can be done with m + O(log m)
comparisons per sequence of length m. The limits s and g may be
different for each sequence.

Proof. Because of the saved index a, every key is compared to the
previous one (to find out if the sequence is ascending or descending)
only once. All remaining comparisons are comparisons with the max-
imum (ascending) or minimum (descending) element. In the ith bulk,
the exponentially increasing search does O(log mi) comparisons – the
second-to-last element compared is always included in the bulk. The
binary search is done in an interval of size O(mi) and thus also uses
O(log mi) comparisons.

6.3 Bulk-insertion sort in an avl tree

Recall from Section 2.10 that the local insertion sort algorithm [56]
inserts the values to be sorted in a finger search tree one by one. Im-
plementing the finger using the binary saved path in an avl tree leads
to an avl-tree-based variation of this algorithm.

Applying bulk insertion to the avl-tree-based algorithm is simple:
after finding the position of the next key to be inserted, create a bulk
of as many keys as fit in this position, and insert them all using the
bulk-insertion algorithm of Section 5.1 with the logarithmic rebalancing
algorithm of Section 5.3. In this application, bulks are inserted one at a
time, so single-bulk insertion is enough and the methods of Section 5.4
for inserting multiple bulks are not needed.

Finding the keys that fit in the insertion position is done using the
algorithm of the previous section. The values s and g required by bulk-
finding should be the next-smaller and next-larger key values present
in the tree after searching for the position where the first key is to be
inserted. They are found from the saved-path entry (p, dir(p), ip(p))
that points to where the first key should be inserted: s and g are the
keys of the direct parent p and indirect parent ip(p).

Algorithm 6.1 gives an outline of the bulk-insertion sorting algo-
rithm. Figure 6.2 shows an example of which keys form bulks when a
sequence of keys is sorted using this algorithm.

It was described in Section 5.1 that the bulk insertion algorithm
first needs sort the keys of the new bulk. However, in this case sorting

98 USING BULK INSERTION IN ADAPTIVE SORTING

bulk-insertion-sort(A[1..n]):
1 k ← 1

2 P ← empty binary saved path

3 T ← empty avl tree

4 while k ≤ n do

5 Search bottom-up in the binary saved path P for the lowest position

P [s] with key(P [s]) < A[k] < key(ip(P [s])) or key(P [s]) > A[k] >

key(ip(P [s])).

6 Search for A[k] in T starting from P [s]. Save this path to P [s + 1..d].

7 Use the algorithm of Section 6.2 to find the longest ascending or

descending sequence of keys A[k..l], where key(P [d]) < A[i] <

key(ip(P [d])) or key(P [d]) > A[i] > key(ip(P [d])) for all i ∈ [k, l].

8 Bulk insert A[k..l] in T at the position pointed by P [d].

9 k ← l + 1

10 return T

Algorithm 6.1 Bulk-insertion sort.

4 8 9 20 22 23| {z } 7 6 5| {z } 3 2 1| {z } 19 14 13 10| {z } 15 16 17 18| {z } 21|{z} 12 11| {z }

Figure 6.2 Example of bulks created in bulk-insertion sort and bulk-tree

sort. Bulk-insertion sort uses 7 bulk insertions to sort this sequence of 23 keys.

the bulk is of course unnecessary, since we know that its keys are in
ascending or descending order. Therefore, the update tree should be
created out of the sequence A[k..d] simply by placing the middle element
A[b(k+d)/2c] at the root of the update tree and proceeding recursively.

6.4 Lazy bulks

The avl-tree bulk-insertion algorithm of Chapter 5 uses O(log m) amor-
tized time to rebalance the tree after a bulk of m keys is inserted (The-
orem 5.3) – but creating the m new nodes still requires O(m) time.
However, in the case where bulk-insertion sort produces mainly large
bulks, the sorting algorithm does not actually visit most of the nodes
in each bulk, so creating all of the nodes is not necessary.

This observation can be used to reduce the running time of bulk-
insertion sort as follows, assuming that keys A[1..n] are to be sorted.
Instead of creating an update tree from keys A[i] to A[i+m−1], create a
single “lazy” placeholder node that contains the values i and m instead
of the normal key and child pointers.

6.5 The bulk tree 99

In the implementation used in the experiments, a special, otherwise
unused, address for the left child pointer was used to mark a lazy node.
The right child pointer and key were used to store m and a pointer
to A[i], as well as a flag that notes whether the sequence A[i] to A[i +
m− 1] is ascending or descending.

The lazy node is placed where the root of the new update tree
should be. Later, the lazy node can be expanded, in constant time, to
a normal node (with key A[i + bm/2c]) with two new lazy nodes as its
children (one with keys A[i] to A[i+bm/2c−1], and the other with keys
A[i+bm/2c+1] to A[i+m−1]). A lazy node p is expanded whenever any
part of the bulk-insertion sorting algorithm follows a child pointer that
leads to p, either during rebalancing or during a future finger search.

The use of lazy bulks does not change the rebalancing strategy of
the tree: the lazy node acts like a normal node that has the height of
the expanded update tree. The height is easy to calculate from m.

Lazy bulks have the disadvantage that every time a left or right
child pointer is followed, the child node needs to be checked for laziness.
Experiments done for Section 6.7 indicated that the slowdown caused
by this is very small compared to the advantage of lazy bulk creation.

Strictly speaking, lazy bulks change the output format of the sort-
ing algorithm, since some of the leaves of the avl tree are placeholder
nodes. It is, however, still very easy to access the keys in sorted order:
do the usual in-order traversal of the tree, but whenever a placeholder
node with values i and m is reached, output the values A[i] to A[i+m−1]
before continuing the in-order traversal.

6.5 The bulk tree

It is possible to apply the bulk-finding algorithm of Section 6.2 to adap-
tive sorting even without using an actual bulk-insertion algorithm like
the one in Chapter 5. This can be done by modifying the structure of
the binary search tree as follows.

Instead of storing single keys in nodes, each node stores a bulk of
several keys that are consecutive in the original array A to be sorted.
Specifically, an internal avl tree is used where each node contains a
pointer to a key A[i], the number of keys m in the bulk, and a flag
noting whether the bulk is ascending or descending (in addition to the
left and right child pointers and the avl-tree balancing direction). Each
node then designates the ascending or descending sequence of keys A[i]
to A[i + m− 1]. This modified avl tree is called a bulk tree.

100 USING BULK INSERTION IN ADAPTIVE SORTING

Searching for the next key k to be inserted is done using the bi-
nary saved path of Section 6.1. Thus, we first traverse the saved path
bottom-up to find the lowest entry that covers k. For the purposes of
this search, the router key of a node p in the saved path is either the
smallest or largest key of the bulk stored in node p: the smallest key
is used if dir(p) = left (since the smallest key sets a maximum for the
keys stored in the left child of p), the largest otherwise.

After the lowest saved-path entry that covers k is found, the search
proceeds downwards in the tree. The downward search is done by
comparing k to the smallest key a and largest key b of the bulk in each
node. If k < a and k < b, the search descends to the left child, and
respectively to the right if k > a and k > b. If an empty location in
the tree is found in this way, a new bulk containing k and any other
keys found using the bulk-finding algorithm of Section 6.2 is inserted
(with a possible rotation afterwards, as when inserting a single node to
a normal avl tree).

If, however, a < k < b at some point, the bulk [a..b] needs to be
split in two parts to accommodate the new key k. Three things are
then done. First, a binary search for k is performed in the bulk (which
is an ascending or descending sequence of keys), and the bulk is split
into two halves: S (containing keys smaller than k) and L (containing
keys larger than k).

Second, the bulk-finding algorithm is run to find a new bulk K

containing k and possibly some other keys. Here the minimum key
value s in the bulk-finding algorithm is set to the largest key of S, and
the maximum g to the smallest key of L (instead of taking these limits
from the saved path).

Third, the three bulks S, K and L are inserted in the tree, for ex-
ample by replacing the original bulk [a..b] with L and inserting S and K

as new nodes to the rightmost end of the left child of the original bulk
(i.e., the position where the next-smaller node should be – note that no
key comparisons are needed to find this). The new nodes S and K are
inserted separately, with a possible rotation after both insertions.

Every insertion of a new bulk thus either creates a single new node,
or (in the bulk-split case) modifies the contents of one node and inserts
two others.

After all keys have been inserted in this manner, the sorted se-
quence can be retrieved by doing a standard in-order traversal of the
bulk tree and printing out the bulks.

Although an avl tree was used above (and in the experiments be-
low), the bulk tree could just as well be, for instance, a red-black tree.

6.6 Analysis 101

However, the tree should be internal to avoid special cases having to
do with the router keys of external trees.

6.6 Analysis

As noted in Section 2.11, the binary saved path is not a full-fledged
finger. More specifically, it does not use worst-case O(log d) time to
move a distance d in the tree. It is thus not optimal with respect to
the logDist [42] or Loc [65] measures used to characterize local insertion
sort using a finger tree. However, the binary saved path is optimal with
respect to the number of inversions:

Theorem 6.3 Local insertion sort implemented using the binary saved
path takes time O(n log(1 + Inv/n)), which is optimal with respect to
Inv (the number of inversions).

Proof. It is known that an approach that keeps the finger always point-
ing to the largest key in the tree is Inv -optimal [82]. Consider an
insertion to a position x elements away from the largest key l, and as-
sume that the previous insertion was one at a position p elements away
from the largest key. Moving the binary saved path from p to x costs
at most as much as moving a finger from p to l and from l to x (the
time complexity is O(log p + log x)). Therefore, the binary saved path
is M -optimal for any measure M for which the “finger at largest key”
approach is M -optimal.

The approach of [82] does not actually move the finger from p to l,
but the previous insertion has moved from l to p in the tree, so we can
move the finger back to l without increasing the cost by more than a
constant factor.

Next consider the bulk-insertion sorting algorithm of Sections 6.3
and 6.4.

Lemma 6.1 Consider a measure M of sortedness. If local insertion
sort implemented using the binary saved path is optimal with respect
to M, bulk-insertion sort is also M-optimal.

Proof. The two algorithms are essentially identical when a bulk of
size m = 1 is inserted. Consider then a larger bulk containing m > 1
elements in an ascending or descending sequence.

After the position of the first key is found, local insertion sort uses
O(m) key comparisons in the amortized sense to insert the elements one

102 USING BULK INSERTION IN ADAPTIVE SORTING

by one: since the keys are in ascending or descending order, the location
for the next insertion is a constant distance away from the previous one,
and each single insertion takes time O(1) when traversing the tree using
the binary saved path.

Bulk-insertion sort takes at most the same amount of time: after
the position of the first key is found, O(m) comparisons are required
for finding the bulk (Theorem 6.2) and amortized O(log m) time for
rebalancing and tree traversal (Theorem 5.3).

Theorem 6.4 Bulk-insertion sort is Inv-optimal.

Proof. Implied by Lemma 6.1 and Theorem 6.3.

It is currently not known whether bulk-tree sort is Inv -optimal or
not, although it appears in the experiments in Section 6.7 to be at least
strongly adaptive to Inv .

Bulk-insertion sort and bulk-tree sort are both optimal with respect
to a new measure Bulk , first defined in the article [74] (by the author
and supervisor of this thesis) mentioned at the start of this chapter.
The measure Bulk is defined as the number of bulks in the input X,
where a bulk B is a maximal-length ascending or descending sequence
of keys where no keys in X before B are between the smallest and
largest keys in B. The bulk-finding algorithm in Section 6.2 is used to
find these bulks, so Figure 6.2 also gives an example of the bulks used
by the Bulk measure.

The lower bound for the measure k = Bulk(X) is Ω(n+k log k) [74,
Lemma 1].

The Block measure – defined in Section 2.10 as the number of blocks
of consecutive elements in the original sequence that are also present in
the sorted sequence – is closely related to Bulk : each block is completely
contained in a bulk, and each bulk contains one or more blocks. For
example, Figure 6.2 contains 7 bulks and 18 blocks: the blocks are
{8, 9}, {22, 23}, {15, 16, 17, 18}, and all the other keys as one-element
blocks.

Theorem 6.5 Bulk-insertion sort is Bulk-optimal.

Proof. Assume that the input data contains n keys that form k bulks.
Ignoring the creation of the update tree and the bulk-finding algorithm
(Section 6.2), inserting one bulk can be done in O(log n) time. The total
time spent in creating the nodes in the update trees and in bulk-finding
is O(n).

6.6 Analysis 103

The time complexity of bulk-insertion sort is then O(n + k log n).
Since 1 ≤ k ≤ n, it follows that n = ck where 1 ≤ c ≤ n. Then:

k log n =
n

c
log(ck) =

n

c
log c +

n

c
log k

≤ n +
n

c
log k

= n + k log k.

Thus O(n + k log n) = O(n + k log k), which matches the lower bound
of the Bulk measure.

Theorem 6.6 Bulk-tree sort is Bulk-optimal.

Proof. Assume that the input data contains n keys that form k bulks.
As noted in Section 6.5, inserting each bulk in the bulk tree creates
one or two new nodes, so the bulk tree has O(k) nodes after all the
insertions. Since the bulk tree is structurally an avl tree, the O(k)
single insertions take time O(k log k). Finding the bulks (Section 6.2)
requires O(n) time in total.

Additionally, each insertion of a new bulk may do one binary search
inside a previously inserted bulk. Since the size of the largest bulk is
bounded only by O(n), the binary searches may need O(k log n) time.

The total complexity of bulk-tree sort is then O(n+k log n), which
is Bulk -optimal using the argument of Theorem 6.5.

Note that the use of the simplified finger was not required for Bulk -
optimality in either algorithm.

Lazy bulks in bulk-insertion sort (Section 6.4) are not required for
Inv - or Bulk -optimality, since creating all nodes in the update tree (or
expanding every lazy node) takes time O(

∑
i mi) = O(n), if the input

(of size n) forms k bulks with m1, . . . ,mk keys. However, lazy bulks
reduce this cost:

Theorem 6.7 Assume that the input to be sorted forms k bulks contain-
ing m1, . . . , mk elements. When lazy bulks are used in bulk-insertion
sort, inserting the bulks (without searching or bulk-finding) takes time
O(

∑
i log mi).

Proof. Consider the insertion of one bulk of size m. Creating the update
tree (i.e., the single lazy node) takes O(1) time. Rebalancing may need
to expand some of the nodes in this update tree and in the update
trees of previous insertions. However, rebalancing after bulk insertion
takes O(log m) amortized time (Theorem 5.3), and can thus expand at

104 USING BULK INSERTION IN ADAPTIVE SORTING

most O(log m) lazy nodes (also amortized). Thus, inserting a bulk of
m keys to a given position in the tree can be done in O(log m) amortized
time.

Applying bulk insertion, with or without lazy bulks, naturally re-
duces the number of rotations. The following follows directly from
Theorem 5.2.

Theorem 6.8 Assume that the input to be sorted forms k bulks contain-
ing m1, . . . , mk elements. Then the total number of rotations needed by
bulk-insertion sort is O

(∑k
i=1 log mi

)
.

Without using bulk insertion or the bulk-tree, the number of rota-
tions is of course O

(∑k
i=1 mi

)
= O(n).

6.7 Experiments

This section reports on experiments performed comparing the adaptive
sorting algorithms described above with each other and with a few other
algorithms, on randomly generated input data having a varying number
of inversions. Local insertion sort was implemented using the binary
saved path and internal height-valued avl-trees, with and without bulk
insertion (these are called Single-insertion sort and Bulk-insertion sort
below), and additionally the bulk tree of Section 6.5.

The performance was compared to two Inv -optimal algorithms –
Splaysort [60] and Splitsort [53] – and to standard Quicksort, Insertion
sort (see [58], for example), and the qsort function in the C library.
Splitsort is known to be efficient especially in terms of running time [23,
26] and Splaysort in the number of comparisons [23,60].

The experiments were done using the experimental setup described
in Section 3.5: C implementations running on an amd Athlon xp at
2167 MHz. Each experiment was repeated 10 times using newly gener-
ated input – the numbers given are averages of these.

6.7.1 Implementations

Despite the name, the qsort function is actually a straightforward im-
plementation of Merge sort in current versions of the gnu C library,
which is commonly used under Linux. The source code (of version 2.3.6,
which was used in these experiments) reveals that qsort uses Merge

6.7 Experiments 105

sort, unless there is a problem allocating memory for the needed addi-
tional O(n) space, in which case it falls back to an in-place Quicksort
implementation. The fallback was avoided in these experiments.

The Quicksort implementation in these experiments used the de-
terministic version from [13], specifically [13, Figure 1] with the pivot
selection changed to always use the middle element as the pivot. In [13],
this version had the smallest number of comparisons when the number
of inversions was small. The textbook optimizations of median-of-3 par-
titioning and fallback to Insertion sort for n ≤ 10 were also attempted,
but this improved performance only very slightly.

The Splaysort implementation was the one from [60]. Splitsort was
reimplemented for these experiments, but it was found that the space
optimization mentioned in [53] that uses only n pointers of extra space
was much slower than a version that uses 2n extra pointers to avoid
copying data back and forth in the various phases of the algorithm.
Thus, the faster 2n-space version was used in the experiments.

To obtain comparable running times, the output of each sorting
algorithm was always written to an array. That is, when using the
tree-based algorithms (Single-insertion sort, Bulk-insertion sort, Bulk-
tree sort, Splaysort), all nodes in the created tree were finally traversed
and the sorted result written back into the original array.

6.7.2 Input data

Both integer and string keys were examined. The integer keys (word-
sized integers in the range [1, n] with n = 225) give very fast compar-
isons. The string keys were taken from a list of about 2 million file
names sorted in lexicographic order.∗ Most of the strings contain simi-
lar prefixes so that string comparisons often need to look for more than
the first few characters to differentiate between the strings.

The input data was generated so that the full extent of inversion
adaptivity was examined, from completely sorted sequences to com-
pletely random ones. This required using three different methods to
generate input.

The first input-generation method produced small amounts of in-
versions (0 to about n) using the algorithm of [25] applied to the Inv
measure. This algorithm exchanges k randomly chosen pairs of adja-

∗ Specifically, the list of file names in the Debian gnu/Linux distribution release

4.0r2, http://ftp.debian.org/dists/Debian4.0r2/Contents-i386.gz with du-

plicates removed.

106 USING BULK INSERTION IN ADAPTIVE SORTING

cent elements, starting from a sorted sequence, thus generating about
k inversions on average (unless k is too large).

The second method was the algorithm described in [23], which was
used to produce larger numbers of inversions: about n to n2/8. This
algorithm generates about mn/2 inversions on average, by first dividing
a sorted sequence into dn/me equal-sized blocks and permuting the
elements in each block into random order, and then selecting a random
element from each of m equal-sized blocks and permuting the selected
elements into random order.

Finally, the third method created random (non-adaptive) sequences
where every permutation is equally likely – which gives about n2/4 in-
versions on average. This non-adaptive case is reported as the rightmost
data point in Figures 6.3(b), 6.4(b,c) and 6.5(b), and on the bottom
line of Table 6.1.

6.7.3 Results and discussion

Figure 6.3 and Table 6.1 show the number of comparisons performed
by the algorithms (divided by n for clarity) using integer keys. Figures
6.4 and 6.5 give running times for integer and string keys. The number
of comparisons in the string keys case was very similar to the larger n

of the integer key case.
The figures use the actual number of inversions measured from the

input data, averaged∗ over the 10 generated sequences, as the x-axis.
Table 6.1 also gives the parameters k and m of the input-generation
algorithms.

The results show that applying bulk insertion greatly improved
avl-tree based sorting when the number of inversions was small: with
less than 105 inversions, single-insertion sorting was about 6 times
slower in the integer case (up to 2 times slower in the string case).
In this range, the number of comparisons used by Bulk-insertion sort
was very close to 1n, while single insertion needed about 2n. The num-
ber of rotations (Table 6.1) was also low, as the average bulk size is
quite large in this range. For single insertion, the number of rotations
is larger for sorted sequences than for random ones; recall that sorted
sequences are the worst case for avl-tree single insertion.

For larger numbers of inversions, Single-insertion sort was slightly
faster than Bulk-insertion sort, but the difference was small. Bulk-tree

∗ The standard deviation was small, less than 1% of the average, except for the

cases m = 2 to m = 128 where it was somewhat larger.

6.7 Experiments 107

sort used almost the same number of comparisons as Bulk-insertion
sort, but the bulk tree was much faster for a medium number of inver-
sions (about 104 to 102n).

Comparing to the other sorting algorithms, we see that for up to
about 105 inversions (104 in the string case), Bulk-insertion sort and
Bulk-tree sort were the fastest – except for Insertion sort, which was
hopelessly slow when the number of inversions was larger than about
102n.

With more than 106 inversions, Splaysort, Splitsort and Quick-
sort were (variously) the fastest. With a very large number of inver-
sions, about 106n or more (105n in the string case), Bulk-insertion
sort was again faster than Splaysort – though in this range, the array-
based Splitsort, Quicksort and qsort are much faster. With more than
about 104n inversions, Bulk-tree sort was significantly slower than Bulk-
insertion sort or the others (except for Insertion sort).

Tree-based sorting algorithms are known to be slow for very large
numbers of inversions [23,60], and this was also seen here, Figures 6.4(b)
and 6.5(b). A similar sharp bend in the running time (at about 104n

in Figure 6.4(b)) was found in [23] for various tree- and heap-based
algorithms; the article gives cache misses and the larger storage re-
quirements of the tree as possible reasons.

The differences between the algorithms are smaller in the amount
of comparisons (Figure 6.3 and Table 6.1). The algorithms that use
the least comparisons are Splaysort and (for more than about 105n

inversions) qsort (Merge sort). Up to about 105 inversions, Bulk-
insertion sort and Bulk-tree sort are as good as Splaysort in the amount
of comparisons – and faster in running time, as noted above.

Reasons for the apparent slight Inv -adaptivity of Quicksort and
qsort (Merge sort) are discussed in [13].

These experiments only produced Inv -adaptive input data – Bulk -
adaptivity was not considered. Even adaptivity to the related Block
measure has apparently never been studied experimentally – of course,
neither has the new Bulk measure. The current experiments thus ac-
tually give an advantage to other methods than Bulk-insertion sort or
Bulk-tree sort.

108 USING BULK INSERTION IN ADAPTIVE SORTING

0

5

10

15

20

25

100 101 102 103 104 105 106 107

Single-insertion sort
Bulk-insertion sort
Bulk-tree sort
Splaysort
Splitsort
Quicksort
qsort
Insertion sort

(a) Comparisons, small Inv

0

10

20

30

40

50

60

100n 101n 102n 103n 104n 105n 106n

(b) Comparisons, large Inv

Figure 6.3 Comparisons per element used in sorting, with n = 225 ≈ 34·106.

The x-axis gives the number of inversions (Inv).

6.7 Experiments 109

0

2

4

6

8

10

12

100 101 102 103 104 105 106 107

(a) Time, small Inv

0

50

100

150

200

250

100n 101n 102n 103n 104n 105n 106n

Single-insertion sort
Bulk-insertion sort
Bulk-tree sort
Splaysort
Splitsort
Quicksort
qsort
Insertion sort

(b) Time, large Inv

0

5

10

15

20

25

30

100n 101n 102n 103n 104n 105n 106n

(c) Time, large Inv (small times enlarged)

Figure 6.4 Total time (in seconds) used in sorting, with 4-byte integer keys,

n = 225 ≈ 34 · 106. The x-axis gives the number of inversions (Inv).

110 USING BULK INSERTION IN ADAPTIVE SORTING

0

1

2

3

4

100 101 102 103 104 105 106

(a) Time, small Inv

0

2

4

6

8

10

12

14

16

18

20

100n 101n 102n 103n 104n 105n

Single-insertion sort
Bulk-insertion sort
Bulk-tree sort
Splaysort
Splitsort
Quicksort
qsort
Insertion sort

(b) Time, large Inv

Figure 6.5 Total time (in seconds) used in sorting, with string keys, n =

1971968. The x-axis gives the number of inversions (Inv).

6.7 Experiments 111

Comparisons per element
Average Bulk- Bulk- Single- Splay- Split- Insert. Quick-

inversions tree s. ins. s. ins. s. sort sort sort sort qsort

Fully sorted input data (no inversions)
k=0 0 1.00 1.00 2.00 1.00 1.00 1.00 23.50 12.50

Small amount of inversions
k=10 10 1.00 1.00 2.00 1.00 2.83 1.00 23.50 12.50
k=100 100 1.00 1.00 2.00 1.00 2.98 1.00 23.50 12.50
k=1000 1000 1.00 1.00 2.00 1.00 3.00 1.00 23.50 12.50
k=10000 9997 1.01 1.01 2.00 1.00 3.00 1.00 23.50 12.50
k=100000 99707 1.09 1.09 2.00 1.01 3.01 1.01 23.51 12.50
k=1000000 971424 1.54 1.54 2.04 1.06 3.15 1.06 23.55 12.51
k=10000000 7875607 3.08 3.08 2.37 1.44 4.07 1.47 23.76 12.62

Large amount of inversions
m=2n 1 3.28 3.30 2.72 1.89 3.73 2.38 23.75 12.72
m=16n 9 6.80 6.42 5.31 4.31 8.21 18.04 24.45 14.91
m=128n 72 11.60 11.41 9.65 7.41 14.48 144.98 25.52 17.87
m=1024n 575 16.58 16.53 14.57 11.46 22.17 1151.6 26.67 20.88
m=8192n 4600 21.56 21.54 19.55 15.77 30.43 >1152 27.82 23.41
m=65536n 36703 26.57 26.57 24.57 20.17 38.77 >1152 28.99 23.73
m=524288n 289808 31.72 31.72 29.72 24.78 47.09 >1152 30.25 23.74
m=4194304n 2086907 37.23 37.23 35.23 30.04 54.52 >1152 31.45 23.76

Input data in completely random order
8064285 40.09 40.09 38.08 33.19 53.98 >1152 32.52 23.74

Rotations
Average Bulk- Bulk- Single- Average

inversions tree sort ins. sort ins. sort bulk size

Fully sorted input data (no inversions)
k=0 0 0 0 33554406 33554432

Small amount of inversions
k=10 10 26 217 33554402 1597830
k=100 100 292 1868 33554357 166937
k=1000 1000 2989 15458 33553905 16770
k=10000 9997 29964 121689 33549410 1679
k=100000 99707 297605 894914 33504640 169.0
k=1000000 971424 2775504 5850949 33079327 18.04
k=10000000 7875607 15612802 22335266 30320503 3.04

Large amount of inversions
m=2n 1 16778071 25965377 27021115 2.67
m=16n 9 21204866 24485346 22884450 1.36
m=128n 72 17749844 18493838 17962638 1.07
m=1024n 575 16193329 16327473 16219276 1.01
m=8192n 4600 15757134 15778565 15761014 1.00
m=65536n 36703 15654391 15656950 15655066 1.00
m=524288n 289808 15633261 15633548 15633370 1.00
m=4194304n 2086907 15629210 15629568 15629381 1.00

Input data in completely random order
8064285 15629022 15629000 15629004 1.00

Table 6.1 A selection of experimental results on sorting (integer keys,

n = 225 ≈ 34 · 106). Figure 6.3 has more data points for the number of

comparisons.

112 USING BULK INSERTION IN ADAPTIVE SORTING

113

CHAPTER 7

Conclusion

T
he concluding remarks in this chapter are divided into three sections
according to the main topics of the thesis: cache-sensitive binary

search trees, avl-tree bulk updates, and the application to adaptive
sorting.

7.1 Cache-sensitive binary search trees

Chapter 3 examined binary search trees in a k-level cache memory hier-
archy with block sizes B1, . . . , Bk. The chapter presented an algorithm
that relocates tree nodes into a multi-level cache-sensitive memory lay-
out in time O(nk), where n is the number of nodes in the tree. However,
the main topic was a method for maintaining an improved one-level
memory layout for binary search trees by executing a constant-time
operation after each structure modification (actual insertion, actual
deletion or individual rotation).

As the structure of the tree and rebalancing is not changed, the
cache-sensitive methods can be used to improve an existing binary
search tree implementation, instead of needing to rewrite it (as, for
example, when using cache-oblivious B-trees). More importantly, the
methods are applicable to any binary search tree that uses rotations for
balancing.

Although the average performance of the cache-sensitive red-black
and avl trees did not quite match the B+-tree variants in the experi-
ments, in practice there may be other reasons for using binary search
trees than average-case efficiency. For instance, the worst-case (as op-
posed to amortized or average) time complexity of updates in red-black
trees is smaller than in B-trees: O(log2 n) vs. O(d logd n) time for a
full sequence of page splits or merges in a d-way B-tree, d ≥ 5. Rota-

114 CONCLUSION

tions are constant-time operations, unlike B-tree node splits or merges,
which take O(B1) time in B-trees with B1-sized nodes, or O(B2

1) in
the full CSB+-tree. This may improve concurrency: nodes are locked
for a shorter duration. In addition, it has been argued in [76] that, in
main-memory databases, binary trees are optimal for a form of shadow
paging that allows efficient crash recovery and transaction rollback, as
well as the group commit operation [32].

A natural extension of the simple invariant of the local algorithm
of Section 3.4 would be to handle multi-level caches in some way. How-
ever, the local algorithm was designed to preserve the property of binary
search trees that individual structure modifications use worst-case con-
stant time. Multi-level cache sensitivity does not seem feasible with
this constraint because, for instance, it is not possible to move a cache-
block-sized area of nodes to establish an invariant after a structure
modification. A direction for future research could be to lift this con-
straint to create a dynamic multi-level cache-sensitive search tree (based
on either a B-tree or a binary search tree) using the technique of pre-
serving a memory-layout invariant while keeping the structure of the
nodes and rebalancing strategy otherwise intact.

The aliasing phenomenon reported in Section 3.3.2 presumably also
affects other multi-level cache-sensitive search trees. It would be inter-
esting to see the effect of a similar aliasing correction on, for example,
the two-level cache-sensitive B-trees of [17].

One way of using the global relocation algorithm is to run it period-
ically in a background process. The experiments in Section 3.5 indicate
that it does not need to be run very often – it appears that a viable
approach would be to execute the global algorithm after nk2 updates
have been performed, where n is the number of keys in the tree when
the global algorithm was last run. This would bring the amortized cost
of the global algorithm down to O(1) per update. These periodic runs
could possibly also be combined with relaxed balancing (Section 4.3)
to decouple rotations and memory layout updates from the actual in-
sertion and deletion operations.

A limitation of the cache-sensitive approaches of this thesis is that
they do not optimize the “scan” or range search operation, which reads
a range of consecutive keys in the tree. The current approaches may
need to read O(S) cache blocks to perform a scan of S keys, while, for
example, the cache-sensitive and some of the cache-oblivious B-trees
need only O(S/B) blocks for this operation, where B is a cache block
size.

7.2 Bulk updates 115

7.2 Bulk updates

Chapter 5 presented and analyzed bulk insertion and deletion algo-
rithms for avl trees.

When all of the keys to be inserted go to the same location in
the tree, the number of rotations performed by the bulk-insertion algo-
rithm was shown to be worst-case logarithmic in the number of inserted
keys (even if the number of keys already present in the tree is much
larger). The total rebalancing complexity was amortized logarithmic in
a sequence of bulk insertions.

In the case where the inserted keys go to multiple locations, the
thesis presented an algorithm that improves upon the tree search cost
of a simple approach that executes a separate bulk insertion for each
location.

Experiments demonstrated that the bulk-insertion algorithm is very
efficient in practice, both in the number of rotations and in running
time, although the latter is dominated by the creation of new nodes.

The rebalancing complexity of the bulk-deletion algorithm (as also
the number of rotations) was shown to be logarithmic in the number
of deleted nodes, when amortized over a sequence of bulk deletions.
Moreover, the bulk-deletion algorithm was able to avoid visiting most
of the nodes to be deleted by detaching entire subtrees from the tree
using constant-time operations. This made the algorithm extremely
fast in the experiments reported in the chapter.

The amortized complexities noted above do not apply to a sequence
of mixed bulk insertions and deletions, because the balancing criterion
in avl trees is such that even mixed single insertions and deletions can
require O(log n) rotations in the worst case, where n is the size of the
existing tree. Although this worst case is rare in practice, avl trees are
most at home in a situation where most operations are searches and
insertions.

7.3 Application to adaptive sorting

The main objective of Chapter 6 was to show that bulk insertion can
successfully be applied to the problem of adaptive sorting.

The chapter presented a simple comparison-efficient finger struc-
ture for binary trees based on saving the search path in an auxiliary

116 CONCLUSION

data structure, thus creating an avl-tree-based variation of the adap-
tive sorting algorithm known as local insertion sort.

A strategy was given for finding bulks to be inserted using only
m + O(log m) comparisons per bulk of size m. This was then applied
to both an ordinary avl tree using the bulk-insertion algorithm, and
to a specialized tree called the bulk tree, where the inserted bulks were
stored as intervals.

Using the simplified finger structure, with or without applying bulk
insertion, was shown to create an inversion-optimal sorting algorithm.
In addition, the new algorithms bulk-insertion sort and bulk-tree sort
were shown to be optimal with respect to a new measure Bulk that
counts the number of produced bulks.

The experiments demonstrated that for small amounts of inversions
– up to about 105 in both integer and string key inputs of length about
107 – the bulk-insertion-based algorithms were better than all other
measured sorting algorithms (Splaysort, Splitsort, Quicksort, qsort),
with the exception of Insertion sort, which has quadratic worst-case
time bound. Despite the space overhead implied by tree sorting (see [60]),
the algorithms are thus a reasonable choice for inputs most of which
are known to be nearly sorted.

Even though the focus was on minimizing the number of compar-
isons, the experiments demonstrated that the new sorting algorithms
are quite efficient also in terms of running time, even when compar-
isons are fast (e.g., when sorting simple integers). For nearly sorted
sequences, the bulk-insertion sort and bulk-tree sort algorithms came
very close to reaching the lower bound of one comparison per key to be
sorted.

Besides sorting, a potential application of the bulk-insertion sort
algorithm of Section 6.3 is that of index generation in a main memory
database: the algorithm provides a very efficient method for generating
an avl tree from a set of nearly sorted keys.

The comparison-efficient bulk-finding strategy relied on the restric-
tion that the sequences of consecutive keys inserted as bulks must be
in ascending or descending order. An alternative could be to collect
larger bulks containing consecutive keys that go to the same location
in the tree but are not in order, and sort them recursively to produce an
update tree. Although Chapter 5 specified that bulk insertion should
first sort its input and create the update tree from sorted data, the
bulk-insertion algorithm actually works with any avl tree as the up-
date tree. It would thus be possible to use the tree resulting from a

7.3 Application to adaptive sorting 117

recursive invocation of bulk-insertion sort as the update tree. However,
this approach would be incompatible with the use of lazy bulks.

The way in which bulk insertion was applied to local insertion sort is
not specific to avl trees. It would be possible to, for instance, to apply
an (a, b)-tree bulk-insertion algorithm [46, 50, 66, 79] to local insertion
sort using (a, b) trees, either with a saved path-type finger or using
a full finger tree. However, the comparison-efficient simplified finger
structure of Section 6.1 is only applicable to binary trees.

118 CONCLUSION

119

References

[1] G. M. Adelson-Velsky and E. M. Landis. An algorithm for the or-
ganization of information. Soviet Mathematics, 3:1259–1263, 1962.
(English translation.).

[2] L. Arge, K. H. Hinrics, J. Vahrenhold and J. S. Vitter. Efficient
bulk operations on dynamic R-trees. Algorithmica, 33:104–128,
2002.

[3] L. Arge and J. S. Vitter. Optimal external memory interval man-
agement. SIAM Journal on Computing, 22(6):1488–1508, 2003.

[4] R. Bayer and E. McCreight. Organization and maintenance of
large ordered indexes. Acta Informatica, 1:173–189, 1972.

[5] M. A. Bender, G. S. Brodal, R. Fagerberg, D. Ge, S. He, H. Hu,
J. Iacono and A. López-Ortiz. The cost of cache-oblivious search-
ing. In 44th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2003), pages 271–282. IEEE Computer Society,
2003.

[6] M. A. Bender, E. D. Demaine and M. Farach-Colton. Efficient tree
layout in a multilevel memory hierarchy. In 10th Annual European
Symposium on Algorithms (ESA 2002), volume 2461 of Lecture
Notes in Computer Science, pages 165–173. Springer, 2002.

[7] M. A. Bender, E. D. Demaine and M. Farach-Colton. Cache-
oblivious B-trees. SIAM Journal on Computing, 35(2):341–358,
2005.

[8] M. A. Bender, Z. Duan, J. Iacono and J. Wu. A locality-preserving
cache-oblivious dynamic dictionary. In 13th Annual ACM-SIAM

120

Symposium on Discrete Algorithms (SODA 2002), pages 29–38.
Society for Industrial and Applied Mathematics, 2002.

[9] M. A. Bender, M. Farach-Colton and B. C. Kuszmaul. Cache-
oblivious string B-trees. In 25th ACM SIGACT–SIGMOD–
SIGART Symposium on Principles of Database Systems (PODS
2006), pages 233–242. ACM Press, 2006.

[10] G. E. Blelloch, B. M. Maggs and S. L. M. Woo. Space-efficient fin-
ger search on degree-balanced search trees. In 14th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2003), pages
374–383. ACM Press, 2003.

[11] P. Bohannon, P. McIlroy and R. Rastogi. Main-memory index
structures with fixed-size partial keys. In 2001 ACM SIGMOD
International Conference on Management of Data, pages 163–174.
ACM Press, 2001.

[12] G. S. Brodal, R. Fagerberg and R. Jacob. Cache oblivious search
trees via binary trees of small height. In 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2002), pages 39–48.
Society for Industrial and Applied Mathematics, 2002.

[13] G. S. Brodal, R. Fagerberg and G. Moruz. On the adaptiveness
of quicksort. In 7th Workshop on Algorithm Engineering and Ex-
periments (ALENEX 2005), pages 130–140. Society for Industrial
and Applied Mathematics, 2005.

[14] M. R. Brown and R. E. Tarjan. Design and analysis of a data
structure for representing sorted lists. SIAM Journal on Comput-
ing, 9(3):594–614, 1980.

[15] S. Carlsson, C. Levcopoulos and O. Petersson. Sublinear merging
and natural mergesort. Algorithmica, 9:629–648, 1993.

[16] S. Chen, P. B. Gibbons and T. C. Mowry. Improving index perfor-
mance through prefetching. In 2001 ACM SIGMOD International
Conference on Management of Data, pages 235–246. ACM Press,
2001.

[17] S. Chen, P. B. Gibbons, T. C. Mowry and G. Valentin. Frac-
tal prefetching B+-trees: Optimizing both cache and disk per-
formance. In 2002 ACM SIGMOD International Conference on
Management of Data, pages 157–168. ACM Press, 2002.

121

[18] R. Cole. On the dynamic finger conjecture for splay trees, part II:
The proof. SIAM Journal on Computing, 30(1):44–85, 2000.

[19] R. Cole, B. Mishra, J. Schmidt and A. Siegel. On the dynamic
finger conjecture for splay trees, part I: Splay sorting log n-block
sequences. SIAM Journal on Computing, 30(1):1–43, 2000.

[20] C. R. Cook and D. J. Kim. Best sorting algorithm for nearly sorted
lists. Communications of the ACM, 23(11):620–624, 1980.

[21] D. Cutting and J. Pedersen. Optimizations for dynamic in-
verted index maintenance. In 13th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, pages 405–411. ACM Press, 1989.

[22] A. Elmasry. Adaptive sorting with AVL trees. In IFIP 18th
World Computer Congress, TC1 3rd International Conference on
Theoretical Computer Science (IFIP TCS 2004), pages 307–316.
Kluwer, 2004.

[23] A. Elmasry and A. Hammad. An empirical study for inversions-
sensitive sorting algorithms. In 4th International Workshop of Ef-
ficient and Experimental Algorithms (WEA 2005), volume 3503
of Lecture Notes in Computer Science, pages 597–601. Springer,
2005.

[24] A. Elmasry and A. Hammad. Inversion-sensitive sorting algorithms
in practice. ACM Journal of Experimental Algorithmics, 13(1.11),
2008.

[25] V. Estivill-Castro. Generating nearly sorted sequences – the use
of measures of disorder. Electronic Notes in Theoretical Computer
Science, 91:56–95, 2004.

[26] V. Estivill-Castro and D. Wood. A survey of adaptive sorting
algorithms. ACM Computing Surveys, 24(4):441–476, 1992.

[27] R. Fenk, A. Kawakami, W. Markl, R. Bayer and S. Osaki. Bulk
loading a data warehouse built upon a UB-tree. In Interna-
tional Database Engineering and Applications Symposium (IDEAS
2000), pages 179–187. IEEE Computer Society, 2000.

[28] J. D. Fix. The set-associative cache performance of search trees.
In 14th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2003), pages 565–572. ACM Press, 2003.

122

[29] C. C. Foster. Information storage and retrieval using AVL trees. In
Proceedings of the 1965 20th National Conference, pages 192–205.
ACM Press, 1965.

[30] C. C. Foster. A generalization of AVL trees. Communications of
the ACM, 16(8):513–517, 1973.

[31] J. Gil and A. Itai. How to pack trees. Journal of Algorithms,
32:108–132, 1999.

[32] J. Gray and A. Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, 1993.

[33] L. J. Guibas, E. M. McCreight, M. F. Plass and J. R. Roberts. A
new representation for linear lists. In 9th Annual ACM Symposium
on Theory of Computing (STOC 1977), pages 49–60. ACM Press,
1977.

[34] L. J. Guibas and R. Sedgewick. A dichromatic framework for bal-
anced trees. In 19th Annual Symposium on Foundations of Com-
puter Science (FOCS 1978), pages 8–21. IEEE Computer Society,
1978.

[35] S. Hanke, T. Ottmann and E. Soisalon-Soininen. Relaxed balanced
red-black trees. In 3rd Italian Conference on Algorithms and Com-
plexity (CIAC 1997), volume 1203 of Lecture Notes in Computer
Science, pages 193–204. Springer, 1997.

[36] S. Hanke and E. Soisalon-Soininen. Group updates for red-black
trees. In 4th Italian Conference on Algorithms and Complexity
(CIAC 2000), volume 1767 of Lecture Notes in Computer Science,
pages 253–262. Springer, 2000.

[37] R. A. Hankins and J. M. Patel. Effect of node size on the perfor-
mance of cache-conscious B+-trees. In 2003 ACM SIGMETRICS
International Conference on Measurement and Modeling of Com-
puter Systems, pages 283–294. ACM Press, 2003.

[38] M. D. Hill and A. J. Smith. Evaluating associativity in CPU
caches. IEEE Transactions on Computers, 38(12):1612–1630, 1989.

[39] S. Huddleston and K. Mehlhorn. A new data structure for repre-
senting sorted lists. Acta Informatica, 17:157–184, 1982.

123

[40] C. Jermaine, A. Datta and E. Omiecinski. A novel index support-
ing high volume data warehouse insertion. In 25th International
Conference on Very Large Data Bases (VLDB 1999), pages 235–
246. Morgan Kaufmann, 1999.

[41] W. Jiang, C. Ding and R. Cheng. Memory access analysis and
optimization approaches on splay trees. In 7th Workshop on Lan-
guages, Compilers and Run-time Support for Scalable Systems,
pages 1–6. ACM Press, 2004.

[42] J. Katajainen, C. Levcopoulos and O. Petersson. Local insertion
sort revisited. In International Symposium on Optimal Algorithms,
volume 401 of Lecture Notes in Computer Science, pages 239–253.
Springer, 1989.

[43] D. E. Knuth. The Art of Computer Programming, volume 3: Sort-
ing and Searching. Addison-Wesley, second edition, 1998.

[44] S. R. Kosaraju. Localized search in sorted lists. In 13th Annual
ACM Symposium on Theory of Computing (STOC 1981), pages
62–69. ACM Press, 1981.

[45] T.-W. Kuo, C.-H. Wei and K.-Y. Lam. Real-time data access con-
trol on B-tree index structures. In 15th International Conference
on Data Engineering (ICDE 1999), pages 458–467. IEEE Com-
puter Society, 1999.

[46] S. D. Lang, J. R. Driscoll and J. H. Jou. Batch insertion for
tree structured file organizations—improving differential database
representation. Information Systems, 11(2):167–175, 1986.

[47] K. S. Larsen. Amortized constant relaxed rebalancing using stan-
dard rotations. Acta Informatica, 35:859–874, 1998.

[48] K. S. Larsen. AVL trees with relaxed balance. Journal of Computer
and System Sciences, 61:508–522, 2000.

[49] K. S. Larsen. Relaxed red-black trees with group updates. Acta
Informatica, 38:565–586, 2002.

[50] K. S. Larsen. Relaxed multi-way trees with group updates. Journal
of Computer and System Sciences, 66:657–670, 2003.

[51] K. S. Larsen, T. Ottmann and E. Soisalon-Soininen. Relaxed bal-
ance for search trees with local rebalancing. Acta Informatica,
37:743–763, 2001.

124

[52] K. S. Larsen, E. Soisalon-Soininen and P. Widmayer. Relaxed
balance using standard rotations. Algorithmica, 31:501–512, 2001.

[53] C. Levcopoulos and O. Petersson. Splitsort – an adaptive sorting
algorithm. Information Processing Letters, 39:205–211, 1991.

[54] T. Lilja, R. Saikkonen, S. Sippu and E. Soisalon-Soininen. Online
bulk deletion. In 23rd International Conference on Data Engineer-
ing (ICDE 2007), pages 956–965. IEEE Computer Society, 2007.

[55] L. Malmi and E. Soisalon-Soininen. Group updates for relaxed
height-balanced trees. In 18th ACM SIGACT–SIGMOD–SIGART
Symposium on Principles of Database Systems (PODS 1999),
pages 358–367. ACM Press, 1999.

[56] H. Mannila. Measures of presortedness and optimal sorting algo-
rithms. IEEE Transactions on Computers, C-34:318–325, 1985.

[57] K. Mehlhorn. Sorting presorted files. In 4th GI-Conference on
Theoretical Computer Science, volume 67 of Lecture Notes in Com-
puter Science, pages 199–212. Springer, 1979.

[58] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and
Searching. Springer, 1984.

[59] K. Mehlhorn and A. Tsakalidis. An amortized analysis of insertions
into AVL-trees. SIAM Journal of Computing, 15(1):22–33, 1986.

[60] A. Moffat, G. Eddy and O. Petersson. Splaysort: Fast, versa-
tile, practical. Software, Practice and Experience, 126(7):781–797,
1996.

[61] C. Mohan. ARIES/KVL: A key-value locking method for con-
currency control of multiaction transactions operating on B-tree
indexes. In 16th International Conference on Very Large Data
Bases (VLDB 1990), pages 392–405. Morgan Kaufmann, 1990.

[62] O. Nurmi, E. Soisalon-Soininen and D. Wood. Concurrency
control in database structures with relaxed balance. In 6th
ACM SIGACT–SIGMOD–SIGART Symposium on Principles of
Database Systems (PODS 1987), pages 170–176. ACM Press, 1987.

[63] K. Oksanen. Memory Reference Locality in Binary Search Trees.
Master’s thesis, Helsinki University of Technology, 1995.

125

[64] K. Oksanen and L. Malmi. Memory reference locality and periodic
relocation in main memory search trees. In 5th Hellenic Conference
of Informatics. Greek Computer Society, 1995.

[65] O. Petersson and A. Moffat. A framework for adaptive sorting.
Discrete Applied Mathematics, 59(2):153–179, 1995.

[66] K. Pollari-Malmi. Batch Updates and Concurrency Control in B-
trees. Ph.D. thesis, Helsinki University of Technology, 2002.

[67] K. Pollari-Malmi, J. Ruuth and E. Soisalon-Soininen. Concur-
rency control for B-trees with differential indices. In Interna-
tional Database Engineering and Applications Symposium (IDEAS
2000), pages 287–295. IEEE Computer Society, 2000.

[68] K. Pollari-Malmi, E. Soisalon-Soininen and T. Ylönen. Concur-
rency control in B-trees with batch updates. IEEE Transactions
on Knowledge and Data Engineering, 8(6):975–984, 1996.

[69] N. Rahman, R. Cole and R. Raman. Optimised predecessor data
structures for internal memory. In 5th Workshop on Algorithm En-
gineering (WAE 2001), volume 2141 of Lecture Notes in Computer
Science, pages 67–78. Springer, 2001.

[70] J. Rao and K. A. Ross. Cache conscious indexing for decision-
support in main memory. In 25th International Conference on Very
Large Data Bases (VLDB 1999), pages 78–89. Morgan Kaufmann,
1999.

[71] J. Rao and K. A. Ross. Making B+-trees cache conscious in main
memory. In 2000 ACM SIGMOD International Conference on
Management of Data, pages 475–486. ACM Press, 2000.

[72] R. Saikkonen. Group Insertion in AVL Trees. Master’s thesis,
Helsinki University of Technology, 2004.

[73] R. Saikkonen and E. Soisalon-Soininen. Cache-sensitive memory
layout for binary trees. In 5th IFIP International Conference on
Theoretical Computer Science (IFIP TCS 2008), volume 273 of
IFIP International Federation for Information Processing, pages
241–255. Springer, 2008.

[74] R. Saikkonen and E. Soisalon-Soininen. Bulk-insertion sort: To-
wards composite measures of presortedness. In 8th International
Symposium on Experimental Algorithms (SEA 2009), volume 5526

126

of Lecture Notes in Computer Science, pages 269–280. Springer,
2009.

[75] D. D. Sleator and R. E. Tarjan. Self-adjusting binary search trees.
Journal of the ACM, 32(3):652–686, 1985.

[76] E. Soisalon-Soininen and P. Widmayer. Concurrency and recov-
ery in full-text indexing. In String Processing and Information
Retrieval Symposium (SPIRE 1999), pages 192–198. IEEE Com-
puter Society, 1999.

[77] E. Soisalon-Soininen and P. Widmayer. Amortized complexity of
bulk updates in AVL-trees. In 8th Scandinavian Workshop on
Algorithm Theory (SWAT 2002), volume 2368 of Lecture Notes in
Computer Science, pages 439–448. Springer, 2002.

[78] E. Soisalon-Soininen and P. Widmayer. Single and bulk updates
in stratified trees: An amortized and worst-case analysis. In
Computer Science in Perspective: Essays Dedicated to Thomas
Ottmann, volume 2598 of Lecture Notes in Computer Science,
pages 278–292. Springer, 2003.

[79] J. Srivastava and C. V. Ramamoorthy. Efficient algorithms for
maintenance of large database indexes. In 4th International Con-
ference on Data Engineering (ICDE 1988), pages 402–408. IEEE
Computer Society, 1988.

[80] R. E. Tarjan. Updating a balanced search tree in O(1) rotations.
Information Processing Letters, 16:253–257, 1983.

[81] R. E. Tarjan. Amortized computational complexity. SIAM Journal
of Algebraic and Discrete Methods, 6(2):306–318, 1985.

[82] A. K. Tsakalidis. AVL-trees for localized search. Information and
Control, 67:173–194, 1985.

[83] A. K. Tsakalidis. Rebalancing operations for deletions in AVL-
trees. RAIRO Informatique Théorique et Applications, 19(4):323–
329, 1985.

[84] S. Virtanen. Group Update and Relaxed Balance in Search Trees.
Master’s thesis, Helsinki University of Technology, 2000.

