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List of terminology 

 

available habitat  the area inside which the organisms can select their position 

log book fishing  places where fish are caught are marked on a map while  

fishing  

field measurements  measurements of physical variables, e.g. topography, river bed 

  particle size, and water level in situ 

field observations  observation and location of organisms in situ, e.g. of fish 

grid  a square or irregular net of data points 

habitat  a place where an organism lives 

habitat quality  the suitability of the place for living. In modelling, an index is 

  calculated to represent it 

habitat suitability  approximately the same as habitat quality, but refers more  

  limitedly to the value of the suitability index calculated 

habitat use  an organism being positioned in a habitat 

preference curve  a curve which represents the suitability at each value of a  

  factor affecting the suitability of habitats 

preference surface  a surface which represents habitat suitability, taking several  

  factors into consideration simultaneously, also called   

  two-dimensional multivariate preference 

physical model  a grid or grids comprising the values of a physical variable or 

  variables and the boundary conditions and modelling methods 

physical variable  a variable representing the physical conditions for living in a  

  place,  e.g. flow velocity, river bed particle size 

restoration  returning the state of a place to a state that existed before 

rehabilitation  constructing e.g. a dredged river to a better state from some  

  viewpoint, e.g. for a fish species 

substrate     river or lake bed characteristics, also specifically river bed  

  particle size 

suitability index  index for habitat suitability, takes values between 0 and 1 

telemetry  a radio transmitter is attached to the fish and the movements  

  of the fish are observed 
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TWO-DIMENSIONAL AQUATIC HABITAT QUALITY 

MODELLING 

1 INTRODUCTION 
 

1.1 Development of habitat models 
 

Human activities have changed the ecology of many rivers and streams. According to 

Macklin & Lewin (1997), rivers that have not been changed in some way are even rare. 

In dredged rivers and brooks changed by logging (Allan 1995), habitat structure and fish 

species diversity are poorer (Cowx & Welcomme 1988), and e.g. the production 

potential of the fry of migratory fish is much smaller (e.g. Karlström 1977). The 

damming and regulation of rivers mean changes in water levels and flow rates, which 

change habitats (e.g. Ruohomäki 1984, Mills 1989, Joensuu et al. 1996, Riihimäki et al. 

1996, Cowx & Welcomme 1998).  

Hydrological (Hynes 1972, Janauer 1994, Muotka & Tikkanen 1995) and 

geomorphological factors (Brookes 1996, Yrjänä et al. 1999) have been found to be 

important for stream ecology, and they determine (Arthington 2002, Pieterse & Murphy 

1990) many of the properties of ecosystems in running waters. Geomorphology means 

the form and properties of the channel and banks and the structure of the bed (DVWK 

1996). Flow rate and the temperature of water are, according to Hynes (1972), the most 

important factors affecting morphology, physiology, ecology (Rossoll & Werth 1992), 

and species in streaming waters. The biological system in watersheds is based on their 

physical and chemical conditions, of which geomorphology (Jungwirth & Winkler 

1983) and the dynamic processes of the watershed are especially important (DVWK 

1996). Water depth and flow velocity (Dittrich & Schmedtje 1995, Joensuu et al. 1996) 

affect the communities indirectly via the structure and material of the bed.  

Many studies have been carried out to find the most important physical factors 

affecting the suitability of habitats for different species of organisms. Individual 

organisms select their habitats according to specific preference criteria. For example, 

young Atlantic salmons select their habitats according to flow velocity, which is linked 

to energetics, often in combination with substrate, and water depth in small streams 

(Heggenes 1994a). According to Rabeni and Jacobson (1993), the major cause of losing 
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streamwater fish populations or their degradation is the alteration of the physical habitat 

within and adjacent to the channel. 

Common and widespread salmonids in Europe are salmon, Salmo salar, brown 

trout, Salmo trutta and grayling, Thymallus thymallus. The habitat requirements of other 

salmonids are rather similar although some, e.g. trout are more flexible in their needs 

(Cowx &Welcomme 1998). The habitat requirements of a competitor of salmonids, 

bullhead, Cottus gobio, have been found to be rather similar to those of salmon. 

Availability of nourishment may be a more important factor in smallest microhabitat 

selection of bullhead than other factors (Huusko et al. 2003). 

Spawning sites are the first habitat requirements of salmonids. Gravel size, 

intragravel flow, water depth, stream velocity, temperature and cover are important 

factors. Water depth should be more than 15 centimeters but less than double the female 

fish fork length (Cowx &Welcomme 1998). Too high flows causing moving of gravel 

beds and too low flows causing drying may be harmful during incubation. Availability 

of oxygen to the eggs is very important, pH should not be less than 4.5, and toxic metals 

should not be present. Juveniles and smolts prefer temperatures of 13-17 ○Celcius 

depending on species for their growth, dissolved oxygen concentrations of over 9 mg/l, 

and 25 mg/l or less suspended solids in water.  All salmonids begin their lives in 

relatively shallow, slow flowing habitats. Cover; rubble, boulders, undercut banks, logs 

and vegetation provide shelter from predators and flow and visual isolation of territories 

(Hunter 1991). Feeding focal points occur where a swift water mass flows next to a 

slower flowing water mass or in eddies. Drift feeding salmonids try to minimize energy 

consumption of swimming and to maximize available drift prey (Mäki-Petäys et al. 

1999). Brown trout and Atlantic salmon use certain habitats selectively depending on 

fish size and species (Heggenes 1994). There is a general movement of salmon and trout 

to deeper waters as they grow (Cowx & Welcomme 1998). For migration and spawning, 

temperature, oxygen concentration and river flow must be suitable. Cover is needed as 

shelter from predators and for protection from bright sunlight. During night, salmonids 

are less active and move nearer shore. Seasonal shifts in habitat preferences are 

important (Mäki-Petäys et al. 1997). During winter, fish spend more time in shelter, and 

need places to survive under low flows and ice. Pools have been found to be beneficial 

(Hunter 1991). A natural sequency of riffles and pools provides different habitats 

needed (Cowx & Welcomme 1998).  Important physical variables influencing habitat 

selection are water depth, water velocity and current shear, substrate particle size and 
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cover. Many streamwater fishes need shelter. According to Heggenes et al. (1994b), 

flow velocity, water depth, and substrate, i.e. the bed material and its size, best explain 

the habitat selection of salmon and trout from seven variables examined. Excluding 

temperature, the values of the rest of the variables depended on these three variables 

(Heggenes 1994a). The values of these variables and the amount of vegetation are often 

measured when studying habitat selection of salmonids, e.g. in Mäki-Petäys et al. 

(1997).  This information can be combined with hydraulic models for predicting habitat 

suitability under different hydraulic conditions.  

Increasing ecological awareness and a change in the use of watersheds, e.g. the 

cessation of logging and an increasing demand for recreational fishing opportunities and 

for the recreational use of lakes and a demand for carbon dioxide-free energy production 

(Muotka 1991) have set new challenges for watershed planning. 

Today, more natural hydraulic engineering is in demand in new construction 

projects and many new rehabilitation projects have been launched. Environmental river 

engineering and restoration aims at the conservation and restoration of structural and 

functional diversity in running waters. The objective is an ecosystem in which the 

organisms typical of that region can live (Schiechtl 1982).  

Thus, dredged rivers are being rehabilitated throughout Europe, e.g. Järvelä & 

Vakkilainen (1996a&b), Järvelä (1998), Yrjänä et al. (1999), and North America, and 

the regulation schemes of lakes and rivers have been changed, for example. It has been 

shown that with rehabilitation (Yrjänä 1995a, b), the diversity of habitats (Huusko & 

Yrjänä 1995, 1997, Kuusela 1995, Laasonen et al. 1995) and the amount of suitable 

habitats for streamwater fishes and fry can be increased (Jutila 1987, Hunter 1991, Jutila 

et al. 1994, Kuusela 1995, Muhar 1996). Many successful structural habitat 

rehabilitation projects have been carried out. The density of age 0+ trout increased 

significantly after rehabilitation with boulders and gravel, and it was positively 

correlated with the area of reconstructed gravel beds (Palm et al. 2007). An increase in 

the number of coho salmon juveniles and smolts after rehabilitation was found by 

Solazzi et al. (2000) in coastal streams of Oregon. Findings in a study carried out in 

southeastern Australia found support for the use of timber structures as a means of 

increasing local fish abundances, creating drought refugia (Bond et al. 2005). A total of 

30 habitat restoration projects in Wyoming were analysed. The results demonstrated that 

well-built, properly located, and properly maintained instream structures can provide 

better habitat and increase stocks of trout in carefully selected reaches (Binns 2004). 
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But if the whole life cycle with its varying needs of the fish species is not taken 

into consideration, rehabilitations may not meet expectations. The effectiviness of 

instream habitat rehabilitation techniques was estimated to vary from low to high also 

depending on target fish species (Roni et al. 2002). Their review on various restoration 

techniques indicated that knowledge about the effectiveness of most techniques is 

incomplete and comprehensive research and monitoring would be needed. In addition to 

instream physical rehabilitations, connectivity and the processes forming the habitats 

should also be taken care of.  

Lepori et al. (2005) found out that the spatial scale might be important for the 

success of rehabilitations. Fish typically have broad home ranges that encompass 

different habitats each fulfilling different functions, including spawning, feeding, and 

refuge provisioning. A restoration carried out only in one, lotic, area of these, didn’t 

remarkably increase fish species diversity. In a restorated boreal Finnish forest stream a 

non-significant decrease in densities of age-0 trout was noticed, indicating no effect of 

restoration. In another stream, trout density increased after restoration, indicating a 

weakly positive response. The overall weak response of trout to habitat manipulations 

probably related to the fact that the restoration did not increase the amount of pools, a 

key winter habitat for salmonids (Muotka & Syrjänen 2007). In some cases, attempts at 

enhancing stream habitats in summer may have negative consequences for wintering 

fish (Cunjak 1994).  The cost of river rehabilitation in northern Finland has been 3500-

7000 eur/ha in the period 1988-1996 (Yrjänä 1998a).   

Evaluation and planning are necessary e.g. when dealing with rehabilitation, 

habitat and species conservation, construction work (Elliot 1994), and water level or 

discharge regulation scheme changes. Monitoring of the effectiveness of different 

habitat rehabilitation techniques should be carried out systematically (Roni et al. 2002). 

Evaluation of the success of rehabilitation work would require several years of fish 

stock observation before and after the rehabilitation (Yrjänä 2003). Yet there would still 

be unknown factors affecting the reliability of the evaluation. And it may take ten years 

for the vegetation to grow afterwards, and species other than the target species may take 

over the river reach after the rehabilitation. Thus, if the effect of the rehabilitation 

should be estimated, e.g. about five years before the rehabilitation, stocking with target 

species could take place, and also again right after the rehabilitation work, and after the 

vegetation has grown, in order to estimate the capacity of the river section to support 

fish populations (Yrjänä). But it is another question, whether this kind of fish stocking 
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would be a sensible or cost effective means of fisheries management and whether such 

measures should be carried out only in order to estimate the effect of rehabilitations 

routinely. These stockings and observations might take 20 years altogether, and still 

there would be unknown factors, e.g. weather, fish diseases, competing species, and 

water quality. If there was a model with which the success of the rehabilitation work 

could be assessed, the process would be less resource-consuming and much faster. A 

model with which rehabilitation could be planned before the work would be even better. 

And if that kind of a model is developed, it should also be well validated.  

A few decades ago, effective tools for the planning inside a mesohabitat scale and 

accurate representation of the state of stream habitats did not exist. There exist many 

inventory methods that are excellent for their specific purposes, but a spatially precise 

and illustrative evaluation and planning tool is lacking.  

For evaluation of stream habitats, different methodologies with different spatial 

and time scales exist (Wesche & Rechard 1980, Yrjänä 1992). Questionnaires can be 

used for assessing the size and changes in the fish stock over the years. With electric 

fishing, a view of the location and the quality of nursery areas can be achieved. But, 

while still very important for monitoring, and although they give some hints for 

specialists about the causes of spatial variations in habitat quality, these methods alone 

often do not give enough information on the factors lying behind the numbers, and do 

not give a consistent picture. Therefore, the factors affecting habitat quality must also be 

considered. 

So, index-type methods were developed for predicting fish biomass from 

different variables. With the Habitat Quality Index (HQI) method (Binns & Eisermann 

1979), the trout biomass of the river was predicted by nine variables selected out of 21 

that were studied. The variables were late summer flow, variation of flow rate, 

maximum water temperature in summer, nitrates, cover, the erosion of banks, substrate, 

flow velocity, and the width of the channel. A single value of each was used for a 

stream section in the formulae that were constructed. With this method, it was possible 

to predict fairly precisely the trout biomass in the brooks and rivers of Wyoming in the 

United States. Raleigh et al. (1986) described a method based on indices that are 

calculated e.g. for each life stage of fish and then considered together. A total of 18 

variables were used, e.g. indices based on temperature, pools, substrate, cover and shade 

percentages, and flow velocity. The method is applicable for overall estimations of the 

habitat suitability of a larger study area.   
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Wesche, Goertler, and Hubert (1987) tested and developed a method for 

predicting trout biomass in 30 study areas in nine rivers. The variables that gave the best 

correlation were the annual base flow rate divided by average flow in late summer and 

in winter and different variables depicting cover whilst other correlated variables 

depicted variation of water depth, flow velocity, substrate, and fluctuation of flow rate. 

These methods based on several variables have been found to be relatively 

expensive and laborious (Yrjänä et al. 1999). With these methods, preliminary 

estimations of potential fish stocks can be made, but they are not spatially explicit. 

Reliable detailed spatial planning and evaluation of the consequences of habitat 

rehabilitation for habitat hydraulics are not usually possible. These methods are good for 

their purposes, e.g. preliminary or larger area assessments, but do not give a 

homogeneous spatial picture of habitats. So, other methods should be used for more 

precise evaluations and construction planning.  

The effect of the local structure of the river channel on habitats was taken into 

consideration later on. This is called habitat mapping, e.g. Maddock & Bird (1996), 

Yrjänä (2003a), which means, e.g. measuring, at some points, such parameters as slope, 

water depth, flow velocities, river bed quality, cover and water quality. This method is 

cost-effective and good for rough estimations for a part of a river or the whole river, and 

necessary for preliminary studies, e.g. highly necessary for assessing the importance of 

different variables for water habitats. This kind of mapping needs often to be applied for 

defining the reaches of a subsequent habitat modelling Maddock & Bird (1996). For 

more spatially detailed evaluations and planning, greater precision is needed. This 

means more measurements, and only the most important and cost-effective variables 

can be included. 

Time, logistical restrictions, and financial resources usually limit the number of 

variables taken into the study to a small number out of all those that are possible. 

Because of this, Oswood & Barber (1982) developed a method for the prediction of fish 

biomass on the basis of the classification of habitats, in which a smaller number of 

variables were used. They mapped the river habitats by drawing a sketch map of the 

river, on which the habitats of different types were marked. The habitats were divided 

into four classes according to flow velocity and water depth. In addition to this, 

sheltered and spawning areas were marked according to their substrate. The slope of the 

river and a time-dependent factor describing the life stage of the fish were used. 

Equations for fish biomass were calculated with regression analysis. The prediction of 
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fish biomass succeeded well. But it is still time-consuming e.g. to measure flow 

velocities at each point of a large area, and many times during different flow situations 

during a year or perhaps during many years. 

A further step is to use hydraulic models in the planning, which give a continuous 

picture of the river at different hydraulic situations with fewer measurements. Only 

topographic measurements of the area and boundary condition and calibration data 

measured at a few points are needed. 

Therefore, hydraulic models have begun to be included in habitat models. For 

this purpose, mapping of the local structure of the river channel with precise 

measurements of e.g. topography and particle size has become more common. But, from 

these and the hydraulic modelling, only maps of the values of the physical variables can 

be drawn, and the question remains; what is the habitat quality?  

The optimum could be that the habitat suitability could also be drawn as a map. 

Information on the habitat preferences of different organisms could be compared with 

the physical conditions measured and modelled in the area. It would often be difficult to 

carry out this comparison without modelling because there are so many different 

variables, e.g. water depth, flow velocity, and substrate affecting the habitat quality 

simultaneously. Hence the solution is a habitat model: a model which takes both the 

habitat preferences and the physical conditions into account, and thus gives the habitat 

quality as output. Using this kind of a tool together with inventory and preliminary 

mapping methods assists in making reliable assessments and planning physical habitat 

rehabilitation projects in watersheds. 

With a habitat model, the current state of habitats and the effects of changes can 

be assessed. The amount of suitable habitats (e.g. Valentin et al. 1994, Huusko & 

Korhonen 1995, Yrjänä 1995c and 1998a, Elliot et al. 1996, Riihimäki et al. 1996, 

Tamai et al. 1996) for different life stages of organisms, at different flow situations, and 

in different seasons can be assessed.  

The most important, critical, situations (Bovee 1988, Heggenes 1994a, Bird 

1996, Mäki-Petäys et al. 1999, Vehanen et al. 1999, Vehanen et al. 1999) can be found 

and evaluated. For example, Capra et al. (1995b) found out that the first year of life was 

the limiting factor in trout population dynamics in a study in three French rivers, while 

Mäki-Petäys (1999) found it to be the first winter in northern Finland. With a dynamic 

two-dimensional hydraulic model, dynamic hydraulic situations can also be calculated. 

The effects of short-term fluctuations (Forsius 1983, Pohjonen 1991, Sinisalmi et al. 
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1996) of water level or flow rate can be evaluated by comparing the positions of suitable 

habitats from maps of different hydraulic situations, calculating durations of habitat 

values being below or exceeding a threshold limit, or e.g. by means of the minimum 

habitat value principle and other methods (Bovee 1985, Nestler et al. 1989, Milhous 

1990, 1991). E.g. a continuous duration of 20 days with spawning habitat values under a 

value lower than 80% of optimum for spawning habitat was found to be a limiting factor 

for the number of 0+ trout (Capra et al. 1995a).  

The environmental effects of hydro power construction and use, different 

hydrographs (Schneider & Nestler 1996, Yrjänä 1998b), river rehabilitations (Huusko & 

Korhonen 1995, Gore et al. 1996, Huusko & Yrjänä 1997, Yrjänä 1998b & 2003), and 

the construction of weirs and other structures can also be assessed. With easy-to-use 

editing tools, work can be planned and evaluated before construction. The necessary 

assessment of the success of rehabilitations (Elliot et al. 1996) can be carried out with 

the model, and restoration methodology can be improved in this way (Huusko & 

Korhonen 1995). Compensation flows needed to support moderate habitats and 

minimum and maximum releases can be assessed (Yrjänä 2003). 

Based on measurement data in dimensionally exact coordinates, different types of 

habitat metrics can be developed and calculated (Bovee 1996). Habitat models can also 

be used in fish behaviour studies, in mapping best habitats, in evaluation of the potential 

of the river reach for fish production (Mäki-Petäys 2003). So the model can be used for 

evaluation, licencing, planning, and in study purposes.  

Habitat models with a one-dimensional hydraulic model could be the solution in 

practice. But a one-dimensional approach is usually hydraulically adequate only when 

the form of the river is relatively near a straight uniform channel. So, a methodology for 

calibrating the one-dimensional model with two-dimensional measurements in situ to 

make a quasi-two-dimensional model (IFIM methodology) was developed (Bovee 

1982). It has been found to be useful (Huusko & Korhonen 1995), if used in right 

context remembering the limitations of the model (Bourgeois et al. 1996). In many 

studies, the amount of calculated habitats and the fish biomass have been found to 

correlate (Orth & Maughan 1982, Bovee et al. 1988, Souchon et al. 1989, Jowett 1992, 

Nehring & Anderson 1993, Tamai et al. 1996, Boudreau et al. 1996), but in some cases 

not (Bowlby & Roff 1986, Nuhfer & Baker 2004), e.g. because of assumptions of the 

model, deficient field work, or the physical model (Bird 1996). The model is still used 

in many countries, e.g. it is even obligatory in construction projects in watersheds in 
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many states of the United States. But this methodology is, indeed, a combination of 

measurements in three different flow situations and a hydraulic model. This means that 

the cost and time of the measurements is high, and the result is still not truly two-

dimensional (Ghanem et al. 1994, Boudreau et al. 1996). The results are more accurate 

near the measurement points and when the modelled flow situation is near the situation 

that prevailed under the measurements. In the model version, the input and the editing 

of the geometry are difficult. And because the model is calibrated to the measured 

situation in a special manner, changes in geometry cannot be well modelled and well 

predicted by model calculations. The French version of the model, EVHA 1.0 (Malavoi 

& Souchon 1989, Ginot 1995 & 1998), has been tested e.g. in Finland (Yrjänä 1995c, 

Piironen et al. 1999). In these tests of usability, and the foreign ones with PHABSIM, its 

use was found to be difficult and time-consuming, the calculation principles insufficient, 

and the description of habitats deficient and unillustrative (Ghanem et al. 1994, Nuhfer 

& Baker 2004, Bovee 1996, Boudreau et al. 1996, Piironen et al. 1999).  

A more user-friendly version of PHABSIM has been developed (Payne 1994). In 

Norway, a habitat model called HABITAT (Vaskinn & Saltveit 1995) in a computer 

software system called RIMOS (The River Modelling System), using a one-dimensional 

hydraulic model (HEC-2), was also developed (Riihimäki et al. 1996). 

Two-dimensional spatially explicit habitat models do not need such expensive 

field and data input work as their one-dimensional predecessors, because only 

topography and substrate (river bed particle size) have to be measured, plus some data 

points for calibration. Data measuring and processing are geographical coordinate-based 

and can be automated (Hardy 1996). Spatial explicity makes editing and planning 

possible, and, in hydraulic modelling, the most suitable hydraulic models can often be 

selected for use. And, most important, with two-dimensional modelling more accurate 

results can be achieved (Ghanem et al. 1994, Leclerc et al. 1995, Bartsch et al. 1996, 

Bovee 1996). Three-dimensional modelling is still considered to be too time-

consuming, but it has been applied in Norway (Heggenes et al. 1996). 

Thanks to advances in computer technology and software, especially in processor 

speeds and user interfaces in hydraulic models, two-dimensional habitat modelling has 

become the latest direction of development. In the seventies, two-dimensional hydraulic 

models already existed, e.g. RMA2 in 1973, but easy-to-use models were not common, 

and the calculations needed costly computer time, so one-dimensional or quasi-two-

dimensional models (PHABSIM) were the most usable solutions before the nineties. 
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The first international conference dealing with purely habitat hydraulics was held in 

1994 in Norway. At this conference, and at a second conference in Quebec in 1996, the 

lack of two-dimensional habitat models was a central concern. 

Because of these many uses and advances, two-dimensional models have started 

to be developed independently (COST ACTION 626 2002) in Canada (Ghanem et al. 

1994, Leclerc et al. 1995, Boudreau et al. 1996), Germany (Schneider et al. 2008), 

Finland, and France during the last few years. All of these models share the same basic 

principle; they are two-dimensional and spatially explicit. So, the same conclusions 

about the direction of model development have been reached in many countries. 

These new two-dimensional models have not been validated with large sets of 

data from different conditions; some single-study comparisons between calculated 

habitats and observed abundance of fish have been made, e.g. Boudreau et al. (1996), 

Guay et al. (2000). The validations of one-dimensional models have usually been 

comparisons between average habitat values and total densities of fish occurrences at 

study sites, because they are not spatially explicit. The factors affecting the validity of 

modelling results have not all been studied at the same time. The accuracy of physical 

models made of study sites has been tested only partly, and testing of the precision 

needed in habitat modelling was not found in the literature either. 

Yrjänä (2003) states that investigations about the relationship between simulated 

habitat area and fish population should be conducted to increase the reliability and 

accuracy of habitat modelling. The validity of different types of calibration data has not 

been studied comprehensively in the literature. Studies on the usability of single 

preference curve sets Souchon et al. (1989) have been made, but large comparisons 

based on calculations and observations between different preference curves and analysis 

have not been made. 

Habitat modelling with the help of suitability indices, i.e. preference curves, has 

been found useful but many problems related to the reduction of natural phenomena in 

the methodology need further studies. There has been much criticism against the use of 

preference curves, e.g. Bird (1996). Habitat selection studies based on only flow 

velocity, water depth and substrate may not be appropriate where other factors limit 

populations (Bird 1996). Water quality, nourishment, predation and competition (Mäki-

Petäys et al. 1997, Harvey & Nakamoto 1996) affect habitat use. Microhabitat gradients 

usually not included in the models, e.g. snout velocity and shear stress may be 

important, and microhabitat preferences may differ between mesohabitat types (Bird 
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1996). Habitats of adjacent areas may affect habitat use (Mäki-Petäys et. al. 1999). 

Stream size, discharge and its variability may have an effect on habitat preferences 

(Heggenes 1994). The effect of using different types of preference curves as biological 

calibration material on the reliability of modelling has not been studied 

comprehensively. There has been much discussion whether there would exist 

universally valid preference curves or should the curves be determined locally, e.g. 

Mäki-Petäys et al. (1997), Heggenes (1994) and Bird (1996). Therefore, despite there 

being many articles about the validity of habitat modelling with IFIM methodology, as 

two-dimensional modelling is relatively new, not much information has been published 

about the validation of two-dimensional habitat modelling as a whole or modelling and 

how modelling should be done, especially taking the features of two-dimensional 

hydraulic modelling into consideration. Neither modelling of shallow areas near banks 

nor the effect of roughness and kinematic viscosity on results has been studied. No 

comprehensive scientific representations of two-dimensional habitat models were found 

in the literature, except the Canadian model, e.g. an introduction to modelling and a 

user's manual by Steffler & Blackburn (2002). The validity and use of different 

preference curves has not been studied comprehensively. 

A study of these issues would give an answer to the questions of whether the 

habitat modelling principle is valid and whether the models work in practice. 

Furthermore, it would provide an answer to the question of whether preference curves 

or preference surfaces should be used, and how these should be derived from data and 

selected for each use. The study would also give an extensive picture of two-

dimensional habitat modelling. Whether the habitat modelling methods developed for 

fish habitat modelling could be used for modelling the habitats of other organisms 

should also be studied. For example, substrate, water depth and shear stress near the 

river bed are important variables affecting the habitats of many herbs and benthos. 

Modellings have been carried out for different species of fish, but single and rare 

modellings of the habitats of crayfish, in this work, pearl mussel (Lahti 1998), benthos 

(Kopecki 2008, Lahti 2009), and an herb, in this work, have been carried out. 

Modellings of all of these are useful in environmental impact assessments. In this work, 

in addition to fish habitat modellings, modellings of the habitats of an herb, Persicaria 

Foliosa, and crayfish are represented.  
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Objectives and structure of the study 

The objective of the study is to study the applicability of two-dimensional aquatic 

modelling of habitats of organisms. The capability of two-dimensional modelling in 

predicting densities of organisms is tested. Models are calibrated and preliminary tested 

with data in Chapter “Calibration and testing”. First, the physical model is tested; field 

measurement methods, data models and the hydraulic model are tested with measured 

data. Then, the biological model is preliminarily calibrated with different data. After 

that, the effect of habitat modelling grid density is studied. Finally, it is studied, whether 

the model would predict organism abundance, biomass or position most accurately. In 

Chapter “Verification and sensitivity analysis”, the behaviour of the model is studied, 

and the sensitivity of results to different factors is tested. The logicality of modelling is 

tested with artificial data, and sensitivity analyses are carried out with these and also 

with measured data. Different field measurement and topographical data interpolation 

methods are tested. Sensitivity of the hydraulic model to parameter value changes and 

different modelling methods are tested. The relative importance of the effect of different 

factors on model results is studied. In Chapter “Validation of the model”, the results of 

the modellings are compared with observed densities of organisms. Both types of fish 

habitat modelling are validated; modelling based on directly measured physical data and 

modelling based on hydraulic modelling. The results from fish, crayfish and herb 

modellings are compared with observed habitat use (Figure 1.1).  

The study is carried out with data for different organisms: fish: salmon (Salmo 

salar), both fry and juveniles; brown trout (Salmo trutta), both fry and juveniles; 

grayling (Thymallus thymallus), both fry and adults; stone loach (Noemacheilus 

barbatulus); bullhead (Cottus gobio); adult pikeperch (Stizostedion lucioperca), and 

adult crayfish (Pacifastacus leniusculus), and an herb: Persicaria Foliosa. 
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Figure 1.1 Themes of the main chapters of this work. 

 

1.2 Principles used in testing and validation of the model 
 

First, principles used in building the models, and the data used, are represented. After 

that, models created are calibrated with biological data and tested. In verification and 

sensitivity analysis, the behaviour of the model is studied, and sensitivity analyses are 

carried out. Finally, the models are validated against observed habitat use (Figure 1.2). 

Distributions of modelled habitat values at organism observation points are compared 

with the distributions of modelled habitat quality of whole the study area. 
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The observed habitat selection is called habitat use and the habitat quality distribution of 

the whole study area is called habitat availability. The question which this study tries to 

answer to is whether organisms select their positions coherently with modelled habitat 

quality. It is assumed that organisms can select their position freely inside the study 

areas. With juvenile fish data from the Rivers Simojoki and Ala-Koitajoki this is true, 

possible except the smallest fishes, because the study areas are relatively shallow and 

the habitats of high quality, and also in the Laukka area and Pyhäkoski impoundment, 

despite their deeper mid-channels, the modelled adult fish are easily able to move inside 

the study area. Persicaria Foliosa seeds in water and the seeds can probably spread to 

the study area, depending on weather and hydraulic conditions. The study areas for 

crayfish are also small, compared with the ability of crayfish to move. 

The factors causing inaccuracy in modelling are studied. The sources of 

inaccuracy in modelling are, first, in the model, and second, in the calibration of the 

model with the biological material. What is meant by calibration of a habitat model is 

the selection of preference material. The sources of inaccuracy caused by the model are 

possible defects in the principles of modelling, e.g. in the habitat value calculation 

formula and in the physical model characterising the environment. Sensitivity analyses 

are made for different factors and methods, and for whole the model.  

 

Biological data 

A habitat model is calibrated with biological information e.g. from fish studies, e.g. with 

preference curves. Most of the variability in the results of habitat modelling may be 

caused by the selection of preference criteria. 

Different types of preference curves are used; first, preference curves made from 

material from a study in situ, second, curves from a single fish study elsewhere, and 

third, curves made on the basis of many fish studies and physiological-type ones. 

Applying preference information from conditions of one type to another is also studied: 

using curves from small rivers in large rivers; the effect of a change in season and 

discharge, and a comparison between local curves and curves made elsewhere. Fourth, a 

preference surface is also tested. Biological habitat preference functions used are 

represented in Table 1.1. 
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Table 1.1 Different organisms and habitat preference functions used in this work. 

where used preference functions 
Introduction brown trout (Mäki-Petäys et al. 1997) 

Harrikoski 
Rapids 

salmon <10 (Mäki-Petäys 2000, Heggenes 1999), salmon >10 
(Mäki-Petäys 2000, Heggenes 1999), grayling 5.1-25.4 (Hubert et 
al. 1995), stone loach (Lamouroux et al. 1999), bullhead 2-7 
(Lamouroux et al. 1999), salmon 4-6 cm August, October, February 
and April (Mäki-Petäys 2005) 

Ala-Koitajoki 
Rapids 

salmon <10 cm (Mäki-Petäys 2000, Heggenes 1999), salmon >10 
cm (Mäki-Petäys 2000, Heggenes 1999), brown trout <10 cm 
(Mäki-Petäys 2000), brown trout 16-25 cm (Mäki-Petäys 2000)   

Laukka area 

adult grayling (Vehanen et al 1998) for 110 m3/s and 300 m3/s, adult 
Grayling (Greenberg et al. 1994, calculated with methods O/E and 
Jacobs’, adult grayling (Hubert et al. 1985), adult grayling, before 
and after rehabilitation and these combined (book keeping fishing, 
Leinonen 1999). 

Pyhäkoski 
impoundment 

adult pikeperch: summer, early winter, late winter (Vehanen & Lahti 
2003), from which the early winter curves: with 5 different methods 
and a preference surface 

Comparison 
of curves 

brown trout fry: <10 cm (Mäki-Petäys & Huusko 2001), 4-9 cm 
(Mäki.Petäys et al. 1997), < 1 years but > 5 cm (Souchon et al. 
1989), <14.5 cm (Raleigh et al. 1996) 

Delta of River 
Oulujoki 

Persicaria Foliosa (Lahti & Riihimäki 2000) 

Crayfish 
modellings 

crayfish Pacifastacus leniusculus at Lamminsaari Island in Lake 
Pääjärvi, Lake Katumajärvi study areas 4-5 and Pukettisaari Island, 
Lake Slickolampi, crayfish Astacus astacus Lake Valkjärvi in the 
Lake Haarajärvi  area (Erkamo (FGFRI) 2002) 

 

 

Organism observation methods 

 

Different organism observation methods are represented briefly. The classification and 

descriptions of fish observation methods are mostly adapted from Huusko et al. (2003), 

where a number of sources for more detailed information can also be found. 

Electric fishing is suitable for smaller-sized fish. All the fish from an area are 

collected in order to see the fish densities or the fish-catching sites can also be mapped 

to study the habitat preferences of fish. The fish are stunned with electricity and 

collected in a bag. Afterwards, the fish are released back into the river. When locating 

fish, a smaller anode is used than is used when only counting the number. The distance 

between fishing points can be e.g. 0.5 metres.  If the water surface is smooth, the 

position of fish can be seen. When this is not possible, electricity causing taxis and an 
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escape reaction may cause inaccuracy of positioning (Huusko et al. 2003, Mäki-Petäys 

et al. 1997). The equipment is portable, and can be placed on shore, on the river bed, or 

in electric fishing boats.  

Radio telemetry can also be used. A radio or acoustic transmitter is put into the 

fish and the movements of the fish can be monitored. The fish must be big enough to be 

able to carry the transmitter. A maximum weight for the transmitter of 2 % of fish 

weight has been used as a rule, but without experimental evidence; even 12 % has been 

reported to show no adverse effects in some conditions (Bridger, C.J. & Booth, R.K. 

2003).  A PIT mark is smaller than radio transmitters, but its detection distance is short. 

In echo sounding, vertical or horizontal echo sounding sectors are used for 

locating. This method is for relatively rough locating and is used in small but deep and 

larger rivers. 

While keeping a fishing journal or log book, fish catching places can also be 

marked on a map during normal fishing. The time of the observation and the length and 

weight of the fish are marked down.  

Nets, traps etc. and explosives can be used for rough estimations on the 

mesohabitat scale. The positions and the behaviour of fish can also be observed with 

surface or equipment diving in rivers with good visibility. When making visual 

observation over the water surface, the places of fish or e.g. plants are mapped by 

observation with the naked eye in rivers with good visibility. Water binoculars and 

video cameras can also be used. The habitats used by crayfish can be studied by placing 

traps at given distances. 

 

The sources of inaccuracy in physical modelling 

The accuracy of the field measurements (e.g. topography, river bed substrate, water 

level, and discharge) is the basis of the quality of the model results. Then, in the creation 

of e.g. the topographic model, interpolation to a grid is used, and in hydraulic 

modelling, a flow calculation grid with a limited number of calculation cells is 

constructed. Every time there is interpolation, especially when interpolating to the 

hydraulic modelling grid, some of the original accuracy is lost. In the calibration of the 

hydraulic model and in the calculations, inaccuracy is also caused.  
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Measurements and modelling 

On the Rivers Simojoki and Ala-Koitajoki, the measurements were originally made by 

FGFRI for habitat preference studies and have large amounts of observation data. The 

coordinates of places where the fish were caught were measured with a tacheometer. 

The flow velocities and water depths at organism observation points and on the whole 

of the study area were measured directly on site. The topography necessary for 

hydraulic modelling was not measured. Habitat values were calculated directly for all 

availability and observation measurement points. Because preference curves and field 

observations are based on the same measurement method, no difference between 

calibration and validation data exists. In the Laukka study area, field measurements 

were originally made for assessing the effects of habitat rehabilitation. After field 

measurements, a two-dimensional hydraulic modelling was carried out. Fish 

observations were made by keeping a log book with a map while fishing. Water depth 

and flow velocity for the habitat availability and fish observation points were both 

calculated with the hydraulic model, and the substrate values were interpolated from 

measurements in the modelling. In the Pyhäkoski area the measurements were made for 

studying fish populations and habitat use in a hydro power impoundment with the help 

of one- and two-dimensional hydraulic modelling. Fish were observed with telemetry. 

The modelled and observed values of water depth and flow velocity were produced with 

the hydraulic model. The calculation methods for crayfish and Persicaria Foliosa were 

somewhat different than with the fish habitat models. Crayfish were observed from traps 

bound with constant intervals to ropes along or perpendicularly to the shore line. 

Observations were made during summers, and the traps were removed after each 

summer, which means that the positioning may vary. The values of the physical 

variables were measured during a couple of summers from the trap sites. The preference 

curves for Persicaria Foliosa were got from measurements located with GPS 

equipment, and the observations for validation by studying herb abundance in cells of a 

grid defined on the study area. 

For the sensitivity analysis, both artificial data providing an absolute reference 

for comparisons and measured data with corresponding validation measurements were 

used. The artificial and physical field measurement data used in different chapters of 

this work are shown in Table 1.2. The measurement data of fish habitat use are shown in 

Table 1.3. 
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Table 1.2 Field measurement and artificial data of physical habitat variables used in different chapters. 

chapter data 

2 

Rapid Keijulankoski on Tainionvirta River, Konnuskoski Rapids, Rapid 
area on tributary Siltapuro B at the River Oulujoki, Kuurnankoski Rapids 
on the Korvuanjoki tributary of the River Iijoki, Laukka area on  the River 
Oulujoki, Siikakoski Rapids on River Kymijoki  

3 
Ahmaskoski area of the River Oulujoki, River Ripatinkoski, Konnuskoski 
Rapids, Valajaskoski Rapids, Pyhäkoski impoundment on the River 
Oulujoki  

3.1, 4.2, 
5.2 

Lamminsaari Island in Lake Pääjärvi, Lake Katumajärvi study areas 4-5 
and Pukettisaari Island, Lake Slickolampi, Lake Valkjärvi in the Lake 
Haarajärvi  area 

3.1.1.4 River Ripatinkoski,  Rapid area on tributary Siltapuro B at the River 
Oulujoki  

4 figurative test data 1, figurative test data 2, figurative test data 3, 
Tolpankoski Rapids on the River Kiiminkijoki 

4.1.4 Hotilankoski Rapids on the River Tainionvirta 

5.1.1 River Simojoki: Harrikoski Rapids, Iso Tainikoski rapids upper and lower 
parts 

5.1.2 River Ala-Koitajoki: Hiiskoski Rapids, Tyltsykoski Rapids 
5.1.3 Laukka area on the River Oulujoki 
5.1.4 Pyhäkoski impoundment on the River Oulujoki 
5.3.1 The delta of the River Oulujoki 

 

 

Organism observation data 

Salmon (Salmo salar), brown trout (Salmo trutta), grayling (Thymallys thymallys), stone 

loach (Noemacheilus barbatulus), and bullhead (Cottus gobio) were studied in small to 

medium-sized rivers (Rivers Simojoki and Ala-Koitajoki), grayling (Thymallys 

thymallys) at quite a fast-flowing place on a large river (the River Oulujoki in the 

Laukka area), pikeperch (Stizostedion lucioperca) at a rather slow-flowing place on a 

large river (the Pyhäkoski impoundment on the River Oulujoki) in winter, and crayfish 

(Pasifastacus Leniusculus) in small lakes in Southern Finland, and an herb (Persicaria 

Foliosa) was studied in the delta of a river (the River Oulujoki). Data of field 

observations of organisms are summarized in Table 1.3. The locations of the study areas 

are shown in Figure 1.3.  
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Table 1.3 Different fish observation data used or represented in the chapters of this work. 

source, method and location organism  

Harrikoski rapids 
salmon <10 cm, salmon >10 cm, 
stone loach 5-12 cm, bullhead 4-7 
cm, October data for salmon 4-6 cm  

Iso Tainikoski 
Rapids lower part 

salmon <10 cm, salmon >10 cm, 
stone loach 5-12 cm and 5-13 cm, 
bullhead 2-7 cm and 4-7 cm, 
grayling 4-9 cm 

River Simojoki, Mäki-
Petäys (2000), FGFRI, 

electric fishing 

Iso Tainikoski 
Rapids upper part 

salmon <10 cm, salmon >10 cm, 
stone loach 5-12 cm and 5-13 cm, 
bullhead 2-7 cm and 4-7 cm, 
grayling 4-9 cm 

Hiiskoski Rapids 
salmon >10 cm summer and autumn, 
brown trout <10 cm, brown trout 16-
25 cm 

River Ala-Koitajoki, Mäki-
Petäys et al. (2002), 

FGFRI, electric fishing Tyltsykoski 
Rapids 

salmon <10 cm summer and autumn, 
salmon >10 cm summer 

River Oulujoki, Leinonen 
(1999), North Osthrobotnia 

Environment centre, log 
book fishing 

Laukka area, 
adult grayling 

Laukka area, adult grayling  

River Oulujoki, Vehanen & 
Lahti (2003), FGFRI, fish 

telemetry 

Pyhäkoski  
impoundment 

pikeperch: summer, early winter, 
late winter 

Town Oulu, Ulvinen 
(2000), University of Oulu, 

mapping 

Delta of River 
Oulujoki 

Persicaria Foliosa 

Lamminsaari 
Island in Lake 

Pääjärvi 

crayfish Pacifastacus leniusculus 

Lake Katumajärvi 
study areas 4-5 

crayfish Pacifastacus leniusculus 

Lake Katumajärvi 
Pukettisaari 

Island 

crayfish Pacifastacus leniusculus 

Lake Slickolampi crayfish Pacifastacus leniusculus 

Lake Pääjärvi, Lake 
Katumajärvi Lake 

Slickolampi and Lake 
Valkjärvi in the Lake 
Haarajärvi  area, Esa 

Erkamo (2002), FGFRI, 
traps 

Lake Valkjärvi crayfish Astacus astacus 
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Figure 1.3 Location of study areas. 

 

There were fish observation data at seven sites, including 19 different sets of data 

with at least 20 observations and one or more preference curves in each, all together a 

total of 859 fish observations. The validity of the habitat value calculation principle was 

checked with modelling with good-quality physical models and appropriate calibration 

data, especially with the River Simojoki and River Ala-Koitajoki data. The accuracy of 

the whole model, including the hydraulic model, was tested by habitat modelling in the 

Laukka area and Pyhäkoski impoundment study areas and the hydraulic model was 

additionally tested by comparison of the hydraulic modelling results with measured 

values. To test the use of different types and quality of calibration data, results with 

different preference curves were compared with each other. The model for the herb 

Persicaria Foliosa was validated with 89 sampling areas, and, in testing and validation 
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of the crayfish model, three sets of data with a total of 611 crayfish observations were 

used. The fish observations were obtained by means of keeping a log book with a map 

while fishing, electric fishing, or by fish telemetry, discussed later in this chapter. 

Persicaria Foliosa was mapped in situ and crayfish were trapped. The observation data 

collected by electric fishing and telemetry mostly reflect the average site selection of the 

fish. Observations gathered by keeping a log book with a map while fishing may 

represent the feeding habitats of the organisms slightly more than their average living 

habitats. 

 

The calculation of the distribution of available habitat 

The distributions of available habitats were calculated by weighting the habitat values of 

calculation cells by area. If the flow situation changed during fish observations, as was 

the case in the Laukka and Pyhäkoski study areas, the distributions were calculated for 

each situation individually and those distributions were added together, weighted by the 

number of observations in each flow situation. In the Laukka area, values calculated as 

the averages of a circular area around the observation point were also used. In the case 

of the delta of the River Oulujoki, the area was divided into a grid, in which the 

organism was either found or was not found; therefore the available habitat value 

distribution was calculated from the values of all the cells of the grid. 

 

The calculation of the distribution of habitat use 

The observed habitat use distributions were calculated with the same method as the 

distribution of habitat availability, except that the habitat values were taken from those 

points with observations of organisms. The values used in the habitat value calculations 

were the values at observation points or at the nearest habitat value calculation grid 

point to the fish observation point found by a computer program, as was the case in the 

Laukka and Pyhäkoski areas. In the Laukka area, values calculated as averages of a 

circular area around the observation point were also used. In the case of the delta of the 

River Oulujoki, the area was divided into a grid, in which the organism was either found 

or was not found; therefore the observed habitat values were the average habitat values 

of the cells with the organism. 
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Habitat availability and use, and the proportion of use to availability 

For visual assessment of habitat use and availability of different habitat value classes, 

the values were classified with a uniform interval, usually 0.05, except zeros and ones 

may have separate classes, or if the distribution was not suitable for this kind of a 

representation, a scale of e.g. logarithmic or as close as possible to an even number of 

availabilities per class type was used.  

To directly visualise the habitat preference, the proportions of habitat use to 

habitat availability in each habitat value class were calculated from classes with an 

amount of available habitat as close to uniform as possible. The number of classes used 

was chosen according to a rule for chi square tests, from the formula:  

 

Nc=2*n0.4                                                                         (1.1) 

 

to get as many classes as possible to find trends, but still with a sufficient amount of 

observations in each class. In the Laukka and Pyhäkoski areas, these rules were not 

followed exactly, because the large calculations that had to be automated, which 

produced discretisation of data. When crayfish data were being classified, if the number 

of traps was less than the number of crayfish observed, the number of traps was used to 

guide the selection of the number of classes.  

 

The goodness of fit tests 

The available habitat was divided into two areas that were as close as possible to being 

equal in size; high and low habitat values. In this case, when most of the preference 

curves used in the case studies were made by dividing the habitat uses in different 

classes by availability, which means that the preference values of different curves are 

not comparable with each other, this is a better way than a division at a certain habitat 

value, e.g. 0.5. Using two classes as equal in size as possible makes the statistical test 

more effective. Goodness of fit tests were used to test whether the half of the habitats 

with higher habitat values was used statistically significantly more often than the areas 

with lower habitat values. Tests indicate at which risk level, p-value, the expected and 

observed distributions differ from each other. If the p-value is smaller or equal to 0.05, 

the difference is considered to be significant, and at 0.01 strongly significant. 
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The null hypothesis of the test is that habitat selection does not depend on habitat 

values, whether the value is low or high. The chi square test requires the probability 

distribution of an event to be constant. If the organism densities and territories were 

small compared with the area of preferred habitats, this would be true. If organism 

density is high, individual organisms will choose from different available habitats. The 

densities at Rivers Simojoki and Ala-Koitajoki were rather high. In the case of 

organisms preferring areas with higher habitat values, this reduces the probability of 

selection of preferred areas, which increases the risk of type II error, i.e. a false rejection 

of the research hypothesis that habitat selection would somehow depend on habitat 

values. On the contrary, if the organisms shoaled, the risk of type I error would increase.  

With goodness of fit tables of two classes, both the Pearson's (e.g. Spiegel 1972) 

and log likelihood tests (Sokal & Rohlf 1995) approximate the chi square distribution 

(Sokal & Rohlf 1995). These tests are used to compare the perceived distribution of 

organisms with the expected. In Pearson's test, a test variable resembling the chi square 

variable is calculated:  

 

∑i ((oi-ei)2/ei),         (1.2) 

 

where ei is the expected and oi the observed frequency in each class. 

The likelihood ratio test statistic is derived from maximum likelihood method, and it 

approximates a chi square distribution. It does this through a natural log transformation 

(-2*log) of the ratio between the maximum likelihood based on the null hypothesis and 

the maximum likelihood based on the actual data values found.  

 According to Cochran (1954), in Pearson's test, at least 20 observations are 

needed. To maintain the validity of the tests; if the number of observations lies between 

20 and 40, all classes must have an expectation of five or greater. According to Sokal & 

Rohlf (1995), if the number of observations is less than 25, exact probabilities should be 

calculated. This is not practical, because the expected distributions are not integer values 

in this case. In this study, sets of data with at least 20 observations are used which 

means that there usually are at least ten expected observations per class. Some 

reservations are in order when reading the results of cases with less than 25 

observations. 

Pearson's test, often called "the chi square test", has been used widely in science 

up till now, while these days the log likelihood test is gaining in popularity. Sokal & 
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Rohlf recommend using the log likelihood test. Both tests result in type I errors at a 

higher level that intended. A correction, correction of continuity, has been developed, 

but it results in excessively conservative tests. Instead, Williams' correction to the log 

likelihood test is recommended (Sokal & Rohlf 1995). The results of both tests with 

corrected and uncorrected values are shown, because on one hand people are used to 

Pearson's test, but on the other hand, the log likelihood test is likely to produce more 

accurate results. 

 

Interpretation of the results 

The null hypothesis of the test is that the habitat use would not depend on habitat values. 

If it is rejected, that does not necessarily imply that a habitat model would work well. 

The higher habitat values should be preferred, and a good habitat model also puts 

habitats in an order of preference. The following are required: the null hypothesis is 

rejected and the trend of habitat preference, i.e. the proportional habitat use, is clearly 

ascending towards higher habitat values. No sensitivity analyses for the proportions of 

habitat use divided by availability were calculated; it is assumed that the formula (1.1) 

ensures a sufficient reliability, and only clear trends are used as evidence. Additionally, 

the significance depends on the number of observations; the higher the number of 

observations, the easier it is to observe differences as significant, and, with few 

observations, relatively large differences may be rated as insignificant. Rejection of the 

research hypothesis indicated by the test does not necessarily imply that there wouldn’t 

be dependence, especially, if habitats get populated. On the other hand, the risk of a 

false rejection of the null hypothesis indicated by the test increases e.g. if the organisms 

shoal or the same organism is sampled many times. 

 The results should be analysed by studying the habitat value maps with 

observations, the distributions of use and availability, the relative preferences of higher 

values, the graphs of the proportions of use to availability in different classes, and the 

statistical tests, bearing in mind the possible factors, e.g. territorial behaviour or 

shoaling, represented in the text, affecting them. 
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2 THE MODELS 
 

2.1 Two-dimensional habitat modelling 
 

The basic principle of habitat modelling is to combine information on the physical state 

of the study site with information on the biological needs of the organism being studied 

to create a presentation of the suitability of habitats. Some of the physical variables are 

measured in situ, some are modelled. The biological preference information is usually in 

the form of curves indicating the suitability for each value of the physical variable, e.g. 

water depth. This information is combined in habitat value calculation to produce 

suitability maps, curves, and numerical data. The basic phases of habitat modelling are 

shown in Figure 2.1. In fish habitat modelling, after field measurements, a hydraulic 

model is run. 

Some basic assumptions are made in habitat modelling. It is assumed that 

individual organisms select the most desirable conditions within a steady state stream 

but will use less favourable areas as the stream becomes more crowded. Desirable 

conditions can be adequately represented by habitat suitability criteria curves and each 

cell can be evaluated independently. The area-weighted arithmetic sum of available 

habitat (as WUA) in each cell is indicative of total habitat conditions at a specific 

discharge. Physical habitat, not water quality and/or other factors, limits the population 

size. (U.S. Geological Survey 2005) 

 

 

 

 

 

 

 

 

 
Figure 2.1 The phases of modelling. In fish habitat modelling, the dashed area is included. 

field measurements

a two-dimensional hydraulic model

habitat value calculation

habitat suitability; maps, series and spatial data
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boundary conditions
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2.2 Fish habitat model 
 

The model consists of modules for hydraulic modelling, habitat value calculation, and 

data processing and output. For hydraulic modelling and in basic interpolation and 

output, commercial and free software, SMS/RMA2 and Surfer, are used. The other parts 

of the model are specially programmed for the habitat model. The modular structure 

allows different types of input data, the most suitable hydraulic models and different 

types of output, to be used, and developing the model is easy. In Figure 2.2, the 

structure of the habitat model and the data flow in habitat modelling are shown. 

 

               
Figure 2.2 The structure of the habitat model and the data flow in habitat modelling. Input data are 

marked with a medium/lighter colour, model-specific programs with white, commercial programs with a 

very light colour, and the results with a darker colour. The flow of data is shown with arrows. The flow 

velocity data is marked v, water depth d, substrate s, topographic height h, and water level w. 

 

In the habitat modelling process, the topography and substrate, i.e. river bed 

particle size, are measured first and the whole area is covered. Water level and flow 

velocity cross-sections, if needed, are measured at some places for boundary conditions 

and calibration. The data are input to hydraulic modelling, in which the water depths 

and flow velocities are calculated for the habitat value calculation. The biological 
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preference information is usually input to the calculation as preference curves. As a 

result, suitability maps, numerical suitable habitat area values, and curves of habitat area 

versus time or versus flow rate can be made. Different data-handling programs are used 

for these phases. Next, the modules of the program and the phases of the modelling are 

discussed in greater detail. 

 

Measurements of the physical variables in situ 

Usually, the topography and substrate are measured for the whole study area. Water 

level and flow measurement lines are measured at some points for calibration and for 

boundary conditions of the model. In Figure 2.3, the measurement of water level with a 

tacheometer is under way in the Ripatinkoski River.  

The topography is usually measured as scatter points directly to coordinates. The 

density of measurement points is increased in the most important and spatially varying 

places. The shoreline, often the bottom and the top of the river bank, and any structures 

are marked as line data. Tacheometer method is used for topography measurements for 

small or very shallow or rocky areas and places with a good deal of covering vegetation. 

Echo sounding is faster and usually has a higher density of points for larger, more open 

places with access by boat. Soil radar can be used when measuring on ice. The 

coordinates of substrate measurement points are located with a tacheometer or a GPS 

equipment. Where the river bed can be seen, the measurement is performed by 

observing visually, with the help of water binoculars if needed. Below the visible depth, 

a probing method using a rod is usually used, but soil radar can also be useful. The 

methods can be calibrated by measuring e.g. shallow, easily visible areas and comparing 

the results with observations. A photogrammetric method also exists. Diving has also 

been used sometimes. It is recommended that measurement points are selected in such a 

way that when the data are interpolated with the nearest point method, the most accurate 

result is achieved. The classification of the substrate is performed according to the size 

of the particles on the river bed, e.g.: <0.5 mm, 0.5-2 mm, 2-8 mm, 8-16 mm, 16-32 

mm, 32-64 mm, 64-128 mm, 128-256 mm, 256-512 mm, 512-1024 mm, >1024 mm, 

rock. Usually, the coarsest, the most common, and the second most common substrate 

are measured. The water level is measured to obtain boundary conditions and points for 

calibration. Flow velocity cross-sections are measured for the calibration of flow 

velocity distributions and to find out the flow rate in each river branch for calibration 
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and for use in boundary conditions. In Figure 2.4, the measurement of a flow velocity 

cross-section with Doppler-based equipment from a turbine-powered boat is shown. 

 

 

 
Figure 2.3 Measurement of water level with a tacheometer on the Ripatinkoski River. (Photo Markku 

Lahti). The substrate can be seen through the water surface. 

 

 
Figure 2.4 Measurement of flow velocity cross-section with Doppler-based equipment from a turbine-

powered boat giving access to shallower depths near banks than a traditionally motored boat. (Photo 

Kemijoki Oy). Echo sounding equipment for the measurement of topography can be placed on the same 

boat. The resulting flow velocity distribution is shown in the figure in colour; the ground is black. 
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Creation of the topographic model  

The topographic model is usually created in a commercial interpolation and contouring 

program (Surfer). Before contouring, the measurement points marked to characterise 

linear forms in the river channel are converted to dense point lines with a model-specific 

line interpolation program (Lahti 1999). The linear interpolation software adds points in 

three dimensions with a given density between adjacent points in a line. The resulting 

points are added to the measured scatter points. The program is used to save 

measurement time, because only the corner points of linear forms have to be measured. 

The points should be measured in such a way that they come in the right order for the 

input file or they can easily be put into it. This can be done by measuring totally or 

mostly in order, or by making marks in the data or on a map. 

Kriging is usually used as an interpolation method when the topography is 

measured as scatter points. Kriging is a geostatistical interpolation method that makes 

visually appealing maps from irregularly spaced data. Kriging attempts to express trends 

suggested in the data, so that, for example, high points might be connected along a ridge 

rather than be isolated by bull's eye-type contours. (Golden Software 1999) 

 Other methods can be used, e.g. inverse distance, if Kriging is too slow. 

Triangulation is used if straight forms predominate in the topography and the 

measurements are made from the corner points of such forms. In triangulation, triangles 

are drawn between measurement points in three dimensions, following a procedure to 

make the resulting surface. 

Processed measurement data and the resulting topographic model of the 

Keijulankoski Rapids section on the River Tainionvirta are shown in Figure 2.5. 

Measurements were made with a tacheometer from optimal places. The waterline and 

the upper bank were measured and marked as lines. The measurements of the waterline 

and the upper bank line were converted to dense lines consisting of points. After that, 

the data were interpolated to a topographic model using Kriging. 

If the longitudional variation in the form of the channel is small, and especially if 

the measurements are mostly cross-sections, a curvilinear anisotropic interpolation 

method may be useful. In this method, the sinuosity of the river is taken into account, 

and specific software (Lahti 1999) is used together with a commercial interpolation 

program (Surfer). The method is based on coordinate system transformations and 

anisotropic interpolation. First, the centre line of the channel is digitised. After that, the 
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measurement points are input to the program in coordinates. Then the software creates a 

new coordinate system for the river, the coordinates being the distance from the 

beginning of the mid-line and the orthogonal distance from the centreline to the right 

and left. Some values which are needed in adjusting the calculation grid density and size 

are input into the program. After that, the program transfers the coordinates of the 

measurement points to the new coordinate system. An anisotropic interpolation, usually 

with Kriging, is made with any suitable commercial program. The result is printed out 

from the commercial software, and the resulting topography is converted back to the 

original coordinate system, and, if a grid is needed, one interpolation is made. A contour 

plot is drawn to check the validity of the resulting topography. With this method, it is 

possible to enhance the quality of the topographic model in many cases when 

measurement data are sparse. If the channel is measured densely enough, only the 

commercial interpolation program is used in order to save labour costs. 

 

 

 
Figure 2.5 Processed measurement data and the resulting topographic model (height from sea level, 

metres) for the Keijulankoski Rapids section of the Tainionvirta River.  
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Hydraulic modelling 

In hydraulic modelling, a commercial graphical user interface (SMS by Brigham Young 

University) is used together with a freely distributed hydraulic calculation program 

(RMA2 by US Army Corps). A base map of the study area, usually a contoured 

topographic map, is input to SMS. The hydraulic modelling grid is constructed on the 

base map, on which it is positioned according to the coordinates of three known points 

on the map. The hydraulic calculation grid is created with the semi-automatic tools of 

SMS. The topographic data are input to the hydraulic model in a format consisting of 

the coordinates and elevation of a point in each row. The topography is corrected and 

edited in the user interface, if necessary. After the calculation parameters, boundary 

conditions, and physical parameters have been given, a geometry conversion program 

(GFGEN by the US Army Corps of Engineers) is run to convert the information into a 

form suitable for the actual hydraulic calculation model named RMA2, which is then 

run. RMA2 is a depth-averaged finite element hydrodynamic numerical model. It 

computes water surface elevations and horisontal velocity components for subcritical 

free-surface flow in two-dimensional fields (US Army Corps of Engineers 1996).  

The results (water depth, flow velocity, and water level) can be viewed via the 

graphical interface (SMS), and are also printed out in a special ASCII format. An 

example of hydraulic modelling output from the Konnuskoski Rapids in Eastern Finland 

is shown in Figure 2.6.  

 

Data processing 

The results of the hydraulic modelling are processed with a software (Lahti 1999), 

which picks up and combines the information from the files created by SMS and 

RMA2. It can also be used to correct some errors in water depths and the water level 

caused by the calculation algorithm and restrictions in computer power in many 

choosable ways. It can also be used to add dry land depth values in areas outside the 

hydraulic calculation grid to the water depth file. This makes further use of the data in 

interpolation easier.  
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Figure 2.6 Flow velocity as an example of hydraulic model output from the Konnuskoski Rapids in 

Eastern Finland with a discharge of 191.1 m3/s. Grid cells are shown with rectangles. The white colour 

means dry cells. Boundary conditions can be seen on the up- and downstream borders of the model. In the 

model, additional areas are included up- and downstream from the area of interest with a higher grid 

density near the centre of the model. 

 

 

The results used most frequently are water depth, water level, and flow velocities 

in coordinates. Selected ones of these are interpolated in the contouring program 

(Surfer) to make grids of water depth and flow velocity suitable for input to the habitat 

value calculation. Grids of 100-900 points on a side, usually at a distance of from 0.2 to 

20 metres from each other, are often used. The most precise method for creating water 

depths is to use water level and the original topography, because in the input to the 

hydraulic model interpolation is used and the density of points is often reduced, and 

therefore the precision of water depths taken from the hydraulic model is reduced. 

Furthermore some near-bank areas are usually lost if the depths created by the hydraulic 

model are used because of the limited number of elements and the properties of the 

wetting and drying algorithm of the model. The interpolation method used in gridding 

the water depth and the flow velocity is Kriging. The values of the coarsest, the most 
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common, and the second most common substrate are also interpolated to grids with the 

same corner points and densities as the other grids, but with a nearest-neighbour 

method. The method is used because the substrate data are classes that cannot be 

interpolated. In this method, the points of the grid are given the value of the nearest 

measured point. 

 

Using the biological preference information 

 

Preference curves 

Habitat suitability values are traditionally calculated on the basis of biological habitat 

preference information and printed out in the form of curves, e.g. Bovee (1982). In a 

preference curve, habitat suitability is shown as a function of a variable characterising 

the physical conditions. The preference function gets values between zero and one, so 

that under the least suitable conditions, the function has the value of zero, and, under the 

most suitable conditions, the value of one. A preference curve is defined as follows: 

 

P(v)=f(v),          (2.1) 

 

where P(v) is the preference value for a variable, e.g. flow velocity, and v the variable. 

In Figure 2.7, an example of preference curves is shown. The input form for preference 

curves in the user interface and a figure of the curve drawn on the same sheet are shown 

in Figure 2.8. 
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Figure 2.7 An example of preference curves. The preference values for a trout 4-9 centimetres long in 

summer and in winter for average flow velocity, based on Mäki-Petäys et al. (1997). The curve is drawn 

by connecting the points formed by the midpoints and values of the classes used in the study. 
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k in use (y/n) 

fd name of the function variable 
 

variable spaces 
d 6

 

d fd 

0.0000 0.0000
0.0610 0.0000
0.0914 1.0000
0.6096 1.0000
0.9144 0.0000
1.2192 0.0000

Figure 2.8 The input form for preference curves and the curve input on the same sheet. 

 

Preference curves are determined as follows. A study site that includes as many 

kinds of relevant habitat types as possible is chosen. Fish observations are made that 

cover the whole site. At each point where a fish is found, the physical variables, usually 

water depth, flow velocity, and substrate, are measured immediately. In Figure 2.9, 

electric fishing is under way in a brook in northern Finland for studying the densities of 

brown trout juveniles. 

The conditions prevailing during the observations of fish must also be known. 

The values of the physical variables are measured thoroughly from the whole study 

area. If hydraulic modelling is used, topography, boundary conditions, some 

measurements for calibration, and the coordinates of the places where fish are caught 

are measured instead of direct measurements of all variables. After measurements and 

hydraulic modelling, if used, distributions of the values of the physical variables 

covering the whole study area, i.e. habitat availability, and the distributions of the 

variables only at the fish-catching places, i.e. habitat use, are calculated. The values in 

the two distributions are compared with each other by dividing the habitat use values by 

the values of availability. After scaling so that the largest value is one, the raw 

preference curve is validated.  

 

 

0.0
 
0.2
0.1

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

water depth [m] 

pr
ef

er
en

ce
 v

al
ue

 f(
d)

 [-
] 



 
 

42 

 
Figure 2.9 Electric fishing in a brook in northern Finland for studying the densities of brown trout 

juveniles. A burbot, shown in the picture, was also caught. (Photo Juhani Eskelinen) 

 

Other formulae to express habitat preference include Jacob's Selectivity Index, 

calculated as: 

 

Pi=(ri-pi)/(ri+pi-2ri*pi),        (2.2) 

 

where r is the proportion of habitat used in class i and p the proportion of habitat 

available in class i (COST ACTION 626 2002). Positive indices indicate selective use 

of that habitat class and negative values indicate avoidance. These habitat preference 

scores are often subdivided into three regions: preferred habitat (0.2 < P < 1), indifferent 

habitat (-0.2 < P < 0.2), and avoided habitat (-0.2 < P < -1) (COST ACTION 626 2002). 

With this method, the preference index values in curves from different studies are more 

comparable with each other, but the values of the indices are not in a linear relationship 
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with relative fish densities observed as in the case of the traditional method described 

earlier. 

When modelling longer river sections with pools and riffles, it may be possible 

that the preference curves made in e.g. a riffle are not valid for use in pools. For 

example, river bank areas with a flow velocity near zero are often suitable for juvenile 

trout in the riffle section, but in pools predation makes the situation different. So, near-

zero flow velocities should be considered carefully when making preference curves. 

Often, flow velocity values between 0-0.1 m/s are put in one class in the classification 

needed to make preference curves, i.e. the same preference value is given to flow 

velocities of 0.0 and 0.099 m/s, the real preferences for which may be totally different 

from each other in nature. The classification could have an additional class, e.g. from 

0.0-0.01, and then 0.01-0.1, 0.1-0.2 and so on. This could prevent problems with the 

flow velocity preference curves, because the flow velocity near banks in pools is very 

near zero, whilst in riffles it may be non-zero, e.g. 0.05 m/s, even relatively near the 

banks. 

 

Multivariate preferences 

Multivariate preferences (Bovee 1982, Lambert & Hanson 1989) should be used if the 

combined effect (Voos 1981, Bovee 1982, Orth & Maughan 1982, Bozek & Rahel 

1991) of variables on suitability is not near-multiplicable (Gibson 1993, Elliot 1994). 

They are defined as follows: 

 

P(v1,v2,...)=f(v1,v2,...), where       (2.3) 

 

P() is the preference value for variables, e.g. flow velocity and water depth, and v1, v2,... 

the variables. Multivariate preferences that are visualised by preference surfaces are 

determined in the same way as the curves, except that there is more than one variable in 

the distributions, i.e. the distributions are surfaces. An illustrative sketch of what a 

preference surface could look like is shown in Figure 2.10. In the figure, a fictitious 

organism prefers both combinations of low flow velocities at deep depths and high flow 

velocities with shallow depths. 
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Figure 2.10 An illustrative preference surface for a fictitious organism. 

 

Figure 2.11 shows an input form for two-dimensional preferences at the user 

interface and a figure drawn from the preference surface from the same input sheet. 
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Figure 2.11 The input form of two-dimensional preferences from the user interface and the input surface 

drawn on the sheet. 
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Calculation of habitat values 

The suitability index or the habitat value representing the suitability of habitat is 

traditionally calculated as in the PHABSIM methodology (Bovee 1982): 

 

Suitability Index = P(d)*P(v)*P(s), where     (2.4) 

 

P(d), P(v), and P(s) are the preference values calculated for water depth (d), flow 

velocity (v), and substrate (s). P(s) is often calculated by weighting the preferences 

calculated for the coarsest, the most common, and the second most common particle 

diameter of the river bed material: 

 

P(s) = 0.2*P(s1)+0.4*P(s2)+0.4*P(s3), where     (2.5)  

 

s1 is the coarsest, s2 the most common, and s3 the second most common diameter of 

river bed material. The Weighted Usable Areas, i.e. the areas [m2] weighted by the 

suitability index values, are calculated as follows: 

 

WUA = ∑Ai*P(d)i*P(v)i*P(s)i       (2.6) 

 

These are the most commonly used calculation formulae. Boudreau et al. (1996) used a 

habitat value calculation formula in which the preference values were weighted by 

exponents determined with a PCA analysis: 

 

Suitability Index = P(d)a*P(v)b*P(s)c, where     (2.7) 

 

a, b, and c are the weights. The sum of the weights was 1. Matzuzaki & Tamai (1996) 

multiplied preference values with weights. Other calculation formulae and variables can 

also be used. In the user interface, the calculation can be edited and constructed 

relatively freely. The input form for variables is shown in Figure 2.12. 
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VARIABLES       

        
number of variables       

12        

   FORMULA For a proposition FILE NAMES  

NAME TYPE BOUNDARY a formula, or if not a for- of file names Flow situation 1  
of d=data, k=shoreline  mula, by updating auto- k=depends on  TRUE  FALSE 
vari- p=preference, boundary, matically e. adj, the width flow situation input  output  
able k=formula e=not a b. Decimal separator point. e=does not .grd .grd .dat 

v d e e k v_ek_110 vc_1 vc_1 
d d k e k d_ek_110 dc_1 dc_1 
s1 d e e e us1xymyh s1c s1c 
s2 d e e e us2xymyh s2c s2c 
s3 d e e e us3xymyh s3c s3c 
fv p e e k e fv_1 fv_1 
fd p e e k e fd_1 fd_1 
fs1 p e e e e fs1 fs1 
fs2 p e e e e fs2 fs2 
fs3 p e e e e fs3 fs3 
fs k e 0.2*fs1+0.4*fs2+0.4*fs3 e e fs_1 fs_1 
WUA k e fd*fv*fs k e WUA_1 WUA_1 

Figure 2.12 The input form for variables. In the columns from the left: names of variables, type of 

variable, a mark whether the shoreline is defined by the values of the variable, calculation formula, a 

marking for automated file naming, input grid file names, output grid file names, and output data (xyz 

format) file names. 

 

In the interface, basic arithmetical operations, exponents, and ten nested 

parentheses can be used in constructing calculation formulae with different variables. 

Formulae have also been developed for e.g. characterising connectivity, biodiversity etc. 

Series of habitat values can also be calculated, e.g. habitat value versus time or 

flow rate (Figures 2.15-2.17) automatically by inputting a series to an ASCII file, and 

the file names of physical data grids and corresponding e.g. flow rates in another file. 
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Output 

Basically, the output from the model is the values of different variables for each cell in 

the calculation grid, e.g. the values of the suitability index, preference indices for e.g. 

water depth, flow velocity, and substrate, or any other variable used. The output can be 

in the form of contour or relief maps or as a file of numerical values in coordinates. In 

Figure 2.13, as an example, habitat maps drawn with the contouring program and with 

the hydraulic modelling interface are shown.  
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Figure 2.13 Habitat value maps for 4-9-cm trout (Salmo  trutta) for water depth, flow velocity, and 

substrate in summer in the Siltapuro tributary of the River Oulujoki, drawn with the contouring program, 

and for the spawning of trout at the Konnuskoski Rapids, drawn with a hydraulic modelling interface for 

water depth and flow velocity. 

 

Relief, perspective, or orthographic maps showing the topography and e.g. the 

habitat values simultaneously can also be used. Figure 2.14 shows a Usable Area map 

for freshwater pearl mussel for on an orthographic map of the lowest part of the 

Kuurnankoski Rapids on the Korvuanjoki tributary of the River Iijoki calculated with 

preference curves from Valovirta (1998). 

The sums and the distributions of the values of the variables are calculated 

automatically and printed to a file. The values of these variables can also be plotted 

versus time, flow rate etc. Figure 2.15 shows Weighted Usable Areas for different size 
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classes of grayling (Thymallus thymallus) in the Oulujoki River in the Laukka area at 

different flow rates calculated with the preference curves of Greenberg et al. (1994).  

In Figures 2.16 and 2.17 Weighted Usable Area and Usable Areas for flow 

velocity, water depth, and substrate for small salmon (Salmo salar) in the Siikakoski 

Rapids on the Kymijoki River calculated with the preference curves of Mäki-Petäys 

(2001) are plotted as a function of time. 

 

Minimum habitat value calculation  

If the flow rate varies so rapidly during a day that the fish cannot change habitats, the 

real habitat suitability may be less than the average of the successive situations, e.g. 

because of drying. In this method, habitat values in selected flow situations occurring 

during the period to be studied are calculated with the model. The habitat value in each 

modelling cell of the study area is the minimum of the selected flow situations.  
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Figure 2.14 The topography and Usable Area for freshwater pearl mussel in the lowest part of the 

Kuurnankoski Rapids on the Korvuanjoki tributary of the River Iijoki calculated directly from measured 

values with preference curves from Valovirta (1998). The most suitable areas are shown with a lighter 

colour and the shoreline with a white line. 
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Figure 2.15 The Weighted Usable Areas for different size classes of grayling (Thymallus thymallus) in 

the River Oulujoki in the Laukka area at different flow rates calculated with the preference curves from 

brooks (much smaller than the River Oulujoki) of Greenberg et al. (1994). The situation before 

rehabilitation is shown with a dashed line and the situation after rehabilitation is shown with a continuous 

line. 
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Figure 2.16 Flow rate [m3/s] and Weighted Usable Area [WUA-m2] for small salmon (Salmo salar) in the 

Siikakoski Rapids on the River Kymijoki calculated with preference curves from Mäki-Petäys (2001). 
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Figure 2.17 Flow rate [m3/s] and Usable Areas [x-m2] for flow velocity, water depth, and substrate for 

small salmon (Salmo salar) in the Siikakoski Rapids on the River Kymijoki calculated with the preference 

curves of Mäki-Petäys (2001). 

 

 

The spatial scale of two-dimensional models 

For assessments of a whole river, when the length/width ratio of the area to be assessed 

is larger than e.g. 50-100, methods based on habitat mapping, e.g. Yrjänä (2003) and 

Eisner et al. (2007), or generalised hydraulic parameters, e.g. Lamouroux & Jowett 

(2005), have been developed. The latter of these is based on Reynold's and Froude's 

numbers, and possibly should be applied only in statistical assessments of natural 

homogeneous rivers. The smallest, centimeters-size microstructure of the river bed 

should usually be assessed visually. The scale between these, on which local 

rehabilitations are usually planned, is the niche of habitat hydraulic modelling. An 

IFIM-type methodology based on two-dimensional hydraulic modelling is also the only 

way to model the effects of structural changes on habitat quality. The columnar flow 

velocities used in modelling are easy to measure and compare. The resources needed for 

the calibration of IFIM-type two-dimensional habitat models are less than with 

individual fish-based or three-dimensional models. Gouraud et al. (2004) have 

developed a model combining a physical habitat model with a structural biological 

model.  
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2.3 Crayfish model 

 

The principles of two-dimensional habitat modelling are tested by making a totally new 

two-dimensional habitat model, for crayfish. The model is developed from the 

beginning: from choosing the variables and calculation formulae. The variables used in 

modelling are initially chosen on the basis of biological knowledge, statistical tests and 

plots of the relationship between crayfish abundance and the values of variables. 

Preference curves are made for those variables. Then, for further calibration and testing 

of the model, habitat modellings are performed with different habitat value calculation 

formulae at the same lakes. A sensitivity analysis of the effect of preference curves is 

carried out at a lake. After that, the model is validated at another lake or lakes. Further 

studies should be performed after this work, and perhaps also with other statistical 

methods when more data are available. The phases of crayfish model development are 

shown in Figure 2.18. The model is tested at two lakes. A sensitivity analysis is carried 

out in Chapter “Verification and sensitivity analysis of the model” to test the effect of 

using preference data from different physical conditions than prevail at the lake that is 

modelled. Finally, three validations are carried out in Chapter “Validation of the 

model”. 

 

 

Lamminsaari in Pääjärvi

Lake Slickolampi

Katumajärvi areas 4-5

Pukettisaari Island

validation
sensitivity analysis

testing
model construction

Lake Valkjärvi

 

Figure 2.18 The construction, testing, sensitivity analysis and validation of the crayfish model in this 

work.  
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Descriptions of study areas 

Lake Katumajärvi 

Lake Katumajärvi is located near the town of Hämeenlinna in southern Finland at 

6767266, 336529 in the KKJ coordinate system (Figure 2.19). The catchment area is 

about 51 km2. The mean retention time is about 21 months. The size of the lake is 3.75 

km2 and the greatest depth 18 metres. It is classified as slightly eutrophicated (Anon 2. 

2003). 

 

 

 

 
Figure 2.19 The location of Lake Katumajärvi and the study areas in the lake. 
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Lamminsaari Island in Lake Pääjärvi 

The Lamminsaari study area is located in Lake Pääjärvi near the town of Hämeenlinna 

in Southern Finland at 61°4'N, 25°8'E (Figure 2.20). The catchment area is 244 km2. 

The size of the lake is 13.4 km2 and the mean depth is 14.8 metres. The lake is situated 

100 metres above sea level. Its greatest length is nine kilometres in the SE-NW direction 

(Virta 2003). There are 25 rivers and brooks that drain into the lake. The area is situated 

in the Southern boreal vegetation zone. The annual mean air temperature is 3.6 ºC and 

the annual mean precipitation, according to the mean of the years 1961-1990, is 619 

mm. Lake Pääjärvi is mesotrophic (Kuosa et al. 2006). In 2006, 62% of the watershed 

was forest, 16 % arable land, 12% pine bog, 1.5% swamp and 8% lakes (Stenberg 

2007). 

 

 

 
Figure 2.20 The location of Lake Pääjärvi and Lamminsaari Island. 

Lamminsaari Island
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Lake Slickolampi 

Lake Slickolampi is located in Southern Finland at 60°9'N, 23°34'E (Figure 2.21). It is a 

smaller and shallower lake. The bed material is mostly soft, and cleaner near the shore. 

The greatest dimension of the lake is about 375 metres. 

 

 

 

 
Figure 2.21 The location of Lake Slickolampi. 
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Lake Valkjärvi in the Lake Haarajärvi area 

The positioning of Lake Valkjärvi is represented in Figure 2.22. Data from the lake are 

used only in studying the preference of crayfish for potential erosion, but not in 

modelling.  

 

 

 
Figure 2.22 Lake Valkjärvi, near Lake Haarajärvi at the town of Lammi. 
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The organism studied and the biological data 

The modelling of crayfish (Pacifastacus leniusculus) is based on the data from 

observations in the lakes mentioned above. Crayfish are known to favour clean, steady 

bed material in which they can find or build hiding places. It is assumed that water flow 

could keep the surfaces clean. The crayfish move mostly during the night-time, and they 

rest during the daytime. They are trapped mostly when moving, and they may move 

long distances, so the traps may catch crayfish which also prefer other areas to the area 

near the trap. So, the preference information obtained may include observations of 

crayfish in their resting and feeding habitats, but also observations of crayfish moving 

between these. Still, it is assumed that crayfish would be trapped more often in the more 

suitable habitats. Measurements were available from four lakes: Lake Slickolampi, Lake 

Valkjärvi, at the Lake Katumajärvi study areas 4-5 and at Pukettisaari Island, and from 

Lake Pääjärvi. The first two that are mentioned are much smaller than the others. Two-

dimensional data were available from all the lakes but Lake Valkjärvi. Also, only the 

species Astacus astacus exists in Lake Valkjärvi, so the data were not used. Both the 

species Pacifastacus leniusculus and Astacus astacus were found at Lake Slickolampi. 

The data about the stronger competitor, Pacifastacus leniusculus, are used. The crayfish 

observation places were placed on a map afterwards on the basis of information on the 

beginning point of the rope to which the traps were attached, and on the average 

distance between two traps. The positions were checked at some known points. The 

maximum error in positioning the traps in relation to the habitat variable measurements 

was assumed to be 10 metres along the shoreline. This is considered to be good enough, 

because the lakes are large and the habitat characteristics change gradually. 

Information at e.g. Lake Pääjärvi is available from the following variables: depth, 

potential erosion, water temperature, distance from the shore, slope, existence of stone, 

gravel, sand, or fine sand and soft underlaying bed material. Potential erosion the 

calculation formula for which was taken from work by Juntura and Hellsten (Juntura 

2000, Hellsten & Juntura 2000) is used as a measure of water movement near the lake 

bed, where crayfish live. It is calculated from the water depth, free wind reach, and a 

given wind speed. The calculation formulae were applied from spreadsheet calculation 

formulae made by Juntura. As an example of variables, temperature as a function of 

depth at the Lake Katumajärvi study areas 4-5 during measurements in the summers of 

2001 and 2002 is shown in Figure 2.23. 



 
 

57 

 
Figure 2.23 Temperature as a function of depth at Lake Katumajärvi study areas 4-5 during 

measurements in the summers of 2001 and 2002. 

 

 

Data at different lakes 

Lake Katumajärvi study areas 4-5 

In Figure 2.24, catch/effort ratios are shown as a function of different variables at the 

Lake Katumajärvi study areas 4-5. From these figures it can be seen whether a 

relationship between catches and variables exists; e.g. catch/effort seems to have a top 

value at a potential erosion rate of about 700 g/(m2*d). In Table 2.1, average catch/effort 

ratios according to the abundance of bed quality types at the Lake Katumajärvi study 

areas 4-5 are shown.  

Preference curves for water depth, temperature, distance from shore, and erosion 

were made at study areas 4-5 (Figure 2.25). On the basis of data from other lakes, the 

curve for erosion could have been smoothed, but that was not done, because it would 

have been a subjective decision. Sand/fine sand was given a preference value of 0.72, if 

abundant; if not abundant, a value of 1 was given. 
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Figure 2.24 Catch/effort ratios as a function of different variables at Lake Katumajärvi study areas 4-5. 

 

 
Table 2.1 Average catch/effort ratios according to abundance of bed quality types at Lake Katumajärvi 

study areas 4-5. 

material exists does not exist 
stone 4.65 3.98 
gravel 4.25 4.24 
sand/fine sand 3.98 5.55 
soft material 4.40 3.72 
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Figure 2.25 Preference curves for depth, temperature, distance from shore and erosion made at Lake 

Katumajärvi study areas 4-5. 

 

 

Different habitat value calculation formulae were tested using preference curves 

made at the Lake Katumajärvi study areas 4-5 (Table 2.2). The product 

f(erosion)*f(water temperature), in which f is the preference function, had the highest 

correlation with catch/effort ratio and was chosen to the model. However, it must be 

remembered, that the real relationships are unlinear. 

 

 
Table 2.2 Different habitat value calculation formulas tested at Lake Katumajärvi study areas 4-5, 

correlation with catch/effort ratios.  

habitat value calculation formula correlation 
product (distance from shore, depth, erosion, water temp., sand/fine sand) 0.41 
product (distance from shore, depth, erosion, water temperature) 0.55 
product (depth, erosion, water temperature) 0.56 
product (erosion, water temperature) 0.58 
product (depth, erosion) 0.56 
product (distance from shore, erosion) 0.57 
product (distance from shore, depth) 0.50 
sum (distance from shore, depth, erosion, water temperature) 0.55 
sum (depth, erosion, water temperature) 0.54 
sum (distance from shore, depth) 0.50 
product (erosion, water temperature) + sum (distance from shore, depth)/2 0.57 
product + sum (distance from shore, depth, erosion, water temperature) 0.56 
max (distance from shore, depth, erosion, water temperature) 0.47 
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Lake Katumajärvi study area Pukettisaari Island 

At Pukettisaari Island, strong currents hit the small island from both ends of the lake. 

This means that the formula used for the calculation of erosion based on depth and free 

wind reach may not work. This may also change the usefulness of other variables in 

predicting the bed material. So it is not expected that strong correlations could be found. 

From Figure 2.26 it can be seen that there are no strong correlations, and thus these data 

may have been affected by the currents and should not be used in choosing variables 

and making preference curves. Another explanation could be that the variables selected 

would not explain habitat selection there. Later in this case study, potential erosion rate 

is found to be among the two most important variables, perhaps the most important. 

Thus, the model could perhaps predict the abundance if flow velocities and potential 

erosion were calculated by a hydraulic model.  
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Figure 2.26 Catch/effort ratios as a function of different variables at the Lake Katumajärvi Pukettisaari 

study area. 
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But here the point is to develop a model for lakes, and at first the applicability of 

methods less laborious than hydraulic modelling should be studied. In Table 2.3, 

average catch/effort ratios according to abundance of bed quality types at the Lake 

Katumajärvi Pukettisaari study area are shown. Because there were only nine places 

with soft bed material at Pukettisaari, bed material quality must be studied at those lakes 

where there is more variation in it, namely at Lake Slickolampi and at Lake Valkjärvi. 

 

Table 2.3 Average catch/effort ratios according to abundance of bed quality types at Lake Katumajärvi 

Pukettisaari study area. 

material exists does not exist 
stone - - 
gravel - - 
sand/fine sand - - 
soft material 3.67 3.85 

 

 

Lamminsaari Island at Lake Pääjärvi 

 

The following variables were measured or calculated: water depth, water temperature, 

distance from shore, slope from shore, slope five meters around the place and potential 

erosion (Figure 2.27). In Table 2.4, average catch/effort ratios according to abundance 

of bed quality types at the Lamminsaari Island study area at Lake Pääjärvi are shown. 

Different variables were included in the model and the observed habitat value use 

distribution was compared with the expected distribution of even habitat use. It can be 

seen directly from Figure 2.27 that water depth and water temperature would be good 

variables. The erosion rate seems also to be a good alternative, so these three variables 

were chosen. The variable, existence of sand or fine sand were also chosen. The 

existence of gravel was not chosen. But information about these at the Lake 

Katumajärvi study areas 4-5 is missing in 27 traps out of 91. Still, the variables chosen 

will be depth, water temperature, erosion, the existence of sand or fine sand, and the 

existence of soft material.  
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Figure 2.27 Lake Pääjärvi, some of the variables measured. 

  
Table 2.4 Average catch/effort ratios according to abundance of bed quality types at the Lamminsaari 

Island study area at Lake Pääjärvi. 

material exists does not exist
stones 2.89 2.95
gravel 3.34 2.80
sand/fine sand 3.18 2.25
soft material 2.00 3.03

 

 

Preference curves and preference values made at the Lamminsaari study area at 

Lake Pääjärvi are represented in Figure 2.28 and Table 2.5. Habitat value calculations 

with different combinations of variables were performed at Lake Pääjärvi. Correlations 

between habitat values and crayfish abundance are shown in Table 2.6. The product of 

preference values for the existence of sand or fine sand, the existence of soft material, 

erosion, and water temperature was chosen to be the habitat value calculation formula. 
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Figure 2.28 Preference curves made at the Lamminsaari study area at Lake Pääjärvi. 

 
Table 2.5 Preference values for the abundance of lake bed quality types at the Lamminsaari study area at 

Lake Pääjärvi. 

material exists does not exist 
sand/fine sand 1 0.71 
soft material 0.66 1 

 
Table 2.6 Correlation of catch/effort ratios and habitat suitability values at the Lamminsaari study area at 

Lake Pääjärvi with different habitat value calculation formulae. 

habitat value calculation formula correlation 
sand/fine sand 0.23 
soft material 0.08 
depth 0.23 
erosion 0.27 
water temperature 0.26 
product of all 0.43 
product (erosion, water temperature) 0.40 
product (sand/fine sand, soft material, depth, erosion) 0.46 
product (sand/fine sand, soft material, erosion, water temperature) 0.49 
product (depth, erosion, water temperature) 0.36 
product (sand/fine sand, soft material, depth, temperature) 0.29 
sum of all 0.40 
sum (sand/fine sand, soft material, erosion, water temperature) 0.44 
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Lake Slickolampi 

At Lake Slickolampi, depth, water temperature, distance from shore, slope from shore, 

slope around the place and potential erosion were measured (Figure 2.29). These data 

were later used in validation, and a part of it in making the preference curves for 

potential erosion.  
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Figure 2.29 Catch/effort ratios as a function of different variables at Lake Slickolampi.  
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2.4 Vegetation model 
 

In this section, the data used in building the model is represented, and the structure of 

the model is created.  

 

Description of the area and the organism studied 

The area is located in Northern Finland, next to the town of Oulu, located at a latitude of 

65"01' north and a longitude of 25"30' east (Figures 2.30-2.31). The dimensions of the 

area in the study map are approximately 2.5*3 

kilometres, one third of which is water (Figure 

2.31). The water depth range is to 17.6 metres, and 

typical depths are 0-2 metres near the shoreline 

and 2-4 metres in the middle channels. The 

average discharge from the River Oulujoki is 

approximately 259 m3/s. The flow velocities are 

low in most of the area; typical values are 0-0.5 

m/s, 0-0.1 m/s being the most common. 
Figure 2.30 Location of the mouth of the River Oulujoki. 

 

 

 
Figure 2.31 Location of the delta of the River Oulujoki and the study area. 
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Only in a small river-like section are the flow velocities higher. So, the water 

level fluctuations depend mostly on the sea water level. The fluctuations in the delta of 

the River Oulujoki during 1922-1999 are represented in Figure 2.32. The mean water 

level during June 1 to August 8 was MW2000 -15.8 cm and the standard deviation of 

the mean water level during the summer was +-7.06 centimetres during 1981-2000. The 

mean water level in the summer of 2000 was MW2000 -11.8 cm.  
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Figure 2.32 Water level fluctuations in the delta of the River Oulujoki 1922-1999. Based on data from the 

Finnish Institute of Marine Research. 

 

 

The organism studied is a small water-spreading plant, Persicaria foliosa 

(H.Lindb.) Kitag. The organism prefers a position near the shoreline and a humus/mud 

bed quality. The habitat model was constructed with the principle normally used in fish 

habitat modelling: variables were chosen and the habitat suitability index values are 

multiplied together to get the total habitat suitability. The variables chosen were sea bed 

quality and the vertical distance downwards from the zero level of the water level 

system MW 2000 (Finnish Institute of Marine Research) 
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3 CALIBRATION OF THE MODEL 
 

3.1 Fish model 
 

3.1.1 Physical model 
 

3.1.1.1 Field measurements and data models 

 
Field measurement and topographic data interpolation methods were tested with 

measured field data. 

 

Number of field measurement points 

The effect of the number of field measurement points was tested with real case data 

from the River Ripatinkoski in Central Finland. The measurements of the waterline and 

upper bank were made with line measurements, i.e. they were measured only at every 

turning point of linear shapes and the lines were interpolated after that. The rest of the 

channel was measured as scatter points measured only at corner points in the form of the 

channel. The topographic model was created from the scatter point data added with the 

interpolated line data using Kriging (Figure 3.1). Every second field measurement point 

was removed from the data, and the resulting interpolated topographic model is shown 

in Figure 3.2. A comparison between these shows clear differences, but the larger-scale 

topography of the river remains about the same. The removal of points from the densely 

interpolated lines on the shore naturally does not change them much; it affects the 

scatter points more. 

 

Choosing measurement points in the field 

The difference caused by the amount of measurement points and by using different 

measurement groups was studied using data measured during the summers of 2003 and 

2005 at the Tolpankoski Rapids on the River Kiiminkijoki. The river is a typical good 

trout river with large amounts of stones and boulders. The measurement data were 

interpolated with Kriging and the results are shown in Figures 3.3 and 3.4. This 

comparison shows the importance of the careful measurement of geometry. In the 
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summer of 2005 boulders were measured more exactly. When boulders are being 

measured, points not only on the boulders but also around them should be measured. 

This comparison shows that the methods of choosing measurement points should be 

well planned and be clear, and that when analysing the effects of habitat rehabilitations 

with measurements and modelling, care should be taken to ensure the comparativity of 

measurement data. Using the same measurement group before and after rehabilitation 

would be beneficial. 

The effects of using curvilinear anisotropic interpolation with Kriging compared 

with triangulation and only Kriging are studied in a real case. In Figure 3.5 the raw data 

used and a comparison between normal interpolation with triangulation, Kriging and 

curvilinear anisotropic interpolation in the Ahmaskoski area of the River Oulujoki are 

shown. These results imply that out of the standard methods, triangulation works well in 

regular channels formed linearly between amenably measured points, whereas the use of 

Kriging should be suggested in other cases, i.e. when trends in the data have to be 

guessed and the rate of change varies. The best interpolation method for a set of data 

should be selected by trying different methods (Golden Software 1999). Methods can be 

tested e.g. by removing points from the data and comparing the predictions of the values 

of these removed points produced by different methods. Results can also be compared at 

an area measured or known more exactly. Often the recommended method is Kriging. 

Interpolation with it may further be improved by using a customised variogram. 

Analysis of the variogram can be performed with special software that analyses spatial 

variation in the data and fits the parameter values of the variogram accordingly. From 

methods used in addition to the previous standard interpolations, curvilinear anisotropic 

interpolation is often beneficial. The test at Ahmaskoski area suggests that curvilinear 

anisotropic interpolation could be an effective method. The method can be used e.g. 

with Kriging and triangulation. In many cases, curvilinear anisotropic interpolation 

enhances model quality, especially if the river section studied is curved. If the amount 

of field measurement data is very high, moving the points into the grid in the method 

may cause a loss of detail if comparably rough grid densities are used. The number of 

interpolations should be kept small. However, the topographic model can often be 

improved so remarkably with anisotropic interpolation that the model is first 

interpolated in another program and after that the model is interpolated to the hydraulic 

model grid. The precision should be kept as high as practically possible so that the 

smoothening of the model is minimised. 
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Figure 3.1 The topographic model and measured and line interpolated data points interpolated with a grid 

size of 0.25*0.25 (x,y) metres in the River Ripatinkoski. 
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Figure 3.2 The topographic model and measured and line interpolated data points interpolated with a grid 

size of 0.25 metres, with every second measurement point deleted. 
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Figure 3.3 A topographic model interpolated from the coarser density measurements made 2003 at the 

Tolpankoski Rapids. 
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Figure 3.4 A topographic model interpolated from the finer density measurements made 2005 at the 

Tolpankoski Rapids. 
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Figure 3.5 Cross-section and scatter point measurements marked with red, and a comparison between 

interpolation with triangulation, normal Kriging, and curvilinear anisotropic interpolation in the 

Ahmaskoski area of the Oulujoki River. The points show the measurements. 

 

 

Using the modules of the method takes some time. The results with very large 

and dense sets of data could still be improved with the method by giving time for 

computation or by dividing the grid into smaller pieces. The benefit of increased 

accuracy should be compared with the cost of labour. However, in practice, the 

measurements made by an inclined echo sounder with large amounts of data could be 

such a large bulk of field material that the quality could not be improved remarkably or 

even at all. Shoreline interpolation can usually be used to improve the topography. 

Using it requires measuring the shoreline points and often putting them in an order 

afterwards, which may require additional work, in the office or in the field or both. On 

the other hand, the number of measurement points can be reduced.  
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The smoothening effect of interpolations on the topographic model 

The smoothening effect of consecutive interpolations was studied by making 

interpolations with data from the Konnuskoski Rapids (Figure 3.6). Some smoothness is 

observed in the double-interpolated topography. The interpolation methods of 

topography presented here are exact, i.e. the interpolated surface goes through the 

original points. Instead, the values between calculation nodes may be different from 

measured values, and subsequent interpolations may smooth the surface. 

To study the smoothening effect of subsequent interpolations and the effect of the 

hydraulic model element size, a topographic map from a hydraulic model from the 

River Kuusinkijoki in Northern Finland was compared with the original elevation 

measurements. The topographic model was created with shoreline interpolation and 

Kriging before it was interpolated in the nodes of the hydraulic model. The values 

picked along a cross-section from the topographic model are shown in Figure 3.7. The 

average and largest differences were 4.5 and 14 centimetres, the standard deviation for a 

sample being 3.3 centimetres, and the 95% confidence interval value was 10 

centimetres. There were 30 elements across the river, 16 of which were in the water. 

The large number of dry elements is explained by the fact that the model was aimed for 

use with much higher discharges. When the shoreline is initially digitised, some dry area 

is included to ensure that all watered areas are included, because before calculations the 

water level is not known everywhere. Often, when longer river sections are modelled, 

e.g. 20 elements are used in a cross-section.  

 

The effect of grid cell size 

The effect of grid density on the accuracy of the topographic model was studied with 

real case data in the River Ripatinkoski. The topographic models interpolated with grid 

densities of 0.25, 1*2 metres, and 2*4 metres (x,y) are shown in Figures 3.8-3.10. 

Different precisions, 1 and 2 metres in the x- and y-directions, were used in the original 

modelling, because the river flows more from the north to the south, especially outside 

the figure. The model with the coarsest grid differs from the others in small details. No 

large differences were noticed, because the field measurements were made for habitat 

assessments of a reach 1.5 kilometres long. The most suitable grid density depends on 

the accuracy of field measurements and the accuracy required of the results. 
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Figure 3.6 A topographic model interpolated with linear interpolation at the user interface of SMS and 

with an extra interpolation with Kriging to a 1*1-metre grid at the Konnuskoski Rapids before it. The 

element length in the middle of the figure is e.g. 5.7 metres. Field measurement points are marked with 

crosses. 
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Figure 3.7 Measured elevation and topographic model of hydraulic model in the River Kuusinkijoki. 
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Figure 3.8 The topographic model and measured and line interpolated data points interpolated with a grid 

size of 0.25*0.25 (x,y) metres in the River Ripatinkoski. 
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Figure 3.9 The topographic model and measured and line interpolated data points interpolated with a grid 

size of 1*2 (x,y) metres in the River Ripatinkoski. 

 

 
Figure 3.10 The topographic model and measured and line interpolated data points interpolated with a 

grid size of 2*4 (x,y) metres in the River Ripatinkoski. 
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3.1.1.2 Hydraulic model 
 

Hydraulic modelling was performed at Pyhäkoski impoundment and the results were 

compared with measurements. The study site was the whole impoundment between the 

hydro power plants, where the fish moved. Measurements of topography were made by 

echo sounding combined with DGPS (Kylmänen 1999). The number of measurement 

points was 32,814. The high banks and forest in the upper part of the river section 

inhibited measurements from some of the shallow areas, but that did not cause too much 

harm, because the fish were known to live in deeper waters. The flow rates at each 

moment were modelled with a dynamic one-dimensional hydraulic model originally set 

up by Forsius (1984). The modelled and measured water levels at the Pälli hydro power 

plant are shown in Figure 3.11. The flow velocities and water depth were obtained from 

two-dimensional hydraulic modelling with SMS/RMA2. The number of elements was 

19,698, and the number of calculation points in the hydraulic model was 60,215. There 

were 29 elements across the river. With this resolution, there are on average one element 

every five metres across the river. The accuracy of the topography and hydraulic 

modelling was assessed by comparing the measured and modelled water depths and 

flow velocities (Figure 3.12). The water depths and flow velocities coincided relatively 

well, but some values of water depths and flow velocities may be erroneous because of 

a lack of topography measurements near the shoreline. The correlation coefficient 

between the field and model data was 0.8 and p<0.001 (Vehanen & Lahti 2003). A grid 

cell size of 5*5 metres was used in the habitat modelling. 
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Figure 3.11 The modelled and observed water level below the Pälli hydro power plant. 
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Figure 3.12 Modelled and observed water depths and mean column flow velocities and the observed flow 

velocities at different depths (0.2, 1, 2, and 3.5 metres) at fish observation places at the Pyhäkoski 

impoundment. Modelled R2-values of linear regression fits shown in legend. 

 

 
In order to test the hydraulic model and to test the effect of not including the 

shallow areas in the hydraulic model, a case with real field measurements at the 

Valajaskoski Rapids on the River Kemijoki was studied. The flow velocity 

measurements were originally made for the calibration and validation of ADCP 

measurements. Thus the data are of high quality. The hydraulic model and the grid used 

here were originally made by Kemijoki Oy for flow measurement purposes and may not 

include all the shallowest shore areas; the depth is 0.61 metres on the right bank side of 

the grid and 0.48 on the left bank side. These may cause too-high flow velocities near 

the banks. There were no water level measurements in the river between the power 

plants, and the water level at the upper power plant was known. Thus a typical value of 

0.025 was used for Manning's coefficient. The effect of wall friction was estimated by 

calculating wall and element area at another bank of the current velocity profile. The 

area of the element was 372.6 m2 and of the wall only 22.1 m2, which means the effect 

of wall friction is small. But the vertical friction is left out of all elements, which means 

a greater overall reduction of friction. The modelled flow velocity distribution was 

noticed to be smoother and more uniform than the measured (Figures 3.14 and 3.15). 

Possible reasons may be inaccuracies in topographic models, which are deeper near 

banks, the fact that some shallow areas are probably excluded, also the fact that vertical 

friction is not included in the hydraulic model and temporal variations and inaccuracy in 

measurements. This phenomenon coincides with the findings with the figurative test 

reach (Figure 4.14). The effect of using a constant calculational value of kinematic 

viscosity, which neither takes the effect of varying element sizes nor flow velocities into 
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account, was tested (Figure 3.15). The test showed that the flow velocity distribution got 

smoother than with an appropriate assignment of kinematic viscosity. To test whether 

element size had an effect on the results, the hydraulic modelling grid was refined from 

a distance double the length of both ADCP lines up- and downstream from the lines 

(Figure 3.16). The whole grid was not refined, because the number of elements would 

have got so much larger that the computation time would have increased and the 

hydraulic calculation program would have had to be compiled with new settings. New 

topography points were not included. Refining the grid had rather a small effect. 
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Figure 3.13 The topographic model and the location of ADCP measurement lines at the Valajaskoski 

Rapids. 
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Figure 3.14 Modelled and two measured water depth profiles at Valajaskoski measurement lines 2 and 3. 

Hydraulic model not calibrated across the river. 
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Figure 3.15 Modelled and two measured flow velocity profiles at Valajaskoski measurement lines 2 and 

3. Hydraulic model not calibrated along or across the river. 

 

 

0 50 100 150 200 250
distance [m]

1.2 

0.8 

0.4 

0 

f l o w  v e l o c i ty  [
m/s ]

measured
measured
modelled
modelled refined

 
Figure 3.16 Modelled flow velocity with a refined grid with 24 rows of triangular elements in cross-

section, and with an unrefined grid with 12 rows of elements, and the measured lines at the ADCP 

measurement line 3. 
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3.1.1.3 The effect of habitat modelling grid density 

 

The effect of the spatial precision of habitat value calculation grids was tested by 

calculating two cases with different habitat modelling grid densities. At the Ripatinkoski 

Rapids, a total of approximately 1.5 kilometres was modelled for large area habitat 

assessments, and because of that the field measurement material was not very densely 

measured (Figure 3.17). The habitat maps calculated with grids of varying sizes in the 

upper and lower fish-locating areas are shown in Figures 3.18-3.19. It can be seen that 

the amount and position of habitats did not change greatly for habitat assessments, even 

if the shoreline gained a saw edge with the roughest grid. One reason for this is that with 

a coarser density of field measurements less fine details that could be flattened away 

with a coarser grid are included in the data. Even the roughest grid was found to be 

satisfactory for habitat assessments of the long reach studied. 

Next, it is studied, which kind of a modelling grid size is sufficient when 

measurements are dense and a higher spatial resolution is needed, e.g. for fish habitat 

preference studies. A fish study area with dense field measurements was selected: 

Siltapuro B, in the Siltapuro brook, a tributary of the River Oulujoki. Habitat value 

calculations were carried out and habitat values at fish observation points were 

distributed into classes, as is also done in preference studies. It is better to compare 

habitat values at certain points rather than to compare distributions, because the fine 

structure of the river bed may cause differences in point values with different grid sizes 

but not possibly so much in habitat value distributions. The average width of the river is 

5-7 metres. The maps calculated with grids with 20- and 40-centimetre cell widths look 

moderately similar (Figure 3.20). In the maps with other grid cell sizes, much detail is 

missing.  

 

 
Figure 3.17 Field measurements from the modelled upper and lower areas. Shore lines were interpolated 

and the electric fishing areas studied are shown with continuous lines. 
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Figure 3.18 Habitat value maps calculated in the upper fish-locating area with the preference curves of 

Mäki-Petäys & Huusko (2001) with habitat calculation grid cell sizes 0.25*0.25, 0,5*0,5, 1*1, and 1*2 

metres (x,y) and fish observations. 

 

  
Figure 3.19 Habitat value maps calculated in the lower fish-locating area with the preference curves of 

Mäki-Petäys & Huusko (2001) with habitat calculation grid cell sizes 0.25*0.25, 0,5*0,5, 1*1, and 1*2 

metres (x,y) and fish observations. 
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Figure 3.20 Habitat value maps for 4-9-cm trout in summer in a tributary of the River Oulujoki, the 

Siltapuro, study area B, with grid sizes of 20, 40, 80, and 160 centimetres in both directions and fish 

observations. 

 

The grid size with a 20-centimetre distance is 436*233, which is still easily 

calculable with computers. The results of the test can be seen in Figure 3.21. The habitat 

value classes are similar with grid sizes of 20 and 40 centimetres. For the habitat 

assessment of a long reach of the River Ripatinkoski, a grid cell size of 1*2 metres was 

found to be sufficient as a size of 20-40 centimetres was the value for fish preference 

studies in the Siltapuro B reach. The grid density needed depends on the density of field 

measurements and the accuracy desired. 

 

 
Figure 3.21 The habitat value class of the calculated habitat at fish observation points with grid sizes of 

20, 40, 80, and 160 centimetres in both directions. 
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3.1.2 Habitat preference model 
 

In this section, it is studied, with which kind of preference material the model should be 

calibrated with. The origin of the fish observation data and the methods of processing 

the data for the model are studied. Fish observation data can be local, foreign, multi-site, 

from different sizes of rivers, etc. The preference information can be input as curves or 

surfaces. These can be constructed in many different ways. Different preference curves 

that are used in modellings at Rivers Simojoki and Ala-Koitajoki, are represented and 

compared visually. Laukka area and Pyhäkoski impoundment data are used in testing 

different methods of calibration, the original fish observation data being available.  

 

3.1.2.1 Rivers Simojoki and Ala-Koitajoki 
 

The biological habitat preference model was calibrated with material from fish 

preference studies carried out in northern Finland. No calculations for testing were 

carried out, because the observation data of Rivers Simojoki and Ala-Koitajoki was 

water depths, flow velocities and substrate from which habitat suitability index values 

are calculated directly in the model validation. In habitat suitability index value 

calculation, typically no parameters are calibrated. The physical model contains a 

hydraulic model that needs to be calibrated. The Finnish preference curves for salmon 

were calculated as averages of the curves of the rivers in the data of Mäki-Petäys 

(2000). Whilst the habitat preferences of salmon and trout have been the subject of 

intensive studies worldwide, some preference curves exist for grayling, but for stone 

loach and bullhead no curves were found except the data of Lamouroux et al. (1999). 

Preference curves for size classes in the data of this study for salmon (Salmo salar), 

brown trout (Salmo trutta), and grayling (Thymallus thymallus) for water depth, flow 

velocity, and substrate are shown in Figures 3.22-3.26. The Finnish and Norwegian 

curves are very similar to each other. Preference curves for stone loach and bullhead are 

shown in Figures 3.27-3.30. The preference for flow velocity curve with multiple 

optima for stone loach doesn’t seem biologically sound. The curves are made with 

Jacobs's method from small sets of data, n=31 and 42, respectively, at the Harrikoski 

and Iso Tainikoski Rapids and directly based on French data of observed log-densities 

(Lamouroux et al. 1999).  
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Figure 3.22 Preference of salmon <10 cm (Salmo salar) for water depth, flow velocity, and substrate (<5, 

<32.1 mm; 5, 32.2-64 mm; 6, 64.1-128 mm; 7, 128.1-256 mm; 8, 256.1-512 mm; 9, 512.1-1024 mm; 10, 

bedrock). Mäki-Petäys (2000), Heggenes (1990). 
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Figure 3.23 Preference of salmon >10 cm (Salmo salar) for water depth, flow velocity, and substrate (<5, 

<32.1 mm; 5, 32.2-64 mm; 6, 64.1-128 mm; 7, 128.1-256 mm; 8, 256.1-512 mm; 9, 512.1-1024 mm; 10, 

bedrock). Mäki-Petäys (2000), Heggenes (1990). 
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Figure 3.24 Preference of brown trout <10 cm (Salmo trutta) for water depth, flow velocity, and substrate 

(<5, <32.1 mm; 5, 32.2-64 mm; 6, 64.1-128 mm; 7, 128.1-256 mm; 8, 256.1-512 mm; >8 >512.1 mm) 

from Rivers Kuusinkijoki, Rutajoki, and Varisjoki. Mäki-Petäys (2000). 
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Figure 3.25 Preference of brown trout >15 cm (Salmo trutta) for water depth, flow velocity, and substrate 

(<5, <32.1 mm; 5, 32.2-64 mm; 6, 64.1-128 mm; 7, 128.1-256 mm; 8, 256.1-512 mm; >8 >512.1 mm) 

from Rivers Kuusinkijoki, Rutajoki, and Varisjoki. Mäki-Petäys (2000). 

 

 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

<5 5 6 7 8 >8
substrate class [-] 

pr
ef

er
en

ce
 [-

] 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

<5                5                6                7                 8              >8     

substrate class [-] 

pr
ef

er
en

ce
 [-

] 



 
 

86 

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

5 15 25 35 45 55 65 75 85 95 105
depth [cm]

pr
ef

er
en

ce
 [-

]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

5 15 25 35 45 55 65 75 85 95 105
flow velocity [cm/s]

pr
ef

er
en

ce
 [-

]

 
Figure 3.26 Preference of grayling of 5.1-25.4 cm (Thymallus thymallus) for water depth and flow 

velocity by Hubert et al. (1985). The preference for substrate is uniform. Hubert et al. (1995). 
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Figure 3.27 Preference of stone loach (Noemacheilus barbatulus) of 5-13 cm for water depth, flow 

velocity, and substrate (<5, <32.1 mm; 5, 32.2-64 mm; 6, 64.1-128 mm; 7, 128.1-256 mm; 8, 256.1-512 

mm; 9, 512.1-1024 mm; 10, bedrock) at Harrikoski Rapids. Lamouroux et al. (1999). 
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Figure 3.28 Preference curves based on data for stone loach (Barbatula barbatula) of all sizes in the 

preference study for water depth, flow velocity, and substrate (<4, <16 mm; 4, 16-32.1 mm; 5, 32.2-64 

mm; 6, 64.1-128 mm; 7, 128.1-256 mm; 8, 256.1-512 mm; 9, 512.1-1024 mm; 10, bedrock) based on data 

of Lamouroux et al. (1999).  
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Figure 3.29 Preference of bullhead (Cottus gobio) of 2-7 cm for water depth, flow velocity, and substrate 

(<5, <32.1 mm; 5, 32.2-64 mm; 6, 64.1-128 mm; 7, 128.1-256 mm; 8, 256.1-512 mm; 9, 512.1-1024 mm; 

10, bedrock) at Harrikoski Rapids. Lamouroux et al. (1999). 
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Figure 3.30 Preference of bullhead (Cottus gobio) of all sizes in the study for water depth, flow velocity, 

and substrate (<4, <16 mm; 4, 16-32.1 mm; 5, 32.2-64 mm; 6, 64.1-128 mm; 7, 128.1-256 mm; 8, 256.1-

512 mm; 9, 512.1-1024 mm; 10, bedrock) based on French  data (Lamouroux et al. 1999). 

 

 

 

3.1.2.2 Laukka area 

 
As mentioned earlier, calibration of habitat preference models means using some data to 

get models applicable at some areas or universally. In the case of fish models, the most 

important calibration data is the fish study data that was used in making the habitat 

suitability index curves. The calibration of the biological model is carried out by the 

selection of variables used, and by the making or selection of the preference curves, and 

the calibration of the physical model is carried out by calibrating the hydraulic model. 

At Laukka area of Oulujoki River, river topography was measured, which means that 

calibration of the whole of the model including the physical model could be tested. 

Original fish observation data was available for testing the effect of using different types 

of data and of different methods of making preference curves. Telemetry data and log 

book markings of fish positions were available (Figures 3.32-3.36). The most suitable 

set of data of Vehanen et al. (1998, 2003), from telemetry, was left for model validation, 

because the data is the set that normally would be selected as calibration material. The 

model was validated in Chapter “Validation of the model”.   
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Description of the area and the organism studied 

 

The area is located on the River Oulujoki in Northern Finland at latitude 64°51' north 

and longitude 25°55' east, between the Montta and Merikoski hydro power plants 

(Figure 3.34). The average discharge is about 254 m3/s, MHQ 508 m3/s, HQ 779 m3/s, 

MNQ 61 m3/s, and NQ 18 m3/s. The river is short-term regulated; the discharge is 

highest during the daytime, normally 150-450 m3/s, and at least 50 m3/s during the 

night. The catchment area of the river is 22925 km2 and the lake percentage is 11.4%. 

The modelled area is about 550 metres long, and the width of the river is about 150 

metres. The river section was dredged earlier for log transport. A habitat rehabilitation 

(Yrjänä et al. 1999) was carried out in the early summer of 1997. In the rehabilitation, 

e.g. the south bank and the artificial island (Figure 3.31) in the middle of the channel 

were converted to shallow reefs. The average depths before rehabilitation were 1.76 and 

2.17 m and the average flow velocities were 0.32 

and 0.58 m/s for discharges of 110 and 300 m3/s 

respectively. The organism modelled was adult 

grayling (Thymallus thymallus). It prefers mild to 

moderate flow velocities, especially the 

borderlines of slow and fast flow velocities. The 

substrate does not play a very significant role in 

its habitat selection. 

  

 
Figure 3.31 The location of the Laukka area. 
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Preference curves 

Adult grayling (Thymallus thymallus) was modelled with two different types of 

preference curves (Figures 3.34-3.36): 1) curves from much smaller rivers (Greenberg et 

al. 1994), and 2) physiological, universal-type curves (Hubert et al. 1985) from another 

continent, using observation data from both rivers and lakes to see how each of them 

can be applied.  

The preference curves of Hubert et al. (1985) are based on data from North 

America and there are also some data from the Eurasian continent. They were made for 

a sister species of Thymallus Thymallus, namely Thymallus arcticus. The environmental 

demands of these two species are thought to be quite similar Northcote (1995). The 

curves were made with knowledge of habitat use in rivers and lakes. The preference 

curves of Hubert et al. may be too general for predictions of fish habitat selection in 

rivers, because zero velocities are assumed to be suitable, because in lakes, grayling 

may use this kind of habitats. If the curves had been made from information from rivers 

only, in the source text it was said that the average flow velocity used in rivers was 0.27 

m/s (Hubert et al. 1985, Elliot 1980). In rivers, flowing water is known to carry 

nourishment to fish, and therefore, there exists an optimal flow velocity range that does 

not include the value zero. Thus, the flow velocity suitability curve may not be suitable 

for use in rivers.  

 The curves of Greenberg et al. (1994) are made on the basis of data from small 

rivers, in which only shallow water depths were found, where the average flow 

velocities used by the fish were lower. Grayling have been noticed in literature to favour 

also and often prefer relatively fast flowing sections (Nykänen & Huusko 1999), and in 

a study in northern Finland during spring and summer (Nykänen 2004). In both curves, 

relatively low flow velocities are preferred, in the case of the curves of Hubert, because 

of the lake data, and in the case of the curves of Greenberg, because of the shallow river. 

Preference curves made on the basis of the observations, the log book fishing 

data classified in Figure 3.32, are represented in Figure 3.33. The use of different water 

depths did not change very much from May to July. Probably because grayling use 

lower flow velocities during winter (Hubert et al. 1985), the flow velocities used after 

rehabilitation in June were higher. The samples were relatively small – before 

rehabilitation 31 fish and after rehabilitation 14 – thus the flow velocity curve produced 

is rather coarse. The suitable area seems to be from 0.1 to 0.8 m/s, which coincides well 
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with the curves of Vehanen et al. (1998, 2003), but not with the curves of Hubert et al. 

(1985). The activity of the fish, e.g. feeding vs. resting, affects the preferences. The 

preference curves of Greenberg et al. are based on diving, the curves of Vehanen et al., 

used later in model validation, are based on fish telemetry, and the curves of Hubert et 

al. on the literature, i.e. they all mostly present average living habitats, whilst the 

observed values may represent more feeding habitats. 

 

 

 
Figure 3.32 Available habitat and habitat use according to log book fishing in the Laukka area, water 

depth [m/s], and flow velocity [m/s]. 

 

    
Figure 3.33  Preference curves for water depth and flow velocity, made on the basis of fish observations 

and the availability of habitats before rehabilitation (darker line), after rehabilitation (lighter line), and a 

combined curve (dashed line). 
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Figure 3.34 The preference curves for water depth (m) by Vehanen et al. (1998, 2003), Greenberg et al. 

(1994) with Jacobs's method, and the traditional method by Hubert et al. (1985) and from log book 

fishing. 
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Figure 3.35 The preference curves for flow velocity (m/s) by Vehanen et al. (1998, 2003), Greenberg et 

al. (1994) with Jacobs's method and the traditional method, Hubert et al. (1985), and from log book 

fishing. 
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Figure 3.36 The preference curves for substrate (-) (classification in a numerical order: <2, 2.1-8, 8.1-16, 

16.1-32, 32.1-64, 64.1-128,128.1-256, 256.1-512, and >512 mm) by Vehanen et al. (1998, 2003), 

Greenberg et al. (1994), and Hubert et al. (1985). 
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Measurements and modelling 

Field measurements of the Laukka area had been carried out with echo sounding and 

tacheometer. Flow velocity cross-sections were also measured. The river bed 

topography was measured before the rehabilitation with line measurements with a 

tacheometer from the rehabilitated areas. After rehabilitation, the topography was 

measured over a larger area with echo sounding equipment, together with DGPS 

mapping equipment (Kemijoki Oy, Vehanen et al. 2000) from deeper areas and the 

shallow areas, and the reefs that had been constructed, the depths of which were 0.5-1.0 

m, were measured with a tacheometer. In hydraulic modelling, a larger area was needed, 

so the measurements taken after rehabilitation outside the rehabilitated area were also 

used in the hydraulic model for the situation before rehabilitation. The substrate was 

classified according to a modified Wentworth scale using nine categories (<2, 2.1-8, 

8.1-16, 16.1-32, 32.1-64, 64.1-128,128.1-256, 256.1-512, and >512 mm). The 

classification was made by using a glass viewing device (depth 0-1.2 m), or by probing 

with a long rod when water depths exceeded 1.2 m. In the latter cases the classification 

was checked at several measurement points by diving. In the modelling, weights of 0.2, 

0.4, and 0.4 were used for the preference values of the coarsest, the most common, and 

the second most common substrate respectively. The hydraulic modelling was carried 

out with the hydraulic modelling interface SMS (Brigham Young University 1997) and 

the calculation program RMA2 (US Army Corps 1996). The calibration before 

restoration was performed using averaged current velocities of 300 measurement points 

originally measured with a Schiltknecht Mini Water flow meter at 0.2, 0.6, and 0.8 

times the depth from the bottom at a flow of 66 m3/s in June 1996 (Yrjänä et al. 1999). 

The calibration after restoration was performed by using data collected with Acoustic 

Doppler Current Profiler equipment in June 1997 at flows of 110 and 300 m3/s. The 

flow situations modelled were 50, 110, 200, 300, and 450 m3/s, covering the normal 

range at the site. Habitat values were calculated for these situations. Because fish 

observations were made at different flows, habitat values during the observations were 

interpolated from those calculated. The habitat model consisted of a grid of 100 * 100 

calculation points. The dimensions of a cell were 5.46 * 3.46 metres. 
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Observations 

The fish observations (Figure 3.32) were gained from fishermen's log book with a map 

while fishing (Leinonen 1999) during the summers of 1996, 1997, and 1998. The places 

and times of catching were marked on a map in situ. The fish were mapped from quite a 

high bridge and from the river bank, so the positions could not be marked very precisely 

on the map. The width of the river exceeds 100 metres and the estimated precision of 

mapping was 10 metres (Yrjänä 2002). The islands probably helped in positioning the 

places where fish were caught, so the precision may be somewhat higher on average. It 

may be that the fishermen prefer areas easily accessible which may reduce the effective 

sample size. The number of fish observations May 5 to 31, 1996 before the 

rehabilitation was 31, during the rehabilitation  May 25 to June 20, 1997 12, which were 

not used, and after the rehabilitation July 2 to August 10, 1997 the number was 14. 

  

Calculation of habitat use and availability 

The discharge in the area for each fish-catching moment was calculated with a dynamic 

one-dimensional hydraulic model developed and set up by Forsius (1984). The habitat 

values for each flow situation were interpolated from habitat values calculated for those 

five flow situations modelled with the two-dimensional hydraulic model. Habitat 

availability was obtained by calculating distributions for each fish-catching moment and 

adding them together. This could be done, because e.g. the different situations can be 

thought to be like different types of river sections, i.e. to be parts of a longer river, 

whilst the phenomenon studied remains the same. Because of additivity in chi-square 

tests, e.g. Spiegel 1972, the distributions from the same phenomenon can be added 

together. Though, grayling take territories, it may also shoal, which may reduce the 

effective number of observations. Because the properties of the area before and after the 

rehabilitation are different, only the data before rehabilitation with a sufficient number 

of observations was used in testing. 
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Results              

Greenberg et al. (1994) 

To see whether preference curves from a much smaller river (mean flow 4 m3/s) could 

be used in modelling a larger river (MQ 259 m3/s), converted Swedish curves of 

Greenberg et al. (1994) were tested in the Laukka area. Problems in prediction may 

occur because of different water depths and vertical flow velocity distributions in the 

rivers. The curves were originally made with Jacobs's method and were converted to the 

traditional habitat use / habitat availability -scaling. The results are shown in Figure 3.37 

and Table 3.1. As can be seen in Figure 3.37, the prediction of the fish positions is fairly 

good, although all habitat values are lower than usual. Tests of significance and 

available habitats and habitat use and proportion of use to availability are represented in 

Table 3.1 and Figure 3.38. 

 

0

0.01

0.05

0.45

 
Figure 3.37 The habitat value map calculated with the preference curves of Greenberg et al. (1994) 

before rehabilitation when Q=110 m3/s and fish observations during Q=56-242 m3/s and after 

rehabilitation when Q=200 m3/s, and fish observations during Q=70-257 m3/s. The fish caught are shown 

with squares. 

 
Table 3.1 Available habitat and habitat use calculated with the preference curves of Greenberg et al. 

(1994) before rehabilitation in the Laukka area and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0 23.98 6 0.25 13.48 12.74 -16.62  
0-1 7.02 25 3.56 46.01 43.49 63.48  
sum 31 31 high/low 59.49 56.23 46.86 46.11 
   14.22 <0.0001 <0.0001 <0.0001 <0.0001 
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Figure 3.38 Distributions of available habitat and habitat use calculated with the preference curves of 

Greenberg et al. (1994) before rehabilitation in the Laukka area. On the right proportions of habitat use to 

available habitat. 

 

Greenberg et al. (1994) with Jacobs's method 

The same calculations were carried out with the original preference curves (Greenberg 

et al. 1994) made with Jacobs's method. The results are shown on the map in Figure 

3.39. Tests of significance and available habitats and habitat use and proportion of use 

to availability are represented in Table 3.2 and Figure 3.40. The preference curves made 

with Jacobs's method produced more accurate estimations of habitat use than the curves 

made by traditionally dividing habitat use by habitat availability. 

 
 

 
Figure 3.39 The habitat value map calculated with the preference curves of Greenberg et al. (1994) with 

Jacobs's method before rehabilitation when Q=110 m3/s and fish observations during Q=56-242 m3/s and 

after rehabilitation when Q=200 m3/s and fish observations during Q=70-257 m3/s. The fish caught are 

shown with squares. 
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Table 3.2 Available habitat and habitat use calculated with the preference curves of Greenberg et al. 

(1994) with Jacobs's method before rehabilitation in the Laukka area and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.002 15.83 2 0.13 12.08 11.23 -8.28  
0.002-1 15.17 29 1.91 12.61 11.72 37.59  
sum 31 31 high/low 24.70 22.94 29.31 28.85 
     15.13 <0.0001 <0.0001 <0.0001 <0.0001 
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Figure 3.40 Distributions of available habitat and habitat use calculated with the preference curves of 

Greenberg et al. (1994) with Jacobs's method before rehabilitation in the Laukka area. On the right 

proportions of habitat use to available habitat. 

 

 

Hubert et al. (1985) 

American general literature-based physiological-type curves were also tested. The fish 

observations and the habitat value map at a flow rate of 110 m3/s are shown in Figure 

3.41. Visually, the fish seem to prefer any other habitat values than the highest and the 

lowest. The results are shown in Table 3.3 and Figure 3.42. 

 
 

 
Figure 3.41 The habitat value map calculated with the preference curves of Hubert et al. (1985) before 

rehabilitation when Q=110 m3/s and the fish observations during Q=56-242 m3/s. The fish caught are 

shown with squares. 
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Table 3.3 Available habitat and habitat use calculated with the preference curves of Hubert et al. (1985) 

before rehabilitation in the Laukka area and goodness of fit tests. 

habitat value available use Proportion Pearson Yates log-likelihood Williams 
0-1 15.33 28 1.83 10.47 9.66 33.73  
1 15.67 3 0.19 10.24 9.45 -9.92  
sum 31 31 high/low 20.71 19.11 23.81 23.43 
   0.10 -<0.0001 -<0.0001 -<0.0001 -<0.0001 
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Figure 3.42 Distributions of habitat use and habitat availability calculated with the preference curves of 

Hubert et al. (1985) before rehabilitation in the Laukka area. On the right proportions of habitat use to 

available habitat. 

 

Summary 

The curves of Greenberg et al. from a much smaller river yielded a good prediction of 

suitable and unsuitable habitats; also visually analysing from the map, the prediction 

with the curves from Greenberg et al. was again good. The curves of Hubert et al. were 

too general for predictions of habitat selection in rivers, as was supposed. It still seemed 

that totally unsuitable habitats could be assessed with preference curves that were also 

in some sense unsuitable, even if the most suitable habitats could not be told apart from 

the suitable. There is a remarkable difference between the preference curves for flow 

velocities of Greenberg et al. (1994) and the locally determined telemetry curves of 

Vehanen et al. (1998, 2003). In the shallow brooks of the River Vojmån in Sweden, fish 

were found in places with small mean column velocities, but in the deep Laukka area, 

faster-flowing places could be preferred, perhaps because the greater depth could allow 

the fish to select places with smaller nose velocities with the same mean column values 

(Yrjänä 2001). In Figure 3.35, the preference curves for flow velocity of Vehanen et al. 

(1998, 2003), Greenberg et al. (1994), and Hubert et al. (1985) are shown. As can be 

seen, in larger rivers, higher mean column velocities are used, which means that the 

flow velocity values in the preference curves from the study from the small brooks 
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might be too low to be used in the Laukka area. Although the Swedish river was much 

smaller, e.g. its average discharge was 60 times smaller it was possible to predict the 

differences between unsuitable and suitable habitats with the curves. 

 

3.1.2.3 Pyhäkoski impoundment 
 

Original fish observation data was available. A set of data from early winter was used in 

making habitat suitability indices. There was also a set of data from summer available, 

but it was left for use in the model validation, because it consisted of a larger amount of 

observations. Seven different methods of calibrating the model with biological data 

were studied; five of these were different methods of making preference curves and two 

of making preference surfaces. Habitat value calculations were carried out with two of 

these: preference curves made with dividing habitat use by habitat availability and a 

preference surface was constructed with Jacobs’s method.  

 

Description of the area 

The Pyhäkoski impoundment is located on the River Oulujoki near the town of Muhos 

in Northern Finland at 64°51N, 26°07E (Figure 3.43). The catchment area is about 

20000 km2 and the lake percentage about 12. The length of the impoundment between 

the Pyhäkoski and Pälli hydro power plants is 8680 metres. The width of the river in the 

more river-like upper part is about 50 metres, but in the deeper downstream part, the 

width is a maximum of about 300 metres. The average depth at a discharge of 400 m3/s 

is 6.1 metres in the upper part, the maximum being 12.3, in the middle part 9.7, the 

maximum being 20.6, and in the lower part 15.1 metres, the maximum being 34.8. The 

daily average discharges at the upper power plant varied between 58 and 479 m3/s 

during October 6, 1999 to June 20, 2000, the average being 250 m3/s. The 10 and 90% 

fractiles of water levels were NN+ 56.20 m and NN+ 56.40 m, so the fluctuations in 

water levels were small. Short-term regulation changes the discharge daily so that it is at 

its highest during the day. At a discharge of 400 m3/s, the flow velocities are a 

maximum of 1.4 m/s in the upper part, but in the lowest part, the flow velocity is mostly 

between 0.1 and 0.2 m/s. In the middle part, the flow velocity is between 0.3-0.7 m/s. 
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Figure 3.43 Location of Pyhäkoski impoundment. 

 

The organism studied and the biological data 

Pikeperch (Stizostedion lucioperca) was observed using telemetry. The pikeperch were 

caught from Lake Oulujärvi and moved to the Pyhäkoski impoundment in June 1999 

(Vehanen & Lahti 2003). Five of the 20 fish were left in the impoundment in the winter. 

The others had e.g. moved to other impoundments. The locations of fish were observed 

from a boat with the telemetry equipment. The observations continued through the 

winter. Habitat value calculations were carried out for winter habitats. Observations 

from November 5, 1999 to January 27, 2000 were used to test winter habitat modelling. 

No shoaling was observed. 

 

 

Pyhäkoski 
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Testing the model 

The fish telemetry observations of pikeperch were divided into two parts of equal size. 

The first observations were used for habitat preference curves, the latter for comparison 

with modelled habitats. Winter preference curves are shown in Figures 3.48-3.50. The 

observations during January 27, 2000 to April 10, 2000 were used as test data. The 

mean discharge during the observations used for making preference curves was 289 

m3/s and during the observations of the test data 458 m3/s. So this study can also be used 

to study whether a change in discharge or season affects the modelling. Because the 

observations in the preference and test sets of data were of the same fish individuals and 

some observations were temporally close to each other, the effective sample size was 

reduced. Variability induced by the individuality of the behaviour of fish individuals 

and by temporal independence of observations was reduced. However, the distances 

moved between observation places were studied by Vehanen & Lahti (2003) and the 

fish were observed to daily move long distances which add to the variability. Still, some 

serial correlation was found and because the effective number of observations was lower 

than the required, the set of data was not used in validation, but was used in testing in 

this section. 

 

Results 

The observations from which the preference curves were made and a habitat value map 

calculated with preference curves made from observations during the same, the first 

period (May 11, 1999 to January 27, 2000), at an average flow (289 m3/s) are shown in 

Figure 3.44. The fish were almost exactly in the habitats with the highest calculated 

habitat suitability values. Because these data were not used in model validation; no 

statistical tests were carried out. A habitat value map calculated with preference curves 

made from observations during the first period (November 5, 1999 to January 27, 2000) 

at an average flow (289 m3/s) for that period and fish observations during January 27, 

2000 to April 10, 2000 with an average flow rate of 460 m3/s are shown in Figure 3.45. 

The distributions and proportions are shown in Figure 3.46. The fish preferred selecting 

the habitats with the highest suitability index values quite well, but favoured greater 

depths as the winter went on and the discharge became larger than during the period 

when the preference curves were made. A change in discharge or season, or both, 

affects the preference of the fish. But the modelling still yielded a good prediction of 
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habitat use. With these preference curves, the fish were found in areas with higher 

habitat values. This is despite the fact that the values preferred by the fish in the 

preference curves made in the early winter were somewhat different from those of late 

winter, when the fish switch to deeper habitats. By comparing Figures 3.44 and 3.45 

with each other, a shift towards the deeper areas can be seen towards the end of the 

winter and as the discharge increases. The mean depth used by the fish during the first 

period was 7.62 metres and 14.06 metres during the latter one. The correlation between 

the date and depth was higher (0.48) than between the depth and discharge (0.45).  

Because the fish moved to deeper areas a month after the discharge was 

increased, it could be assumed that it either took a month for the fish to find new places 

for the new flow situation or that the shift to deeper habitats was due to the seasonal 

changes, which is more probable. The discharge was high when the air temperature was 

low, because of the needs of electricity production. Pikeperch have been noticed to 

switch to deeper habitats in winter in many studies (Vehanen & Lahti 2003).  

 
Figure 3.45 A habitat value map calculated with preference curves made from observations during 

November 5, 1999 to January 27, 2000 at an average flow (460 m3/s) for the second period and fish 

observations during January 27, 2000 to April 10, 2000.  

 
Figure 3.44 A habitat value map calculated with preference curves made from observations during 

November 5, 1999 to January 27, 2000 at an average flow during the first period (289 m3/s) and fish 

observations during the same period.  
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Figure 3.46 Distributions of available habitat and habitat use and proportions of available habitat to 

habitat use January 27, 2000 to April 10, 2000 calculated with preference curves made from observations 

during the November 5, 1999 to January 27, 2000 at the Pyhäkoski impoundment. The number of fish 

individuals observed is too small for validation. 

 

Methods for calculation of preference curves 

Different methods of making preference curves were studied with the early winter 

pikeperch data from the Pyhäkoski basin. Water depth and flow velocity were picked 

from the hydraulic model data from the 57 places where pikeperch had been observed. 

The habitat availability was calculated for the whole basin for each fish-catching 

moment. The distributions are shown in Figures 3.47 and 3.49. Preference curves 

(Figures 3.48 and 3.50) were calculated from these.  

The effects of different calculation methods were studied: the traditional 

use/availability method, Jacobs's selectivity index, division by uniform availability or 

interval, and the effect of the number of observations per class were tested. A 

comparison shows that the selection between using uniform availability or uniform 

interval made the biggest difference between the curves. When using uniform 

availability, the number of expected observations in each class is controlled and the 

curves should be more reliable. This suggests that when data are sparse, the traditional 

method of having uniform intervals should be replaced with the method of division by a 

uniform availability. However, the classes should be selected so that a single class 

wouldn't cover too large a range of different conditions. Special attention should be 

given to flow velocity values near zero. 

Curves made with Jacobs's method did not have such large highest values as 

curves produced with the use/availability method. 
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Figure 3.47 Available habitats and observed use of water depth at the Pyhäkoski impoundment. 

 

 
Figure 3.48 Preference curves for water depth made from observations November 5, 1999 to January 27, 

2000 based on data from Vehanen & Lahti (2003) with different methods: traditional use/availability with 

six classes with uniform availability, the same with Jacobs's method, previous smoothed supposing 

existence of an optimum, use/availability with 6 classes with a uniform interval, and use/availability with 

12 classes with uniform availability. 

 
Figure 3.49 Available habitats and observed use of flow velocity at the Pyhäkoski impoundment. 
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Figure 3.50 Preference curves for mean column velocity made from observations November 5, 1999 to 

January 27, 2000 based on data from Vehanen & Lahti (2003) with different methods: traditional 

use/availability with six classes with uniform availability, the same with Jacobs's method, previous 

smoothed supposing existence of an optimum, use/availability with 6 classes with a uniform interval, and 

use/availability with 12 classes with uniform availability. 

 

A preference surface 

Calculation with preference surfaces was also tested with the Pyhäkoski basin data. The 

fish observation data (November 5, 1999 to January 27, 2000) were sorted as pairs of 

values of water depth and flow velocity. The distributions of the values of the variable 

pairs were calculated for each fish-catching moment to get the distribution of available 

habitats. The observed values were obtained by taking the values of the nearest 

calculated point to each fish observation point. After that, the preference surface was 

calculated with Jacobs's method and normalised so that the average value was 0.5. The 

calculations were made by using the midpoints of the classes and triangulation. Habitat 

availability and habitat use were smoothed before using Jacobs's formula by taking the 

averages of the cell and the eight adjacent cells. The resulting preference surface is 

shown in Table 3.4 and in Figure 3.51. More data would have been needed, e.g. a 

separate suitable area with high flow velocities may not be biologically reasonable. A 

further smoothed surface is also shown in Figure 3.51. A smoother surface could also be 

created with other methods, e.g. by dividing the two-dimensional space formed by the 

variables into larger areas before comparison of use and availability or with 

mathematical spatial smoothing software. 
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Habitat value calculations were carried out (Figure 3.52) with the first 

multivariate preference function with the Pyhäkoski basin observation data. When 

making preference curves from a set of data, more data are usually available per a value 

interval of a variable than when making a surface. With preference curves, the resulting 

combined habitat suitability values are more similar to each other in the direction of the 

axes because of the multiplication in the habitat value calculation formula (Figure 3.53). 

This may be beneficial if the habitat preference depends much more on one variable 

than on the others. For example, if the fish choose their positions primarily according to 

flow velocity and a preference surface is then constructed from scant data randomness 

in the data may e.g. cause a preference surface with multiple minima and maxima. 

However, the result of the action of multiple variables can potentially be described more 

accurately with preference surfaces. If these are constructed carefully, more precise 

predictions should usually be achieved. 

 
Table 3.4 A preference surface made from observations during the period (November 5, 1999 to January 

27, 2000) at the Pyhäkoski impoundment with the classes smoothed once and then calculated with 

Jacobs's method. The variables are flow velocity (v, m/s) and water depth (d, m). 

  v         
  0-0.05 0.05-0.1 0.1-0.15 0.15-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 

d 0-1 0.80 0.78 0.80 0.36 0.00 0.00 0.00 0.00 0.00 
 1-3 0.85 0.81 0.79 0.39 0.00 0.00 0.00 0.00 0.00 
 3-5 0.85 0.81 0.76 0.38 0.00 0.00 0.00 0.00 0.00 
 5-7.5 0.88 0.83 0.75 0.30 0.00 0.06 0.13 0.15 0.13 
 7.5-10 0.85 0.79 0.69 0.22 0.00 0.13 0.21 0.23 0.15 
 10-12.5 0.82 0.72 0.61 0.00 0.00 0.23 0.38 0.40 0.29 
 12.5-15 0.58 0.42 0.28 0.00 0.00 0.24 0.44 0.47 0.00 
 15-17.5 0.47 0.42 0.36 0.22 0.00 0.00 0.00 0.18 0.23 
 17.5-20 0.30 0.35 0.31 0.30 0.00 0.00 0.00 0.00 0.14 
 20-22.5 0.15 0.33 0.35 0.44 0.00 0.00 0.00 0.00 0.05 
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Figure 3.51 A preference surface made from observations during November 5, 1999 to January 27, 2000 

at the Pyhäkoski impoundment with small classes calculated with Jacobs's method and a preference 

surface made by additionally smoothing the previous surface six times by taking an average of the cell 

and the surrounding eight cells. 
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Figure 3.52 Available habitat and habitat use and proportion of use to availability for fish occurrences 

January 27, 2000 to April 10, 2000 calculated with a preference surface made from observations during 

the period (November 5, 1999 to January 27, 2000) with Jacobs's method at the Pyhäkoski impoundment. 
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Figure 3.53 A preference surface resulting in habitat value calculation (multiplication) procedure from 

the preference curves represented in Figures 3.61 and 3.63. 
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3.1.3 The whole of the fish model 
 

3.1.3.1 Residuals of modellings 

 

River Simojoki 

 

In order to check whether the model created describes the phenomenon, the residuals of 

the results of modellings at model validation (Figure 5.6a) at River Simojoki were 

calculated. A linear regression line was drawn, and the residuals compared to it were 

calculated (Figure 3.54). It can be seen, that the residuals are random, as they should, 

when the model describes all but the random variation. On the other hand, it may be 

possible, that there are multiple unknown factors causing the residuals, which are not 

known, but which could be explained by the model. A part of the variation is caused by 

inaccuracy in the observation data, not by model variation, because especially locating 

fish and measuring flow velocity are not precise. Also, the model measures habitat 

quality, whereas the habitat selection of e.g. salmonids is dynamic. 

 
 

 
Figure 3.54 Residuals of modelling Salmo salar at River Simojoki represented in Chapter “Validation of 

the model”.  
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River Ala-Koitajoki 

 

The residuals were calculated at Ala-Koitajoki (Figure 5.12) also. A logarithmic 

function was fit to the data (Figure 3.55). The river Ala-Koitajoki lies more southerly 

than River Simojoki, which might mean more nourishment and less harsh winter 

conditions leading to higher densities compared with northern conditions, from where 

the preference curves used in the modellings originate from. Denser population of the 

moderately good habitats could logically by explained by this (Rosenfeld et al. 2005). 

However, the densities of salmon at River Ala-Koitajoki were lower than at River 

Simojoki, but at River Ala-Koitajoki, the sum of the densities of salmon and trout was 

higher (Mäki-Petäys et al. 2002). Another reason might be that the linear relationship 

resulted because the curves were used in more similar type of conditions to those they 

originate from. The residuals seem to be randomly distributed. The residuals from 

modelling brown trout at River Ala-Koitajoki are shown in Figure 3.56. They seem to 

be random, however, the amount of data is low. 
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Figure 3.55 Residuals of modelling Salmo salar at River Ala-Koitajoki represented in Chapter 

“Validation of the model”.  
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Figure 3.56 Residuals of modelling Salmo salar at River Ala-Koitajoki represented in Chapter 

“Validation of the model”.  
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3.1.3.2 Prediction of fish abundance, biomass and position 

 

To study the prediction of fish biomass, the observations were weighted with fish length 

and weight. With the two largest sets of data in the River Simojoki data, it was studied 

whether there would exist a relationship between fish length or biomass and habitat 

value. The fish biomass was calculated from an equation for Salmo salar (Binohlan 

1995): 

 

W = 0.0092*L3,        (3.1) 

 

where W is fish weight in grams and L fish length in centimetres. 

 

Harrikoski Rapids 

The prediction of habitat use was more accurate when observations were weighted with 

fish lengths; the significance was 0.001 (Table 3.5) and even better when weighted with 

weight (Table 3.6), 0.0002, compared with 0.003-0.002 without weighting. The 

proportions of biomass, fish length, and number of fish in the higher half of habitat 

values to the values in the lower half were 1.93, 1.78, and 1.7. No correlation between 

habitat value and the length or weight of individual fish was found at the Harrikoski 

Rapids (Figure 3.57). This could mean that larger fish didn’t occupy solely the best 

habitats, but because the preferences change with fish size, no such conclusions can be 

drawn. The distribution of fish biomass was not observed to differ statistically 

significantly from the distribution of fish individuals. The average habitat value for fish 

of the size of 4-6 centimetres was 0.3990 and for fish of the size 7-9 centimetres 0.3996. 

 
Table 3.5 Available habitat and habitat use and proportion of use to availability for salmon <10 cm 

weighted with fish length with preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-

Petäys 2000) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.2995 68.86 49.52 0.72 5.43 5.16 -32.66  
0.2995-1 69.14 88.48 1.28 5.41 5.14 43.66  
sum 138 138 high/low 10.85 10.29 11.00 10.96 
   1.78 0.001 0.001 0.001 0.001 
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Table 3.6 Available habitat and habitat use and proportion of use to availability for salmon <10 cm 

weighted with fish weight with preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-

Petäys 2000) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.2995 68.86 46.95 0.68 6.97 6.66 -35.97  
0.2995-1 69.14 91.05 1.32 6.94 6.63 50.13  
sum 138 138 high/low 13.92 13.29 14.17 14.12 
   1.93 0.0002 0.0002 0.0002 0.0002 
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Figure 3.57 Habitat value as a function of fish length and weight of fish individuals at Harrikoski with the 

preference curves of Mäki-Petäys (2000). 
 

 

Iso Tainikoski Rapids, lower study area 

The prediction of habitat use was more accurate when observations were weighted with 

fish lengths (Table 3.7), the significance still being the same, 0.0001, and even better 

when weighted with weight (Table 3.8), >0.0001 compared with 0.0002 without 

weighting. The statistical significance of the difference of the p-values was not studied. 

The proportion of biomass in the calculated more suitable half of the habitat compared 

with the biomass in the less suitable half of the habitat was 3.91, which is clearly higher 

than the value calculated on the basis of the number of fish observed, 3.06. The 

proportion calculated with fish length was 3.21. A very weak and insignificant 

correlation between habitat value and fish weight was found at the Iso Tainikoski 

Rapids (Figure 3.58).  

 

 

 

 



 
 

112 

Conclusions 

Biomass seemed to be predicted more accurately than density. Larger fish might get 

habitats of slightly higher quality or it may be that the preference curves do not work 

equally for differently sized fish between 4 and 9 centimetres. More studies are needed, 

because the differences noticed are relatively small, and the properties of preference 

curves may affect the comparison, because they may work differently in prediction of 

habitat use for different sized fish. 

 

Table 3.7 Available habitat and habitat use and proportion of use to availability for salmon <10 cm 

weighted with fish length with preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-

Petäys 2000) and goodness of fit tests. 
habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.1993 28.44 13.51 0.47 7.84 7.32 -20.11  
0.1993-1 28.56 43.49 1.52 7.81 7.29 36.58  
sum 57 57 high/low 15.65 14.62 16.47 16.33 
average   3.21 0.0001 <0.0001 <0.0001 <0.0001 

 

Table 3.8 Available habitat and habitat use and proportion of use to availability for salmon <10 cm 

weighted with fish weight with preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-

Petäys 2000) and goodness of fit tests. 
habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.1993 28.44 11.57 0.41 10.01 9.43 -20.81  
0.1993-1 28.56 45.43 1.59 9.97 9.39 42.19  
sum 57 57 high/low 19.98 18.81 21.37 21.19 
average   3.91 <0.0001 <0.0001 <0.0001 <0.0001 
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Figure 3.58 Habitat value as a function of fish length and weight at Iso Tainikoski, lower area, with the 

preference curves of Mäki-Petäys (2000). 
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Prediction of the positions of individual fish 

 

More fish were found in habitats with higher modelled suitability index values. But can 

the model be used in predicting where the individual fish are? If we have a suitable 

habitat area, what is the probability that fish will be found there? Are the fish 

concentrated just in some good spots while other good areas are empty? The study with 

the preference curves of Mäki-Petäys and salmon <10 cm at the Harrikoski Rapids is 

used as an example. The probability of finding a fish in a spot with a high habitat value 

was 70% higher than that of finding a fish in a spot with a low habitat value (Table 

A1.1). The measurement resolution could have been higher for this kind of comparison, 

which was not the original purpose of the data. The precision of locating fish and 

measuring flow velocity may bring rather a large amount of variation to the comparison. 

The question also has to be studied by looking at the habitat value maps of the study 

areas drawn with fish observation spots (Figure A1.1). The study area is especially 

suitable: the number of fish observed in that area was 138, which corresponds to 

approximately 20 fish per acre. In this kind of study area, almost all area of which is 

rather suitable, finer details in river bed structure may be the decisive factor for habitat 

selection. Boulders and stones may offer a good micro scale habitat for small fish. 

Therefore, the coarse scale of measurements may not be sufficient to predict the precise 

habitat selection of individual fish. Still, fish abundance increases as habitat values get 

higher (Figure A1.2). This hints at an ability of the model to predict habitat use 

systematically. Additionally, the scale of modelling can be selected by adjusting the 

measurement resolution. It can also be seen that the habitats with the lowest habitat 

values were avoided. In different types of rivers, e.g. larger rivers or rivers with a lower 

habitat quality otherwise, e.g. only some areas near the banks could be suitable, and it 

would be much easier to make predictions of the abundance of fish than in these kinds 

of almost totally suitable areas. 
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3.2 Crayfish model 
 

3.2.1 Testing the model at Lake Katumajärvi study areas 4-5 

 
Lake Katumajärvi study areas 4-5 were modelled with the combination of variables with 

the highest correlation with crayfish abundance at the same lake: the product of erosion 

rate and water temperature, the preference curves for which were made with data from 

the same area (Figure 3.59). The tests of significance were calculated (Table 3.9). 

Available habitats and habitat use and proportion of use to availability are represented in 

Figure 3.60. A good prediction of abundance was achieved. 
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Figure 3.59 Catch/effort ratio at Lake Katumajärvi study areas 4-5 as a function of habitat value 

calculated based on erosion rate and water temperature. 

 

Table 3.9 Lake Katumajärvi study areas 4-5, available habitat and habitat use (catch/effort ratio) and 

proportion of use to availability and goodness of fit tests. 

Habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.4964 157.00 105 0.67 17.22 16.89 -84.48  
0.4964-1 157.00 209 1.33 17.22 16.89 119.58  
sum 314 314 high/low 34.45 33.79 35.11 35.05 
      1.99 <0.0001 <0.0001 <0.0001 <0.0001 
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Figure 3.60 Lake Katumajärvi study areas 4-5, available habitat and habitat use (catch/effort ratio) and 

proportion of use to availability. 
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3.2.2 Testing the model at Lake Pääjärvi 
 

A model was similarly calibrated and tested at Lamminsaari study area at Lake Pääjärvi. 

The relationship between catch/effort ratio and habitat value is shown in Figure 3.61. 

Tests of significance were calculated (Table 3.10). Available habitats and habitat use 

and proportion of use to availability are represented in Figure 3.62. The prediction was 

found to be moderate. 

   
 

0 
1 
2 
3 
4 
5 
6 
7 

0 0.2 0.4 0.6 0.8 1

habitat value

ca
tc

h/
ef

fo
rt,

 sl
id

in
g 

av
er

ag
e 

 
[1

/tr
ap

ni
gh

t] 

 
Figure 3.61 Lamminsaari Island, Lake Pääjärvi, habitat value and catch/effort ratios. 

 
Table 3.10 Lamminsaari Island, Lake Pääjärvi, available habitat and habitat use (catch/effort ratio) and 

goodness of fit tests. 
habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.3543 127.00 96 0.76 7.57 7.32 -53.73  
0.3543-1 127.00 158 1.24 7.57 7.32 69.02  
sum 254 254 high/low 15.13 14.65 15.29 15.26 
      1.65 0.0001 0.0001 <0.0001 <0.0001 
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Figure 3.62 Lamminsaari Island, Lake Pääjärvi, habitat availability and habitat use (catch/effort ratio) 

and proportion of use to availability. 



 
 

116 

3.3 Vegetation modelling 
 

3.3.1 The delta of the River Oulujoki 
 

In this section, the calibration of the herb model with habitat preference information is 

represented. Description of the area and the organism studied is represented in Chapter 

“The models”. 

 

Measurements and modelling 

In the delta of the River Oulujoki, the region around the shoreline was selected as the 

study area. The delta area was already habitat modelled (Lahti & Riihimäki 2000).  The 

sea bed characteristics were mapped from the zone where Persicaria foliosa was known 

to grow, considering the distance from the shoreline. The characteristics of the sea bed 

were classified on the basis of the properties of two upper layers of the sea bed, with 

three variables recorded at each site:   

 

The most common material type in the surface layer: 1 = humus/mud, 2 = other 

The most common material type in the underlying layer: 1 = humus/mud, 2 = other 

The second most common material type in the underlying layer: 1 = humus/mud, 2 = 

other 

 

The mapping was performed with the help of accurate differential-GPS 

equipment (Kemijoki Oy). The bed characteristics were classified for the whole length 

of the seashore. The mapping points were placed at constant distances or when a change 

in the characteristics occurred. In large areas, where the bed characteristics were 

homogeneous, the density of the measurement points was reduced. Topographic 

information was also gathered from the measurement points. The topographic model 

was gained from measurements (Sirniö 2000) and the hydraulic modelling results from 

Talvensaari (2000). The habitat modelling was performed with a cell size of 5*5 metres. 

The coordinate systems were different in the modelling and observations, so the 

observation data were converted to the coordinate system used in the modelling. There 

is an angle difference of 3 gon. The centres of the observation cells were marked with 

circles on the map (Figure 5.32). 
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Preference data 

One set of observations was made in cells of 100*100 metres. Another set of data (Lahti 

& Riihimäki 2000) was measured directly to coordinates with GPS. The preference 

curves were made from this set of data allowing the finding of more accurate values for 

the habitat variables, and the first set of data was used as validation data. The preference 

curve for water depth (Figure 3.63) was made on the basis of the elevations of the sites 

where Persicaria foliosa was found and water level information. The elevations of the 

174 sites with Persicaria foliosa were measured. The curve was based only on the 

observed depths. The preference curve for sea bed characteristics (Figure 3.64) was 

made on the basis of an expert estimation (Lahti & Riihimäki 2000) on the suitability of 

bed characteristics observed at the sites where Persicaria foliosa was found.  
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Figure 3.63 Preference curve for water depth for Persicaria foliosa in the delta of the River Oulujoki. 

The water depth value of 0 is the zero point of the water level system MW 2000 (Finnish Institute of 

Marine Research). 
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Figure 3.64 Preference curve for bed characteristics for Persicaria foliosa in the delta of the River 

Oulujoki. The bed characteristics were classified on the basis of the characteristics of the two upper layers 

of the bed structure; the numbers are in order from left to right in the code: the most common material 

type in the surface layer, 1 = humus/mud, 2 = other; the most common material type in the underlying 

layer, 1 = humus/mud, 2 = other, the second most common material type in the underlying layer, 1 = 

humus/mud, 2 = other. 
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4 VERIFICATION AND SENSITIVITY ANALYSIS OF THE 
MODEL 

 

4.1 Fish model 

 

In this chapter, the logicality of the behaviour of the model is studied with artificial data. 

It is tested, whether the model responds to changes in methods of calibration and 

modelling in a predictable way, and whether sub-models, e.g. topographical model, 

function the way required in the modelling. Additionally, the sensitivity of model results 

to different factors is studied. A part of the sensitivity analysis has already been 

performed in the previous chapter in the form of testing different preference curves. In 

this chapter, the work is completed e.g. by studying the relative importance of 

variability in preference data (4.1.3). Detailed sensitivity analyses of the physical model 

including e.g. field measurements (4.1.1) and hydraulic modelling (4.1.2) are carried 

out. At the Hotilankoski Rapids on the River Tainionvirta, the whole habitat modelling 

process is studied (4.1.4) for assessing the relative importance of different factors 

affecting the reliability of habitat-modelling results. The response of the crayfish model 

to different preference curves for potential erosion or lake size is studied (4.2.1). 

 

4.1.1 Field measurements and empirical data models 
 

Field data model measurement and interpolation methods 

The most common data model interpolated directly from measurements is the 

topographic model. Usually, many other sets of data are calculated with a hydraulic 

model based on the topography. Therefore, topography is selected to represent all sets of 

data in the following study. The properties of the water depth set of data are very similar 

to those of the topographic model, and the changes in the values in flow velocity sets of 

data also usually roughly follow the direction of change of other data. Therefore, the 

recommended interpolation methods for these three are usually the same. Substrate is 

measured as scatter point measurements and interpolated with a nearest point method, 

because the size classes do not necessarily change gradually in nature. 



 
 

119 

The most accurate method to test the effect of the number of observations on data 

models would be to make measurements from the same area with different methods and 

sampling densities. Because this would be costly and the same can also be done with the 

help of a figurative test reach clearer in visual comparisons, such a test reach consisting 

of a regular V-shaped channel with a straight section and a section in the form of a 

quarter circle was created to test different interpolation methods (Figure 4.1). The 

measurement points were placed on five lines, which were divided into intervals, and 

within each of these a point was positioned randomly. The intervals were selected so 

that they would correspond to those of normal field measurements. The point density in 

the curved section was set in the middle between a uniform amount of points per metre 

and radius. Using plots and removing data points is an illustrative and easy method for 

testing. If different models are tested in a separate work concentrating solely on 

topographical models, estimates of error should also be calculated, i.e. a point at a time 

is removed and the value at it is estimated based on values at other points with the 

method being studied. The method producing the least error or variance, also 

considering the number of model parameters, would be chosen. 

 Triangulation gave the most accurate result, the reason being clear; the changes 

in the channel form are linear. Kriging also produced a good result, but inverse distange 

weighted interpolation was not useful with these kinds of data. But when measurement 

points were fewer, triangulation and Kriging worked roughly equally (Figure 4.2), 

triangulation predicting the shorelines more accurate and Kriging the mid-channel, even 

if the form of the channel was regular, because Kriging guesses trends better. Methods 

developed for making more accurate data models and for a more effective use of field 

measurement data, line measurements and curvilinear anisotropic interpolation, were 

also tested (Figure 4.3). These were found to improve the results remarkably. 
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Figure 4.1 Interpolation with triangulation, inverse distance weighted interpolation, and Kriging. 
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Figure 4.2 Interpolation with triangulation and Kriging when the number of measurement points is only 

half of the previous. 
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Figure 4.3 Interpolation with shoreline measurements with Kriging and with curvilinear anisotropic 

interpolation with Kriging, and both together, when half of the measurement points were removed. 

 

In Figure 4.4, elevation profiles digitised from the topography models from the 

place shown with an arrow in Figure 4.3 are shown. The interpolated model follows the 

original topography relatively closely, with 54 measurement points and Kriging. With a 

halved number of measurement points, the topographic model differs significantly from 

the original. Shoreline interpolation helps in making the model accurate near the banks, 

but the mid-channel values are almost unaffected. The model interpolated with 

curvilinear anisotropic interpolation follows the original topography very closely, even 

with half the number of measurement points. In natural channels, the method may not 

be as efficient, because of irregularities in the topography along the river. Because the 

flow of water has usually formed the river in such a way that there is less relative 

variation in the topography along than across the river, the method is likely to be 

beneficial in many cases. 
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Figure 4.4 Original topography and interpolated topography with 54 and 27 measurement points in the 

figurative test reach. 

 

Field measurement methods are studied further below. Whether cross-section or 

scatter point measurements should be used is studied (Figure 4.5). The cross-section 

measurements yielded some more accurate results than the scatter point measurements 

with the same amount of measurement points (Figures 4.2-4.3). In the field, in practice, 

cross-sections are usually measured with much denser lines, and thus the spaces left 

between lines become long compared with the distance between measurement points in 

the lines and the efficiency is lower. When making scatter point measurements, 

individual points can also be selected, taking the form of the topography into 

consideration. Therefore, in practice, with natural, varying channels, scatter point 

measurements should usually yield more accurate results with an equal amount of 

measurement points. If cross-section measurements are used in an irregular channel, the 

number of cross-sections should be high enough compared to the number of points in a 

cross-section, so as to get a grid-type measurement point pattern, as here, so that gaps 

between cross-sections would not be formed. There should not be large, non-linear 

changes in the channel between the cross-sections. 
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Figure 4.5 Interpolation of field data measured with cross-section measurements with triangulation, 

Kriging, and with curvilinear anisotropic interpolation with Kriging, when the number of measurement 

points was reduced to half of the original. 

 

The effect of grid cell size 

The effect of data grid cell size is studied with the same figurative study reach as above. 

The coarseness of the grid affects the results relatively little (Figure 4.6). Only small 

differences can be found between the first two and some differences between the grids 

interpolated with the finest and the coarsest density. The grid sizes were very small; the 

largest grid size, with a density of 0.5 metres, was only 21*41 cells. With a typical 

personal computer, grid sizes of 400*400 are easily calculated. The grid density can 

usually be set much higher than that of field measurements. Still, if the river reach is 

very long compared to the width, it may be reasonable to divide the river into smaller 

sections, to reduce the dry land areas in habitat value computation grids requiring 

computer time, and also for hydraulic modelling.  
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Figure 4.6 Topographic model of a figurative test reach with grid cell sizes of 0.5, 1, and 2 metres.  

  
 

Measurement of boundary conditions 

Water level 

The accuracy of the measurement of water level affects water depth directly, and also 

flow velocities through the available cross-sectional flow area and calibration of the 

model. The direct effect on habitat modelling can be estimated roughly by considering 

the effect of a change in water depth on habitat preference curve values. The water level 

can usually be measured with an accuracy of a couple of millimetres or centimetres, an 

amount which causes only small changes in preference values for water depth. The 

effect on flow velocities after the calibration of the model can be estimated with 

sensitivity analysis, followed by the estimation of the effect on preference index values 

for flow velocity. In rapids, the difference in water level values between measurement 

points along the river is usually large, but in slow-flowing sections inaccuracy in 

measurements may cause problems in setting roughness values in calibration. The 

measurement points should be selected in such a way that there are no big temporal or 

small-scale spatial variations in the place. The difference between energy height and 

water level should also be remembered. Still, much more imprecision is usually caused 

by topography measurements, which have a major effect on the cross-sectional flow 

area. 
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Water level can usually be measured more accurately than a couple of 

centimetres, and averaging with e.g. five measurements from the same area or point will 

reduce the effect of temporal or small-scale spatial variation. Still, the measurement 

places must be chosen avoiding such variation.  

  

Flow rate and flow velocity distribution 

Discharge data is often available at hydro power plants or water level gauging stations 

with known hydrographs. When not available, in smaller rivers, flow rate is measured 

with a current meter, whereas in larger rivers, acoustic Doppler-based instruments are 

also practical. Flow velocity distributions can be measured with both methods. In a 

comparison, the deviation of discharge by ADCP measurements from results measured 

with a current meter or from validated power station discharge was usually not more 

than 2%, except one measurement with 6% deviation (Forsius 2001). The precision of 

discharge measured with a current meter is higher, 1-2% in good conditions. In natural 

channels, the values should be measured as an average of a longer period, because of the 

temporal variation of flow. The selection of the measurement place is important. 

Because of temporal variation, ADCP measurement should be recommended to be 

repeated several times, and an average of these should be used. Some areas at the sides 

and at the top of the cross-section are not accessible by the measurement method, and 

have to be estimated. Because, in modelling, calibration is normally made following a 

measured water level, the water depth and the location of the shoreline change very little 

if the flow rate is changed. Flow velocity distribution also changes gradually, which 

diminishes the effect of measurement inaccuracy on the results of habitat modelling 

even if the average flow velocity changes considerably. An error of 5-10% in flow 

velocity usually causes rather a small difference in habitat values. Thus, also the 

accuracy of flow rate measurements does not need to be 2%, but that could be a good 

goal. If the flow rate is measured carefully with the normal methods suggested for 

discharge measurements, the precision is sufficient. In many cases, the conditions at the 

measurement line do not meet the requirements for the 2% accuracy, however. 

Temporal variations in discharge and flow velocity caused e.g. by hydro power use of 

water or wind induced variations in water level of reservoirs can be large. If the 

discharge measurement is inaccurate, the effect on flow velocities is greater than the 

difference between the flow velocity values of two different flow rates in channel 
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naturally, because the water level remains constant in the calibration of the hydraulic 

model. 

A hydraulic model was set up at the Tolpankoski Rapids on the River 

Kiiminkijoki for a brief glance at the effects of erroneous flow rate and water level 

measurements on flow velocity distributions (Figures 4.7-4.8). The river reach is 

optimal for the study, because it is just a typical trout river for which habitat models are 

often used. However, perhaps because of the high density of boulders in the river reach 

making measurements more difficult, e.g. too many topography points might then be 

measured on the top of boulders locally the model converged best at water levels about 

10 centimetres above the measured levels. However, a place was found at the top of the 

reach where the water level was two centimetres lower than modelled. It was a little too 

close to the upper boundary of the measurements and the model, but that was not 

thought to disturb the study of the effects too much, because the water there still has 

time to select its route. A cross-section of flow velocities here was plotted with different 

calibrations of the model. As expected, too high a measured flow rate resulted in 

slightly higher flow velocities, and too high a measured water level in lower flow 

velocities, but not directly proportionally. Another similar cross-section shows exactly 

the same thing: normal inaccuracies in the measurement of flow rate or water level do 

not usually cause major changes in flow velocities in a calibrated model (Figures 4.9-

4.10). 
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Figure 4.7 Location of Cross-section One at the Tolpankoski Rapids on the River Kiiminkijoki. 
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Figure 4.8 Flow velocity at Cross-section One of the Tolpankoski Rapids with measured values and with 

smaller discharges or higher water levels. 
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Figure 4.9 Location of Cross-section Two at the Tolpankoski Rapids on the River Kiiminkijoki. 

 

 
Figure 4.10 Flow velocity at Cross-section Two of the Tolpankoski Rapids with measured values and 

with smaller discharges or higher water levels. 
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4.1.2 Hydraulic model 
 

Two-dimensional hydraulic models have been used e.g. for planning dredgings and 

structures. In these studies, changes in water level are often the effect that is studied. 

Often shallow water areas are cut away from the model, because they usually do not 

have a remarkable effect on water levels, but add a factor causing instability to the 

calculation model. The model is calibrated only along the river and no flow velocity 

profile calibrations across the river are made, to save labour costs. But in habitat 

modelling, the shallow areas are important for fish fry and juveniles, and the velocity 

profile affects the available habitats. The shallow areas may be inaccessible by boat or 

the GPS equipment invisible to satellites. When measuring large areas, the cost of 

tacheometer measurements may be high. Additionally, field measurements made for 

other purposes that do not require information about the near-bank areas may be 

available for habitat studies. Furthermore, hydraulic modelling is easier without shallow 

wetting and drying areas. When studying the habitats e.g. of bigger fish, the shallow 

areas are often not so important. But in all these cases mentioned, in order to get more 

exact values for the mid-channel, the adjustments to parameter values discussed above 

may still have to be made. Shallow areas that are lacking can sometimes be included in 

the water depth model by using a topography model interpolated from the original field 

measurements, including the shallow shores and water level taken from the hydraulic 

model instead of the modelled water depth. Modelled flow velocities cannot be 

calculated for missing cells of the hydraulic model near the shoreline in this way. 

Because of these, the inclusion of the shallow areas is recommended even if they are not 

studied, if they can be modelled easily enough. 

  In the two-dimensional hydraulic model RMA2, it is possible to have the shallow 

areas included in the model using a wetting and drying algorithm. In the method, 

calculation cells are excluded as dry or activated back into the calculation grid as wet 

during the calculation process. Still, some shallow areas are left outside the model, 

because the shore side of the nearest wet element is usually not exactly at the shoreline, 

but at some distance from it. Furthermore, the algorithm uses border values for wetting 

and drying, which mean some additional distance on average. However, these values 

can be adjusted. The total effect is smaller when the number of elements near the shore 

is larger. Still, a wet/dry boundary with vertical walls is formed in RMA2. This and also 

the fact that vertical friction cannot be applied to cells in RMA2 mean that some friction 
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caused by the shallow area excluded from the model is left out, and the flow velocity 

may become too high near the shoreline. The use of a two-dimensional hydraulic model 

in habitat modelling, its calibration and these effects are studied in the following. 

 

A figurative test reach 

The effect of cutting the shallow areas away from the model was tested with a figurative 

reach (Figures 4.11 and 4.12) in order to exclude other factors. The effects of other 

model paramaters; roughness, and kinematic viscosity were also tested. Finally, the 

effect of the number of elements on results was tested. It can be concluded from Figures 

4.13 and 4.14 that if the river topography model is cut below the waterline, the flow 

velocity values near the banks will be too high. This is because there is no wall friction 

in the model and friction caused by the shallow near-bank areas is excluded. Thus, even 

if the fish being studied were not near the banks, it is important that topography 

measurements are made up to the shoreline, even if it is more labour-demanding. Often 

these areas are not accessible by boat and trees block the visibility of GPS equipment to 

satellites near banks, which means a need for additional tacheometer measurements. It 

can also be seen from Figure 4.14 that a proper value of friction coefficient is important 

for flow velocity profiles even if only one value is used for the whole profile. The effect 

is greatest near banks. On that basis it can be concluded that the model should be 

calibrated accurately along the river with water level measurements, even if the 

inaccuracy in water level caused only small changes in preference values calculated 

with water depth, in order to get the right friction coefficients affecting the flow velocity 

profile. The effect of kinematic viscosity is also important. 
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Figure 4.11 Topography of a figurative test river reach.   
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Figure 4.12 Topography profile of a figurative test river reach and a model with one row of cells deleted 

from the right bank. 
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Figure 4.13 Flow velocity distribution in a figurative river reach when one row of calculation cells was 

deleted from another bank (the top of the figure).  
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Figure 4.14 Flow velocity profiles of the figurative test river reach with different values of friction and 

kinematic viscosity and a model with one row of cells deleted from the right bank. The kinematic 

viscosity is set by automatic assignment on the basis of flow velocities and element sizes. 

 

It can also be seen that the effect of cells that are lacking in shallow areas of the 

river can be roughly compensated by adding friction or reducing kinematic viscosity. In 

order to be most successful this requires both sides of the river to have a similar type of 

grid geometry and topography. Another method could be adding friction to the cells 

near the waterline.  

It was surprising how little the amount of elements affected the results (Figure 

4.15). The purpose was to test what the effect of elements is computationally, and thus 

the river geometry and the number of elements were set in such a way that the geometry 

remained the same in each modelling with different amounts of elements. In natural 

channels, of course, the topography would be less precise with fewer elements. The 

model was found to work consistently with different amounts of elements. The software 

also interpolated the right values for calculation/output nodes even if the elements were 

so large that the average values of elements were remarkably different. 
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Figure 4.15 Flow velocity profiles in the test reach with different amounts of elements across the river. 

 

Because the effect of the number of elements can be quite small, computation 

time can be saved by reducing the number of elements if the channel form or the density 

of the measurement points allows this without losing too much accuracy. It has been 

found out that the computation time is approximately proportional to the fourth power 

of the number of elements across the river (Lahti 2002). But the number of elements 

must still be sufficiently high that shallow areas near banks are also included, and also 

to get a better amount of friction to the model affecting the rest of the channel. 

Adjusting the grid geometry to fit the water line after an initial model run usually leads 

to the most accurate result and a numerically more stable grid. The effect of lost friction  

on the flow velocity distribution of the rest of the channel could also be compensated for 

by adding some friction to the nearest wet cells to the bank. This can be done on the 

basis of an initial model run or simply by adding roughness zones according to 

geometry or topography. Other methods could include using a slightly larger friction 

coefficient in the whole cross-section or by using smaller kinematic viscosity values, as 

previously mentioned. The effect of these different methods is studied with another grid 

that resembles natural rivers more closely. 
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A fluvial fish river-like figurative test reach  

To assess the magnitude in natural river channels of the phenomena studied, a trout river 

was used as a cross-section geometry model when designing the reach. The shallow 

areas of the theoretical river reach were formed so as to resemble a typical trout and 

grayling river somewhat, using the geometry of the River Kuusinkijoki, but the mid-

channel was made deep so that the modifications to be made in testing would not have a 

remarkable effect on the water level (Figures 4.16 and 4.17). The depths at the river 

edge of the shore elements in the River Kuusinkijoki hydraulic modelling grid were 

found to be from 0 to 0.5, but mostly between 0.1 and 0.3 metres, on average 0.15-0.2. 

The shallow areas were constructed in such a way that if one row of cells was deleted, 

the remaining grid would correspond to that of the River Kuusinkijoki. This was done to 

study the possible effect in a typical modelling case. The water level was kept 

approximately constant by adjusting the water level boundary condition of the model at 

the flow distribution check line in order to keep the situations calculated with different 

parameter values comparable. The effect on flow velocity distribution of removing 

elements from the shallow area is shown in Figure 4.18. The difference in flow velocity 

can be seen by comparing it with the uppermost line. Removing one row of elements 

from shallow areas resulted in an increase in flow velocity of 0.045 m/s near the shore. 

The water depth at the shore line increased from 7 to 17 centimetres. If we evaluate the 

effect of this on preference values based on the preference curve of trout fry in summer 

by Mäki-Petäys & Huusko (2001), this has only a very limited effect on the modelling 

results. In winter, the optimal flow velocity in the preference curves of Mäki-Petäys et 

al. (1997) is at 0.3 m/s and is still good at 0.1 and 0.4 m/s. 
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Figure 4.16 The elevation map of the figurative fluvial fish river-type reach. The flow velocity 

distribution check line is shown in the middle. 
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Figure 4.17 Topography profile of a figurative fluvial fish river-type reach and a model with one row of 

cells deleted from the right bank. 

 

But if a longer section is modeled at several hydraulic situations with a coarse 

grid and small-scale shallow areas are still to be assessed when adjusting the shore line 

at each situation is thought to be too laborious, some compensatory methods should be 

used to correct the flow velocity distribution near the banks that results from large-sized 

elements there. 

Different methods for compensating for the effect on flow velocity distribution of 

possibly absent shallow area elements were studied. A comparison between the velocity 

profile with the original geometry and with different compensatory methods is shown in 

Figure 4.19. It can be seen, as could have been supposed, that the addition of friction to 

the waterline elements would give the closest fit. Adding friction or lowering the 

kinematic viscosity in the whole channel also corrected flow velocity with a relatively 

small effect on values in mid-channel. But because the method would also be applied to 

the other side of the river in practice, they would cause too-low velocities on that side. If 

the other side is similar, this is not a problem. 
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Figure 4.18 The effect on flow velocity distribution of removing elements from the shallow area. The 

uppermost line is a situation where the depth at the shoreline is only seven centimetres. The depths at the 

following element rows at the ends of the lines from the right are 17, 37, 57, 57, and 82 centimetres.  
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Figure 4.19 Flow velocity profiles of the figurative test river reach for the original geometry and the 

geometry from which a row of elements from the shallow area was deleted with different values of 

friction and kinematic viscosity. The effect on the other side of the river of the addition of friction to 

border elements is also shown (the uppermost longer dashed line in the figure). 
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The effect of the other methods on the other side of the river can be seen from 

Figure 4.20. The other methods also affect the distribution in the mid-channel, but the 

effect is not proportionally so big. Using additive friction at the shoreline may not 

always be feasible, because often the shoreline is not known before modelling. It can be 

digitised from preliminary modelling, but this is laborious. A less precise method could 

also be something between adding friction to one row or several rows of elements near 

the river shoreline. If the aim of habitat modelling is to study the habitats of fry or small 

juveniles, all three compensatory methods can be used depending on precision desired. 

In all cases but especially when the aim was to study the habitats of larger fish thriving 

in the mid-channel, adding friction to the shoreline would work best. It causes the least 

error to mid-channel values. On the other hand, the relative error in large channels 

caused by lacking elements may be so small that no corrections are needed. The effect 

of the lack of a friction zone near the bank was found to be smaller with greater 

roughness. 
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Figure 4.20 Flow velocity profiles of the figurative test river reach with different values of friction and 

kinematic viscosity and a model with one row of cells deleted from the right bank. The kinematic 

viscosity is set by automatic assignment on the basis of flow velocities and element sizes. 
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In conclusion, it was found that it is important to include the shallow areas in the 

hydraulic model. Small-sized elements near banks are useful. Increasing the value of the 

friction coefficient at the first wetted elements from the shoreline is a useful method to 

compensate for friction lost near banks, but in the first hand, the grid should follow the 

shore line closely, and if needed, it can also be adjusted after an initial model run. From 

two-dimensional hydraulic modelling, relatively accurate areal flow velocity and water 

depth values can be achieved on the larger spatial scale often used in habitat modelling. 

This requires proper field measurements and calibration of the model with the water 

level along and across the river. On the contrary, boulder- and stone-sized microhabitats 

may usually be smaller than the scales used and may be very heterogeneous.   

 

 

 

4.1.3 A comparison of preference curves 
 

4.1.3.1 The effect of data type and geographic location 

 

Choosing between different preference curves can have a major effect on the results of 

habitat modelling, as has been seen in previous cases. Four different preference curves 

for brown trout fry were compared with each other. 

 

1) Preference curve from River Kuusinkijoki by Mäki-Petäys et al. (1997) 

2) Curves from several rivers in Northern Finland (Mäki-Petäys & Huusko 2001)  

3) American-French curves (Souchon et al. 1989) 

4) Raleigh et al. (1986) 

 

1) The first curves were from only one river, the River Kuusinkijoki (Mäki-Petäys et al. 

1997). The preference curves are for 0+-trout (Salmo trutta) in the River Kuusinkijoki 

in mid-July and in mid-August. The River Kuusinkijoki is in quite a natural state, and 

there is plenty of good habitats. These preference curves have quite narrow ranges for 

the highest habitat values. The mean flow in the River Kuusinkijoki is 4 m3/s. 
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2) The second curves were made by using data from several rivers in Northern Finland 

(Mäki-Petäys & Huusko 2001): the Rivers Astervajoki, Koitajoki, Kutijoki, 

Kuusinkijoki, Loukusajoki, Rutajoki, and Varisjoki. They are also for small trout of a 

size <10 cm. These preference curves have larger intervals of high preference values for 

different variables than the curves from the single study on the River Kuusinkijoki. 

 

3) The third curves are from America and Eurasia, and are modified and validated by 

Souchon et al. (1989) on the basis of data from 10 river sections in the Jura in France. 

The curves are according to Souchon et al. originally from Bovee (1982), not printed 

there, though. The curves have also been validated with 12 river sections in France. The 

validation was performed with the average habitat values of the sections and fish 

biomass, and they correlated well (Souchon et al. 1989). The curves used here are for 

young trout (alevin) aged under one year, but of a length over 5 centimetres. These 

curves were used to test whether foreign curves can be used. 

 

4) The fourth curves are based on a literature survey made by Raleigh et al. (1986). 

In that survey, data collected from northern Utah were used. Because they had no data 

on the habitat requirements of fry; fish smaller than 5.08 centimetres in length, they 

decided to use the preference curves of the young-of-the-year for fry also. Thus, the fish 

size was for less than 14.5 centimetres in length. By calculating the habitat values, how 

much a difference in fish size affects the results can be assessed. 

 

The curves are shown in Figures 4.21-4.23. The fourth curves are for a different 

size class. The one-river curves have a sharper and spikier form than the other curves; 

the multi-river curves of Mäki-Petäys & Huusko (2001) and the American and the 

American-French curves have a smoother and a more biologically reasonable and 

consistent shape. The latter two curves also seem to suit some bigger fish. Trout are 

known to switch to habitats of greater depth as they grow. 

Small trout seem to avoid places shallower than 10 centimetres and deeper than 

0.8 metres in summer. Their preferred depth range seems to be 0.15-0.5 metres. The 

flow velocity preference curves show the avoidance of zero mean column velocities and 

velocities higher than 0.75 m/s. The preferred range seems to be about from 0.1 to 0.5 

m/s. The multi-river curves are again smoother and have a larger top value interval. The 

preference curves for substrate show a preference for coarser particle sizes. In the 
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American-French curves, finer, but not the finest, particles are also favoured. The curves 

are adapted to fit the same classification as used in the figure, so not all of them are 

exactly the same as the original ones.    

It could be guessed that the multi-river curves would make a larger frame, inside 

which the spiky one-river curves could be placed, but, however, the curves here contain 

partly the same data. When many one-river curves are taken and an average of their 

values is calculated, a larger-topped curve is assumed to be achieved. This is due to the 

fact that variations in conditions, e.g. river geomorphology, hydrology, temperature, and 

nourishment may cause some changes in preferences. Additionally, the size of the 

sample may affect the results. The preferences for trout young-of-the-year (Raleigh et 

al. 1986) differ from the curves for fry; greater depths and less cover in the form of 

substrate is used. This is natural, because the fish are bigger. 
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Figure 4.21 Different preference curves for trout fry for water depth (m): a multi-study curve of Mäki-

Petäys & Huusko (2001), a single-study curve of Mäki-Petäys et al. (1997), a multi-study curve from 

America and Eurasia validated in France by Souchon et al. (1989), and the curve of Raleigh et al. (1986) 

for fish young-of-the-year. 
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Figure 4.22 Different preference curves for flow velocity (m/s): a multi-study curve of Mäki-Petäys & 

Huusko (2001), a single-study curve of Mäki-Petäys et al. (1997), a multi-study curve from America and 

Eurasia validated in France by Souchon et al. (1989), and the curve of Raleigh et al. (1986) for fish 

young-of-the-year. 
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Figure 4.23 Different preference curves for substrate (mm): a multi-study curve of Mäki-Petäys & 

Huusko (2001), a single-study curve of Mäki-Petäys et al. (1997), a multi-study curve from America and 

Eurasia validated in France by Souchon et al. (1989) and the curve of Raleigh et al. (1986) for fish young-

of-the-year. The size classes are marked on the x-axis in such a way that the ranges begin where the 

preceding class ends. Some of the preference curves have been adjusted to fit this classification. 
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Prediction of habitat use with these curves was tested with data from River Ala-

Koitajoki. A total of 25 brown trout of lengths of 5-7 centimetres were observed at the 

Hiiskoski Rapids. Ten of these were 5 centimetres long, which is less than in the 

preference curves of Souchon et al. (1989), but the effect of fish size difference can be 

assessed this way. The lengths of the fish are inside the ranges of other preference 

curves. The preference curves of Mäki-Petäys & Huusko (2001) were modified in such 

a way that the River Simojoki data that were used in testing were removed. The 

modified curve is shown in Figure 3.24. The results from using curves 1) are shown in 

Table 4.1. The calculations with curves 2) produced identical results, which are shown 

in Table A4.3. Curves 3) also produced identical results (Table 4.2). The preference 

curves were so identical, that the same number of the 25 fish selected areas with the 

higher 50% of habitat values in three of four cases, one differing only by one fish (Table 

4.3). Though, the first and second curves share River Kuusinkijoki fish observation 

data, causing some similarity it seems that the modelling of brown trout fry would be 

easy, because strong and almost identical predictions were the outcome with all the 

curves tested. This also indicates the possible existence of universal preference curves 

for brown trout fry. 

 
Table 4.1 Available habitat and habitat use and proportion of use to availability and goodness of fit tests, 

Preference curve from River Kuusinkijoki by Mäki-Petäys et al. (1997). 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.1332 12.46 6 0.48 3.35 2.85 -8.77  
0.1332-1 12.54 19 1.51 3.32 2.83 15.78  
sum 25 25 high/low 6.67 5.68 7.01 6.88 
average 0.13 0.18 3.14 0.01 0.02 0.008 0.009 

 
Table 4.2 Available habitat and habitat use and proportion of use to availability and goodness of fit tests, 

American-French curves (Souchon et al. 1989). 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.1606 12.46 6 0.48 3.35 2.85 -8.77  
0.1606-1 12.54 19 1.51 3.32 2.83 15.78  
sum 25 25 high/low 6.67 5.68 7.01 6.88 
average 0.22 0.34 3.14 0.01 0.02 0.008 0.009 

 

Table 4.3 Available habitat and habitat use and proportion of use to availability and goodness of fit tests, 

Raleigh et al. (1986). 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0118 12.46 7 0.56 2.39 1.97 -8.07  
0.0118-1 12.54 18 1.44 2.37 1.96 13.00  
Sum 25 25 high/low 4.76 3.93 4.93 4.84 
Average 0.04 0.05 2.55 0.03 0.05 0.03 0.03 
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4.1.3.2 The effect of season 

The importance of using separate preference curves for winter was studied at Harrikoski 

Rapids and Iso Tainikoski Rapids with models calibrated with preference curves for 

salmon 4-6 cm long from River Utsjoki for different seasons: August, October, 

February, and April (Figure 4.24). Water temperatures during these measurements in 

different seasons were 13, 2.4, 0.5, and 1 Celsius, respectively.  
 

1) Harrikoski Rapids  

The water temperature was 0.5 ○C (Mäki-Petäys et al. 2004) during the fish 

observations. Habitat suitability for salmon in October at the Harrikoski Rapids on the 

River Simojoki with preference curves for 4-6-cm fish from the Mantokoski Rapids on 

the River Utsjoki by Mäki-Petäys (2005) and fish observations are shown in Figure 4.25 

with preference curves for: August (a), October (b), February (c), and April (d). Neither 

summer nor autumn preference curves did work under winter conditions (Tables 4.4 and 

4.5). The winter and spring preference curves gave weak predictions under winter 

conditions (Tables 4.6 and 4.7). 

 

  

 
Figure 4.24 Preference curves for salmon 4-6 cm in different seasons at Mantokoski Rapids on the River 

Utsjoki by Mäki-Petäys (2005), substrate classes: 5, 32.2-64 mm; 6, 64.1-128 mm; 7, 128.1-256 mm; 8, 

256.1-512 mm; 9 >512.1 mm. Water temperatures during these measurements in different seasons were 

13, 2.4, 0.5, and 1 Celsius, respectively. 
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                                 a                                                                 b 

 

 c                                                                 d                            

 
Figure 4.25a-d Habitat suitability for salmon in October at the Harrikoski Rapids on the River Simojoki 

with preference curves for fish of 4-6 cm in August (a), October (b), February (c), and April (d) from the 

Mantokoski Rapids on the River Utsjoki by Mäki-Petäys (2005) and fish observations. 

 

Table 4.4 Available habitat and habitat use and proportion of use to availability for salmon 4-6 cm in 

winter (October) at Harrikoski Rapids with preference curves for August according to Mäki-Petäys (2005) 

and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0105 25.50 34 1.33 2.83 2.51 19.56  
0.0105-1 25.50 17 0.67 2.83 2.51 -13.79  
sum 51 51 high/low 5.67 5.02 5.78 5.72 
average 0.05 0.02 0.50 -0.02 -0.03 -0.02 -0.02 

 

Table 4.5 Available habitat and habitat use and proportion of use to availability for salmon 4-6 cm in 

winter (October) at Harrikoski Rapids with preference curves for October according to Mäki-Petäys 

(2005) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0172 25.50 30 1.18 0.79 0.63 9.75  
0.0172-1 25.50 21 0.82 0.79 0.63 -8.15  
Sum 51 51 high/low 1.59 1.25 1.60 1.58 
Average 0.09 0.06 0.70 -0.21 -0.26 -0.21 -0.21 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 50 1 2 3 4 5

0 1 2 3 4 5



 
 

144 

Table 4.6 Available habitat and habitat use and proportion of use to availability for salmon 4-6 cm in 

winter (October) at Harrikoski Rapids with preference curves for February according to Mäki-Petäys 

(2005) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0234 25.50 23 0.90 0.25 0.16 -4.75  
0.0234-1 25.50 28 1.10 0.25 0.16 5.24  
sum 51 51 high/low 0.49 0.31 0.49 0.49 
average 0.06 0.06 1.22 0.48 0.58 0.48 0.49 

 
Table 4.7 Available habitat and habitat use and proportion of use to availability for salmon 4-6 cm in 

winter (October) at Harrikoski Rapids with preference curves for April according to Mäki-Petäys (2005) 

and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0177 25.50 24 0.94 0.09 0.04 -2.91  
0.0177-1 25.50 27 1.06 0.09 0.04 3.09  
sum 51 51 high/low 0.18 0.08 0.18 0.17 
average 0.06 0.07 1.13 0.67 0.78 0.67 0.78 
 

 

2) Iso Tainikoski Rapids, lower side area 

These curves for the four seasons were tested at the Iso Tainikoski Rapids. Habitat 

suitability maps for salmon in October at the Iso Tainikoski Rapids, lower side area, on 

the River Simojoki and preference curves for fish of 4-6 cm in from the Mantokoski 

Rapids on the River Utsjoki by Mäki-Petäys (2005) and fish observations are shown in 

Figure 4.26 August (a), October (b), February (c), and April (d). Neither the summer nor 

the autumn preference curves did work under winter conditions (Tables 4.8 and 4.9). 

The winter preference curves gave quite good test results under winter conditions (Table 

4.10). However, the habitat values were so low that there was no good habitat at all in 

the study area calculated based on these curves. The spring preference curves gave 

moderate predictions under winter conditions (Table 4.11). 

 

Conclusions 
 

At both the study areas, the accuracy of prediction of abundance of organisms was the 

higher, the closer the temperatures at the study site and at the preference study site at the 

moment of data collection were. The prediction was negative even when the difference 

between temperatures was rather small with the curves for October. This indicates that it 

is important to have separate curves for different seasons and water temperatures. 
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Figure 4.26 Habitat suitability for salmon in October at the Iso Tainikoski Rapids, lower side area, on the 

River Simojoki and preference curves for 4-6-cm fish in August (a), October (b), February (c), and April 

(d) at the Mantokoski Rapids on the River Utsjoki by Mäki-Petäys (2005) and fish observations. 

 
Table 4.8 Available habitat and habitat use and proportion of use to availability for salmon 4-6 cm in 

winter (October) at the Iso Tainikoski Rapids, lower side area, with preference curves for August 

according to Mäki-Petäys (2005) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0109 10.00 17 1.70 4.90 4.23 18.04  
0.0109-1 10.00 3 0.30 4.90 4.23 -7.22  
sum 20 20 high/low 9.80 8.45 10.82 10.55 
average 0.07 0.01 0.18 -0.002 -0.004 -0.001 -0.001 

 
Table 4.9 Available habitat and habitat use and proportion of use to availability for salmon 4-6 cm in 

winter (October) at the Iso Tainikoski Rapids, lower side area, with preference curves for October 

according to Mäki-Petäys (2005) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0182 10.00 15 1.50 2.50 2.03 12.16  
0.0182-1 10.00 5 0.50 2.50 2.03 -6.93  
Sum 20 20 high/low 5.00 4.05 5.23 5.10 
Average 0.11 0.02 0.33 -0.03 -0.04 -0.02 -0.02 
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Table 4.10 Available habitat and habitat use and proportion of use to availability for salmon 4-6 cm in 

winter (October) at the Iso Tainikoski Rapids, lower side area, with preference curves for February 

according to Mäki-Petäys (2005) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0034 10.00 6 0.60 1.60 1.23 -6.13  
0.0034-1 10.00 14 1.40 1.60 1.23 9.42  
sum 20 20 high/low 3.20 2.45 3.29 3.21 
average 0.04 0.08 2.33 0.07 0.12 0.07 0.07 

 
Table 4.11 Available habitat and habitat use and proportion of use to availability for salmon 4-6 cm in 

winter (October) at the Iso Tainikoski Rapids, lower side area, with preference curves for April according 

to Mäki-Petäys (2005) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0 11.35 8 0.70 0.99 0.72 -5.60  
0-1 8.65 12 1.39 1.30 0.94 7.86  
sum 20 20 high/low 2.29 1.66 2.26 2.21 
average 0.03 0.06 1.97 0.13 0.2 0.13 0.14 

 
 

4.1.4 Assessment of the relative importance of different factors 
 

To assess the relative importance of the effects of different factors in a trout river, 

habitat modelling was carried out in the River Tainionvirta. The results of hydraulic 

modelling were also compared with current meter measurements. The Hotilankoski 

Rapids are located on the River Tainionvirta, running from Lake Jääsjärvi to Lake 

Joutsjärvi in Central Finland, east of Lake Päijänne. The mouth of the River 

Tainionvirta is located in Southern Finland at 61°34N, 26°03E (Figure 4.27). The 

catchment area at the Kirveskoski Rapids about four kilometres downstream is 1510 

km2 and the lake percentage 24.5. The mean discharge from Lake Jääsjärvi is 11.8 m3/s, 

HQ 31, and NQ 4.5 m3/s. On the River Tainionvirta, the place with the most 

observations of juvenile trout was selected: a small tributary brook of the Hotilankoski 

Rapids (Figure 4.28). The length of the Hotilankoski Rapids is about 140 metres, of 

which the faster-flowing section is 80 metres, with a head loss of about 2.2 metres on 

average, which is concentrated to a leaking dam forming the mouth of the rapid. Water 

quality is good. 0+ and 1+ trout have been found in electric fishings. Trout <10 cm in 

summer were selected as the target species for modelling. The positions of the trout 

were not mapped, only the number of them was known, but in this study, a sensitivity 

analysis, the positions of observations are not needed; just the information that the place 
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is a typical habitat of the target species modelled is sufficient. A topographic model of 

the Hotilankoski Rapids is shown in Figure 4.29. The dam is in the top right corner, 

where the channels start. The narrow brook-like channel on the left with observations of 

fry and juveniles of trout was chosen for modelling. The data were processed with line 

interpolation of measured lines and with curvilinear anisotropic interpolation. After that, 

a two-dimensional hydraulic model (RMA2) with 20 elements across the river was run 

(Figure 4.30). 

 

 
Figure 4.27 The location of the River Tainionvirta. 

 

 
Figure 4.28 The location of the Hotinlankoski Rapids on the River Tainionvirta. 
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Figure 4.29 The topographic model of the Hotilankoski Rapids and the modelled area. 
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Figure 4.30 The hydraulic modelling grid, contours showing elevation. The line shows the validation 

line. 
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First, the accuracy of the model was studied (Figure 4.31). Then the effects of 

different factors on water depth and flow velocity distribution were tested. All other 

factors were kept the same. A sensitivity analysis was made for the following factors: 

 

-1/3 of all topography measurement points including line measurements were removed 

-1/3 of all topography but line measurement points were removed 

-1/3 of all processed topography measurement points were removed after line 

interpolation 

-only standard Kriging was used in interpolation after line interpolation 

-water level was set 10 centimetres higher 

-flow rate was set 20% higher 

-kinematic viscosity parameter value was 37.5% smaller 

-10 elements in the hydraulic model across the river 

 

With 2/3 of the field measurement points, the topography model was so 

unrealistic (Figure 4.32) that it was not possible to calibrate the model with the upstream 

water level, so the model was calibrated in such a way that the water level was the same 

as in the model accuracy test case at the validation line. 

The changes were much smaller when the line measurement data was unaffected 

(Figure 4.33). When 1/3 of the points were removed after the line interpolation, the 

results did not change much either compared with Figure 4.32 (Figure 4.34). The results 

imply that line measurements are important for the topographic model. 

 

  
Figure 4.31 Modelled water depth and flow velocity at the Hotilankoski Rapids on the River Tainionvirta 

with normal unchanged values and measured values. 
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Figure 4.32 Modelled water depth and flow velocity at the Hotilankoski Rapids on the River Tainionvirta 

with normal unchanged values and with 2/3 of all measurement points. Other values as in the original 

modelling. 

 

 

 
Figure 4.33 Modelled water depth and flow velocity at the Hotilankoski Rapids on the River Tainionvirta 

with unchanged values and with 2/3 of topography measurement points, but line interpolation points 

unaffected. Other values as in the original modelling. The densely interpolated shore lines were not 

affected by the removal of points in practice. 

 

0 2 4 6 8 10 
distance [m]

0.8

0.6

0.4

0.2

0

original
2/3 of topography measurement 
points, shore lines unaffected 

0 2 4 6 8 10
d is ta n c e   [ m ] 

0.8

0.6

0.4

0.2

0 

original
2/3 of topography measurement
points, shore lines unaffected

0 2 4 6 8 10
distance [m]

1.2

0.8

0.4

0

original
2/3 of field measurement points

0 2 4 6 8 10
d is t a nc e   [ m ] 

0.6

0.4

0.2

0 

original
2/3 of field measurement points

w
at

er
 d

ep
th

 [m
] 

flo
w

 v
el

oc
ity

 [m
/s

]  

w
at

er
 d

ep
th

 [m
] 

flo
w

 v
el

oc
ity

 [m
/s

]  



 
 

151 

  
Figure 4.34 Modelled water depth and flow velocity at the Hotilankoski Rapids on the River Tainionvirta 

with unchanged values and with 2/3 of measurement points after shore line interpolation. Other values as 

in the original modelling. The densely interpolated shore lines were not affected by the removal of points 

in practice. The sample of topography points is different from the previous figure, which explains the 

greater deviation from the values of the original model. 

 

 

Using only standard interpolation with Kriging instead of curvilinear anisotropic 

interpolation changed the results a little (Figure 4.35). Changes in water level and 

discharge had greater effects (Figures 4.36 and 4.37). 

 

 

  
Figure 4.35 Modelled water depth and flow velocity at the Hotilankoski Rapids on the River Tainionvirta 

with unchanged values and with only standard interpolation with Kriging. Other values as in the original 

modelling. 
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Figure 4.36 Modelled water depth and flow velocity at the Hotilankoski Rapids on the River Tainionvirta 

with unchanged values and with a water level 10 cm higher. Other values as in the original modelling. 

 

 

    
Figure 4.37 Modelled water depth and flow velocity at the Hotilankoski Rapids on the Tainionvirta River 

with normal unchanged values and with a flow rate 20% higher. Other values as in the original modelling. 

 

 

Changing the value of kinematic viscosity did not have a remarkable effect 

(Figure 4.38). Reducing the number of elements in the hydraulic model had the greatest 

effect on the velocity values near the banks (Figure 4.39). 
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Figure 4.38 Modelled water depth and flow velocity at the Hotilankoski Rapids on the River Tainionvirta 

with unchanged values and with 37.5% smaller kinematic viscosity. Other values as in the original 

modelling. 

 

 
Figure 4.39 Modelled water depth and flow velocity at the Hotilankoski Rapids on the River Tainionvirta 

with unchanged values and 10 elements in the hydraulic model across the river. Other values as in the 

original modelling. 
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Next, the effects of the factors were tested by calculating habitat values using the 

calculated water depth and flow velocity values. Substrate was not used, because its 

effect would have been too random. Habitat values calculated with preference curves of 

Mäki-Petäys & Huusko (2001) for brown trout based on water depth and flow velocity 

values from the previous sensitivity analysis are shown in Figure 4.40. Of variables 

related to measurements, topographical and hydraulic modelling, the largest difference 

was caused by the removal of original measurement points. These results imply that 

topography measurements, especially shore line measurements, are important. Smaller 

differences were caused by changes in water level and flow rate, and reducing the 

number of elements caused differences near the banks. 

Additionally, a sensitivity analysis of the effect using different preference curves 

was carried out (Figure 4.41). The preference curves used were the same curves that 

were used for preference curve comparison: 
 

-Mäki-Petäys & Huusko (2001), <10 cm 

-Souchon et al. (1989), <1 year, >5 cm 

-Raleigh et al. (1986), <14.5 cm 

-Mäki-Petäys et al. (1997), 4-9 cm 
 

The first curves are based on a large sample and were selected as reference 

curves for all comparisons. Using different preference curves changed the magnitudes of 

habitat values quite considerably, but the locations of those habitats with the highest and 

the lowest suitability index values, were less affected. However, even originally, the 

preference values in different curves were not comparable with each other without 

scaling. The curves used were calculated by dividing habitat use by availability, not 

with Jacobs's method, with which calculations could result in better comparable values. 
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Figure 4.40 Habitat values calculated with the preference curves of Mäki-Petäys & Huusko (2001) based 

on modelled and measured water depth and flow velocity on the left, and habitat values based on original 

modelled values and with different different topographies at the Hotilankoski Rapids on the River 

Tainionvirta on the right. The placement of the origin for the distance values (x-axis) of measured and 

modelled values is approximate. 

 

  
Figure 4.41 Habitat values based on original modelled values and with different parameter values on the 

left, and with different preference curves on the right at the Hotilankoski Rapids on the River 

Tainionvirta. 
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4.2 Crayfish model 

4.2.1 Sensitivity of the model to different habitat preference data 

 

The magnitude and the effect of potential erosion may be very different at lakes of 

different size and with different free wind reaches. Three modellings were carried out at 

Lake Slickolampi each of them with a different preference curve. The first curves are 

from a larger Lake Pääjärvi, where lake currents and waves concurrently affect the 

shores. In the second curves, the curve for potential erosion is replaced with a curve 

created based on data from all lakes. The third curves are modified curves from the 

study areas 4-5 at a larger Lake Katumajärvi. 

The model created on the basis of data from Lake Pääjärvi was used in a habitat 

modelling to test whether the model would work at a smaller lake. Correlations between 

catch/effort ratio and habitat value with different habitat value calculation formulae 

were calculated (Table 4.12). Correlations were either insignificant or negative, possibly 

because Lake Slickolampi is much smaller than Lake Pääjärvi. The potential erosion 

rates at Lake Slickolampi were lower than the lowest value in the preference curve made 

at Lake Pääjärvi; it should therefore not be used in modelling Lake Slickolampi. The 

water temperature was higher and in a narrower range at Lake Slickolampi (20-22.5 ˚C) 

compared with the values in the data of the curve at Lake Pääjärvi (11-24 ˚C). At Lake 

Slickolampi, it may be that erosion is too low in other parts of the lake than near the 

banks, and the bed material gets too muddy for crayfish.  

 

 
Table 4.12 Habitat value calculations at Lake Slickolampi with preference curves from Lake Pääjärvi, 

correlations between catch/effort ratio and habitat value with different habitat value calculation formulae. 

habitat value calculation formula correlation 
sand/fine sand 0.31 
soft material 0.25 
water depth 0.06 
potential erosion 0.00 
water temperature -0.51 
product of all -0.16 
product (potential erosion, water temperature) -0.51 
product (sand/fine sand, soft material, water depth, potential erosion) 0.20 
product (sand/fine sand, soft material, potential erosion, water temperature) -0.34 
product (water depth, potential erosion, water temperature) -0.25 
product (sand/fine sand, soft material, water depth, water temperature) -0.16 
sum of all -0.06 
sum (sand/fine sand, soft material, potential erosion, water temperature) 0.01 
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At Lake Pääjärvi, the potential erosion rates are much higher, and the bed material is 

clean to quite considerable depths. Despite the different conditions the modelling was 

still performed, and the correlation between the suitability index value and catch/effort 

ratio was -0.34. The results are shown in Figures 4.42-4.44 and Table 4.13. 

 

 

 
Figure 4.42 A calculated habitat  map and catch/effort ratios (circles) at Lake Slickolampi with the 

original model created at Lake Pääjärvi. Habitat suitability index values are shown with colours. The sizes 

of the boxes indicate the number of crayfish caught. 

 
Table 4.13 Available habitat and habitat use (catch/effort ratio) and proportion of use to availability at 

Lake Slickolampi with original preference curves from Lake Pääjärvi and goodness of fit tests.  

habitat value available use proportion chi-square Yates log-likelihood Williams 
0-0.197 24.65 36 1.46 5.22 4.77 27.26  
0.197-1 18.35 7 0.38 7.02 6.41 -13.49  
Sum 43 43 high/low 12.24 11.18 13.77 13.61 
Average     0.26 -0.0005 -0.0008 -0.0002 -0.00002 

 

 
Figure 4.43 Available habitat and habitat use (catch/effort ratio) and proportion of use to availability at 

Lake Slickolampi with original preference curves from Lake Pääjärvi. 
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Figure 4.44 Catch/effort ratio as a function of habitat value at Lake Slickolampi calculated with the 

model created at Lake Pääjärvi.  

 

To see whether the model would work with good-quality preference data, a 

modelling was also made with preference curves for potential erosion made from the 

data from all lakes, although this means that a part of the test data is a part of the 

calibration data. In Figures 4.45 and 4.46 catch/effort ratios for Pacifastacus leniusculus 

as a function of potential erosion from all lakes are represented. Information from Lake 

Valkjärvi is not included in the figures, because there were no appropriate data for 

Pacifastacus leniusculus, because during the sampling of the data there were water 

quality changes and a competing species (Astacus astacus) possibly affected the habitat 

selection. 

In Figure 4.47, the catch/effort ratio is represented as a function of potential 

erosion. It can be converted to a preference curve by scaling it so that a preference value 

of 1 corresponds the catch/effort ratio of 5 catches/trapnight. The curve is based on 

digitising on the moving average lines. Correlations between different habitat value 

calculation formulae and the catch/effort ratio were also calculated (Table 4.14). A 

habitat suitability index map calculated with the Lake Pääjärvi model but with the 

erosion curve replaced with a curve made from the data from all the lakes studied is 

shown in Figure 4.48, and the test of significance in Table 4.15. Distributions of 

available habitat and habitat use and proportion of habitat use to availability are shown 

in Figure 4.49. Catch/effort ratio as a function of habitat suitability index value is shown 

in Figure 4.50.   
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Figure 4.45 Catch/effort ratios as a function of potential erosion from all lakes for Pacifastacus 

leniusculus. 

  
Figure 4.46 Catch/effort ratios as a function of potential erosion from all lakes for Pacifastacus 

leniusculus, and fits with moving average with window sizes of 5 and 51. 
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Figure 4.47 Catch/effort ratio as a function of erosion with data from all lakes. 

 

Table 4.14 Correlations between catch/effort ratio and habitat value with different habitat value 

calculation formulae in habitat value calculations at Lake Slickolampi with preference curves from Lake 

Pääjärvi, except erosion curve made on the basis of data from all lakes. 

 

habitat value calculation formula correlation 
sand/fine sand 0.31 
soft material 0.25 
depth 0.06 
potential erosion 0.46 
water temperature -0.51 
product of all 0.51 
product (erosion, water temperature) 0.46 
product (sand/fine sand, soft material, depth, erosion) 0.54 
product (sand/fine sand, soft material, erosion, water temperature) 0.50 
product (depth, erosion, water temperature) 0.46 
product (sand/fine sand, soft material, depth, water temperature) -0.16 
sum of all 0.32 
sum (sand/fine sand, soft material, erosion, water temperature) 0.43 

 

 
Figure 4.48 A calculated habitat  map and catch/effort ratios (circles) at Lake Slickolampi with the 

original model created at Lake Pääjärvi but with the erosion curve from data from all lakes. Habitat 

suitability index values are shown with colours. The sizes of the boxes indicate the number of crayfish 

caught. 
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Table 4.15 Available habitat and habitat use (catch/effort ratio) and proportion of use to availability at 

Lake Slickolampi with the original model created at Lake Pääjärvi but with the erosion curve from data 

from all lakes and goodness of fit tests. This table should not be used for model validation, because 

validation data are included in calibration data.  

habitat value available use proportion chi-square Yates 
0-0.04 20.64 0 0.00 20.64 19.65 
0.04-1 22.36 43 1.92 19.05 18.14 
sum 43 43 high/low 39.69 37.79 
average     large <0.0001 <0.0001 

 

 

 
Figure 4.49 Available habitat and habitat use (catch/effort ratio) and proportion of use to availability at 

Lake Slickolampi with the original model created at Lake Pääjärvi but with the erosion curve from data 

from all lakes. 
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Figure 4.50 Catch/effort ratio as a function of habitat value at Lake Slickolampi with the original model 

created at Lake Pääjärvi but with the erosion curve from data from all lakes. 

 

  The prediction was very good, but some of the test data were included in the 

calibration data in the preference curve for potential erosion. The form of the preference 

curve for potential erosion hints at a universal existence of a maximum. Low values of 

erosion can’t keep the material clean from mud, but too high velocities make moving 

difficult. However, the data is clustered, which means that the evidence is weak and 

more studies are needed on the relationship. 
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Next, it is studied, whether habitat modelling would be possible with high-quality 

potential erosion preference data from one lake. The preference curve for potential 

erosion created at Lake Katumajärvi study areas 4-5 is used, because there are mostly 

very small erosion rates at the smaller Lake Slickolampi. The preference curve was even 

modified, especially near the origin, based on an assumed dependence between habitat 

preference and potential erosion. Because erosion is known to keep bed material clean 

of mud which is harmful to crayfish, but too much water movement may not be 

favourable, it was assumed that an optimum between these exists. The rather irregular 

original curve was made modified based on that. The curve for erosion was drawn with 

the assumption that the curve begins at the origin and has a peak, at 700 g/(m2*d), from 

where it declines following the data. From Figures 4.46, 4.51 and 4.52, it can be seen 

that the catch/effort ratios are going towards the origin, with smaller potential erosion 

rates at Lake Valkjärvi and Lake Katumajärvi. Values below 30 g/(m2*d) were not 

available in the data, and were originally given an equal value in the curves, which may 

not be correct. In Figure 4.52, catch/effort ratio and a well-fitting sliding average curve 

are shown, and a dotted line is drawn roughly on the basis of these. The catch/effort 

ratios were scaled to preference values. With this curve and the preference curve for 

water temperature created at Lake Katumajärvi study areas 4-5 (Figure 2.5), the habitat 

value map, the chi-square test, the distributions, and the catch/effort ratio as a function 

of habitat value were calculated and drawn: (Figures 4.53-4.55 and Table 4.16). In 

Figure 4.56, catch/effort rate is shown as a function of potential erosion rate and water 

temperature with data from Lake Pääjärvi, the Lake Katumajärvi study areas 4-5, and 

Lake Slickolampi. There were no temperature measurements at the Pukettisaari Island 

study area. The potential erosion curve made at the Lake Katumajärvi study areas 4-5 

(Figure 4.52) continues near zero, and gave much better results at Lake Slickolampi 

than the curve made from data from Lake Pääjärvi. Therefore, erosion preference curves 

should be made on the basis of data with a wide range. Additionally, strong currents 

caused by wind-induced large scale water level fluctuations in the lake hit the shores at 

Pukettisaari Island at Lake Pääjärvi (Erkamo 2002), which may have a remarkable 

effect on the shores in addition to the water movement caused by waves described with 

potential erosion. With potential erosion data from other lakes in the two other 

validation tests, the prediction was very accurate. 
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Figure 4.51 A moving average of erosion rate at the Pukettisaari Island study area at Lake Katumajärvi. 
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Figure 4.52 Preference curve for erosion made at Lake Katumajärvi study areas 4-5, making a more 

precise preference curve at small values of potential erosion. 

 

 

 
Figure 4.53 A calculated habitat  map and catch/effort ratios (circles) at Lake Slickolampi with 

preference curves made at Lake Katumajärvi study areas 4-5, the preference curve for erosion as in the 

sketch. Habitat suitability index values are shown with colours. The sizes of the boxes indicate the 

number of crayfish caught. 
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Table 4.16 Available habitat and habitat use (catch/effort ratio) and proportion of use to availability at 

Lake Slickolampi with preference curves made at Lake Katumajärvi study areas 4-5, the preference curve 

for erosion as in the sketch and goodness of fit tests.  

habitat value available use proportion Pearson Yates 
0-0.0119 20.64 0 0.00 20.64 19.65 
0.0119-1 22.36 43 1.92 19.05 18.14 
sum 43 43 high/low 39.69 37.79 
      large <0.0001 <0.0001 
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Figure 4.54 Available habitat and habitat use (catch/effort ratio) and proportion of use to availability at 

Lake Slickolampi with preference curves made at Lake Katumajärvi study areas 4-5, the preference curve 

for erosion as in the sketch.  
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Figure 4.55 Catch/effort ratio as a function of habitat value at Lake Slickolampi with preference curves 

made at Lake Katumajärvi study areas 4-5, the preference curve for potential erosion as originally, but the 

curve smoothed to start at the origin. 
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Figure 4.56 Catch/effort ratio [1/trapnight] as a function of erosion rate and water temperature at Lake 

Pääjärvi at the town of Lammi, Lake Katumajärvi study areas 4-5, and Lake Slickolampi. 
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5 VALIDATION OF THE MODEL 
 

5.1 Fish Model 
 

5.1.1 River Simojoki 
 

 

Description of the areas and the organisms studied 

 
The model was validated (Appendices A1-A3) with fish observation data at River 

Simojoki, where electric fishings had been carried out at Harrikoski Rapids and Iso 

Tainikoski Rapids lower side and upper side. The study areas are located in the 

Simojoki River in Northern Finland at latitude 65°45' north and longitude 25°30' east 

(Figure 5.1). The mean discharge is approximately 38 m3/s. The catchment area of the 

river is 3160 km2 and the slope is 1.0%. The fishing length of the Harrikoski Rapids is 

250 metres and they are stony. The current is locally strong. The head of the Harrikoski 

Rapids is 1.5 metres. The Iso Tainikoski Rapids are one kilometre long and with a 

varying flow. The numbers of observations in different set of datas are shown in Table 

5.1. Field measurement data of water depth, flow velocity and substrate were measured 

from fish catching spots and covering whole the study areas. The season modelled in the 

River Simojoki is summer. Description of the areas and the organisms studied are 

represented in Chapter ”Calibration of the model”. Habitat modellings with preference 

curves represented in Table 5.1 were carried out and the results were compared with 

observations at study areas on the River Simojoki. 
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Figure 5.1 The locations of the River Simojoki and Harrikoski and Iso Tainikoski Rapids. 

 

 
Table 5.1 Numbers of fish observations and preference curves used in modelling with different sets of 

data in the River Simojoki. 

 species size pref. Harrikoski Iso Tainikoski, low Iso Tainikoski, top 
Mäki-Petäys 138 57 - <10 

Heggenes 138 57 - 
Mäki-Petäys 31 43 45 

salmon 
>10 

Heggenes 31 43 45 
grayling 4-9 Hubert - 21 - 

5-13 Harrikoski - 20 - stone loach 
5-12 Lamouroux 31 20 - 
2-7 Harrikoski - 25 - bullhead 
4-7 Lamouroux 41 25 - 

 

 

Harrikoski 

Harrikoski 
Iso Tainikoski 

Iso Tainikoski 
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Measurements and modelling 
 

The measurements were made by the Finnish Game and Fisheries Research Institute for 

earlier fish preference studies (Huusko et al. 2003). The amount and quality of data are 

high. The locating of fish was done by electric fishing with a point-like area 

measurement method. The values of habitat variables were measured from fish finding 

points. The flow velocity was measured with a current meter from a depth of 60% from 

the water surface. The type of current meter used was a Schiltknecht Miniwater Type 

642 w-m/l; the diameter of the impeller was 20 mm. Water depth and the coarsest, 

dominant, and second most dominant particle sizes from the river bed were also 

measured. Habitat availability was measured systematically with an interval of 0.5 

metres with the help of line rods, and the lines were one meter apart from each other 

(Mäki-Petäys et al. 2002), allowing the interpolation of contoured maps for 

visualisation. The locations of the measurement points were measured to coordinates 

with a tacheometer and water depth was measured with a measurement rod. Substrate 

was measured to a modified Wentworth scale (Mäki-Petäys et al. 1997). Single physical 

measurement and fish observation points outside the homogeneously measured area 

were removed from the data. Habitat values were calculated directly from the measured 

values. Interpolation was used only for making figures. The contoured maps were 

interpolated with a search radius of 2.5 metres, because the shorelines were not known 

exactly. 

 

Results 
 

The significances between observed and expected habitat use in all the River Simojoki 

data are shown in Table 5.2, and the proportions of use of areas with higher habitat 

quality index values to use of areas with lower values are shown in Table 5.3. The 

difference in use of higher- and lower-value habitats was significant in eight out of ten 

cases for salmon. In all of these ten cases more fish were found in areas with higher 

habitat values. The difference between the use of areas with higher and lower habitat 

suitability index values was strongly significant for all four cases of salmon <10 cm and 

strongly significant in three, significant in one, and insignificant in two cases of six of 

salmon >10 cm. The difference was strongly significant for grayling and insignificant 
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for stone loach in all three cases and strongly significant for bullhead in one case and 

insignificant in one. The number of observations affects the percentages. In all 

modelling for salmon, grayling, and bullhead, more fish were observed in the higher 

habitat value class than in the lower. Stone loaches were observed more often in the 

lower habitat value classes in two cases. The set of preference data used for making the 

preference curves used for stone loach and bullhead at the Harrikoski Rapids was small.  

The significances and proportions are plotted in the axes of Figure 5.2. The 

proportions of habitat use to availability are shown in Figures 5.3-5.4 

 

Table 5.2 P-values for difference [-] between distributions of available habitats and observed habitat use 

with log-likelihood test with Williams' correction. 

species size pref. Harrikoski Iso Tainikoski, low Iso Tainikoski, top 
Mäki-Petäys 0.002 <0.0001 - <10 

Heggenes 0.007 <0.0001 - 
Mäki-Petäys 0.02  0.001 0.31 

salmon 
>10 

Heggenes 0.6 0.002 0.0001 
grayling 4-9 Hubert - 0.004 - 

5-13 Harrikoski - -0.37 - stone loach 
5-12 Lamouroux -0.07 0.08 - 
2-7 Harrikoski - 0.002 - bullhead 
4-7 Lamouroux 0.17 0.26 - 

 

Table 5.3 Proportions of the proportions of habitat use to habitat availability in the habitat value class 

with higher suitability index value to the value in the class with lower suitability index value.  

species size pref. Harrikoski Iso Tainikoski, low Iso Tainikoski, top 
Mäki-Petäys 1.7 3.06 - <10 

Heggenes 1.6 3.73 - 
Mäki-Petäys 2.43 2.9 1.36 

salmon 
>10 

Heggenes 1.21 2.9 3.48 
grayling 4-9 Hubert - 4.23 - 

5-13 Harrikoski - 0.66 - stone loach 
5-12 Lamouroux 0.51 2.27 - 
2-7 Harrikoski - 2.12 - bullhead 
4-7 Lamouroux 1.54 1.58 - 
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Figure 5.2 Significances of differences between distributions of habitat use and habitat availability and 

proportions of habitat use to availability in the River Simojoki for salmon and brown trout. A value of 

0.05 is significant, 0.01 strongly significant.  
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Figure 5.3 Proportions of habitat use to available habitat for salmon at the Harrikoski and Isotainikoski 

Rapids, lower side area, at midpoints of habitat value classes. The first classes begin from the first value 

and the last class ends respectively.  
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Figure 5.4 Proportions of habitat use to available habitat for salmon at the Iso Tainikoski Rapids, upper 

side area, and for grayling, stone loach, and bullhead at the Iso Tainikoski Rapids, lower side area, and at 

the Harrikoski Rapids. 

 

In Figure 5.5, clear avoidance of the lowest habitat values can be seen for salmon. 

The averagely valued habitats are used in proportion to their amount and the areas with 

the higher habitat values are preferred.  

Figure 5.6a shows a graph demonstrating the preference of salmon for using areas 

with different calculated habitat values, summarising previous figures. Figure 5.6b 

shows the same for grayling, stone loach, and bullhead together. The coefficient of 

determination for salmon is quite high, 0.63. For grayling, there was only one set of data 

available, in which the preference for higher values was strong. The results from sets of 

data for stone loach were contradictory. The preference curve sets of data for stone 

loach and bullhead from the Harrikoski Rapids was small. 
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Figure 5.5 All availabilities and uses of habitat of salmon data used in the River Simojoki study. 
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 Figure 5.6a All proportions of use to availability values divided uniformly from habitat value of 0 to 

value of 1 of salmon data used in the River Simojoki study (previous figures) together. 
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Figure 5.6b All proportions of use to availability values divided uniformly from habitat value of 0 to 

value of 1 of grayling, stone loach, and bullhead data used in the River Simojoki study (previous figures) 

together. 
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5.1.2 River Ala-Koitajoki  
 

Description of the area and the organism studied 

The fish model was validated with fish observation data at Hiiskoski and Tyltsykoski 

Rapids on River Ala-Koitajoki. The study areas are located on the River Ala-Koitajoki 

in Eastern Finland at latitude 62°51' north and 

longitude 30°28' east (Figure 5.7). The catchment area 

of the river is 6795 km2 and the slope is 2.2%. The 

average discharge of approximately 2 m3/s is 

discharged to the original channel, passing a hydro 

power plant, and it is maintained the whole year. Trout 

and salmon reproduce naturally in the river. 

 

 
Figure 5.7 The location of the River Ala-Koitajoki. 

 

Measurements and modellings 

The field measurement methods were the same as with the River Simojoki, except that a 

measurement tape was placed across the river and the availabilities were measured with 

uniform dense intervals compared with the distances between lines and without 

geographical coordinates, which did not allow contoured maps to be interpolated for 

visualisation. In the figures drawn in this study, the distance between measurement lines 
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is set to be equal, but the cross-sectional direction is in scale. The availability of habitats 

and the fish observations were measured from the same area (Mäki-Petäys et al. 2002). 

The lines were measured at roughly constant intervals along and across the study area 

(Mäki-Petäys et al. 2002), which meant that the measurements could be used as 

availability data. Water temperatures varied between 14-20 ○C in the River Koitajoki 

during the period from summer to autumn (Mäki-Petäys et al. 2002), so the same 

summer preference curves were used for both seasons. The fish species modelled were 

salmon and trout (Appendices A4 and A5). The numbers of observations in sets of data 

gathered with electric fishing are shown in Table 5.4.  

The significances in all the River Ala-Koitajoki data are shown in Table 5.5, and 

the proportions of use of areas with higher habitat suitability index values to use of areas 

with lower habitat values are shown in Table 5.6. The difference between the uses of 

higher- and lower-value habitats was classified as strongly significant in one and 

significant in one case out of 5 cases for salmon (Table 5.5 and Figure 5.8) and strongly 

significant in both cases for brown trout. In all cases more fish were found in areas with 

higher habitat values. The ascending trend of proportions of use to availability towards 

higher habitat values is clear in these data with good-quality preference curves (Figures 

5.9 and 5.10). 

In Figure 5.11, a clear avoidance by salmon and trout of the lowest-value habitats 

can be seen. The average-valued habitats are used in proportion to their amount and the 

habitats with the highest suitability index values are preferred. Figure 5.12 shows a 

graph demonstrating the preference of salmon and of grayling for using areas with 

different calculated habitat values summarising previous figures. The correlations for 

salmon and brown trout are quite high, however, the brown trout set of data was small. 
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Table 5.4 Number of fish observations, season of fish observations, and preference curves used in 

modelling with different sets of data in the River Ala-Koitajoki. 

 species size season pref. Hiiskoski TyItsykoski 
summer Mäki-Petäys - 77 <10 
autumn Mäki-Petäys - 40 
summer Mäki-Petäys 48 29 

salmon 
>10 

autumn Mäki-Petäys 65 - 
<10 summer Mäki-Petäys 25 - brown trout 

 16-25 summer Mäki-Petäys 35 - 
 

 
Table 5.5 P-value for difference [-] between distributions of available habitats and observed habitat use 

with log-likelihood test with Williams' correction.  

 species size season pref. Hiiskoski TyItsykoski 
summer Mäki-Petäys - 0.002 <10 
autumn Mäki-Petäys - 0.11 
summer Mäki-Petäys 0.16 0.2 

salmon 
>10 

autumn Mäki-Petäys 0.04 - 
<10 summer Mäki-Petäys 0.009 - brown trout 

 16-25 summer Mäki-Petäys 0.02 - 
 

 

Table 5.6 Proportions of the proportions of habitat use to habitat availability in the habitat value class 

with higher suitability index value to the value in the class with lower suitability index value. 

 species size season pref. Hiiskoski TyItsykoski 
summer Mäki-Petäys - 2.08 <10 
autumn Mäki-Petäys - 1.67 
summer Mäki-Petäys 1.52 1.64 

salmon 
>10 

autumn Mäki-Petäys 1.7 - 
<10 summer Mäki-Petäys 3.14 - brown trout 

 16-25 summer Mäki-Petäys 2.38 - 
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Figure 5.8 Significances of differences between distributions of habitat use and habitat availability and 

proportions of habitat use to availability in the River Simojoki for salmon and brown trout. 0.05 is 

significant, 0.01 strongly significant. 

 

  
Figure 5.9 Proportions of habitat use to available habitat for salmon >10 and brown trout in summer at 

the Hiiskoski Rapids with the preference curves of Mäki-Petäys (2000). 
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Figure 5.10 Proportions of habitat use to available habitat for salmon at the Tyltsykoski Rapids with the 

preference curves of Mäki-Petäys (2000). 
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Figure 5.11 All availabilities and uses of habitat of salmon and brown trout data used in River Ala-

Koitajoki study. 

 

 
Figure 5.12 All proportions of use to availability values divided uniformly from habitat value of 0 to 

value of 1 of salmon data used in River Ala-Koitajoki study (previous figures) and for brown trout. 
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5.1.3 Laukka area 

 

Description of the area, the organism studied, and of the field measurements is shown in 

Chapter “Calibration of the model”. The model was validated at Laukka area with 

preference curves from Vehanen et al. (1998, 2003). The fish observations before 

rehabilitation were used in chi-square validation tests. Some presentations only of the 

fish after rehabilitation are shown, because the number of observations is too low. 

Figure 5.13 shows a comparison between modelled habitats for adult grayling with the 

preference curves from Vehanen et al. (1998, 2003) and fish-catching places in the 

Laukka area of the River Oulujoki before rehabilitation. The flow rate varied during the 

observation period. As a graphical example describing the area, fish caught during flows 

of 56-242 m3/s and a habitat map for a flow of 110 m3/s are shown. The areas with the 

highest habitat values are shown with a darker colour and the fish are marked with 

squares. They coincide well. The slight displacement of fish-catching places from the 

area with the highest habitat values in the middle of the channel may be due to the 

difference in the flow situation or to the modelling methodologies or preference data, or 

may also be due to inaccuracies in marking the fish on the map in situ, digitising and the 

topography or that some of the fish would be having a feeding trip just a little way 

outside the best living habitat. In marking on the map, these fish-catching places in the 

largest dark-coloured area may have moved a little towards the north, outside the dark 

area, because so many fish were marked there that there were no room left for 

fishermen's markings on the region on the paper (Yrjänä 2000). The bridge is shown 

with arrows (Figure 5.13). Most of the fishing was done from the bridge. 

The results are shown in Table 5.7 and Figures 5.14 and 5.15. No fish from the 

total of 31 individuals were observed in the less suitable habitat value class. In both the 

sets of data, before and after rehabilitation, the proportions of habitat use to habitat 

availability are clearly ascending. The calculated chi-square value showing the 

difference between available habitats and the observed use before rehabilitation is also 

high. The distributions differ remarkably (p<0.001) from each other. 
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Figure 5.13 Adult grayling, River Oulujoki, Laukka area. A comparison between modelled habitats with 

the preference curves from Vehanen et al. (1998, 2003) and fish-catching places before rehabilitation. The 

habitats wtih the highest suitability index values are shown in a darker colour and the fish with squares. 

The fish-catching places during flows of 56-242 m3/s and a habitat map for a flow of 110 m3/s are shown. 

 

Additionally, in order to compare how the model works in rehabilitated rivers, a 

comparison without tests of significance was made between the situations before and 

after rehabilitation with the locally determined preference curves (Figures 5.14-5.15). 

To test if the inaccuracy in placing the observations on the map while keeping a log 

book while fishing would affect the results or if the feeding habitats of grayling differed 

from their average living habitats, validation with habitat values calculated as averages 

of circular areas was also performed with the preference curves of Vehanen et al. (1998, 

2003) with the data gathered before rehabilitation. The radius of the circles was the 

same ten metres as the declared observation accuracy. Because the fish observations 

were made by fishing, the habitat selection may differ from that found when observing 

e.g. with the telemetry of electric fishing, when the fish are in their average living 

habitats, because observations of the fish that best notice the lure and catch it may be 

more abundant in the data. This might lead to an overrepresentation of hungry fish in 

the sample, and the fish may be proportionally caught more often in feeding habitats. 

 
Table 5.7 Available habitat and habitat use calculated with the preference curves of Vehanen et al. (1998, 

2003) before rehabilitation in the Laukka area and goodness of fit tests. 

habitat value available use proportion Pearson Yates 
0-0.023 15.41 0 0.00 15.41 14.42 
0.023-1 15.59 31 1.99 15.22 14.25 
sum 31 31 high/low 30.63 28.67 
      large <0.0001 <0.0001 
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Figure 5.14 Distributions of available habitat and habitat use calculated with the preference curves of 

Vehanen et al. (1998, 2003) before and after rehabilitation in the Laukka area. 

 

 
Figure 5.15 Proportions of habitat use to available habitat calculated with the preference curves of 

Vehanen et al. (1998, 2003) before and after rehabilitation in the Laukka area.  

 

The results are shown in Table 5.8. From Figure 5.16 it can be seen that the 

prediction is even better than that calculated with point values. This may reflect the 

inaccuracy of fish mapping, or a difference caused by fish-catching places being a little 

more in feeding-places near resting habitats than in the average habitats, or slight 

displacement between the values of the preference curves and the habitat selection. The 

fish may also also still have been irritated to feed in their normal resting habitats. The 

fish mapping was known to have been inaccurate, so it is possible that the prediction of 

habitat use would have been even more accurate with a more precise fish-mapping 

technique.  

The locally determined preference curves of Vehanen et al. (1998, 2003) seem to 

predict the fish abundance well. With the circle-averaged values, the result was even 

clearer. However, there are some problems with the test data. The fish are located while 

fishing; the area is not fished thoroughly as is the case when the locating is made with 

electric fishing. If some areas are favoured by the fishermen over other areas, the 

preference values of these areas may be overrepresented in the habitat use distribution. 

It is easier to fish from the bridge than from a boat. However, the bridge approximately 
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takes a cross-section providing many types of habitats typical of the area. Additionally, 

if some fishing was carried out as catch and release –fishing, the effective sample size 

may be smaller, because observations may be of the same fish. Additionally, changes in 

the flow rate change the distributions of available habitats. If the changes were large, 

and the fish would prefer habitats that are sparse during some fishing, this could lead to 

overrepresentation of other, but more abundant, habitats in the study. This is always a 

problem in habitat preference studies; all types of habitats may not be available to 

choose from. Additionally, though taking territories; grayling may be grouped like 

shoaling, which may reduce the effective number of observations in the test. Taking 

these factors into consideration does not change the conclusion, because the prediction 

of habitat use is so strong, and the preferences for water depth and flow velocity clearly 

define the preferred areas. 

 
 

Table 5.8 Available habitat and habitat use, both calculated as averages of a circle of 10 metres. Oulujoki, 

Laukka area, adult grayling, preference curves of Vehanen et al. (1998, 2003), and goodness of fit tests. 

habitat value available use proportion Pearson Yates 
0-0.03 14.79 0 0.00 14.79 13.81 
0.03-1 16.21 31 1.91 13.50 12.60 
sum 31 31 high/low 28.29 26.41 
      large <0.0001 <0.0001 
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Figure 5.16 Distributions of available habitat and habitat use and proportions of habitat use to available 

habitat calculated as averages of a circle of 10 metres. Oulujoki, Laukka area, adult grayling, preference 

curves of Vehanen et al. (1998, 2003) before rehabilitation in the Laukka area. One class more than in the 

table is shown in this figure. On the right proportions of habitat use to available habitat. 
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5.1.4 Pyhäkoski impoundment 
 

Description of the area, of the organism studied and the measurements is shown in 

Chapter “Calibration of the model”. The model created is validated with telemetry 

observations during summer of 1999. Pikeperch observations of selected fish from June 

8, 1999 to September 21, 1999 were used in making the habitat preference curves for 

validation of the model (Figure 5.17). The group of fish used in making the preference 

curves consisted of 190 observations of 12 fish, which resulted in 137.0 effective 

observations when autocorrelation was taken into account with assumptions in Matalas 

(1967). Pikeperch observations during June 8, 1999 to October 2, 1999, but from 

different fish individuals, were used as a validation group. No shoaling was observed 

(Vehanen 2003), because large pikeperches are predators hunting individually. The size 

of the validation fish group was 124 observations of seven fish, which produced 57.9 

effective observations with assumptions in Matalas (1967). That the number of fish was 

only seven also reduces the variation of the observation data. With so large a number of 

observations and the information that the fish moved daily long distances, the effective 

number of observations probably exceeds the 20 required. A habitat map showing the 

weighted usable area with a flow rate of 200 m3/s and fish observations with flow rates 

between 160 and 250 m3/s is shown in Figure 5.18. The fish seem to favour the areas 

that the modelling shows suitable, also in Figure 5.19, but that is statistically 

insignificant (Table 5.9). One reason for this could be that in spring and in autumn the 

fish are searching for habitats for the next season (Vehanen & Lahti 2003) and the 

observations started in summer, so the fish may not yet have found their places at the 

beginning of the summer period (Vehanen & Lahti 2003). Another explanation would 

be that in the deep, partly lake-type impoundment, pikeperch would select habitats 

based on abundance of nourishment, which might not be explained by the variables 

used. The number of fish inside the study area reduced during the study. This is not a 

problem, because all the telemetry fish left in the impoundment were located each time 

the locating was made. Additionally, changes in the flow rate change the distributions of 

available habitats. If the changes were large, and the fish would prefer habitats that are 

sparse during some fishing, this could lead to overrepresentation of other, but more 

abundant, habitats in the study. This is always a problem in habitat preference studies; 

all types of habitats may not be available to choose from. 



 
 

183 

0

0.2

0.4

0.6

0.8

1

0.0 0.2 0.4 0.6 0.8 1.0
flow velocity [m/s]

pr
ef

er
en

ce
 v

al
ue

 [-
]

 

0

0.2

0.4

0.6

0.8

1

0 10 20 30
water depth [m]

pr
ef

er
en

ce
 v

al
ue

 [-
]

 
Figure 5.17 Preference curves for pikeperch made from observations June 8, 1999 to September 21, 1999 

at the Pyhäkoski impoundment. 
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Figure 5.18 A habitat value map calculated with preference curves made from observations during June 

8, 1999 to September 21, 1999 at a flow of 200 m3/s and fish observations with flows between 160 and 

250 m3/s. 

 

Table 5.9 Available habitat and habitat use and proportion of use to availability calculated with 

preference curves made from observations June 8, 1999 to September 21, 1999 at the Pyhäkoski 

impoundment and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.2 30.56 26.69 0.87 0.49 0.37 -7.21  
0.2-1 27.36 31.22 1.14 0.54 0.41 8.24  
sum 57.91 57.91 high/low 1.03 0.78 1.03 1.02 
      1.31 0.31 0.38 0.31 0.31 
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Figure 5.19 Distributions of available habitat and habitat use and proportions of available habitat to 

habitat use June 8, 1999 to October 2, 1999 for pikeperch calculated with preference curves made from 

observations during the June 8, 1999 to September 21, 1999 at the Pyhäkoski impoundment. 

1000 m 
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5.2 Crayfish model 
 

5.2.1 Validation of a model from Lake Katumajärvi study areas 4-5 at 
Lamminsaari Island 

 

Habitat modelling was carried out at Lamminsaari Island, Lake Pääjärvi (Figures 5.20 

and 5.21) with the model created at Lake Katumajärvi study areas 4-5 (see 2.3), in order 

to validate the model. A chi-square test was then made (Table 5.10 and Figure 5.22). 

The prediction of abundance was weak. However, the lowest class of habitat values was 

avoided, and the higher classes were weakly preferred. One reason for the weak 

prediction might be that strong large scale water level fluctuation-induced currents hit 

the island changing the mechanisms of erosion (Erkamo 2002). Another explanation 

might be, that the positioning of the traps was not very accurate. Because of this, using 

moving averages of catch/effort ratios was also tested (Figure 5.23). The chi-square test 

was carried out again and the distributions and proportions were drawn (Table 5.11 and 

Figure 5.24). The prediction was weaker than without using moving averages.  

 

 

 
Figure 5.20 A calculated habitat preference value map and catch/effort ratios (circles) at the Lamminsaari 

Island study area, Lake Pääjärvi.  
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Figure 5.21 Catch/effort ratio at the Lamminsaari study area, Lake Pääjärvi, as a function of habitat value 

calculated on the basis of erosion rate and water temperature. 

 

Table 5.10 Lamminsaari Island, Lake Pääjärvi, available habitat and habitat use (catch/effort ratio) and 

proportion of use to availability and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.5419 127.00 120 0.94 0.39 0.33 -13.61  
0.5419-1 127.00 134 1.06 0.39 0.33 14.38  
sum 254 254 high/low 0.77 0.67 0.77 0.77 
      1.12 0.38 0.41 0.38 0.38 
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Figure 5.22 Lamminsaari Island, Lake Pääjärvi, available habitat and habitat use (catch/effort ratio) and 

proportion of use to availability. 

 

 
Figure 5.23 Lamminsaari island, Lake Pääjärvi, habitat value and a moving average (n+-1) of catch/effort 

ratios. 
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Table 5.11 Lamminsaari Island, Lake Pääjärvi, available habitat and habitat use (a moving average (n+-1) 

of catch/effort ratios) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.5419 128.17 123.83 0.97 0.15 0.11 -8.52  
0.5419-1 128.17 132.5 1.03 0.15 0.11 8.81  
sum 256.33 256.33 high/low 0.29 0.23 0.29 0.29 
      1.07 0.59 0.73 0.59 0.59 
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Figure 5.24 Lamminsaari Island, Lake Pääjärvi, available habitat and habitat use (a moving average (n+-

1) of catch/effort ratios) and proportion of use to availability, a moving average. 

 

 

5.2.2 Validation of a model from Lake Katumajärvi study areas 4-5 at 
Lake Slickolampi 

 

The original model constructed with data from the Lake Katumajärvi study areas 4-5 

(see 2.3) was validated at Lake Slickolampi to see whether a model calibrated with data 

from large lakes would work at a smaller lake. The habitat value map is shown in Figure 

5.25 and the test of significance is shown in Table 5.12. Distributions of available 

habitat and habitat use and proportions of habitat use to habitat availability are shown in 

Figure 5.26. The prediction was accurate; no crayfish were observed in the lower half of 

habitat values. However, of the model variables, water temperature is weather-

dependent and the curve for potential erosion was rough. Catch/effort ratio as a function 

of habitat suitability index value is shown in Figure 5.27. 
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Figure 5.25 A calculated habitat  map and catch/effort ratios (circles) at Lake Slickolampi with original 

preference curves from Lake Katumajärvi with a fixed suitability index value with small values of 

potential erosion. Habitat suitability index values are shown with colours. The sizes of the boxes indicate 

the number of crayfish caught. 

 
Table 5.12 Available habitat and habitat use (catch/effort ratio) and proportion of use to availability at 

Lake Slickolampi with original preference curves from Lake Katumajärvi with a fixed suitability index 

value with small values of potential erosion and goodness of fit tests.  

habitat value available use proportion chi- square Yates 
0-0.0392 25.23 0 0.00 25.23 24.24 
0.0392-1 17.77 43 2.42 35.81 34.40 
sum 43 43 high/low 61.03 58.64 
average     large <0.0001 <0.0001 

 

 

 
Figure 5.26 Available habitat and habitat use (catch/effort ratio) and proportion of use to availability at 

Lake Slickolampi with original preference curves from Lake Katumajärvi with a fixed suitability index 

value with small values of potential erosion. 
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Figure 5.27 Catch/effort ratio as a function of habitat value at Lake Slickolampi with preference curves 

made at Lake Katumajärvi study areas 4-5 with the preference curve for potential erosion as originally. 

 

5.2.3 Validation of a model from Lake Pääjärvi at Lake Katumajärvi 
study areas 4-5  

 

The model created with data from Lamminsaari Island at Lake Pääjärvi was validated at 

the Lake Katumajärvi study areas 4-5. The preference curves and calculation formulas 

were tested first. Habitat values were calculated at the Lake Katumajärvi study areas 

with different combinations of preference curves from Lake Pääjärvi. Surprisingly, the 

lake bed material variables did not correlate with catch/effort ratio, but both the 

formulae, product (depth, erosion, water temperature) and product (erosion, water 

temperature), gave top correlations of the formulae (Table 5.12). Some data about bed 

material were not measured; these were marked with average habitat values. 

 
Table 5.12 Habitat value calculations at Lake Katumajärvi study areas 4-5 with preference curves from 

Lake Pääjärvi, correlations between catch/effort ratio and habitat value with different habitat value 

calculation formulae. 

habitat value calculation formula correlation 
sand/fine sand -0.15 
soft material 0.00 
depth 0.48 
erosion 0.24 
water temperature 0.46 
product of all 0.48 
product (erosion, water temperature) 0.49 
product (sand/fine sand, soft material, depth, erosion) 0.42 
product (sand/fine sand, soft material, erosion, water temperature) 0.40 
product (depth, erosion, water temperature) 0.53 
product (sand/fine sand, soft material, depth, water temperature) 0.45 
sum of all 0.48 
sum (sand/fine sand, soft material, erosion, water temperature) 0.39 
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However, because the model created with data from Lamminsaari Island at Lake 

Pääjärvi was to be validated, the chi-square test is done with the habitat value 

calculation formula chosen on the basis of the study at Lake Pääjärvi: product (sand/fine 

sand, soft material, erosion, water temperature).  

In Figure 5.28, a calculated habitat preference value map and catch/effort ratios 

during the summer of 2001 at the Lake Katumajärvi study areas 4-5 are shown. The 

exact places and directions of the trap lines were not known, so their direction was 

assumed to be perpendicular to the shoreline. The obvious inaccuracies and 

inconsistencies shown in the figures do not affect the calculations, because the habitat 

maps were drawn only for the purpose of visualisation; attempts were made to measure 

the field measurements of the habitat variables as closely as possible in situ from the 

same points where the traps were. In Figure 5.29, the same data are shown for the 

summer of 2002. In Figure 5.30, the catch/effort ratio is shown as a function of habitat 

value. 

 

 
Figure 5.28 A calculated habitat suitability index value map and catch/effort ratios (circles) at Lake 

Katumajärvi study areas 4-5. The green colour on the map marks the best habitats and the blue and green 

circles mark the highest catches during the summer of 2001. 
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Figure 5.29 A calculated habitat suitability index value map and catch/effort ratios (circles) at Lake 

Katumajärvi study areas 4-5. The green colour on the map marks the best habitats and the blue and green 

circles mark the highest catches during the summer of 2002. 

 

 
Figure 5.30 Catch/effort ratio as a funtion of habitat value at Lake Katumajärvi study areas 4-5 with 

preference curves from Lake Pääjärvi. 

 

The tests of significance were calculated (Table 5.13). The prediction was found 

to be moderate and the difference between habitat use and available habitat was found to 

be highly significant. Available habitats and habitat use and proportion of use to 

availability are represented in Figure 5.31. The habitats with the lowest values were 

avoided, but there were two maxima in observed habitat preference. The strong currents 

hitting the shores of Lamminsaari Island induced by fluctuations in the water level of 

the Lake Pääjärvi might have caused that kind of behaviour of the model. 
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Table 5.13 Available habitat and habitat use (catch/effort ratio) and proportion of use to availability at 

Lake Katumajärvi study areas 4-5 with preference curves from Lake Pääjärvi and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.2873 157.00 132 0.84 3.98 3.82 -45.79  
0.2873-1 157.00 182 1.16 3.98 3.82 53.78  
sum 314 314 high/low 7.96 7.65 8.00 7.98 
      1.38 0.005 0.006 0.005 0.005 
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Figure 5.31 Available habitat and habitat use (catch/effort ratio) and proportion of use to availability at 

Lake Katumajärvi study areas 4-5 with preference curves from Lake Pääjärvi. 

 

 

 

5.3 Vegetation modelling 
 

5.3.1 Vegetation modelling in the delta of the River Oulujoki 
 

Description of the area and the organism studied, measurement data and preference 

curves used are represented in Chapter “Calibration of the model”. The model calibrated 

with preference curves of Lahti & Riihimäki (2000) was validated with observations of 

Ulvinen (Ulvinen 2000, Väre et al. 2000).  

 

Habitat availability 

The distribution of habitat availability of the organism was obtained by taking those 

cells at least a part of which were located between the depth range +-1 metres into 

account. 19 shore cells in which the topography model was inaccurate were removed 

from the data. Two of these were deleted from near the city, and the others were 

removed from low areas near the sea. The reason for this selection of cells was to 

include only appropriate cells near the shoreline, so that the study would not include 
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deep waters or land areas with high elevations, where the plant is clearly known not to 

grow. Therefore, the frame of the study is to find out whether the model can be used in 

predicting where near the shoreline Persicaria foliosa is found. Average habitat values 

were calculated for the cells. 

 

Observations 

Results from a survey made by Ulvinen (Ulvinen 2000, Väre et al. 2000) were used as 

observation data. In the survey, all the shores of the delta area were mapped. The area 

was divided into cells of 100*100 metres. If Persicaria Foliosa was observed, a point 

was marked in that square on the map (Figure 5.7). Average habitat values were 

calculated for all cells. Figure 5.7 shows calculated Weighted Usable Areas marked with 

colours, and the cells in which Persicaria Foliosa was observed are shown with filled 

circles and the cells without observations with empty circles. 

 

Results 

The habitat map is shown in Figure 5.33 and the tests of significance in Table 5.14; the 

available habitat and observed distribution of occurrences of Persicaria Foliosa and the 

proportions of habitat use and available habitats in cells with different average habitat 

values in the delta of the River Oulujoki are shown in Figure 5.32. With the model it 

was possible to predict the abundance of Persicaria Foliosa accurately. 

 

 
Table 5.14 Available habitat and habitat use and proportion of use to availability of Persicaria Foliosa in 

the delta of the River Oulujoki and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0009 44.50 8 0.18 29.94 29.12 -27.46  
0.0009-1 44.50 81 1.82 29.94 29.12 97.03  
sum 89 89 high/low 59.88 58.25 69.57 69.19 
average 0.01 0.04 10.13 <0.0001 <0.0001 <0.0001 <0.0001 
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Figure 5.32 Available habitat and habitat use and proportion of habitat use to available habitat of 

Persicaria Foliosa in the delta of the River Oulujoki. 
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Figure 5.33 Calculated Weighted Usable Areas marked with colours and cells in shallow areas with 

observations of Persicaria Foliosa (filled circles) and without observations (empty circles) in the delta of 

the River Oulujoki. 
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6 DISCUSSION 

 

Habitat modelling – state of the art 

 

Two-dimensional habitat models have been started to be developed during the latest 

years. Methods for field measurements, data model creation and hydraulic modelling 

have neither been fully developed nor studied for the purpose of habitat modelling. The 

effect of using preference curves with different origin and methods of making curves or 

the effect of scale on modelling have not been studied either. Two-dimensional 

modelling has not been validated with large comparisons with observations. 

 

6.1 Calibration and testing of the models 
 

6.1.1 Fish model 
 

The fish habitat model was run with different types of preference data at Rivers 

Simojoki and Ala-Koitajoki. The model residuals seemed to be randomly distributed. 

This would mean that the model would explain the part of the variation that is 

explainable, and the rest of the variation would be caused by inaccuracy in 

measurements of observations and by random factors of the phenomenon. The model 

was run also at Laukka area, and at Pyhäkoski impoundment with different types of 

preference data. The results showed the importance of selecting appropriate preference 

curves and methods of making them in model calibration. At Laukka, preference curves 

from a smaller river produced an accurate estimation of habitat selection of grayling. At 

Pyhäkoski, an accurate prediction of habitat use was achieved for pikeperch with winter 

preference data from the area. This was opposite to the summer situation; perhaps in 

winter, when the fish are more inactive, the habitat preferences are clearer, towards 

deeper and slower flowing areas, while in summer, the pikeperch might e.g. select their 

habitat based on abundance of nourishment not explained by the variables used. 
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Software development 

To further decrease cost of labour in modelling, the software could be developed. The 

partly automated data processing of two-dimensional models could be automated almost 

fully by programming all parts of the model into one program code. For example, the 

model tested here is based on separate modules, e.g. a graphical hydraulic modelling 

interface and hydraulic and habitat value calculation models, necessitating data 

conversion work between the phases of modelling. Neither is printing of figures fully 

automated. So, the next step in technical software development should be programming 

all the models together so that the results could be output automatically from the same 

program into which the field data were input, making modelling less laborious. The 

automation of the printing of results is found in the models of Steffler & Blackburn 

(2002), but the typing of relatively simple formatted ASCII files is required for data 

input.  

 

6.1.2 Herb model 

 
The herb model was not tested, because the model is a subset of the fish model. The 

structure of the model is similar but there are fewer variables; only water depth and 

substrate. The herb model was only validated in this work. 

 

6.1.3 Crayfish model 
 

The crayfish model was tested at Lake Katumajärvi study areas 4-5 and at Lake Pääjärvi 

with preference curves from the lakes themselves. Very accurate predictions were 

achieved at both lakes. This may indicate that modelling of the habitats of crayfish 

might be possible with material from the same or similar type of lake. However, 

because the same data was used in the test and calibration, dependencies may have 

influenced the result, and final conclusions can’t be drawn.  
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6.2 Verification and sensitivity analysis of the model 
 

6.2.1 Fish model 
 

6.2.1.1 Physical model 

 
6.2.1.1.1 Field measurements and data models 

      
The physical model was verified by testing the effects of methods used in the different 

phases of the modelling with artificial data that offers unbiased comparisons. Changing 

the number of measurement points and grid densities resulted in an assumed response in 

model accuracy. By changing the densities, the model scale can be fit to the 

phenomenon studied. Accurate delineation of the topographic model was found to be 

important as also Tarbet & Hardy have (1996) concluded in their study. The number of 

field measurement points was found to affect the results much more than the normally 

used habitat model grid density. The sizes of habitat value calculation grids can usually 

be adjusted so that both precision and moderate calculation times are maintained.  

Where there were linear forms in the channel, shore line interpolation and linear 

interpolation resulted in more accurate models, as assumed, while Kriging may produce 

more accurate models when the topography is irregular. Shore and bank measurements 

as lines were found to be useful. When the topography was anisotropic, use of 

anisotropic interpolation resulted in more accurate models as expected. The curvilinear 

anisotropic interpolation method is useful if the channel is curved. The model was 

sensitive to the density of topography measurements. This result should be 

generalisable, because the measurement methods in habitat hydraulic modellings are 

rather similar. 

  

6.2.1.1.2 Hydraulic model 

 

Hydraulic modelling was also studied. At a small side channel at the Hotilankoski 

Rapids, measured and modelled values coincided well, the overall forms being nearly 

identical, however, the modelled values having a smaller fine scale variation. At the 

Olkkakoski and Pyhäkoski Rapids, the values matched relatively well, except the shore 
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areas, which were not measured precisely. In the study of Ghanem et al. (1994), too, 

two-dimensional hydraulic modelling produced a good presentation of the flow field. 

However, in a Canadian study (Guay et al. 2000, Guay et al. 2001), it was found out that 

the distribution of modelled flow velocity was smoother than that measured at 60% 

depth and with a measurement period of 30 s. This has also been noticed in a work with 

a set of data of quality that is too uncertain to be included in this work. But much of the 

smoothening effect may be caused by the precision of the field measurements and 

interpolation into a topographic model. Flow velocity distributions were modelled 

precisely in mid-channels, and if shore area data was precise, also near shore line. In the 

data of this work, no multiple sufficiently accurate topographic data combined with flow 

velocity cross-sections were available for accurate testing with hydraulic modelling of 

near bank areas. However, at Rapid Hotilankoski, the measurements continued above 

the shore line and the flow velocity distribution was accurately modelled.  

An accurate hydraulic modelling of shallow areas is important in habitat 

modelling, because the youngest fish often occupy these areas. A wetting and drying -

algorithm should be used if the shore line is not exactly known at every hydraulic 

situation to be modelled. Changes in the values of the coefficients, river bed roughness 

and kinematic viscosity affected results as expected. Sensitivity analyses with real field 

data showed similar results. If hydraulic models without vertical friction are used or the 

wetting and drying algorithm deletes cells from shallow areas, using higher friction 

coefficients for shallow areas, and higher grid densities near shore line can be used to 

compensate for the effect. The value of kinematic viscosity should not be used in 

calibration of the calculation of shallow areas, because changing it would change the 

flow distribution in other parts of the channel. On the other hand, hydraulic models 

taking vertical friction into account are available. In some models, the roughness can be 

set automatically according to water depth. Additionally, the position of the shore line 

can be initially calculated with a hydraulic model, and the model grid adjusted after that. 

This is often useful when gradients are steep. These mean that a good precision can be 

achieved even relatively near the shore line. Testing the effect of increasing the number 

of elements in a cross-section produced surprisingly accurate models with very few 

elements when the borders of the elements were set to the points of change in the cross-

sections of the theoretical river topography. This means that it is important to design the 

model grid geometry to match the hydraulic conditions, not only to get numerical 

convergence. On the other hand, in nature, the topography is not regular between the 
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points in a cross-section, which means, that a higher resolution is usually beneficial. The 

selection of field measurement and hydraulic modelling grid densities should take place 

according to the purpose of the modelling. The results from hydraulic model responded 

predictably to changes in parameter values and to changes in modelling methods. The 

sensitivity of hydraulic modelling results to changes in parameter values or geometry 

was low or moderate. Often other factors compensate for the changes. As a summary, 

hydraulic models were found to produce accurate estimations of flow velocity 

distributions in mid-channels. For evaluations of the distributions at the shore area no 

accurately measured data was available. Modelling of shallow areas should be studied 

further. 

 
 
6.2.1.1.3 Smoothening of data models 

 
Cumulative spatial smoothening of values of variables may occur in different phases of 

habitat modelling: field measurements, interpolation to a topographic model, 

interpolation to a hydraulic model grid, in hydraulic model calculations, and in 

interpolation to the habitat modelling grid. This kind of phenomenon could be caused by 

a low density of field measurements, measurement methods, interpolations smoothening 

the topography, the fact that vertical shear is not included in all two-dimensional 

hydraulic models, a coarse hydraulic modelling grid, missing shore areas, and numerical 

diffusion in hydraulic model calculation. The dynamic character of flow, e.g. 

pulsativity, and three-dimensionality of flow in the field may also cause deviation of 

observed values from modelled. The decrease in variation may be local, or cross-

sectional, so that calculated flow velocities are too high near the shore. Smaller variation 

in modelled flow velocity values compared with observations may be expected when 

the substrate size is large compared with water depth values and the gradient is steep, 

just because of variations in scale smaller than the scale used in modelling and because 

of possible vertical flows. Flattening of modelled flow velocity value distributions in 

hydraulic modelling can be reduced by dense measurements that include measurement 

of large stones, not only between them, and dense topographic and especially hydraulic 

modelling grids, particularly near shores. The grid should be constructed taking the 

shore line into consideration. The model can be adjusted after an initial run. The cross-

sectional flattening, if exists, can be compensated for by the calibration of flow 
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velocities across the channel too. This should preferably be carried out by adjusting 

channel roughness values, if needed. 

 
 
6.2.1.1.4 Spatial scales 

 
The question about spatial scales is of importance. Habitat modelling can be performed 

e.g. to model the whole river to map places with good habitats or to model a river 

section containing different habitat mesotypes to find the location of habitats and to 

estimate the amount of them. Modelling can also be used to model a short reach of one 

mesotype for more detailed rehabilitation planning or a smaller patch for studying 

microhabitats or for fine-detail rehabilitation planning. Modelling is naturally more 

accurate if the scale of the phenomena studied is larger than the measurement density 

and modelling grid size. Normally, the side of a modelling cell ranges from 0.2 to 25 

metres. The density of field measurements, accuracy of interpolations to calculation 

grids, and the density of the grids affect the ability of the model to represent the 

prevailing conditions. Modelled topography is usually smoother than the real geometry. 

For example, in rapids with big boulders and stones and if an overall picture of habitats 

is to be achieved, perhaps a longer river section can be modelled with coarser 

measurements, but the number of field measurement points and model elements should 

be increased from this to get more precise values if a more detailed picture is needed.  

The fish may select their sites inside a suitable area on the basis of the fine details 

of the river bed. In very heterogeneous rapids, where the scale of the model remains too 

large, modelling can be used to distinct between suitable and unsuitable habitats, but the 

prediction of the exact positions of individual fish might be more difficult. At Rivers 

Simojoki and Ala-Koitajoki, the accuracy of 0.5 metres of observations was not 

sufficient for evaluation of modellings in the smallest microhabitat scale. In addition to 

model scales, an explanation might be that energetically favourable eddies and gradients 

and three-dimensional phenomena couldn’t be modelled with the scales and hydraulic 

model used. In hydraulic modelling, larger scales than the smallest-scale microhabitats 

are usually considered. When modelling e.g. the effect of adding or removing material 

or changing the water level in the river, the scales used in habitat modelling are often 

suitable. The fine structure of the river bed is partly included into habitat modelling by 

using the substrate as a variable. A good deal of preference information based on 
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columnar flow velocities is available. Luckily, in visual habitat assessments and 

rehabilitation planning, the overall hydraulic conditions and geometry are often 

estimated or planned first. Modelling can be used in determining the hydraulic 

conditions with a given geometry and river bed roughness, and then the river bed 

substrate is selected on the basis of the preference criteria of the species being studied, 

and the patterns of placing the individual stones and stone groups and the small-scale 

geometry are designed on the basis of larger-scale modelling and small-scale preference 

information. When planning the smallest-scale microhabitat, e.g. the substrate and 

microstructure, knowledge of phenomena on that smaller scale should be utilised. The 

effect of average-sized boulders and holes that are also typical rehabilitation measures 

cannot usually be taken into account in hydraulic modelling because of the cost of 

labour in the field and in the office. With more advanced field measurement methods, 

e.g. with diagonal echo sounding connected to GPS, with laser or perhaps with 

photogrammetry, more data can be gathered, and with more powerful computers, the 

amount of elements used in hydraulic modelling can be increased. On the other hand, 

the scale of modelling may also be too small; the same calibrated model often cannot be 

used in modelling areas containing different types of mesohabitats, because preference 

curves may be applicable only to certain types of overall conditions.  

 

 
6.2.1.1.5 Nose velocities 

 
Habitat preference information based on nose velocities should be used in planning the 

smallest microhabitat details. Two sets of preference curves could be made; with mean 

column velocities for meso- and larger microhabitat scale assessments, and with nose 

velocities for planning the details of the elements of the rehabilitation. If three-

dimensional hydraulic models were used, only nose velocities would then be used in 

modelling, but three-dimensional models require much computer time and calibration 

data. 
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6.2.1.2 Habitat preference model 

 
6.2.1.2.1 Preference curves 

 
The prerequisite for modelling are that the habitat preferences of the organism can be 

represented with variables and method used in modelling, and the existence of 

preference study data or knowledge. A sensitivity analysis regarding the effect of 

changing preference curves showed that the model is sensitive to preference material. 

Especially, the magnitude of the habitat values varied remarkably. The relative 

magnitude of habitat values inside the study area was not so sensitive; the suitable and 

unsuitable areas were rather clearly separated from each other. 
 
 
 
6.2.1.2.2 Transferability of preference curves 

 
Often the most important factor affecting the results of modelling is the selection of 

preference curves. The variables that are not included in models and also the other 

variables included affect the preferred ranges of values of variables used in modelling, 

e.g. water temperature may affect the flow velocity preference. These factors may be 

site-specific, e.g. the amount and quality of vegetation, competing and predator species, 

or they may also change with time; weather, time of day (Le Drew 1996), season (Mäki-

Petäys et al. 1997), or amount or type of nourishment (Muotka et al. 1999). Preference 

curves from different kinds of conditions should not be used without careful judgement 

(Huusko et al. 2003). Preference curves based only on one set of conditions may not be 

transferable to different kinds of sites, while preference curves based on a large variety 

of conditions may become too general (Huusko et al. 2003) for exact predictions in a 

specific type of watershed or season. In the Laukka area, both local and the Swedish 

curves from a much smaller river gave good predictions, but the very general ones from 

America gave poor results. In addition to those factors external to the population 

studied, population density and intraspecies competition also affect habitat use. The use 

of slightly lower-quality but still suitable habitats depends on the amount of the 

competitors for the best habitats (Vehanen et al. 1999). The number of study areas from 

which the data for preference curves are gathered indirectly affects the results. Mäki-

Petäys (2002) found out that needle figured preference curves based on a single study 
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did not work as well as other curves (Mäki-Petäys & Huusko 2001) based on many 

rivers, even if the first preference curves were made in the study river. The amount of 

observations also affects results. Mäki-Petäys (2002) remarked that the site selection of 

fish is dynamic, which means that preference curves made with small samples may be 

defective. Many of these problems could be solved if preference curves were made for 

each different type of conditions. For example, according to Mäki-Petäys (2003) and 

Mäki-Petäys et al. (1997 & 1999), there should be separate preference curves at least for 

summer and winter if winter conditions may be a limiting factor for populations. The 

suggestion was proven valid in this work in tests with winter data. Huusko et al. (2003) 

concluded that for juveniles of brown trout and salmon, there exist applicable preference 

curves for Finnish rivers. These curves should be applied only at least relatively fast 

flowing river sections (Huusko et al. 2003). They also remarked that if curves are made 

at small rivers, it is possible that they will not work as well in large streams. 

Despite differences in conditions in different parts of the world, there is some 

indication that at least some preference curves could be geographically transferable. 

Mäki-Petäys et al. (2002) studied preference criteria for juvenile Atlantic salmon (Salmo 

salar) and found it conceivable that summertime preference curves would be 

transferable at least on a regional scale, perhaps globally. In the present study, 

preference curves for salmon fry were found to be rather similar to each other, as were 

also their predictive powers. This might be due to the fact that substrate that offers 

visual shelter is important and also because the selection of water depths goes along 

with the size of the fish (Hunter 1991), factors which are not so easily affected by 

changes in conditions. This kind of transferability of curves would mean that in many 

cases, expensive field studies on study sites would not be required. But, on the contrary, 

e.g. Groshens & Orth (1994) found preference criteria for Smallmouth bass 

(Micropterus dolomieu) in some cases transferring and in some cases not in warmwater 

streams, and they suggested using nose velocities. Also in the present study, it was 

noticed that the preference curves for adult grayling for flow velocity varied greatly. 

Column flow velocity preference may be a more sensitive function to changes in other 

conditions, e.g. water depth, discharge, temperature, and the amount of nutrition. 

Perhaps different curves should be used for different-sized rivers. Despite that, good 

predictions were also achieved in the Laukka area with the preference curves made at 

small rivers. Nykänen & Huusko (2004) found flow velocity criteria for larval European 

grayling (Thymallus thymallus) transferring well whereas the criteria for water depth 
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and substrate, and combined indices transferred inconsistently and vegetation did not 

transfer. In a single-site two-dimensional model validation by Boudreau et al. (1996), 

the model was found to work appropriately although there were apparent inconsistencies 

in the preference curves. Modelling microhabitat suitability for spawning and egg 

incubation is likely to be even easier than for juveniles, because some complicated 

factors, e.g. competition, do not affect it, and thus it should be possible to do it reliably 

for many species. 

 

6.2.1.2.3 Methods of making preference functions 

 
The methods used for making the preference curves from study data also affect the 

properties of the curves. If division of habitat use by availability is used, there is a linear 

relationship between the preference index value and density, which may be beneficial if 

habitat areas are to be calculated, but the preference values of different preference 

curves are less comparable with each other. On the contrary, with Jacobs's method, 

different curves may be easier comparable with each other, but the relationship with 

density is not linear. In the Laukka area, the modelling with curves made with Jacobs's 

method produced a slightly more accurate prediction. The method used for the division 

of the data into classes also affects results, especially if the data are scant. Grouping the 

data with non-uniform intervals could be advantageous, and special attention should be 

paid to flow velocity values near zero. Some of the problems caused by the combined 

effects of variables in nature could be avoided by using multivariate preferences, often 

visualised by surfaces. In the two-dimensional model studied, the possibility of using 

these has been included. At the Pyhäkoski impoundment, using multivariate preferences 

resulted in a rather similar prediction than when preference curves were used, but the 

amount of data used in making the surface was low. Guay et al. (2000) fitted a Gaussian 

multivariate logistic model to data with three variables and got more accurate 

predictions of abundance than with preference curves. Constructing multivariate 

preferences requires much more data, because the data are divided into classes 

according to the values of many variables simultaneously. If different preference curves 

made for different conditions are sufficiently similar, multivariate preferences may not 

be needed, but on the other hand, the benefit of using them should be studied especially 

if all factors affecting preference are not known.  
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6.2.1.2.4 Other preference functions and indices 

 
So-called fuzzy logic preferences (Jorde et al. 2001) are an easier but coarser way to 

input multivariate preferences-type relationships into a habitat model. It is worth 

considering when preference curves are not considered adequate and there are not 

enough data to make multivariate preferences, and biological expertise about the 

preferences is available. To take differences in the relative importance of variables into 

consideration, exponents for weighing variables have been calculated by multivariate 

analysis (see Chapter 2).  

A move in the other direction is so-called generalised instream habitat models 

(Lamouroux & Jowett 2005), in which habitat predictions are derived from simplified 

hydraulic data, based on e.g. aggregates of Froude and Reynolds numbers and relative 

roughness and width to depth ratio. These can’t be calibrated to non-homogeneous 

rivers. The calculation of very simple indices describing the overall hydraulic 

conditions, e.g. the Froude number and printing maps e.g. of flow velocity or 

calculation of shear stress at river bed, in addition to modelling, could also be 

advantageous. 

 
 
6.2.1.2.5 Adjacent habitats 

 
Habitat models could be developed to take better into consideration the effect of 

adjacent microhabitats and mesohabitats on habitat quality. When using habitat models 

in planning of rehabilitations, the whole life cycle of the species, habitats at different 

seasons, the habitats of the prey, habitat connectivity and the processes forming the 

habitats should be taken care of (Roni et al. 2002). The availability of habitats for the 

early life stages, winter and low flow refuge should be taken care of (Bond et al. 2005, 

Cunjak 1994, Muotka & Syrjänen 2007). Energetically favourable conditions may exist 

in places with strong gradients in flow fields. Habitat gradients give fish the possibility 

to optimise energy use and availability of drift prey.  

Predicting the exact positions of individual fish may not be as easy as 

differentiating between the suitable and unsuitable habitats. A reason could also be that 

energetically favourable eddies and gradients in the heterogeneous river, and three-

dimensional phenomena couldn’t be modelled with the scales and hydraulic model used. 

It would be easy to add to habitat models a feature computing gradients, but the grid cell 
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size should correspond to the scale of heterogeneity. With a submodel of PHABSIM, 

indices based on combinations of user-defined flow velocities of adjacent cells can be 

calculated (U.S. Geological Survey 2005). Edge effects could be estimated by 

calculating partial derivates of the values of variables and these could be used as 

variables in calculation formulae. Despite the fact that grayling uses the transition zone 

between swift and slow flow, prediction of abundance was successful both at Laukka 

area and on River Simojoki. Because the fish select certain types of habitats, flow 

velocities in the transition zones may usually be rather similar, which reduces the need 

to take the effect of adjacent cells into account.  

The use of models in which the behaviour of individual fish is modelled could 

reduce the biases discussed above, but the need for calibration data is high, and 

modelling may take substantial amounts of computer time. Railsback and Harvey 

(2001) have constructed such a model (Railsback et al. 2002) and French modellers 

have already applied a model in some rivers (Gouraud et al. 2004) which dynamically 

takes the different life stages of fish into consideration. The so-called energetic models 

that are based on calculations of the energy balance of fish can be included in individual 

fish-based models. Using three-dimensional hydraulic models could make hydraulic 

data more accurate. With the help of these methods, more factors can be taken into 

account, but the complexity of models and the work needed in modelling are increased. 

  

 
6.2.1.2.6 Mesohabitats 

 
Mesohabitats may affect microhabitat preferences. These and the mesohabitats may also 

be different under different hydraulic conditions. Habitat quality may also depend on 

e.g. predation and competition. A part of these effects can be taken into consideration by 

developing and using appropriate microhabitat suitability criteria on each different 

mesohabitat type. In calculated microhabitat values for single life stages of fish, 

mesohabitat quality is not always taken into consideration. Substrate is often an 

indicator of the mesohabitat type, which supports the capability of models also in 

different mesohabitat types than where the preference curves come from. Mesohabitat 

suitability indice values can be calculated e.g. as in Raleigh et al. (1986). The 

preferences could e.g. be used as multipliers of microhabitat suitability values if long 

river sections containing different mesohabitats are modelled. 
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6.2.1.2.7 Other variables; vegetation and shear stress at river bed 

 
Vegetation could be used as a variable in the same way as substrate. In earlier studies 

(Heggenes et al. 1994) flow velocity and water depth were found to explain the habitat 

selection of salmon and trout best from seven variables examined. These and substrate 

(river bed material and its size), and to lesser amount cover are generally considered to 

be the most important factors affecting the habitat use of salmon and trout (Heggenes 

1994a), e.g. because the values of other variables have been found to depend on the 

values of those three variables and existence of cover. All size classes of juvenile trout 

avoided vegetation in the Finnish Kuusinkijoki River study (Mäki-Petäys et al. 1997) in 

winter, while in many foreign studies contradictory observations have been made. On 

the basis of these, some authors have suggested that the primary factor offering 

wintertime shelter would be a coarse substrate. In summer, young-of-the-year trout 

preferred cover offered by vegetation, whereas the larger juveniles seemed to avoid it, 

perhaps because they were searching for deep pools (Mäki-Petäys et al. 1997). Results 

of preference studies in natural rivers concerning vegetation should be checked by 

laboratory experiments, in which different factors can be controlled. The amount of 

vegetation varies during the year, and the effects of different plant species are different. 

The type of vegetation also varies geographically. Additionally, the quantification of the 

amount of vegetation cover should be standardised if vegetation is used as a variable.  

Today, vegetation could be used on the basis of local studies at the habitat study site. It 

could be suggested that because it offers shelter vegetation could be a useful variable for 

the smallest juveniles in summer. More studies are needed concerning the effect of 

vegetation, its importance, and about the preferences themselves. 

Shear stress on the river bed, and Froude number have been found to be 

important factors for habitats of lotic benthos (Extence et al. 1999, Merigouox & 

Dolodec 2004, Sagnes et al. 2008). The effect of erosion, sedimentation and 

vegetational processes on the river to be rehabilitated are often estimated. Methods 

based on the results of the same two-dimensional hydraulic models used in habitat 

modelling exist for assessing the effects of erosion and sedimentation. Habitat 

modelling of the prey of fish, e.g. benthos could also be carried out. Shear stress can be 

used to help in assessing the hydraulic conditions for the growth of benthos and 

vegetation. Two-dimensional habitat modellings have been carried out based on it 

(Jorde 1996, Kopecki 2008, Lahti & Auvinen 2009). 
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6.2.2 Herb model 
 

No sensitivity analyses were specifically carried out for the herb model, because the 

structure of the model is a subset of the fish model. 

 

6.2.3 Crayfish model 
 
 
A sensitivity analysis was carried out for the crayfish model regarding the use of 

preference data from a lake of different size. When preference curves derived from 

larger lakes were used in modelling of a small Lake Slickolampi, varying predictions 

resulted. The first model from a larger Lake Pääjärvi couldn't be used without a 

modification of the preference curve for potential erosion to take the smaller lake size 

into account. Creating the preference curve for potential erosion from data from small 

and large lakes, a total preference of the areas with higher habitat values resulted. With 

the preference curves from the second lake, Lake Katumajärvi, again, a total and 

significant preference of the areas with higher habitat values was observed. 

Potential erosion and temperature were correlated with habitat use. Potential 

erosion reflects the cleaning effect of water movement on lake bed material, keeping the 

sheltering places of crayfish free of settling material. But too-strong currents may also 

make the habitat unsuitable for crayfish (Jussila 2002). One assumption based on both 

biological literature and interviews with biologists (Jussila, Erkamo) could be that 

crayfish need steady bed material in which they can find or build sheltered places for 

resting (Tulonen et al. 2007b & 2007c), but with not too much water movement, also 

optimising all these together with water temperature (Tulonen et al. 2007a). According 

to Peay (2003), for a British crayfish species, the key features of potential refuges for 

crayfish are big enough to amply cover the crayfish, relatively stable and resistant to 

high flows but in a flow that is slow enough for a crayfish to walk in the refuge but still 

not too silted. Also Klosterman and Goldman (1981) concluded that crayfish 

Pacifastacus Leniusculus might have definite preferences for substrate materials which 

may also be affected by other factors, e.g. flow velocity and direction. Adult crayfish 

preferred mixed rock to small gravel. Slope may also affect site selection, being 

important in lakes with low wind-induced potential erosion rates, but also in windy 

lakes it may have a combined effect together with water movement (Erkamo). Water 
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depth could also be used as a variable, but potential erosion rate and temperature 

stratification correlate with it and the importance of only depth is unknown. Bed quality 

could also directly be a variable, because coarse, relatively unlaborious estimations of it 

could be made on the basis on photogrammetric maps or by boat on the basis of the 

existence and quality of vegetative cover. In this study, there were not enough suitable 

data available to study this. The abundance of crayfish was studied on the basis of trap 

catches. The spatial distribution of catches may include proportionally too much 

habitats where crayfish move while searching for new habitats or nutrition, compared 

with the real relative importance of these kinds of areas for habitat quality. Instead, it 

may be the amount of areas offering shelter that makes the difference in importance 

between different areas for crayfish populations. Crayfish feed during the night and hide 

under light conditions. The effect of wintertime conditions should also be studied. It 

would be advantageous to study all these with cameras and telemetry. The effect of 

water level fluctuations, patterns of yearly temperature stratification, water quality, and 

turbidity should also be studied. The habitat requirements of young crayfish should also 

be studied. Measurement methods should be standardised. It seems that there exist 

variables useful in modelling to assess the habitat quality of crayfish, but studies 

directed towards a more accurate understanding and modelling of the behaviour of 

crayfish need to be continued. It can be concluded from the tests and validations, that 

the effect of wind may be different in magnitude and in the way of action on shores at 

different lakes. At small lakes, e.g. Lake Slickolampi, the effect may be weak, and the 

slope and water depth, which is correlated with water temperature, may be the deciding 

physical variables. At larger lakes, the action of wind may be the primary factor 

affecting the substrate. At Lamminsaari Island, wind-induced currents flowing from one 

side of the lake towards the other, hit the shores of the island (Erkamo 2002) changing 

the usual way of action of wind-induced erosion. At all lakes, measuring the substrate 

directly, could be the most reliable method of habitat modelling, but usually this is very 

laborious, if reliable satellite based mapping methods do not exist. Assessing the effect 

of wind on the composition of the substrate may give a less laborious alternative. Water 

temperature may also have an effect on habitat use, depending on season and 

temperature stratification. Further studies are needed with larger data to find the most 

suitable variables and the limitations for their use, because the variables are so 

correlated, e.g. water depth, temperature, substrate, distance from shore and potential 

erosion may often be intercorrelated. 
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6.3 Validation of the models 
 

6.3.1 Introduction 
 

There have not been thorough validations of two-dimensional habitat models. Critical 

aspects of modelling mentioned by McMahon (1992) are the biomass-WUA 

relationship, other factors affecting populations, and a lack of well-defined or 

standardised preference curves. Hydraulic modelling methods used in habitat modelling 

have neither been optimized nor validated. In this work a model based on a more robust 

hydraulic model and spatial technology was tested in order to overcome the question 

marks that arise from the use of PHABSIM. The usefulness of these kinds of models 

was studied. The tests should be used to study the ability of the model to produce new, 

useful and accurate information. Choosing too large study areas including too clearly 

unsuitable habitats may not give much information of the usefulness of the model. For 

this reason, e.g. only the near shore line areas outside the centrum of town Oulu were 

chosen to the study area of Persicaria Foliosa model. On the other hand, if the area 

consists of only the most suitable habitats, the power of the test may suffer.  

The spatial heterogeneity of the study areas affects the test. The heterogeneity 

here is related to the habitat requirements of the organism studied. If the heterogeneity 

takes place only in larger scale, and is strong, this makes testing easy. However, if the 

heterogeneity of the study area is strong in small scale, this makes accurate observations 

and modelling difficult. 

Different sources of variation in the validation are violations of the assumptions 

of the statistical test, variation caused by sampling methods, and natural variation of the 

phenomenon studied. The model was validated by comparing calculated habitat 

suitability index values against observed habitat use (Figure 6.1).  
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Figure 6.1. The process of model validation. 

 

6.3.2 Requirements of the test 
 

The null hypothesis of the test is that the event, habitat selection, does not depend on the 

variable, habitat suitability index, by which it is classified. In the statistical test, chi 

square test, it is required that the events of habitat selection are independent and have 

similar distributions of expected probability with each other. Assumptions necessary for 

the statistical test are e.g. that the fish don’t interact with each other, the fish don’t take 

space or territories; all fish can freely select their habitat from the whole study area and 

that the fish can swim to every place that could be suitable for them, inside the study 

area. These assumptions are violated to some degree. The fish take territories, which is a 

violation against the test. This reduces the power of the test, i.e. increases the risk of 

type II error when habitats are predicted well, the more the higher densities get, because 

then the probability that also the less suitable half of the study area gets used, gets 

higher. On the other hand, if densities were very low, the test would not make difference 

between the use of good and the best habitats. For that purpose, the proportions of use 

divided by availability were drawn. Anyway, the assumption of the statistical test that 

the events of habitat selection by individual fish would be independent is violated. But a 
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habitat model is assumed to put the habitats in an order of habitat quality from the 

lowest to the highest. On the other hand, the dynamic habitat use by fish causes an 

effect of similar type. The combined effect of territories and densities comparably puts 

the areas in an order based on observed densities. If the effect of territories was small, it 

could be approximated that the fish would select the best habitat but the dynamic habitat 

use would cause the variation that puts the habitats in an order of preference. In practice, 

both territories and the dynamic use have an effect. Without territories or variation, all 

fish would choose only the best spot in the river. The accuracy of observations brings 

additional uncertainty to the test.  

The effect of density on habitat use is included in the model by the preference 

curves, but the multiplication in the habitat value calculation formula changes this effect 

in a certain amount, because values from preference curves are multiplied together; all 

variables have to take optimal values simultaneously to the combined habitat suitability 

index value to be optimal. On the other hand, the preference curves may be based on 

larger data and thus more universal and less spiky than the observed habitat use.  

The fish may interact with each other in other ways too; brown trout or salmon 

don’t shoal (Koli 1990), shoaling was not observed for pikeperch, but adult grayling 

take territories but may be aggregated like shoaling (Koli 1990). Shoaling could reduce 

the effective number of events in the test, leading to higher uncertainty. These mean that 

the test may result in too easy conclusions at Laukka area. On the contrary, At Rivers 

Simojoki and Ala-Koitajoki, the high densities observed may result in an increased risk 

of type II error.  

Inside most study areas, the habitats truly available to all fish match the study 

areas, because adult grayling and pikeperch can swim everywhere in the study areas and 

so do all salmon and trout larger than ten centimeters. It is not clear whether the smallest 

brown trout and salmon can also swim across the study areas at Rivers Simojoki and 

Ala-Koitajoki. Anyway, they can at least, select from habitats of one side of the stream, 

if not from whole the study area. 

Additionally, at Laukka area and Pyhäkoski impoundment, the statistical test 

requires an assumption that if the hydraulic or other conditions change, the fish despite  

that have already found the most preferred habitats at the sampling moment. This is not 

a critical requirement, because the fish usually can select good, if not the best habitats 

fast, after rapid changes. 
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Additionally, if any observations are made from same individual fish, serial 

correlation may be induced by temporal adjacency, and the risk of type I error may 

increase. This might happen when the fish are observed by telemetry or with catch and 

release fishing with a log book. At Pyhäkoski impoundment, the effect of serial 

correlation was estimated with calculations based on assumptions of Matalas (1967). At 

Laukka area, the amount and effect of catch and release fishing was not known. The 

observations being of the same individuals having an individual behaviour, reduces the 

variation in the habitat selection, not only because natural variation in habitat selection 

is caused by the dynamic character of habitat use by individual organisms, but also by 

differences between individuals. The test would also require that the fishermen equally 

effectively fish every spot and the whole of the study area that the sampling would be 

carried out from the same set than the expected probabilities of the event of habitat 

selection are calculated from. This might not be true, because some areas are easier 

accessible for fishing than other areas.  

Validity of tests requires assumptions regarding the sampling methods: the fish 

wouldn’t move to fished habitats while sampling, all fish are found and caught, and the 

fish wouldn’t escape or move because of disturbance from sampling, the position of fish 

could be measured accurately, and that water depth, flow velocity and substrate could be 

measured accurately. Additionally, at Laukka area and Pyhäkoski impoundment, if the 

hydraulic conditions changed during observations, and the habitat availability 

distributions are computed by weighting the distributions at different moments by the 

number of fish caught, there should still be plenty of all types of habitats used by the 

fish available at each moment. At Laukka area, it was assumed, that the fished 

individuals are in their normal habitats. At Pyhäkoski, it is assumed, that the telemetry 

transmitters don’t change the behaviour of the fish.  

In the following it is discussed to which degree these assumptions are violated. 

When carrying out electric fishing, normally less than half of the fish are found at the 

first fishing. If some fish are hiding in the substrate and these habitats differ from the 

habitats selected by the fish found, some difference to observed habitat use may result, 

but this is considered not to violently change the habitat use observed. However, it may 

bring some uncertainty to the tests. The accuracy of positioning the fish may affect the 

results more; measuring flow velocity from the right spot is important, but the accuracy 

estimated is only 0.5 meters. The measurement of flow velocity is affected by dynamic 

phenomena in the flow, heterogeneous river bed particle sizes and geometry and three-
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dimensionality of flow. The measurement of water depth is simpler, but a heterogeneous 

river bed structure may make it difficult, if the right spot is not exactly known. When 

measuring the substrate, decisions made by the measurer may affect the results. All 

these bring uncertainty to the test, and make it difficult to validate the ability of the 

model to accurately predict the use of the smallest microhabitats. However, on the 

normal microhabitat modelling scale of 1-10 meters, on which also the measurements 

for modelling are made, the validation test should be possible. However, when habitat 

quality is very heterogeneous, validations at larger spatial scale are also affected 

remarkably by the increased variation.  

At Laukka area and Pyhäkoski impoundment, during the lowest flows, high 

velocity habitats weren’t available, but the proportion of such events was rather low. At 

Laukka area, the difference between the feeding and average habitats should not be 

large in summer and daytime. At Pyhäkoski impoundment, the telemetry transmitters 

were so small compared with fish size that they are considered not to affect the 

behaviour of the fish. The statistical event of choosing habitats would not change, under 

the assumption of independence and similarity, if the number of fish inside the study 

area changed if the area would be sampled during a longer period. However, in practice, 

the effect of it would only be similar to that the density was varied, which might even be 

beneficial. 

 

6.3.3 Measurement of observations 

The inaccuracy of the measurements of observations may reduce the statistical power of 

the comparison tests. Finding the exact spot where the fish was when it was observed is 

not possible with electric fishing, however, the precision of the measurement of 

coordinates is good. In a reach, which is heterogeneous in a small scale, e.g. includes 

stones and boulders in a shallow riffle, conditions may vary rapidly spatially. Temporal 

changes in very turbulent sections may also have some effect on observed preferences 

as well as three-dimensionality of flow can cause variation which is not taken into 

consideration by the measurement method. All this may mean that the assessment of the 

predictive capability of the model might have resulted in a higher ability to predict 

habitat use if the observations had been more accurate.  

In the following, the accuracy of field measurement methods used when 

observing fish is discussed and recommendations are given. Measuring water depth and 
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substrate is straightforward after the position of the fish is determined. Here, only the 

demanding measurements of flow velocity and fish position are discussed. 

The declared accuracy of the observation of the horisontal position of the fish 

was 0.5 metres at Rivers Simojoki and Ala-Koitajoki. The coordinates of the fish 

finding spots were determined with a tacheometer, and were accurate enough, but 

observing the position of fish is difficult. Flow velocity values may change rapidly in 

shallow rapids with lots of stones and boulders. If a fish swims behind a stone in a 

spatially and temporally varying flow with eddies optimizing energy use and availability 

of drifting prey, the measurement accuracy should be in an order of 10 centimeters. The 

accuracy of the observation data may not be sufficient for assessment of the model 

prediction of the smallest microhabitat details with a comparison. There are several 

methods of measurement. Nose velocities mean the flow velocity measured just in front 

of the fish. Column velocities are depth-averaged values e.g. produced by two-

dimensional hydraulic models. Many flow velocity measurement methods are suggested 

for measuring depth-averaged flow velocities in literature, e.g. one-, two-, and three-

point methods. The selection of the method depends on the water depth and accuracy 

desired. For shallower depths a measurement device with a smaller-sized impeller 

should be used. Flow velocities at 60% depth were measured directly on situ on Rivers 

Simojoki and Ala-Koitajoki. Most of the preference curves used were made with the 

same method. Column velocity values are, on average, near the values measured at 60% 

depth and usually 10-15% smaller than values found on the water surface. Intensive 

studies by Hulsing, Smith, and Cobb (1966) showed that velocities measured at 60% of 

depth were on average 1.02 times the mean vertical velocity. The flow velocity at 60% 

of depth measured from the water table is used as an estimate for average column 

velocity as it is the practice of the U.S. Geological Survey with shallow streams with 

depths between 0.09-0.76 metres (0.09-0.46 m, Price pygmy, 0.46-0.76 m Price type A 

or A metres). The 5 and 95% percentiles for water depth of all the data from the River 

Simojoki are 8 and 71 centimetres and 5 and 58 centimetres for the River Ala-Koitajoki. 

These mean that the measured flow velocity values at 60% of depth can be used as 

estimates for average column velocities. Using directly measured values in a river with 

a rough river bed surface is probably a more exact method, but often a more laborious 

one too, than hydraulic modelling with a restricted number of topography measurement 

points, which usually leads e.g. to a necessary interpolation and smoothening of values. 
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 An important thing to consider is the measurement time needed. Eddies 

changing with time found in places with significant changes in topography may also 

affect flow velocity measurements. In Watson et al. (2002), a measurement time of 10 

seconds to 1 minute is suggested in discharge measurements; in other sources, e.g. 

Rantz et al. (1982), the recommended time in the same measurements is 40 to 70 

seconds. The relative pulsation of flow was largest with low flow velocities. With a 

flow velocity of 1 ft/s, the deviation caused by pulsation was, at maximum, only 7% as 

an average of 23 s, during a period of 680 s in a laboratory flume (Rantz et al. 1982). 

The standard error in discharge was only 2.2% with a flow velocity measurement time 

of 45 seconds measured with a two-point method in a study based on data from many 

natural rivers (Rantz et al.1982). The variation was described as being randomly 

distributed. The spatial and temporal variation of flow velocity should be taken into 

account when planning and making measurements from which the data will be used in 

calibration or validation or as hydraulic data in habitat modelling. To optimise the 

accuracy versus time used for measurements, preliminary measurement tests can be 

carried out with different measurement periods before measurements. 

The measurement of the positions of Persicaria Foliosa was easy. The 

measurement was carried out in late summer, when the herb is clearly visible from the 

mud. Still it is possible, that some herbs under other vegetation were not observed. 

Measurement of the positions of crayfish was partly easy, because the traps 

define the positions, but the exact coordinates of the traps had to be calculated 

afterwards for use in this work. This means there may be some displacement in the 

positioning. 

 

6.3.4 Results of validation tests 
 

The habitats of adult grayling were predicted very accurately at Laukka area with 

locally determined preference curves. Grayling has clear habitat preferences related to 

hydraulics, which may explain the result. On the other hand, the properties of the data 

increase the risk of type I error. The model was validated also at Pyhäkoski 

impoundment with a modelling of summer habitats of pikeperch. The prediction was 

weak, but insignificant. This may show the limits of the applicability of the model; the 

habitat preferences of pikeperch in summer might depend on factors not explained by 

the model; e.g. on availability of nutrition, because pikeperch are more actively feeding 
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in summer. On the other hand, the fish were released to the study site in late spring, 

which may mean that the fish hadn't found their preferred habitats yet.  

In the Simojoki and Ala-Koitajoki rivers, roughly twice as many salmon and 

brown trout were found in the halves of study areas with higher calculated suitability 

index values than in the halves with lower values. Densities increased surprisingly 

consistently towards higher values of suitability indices, but with a decreasing rate 

towards the highest values. The areas with the suitability index value in classes with the 

lowest value were, on average, almost empty. The difference between the uses of 

calculated average and high-quality habitats was not very large, but the overall 

ascending trend and the avoidance of the lowest class were consistent. That the 

difference was rather small might be caused by the relatively homogeneously good 

quality habitats in the study areas (Mäki-Petäys et al. 2002), the high densities observed 

and by inaccuracy of the positioning of the fish observed. Only the strongest competitor 

can select freely its habitat; the others have to select lower quality habitats that are left. 

The dynamic use of habitats (Mäki-Petäys et al. 2002) may cause small shifts in habitat 

preferences which may become significant when the differences in habitat quality inside 

the study area are small. In this case, also the finest microstructure of the river bed and 

eddies caused by it not represented precisely and other factors not included in the 

traditional model, e.g. shelter from banks and flow gradients may have taken effect.  

On the other hand, the precision of the measurements in the observation data may not 

have been sufficient. At these rivers, the habitat availability was sampled with constant 

intervals, and it may be rather precise, but when the positions of the fish were located, 

an accuracy of 0.5 metres is rather low if the use of microhabitat details is studied. The 

inaccuracy caused by this to the flow velocity values may be large. This may have 

caused much of the rather large random variation in the results. 

The sets of data from River Simojoki for grayling, bullhead, and stone loach were 

too small for conclusions to be drawn. Grayling preferred areas with high habitat values, 

bullhead preferred weakly in three sets of data, while stone loach avoided in two and 

preferred in one set of data. The importance of availability of nourishment to bullhead 

as a factor in habitat selection as suggested by Huusko et al. (2003) may have affected 

the result.  

 In the Laukka area, both high- and low-quality habitats were abundant, which 

resulted in a clear difference between the uses of these areas. Both the curves from 

much smaller rivers and local curves resulted in a good predictions. Only the too general 
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curves failed. These results suggest that habitat quality could be estimated with the 

model, and that the prediction of abundance of an organism would be stronger when the 

range of variation in larger scale habitat quality is greater. The clear larger scale spatial 

variation in topography and habitats contributed to the accurate predictions achieved. 

 With the herb model, the abundance of preferred habitats for Persicaria Foliosa 

was easily predicted. This was caused by the fact that water depth and substrate 

probably mostly define the habitat preference. 

 For crayfish, a model for lakes was validated. Model validation at Lamminsaari 

Island with preference curves from Lake Katumajärvi study areas 4-5 resulted in a weak 

and insignificant prediction of habitat use. Validation of the same model at Lake 

Slickolampi resulted in a strong prediction. The unsuitable habitats were very clearly 

predicted, but the moderately and most suitable habitats were not separated from each 

other. A modelling carried out at Lake Katumajärvi study areas 4-5 with a model 

created at Lake Pääjärvi resulted in a good and significant prediction of habitat use. 

However, the proportion of use and availability had two maxima. These imply that 

many variables useful for habitat modellings of crayfish have been found, but the 

importance and interaction of these at different lakes should be studied further with 

larger data in order to ensure a reliably transferring model. 

 

6.3.5 Interpretation of the results 
 

Next, whether these results can be used as a proof for a claim that real habitat quality 

could be calculated or assessed with habitat models is discussed. The question is 

whether the study arrangement makes this kind of claim reasonable and whether some 

factors in modelling could cause bias between the calculated and the real habitat quality. 

In fact, the real habitat quality cannot be measured directly by any means. It can only be 

assessed indirectly on the basis of observations of the behaviour and properties of the 

organism. This means a need to understand the behaviour of the organism and decisions 

made by them when selecting habitats. A model of the behaviour of the organism could 

be constructed on the basis of this information. An alternative method could be using 

statistics with assumptions of the relationship between abundance of organism and 

habitat quality. In practice, the models constructed are usually combinations of these; 

the first method e.g. is characteristic of models that here are called individual fish 

models and the second better describes the traditional habitat modelling studied here. 
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The difference is that in individual fish models statistics are used to construct rules for 

the behaviour of individual fish, while in traditional models the preference for using 

different types of habitats is modelled on the basis of statistics of observed habitat use. 

In both, the factors affecting the behaviour of fish must be known and understood, 

though in the first, the model is more detailed. Modelling is possible and more reliable if 

the behaviour of the organism is more based on irrational traits, without very much 

learning of different habits that would dictate the habitat selection, than rational 

decision-making. That would mean that the behaviour of the organism could rather be 

studied as a consequence of prevailing conditions and the genetic traits and properties of 

the fish than that the organism had a large variety of possibly culturally affected and 

changing and varying motives that should be understood. This assumption is the base of 

individual fish models. One problem existing that reduces their usability is the variety of 

conditions affecting behaviour, which makes these models expensive to calibrate 

because of the number of variables it is necessary to study. In traditional habitat 

modelling, a smaller number of variables are taken into account, and the role of 

statistics is more profound. This makes modelling less laborious, but some problems are 

created. If many factors affecting the behaviour of the organism remain unrecognised, 

when the model is applied to different places after calibration, changes in behaviour 

caused by different conditions cannot be taken into account in such detail. For example, 

the mechanisms with which competition, density, organism size distribution, and the 

amount of nutrition affect habitat selection are not modelled. Additionally, the 

preference curves are made on the basis of observations of the organism and are often 

calculated from densities. This means that the positions of suitable habitats and their 

quality proposed by the model may be biased. Before the biases can be estimated, 

habitat quality must be defined.  

Habitat quality could mean the quality of the habitat for all species, or it could 

mean its suitability for one species. In practice, habitat quality is modelled separately for 

different life stages of each species and the factors considered are limited to a certain 

number out of all those possible. In the case of models called physical habitat simulation 

models, water depth, flow velocity, and substrate are usually used as variables. The 

description of the behaviour of the organism and the effects of different factors is 

limited to the method of multiplication of preference values calculated together. Nor are 

the effects of nearby areas taken into consideration. The organisms are also either 

expected to stay exactly in the same position all the time or to use habitats in proportion 
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to the importance of each of the areas for habitat quality. However, some shelter habitat 

might be more important for the population in comparison with the proportion of time it 

is used. Because so many factors are left outside the model, the variable calculated 

resulting from modelling is called a habitat suitability index, so as to tell it apart from 

habitat quality. A broader definition is used for habitat quality; in this case it could be 

the feasibility of habitats for a life stage of a species. Feasibility, in turn, might mean the 

ability of the place to sustain organism biomass growth or it could be measured by the 

density of organisms allowed by the habitat. Suitability indices usually tell more about 

the latter, because, in practice, when the model is being made and calibrated, organism 

density is measured and the proportional use of different habitats is used as a measure 

for habitat quality. This means that habitat models would be organism density 

distribution models.  

One problem is that density affects habitat selection of fish and crayfish and 

therefore also the data used in making preference curves. The behaviour of fish may be 

territorial and the biggest salmonid fish also usually get the best habitats (Hunter 1991, 

Mäki-Petäys et al. 1999b) and are most strongly avoided by other fish. There was a hint 

of this with calculations with the River Simojoki data, in which biomass was predicted 

better than density, but statistically insignificantly, and the amount of data was too low 

and too few preference curves were used to draw conclusions about this. This could 

mean that the most suitable habitat could in some cases at least theoretically be used 

with a smaller density than some other areas. Even if the size of fish was uniform, the 

most suitable habitats might not be used with a higher density than other areas habitated 

by fish. These may be reflected in the finding in this work that the least used habitats 

were predicted more efficiently than the moderately and the most used habitats were 

separated from each other. The habitats with the lowest class calculated habitat 

suitability index values were very often totally empty, and starting from there the 

observed intensity of habitat use rose slowlier towards the highest suitability index 

values. Factors affecting this phenomenon negatively also exist; in the most suitable 

places, there may be more nourishment because of better hydraulic conditions (Hunter 

1991), which allows higher densities. Shelter, in the form of stones, logs, etc., which are 

typical of good habitats, may provide visual cover and allow smaller-sized territories 

(Hunter 1991). The fish also select the most suitable spots inside their territories.  

Some methods for studying those effects could be to use laboratory experiments, 

as in e.g. Vehanen et al. (1999). With them, it could be easier to control the effects of 
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different factors. For example, studies could be made with individual fish to get habitats 

into an order of preference, and with different densities, with and without predators etc. 

Additionally, preference studies and curves could be made for use in different 

conditions; temperature, amount of nutrition, abundance of predators, density etc., but 

additional resources would be needed because of the resulting high number of 

alternative combinations. Much responsibility is usually left for biologists to make and 

use suitable preference curves. Preference curves are often made directly from data by 

dividing use by availability and smoothing the resulting curve.  

Another problem in this study design is caused by the dynamic character of the 

site selection of fish and crayfish; habitat use observed varies temporally, and it is 

compared against habitat quality. The observations represent habitat use only at certain 

moments. This may not be a good point of comparison for modelled habitat quality. 

Habitat quality on field should be tried to be defined better. According to Gore et al. 

(1996), it has not been clearly demonstrated that habitat models would predict biomass 

or its position, but there still would be a significant correlation between habitat quality 

and density. Gore's statement could be explained by the fact that factors such as e.g. 

population history and the territorial behaviour of fish affect densities. But, as 

concluded earlier, modelling might, for other reasons, also reflect densities or biomass, 

which means that in the study design, instead of modelled and real habitat quality being 

compared, modelled measures of density and observed organism density may be 

compared with each other instead. This may not be a problem, because it is obvious that 

real habitat quality and densities correlate. But this and the dynamic nature of the 

behaviour of fish and crayfish mean that the amount of data used in validation must be 

high enough and the observation time long enough and that the data must include 

different conditions. The more studies that are carried out, the stronger the assessment 

becomes. The prediction of the abundance of organisms, i.e. given an area, what is the 

probability of the abundance of organisms, may not be as easy with models, because of 

the usual modelling scales, and because of there may be factors that affect habitat other 

than the variables used in modelling. The site selection of fish is dynamic (Mäki-Petäys 

et al. 2002). But a prediction of an abundance of organisms at a certain spot at a certain 

moment is not so important for river habitat assessments; what is more important is the 

average habitat use and quality. 

 However, good predictions of habitat use have been achieved with these habitat 

suitability calculation principles in many cases, with new two-dimensional habitat 
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models, and even with the old PHABSIM model as earlier mentioned. This despite the 

fact, that there have also been less successful efforts and criticism. Compared with a 

single electric fishing as a habitat assessment method, modelling is usually based on a 

validated, much larger, set of observation data. Population history, fish movements, the 

weather, the time of day etc. affect the temporal site selection observed on the spot. 

Additionally, factors that are not usually included in models, e.g. water temperature 

variations and vegetation, also act on the study site. The effect of these can be averaged 

by using large preference study data from several places. Additionally, the effects of e.g. 

different organism densities in study data become averaged. Combined with biological 

knowledge, this type preference curves have been created for e.g. juvenile brown trout 

and salmon. Because good predictions of fish biomass differences between river reaches 

have been achieved, e.g. in France with EVHA modelling sharing the basic habitat 

value calculation principles with two-dimensional models, it is probable that good 

predictions can be achieved at least with some conditions. Fish biomasses in separate 

reaches are usually affected by a variety of factors over a period of many years, which 

means that the variable used in comparisons made in France and based on fish biomass 

must be near some concept of habitat quality. Added to the results of microhabitat scale 

validations with two-dimensional habitat models this also means that a relationship 

between modelled habitat quality and fish density or biomass has been found both on 

the micro and mesohabitat scales. In a single-site Canadian study, Boudreau et al. 

(1996), habitat quality modelled with a two-dimensional model and fish density 

correlated strongly. Because factors, often e.g. water temperature or vegetation causing 

bias act with varying power on different spatial scales, and good predictions have been 

achieved despite that on both scales, it hints that the variables used in modellings and 

the calculation principles should be at least partly valid. Those variables have also been 

found to be important in earlier fish habitat preference studies. Because calculated 

habitat suitability and observed density have been found to correlate in the carefully 

conducted studies of the present study, so that the values of both the variables ascend 

together, and it is evident that real habitat quality and fish densities usually correlate in 

this way too, and both of these occur on both scales, it is reasonable to suggest the 

existence of a similar kind of relationship between real habitat quality and modelled 

habitat suitability too. And no matter, whether the model was a density model, because 

density and habitat quality correlate. The question is only one of under what conditions 
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reliable results can be achieved; at least careful application of modelling is needed to 

assure the relationship between modelled and real habitat quality in each study case.  

With the validation of specific models e.g. for a size class, for each season, 

mesohabitat type, and possibly for the size class of river, generally applicable models 

may be achieved for organisms with habitat preferences suitable for this kind of 

modelling. Because of good results in this and earlier works, it can be assumed that 

relatively reliable habitat modelling may already be possible at least for salmon and 

trout fry, and possibly for the next size class of juveniles too, at least in Nordic 

countries. Habitat preferences of different species should be studied further these for as 

e.g. Mäki-Petäys (1999) has done for brown trout. Because the behaviour of trout and 

salmon changes consistently with fish size and a comparison of preference curves from 

different countries showed relatively little variation, modelling these species seems to 

be possible with no or relatively few local adjustments on preference curves.  In many 

other countries, e.g. in France, local preference curves based on large amounts of data 

have also been created the applicability of which could be tested. The findings of this 

work could further be verified by additional modellings with data including sites with 

more varying habitats than the River Simojoki and River Ala-Koitajoki study areas 

representing mostly nearly optimal habitats (Mäki-Petäys et al. 2002), and possibly also 

with data from more southerly conditions. Studies for other life stages and species 

should be conducted. In modelling, important things to consider are the sensitivity of the 

variables used in modelling relative to those factors excluded from modelling, and of 

course, whether other factors, possibly vegetation or shelter in the form of eroded banks, 

should also be used. 

 

6.3.6 The capabilities of the model and suggestions for future studies 
 

In the study, the model was first tested, and after that verification and a sensitivity 

analysis were carried out. Finally, the model was validated with observations of habitat 

use. The measurement methods of observation data allowed studying the ability of the 

model to predict habitat use at scales normally used in modelling. However, the finest 

micro details of habitats are smaller than the scale of observation accuracy. This brought 

uncertainty into the comparison tests in addition to the variation caused by the model. 

The capability of two-dimensional modelling to address the problem of interest, 

the prediction of habitat quality, was discussed. Model residuals seemed to be random.  
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Certain limitations in the applicability and accuracy of predictions exist. The limitations 

are e.g. on the spatial and time scales. The effect of adjacent habitats is not taken into 

account, but it can be estimated visually from maps. Some species can be modelled, but 

some not, and the availability of preference information may be a problem. The basic 

principle of modelling leaves many factors without recognition, and it is important to 

evaluate the effect of these. The interactions of different variables are taken into account 

only by multiplication of preference values from preference curves, or by preference 

surfaces. In practice, the resolutions of measurements and modelling are limited. These 

must be selected so that the phenomenon studied can be addressed. In practice, the 

habitat use during the life cycle of an organism can be taken into consideration by 

modelling the habitats of different life stages of organisms at different seasons. The 

dynamics of habitat use caused e.g. by varying hydraulic conditions can be studied by 

comparing the positions of habitats from habitat maps drawn for different hydraulic 

situations. The physical habitats under rapidly varying flow can be modelled with 

dynamic hydraulic models. Three-dimensional flow is usually not modelled, because 

vertical flow velocities are usually relatively small, but in steep rapids three-

dimensional phenomena may become significant. 

The reasonableness of the model structure and individual model mechanisms 

were studied and they were found to be suitable for the purpose of the model. The 

modelling is relatively straightforward. Changes in the measurement or grid densities or 

parameter values, e.g. when making data models and carrying out hydraulic modelling, 

leads to a predictable response. Near bank areas can rather completely be included in 

models with different methods, which can be adjusted to achieve the precision needed. 

Additionally, hydraulic models with vertical friction exist. The variables used, are 

practical to measure and to model. Modelling is usually used for habitat assessments 

and for planning of habitat rehabilitations, and maps of habitats and the possibility to 

model the effects of different physical habitat rehabilitation alternatives and hydraulic 

conditions make the model suitable for its purpose and useful. 

A sensitivity analysis was made for the habitat model. The selection of preference 

data was the most important thing to consider. First, it must be checked that the habitat 

preferences of the organism can be described by the variables selected. The densities in 

the study areas where the curves were made and the range of available habitat types 

affect the form of the preference curves. Low-quality habitats were usually easily found 

with different types of curves. It is important to verify the applicability of preference 
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curves to the study areas. Field measurement density and measurement methods 

affected the results remarkably, but are controllable. Changing the parameter values 

when they were set originally sensibly, did not affect results much and were easily 

controllable. 

The overall model behaviour corresponded well with expectations. Relatively 

consistent quantitative correspondence between the overall model behaviour, i.e. the 

modelled habitat quality and real system behaviour, i.e. the density of organisms as an 

estimation of real habitat quality, was found. In the studies with the high-quality data at 

River Simojoki and River Ala-Koitajoki, the observed habitat use followed modelled 

habitat quality rather consistently. Because the observed habitat use of juveniles of 

salmon and brown trout ascended together with modelled habitat suitability values, and 

fish were significantly more abundant in the cells with the higher half of modelled 

habitat suitability index values, and the model residuals were random, the behaviour of 

the model, and the model structure of the fish model should be appropriate. Modelling 

of areas with larger spatial habitat quality variations, as was e.g. Laukka area, should be 

even easier. At Laukka area, before rehabilitation, all the 31 fish used the higher half of 

habitat values. However, the data may suffer from spatial and temporal dependencies of 

events. That some observations may be of the same individuals may also reduce the 

effective sample size. Additionally, the observations may have been drawn from a 

smaller subset of the set of available values. However, the cross-section at the bridge 

might moderately represent the habitats of the study area. Grayling preferred a restricted 

combination of water depths and flow velocities available inside the area. This and the 

total preference for the higher habitat values indicate that the result, an accurate 

prediction, would probably have been duplicated with unbiased data, too. 

Modelling the habitats of Persicaria Foliosa was easy because of their clear 

preferences for just some variables; substrate and water depth. It was also easy to collect 

data of the habitats of the herb accurately. Very good predictions were achieved. The 

statistical test of the model for Persicaria Foliosa indicated a very accurate model. This 

was probably caused by an accurate positioning of the organism in the field data, and by 

the clear habitat preferences. The herb is well known to prefer mud as substrate and to 

grow near the water line. If other factors affecting the habitat selection, e.g. related to 

water quality or spreading were controlled, the model might be generalizable. 

 Modelling of the habitats of crayfish seems to be possible also with less laborious 

variables than the clearest habitat quality variable, substrate. Modelling of the habitats 
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was tested with variables potential erosion, water temperature and abundance of sand 

and abundance of soft material. The habitat selection of crayfish and modelled habitat 

suitability were significantly correlated, usually positively. In most cases, but not in all, 

more crayfish were found at traps with modelled habitat suitability index values being in 

the higher half. The trend of habitat use versus suitability was clearly ascending in some 

cases but in some not. These imply that many important variables have been found. 

Whereas the models transferred between other lakes, modellings of habitats at 

Lamminsaari Island, and transferring the models calibrated there to other lakes were in 

most cases unsuccessful. At Lamminsaari Island on Lake Pääjärvi, wind-induced 

currents flowing from one side of the lake towards the other might have changed the 

usual way of action of wind-induced erosion. The effect of wave induced currents and 

other variables, and the combined effects of these at different sized lakes should be 

studied further.  

As a summary, two-dimensional habitat modelling seems to be a useful 

alternative in habitat assessments on certain scales and in planning habitat 

rehabilitations if used and applied in such a manner that the limitations of the 

methodology are remembered. The applicability of the methodology to each new case 

must be checked, e.g. variables suitable for predictions with the methodology must exist 

and reliable preference knowledge of those must be available, and if modelling the 

species under conditions of this kind has not been validated, a comparison with 

observations is recommended.  

The data used in this work were almost totally measured for other purposes than 

for validation of habitat models. To check the results of this work, measurements of 

topography, substrate, flow velocity and water depth, and fish observations should be 

carried out covering the whole of a couple of study areas. The tests carried out in this 

work should be duplicated with this material. Modelled two-dimensional flow fields and 

flow velocities could be validated based on flow velocities measured at different depths 

covering the areas. Three-dimensional modelling could also be compared with both of 

these. A comparison with PHABSIM-modelling carried out within the same study area 

would also be interesting. Validation of habitat modellings for different species, life 

stages and seasons should be carried out. The relationship between observed fish 

densities and habitat quality should be studied further.  

The accuracy of measurements and spatial and temporal representativeness of the 

observation data should be studied and developed so that the results from modellings 
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could be validated reliably. Because of the dynamic habitat use by fish, observed habitat 

use at a certain moment and in a certain place, may not offer fully relevant data for 

comparison. A more reliable indicator of habitat quality should be developed than fish 

observations at a single moment. It might be that making a good model could be easier 

than validating it, because preference curves can be made based on many data, 

experiments and reasoning, while the observation set of data represents only momentary 

habitat use, and getting the accurate flow velocity values at the position of the fish may 

be difficult. Even if the model would describe habitat quality accurately, the dynamic 

habitat use and observation accuracy would result in much weaker results in tests with 

snapshot habitat observations in spatially heterogeneous areas. This kind of a result was 

possibly achieved at Rivers Simojoki and Ala-Koitajoki. Perhaps, the habitat quality of 

the validation study area should be studied and mapped with a spatial precision higher 

than that of the observations, based on several observation data and other physical and 

biological information, and a comparison be made against that. 
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7 CONCLUSIONS 

 

Prediction of abundance of salmon, brown trout and grayling with a two-dimensional 

aquatic habitat model was found to be possible. A consistently ascending trend of 

greater abundance towards higher habitat values was found. The structure of the model 

was found to be adequate, because also the model residuals were random. 

The predictions produced with the model were found to be useful, because 

predictions were possible also inside good-quality habitats inside in which the river bed 

had a heterogeneous microstructure. The prediction was stronger when the habitat 

structure was divided clearer to suitable and unsuitable habitats, still the difference not 

being too evident without modelling. 

With the model, habitat quality can be assessed, because habitat quality and 

abundance are usually correlated. The definition of habitat quality varies. The scale 

might be from habitat quality for a life stage of a species at a season to the quality for 

the whole ecosystem. When we extract a restricted function from an ecosystem, e.g. 

spawning of trout, the habitat requirements can be defined for it. The complicated 

system is divided to smaller parts that are handled separately. Important interactions are 

ignored. However, by modelling the life stages of an organism at different seasons, and 

by comparing the maps of habitats produced, the direct physical habitat quality can be 

assessed. By modellings of the habitats of the prey, e.g. benthos, the scale can be further 

widened. 

The model was found to be an important improvement on previous models. The 

model data is in coordinates, which makes transferring, processing and using data easy 

and positioning is exact. Two-dimensional hydraulic modelling enhances the description 

of hydraulics. The effects of changes in geometry or hydraulic conditions can be 

modelled. 

However, the abundance of organisms the preferences of which don’t depend on 

variables used in modelling can’t be predicted. Neither can spatial scales smaller than 

measurement density nor vertical currents be modelled.  

With different types of preference curves, the suitable and unsuitable habitats 

could be found. The most avoided areas were predicted most accurately. The curves 

from different parts of the world for brown trout fry were found to be similar to each 

other, they transferred well and produced a good prediction of abundance. 
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With two-dimensional hydraulic modelling, flow velocity distributions can be 

modelled accurately, if the in shore areas are densely measured and properly included in 

the model grid. Many types of adjustment are possible for ensuring accurate modelling, 

especially near shore line. 

The accuracy of topographic models can be adjusted by changing the methods 

and density of measurements and grid densities. With methods of anisotropic and line 

interpolation, the quality of models can be further enhanced.   

In sensitivity analyses, the model was found to be most sensitive to the density of 

field measurements of topography and to the selection of preference curves. The 

methods of interpolation affected the results remarkably if the data was sparse. The 

roughness coefficient was found to considerably affect cross-sectional flow distributions 

in shore. 

Additionally, important and useful findings were made of separate factors in 

modelling.  

Preference curves made from similar type of conditions and from large data 

produced the most accurate results. Preference curves to be used should be suitable for 

modelling in the mesohabitat type and conditions of the area to be modelled. Separate 

preference curves should be used for at least summer and winter. Substrate may often be 

an indicator of the mesohabitat type in addition to being a microhabitat parameter. This 

increases the accuracy of the modelling when the modelled area consists partly of 

different mesohabitats. 

The method of making preference curves affects the form of the curves 

remarkably. Preference functions should be constructed by comparing habitat use with 

habitat availability as has been suggested. The results of this work also brought out that 

in classification of values in construction of preference curves, a constant interval 

normally used, would not be the optimal method of division. The number of data 

available to construct the curves in each interval should be considered so that the sample 

is statistically large enough but that the interval doesn’t include too different habitats. 

Special attention should be paid to flow velocity values close to zero. 

The methods of field measurements and interpolation into topographical model 

should cohere. Measurement methods based on echo sounding should be used when 

possible while areas inaccessible by boat are usually measured with tacheometer at 

carefully selected points. Generally, of the basic interpolation methods, triangulation 

should be used where linear forms are found in the channel while Kriging estimates 
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rounder, irregular forms more accurately. With the measurement and interpolation of 

linear forms in topography before the main interpolation, data models can be enhanced 

with the same or even reduced number of measurement points. Anisotropic interpolation 

can be used to enhance data models where anisotropy exists. With coordinate 

conversions, presented for the first time ever in habitat modelling, anisotropic 

interpolation can be used also when the shape of the channel is curvilinear. Topographic 

models of channels with regular cross-sections can be created effectively with the 

methods of anisotropic interpolation, even from a few cross-sections.  

Shallow areas should be properly included in hydraulic models. This should be 

carried out by using a wetting and drying algorithm, if the shore line is not exactly 

measured at every hydraulic situation to be modelled. The model grid should be 

coherent with the shore line and flow directions. Based on an initial model run, the 

model grid should be adjusted. Using proper coefficients of roughness and kinematic 

viscosity is important. To take the effect of flow rate dependence of Manning’s 

coefficient, algorithms adjusting the coefficient after water depth can be used. If needed, 

the cross-sectional flow velocity distributions can be manually calibrated adjusting the 

roughness too. Kinematic viscosity should be set by using automatic algorithms taking 

the effect of flow velocity and element size on it into account. Smoothening of detail 

can be decreased by increasing the density of field measurements and model grids, and 

by avoiding interpolations when possible. 

A totally new two-dimensional habitat modelling of an herb, Persicaria Foliosa, 

based on substrate and water depth, produced a very good prediction of habitat use. This 

was due to clear habitat preferences and accurate observations. The model may be 

transferrable if other factors, e.g. temperature, soil and water quality are controlled. 

Two-dimensional habitat modelling for crayfish based on hydromorphological 

variables was tried for the first time, and it seems to be possible. The effect of wind-

induced water flow on the substrate described by e.g. potential erosion might be a 

practical variable in modelling, while the substrate may be the most accurate indicator 

of habitat quality. The effect of wind is more important at larger lakes with longer free 

wind reaches. Promising correlations between model results and observations of habitat 

use were found, but the behaviour of the model was not consistent in every test. The 

model transferred rather well between all other but one lake. At that lake, currents 

induced by larger scale water level fluctuations might have caused that. Common to all 

data was that the positioning of trap sites was not very accurate. Many important 
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variables were found but the importance and interaction of variables need further studies 

and development to ensure a wide transferability. 

Two-dimensional habitat models were found to work consistently if appropriately 

applied and used, in prediction of abundance of organisms despite a large natural 

variability and dynamics of habitat selection and the difficulty to accurately observe 

habitat selection making the validation of habitat models difficult. Because of these, the 

observed habitat use at a single moment and in a certain place, may not offer fully 

relevant data for comparison. A more reliable indicator of habitat quality should be 

developed for model validations with a higher spatial accuracy and taking more 

temporal and spatial variation into consideration. 
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8 SUMMARY 

 

For the evaluation of the quality of aquatic habitats of different organisms, different 

methods have been developed. As a consequence of easier and faster methods and 

equipment for numerical hydraulic modelling than before, introduction of two-

dimensional habitat models has been the latest development, based on an older IFIM-

methodology. Two-dimensional hydraulic models can effectively be used e.g. in 

assessments of the effects of habitat rehabilitations, construction works, changes in flow 

rates on hydraulic conditions. If the habitat preferences of an organism are known and 

depend on these and the substrate, habitat suitability indices describing habitat quality 

can be calculated and mapped with this type of a habitat model. 

In this work, different two-dimensional models of aquatic habitats of fish, an herb 

and crayfish were developed. In fish habitat modelling, two-dimensional hydraulic 

modelling was used, where only water depth and substrate were used in modelling of 

the habitats of an herb, Persicaria Foliosa, and wind induced potential lake bed erosion 

and other variables were calculated for crayfish. The habitats and abundance of salmon, 

brown trout, grayling, pikeperch, stone loach, bullhead, crayfish and Persicaria Foliosa 

were modelled.  

Models were calibrated with many types of biological material and tested. The 

models for salmonids and the herb were found out to work consistently. Model residuals 

were random. Changes in parameter values lead to a predictable response. Preference 

curves made from similar type of conditions and from large data produced the most 

accurate results.  

The effect of different methods of using biological information, of carrying out 

field measurements and hydraulic modelling were analysed. Line measurements and 

methods of anisotropic interpolation were found to be useful. It is important to include 

shallow areas in hydraulic models. In modelling of these, a wetting and drying 

algorithm, adjustment of roughness coefficient and of the form and size of elements are 

useful. Flow velocity distributions were modelled accurately, if the shore areas were 

densely measured and properly included in the model grid. Smoothening of detail can 

be decreased by increasing the density of field measurements and model grids, and by 

avoiding interpolations when possible. 
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A sensitivity analysis of the whole model was carried out. The selection of 

habitat preference curves and the density of field measurements were found to have the 

greatest effect on results. Preference curves made from similar type of conditions and 

from large data produced the most accurate results. The density of field measurements 

and model grid should be adjusted to the phenomenon studied. A precise description of 

the smallest micro details of flow in shallow, heterogeneous rapids, e.g. behind 

individual stones may require a higher detail in field measurements and modelling. 

The model was validated against observed habitat use. With the models, the 

abundance of the juveniles of salmonids and Persicaria Foliosa could be predicted. The 

observed habitat use of juveniles of salmon and brown trout ascended together with 

modelled habitat suitability values. Based on the statistical test, the fish were 

significantly more abundant in the cells with the higher half of modelled habitat 

suitability index values. At Rivers Simojoki and Ala-Koitajoki, the location of the most 

avoided habitats was found more efficiently than the most preferred areas were 

predicted. This might be due to the methods, detail and scales used in modelling and the 

high densities, but on the other hand, the dynamic habitats use of salmonids and the 

accuracy of fish observations affect the observations. A more reliable indicator of 

habitat quality than momentary observations of fish should be developed against which 

the models could be validated.  

The habitat use of bullhead might depend also on other factors than used in the 

model, e.g. the abundance of its prey. The same might be true for summer habitats of 

pikeperch, or the fish were searching for habitats at the study time, however the winter 

habitats were predicted more accurately. For predictions of abundance of these species, 

modelling of the habitats of the prey could be considered. The prediction of the 

abundance of stone loach was poor. The data for making the preference curves and for 

validation of the predictions of abundance of bullhead and stone loach were small. 

 Habitat modelling of an herb, Persicaria Foliosa, based on substrate and water 

depth, produced a very good prediction of abundance, due to clear habitat preferences 

and accurate observations. The model may be transferrable if other factors, e.g. 

temperature, soil and water quality are controlled. 

Two-dimensional habitat modelling for crayfish based on hydromorphological 

variables was tried for the first time. Correlations between variables and observed 

abundance were found. In tests, the model transferred rather well between all other lakes 
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but one. Many important variables were found but the importance and interaction of 

variables need further studies and development to ensure a wide transferability. 

Two-dimensional habitat models were found to work consistently if appropriately 

applied and used, in prediction of abundance of organisms despite a large natural 

variability and dynamics of habitat selection and the difficulty to accurately observe 

habitat selection making the validation of habitat models difficult. 
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A1  Harrikoski Rapids 

A2  Iso Tainikoski Rapids, lower side area 

A3  Iso Tainikoski Rapids, upper side area 

A4  Hiiskoski Rapids 

A5  Tyltsykoski Rapids 
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A1    HARRIKOSKI RAPIDS 

 

Salmon <10 cm, general preference curves from Rivers Koitajoki, Pyhäjoki, and 

Tenojoki (Mäki-Petäys 2000) 

Salmon <10 cm, general preference curves according to Heggenes (1990) 

 
 

  
Figure A1.1 Habitat suitability for salmon <10 cm with preference curves from Rivers Koitajoki, 

Pyhäjoki, and Tenojoki (Mäki-Petäys 2000), general preference curves by Heggenes (1990), and fish 

observations. 

 
Table A1.1 Available habitat and habitat use and proportion of use to availability for salmon <10 cm with 

preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) and goodness of fit 

tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.2995 68.86 51 0.74 4.63 4.38 -30.63  
0.2995-1 69.14 87 1.26 4.61 4.36 39.98  
Sum 138 138 high/low 9.25 8.74 9.36 9.32 
Average 0.35 0.40 1.70 0.002 0.003 0.002 0.002 
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Figure A1.2 Habitat availability and use and proportion of use to availability for salmon <10 cm with 

preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5



 
 

257 

Table A1.2 Available habitat and habitat use and proportion of use to availability for salmon <10 cm with 

general preference curves by Heggenes (1990) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.1792 68.86 53 0.77 3.65 3.43 -27.75  
0.1792-1 69.14 85 1.23 3.64 3.41 35.11  
sum 138 138 high/low 7.29 6.84 7.36 7.33 
average   1.60 0.007 0.009 0.007 0.007 
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Figure A1.3 Habitat availability and use and proportion of use to availability for salmon <10 cm with 

general preference curves by Heggenes (1990). 
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Salmon >10 cm, general preference curves from Rivers Koitajoki, Pyhäjoki, and 

Tenojoki (Mäki-Petäys 2000) 

Salmon >10 cm, general preference curves according to Heggenes (1990) 

 

 

  
Figure A1.4 Habitat suitability for salmon >10 cm with preference curves from Rivers Koitajoki, 

Pyhäjoki, and Tenojoki (Mäki-Petäys 2000), general preference curves by Heggenes (1990), and fish 

observations. 

 
Table A1.3 Available habitat and habitat use and proportion of use to availability for salmon >10 cm with 

preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) and goodness of fit 

tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.1792 15.47 9 0.58 2.70 2.30 -9.75  
0.1792-1 15.53 22 1.42 2.69 2.29 15.32  
sum 31 31 high/low 5.40 4.60 5.57 5.48 
average     2.43 0.02 0.03 0.02 0.02 
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Figure A1.5 Habitat availability and use and proportion of use to availability for salmon >10 cm with 

preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000). 
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Table A1.4 Available habitat and habitat use and proportion of use to availability for salmon >10 cm with 

general preference curves by Heggenes (1990) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.2825 15.47 14 0.91 0.14 0.06 -2.79  
0.2825-1 15.53 17 1.09 0.14 0.06 3.07  
Sum 31 31 high/low 0.28 0.12 0.28 0.27 
Average     1.21 0.6 0.73 0.6 0.6 
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Figure A1.6 Habitat availability and use and proportion of use to availability for salmon >10 cm with 

general preference curves by Heggenes (1990). 
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Stone loach (Noemacheilus barbatulus), preference curves based on data (Barbatula 

barbatula (L., 1758)) of Lamouroux et al. (1999) 

 

 

 
Figure A1.7 Habitat suitability for stone loach with preference curves based on French data and fish 

observations. 

 
Table A1.5 Available habitat and habitat use and proportion of use to availability for stone loach based 

on Lamouroux et al. (1999) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.3336 15.97 21 1.31 1.58 1.28 11.50  
0.3336-1 15.03 10 0.67 1.68 1.36 -8.15  
sum 31 31 high/low 3.27 2.65 3.35 3.30 
average 0.43 0.37 0.51 -0.07 -0.1 -0.07 -0.07 
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Figure A1.8 Habitat availability and use and proportion of use to availability for stone loach based on 

Lamouroux et al. (1999). 
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Bullhead (Cottus gobio), preference curves based on data of Lamouroux et al. 

(1999) 

 

 

 
Figure A1.9 Habitat suitability for bullhead with preference curves based on Lamouroux et al. (1999) and 

fish observations. 

 
Table A1.6 Available habitat and habitat use and proportion of use to availability for bullhead based on 

Lamouroux et al. (1999) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.3122 20.38 16 0.79 0.94 0.74 -7.74  
0.3122-1 20.62 25 1.21 0.93 0.73 9.62  
sum 41 41 high/low 1.87 1.47 1.88 1.86 
average 0.37 0.40 1.54 0.17 0.23 0.17 0.17 
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Figure A1.10 Habitat availability and use and proportion of use to availability for bullhead based on 

Lamouroux et al. (1999). 
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A2  ISO TAINIKOSKI RAPIDS, LOWER SIDE AREA 

 
 
Salmon <10 cm, general preference curves from Rivers Koitajoki, Pyhäjoki, and 

Tenojoki (Mäki-Petäys 2000) 

Salmon <10 cm, general preference curves by Heggenes (1990) 

 

 

  
Figure A2.1 Habitat suitability for salmon <10 cm with preference curves from Rivers Koitajoki, 

Pyhäjoki, and Tenojoki (Mäki-Petäys 2000), general preference curves according to Heggenes (1990), 

and fish observations. 

 
Table A2.1 Available habitat and habitat use and proportion of use to availability for salmon <10 cm with 

preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) and goodness of fit 

tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.1993 28.44 14 0.49 7.33 6.83 -19.85  
0.1993-1 28.56 43 1.51 7.30 6.81 35.19  
sum 57 57 high/low 14.64 13.64 15.35 15.21 
average     3.06 0.0001 0.0002 <0.0001 <0.0001 
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Figure A2.2 Habitat availability and use and proportion of use to availability for salmon <10 cm with 

preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000). 
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Table A2.2 Available habitat and habitat use and proportion of use to availability for salmon <10 cm with 

general preference curves by Heggenes (1990) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.1239 28.44 12 0.42 9.50 8.94 -20.71  
0.1239-1 28.56 45 1.58 9.47 8.90 40.92  
sum 57 57 high/low 18.97 17.83 20.21 20.04 
average     3.73 <0.0001 <0.0001 <0.0001 <0.0001 
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Figure A2.3 Habitat availability and use and proportion of use to availability for salmon <10 cm with 

general preference curves by Heggenes (1990). 
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Salmon >10 cm, general preference curves from Rivers Koitajoki, Pyhäjoki, and 

Tenojoki (Mäki-Petäys 2000) 

Salmon >10 cm, general preference curves according to Heggenes (1990) 

 

 

  
Figure A2.4 Habitat suitability for salmon >10 cm with preference curves from Rivers Koitajoki, 

Pyhäjoki, and Tenojoki (Mäki-Petäys 2000), general preference curves by Heggenes (1990), and fish 

observations. 

 
Table A2.3 Available habitat and habitat use and proportion of use to availability for salmon >10 cm with 

preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) and goodness of fit 

tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.1239 21.46 11 0.51 5.10 4.62 -14.70  
0.1239-1 21.54 32 1.49 5.07 4.60 25.32  
sum 43 43 high/low 10.17 9.22 10.62 10.50 
average     2.90 0.001 0.002 0.001 0.001 
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Figure A2.5 Habitat availability and use and proportion of use to availability for salmon >10 cm with 

preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000). 
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Table A2.4 Available habitat and habitat use and proportion of use to availability for salmon >10 cm with 

general preference curves by Heggenes (1990) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.1781 21.46 11 0.51 5.10 4.62 -14.70  
0.1781-1 21.54 32 1.49 5.07 4.60 25.32  
sum 43 43 high/low 10.17 9.22 10.62 10.50 
average     2.90 0.002 0.003 0.002 0.002 
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Figure A2.6 Habitat availability and use and proportion of use to availability for salmon >10 cm with 

general preference curves by Heggenes (1990). 
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Grayling 5.1-25.4 cm, preference curves of Hubert et al. (1985), summer 

 

 

 
Figure A2.7 Habitat suitability for grayling 5.1-25.4 cm with the preference curves of Hubert et al. 

(1985) and fish observations. 

 
Table A2.5 Available habitat and habitat use and proportion of use to availability for grayling 5.1-25.4 

cm with the preference curves of Hubert et al. (1985) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0872 10.48 4 0.38 4.01 3.41 -7.70  
0.0872-1 10.52 17 1.62 3.99 3.40 16.31  
sum 21 21 high/low 7.99 6.81 8.61 8.41 
average     4.23 0.005 0.009 0.003 0.004 
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Figure A2.8 Habitat availability and use with uniform interval and proportion of use to availability for 

grayling 5.1-25.4 cm with the preference curves of Hubert et al. (1985). 
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Stone loach, preference curves from Harrikoski Rapids 

 

 

 

 
 

 

 

 

Figure A2.9 Habitat suitability for stone loach with preference curves from Harrikoski Rapids and fish 

observations. 

 
Table A2.6 Available habitat and habitat use and proportion of use to availability for stone loach with 

preference curves from Harrikoski Rapids and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.2115 9.98 12 1.20 0.41 0.23 4.43  
0.2115-1 10.02 8 0.80 0.41 0.23 -3.60  
sum 20 20 high/low 0.82 0.46 0.82 0.80 
average     0.66 -0.37 -0.5 -0.36 -0.37 
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Figure A2.10 Habitat availability and use with uniform interval and proportion of use to availability for 

stone loach with preference curves from Harrikoski Rapids. 
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Stone loach (Noemacheilus barbatulus), preference curves based on data (Barbatula 

barbatula (L., 1758)) of Lamouroux et al. (1999) 

 

 

 
Figure A2.11 Habitat suitability for stone loach with preference curves based on data (Barbatula 

barbatula (L., 1758)) of Lamouroux et al. (1999) and fish observations. 

 
Table A2.7 Available habitat and habitat use and proportion of use to availability for stone loach with 

preference curves based on data (Barbatula barbatula (L., 1758)) of Lamouroux et al. (1999) and 

goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.3934 9.86 6 0.61 1.51 1.14 -5.96  
0.3934-1 10.14 14 1.38 1.47 1.11 9.02  
sum 20 20 high/low 2.97 2.25 3.06 2.99 
average     2.27 0.08 0.13 0.08 0.08 
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Figure A2.12 Habitat availability and use with uniform interval and proportion of use to availability for 

stone loach with preference curves based on data (Barbatula barbatula (L., 1758)) of Lamouroux et al. 

(1999). 
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Bullhead, preference curves from Harrikoski Rapids 

 

 

 
Figure A2.13 Habitat suitability for bullhead with preference curves from Harrikoski Rapids and fish 

observations. 

 
Table A2.8 Available habitat and habitat use and proportion of use to availability for bullhead with 

preference curves from Harrikoski Rapids and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0789 12.47 8 0.64 1.60 1.27 -7.11  
0.0789-1 12.53 17 1.36 1.60 1.26 10.38  
sum 25 25 high/low 3.20 2.53 3.28 3.21 
average     2.12 0.002 0.003 0.002 0.002 
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Figure A2.14 Habitat availability and use with uniform interval and proportion of use to availability for 

bullhead with preference curves from Harrikoski Rapids. 
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Bullhead (Cottus gobio), preference curves based on data of Lamoroux et al. (1999) 

 

 

 
Figure A2.15 Habitat suitability and fish observation map for bullhead with preference curves based on 

data of Lamoroux et al. (1999). 

 
Table A2.9 Available habitat and habitat use and proportion of use to availability for bullhead with 

preference curves based on data of Lamoroux et al. (1999) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.3219 12.84 10 0.78 0.63 0.42 -4.99  
0.3219-1 12.16 15 1.23 0.66 0.45 6.28  
sum 25 25 high/low 1.29 0.87 1.29 1.27 
average     1.58 0.26 0.35 0.26 0.26 
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Figure A2.16 Habitat availability and use with uniform interval and proportion of use to availability for 

bullhead with preference curves based on data of Lamoroux et al. (1999). 
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 A3  ISO TAINIKOSKI RAPIDS, UPPER SIDE AREA 

 

Salmon >10 cm, general preference curves from Rivers Koitajoki, Pyhäjoki, and 

Tenojoki (Mäki-Petäys 2000) 

Salmon >10 cm, general preference curves according to Heggenes (1990) 

 

 Figure A3.1 Habitat suitability for salmon >10 cm with preference curves from Rivers Koitajoki, 

Pyhäjoki, and Tenojoki (Mäki-Petäys 2000), general preference curves by Heggenes (1990), and fish 

observations. 

Table A3.1 Available habitat and habitat use and proportion of use to availability for salmon >10 cm with 

preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) and goodness of fit 

tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.3913 22.43 19 0.85 0.52 0.38 -6.31  
0.3913-1 22.57 26 1.15 0.52 0.38 7.36  
sum 45 45 high/low 1.05 0.76 1.05 1.04 
average     1.36 0.31 0.38 0.31 0.31 
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Figure A3.2 Habitat availability and use with uniform interval and proportion of use to availability for 

salmon >10 cm with preference curves from Rivers Koitajoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 

2000). 
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Table A3.2 Available habitat and habitat use and proportion of use to availability for salmon >10 cm with 

general preference curves according to Heggenes (1990) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.02392 22.43 10 0.45 6.89 6.35 -16.16  
0.02392-1 22.57 35 1.55 6.85 6.31 30.72  
sum 45 45 high/low 13.74 12.65 14.56 14.40 
average     3.48 0.0002 0.0004 0.0001 0.0001 
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Figure A3.3 Habitat availability and use with uniform interval and proportion of use to availability for 
salmon >10 cm with general preference curves by Heggenes (1990). 
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A4  HIISKOSKI RAPIDS 

 

 

Salmon >10 cm, general preference curves from Rivers Simojoki, Pyhäjoki, and 

Tenojoki (Mäki-Petäys 2000), season 1, summer 

 

 

 
Figure A4.1 Habitat suitability measurement lines for salmon >10 cm with preference curves from Rivers 

Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000), marked with coloured circles and fish 

observations marked with crosses. 

 

Table A4.1 Available habitat and habitat use and proportion of use to availability for salmon >10 cm with 

preference curves from Rivers Simojoki, Pyhäjoki, and Tenojoki, (Mäki-Petäys 2000) and goodness of fit 

tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.4194 23.92 19 0.79 1.01 0.82 -8.75  
0.4194-1 24.08 29 1.20 1.00 0.81 10.78  
sum 48 48 high/low 2.02 1.63 2.03 2.01 
average 0.40 0.53 1.52 0.16 0.20 0.15 0.16 
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Figure A4.2 Habitat availability and use with uniform interval and proportion of use to availability for 

salmon >10 cm with preference curves from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 

2000). 

0

10

   0  to  0.1
   0.1  to  0.2
   0.2  to  0.3
   0.3  to  0.4
   0.4  to  0.5
   0.5  to  0.6
   0.6  to  0.7
   0.7  to  0.8
   0.8  to  1

m



 
 

274 

Salmon >10 cm, general preference curves from Rivers Simojoki, Pyhäjoki, and 

Tenojoki (Mäki-Petäys 2000), season 2, warm autumn 

 

 

 
Figure A4.3 Habitat suitability measurement lines for salmon >10 cm with general preference curves 

from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000), marked with coloured circles and fish 

observations marked with crosses. 

 
Table A4.2 Available habitat and habitat use and proportion of use to availability for salmon >10 cm with 

general preference curves from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) and 

goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.4644 32.39 24 0.74 2.17 1.92 -14.39  
0.4644-1 32.61 41 1.26 2.16 1.91 18.77  

sum 65 65 high/low 4.33 3.83 4.38 4.35 
average 0.40 0.52 1.70 0.04 0.05 0.04 0.04 
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Figure A4.4 Habitat availability and use and proportion of use to availability for salmon >10 cm with 

general preference curves from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000). 
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Brown trout <10 cm, general preference curves from Rivers Astervajoki, Kutijoki, 

Kuusinkijoki, Loukusajoki, Rutajoki, and Varisjoki (Mäki-Petäys 2001), season 1, 

summer 

 

 

 
Figure A4.5 Habitat suitability measurement lines for brown trout <10 cm with general preference curves 

from Rivers Astervajoki, Kutijoki, Kuusinkijoki, Loukusajoki, Rutajoki, and Varisjoki (Mäki-Petäys 

2001), marked with coloured circles and fish observations marked with crosses. 

 

Table A4.3 Available habitat and habitat use and proportion of use to availability for brown trout <10 cm 

cm with general preference curves from Rivers Astervajoki, Kutijoki, Kuusinkijoki, Loukusajoki, 

Rutajoki, and Varisjoki (Mäki-Petäys 2001) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.3304 12.46 6 0.48 3.35 2.85 -8.77  
0.3304-1 12.54 19 1.51 3.32 2.83 15.78  

sum 25 25 high/low 6.67 5.68 7.01 6.88 
average 0.33 0.45 3.14 0.01 0.02 0.008 0.009 
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Figure A4.6 Habitat availability and use and proportion of use to availability for brown trout <10 cm with 

general preference curves from Rivers Astervajoki, Kutijoki, Kuusinkijoki, Loukusajoki, Rutajoki, and 

Varisjoki (Mäki-Petäys 2001). 
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Brown trout, 16-25 cm, general preference curves from Rivers Astervajoki, 

Kutijoki, Kuusinkijoki, Loukusajoki, Rutajoki, and Varisjoki (Mäki-Petäys 2001), 

season 1, summer 

 

 

 
Figure A4.7 Habitat suitability measurement lines for brown trout 16-25 cm with general preference 

curves from Rivers Astervajoki, Kutijoki, Kuusinkijoki, Loukusajoki, Rutajoki, and Varisjoki (Mäki-

Petäys 2001), marked with coloured circles and fish observations marked with crosses. 

 

Table A4.4 Available habitat and habitat use and proportion of use to for brown trout 16-25 cm with 

general preference curves from Rivers Astervajoki, Kutijoki, Kuusinkijoki, Loukusajoki, Rutajoki, and 

Varisjoki (Mäki-Petäys 2001) and goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.0610 16.94 10 0.59 2.84 2.45 -10.54  
0.0610-1 17.06 24 1.41 2.82 2.43 16.39  
Sum 34 34 high/low 5.67 4.88 5.84 5.76 
Average 0.10 0.17 2.38 0.02 0.03 0.02 0.02 
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Figure A4.8 Habitat availability and use and proportion of use to availability for salmon >10 cm with 

general preference curves from Rivers Astervajoki, Kutijoki, Kuusinkijoki, Loukusajoki, Rutajoki, and 

Varisjoki (Mäki-Petäys 2001). 
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A5  TYLTSYKOSKI RAPIDS 

 

 

Salmon <10 cm, general preference curves from Rivers Simojoki, Pyhäjoki, and 

Tenojoki (Mäki-Petäys 2000), season 1, summer 

 

 

 
Figure A5.1. Habitat suitability measurement lines  for salmon <10 cm with general preference curves 

from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) marked with coloured circles and fish 

observations marked with crosses. 

 
Table A5.1 Available habitat and habitat use and proportion of use to availability for salmon <10 cm with 

general preference curves from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) and 

goodness of fit tests. 

habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.2907 38.50 25 0.65 4.73 4.39 -21.59  
0.2907-1 38.50 52 1.35 4.73 4.39 31.26  
sum 77 77 high/low 9.47 8.78 9.67 9.61 
average 0.32 0.40 2.08 0.002 0.003 0.002 0.002 
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Figure A5.2 Habitat availability and use and proportion of use to availability for salmon <10 cm with 

general preference curves from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000). 
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Salmon <10 cm, general preference curves from Rivers Simojoki, Pyhäjoki, and 

Tenojoki (Mäki-Petäys 2000), season 2, warm autumn 

 

 

 
Figure A5.3 Habitat suitability measurement lines for salmon <10 cm with general preference curves 

from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) marked with coloured circles and fish 

observations marked with crosses. 

 
Table A5.2 Available habitat and habitat use and proportion of use to availability for salmon <10 cm with 

general preference curves from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) and 

goodness of fit tests. 

habitat value available use Proportion Pearson Yates log-likelihood Williams 
0-0.3029 20.00 15 0.75 1.25 1.01 -8.63  
0.3029-1 20.00 25 1.25 1.25 1.01 11.16  
sum 40 40 high/low 2.50 2.03 2.53 2.50 
average 0.34 0.37 1.67 0.11 0.15 0.11 0.11 
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Figure A5.4 Habitat availability and use and proportion of use to availability for salmon <10 cm with 

general preference curves from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000). 
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Salmon >10 cm, general preference curves from Rivers Simojoki, Pyhäjoki, and 

Tenojoki (Mäki-Petäys 2000), season 1, summer 

 

 

 

 
Figure A5.5 Habitat suitability measurement lines for salmon >10 cm with general preference curves 

from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) marked with coloured circles and fish 

observations marked with crosses. 

 
Table A5.3 Available habitat and habitat use and proportion of use to availability for salmon >10 cm with 

general preference curves from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000) and 
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habitat value available use proportion Pearson Yates log-likelihood Williams 
0-0.5211 14.50 11 0.76 0.84 0.62 -6.08  
0.5211-1 14.50 18 1.24 0.84 0.62 7.78  
sum 29 29 high/low 1.69 1.24 1.71 1.68 
average 0.50 0.60 1.64 0.19 0.27 0.19 0.2 
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Figure A5.6 Habitat availability and use and proportion of use to availability for salmon >10 cm with 

general preference curves from Rivers Simojoki, Pyhäjoki, and Tenojoki (Mäki-Petäys 2000). 
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