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1 Introduction

In this Thesis, we consider a topic that is very interestmmany daily applications, that
is electric charges. This belongs to the branch of scienitedoalectrostatics, which deals
with stationary or very slowly moving charges, and how ieaff the physical properties

of various biomolecules we encounter in the human body [25].

Historically it has been known that some materials such dseaemit light particles after

rubbing. More familiarly, everyone of us knows that whiléhing dry hair with a comb,

individual strands of hair tend to rise up and straighteghgly. This is an example of
static electricity that is produced by the comb into the.lH&yr rubbing the hair one makes
electrons to move from the hair into the comb, leaving a si&pf positive charge carriers
into the hair. This creates a repulsive force between thetipely charged strandes of hair,
causing them to move apart from each other by straightemdgiaing up. In the same

way, amber becomes negatively charged after rubbing.

Other familiar electrostatic phenomena include many seneglamples such as the attrac
tion of plastic wrap to one’s hand after one removes it fromaakage, the apparently
spontaneous explosion of grain silos, damage of electimmgponents during manufac-
turing and the operation of photocopiers. More generalBgteostatic phenomena arise
from the forces that electric charges exert on each othenehathe Coulombic forces.

Even though electrostatically induced forces seem to beeraveak, the electrostatic
force between an electron and a proton that together makeeupydrogen atom, is about

40 orders of magnitude stronger than the gravitational@rcting between them.

Yet another example from daily life is milk, which people irestern countries drink
every day. Milk is an emulsion of water-based fluid and bidtezolloid, which carry an
electrical charge. Each fat globule in milk is surroundedabymembrane consisting of

phospholipids and proteins that keep the individual glebdtom joining together into
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large grains of butterfat and also protects the globuleshftibe fat-digesting activity of
enzymes found in the fluid portion of milk. The largest stures in the fluid portion
of milk are casein protein micelles, which are aggregatesevkeral thousand protein
molecules bonded together by calcium phosphate. The oagdayer of these micelles
consists of strands of one type of protein, Kappa-caseathiag out from the body of
the micelle into the surrounding fluid. These Kappa-casentenules have a negative
electrical charge and therefore repel each other, keeiagrticelles separated under

normal conditions and thus stabilizing this colloidal seisgion in milk [44].

All the examples presented above demonstrate the phenonteab most of scientist

consider as self-evident, namely that similarly charge@ab repel each other, and op-
positely charged objects attract each other. Thus, it wagjamaurprise when in the year
1984 it was reported that two similarly charged plates ettemch other set in contact

with calcium cholaride [19].

1.1 History of Electrostatic Attraction between Similarly Charged

Objects

Electrostatic attraction between similarly charged otgas a recently observed phe-
nomenom and was not measured before 1986 by Johan Marra enirvemts between
two phosphatidylglycerols embedded into an aqueous soluibntaining calciumchlo-
ride, CaCl, [43], and later by Kjellander et al. [27] between two chargeida surfaces

again in the presence 6faCl,.

In simulations this was observed already in 1984 by Gulbeetral. [19] for two planar
surfaces. Much later it was observed by Grosberg-Jensetwtocylindrical rods [17]

and by Nordenskiold et al. between many cylindrical rodqd.[41
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These observations led to a huge activity in the field of teecal physics, especially
paving way to the development of field theories to calculaghdr order corrections
around the Poisson-Boltzmann equation (PB), which had tradrtionally used to cal-
culate ion distributions. In the PB-approach, it is assuiad each ion interacts with
a mean-field potential created by all the other ions. At theeséime, it was already
discovered how to calculate the statistics of ions inteéngdihrough Coulombic interac-
tion, i.e. the Coulomb gas. Lenard and Edwards were the fires do show how the
grand-canonical partition function could be cast into alfigleoretic form, involving the

integration over a field-variable called the fluctuatingcélestatic potential [13].

Almost thirty years after this, Podgornik and Zeks [57] wére first ones to show that
the saddle-point of the field-theoretic formulation copasds to the so-called Poisson-
Boltzmann (PB) equation, which describes the Poisson law e Boltzmann distribu-
tion for the counter- and coions. Later, Podgornik devetbagath-integral technique
such that it was possible to calculate loop-correctionsiradahe saddle-point potential,
for the system of a one-dimensional Coulombic gas betweenptanar surfaces [55].
These corrections predict the onset of attraction betwaerptanes, but the problem is
that the fluctuation part of the free energy dominates oveiB result in the regime of
attraction. This means that although qualitatively carréee fluctuations around the PB

equation do not quantitatively explain either experimeotaimulation data.

Finally, in 2000 Roland Netz [51] was able to show that thelftekory for a counterion
only fluid interacting with a charged surface can be castardomensionless form, where
only a single parameter enters the problem: the so-callexth&tCoupling (SC) param-
eter, corresponding to the strength of the electrostatieraction between counterions
and the charged surface. Later, he showed explicitly thtterimit where this coupling
parameter goes to zero, one recovers the PB theory, wherehs bpposite limit of an
infinitely large coupling parameter there is a novel theoettregime to be called the SC
theory. The biggest difference between the PB and the SCiéisas that the SC theory

describes the interaction between a single particle andhtierocharge, whereas PB de-



24

scribes a single particle being in the average potentialteceby all the other ions and the

macrocharge.

Netz also calculated explicitly the electrostatic pressbetween two infinite charged
walls, and showed that for a certain range of separationgdagt the walls, the pressure
is negative, corresponding tcaa attraction between the similarly charged wallsater,

Naji et al. [50] showed that in the SC limit also two chargedsattract each other if the

linear charge density exceeds a certain threshold value.

In this Thesis, our purpose is to extend the SC-theory by Nétrch accounts for effects
due to counterions. We do this by introducing also electeosalt into the field-theoretic
grand-canonical partition function. This is done by addm@®ebye-Huckel screening
factor into the field-theoretic propagator and subtractinerturbatively using the virial
expansion. Implicitly, this means that the electrolyte salveakly coupled to the charged
surface, but the counterions are strongly coupled. In addihis also means that our
theory describes a system which has a moderate or large drmbadded salt. Thus we
name the theory the Strong Coupling with Debye-Huckel héSC-DH).

1.2 Overview of Charged Biopolymers

A polymer is a large molecule, or macromolecule, compridaeeating structural units
called monomers typically connected by chemical bondsl-Welwn examples of poly-
mers include plastics and proteins. A very simple exampkedlymer is polypropylene,
whose repeating units are propane molecudlgHs, which are bonded to each other via

covalent bonds between the carbon atoms.

Biopolymers, instead, are a class of polymers producedvinygiorgsnisms. Starch, pro-
teins and peptides, DNA and RNA are examples of biopolynershich the monomeric

units are sugars, amino acids, and nucleotides, resphctive
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The major difference between polymers and biopolymers edioind in their structures.
Biopolymers often have a well defined structure that typycednsists of a hierarchy of
different substructures at various length scales. Thetestemmical composition of the
repetitive units along a biomolecule is called the primarycure. The secondary and/or
tertiary structure determines the biological functionshapolymers, which depend in
a complicated way on the primary structure. To the contraypthetic polymers have

usually much simpler and more random or stochastic strastur

In this Thesis, we consider perhaps the most famous of glidiymers, deoxyribonucleic
acid, more familiarly known as DNA. DNA is a nucleic acid thaintains the genetic
instructions used in the development and functioning okatiwn living organisms and
some viruses. The main role of DNA molecules is the long-tstonage of information.
DNA is often compared to a recipe, or a code, since it contdi@snstructions needed to
construct other components of cells, such as proteins. T gments that carry this
genetic information are called genes, and other DNA se@shave structural purposes,

or are involved in regulating the use of this genetic infotiora

Physicochemically, DNA consists of two long polymers oftsralled nucleotides, with
backbones made of sugars and phosphate groups joined bpests. Thus we call this
“normal” form of DNA a double stranded (ds) ds-DNA. Here thetsingle strands (ss)
run in opposite directions to each other and are therefatiepanallel. Attached to each
sugar in the strand is one of four types of molecules callee®aThe two strands are
attached to each other through hydrogen bonds between basggposite strands. It is
usually argued [6] that DNA adopts the double helical comfation mainly due to the
hydrophobicity of the bases. The bases want to stay away\rater, and in equilibrium
at a distance 03.3A away from each other. To the contrary, the phosphates parasted
by a distance ofA along the nucleotide. The only conformation to obey bothstmints

is the double-helix.

DNA looks very different when considered at different ldmgales. DNA is usually
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called a stiff polymer, since the persistence length beldvictv the monomers can be
thought to be correlated is very large, being arowddnm for B-DNA. However, at
somewhat larger scales the secondary structure of DNA shupysand the molecule
starts to bend to form what is called a Gaussian chain in petyphysics, composing
of loose strands of larger units, having length equal to cersigtence length. The per-
sistence length strongly depends on the electrostaticaictien between the phosphate
groups, and this repulsive interaction is responsible fiertery stiff primary structure
of DNA. However, at length scales way above the persistegregth, one can think that
the Coulombic interaction is screened out, and the diffepamts of the chain become
uncorrelated. The screening is mainly caused by the plogicdl concentration of elec-
trolyte salt that is inside the cell. Thus, the secondamnycstire results mainly from the
competition between the elastic bending energy of the DN#kbane and the chemical

bonding between these larger units of DNA.

In this Thesis, we consider DNA in both above mentioned lersgiales. In Sec. 3 we
focus on finding the force-extension relation for DNA thasisetched from one end. We
use the elasticity theory of Podgornik et al. [56] and comlinwith an ad hoc model
for base pair bonding proposed by Ahsan et al. [1]. Later wiaéitexperimental data by
Wenner et al. [70] to our theoretical force-extension felato find the salt-dependence
of different parameters. Based on this we suggest that domdynodel describes the
salt dependence of the overstretching force, and also thatieq of state of DNA at
least for two orders of magnitude of the external force. LateSec. 4, we study the
sedimentation of a long DNA chain, exceeding the persigtégregth by a factor of(0,
and suggest how the sedimentation velocity, diffusionfo@eht and the shape of DNA
depend on its length. In both applications, the electradgiéplays a significant role, and
the main purpose of this Thesis is to develop a theoretieahéwork to model the effect

of salt on the physical properties of the DNA chain under aberstion.
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2 Electrostatics of Counterions and Coions

around Planar Charged Wall

Electrostatic interactions play a key role in controllifgetstructure and phase behav-
ior of macroions in aqueous solutions. Examples of biolalycrelevant macroions are
charged biomembranes, stiff polyelectrolytes such as DNRARNA, or charged colloidal
particles. Water solubility of these macroions arises asmsequence of translational en-
tropy of weakly bound counter-ions. Instead of sitting élaan the charged surface, the
counterions want to escape some distance away from theezhaqg. In order to under-
stand the behavior of systems composed of charged molecue$as to understand the

counterion and coion distributions associated with eadhese charged objects.

The traditional approach towards charged systems has hed?Poisson-Boltzmann (PB)
approximation, in which the Coulombic interaction betwéka ions is handled on the
mean-field or saddle-point level [40]. This approximatic@cbmes valid in the weak-
coupling limit that corresponds to a low surface charge dgrnsw valence of counteri-

ons, or high temperature. The common feature for all of tigesical factors is that they
make the counterion translational entropy to increase,imgatounterions willing to es-

cape from the charged objects. In the PB theory one can talkentabe of the long-range
nature of the Coulombic potential, because one chargedcieadr ion interacts with

many surrounding particles at the same time, and the melahafsgproach works pretty
well and even gives results that are in agreement with exyrial and simulation results
[40, 51]. However, in many situations the PB approximatiogalks down; this happens
in the case of multivalent counterions, low temperatured,far highly charged surfaces.
There has been a number of attempts to calculate correc¢bdhs PB theory; correlated
density fluctuations around the mean-field distributiord additional non-electrostatic

interactions due to the finite size of the particles [5, 28,573.
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These corrections become especially important for theanten between similarly charged
macroscopic objects. It has been known for more than twesdys/from experiments that
highly charged planar walls attract each other in the preseh multivalent counterions.
This electrostatic attraction may have many practical eqnences; for example the re-
striction of the swelling of calcium clay particles [28],deced water uptake of charged
lamellar membrane systems [71], it has also been obserwbdswiface force apparatus
[26], and recently between DNA molecules by using simutatieethods [11]. This phe-
nomenon has been tried to explain with different kind of agpnate theories described
above, but with a consequence that they are valid only fomasgtic distances from the

walls.

An alternative approach was discovered by Rouzina and Biietshh Shklovskii and

coworkers, and later by Moreira and Netz [48, 49, 51, 62].sTikd to a development
of a new theory, called the Strong Coupling (SC) theory, WhHiecomes exact in the
limit of high surface charge, multivalent counterions, @vltemperature. Clearly this is
the opposite to the PB limit, and thus these two theories psytsally embrace all pos-
sible scenarios, at least for temperatures well above zériwh is biologically relevant.

SC is based on the idea that counterions at strongly chargéaces form an effective
two-dimensional layer. Thus we can loosely talk about cexaih condensation in the SC
theory [42]. Mathematically, the SC theory is a standareal/gxpansion in terms of the
Mayer functions and single particle densities. The SC theoessentially a one patrticle
theory, since it assumes that timteraction between ions and the macroidominates

completely over the ion-ion interactions, thus giving thegkest contribution to the par-
tition function and ion densities. In the SC theory attractbetween similarly charged
objects arises naturally and self-consistently with veelitrolled limits to predict the

range of validity of the theory.

In addition to counterions, in a biological environment aifs encounters other ion types
involved in the equilibration process, namely reservoit ieas. If the reservoir salt con-

centrations are small compared to real counterion conagoitr close to charged objects,
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one may think that the zero-salt (PB or SC) theories may appl[40, 51]. However,
in biological conditions inside the cell this reservoirtsadncentration is typically of the
order [Na*] = 100 mM, which corresponds to a relatively small separation leetw
the nearest salt ions. When the salt ion concentrationsstaibe of the same order as
the counterion concentration around the charged objeetnmay expect to find different
equilibrium behavior for the system [62]. Mathematicathjis corresponds to a fact that
the Coulombic interaction is screened out and we are led toettle PB or Debye-Hickel

(DH) regimes.

In the existing literature, there is no consistent formolatffor the partition function of
counterions around a macroscopic charged object in ther8i€vith bulk salt included.
Thus, we want to extend the electrostatics formalism to isterstly take into account
bulk salt effects. The main results are presented in a gefegna in Sec. 2.1, where we
present the leading order results derived in Article | ostlihesis, and the next-leading
corrections to the ion densities considered in Articletlturns out that especially the first
order densities contain very rich physics that shows up émtiimber of different length

scales pertinent to the theory.

Before we formulate the theoretical model in a general fosma,want to introduce the
relevant length scales and parameters in the problem, awdishscaling arguments what
should be expected from the mathematical formalism. The mygmortant length scale in
the problem of counterions and charged macroscopic olgebeiGouy-ChapmarGC)
length, defined as

p=1/2mq.04lp o q.T/o, (2.1)

whereg, is the counterion valence, is the surface charge density ahd= ¢*/4rekpT

is the Bjerrum length, which measures the distance at winohunit charges interact with
thermal energy; in watdlz ~ 0.71 nm at room temperature. Heeds the unit charge,

e is the dielectric constant is temperature, anflz is the Boltzmann factor. The GC
length measures the distance from the charged surface elhwie electrostatic potential

energy of an ion interacting with the surface reaches thetakenergykzT'. In terms of
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physics, this length scale measures the average distanmesdfom the charged object.

Later, in defining the whole field-theoretic formulation fitne problem, it turns out that
we can expand the partition function around the dimensgsnparameter that is defined

in terms of the the GC length and the Bjerrum length as
E =250, x 2o /T?, (2.2)

which we call the Strong Coupling parameter, in the spirthef SC theory a la Netz [51].

A third very important length scale, which can be relatedhe two previous ones, is
the lateral distance between the charges on the chargectolfgch corresponds to the
surface charge density of the object. It is defined by thigkivat due to electroneutrality

one ion on average occupies a circle of radiusas

ma% = q/0os, (2.3)
which leads to
a; =/ (QC/WO—S) =V 25“7 (24)

and is independent of temperature, thus allowing to apbrtiae zero temperature limit
[67]. This lateral distance is important, because in the &fimne we can express the
concentration of the two-dimensional counterion layerégy [

O 1

Cqep madp

(2.5)

N

The concentration of this type of strongly correlated dificounterion layer should be

independent of the bulk ion concentration, as long as thie gtrength
1= 13 A2 (2.6)
2 i 149 "

is significantly less thamg, i.e. I < n,. HereA; andg; are the concentrations and
valences of different ion types. This clearly means thantetion concentration on the

surface should be much larger than the reservoir salt cdratem.
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Furthermore, we introduce a very important length-scakedking the range of the elec-

trostatic interaction, namely tH2ebye screening lengtiefined as
oy = K° = 8rlpl. (2.7)

It has a clear physical meaning, since it measures the desttrwhich the Coulomb inter-
action becomes screened by the surrounding ions. Now weasaly see the connection

between the Debye length and the criterfog n, since this can be written as
ki < 1. (2.8)

It was shown in Article | of the Thesis that the parametgrtogether with= completely

determines the zeroth order ion densities.

In Article Il we extend our goal to calculate also the first@rtn densities that explicitly
take into account the ion-ion interactions through the Mdyactions. This means that
oppositely charged particles attract each other, and westick to as close to each other
as possible. Formally, we end up with infinite interactiomts, unless we set a hardcore
interaction potential between all the particles. Thereraemy ways of doing that such
as using Lennard-Jones forces etc., but here we follow tin@lsst route by handling
the short range forces by delta-functions. This means theteainteraction integrals are
restricted from below by a hardcore radiuthat should correspond to the experimentally
measured value of the ion radius of the ion type under coraida. Thus, we get an
extra parameter, which enters as a combination of ion diarfef valences of oppositely
charged ions, herg_ andg. (being typically larger thag, ) and the Bjerrum length, and

due to Mayer function expansion always enters as an exp@hehthe combination

qeq-1
> Ly (2.9)

Its contribution to ion-densities becomes the more impurthe smaller the numerical

value of ion radius is, implying ion pairing into the so-ealIBjerrum pairs.

Later, in Sec. 2.1 we present the results of the derivatiamedn Articles | and II. We

evaluate the ion densities around an arbitrary macroscompécged object interacting
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with its counterions and with an arbitrary concentratiorbafk salt that is electroneu-
tral by itself. We calculate the ion densities in the theigedly cumbersome regime
= > 1,kp > 0 in the phase diagram of the system. This regime also conth&s
phase lines;. = =2, corresponding to the transition from the strong coupliegime to
the weak coupling, or DH-regime. We call the novel regiménmphase diagram between
the zero-salt SC and DH &trong Coupling with Weak Debye-HUcK8IC-DH) regime,
which corresponds t& > 1 and2a/¢%lp < ku < ZY/2. Mathematically, this formula-
tion corresponds to a standard virial approximation, meguinat all ion concentrations
are small. From this regime one can interpolate to the litpit— oo by re-expanding
the Mayer functions in terms of the Debye-Hiickel potenfidlis is shown for the case
of one infinite plate in Sec. 2.1.2. However, we will also shbat in the zero salt limit
all the higher order densites contain terms being equaigelan magnitude as the zeroth
order density. This means that the novel SC-DH theory workg m the presence of a

moderate or large concentration of excess salt.

Later in Sec. 2.1, we explicitly obtain results for the cata macroscopic charged body
being one infinite wall. We calculate the ion densities ta#eiorder and to first order
in ion fugacitiesA,. This way we obtain criteria for the validity of the resulis@as a
function of the distance from the walls, and see that it isset-evident to talk about
different parameter regimes per se, but that one also séfesedt kind of physics for

different distances from the wall.

Finally, Sec. 2.2 summarizes all the key points studied itiches | and IlI. In the very
end, we discuss possible applications of our formalismudysthe interaction between

DNA type of biopolymers.



33

2.1 Field Theory for Co- and Counterions Around Infinite Char ged
Wall

We start by constructing the partition function for a systemV. positively charged
counterions of valenceg: in a vicinity of a continuous charged macroscopic object of
surface charge distributiono(r). These are surrounded by an external salt bath, which
is composed ofV, positively charged ions of valenge and/N_ negatively charged ions
of valence;_, both interacting with the macroscopic body and its couoter. The idea in
this derivation is thafV counterions exactly neutralize the macroscopic chargeyeds
the remainingV, positive ions andV_ negative ions form an electroneutral screening
medium such that, N, = ¢_N_. All the ions and the macroscopic charged object
interact via the Coulomb potential(r) = Iz/|r|. The grand-canonical partition function
Q for this system can be cast into a field-theoretic form, asstasvn in Articles | and I
of this Thesis, and it can be written with the help of the fieddiabley, corresponding to
a fluctuating electrostatic field as

0= /D—¢e—ﬁ[¢1, (2.10)

Zpu

where the Hamiltonian is

Hlp] = %/drdr/d)(r)vp}{(r —1')p(r') — 7;5—; /drd)(r)a(r) — % /drei%‘z’(r)*%qg“m(o)

AJF —i r)+1iv 1 1
~ 3 dr {e +9()+3v0m(0) 4 §Qi¢(r)2 - 59301)1{(0)}
_ E dr {e+iq—¢>(r)+évm(0) + lqu)(r)? _ EQQUDH(O)} 7
27 2 2
(2.12)
and the DH propagator is given by
1
vt —1') = m[—VQ + ko (r — 1), (2.12)

having a well-known free space inverse of

vpu(r) = I i) (2.13)

7]
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Here, we explicitly add the screening into the Coulombicpagator, and later subtract
it perturbatively by using the virial expansion. This wods long as the? terms in the
exponential are small compared to unity, allowing the es@mof the exponential af?.
Later, after carrying out the virial expansion in terms d¢f@ah densities, one cannot force
x — 0 anymore. Otherwise, it would happen that the expangtetérms would become
more and more important to the higher orders in ion densiflémis, we expect that the
virial expansion introduced here works properly only in lingit of a large concentration

of excess salt.

The main result of Article Il are the grand-canonical ddasiof all ion types in the SC
limit = — oo, corresponding to the virial expansion with respect to@ll-species. For

the counterions one obtains the following density [61]
pelrr) = ALt 4 {Aleney

_(A(C))Q/dr2€‘ku(l‘1)QCU(I'Q) |:1 _ equvDH(rler)]

_AOAE /dr2€—qcu(r1)+qu(rz) [1 _ e+qu—vDH(r1—r2)}

(2.14)

—ASAi / dr26qu(r1)fq+U(r2) [1 _ echq+vDH(r1*r2)}

/12
Sl A(C)/drge”i“(“)HqchH(rl — 1) — u(rg)]2} + O (AY)
= pe(r1) + pe(r1) + O (p7)
and for the negative and positive salt ions we find
pi(ry) = A(:)te:FQ:tu(rl) + {AlieﬂFqiu(ﬁ)
_(Aoi)Q/dr26$Qiu(r1)iq¢u(r2) [1 _ 6*qivDH(I'1*I'2)j|
1 2 2
5 dz[Fasvpn (v —r2) —u(r)]
_AOiA(c] / dmeﬁiu(rl)chu(rz) [1 _ €¥chivDH(rrrz)] (2-15)

CA2AY / drpe Tzl [] _ phasarvon(n—ra)]

I€2

Ay /drleﬁiu(“)[iqivDH(rl — 1) —u(ry)]” p + O (A7)
8’/TZB

= po(r1) + pe(ra) + O (02) -
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Here the single particle interaction energy with the chdrgigrface plays a dominant role

in determining the ion densities, and is given by

u(r) = o / dr'o (1) [ops (') — s (r — )], (2.16)

™

whereA, andgq, stand for the fugacities and valences of all ion types.

The ion fugacities\,, are determined in the grand canonical ensemble by requiiniaig
the integral of the total charge density over the domain n§iequals the total charge of

the surface of the macroion. The normalization is made dsgl@rder in ion densities as

/ dr (gepl(r) + qepS(r) —qp’ (r)) = / dro(r);
[ et @) + st 0) - ot @) = 0 (2.17)

where each one of the equations actually contains two pategly an infinite bulk part
and a finite normalizable part. This is a consequence of ttietliat in the presence of
screening, none of the ion-densities drop to zero infinifalyaway from the charged
macroion, but instead approach a finite bulk concentratlarother words, all the ions
have a finite probability of getting into the bulk. This medhat we have now three
unknown variableg A%, A* | A* } to all orders in densities, such that on top of Egs. (2.17),

one also has to expand Egs. (2.6) and (2.7) to all orders as

SWZB(in3_+qEA(1) = K%

CAE+ AN =0, k>1 (2.18)

Egs. (2.17) and (2.18) uniquely determine the fugacitiesllabn types to any order, and

we will use them in what follows for an infinite charged plate.

2.1.1 Zeroth Order Densities

Let us consider the zeroth order ion densities for the caseabfarged plane, located at

z = 0, which is impenetrable for the counterions and thus rdstad mobile ions to the
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Figure 2.1: An infinite charged plate interacting with ions: (a) Forloshlt concetration
much smaller tham,, the distance between the salt ians= ns_l/?’ is much larger than
the Gouy-Chapman length. In this regime we can considerasadt small perturbation
around the pure SC results [51]. b) When salt ion conceptragtarts to be of the same
magnitude as counterion concentration, the salt ions paedbetween counterions and
charged surface, validating the Debye screening pict [6

positive half space > 0. The charge distribution is given by the Dirac delta funetio
o(r) = o040(z), whereo, is the two-dimensional surface charge density. The redcale
single-particle interaction energy created by one chawgaki defined in Eq. (2.16), is
given by

ulz) = qekpt
and reduces correctly t0o — 0 studied in [51] .

[1— e, (2.19)

The zeroth order counterion density can be calculated frgm(E14) and Eq. (2.17) as
p(z) = A time (2.20)

and for salt ions
P (z) = A eFalime ™ /aern (2.21)

The normalization condition for the ion distributions reas
[ lote) + 20 = 22 = [ dzotz) = (2.22)
Next we expand the fugacities according to

Ao = A2+ AL +O(A2), (2.23)
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and insert this to the normalization condition Eq. (2.22)eréiwe also rescale all the
fugacities byq.o, /1, such that they become dimensionless. After a little bitigélra

we find the rescaled counterion fugacity

ey . . J(ger
o7 = et {2lgp et TN g ] = qerpet " (flge / (qern)) — Fl=a-/ (@emp))}
{211/ (k)] (q- + que' @ Ty 4 fla [ (qerp)] — fl—q-/(gerp)] }
rku—0 1 qz
il Rt — (5_2 - 1)(&“)2'
9+
(2.24)
The salt ion fugacities expressed with the help of this are
0
gAY =[0.5¢ (HM)Q _ q_e—(q++q7)/(tIcw)A0] .
os/ 1 ‘ ¢
g+ + q_e™ (@ Ta)/(aerm)] (2.25)
wu—0 1 g2 2
S0 2 ()2
0
% — ¢4~/ (gerp) [e_‘”/(qc”“)AS)r + e—l/(w)A(cJ]
o/ H , (2.26)
0, G L e o v2 ) o)
q-2¢;
where we have defined an auxiliary function
flz] = Eil2] — 7 —log [|]]. (2.27)

Here we have used the standard “Mathematica” names foragenctions, andy is the
Euler gamma given by = 0.57.... The final limiting form arises in the limiky — 0,
which we are especially interested in. This leads to the fxakession for the zeroth

order density as

o R (] — e ") /k
P = BT 1oty 0 (L~
Y (2.28)
Kpu—0 —z/u 2
0, bt — (1~ EP)

First of all, this demonstrates that against our expeatatithe zeroth order density of our

theory agrees exactly with the zero salt SC theory a la Netz jagiven by

p0(z) 20, e, (2.29)
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Furthermore, Eq. (2.28) indicates that the density is redwtose to the wall compared
to the zero salt case of Netz. This means that counterionmare spread out to the

surrounding space in the presence of salt.

However, as was already mentioned at the beginning of SécirRthis artificial zero-
salt limit all the higher orders will contain terms that arerieasingly important, thus
invalidating the virial expansion. We will show in Sec. 2 that this comes out already

to first order in ion densities.

The next-leading corrections to ion densities can in pplecbe evaluated from Eqgs.
(2.14) and (2.15). The final expressions are so complicdtadwe have to resort to

further approximations in order to get an analytical santi

2.1.2 First Order Densities

First order densities cannot be evaluated in a closed fouhtlaus one needs to resort to
further approximations. Before introducing these, letidcalate exactly the interaction

integral between the DH salt and the ion densities, i.e.

Tt (o 2) = / A [ guvpi(r — ') — u(ra)P

q2l2
= 27?3—3(6_2”2 —2k211'0, 2K2])
. § (2.30)
F 27 q:f;fu (ze7"* — e "% [2k)
. 212 lg 3 1
#0271_ an an[—Z——] :
26 QR 2 2K

whereI'[0, z] is the incomplete gamma function of zeroth order. This hanaash limit
to the zero salt case if we renormalize the last termif(q., z) by subtracting its value
at z = 0 from it. This can be done by including these constant terrs fiinst order

fugacities, to be determined later from Egs. (2.17) and8R.IThus, we can write the
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interaction integral between the DH salt and ion densitges a

Tpn(gas ) = / dr' [ guvpi (r — 1) — u(ry)]

quZQB —2Kz 2 31
= 271'%(6 — 2:‘4}21—‘[0, 2/‘62]) ( . )
ol
F QquKQBM(Ze“Z + (1 — e ")/2k).

After this, one can easily solve the bulk part of the nornadlon integral Eq. (2.17) by
noticing that the Mayer functions— e~%%vr# () vanish exponentially fast at,| — oo
and do not have any contribution to bulk values. Thus, thedirder bulk neutrality reads

aS
qcl (& C C q+lc+ =+ =+

_ 0 (50)[AL o 49—
= q-p-(00)[AZ/A 8qc/w]'

This combined with Eq. (2.17) gives a finite solution fok., A, A_} for all values of

KL

In what follows, we present three cases where the ion-igraation term described by
the Mayer functions can be calculated approximately. Kir& of them is the artificial
limit xp — 0, which we do not expect to give the right zero salt SC limif][5lhe second
one of them is the regime where our theory becomes valid,f@third one is the excess

salt limit where all the interactions are screened complete

(1) Artificial zero salt limit

In the extremely small salt concentration limit, one can teefollowing strategy. We
assume that the Debye screening length is the largest length scale, and evaluate the
integrals over the Mayer function in Egs. (2.14) and (2.18lyap tox . This allows

one to expand the single-particle interaction as

z

qept’

u(z) 0,

(2.33)
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and the two-particle interaction in the Mayer function cantkeated as a Coulombic
interaction, i.e. vpy(r) Lk ve(r). After these approximations the density-density

interaction terms in Egs. (2.14) and (2.15) read as
Lup(2) = 88, [ @) [1 - gras-conier)
rp—0 Ag/dr/eiq“u(zl) [1 _ €+ch—vc(r*r’)}

— 2 AO
Eoeo q_gﬂemz/(qcu)

% =
y {:t[ZSeig quqanlB/z . (2&)36iq§ci‘1+QaQBlB/2a]‘Z22a
:F[(Ft; ) e:':qgg# +QaQﬂHlB _ (2@) qa# +QaQﬁlB/2a]} (2'34)

1 A
+ Age¥Qaz/(QCﬂ) {iiAg (2 + q . [:F2 + qaZ/(qCH)])
C

:Fe:':(qaz/(QCN)'f'n_l)/p (2 + da [£2 + qa/(ch)])}
K

c

A%
C]c o o Fqaz/(gen) [+9+(£2, %20, qa, q5)
qa =

Tg+(Fr1, F20, Gar g8) + Sal2)] -
Here the second limit actually holds onlygfu is smaller than the ion diametgs. Here

we have also defined the auxiliary functions

9+(2,2a, qu, q3) = 53 etaz1/(aep)taaasln /21

_ (Qa)3eﬂ:tzc«2a/(qcu)iqaqﬁls/%7

(2.35)

and

1 0Z
sal2) = 3@+

[F2 + a1/ (gc1)])

q:ﬂ [£2 + qo/(gekp)]) }-

(2.36)

¥ eT(daz1/(gep)+r )/N(Q +

c

In EQ. (2.34) the first term describes the density atstheond layebehind the condensed
layer of counterions close to the surface. On the other hdredsecond term makes a
small contribution to ion densities in thiest layer, being however smaller than the first

term in accord with the SC theory.
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Furthermore, the Debye-Huckel salt interaction with ionglges is given by Eq. (2.31),
and gives a contributior? /(87lg)Ipn(qa, 2) — :F3gaz to ion densities in theay — 0

limit, which is not small compared to the zeroth order densliyt actually of the same
order. Once again, this confirms that SC-DH theory does metigght predictions in the

zero salt limit.

With the help of the previous expressions we can evaluatértheng form of the first

order counterion density as

pe(2) = pe(2)
X {Ai/A(C) + 27rA2u3e_Z/“ [g,(+z, 2a, G, qc) — 9 (—r1, —2a, q., qc)]

2

4q: AO 3 —qi2/(qem) -1
2r— drEdelt — 2 c) — Y-\ 7_2 ’ » Ye
qur +H€ [g ( <, a7q+7q) g ( Kk a, 4+, 4 )] (237)

2
qc —z/(qc —
27r—q2 AL ppet a2 (g (=2, —2a,q-,¢c) — g-(k ", 2a, -, ¢c)]

I€2

87’(’[3

+8c(2) + 54(2) + s-(2) —

Tonla ) |

where the first-order fugacity is determined later by noimaion. Salt ion densities are

determined similarly as

ph(2) = L (2)
X {A /AO + 27TA0 s [g_(+2, 2@, qc, q-l—) - g—(_ﬂ_la —QCL, qc, q+>i|

qc —q+2/(qc -
27Tq_2A?ke a+2/(aen) |:g—(+272a7 q-l—uQ-i—) _g—(_’i 17_2a7q+7Q+)]
+

2
q. _2/(qe
27rq—2A(le+‘1 /@) (g, (=2, —2a,q-,q1) — 9- (K", 2a,q_, q1)]

: }

(2.38)

+8.(2) +51(2) +s_(2) — 8
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and

pr(z) = p”(2)
x {AL/AY + 27 A% P gy (42,20, ey q-) — g4 (=K1, —2a, ey g )]

2
e N0 ,—ar2/(aem) -

9O e A0 o=a+2/(acp 2 )= — -2 -

wqi L€ [g+(+2, a,q4,q-) = g+(=K ", 20,44, ¢ )} (2.39)
2
qc -z c

2w N0 eta-#/e) (g (—2 —2a,q ,q ) — g (K", 2a,q_,q )]

"‘50(2) + 3-1—(2) + S_(Z) - 87l }

From Egs. (2.37), (2.38) and (2.39) we can extrackitae— 0 result by counting only the
smallest powers of .. This way all the ion-ion interaction terms become small paned

to entropic contributions, and we find for the counterioreszbro-salt limit as

1
L, Ku—0 g A 3z/p 1z, 2z
N e U ([212 _ 92
L) ) |35 4 2 (BP0
2
+2qch /; [(2@)3 +q-(2—2a)/(qcrp)+q-aqcls/(2a) _ Z3€+q—qclB/Z]
+q2 I
i (2.40)
c - +- = (14k2)+q- qcnlB]:|

* 3z 1,z z
L EE L iip ol
8 2= I
Here one needs to notice that the negative ion interactidh thie counterions in the

second limit (*) is small only if the exponential of the folling expression satisfies

z )
go B _leta) (2.41)

z Getift

and because > 2¢ in the interaction terms, this translates into

q-
> ————K[L X K[, 2.42
e+ (2:42)

| 8

which was also mentioned in Eg. (19) of Ref. [60]. This medwas bne cannot talk about
the ion radius and salt separately, but they are intimatelypted such that one cannot
reducea to zero without removing all the salt. However, the opposéa be done, i.e.,

salt can be removed such that we get zero salt in the preséadede ion size.
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In a similar way we obtain the zero-salt first order positwe density as

Kpi— 3giz/p 1 z
12”—°>OZ{A1 AO 4 2EER L, —2—2—}, 2.43
P A ) (/A P (0 20 (2.4

and for the negative ion density

1 rp—0 0 1 n0 3¢/ Lz o
O I | =) B X

By requiring that the integral of the limiting counteriorsttibution Eq. (2.40) vanishes,

one can solve thaAl = —3/8 in the exacts = 0 limit, so that the density itself
approaches
KUL— 1
) 2 (2= 1)+ g (2 = 25 (2.45)

Here it is worth to emphasize that our formalism does notaepce the same first-order
correction to counterion density as the original SC forsral{51]. On top of the correc-
tion term%([;]2 - 2%) we obtain a contribution arising from th&-term, describing the
interaction betweeartificial DH salt and wall. This does not mean that our theory would
be in contradiction with that of Netz, but instead our thedogs not correctly describe the
rp = 0 limit, because we have already assumed in the derivatidrbthia salt is weakly
coupled, as was explained in the beginning of Sec. 2.1.ngetft — 0 would force the

bulk salt to be strongly coupled, and that is in contraditiiath the assumptions.

Moreover, this DH salt term arising in this artificial limif ax — 0 is not perturbative
in 1/=, but is of the same order as the zeroth order result, giviegntlost significant
contribution to first order ion densities. By comparing E2.46) to the leading order

counterion density Eq. (2.29), we get a criterion for thedig} of this expansion

11
z/p < 3 (2.46)

being much more restrictive than the criterion predictedimy SC theory, i.e.;/p <

—=1/2



44

From the final density expressions it is also seen that th&ibation arising from the
DH interaction decreases the positive ion densities clogieet wall compared to the zero
salt case, but increases the negative ion density. Theakie strongest for multivalent
positive ions, typically the counterions with valengemuch larger than the valence of
salt ions. This means that we do not get overcharging in ttigcal limit of < — 0,

but instead more negative ions close to the wall as compareelrbth order densities.

The validity of the first order expansion for finite but small is obtained by comparing

the next-leading ion densities to the leading order one, i.e
sl < |pal; (2.47)

which translates such that what is inside the curly bracketsgs. (2.37), (2.38) and
(2.39), needs to be much smaller than unity. Because of timplexity of the equations,
we only compare the lowest-order termss<in from Egs. (2.37), (2.38) and (2.39) to the
leading-order densities Egs. (2.20) and (2.21).

In the limit = — oo to the first order in<u, we get

) = 3¢ G = )=kl 2P 2/ D)+ S (o = 1)+ O ). (249

— C

This shows once more that in the artificial limit. — 0, we do not get exactly the zero-
salt results of Netz to the first order, but instead we havegelaorrection term arising
from ion correlations between reservoir counterions antl, waing of the same order of
magnitude irk as the zeroth order density. In addition, Eq. (2.48) shoasttie meaning

of ion-ion correlations is to decrease the ion densitieselo the wall compared to the

counterion only case calculated by Netz et al. [51], andeiase them in bulk.

Based on these results, we can conclude that our formaligs ot correctly reproduce
thexu — 0 limit, because the approximations done in Articles | andnlthie derivation
of the theory force the bulk salt to be weakly coupled to thdl,veamd we should carry

out the resummation of all the terms in the virial expandediti@n function to make
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the formalism work right. However, the result that the zbrotder density of our theory
agrees with that of Netz's SC theory, suggests that some dfradvariational method
applied for the salt ions might have a well-defined zero sailit!| However, this work is

outside the scope of this Thesis, and will be carried outénfthure.

(i) Strong Coupling with Weak Salt limit: Overcharging?

Here we introduce a regime that is important while considgthe phenomena of over-
charging. In this regime, it turns out that only multivaléms are strongly coupled to the
wall, but salt ions become decoupled from the wall. This nseglatin the SC-DH limit,
the assumptions used in the derivation of the theory becostéi¢d Due to the fact that
in the SC theory the first layer already neutralizes the vilaf,second layer of ions does
not feel a strong interaction with the wall. However, sinoe tirst order density is mainly
responsible for the formation of the “second layer”, all thes in the second layer are

still strongly coupled to the “first layer” of atoms, and td thle neighboring atoms.

To put this idea into mathematical form, we use the approtionahat the single particle

interaction energy with the wall in Eq. (2.19)

e ™ /rku < 1. (2.49)

Because the minimum distance between the ions in the seagaddnd the wall is two

times the ion radiuga, the criterion Eq. (2.49) in fact translates to
e " [k < 1. (2.50)

Furthermore, we assume that the interaction between treislarge even when it is
described using the DH potential energy. This givagiterion for the validityof the
decoupling regime, and at the same time forwhle SC-DH theorysed in this Thesis
as

[ .
ch,Q—Be’“Qa > 1,together with e " /ku < 1, (2.51)
a
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where we have assumed thatis the largest valence of the positive ions. This, as a

consequence, gives a minimum requirement for the decaypigime as

Zln < KL, (2.52)
+

which is opposite to the criterion obtained in the zero-$alit of Eq. (2.42). Thus,
Eg. (2.52) seems teet the lower limit of the validity of our SC-DH expansiofihe
decoupling approximations (2.50) and (2.51) mean thatdhs in the second layer are
weakly coupled to the wall, but strongly coupled to the otloais, especially to ions in

the first layer.

The interaction integral in Eq. (2.34) between the ion sgecan be written in this limit
as
0

Pa(0)
1 2a, qq,
qngB [g :I:(Za a, g Qﬁ) + K21

ol 1
5 02(2.20, 40, 45)] + (A0(00)", (253

Lo 5(2) =

where we have defined the auxiliary functions

92(2’ 2a’ o, Qﬁ) _ |:Z3e+liZ+QaQBlB/Z . (2&)3e+1€2a+QQq,@lB/2aj| |Z22a
(2.54)
+ (Qa)i’)e—mQa—i-qaqng/(Qa)7

and
91:(2,20, Ga, 5) = [(2a)eTotta/?a — pexwasln/=] |, (2.55)

By applying these results to the ion densities, we obtaircthmterion density as

Z3

1
() = 42Ge) { AL/ & 2 [Ae g Qe g g ]

3
in(leJrqf/ch g+ A9 e~ 4+/qeki
+2m 272 91:(2,2a,qc, q-) — 27?%917(272(17 e, q+)  (2.56)
q-qelp q+q%l%
choefl//{u K2
—2m—5—gl_ 2 cyYe) — —1 cy .

This means that the contribution arising from interactiomsn density is large only for
z > 2a, since thex® andpy(q., z) terms are small compared to zeroth order density, and

also much smaller than ion-ion interaction terms descritpedsingg,, functions. This
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is the same as saying that first order density contributi@m®ime important only in the

second layer of atoms

In the same way we also find the salt ion densities as

AL 1 3
p}r(z) = p(jr(z) {A_Sr 4 27T§ [Ageq/w + A(J)refqﬂu/qcnu + AgeJFQ—/qC/iN} %
+

q_ AO etd-/qckp q+A(J)r€—q+ /qckip

+27 9l.(z,2a,q,,q-) — 27 gl _(2,2a,q:,q (2.57)

q_qzlgB +( + ) q+q62l23 + +)
qeN\0e=1/ru K2

—QWTQL(Z, 2a,9+>CIc) - @[DH(C]JmZ) )

c'B
and
1 0 AL Lo —1/kp 0 ,—q+/qckp — o+ a-/qerp 2’
p-(z) =p_(2) A0 + 27r§ [Ade + Ale +A_e | 3

q_ AO eta-/qckp q+A(J)r€—q+ /qckp

+2m gl _(2,2a,q_,q_) — 2w gl (z,2a,q_,q (2.58)
gl ( ) wan I +)
chgefl/’W K2
_27TW9+(27 2a7Q—7QC) - @]DH(Q—VZ) .

In the regime of validity of Eq. (2.52) the terms depending;on dominate over the ones
depending o2, for z > a, /(g.ku). In the cas€a > a, /(g.xp) this criterion holds in

the second layer, meaning thdt, gives the dominant contribution to densities.

From these mathematical considerations, and especialty fine approximations to final
ion densities of Eqgs. (2.56), (2.57) and (2.58), one candiguit the physical mechanism
behindovercharging If we neglect the positive salt ions for a moment, we can make
this more understandable. The most dominant term in thedidgr counterion density
Eq. (2.56) is the interaction terfy 5 (¢, z) with the negative ions depending on e -
function, and having a prefactor equal to the zeroth ordés tliarge density of negative
salt ions. In the same way, the largest contribution to thgatiee ion-density Eq. (2.58)
comes from the interaction integral with counterions angdesels also on the function
g1, but having a prefactor equal to the zeroth order bulk chdegesity of counterions,

or surplus of counterions not needed for the neutralizatidhe charged wall. Due to the

bulk electroneutrality of zeroth order, the prefactors@raost identical differing only by
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a constant, being/q_ for counterions and/q. for negative ions. This has a very simple
physical interpretation. In the second layer of ions, al tlegative ions stick to positive
ions in the first layer, whereas positive ions in the secogdrlatick to negative ions in
the first layer. According to the SC theory, it is already thistfiayer of ions that makes
the surface electroneutral, or more precisely both suréamkbulk electroneutral, since
all the normalization equations separate into bulk andeserparts, see Sec. 2.1. This has

the consequence that the second layer has a charge equal to
Q' = q.N? — ¢ N, (2.59)

where N, and N_ are the number of bulk counterions and bulk negative ionkenfirst
layer, respectively. Due to the electroneutrality of thetflayer we have the relation
q-N_ = ¢q.N,. By inserting this into Eq. (2.59), one can write the totaloamt of charge
in the second layer as

2
q-_
Q' = q.N® — q—N9 = (¢ — )N /g, > 0, (2.60)

if g. > ¢_, which is the case in the SC limit, meaning that we obtararcharging or
positive apparent surface charge certain distances from the wall. By developing the
same idea as here, one can easily see thdhtltlayer of ions is negativéut the charge
of the third layer is actually smaller than the charge in theosid layer, meaning that the
overall charge of the first, second and third layer is stiifge. This reasoning can be
continued for layers more distant from the wall, such thalfinthe sum of all ion layers

is zero. Using the same logic, one can argue that the maxiniuheantegrated charge

happens exactly at the distance- 4a.

Now we could give the approximate solution to the normailaraEgs. (2.17) in the SC-
DH regime, but these expressions are not very instructistebd we show plots of the
full second order ion densities solved numerically for eiéintx. in Fig. 2.3, and also

the integrated charge, apparent surface chargen Figs. 2.2 defined as

th = —0s* an/ diﬂpa ) (261)
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where all the ion densities are given by the second ordeltiesarial limit, i.e., Egs. (2.14)
and (2.15). On top of the bulk salt concentratign these all depend basically on 6 rel-
evant parameters: ion radius counterion valence,, positive salt and negative salt ion
valencesy,., surface charge density, andig. Since we are mainly interested in the SC
limitwhere= — oo, we fix the surface charge density to a large but physicafigoseable

valueo, = 0.095nm~2, and use the Bjerrum length of water, whicHjis= 0.71 nm.

In Figs. 2.2 we show the integrated charge as a function cfdtlieeoncentration for fixed
valences and ion radius. The most dramatic conclusion tddhéixed z, theintegrated

charge is a non-monotonic function ©fi. For small but finite<x, the integrated charge
increases when bulk salt is increased. However, for eachf petrameters our numerical
results predict that for very large valuesgf > 1, it finally turns to a decreasing function.
This means that there has to be a crossover valug.pivhere the physically interesting

overcharging seems to take place.

In Fig. 2.2(d), we show the integrated charge for a fixed iatius and bulk salt con-
centration, but varying valence of counterions. Here itlsoassumed that bulk salt is
monovalent, i.eq. = 1. Itis seen that for fixed andx . the integrated charge is a mono-
tonically increasing function of,. For{a = 0.5A, ki = 0.5}, we see that the integrated
charge is greatly amplified whenp varies betweed2,10}. Wheng, = 2, one does not
see overcharging, whereas pr= 4 andq. = 10 there is a clear overcharging. For the
case{a = 2A, ku = 0.1} the maximum of the integrated charge increases as a function
of ¢., too, but here only the cagg = 10 is overcharged, and by only a few per cent. In
case{a = 0.5A, ki = 0.5}, itis seen that the magnitude of the integrated charge dkspen
also onz, and forz < 2A the integrated charge is larger for € {2,4}, compared to

q. = 10, whereas for larger values ofthe situation is reversed. Altogether, this shows
that the contribution of counterion valence to integratearge depends on the ion radius,

bulk salt concentration and especially on the distance ftwwall -.

In Figs. 2.3 and 2.4 we show the first order total positive iengities). /o2 (z)+pk / p% (2)
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Figure 2.2: Integrated charge for different counterion valences.g{a} 10, (b) ¢. = 4,
() q. = 2, (d) Integrated charge for fixed salt concentration and amhus, but varying
counterion valence.
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and negative salt ion densitigs /p° (2) that are normalized by the zeroth-order ion den-
sities. All the ion densities behave very similarly to theegrated charge itself, since the
total integrated charge is nothing but the sum of all the gbsr However, for smadl or
largeq. it seems that the first-order ion densities become larger tiva zeroth order ion
densities, implicating the breakdown of the whole theorativmatically the SC theory
breaks down for those values offor which the normalized first-order densities exceed
unity in Figs. 2.3 and 2.4. However, it is also seen that fbsalk concentrations the nor-
malized ion densities approach zero quickly. Even in thestoase of . = 10,a = 2A}

the normalized ion densities are smaller than unity alrefady > 2A, obeying the cri-
terion of the validity of the SC expansion Eq. (2.47). It isaseen from Fig. 2.3 that for
parameterq. = 2,a = 2A} the normalized ion-densities are much smaller than unity,
thus satisfying the SC criterion Eq. (2.47) for a}l and for allz.

The breakdown of the SC expansion for small ion radii doesseeim problematic for
the realistic applications. In water the small positivega@v/e) ions create a hydration
shell around them, such that for example hydrogen idradpears as a hydroniumy&*

in water, and lithium shows up together with its four hyddcateater molecules. These
ion-complexes have a size exceedingA at least by a factor o?, by comparing to the
diameter of the hydronium molecule being roughB.. Moreover, the more charged the
ion is, the bigger it is on average, and the larger the hyoinaghell. By comparing the
ion densities fory. = 4 with varying ion radius in Figs. 2.5, 2.6, it is observed tte
absolute value of the ion densities decays by a factor betw@and 100, when the ion
radius is increased from = 0.5A to « = 1A, but changes only slightly fromA to
4A, see Figs. 2.5 and 2.6. This certainly means, that thetsepudicted by the theory
are wrong in the caséa = 0.5A xu = 0.1}, see Figs. 2.5(a) and 2.6(a). The case
{a = 0.5A, k. = 0.5} seems to be a borderline, since even the normalized positive
density exceeds unity only for the first two data points insk2.5(b) and 2.6(b), i.e. for
very short distances from the wall. However, in cdae= 0.5A, ku = 1}, the results
shown in Figs. 2.5(c) and 2.6(c) are valid for all distanedéom the charged wall. This

highlights the fact that it is a combination @f i and= that sets the limit to the validty
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of our theory, see Eq. (2.52).

These results reveal that one cannot talk about the SC egpamsly in terms of=, but
that also the ion radiusas well as the bulk salt concentratien play a big role. Since the
ion-ion correlations show up through the second virial ioet, they strongly depend
on the exponential ofgz/2a « Z/a. This means that while the ion densities become
smaller at large distances from the charged wall for ingregs, they are also magnified
at small distances through the Mayer-function interactioHowever, as was explained
before, the realistic ion radius together with its hydratihell typically exceedsA,

meaning that the theory becomes rather indipendent of titebie radius chosen.

(iif) Excess salt limit

It is shown in Atrticle Il of this Thesis that in the limif2ize"?*/2a < 1 the Mayer

ﬁé(r). This typically

happens only under conditions of excess salt, sudiviast sodium chloride, correspond-

functions can be re-expanded hs- evru () = +topu(r) ~

ingtox~! ~ 3.3nm~1, but clearly depends also @amandip. It is even more important to

realize that the criterion for this to happen is

i) . (2.62)

—_
—

—

To put this into more formal language, let us expand the augon terms in first order

ion densities as

«qsl
I = /dr’pa(r')[l — eFaadpvon(r=T)] _, 14 qi B pa(c0)e™, (2.63)
K
which immediately implies that for the first order ion derestwe get a simple expression
L2) = 220 | 22 = P (g 2) £ Bla-p? (50) — 0162 (50) — oo™
pa pa Ag 4lB DH\4«, K/2 q-p_ q+p+ qcpc
0 1 K
Epa(z) Aa_ ]DH(%MZ) 9
4lp

(2.64)
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where the last equality follows from the electroneutratifithe zeroth order densities.

In this limit the zeroth order ion densities read as

2) = p? (00 q—ae_m. )
palz) = (o1 & e (2.65)

This result, in fact, is the same as the leading order coiamtelensity in the DH limit, i.e.
in the presence of excess salt. However, one should not/behat we have obtained the
DH limit rigorously, because these two theories have thein cegimes of applicability,

namely given by the next-leading density term.

By plugging Eq. (2.65) into the first order density expressiy. (2.64) we can easily

work out the normalization integrals in Eq. (2.17). The fosder fugacities obtained this

way are
Ao b laA+ gEAY /g + 2 A2 /g
¢ 8. gy + q-[a+/q-1% ’
AO 2A0 . 2A0 .
A}rzl[qc e T a4 +/q "‘(172 7/(]]; (2.66)
8 lq+ + q-lq+/q-]?]
AL LA+ gAY g+ g2 A2 /g
-8 g+ + q-[g+/q-]%] ’

where\? are given by Egs. (2.24), (2.25) and (2.26). This shows thété excess salt
limit the first order correction to ion densities is of the saarder of magnitude i& and
ru than zeroth order. However, the numerical prefactor intfi@fithe fugacity is about
one order of magnitude smaller, implying that this expamssoconverging. Finally we
can write the first order ion densities in the excess salt lasi
W0 1 1

pale) = (oML /AL 2 LD s e ) (26)
Furthermore, if we count the next order in ion-ion interantterms, we get terms of order
=/(ku)?, in agreement with the criterion Eq. (2.62). These resutamthatn the excess

salt limit the SC-DH theory becomes valid for all values of
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2.2 Conclusions and Summary

In Articles | and Il of this Thesis, we have derived a geneedbiftheory for both counte-
rion and coion distributions around an arbitrary macrosceparged object. This theory
assumes implicitly that bulk salt ions are electrostalycakakly coupled to the charged
wall, whereas the counterions are strongly coupled. Tk limit of an excess amount
of bulk salt, our theory becomes exact. Mathematically #saienption about weakly cou-

pled salt shows up in the field-theoretic propagator thasssimed to be of the DH form.

In Article | we calculated the zeroth-order ion densitiesdanalyzed that case com-
pletely. One of the main results was that our theory has a #miwoit ~;. — 0 to the SC
theory of Netz [51]. In Article Il we considered the first ordsorrection to this theory
via a second order virial coefficient. Here it turns out theg bulk salt ion correlations
with counterions give a significant contribution to courdgardensity being of the same
order of magnitude ifx than the zeroth order ion densities. In the exget— 0 limit
this theory becomes incorrect, giving right prediction$yaat very small distances from
the charged wall. However, in the opposite limitigf — oo, our theory becomes exact,
and as it was shown in Article 11, to the leading order it gitles same results as the DH
theory. The lack of the proper zero-salt limit of our theasydue to the perturbative sub-
traction of the exponential of th&? terms in the grand-canonical partition function. In the
limit xu — 0, these terms become the dominant ones, thus invalidatengghumption

that¢? is small.

By expanding around the excess salt limit, we can also iotatp to the finite values
of ku. Most interestingly, we can show that at certain regime dk lsalt concentration
described by Eqg. (2.51), one observes the formation of iparkathat is a combination of
both finite ion size and the strong attraction between opelystharged ions. It is also
argued that this layer formation seems to be the physicaoredehind overcharging.
One of the consequences of this interpretation of overahgng that the maximum of

the integrated charge should be at the distance of two ianetiers from the wall, which
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is in agreement not only with our numerical findings, but algth recent simulation

results for strongly charged colloidal particles [38, 43}-4

To demonstrate the usefulness of our formalism, we havereataxplicit results for the

case of a single charged plate in the presence of countarha finite concentration of
bulk salt. The main results are the density distributiomsalbion types as a function of
the distance from the plates. As a consequence, we alsdaaiduhe total integrated
charge as a function of distance, sometimes called appsweiaice charge. Our results
reveal that for a certain distance from the wall and for at@diregime of bulk salt, the

integrated charge changes sign from negative to positivé,vee obtain what is called

charge inversioror overcharging38, 39, 47, 62, 67, 69].

The magnitude of overcharging, as well as the magnitude sif dirder ion densities,
depend non-monotonically on bulk salt concentratieps but increases monotonically
as a function of counterion valence. By explicitly calcirgtthe ion-densities in the
ill defined k. — 0 limit, we see that overcharging always vanishes, and tdtarge
density is decreased close to a charged wall. Furthermoréhe excess salt limit we
find agreement with the DH theory, showing that overcharggragdecreasing function of
the bulk salt<x. Our numerical solutions for first order ion densities rdwvbat for ion
radii smaller than or equal t.5A, the ion densities increase strongly giving results not
consistent with the assumptions of our theory. Howeverafoion radius larger or equal
to 1A, the ion densities are by and large insensitive to the ntadaiof the ion radius, as
one might assume based on quantum mechanical considetatlowever, the larger the
counterion valence is, the larger the radius of the ion ghbelfor the SC expansion to

be convergent.
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3 DNA Overstretching Transition: lonic Strength
Effects

In this Chapter we extend our goal of considering chargedblecules to concern not
only electrostatic degrees of freedom as in Sec. 2, but déstie and internal degrees
of freedom. The motivation to do this is to consider a streadtphase transition that

takes place when DNA is stretched from one end with certaicefby using for example

atomic force microscopy or optical tweezers. Due to themedevelopment of these

single-molecule manipulation techniques [8, 73], it is adays possible to study elastic
properties of DNA, and its stability against force-induaaerstretching transition, or B-

to-S transition. These studies all focus on how doubleasigd B-DNA is stretched and

bend, and how, at some critical force of approximately 70pMll give way to a new

conformation, here for simplicity denoted as S-DNA.

The nature of force-induced denaturation of DNA puts secerestraints on theoretical
modeling: the passage from B-DNA to S-DNA involves mesogcelastic deformations
as well as more localized processes, notably breaking & pass. A reasonable over-
stretching and denaturation model must, therefore, comi distinct, but coupled, sets

of state variables for elasticity and breaking of base passpectively.

Traditionally one describes DNA as a semiflexible polymexinhbeing a one-dimensional
solid object that can be stretched, bent or twisted. If DNAls stretched by external
force from one end, one can describe it in the rod-like limftpwing only small tem-
perature fluctuations around straight configuration. Tlee fnergy of this semiflexible

rod-like polymer is reviewed in Sec. 3.1.

On top of the elastic degrees of freedom, DNA has also intestracture. DNA is

composed of two single strands coupled together into dodlie by hydrogen bonds
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between the bases in opposite strands. Being a highly remrlimany-body quantum
mechanical problem, the hydrogen bonding cannot be putaatcstatistical mechanics
model microscopically, but one has to resort to a phenonogincdl description. Here
we take a point of view that DNA is composed of domains of basesfbeing either
bonded to each other or separated. These domains are themateepby artificial junc-
tions, which are energetically unfavorable. It can be shdven this kind of description
leads to an Ising model, where the spin variables presenutiotions. This description

was first introduced by Cluzel et al. [10].

Models along these lines to describe the B-to-S transitawelbeen proposed by Ahsan
et al.,, Rouzina et al. [1, 63], and more recently by Metzlealet[20]. Ahsan et al.

[1] proposed a faithful model of denaturation (Ising-typehich is coupled to the meso-
scopic elastic degrees of freedom in an elegant way, andwvetso seems very appealing
for introducing salt into the description. However, all $leeexisting models of the B-to-S
transition have ignored the salt dependence of this tramsftoon, which raises at least
two interesting questiongirst, one wonders if the electrostatic component of the B-to-S
transition is already taken into account by the mesoscdastieity, or whether other (lo-
cal or global) effects are involve&econdlyone can ask how well the data conform to the
much invoked Manning condensation theory [42], which predihe effective separation

between charges along DNA-chain after condensation has falace.

In what follows, | will briefly present our hybrid model whigdombines the Ising-model
approach of Ahsan et al. [1] and the elasticity theory by FPoxig et al. [56]. A statistical
mechanics analysis of the hybrid model allows us to comporteetextension curves
which depend on (phenomenological) electrostatic, Isarg] elastic parameters, and

which fit the experimental data by Wenner et al. [70] very well
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3.1 DNA Elasticity

Mechanical properties such as bending, stretching andihgiand their respective elastic
moduli determine conformations of DNA in mesoscale. In @eninology of physics,
DNA is a semiflexible charged polymer or polyelectrolyte.lyRtectrolytes, a class of
polymers, are charged macromolecules, which contain @& latgnber of watersoluble
ionizable ionic groups. In solutions polyelectrolyteswhep with neutralizing, diffusing
counterions. In the presence of bulk salt, counterions arnkl $alt ions partly screen
the electrostatic interaction between the monomers, asse@s in Sec. 2. In the case
of DNA, the negatively charged phosphate groups are redplerfsr its polyelectrolyte
nature, and for non-zero salt concentrations we can thiak tthese phosphate groups
interact repulsively in the screened Coulombic interactice. DH interaction. In what
follows, | present an elastic model for DNA in the rod-likmnit, which is a natural starting

point in the case of external stretching field.

3.1.1 Model for Semiflexible Chain

The starting point in presenting a theory for a self-intérag polymer chain is the for-
mulation of the elastic mesoscopic Hamiltonian. It is assdirthat in the limit of high
external field, deformations away from the rodlike confidgimas are small. One should
notice that also in the limit of vanishing bulk salt concatibn the chain is rodlike, since
the unscreened Coulomb interaction straightens the patyrelyte. Thus we consider a
self-interacting chain in the highly stretched, small defation limit in the Monge-like
parametrization(s) = (z, p(z)), wheres is the arc length along the chain. The chain
is described as a one-dimensional solid, so a sufficienesgntation is obtained by a
deformation tensor with only one nonzero component, chtsée in thez direction

_ Ouy(z) 1 [(0p(2)
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Herew,(z) is the internal phononlike field describing the stretchirighe chain. The
bending fieldp(z) is in the direction perpendicular to the local tangent ofc¢hain, thus
|p| is the radial distance from theaxis. This result can be derived straightforwardly from
the form of the line element along the chaitk(2)? = [(dz + du.)? + (dp(z)?], leading

to the lowest order in the deformation field to

ds(z) = do 14 22 | 1 ((%(2‘))2

0z 2

o ¥ (3.2)

By using Eq. (3.1) we can write the Hamiltonian of a self-ratting semiflexible chain

as

BH[r] = FHer] + BHsigf[r] + BHine[r]

82/)(2)} (3.3)

— %)\/dS(z) .. (2)]” + %Kc/ds(z) { -
+//ds(z)ds(z')vDH(|r(S) —r(s’)\)+%/d5(2)f(s) f

Heref is the external force stretching the chairridirection, \ is the stretching modulus
and K¢ is the bending modulus related to the persistence lefgts Ko = kgTl,
[23, 54]. The DH interaction potential has the usual formgf;(r) = ige /"l /|r|, and

r is the inverse Debye screening parameter defined in Eq. (2.7)

The free energy is now obtained by integrating over the flatitg fieldsu. (s) andp(z).
However, straightforward integration does not work, duthtinteraction potential which

in general is not harmonic. One can resort to variationak@amation [53], or the so-
called1/d-expansion [23]( being the dimension of the embedding space. In this way
one obtains the approximate free energy that becomes tomehe largest scales. From

such a formulation the equation of state, i.e. the forcessibn relation, follows as

kT

2 /KA A

z
- (3.4)

Here, instead of the original elastic constants, one obtanormalized (shown by super-

script R) elastic moduli. Their dependencies on the parameterseictrelstatic potential
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are given by the following relations [56]

kgTl
AR =\ — 222 (" — Bi(—kb)),

A2c? (3.5)
0 _ e kTl :
¢ T AN (ke)?’

where K and )\ are the bare values of elastic parameters correspondingrtotaf in-
finite concentration of salt, andia the salt-renormalized separation between charges. In
addition,Ei(z) is the standard exponential integral function akds the local stretching

parameter introduced as = (37 ) .

We can straightforwardly calculate the free ene€gy( f, L) of the chain related to the
BGel fL) —

external force by- = x, which is the condition of mechanical equilibrium in a

fixed force ensemble. This can be easily integrated to give

f1/2 1 f2

Ga(f,L)=1L 5 K(R IN®

= Lg(f), (3.6)
wheres = 1/kgT. Equation (3.6) provides the elastic free energy of a clohegami-
flexible chain under external forcg This expression for the free energy can be taken
as a starting point when a model for the DNA overstretchiagdition is developed in
Sec. 3.2.

3.2 Overstretching Transition

Sec. 3.1 described the properties and behavior of the sami#epolymer chain under
external forcef, and showed how the elastic parameters are renormalizezt timelelec-
trostatic interaction between the monomers. It also erpthhow the salt dependence on
these parameters can be found in the regime of moderatesexterin this Section, our
aim is to concentrate on the behavior of the DNA chain wherettiernal force exceeds

a limit where the internal structure of the chain starts &pnd to this stretch.
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It has been shown in many experiments [29, 37, 70, 73—75hah a double-stranded
DNA is stretched beyond its B-form contour length, it showsghly cooperative over-
stretching transition. It seems that the DNA molecule atiyupcreases its length by a
factor between 1.5 and 2 when the external fofcexceeds a threshold in the range of
60— 70 pN. This phenomenon is recapitulated in Fig. 3.1. &tgbint the DNA molecule
suddenly extends with little additional force. After thisipt, the force again rises rapidly

with a slope that depends on the stretching rate [3, 70].

To describe the overstretching transition theoreticalhe cannot use the simple elasticity
theory presented in Sec. 3.1, since for large stretchinge®the chain internal structure
starts to break, and it does not respond linearly to incrga®rce. Instead, one needs
to introduce artificial degrees of freedom to describe thdrbgen bonding of the two
single strands. From the microscopic point of view, this ldoclearly require solving
the quantum mechanical Schrédinger equation with all aiaeisaded explicitly, but due
to the number of atoms included into problem, this becomegsossible. A common
classical approach first introduced by Cluzel et al. [10}oisise atwo-state modelin
which the DNA-chain is composed of interacting segmentadeither in the B-state
or the S-state. The microscopic interpretation is that & Bastate there exists a bond
between the bases in opposite single strands, and in theteStists bond is broken. This
kind of description leads to alsing modelfor the spin variablesdescribing the phase
boundaries, or junctions, between the B- and the S-stateaohsm However, the Ising
description can also be interpreted such that in S-stateseparation between nearest
bases along the chain is increased such that on average dhe les elongated by a
factor of 1.7. This would allow still another denaturation transitiontake place for

higher forces shown by experiments [30].
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3.2.1 Two-state Model

To define the two-state model more precisely, we divide thé\[2Nain into a sequence

of short segments of lengtly such that every segment can be said to be either in the B or
S stateg;. The state of a “B segment” is denoted by spin tipando; = +1, while that

of a “S segment” by spin down ) ando; = —1. The easiest possible description of this
kind of system is provided by a nearest neighbor one-dino@asising model, in which

the energy spectrum takes on four different valu®&:(11), AE(T]), AE(]T), AE(]]),
depending on the state of two neighboring segments. Asguesymmetric spectrum
around the middle leveAE(T|) = AE(]T), this spectrum can be parametrized by two
quantities/ andH as

AE(11) = 2H +4J (3.7)
AE(1]) = AE(l1)=2H (3.8)
AE(]]) = 2H —4J. (3.9)

The Hamiltonian for this kind of nearest neighbor Ising maz be written as

N N
Hint == _JZUiUiJrl — HZJZ (310)
i=1 i=1

The quantitiesH and .J describing the internal degrees of freedom of DNA must be
determined either by molecular modeling or by taking thenfitieag parameters to be
determined by comparison with experiments. Physicallycan be identified as the zero-
tension free-energy difference per segment between thalESatates. The parametér
measures the correlation energy between adjacent segraadtby analogy to the Ising

model we can interpreixp (—4.J/kgT') as a measure of the degree of cooperativity.

Ahsan et al. proposed latetao-state Worm Like Chain (WLQ)hich is a combination
of the two-state model and the elasticity theory of the semiifle chain free-energy given
by Eqg. (3.6) in the casg = oo [1, 18]. Ahsan’s idea was to include an additional param-

eterd into this model, describing the fractional elongation af & state over the B state.
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Though one assumes here that the elastic bending energiemaf B states are identical,
we will show later that relaxing this constraint makes itgibke to include the description
of force-induced melting transition into the picture. Hipgthe global coupling between

the internal structure and chain conformation is providgdhe constraint:

L({o:}) = Lo (1 - % Z(Uz' - 1)) ) (3.11)

with Ly being the length of the chain in the pure B phade,;> 1 the number of the
segments and, = Ly/N the structural segment length. Thus we see that the chain
length L has become a statistical variable whose expectation valsi¢dhbe determined
over the canonical distribution of energy states. From Eg40) and (3.6) we can write
the total effective Hamiltonian 8. = Hin + Lg(f). By using this simple description

of the tension-induced B-to-S conversion, it is possiblartalytically obtain a new force-
extension relationship. The derivation was first made byakhst al. [1], and the details
are given in Appendix A in article Ill. Furthermore, the etjoa of statey(f) = =/L as
derived by Ahsan et al. is given by Eg. (3.4) using the baraes&bf elastic parameters.
Ahsan et al. [1] applied this model in the case of zero stietchhodulus over the force-
extension data by Cluzel et al. [10], and found good agreémih that. Thus, we tried

to use the same theory, but instead of the bare elastic medrlise the salt renormalized
elastic moduli according to Eq. (3.5). Then we tried to fit gnesent description to the
experimental data of Wenner and Williams [70] for differeatt concentrations. We used
the same values for the Ising parametdrs= 1.75 andJ = 1.25, and for the elongation
parametew = 0.78, as Ahsan et al. [1]. The segment length of DNA was taken to be
ap = 0.34 nm corresponding to one base pair. By plotting the resultiegretical curves
against experimental results, we found that this kindexcription does not reproduce the
change in the overstretching foreecording to the experiments of Wenner and Williams

[70], as the salt concentration is varied.
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3.2.2 Change of Elastic Moduli During the Overstretching Tr ansition

One can speculate that the approach above failed becaustatitie energies of B and
S segments were treated as equal. This idea is supportedpleyireents. It has been
shown that the force required to stretch the chain riseswagfeer the plateau in the force-
extension curve, with a slope that depends on pulling rate.rise continues up to about
140 pN, where thef—r curve of double-stranded DNA (dsDNA) then matches that of
single-stranded DNA (ssDNA) [9]. As we pointed out in Secl]3the elastic moduli of
ssDNA differ significantly from those of dsDNA [68]. Thus, @rs tempted to conclude
that models where elastic parameters along DNA are treatedrestants are not adequate.
Rather, it would be justified to aim for a full description dfet force-extension curve
through a model in which the elastic parameters are allowadh&inge along DNA over

the transition.

As an improvement to the model described in Sec. (3.2.1), mpgsed a model where
an internal structural state of the DNA molecule is desadibg segments in the B-state,
or double-stranded state, and segments in the S-stateg detiatured state. WWe model
the segments in the S-state as two slightly separated, baligdastrands still coupled
together electrostatically, in the sense that they intezbectrostatically in a way similar
to segments in the B-state. In other words, we do not makandigtn between an over-
stretched DNA molecule and one that is fully in the denatwtede. This assumption
is consistent with the experimental finding [9, 70] that tleddvior of a DNA molecule

stretched beyond the overstretching plateau is close tofteassDNA molecule.

We then construct the following ansatz for the effectiveefemergy associated with an

internal structural state of a WLC under a constant force:
L N
Hwic = N Z [00:,+1 9as(f) + 00,1 gss(f)] 4 (3.12)

i=1
where Kronecker symbols, .; have their usual mathematical meaning. Here¢f) and

gss(f) are free-energy densities corresponding to a pure B-stimeb{e-stranded state)
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and a pure S-state (denatured state) DNA molecule, respBctiThey have the same
functional dependence on the applied foicas that described in Eq. (3.6), but involve
different renormalized elastic moduli, correspondingie B-state and the S-state DNA,

respectively.

Our model ansatz provides a simple, minimal remedy for thetdition of the linear-
combination model description of the elastic propertieisTpoint can be made clear if
we re-express the total free energy — the sum of Eq. (3.10)Eand3.12) — associated
with an internal state in terms of the internal state vagalt;’s. With very little algebra,

we arrive at the following explicit form:

N N
Hegp = — JZ%%H _H(f)zai

= = (3.13)
Lyo

- m[gds(f) - gbb(f)] (; Ui) + %(1 + g)[gdb(-f) + gss(f)]7

where the effective external field (f) is given by (f) = H —%[gas(f) — (14+6)gss (f)].
It is easy to see that the second line in Eq. (3.13) indeeditdesca global, or infinite

range, coupling between the internal state variab)&ss

We can try to justify the form of our ansatz as follows. Fiistassigns the WLC free
energy the property of extensivity as a function/ofSecond, it reduces to the two right
limiting cases corresponding to the B- and the S-state. d]kirthin the framework of
Ising model, the ansatz in Eq. (3.13) is the simplest possinig-range coupling between
the B-state and the S-state. The strongest argument, hgugetree physically meaningful

fitting to the experimental data, which is explained in Se8. 3

As a word of warning, our ansatz Eq. (3.12) treats each segofdength /N as if it
were a semiflexible polymer described by stretching and imgnehoduli. In the case of
DNA, the segment length is equal &g = 3.4A, which is very short. As a remedy, we
have noticed that if the coherence length for both B-stateSustate segments is longer

than the persistence length in each state, respectivelgribatz used is meaningful. We
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have checked that for the parameters we consider this isirta case.

Given the effective “Hamiltonian” associated with a singiernal structural state of the
DNA molecule, Eq. (3.13), we performed the statistical emsie average over all possi-
ble internal states and evaluated the partition functiahaalculated the force-extension
relation, shown in Appendix 1 of Article Ill. Using the finahterpolation formula for
the force-extension curve Eq. (21) in Article Ill, we may noampare our theory with

experimental data.

3.3 Comparison with Experiments

In principle, the fitting involves two effective charge segt@ons, one for the B- and one
for the S-state. It turns out that numerically only one ofnthean be fitted accurately,
namely the charge separationn the S-state. This means that the two chains are elec-
trostatically coupled such that the effective charge sspar is determined by thever-
stretched strandsef DNA. The salt dependence of the fitting parametérs?, ¢, andd

are determined by a nonlinear least-squares fitting meteodyall the data measured by
Wenner and Williams [70]. This set of experimental data wassen for comparison be-
cause, to our knowledge, it is the most comprehensive orenmstof the salt dependence

of the overstretching transition.

In the fitting procedure, the bare elastic moduli are givethanB-state by Wenner et al.
in 1M case [70], i.e.\qs = 1256 pN and K4/kgT = 46nm. In the single-stranded
state we fixed the bare values of elastic moduli to be suchabatheoretical force-
extension curve interpolates between the experimentalissfor dsDNA and the ssSDNA
f—x curve to minimize the error [9]. These bare values are given = 920 pN and

K /kgT = 0.75nm. Later, the salt dependence of elastic moduli in both Kd-ss-state
are given by Eg. (3.5). The salt dependence of the remairdpgstable Ising structural

and electrostatic parameters are adjusted close to thetotehing plateau in an almost
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Figure 3.1: Room temperature force-extension curves for a single dsbidlecule in
different salt concentrations. The solid lines corresptmtheoretical curves calculated
using the global coupling theory developed in this work. &xmental data is by Wenner
et al. [70]. A) Data over all regimes showing the completeésextension curves. B)
The same data showing only the overstretching portion.

unique fashion. Overall, we found that it was not possiblprepare two equally good

fits with different sets of values for the structural and &lestatic parameters.

The parameter values corresponding to the optimal fittieggaren in Table 1 of Article
lll. Based on these values, as depicted in Fig. 3.1, the ¢tieaf model developed here

describes the experimental data of Wenner et al. notablyferedll salt concentrations.

Having found that the present theory describes experirhdata very well, let us discuss
the conclusions we can draw based on this work. The main asioei of the numerical
study is that the whole force-extension curve can be fitteautoerical data only if the
salt dependence of the effective charge separatisrtaken into account. All the other
parameters remained by and large constant, as can be seedtde 1 of Article IIl.
Importantly, we further find thatinterpolates between the structural lengglof 0.17 nm
at high salt (no effect of electrostatics) and the Bjerrungté /g of 0.74 nm in water in
the no-salt limit (strong electrostatic coupling). Thesgults are consistent with Manning

and Poisson-Boltzmann theories for thin polyelectrolygdsr[4, 42]. In that case, it is
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shown that if the linear charge densif;?/ = q¢.lp/c exceeds the critical value 1, then
the fractionl — 1/R of counterions condenses onto polyelectrolyte. Here that@sion
valencyq. = 1, since we are considering DNA in 1:1 electrolyte. The prabls how to
determinec([Na’]). In the limit of infinite salt, however, all the electrostagffects are
washed away, and the renormalized distance between thgesh@long polyelectrolyte is
just the structural length,. On the other hand, in the — 0 limit all the counterions are
condensed, and the distance between a unit charge alongltfegetrolyte close to it is

equal to the Bjerrum length. We discuss the significanceegaHindings below.

The first question about the validity of our ansatz Eq. (3dd®)cerns the non-linear ef-
fects of electrostatics in the low salt regime into the otretshing transition. For low salt
concentrations, the interaction strength paramétearies slightly, see Table 1 in Article
lll. This is mainly due to the fact that the elasticity thearfyPodgornik et al. breaks
down in the zero-salt limit [56], but also partly due to lacklong-range interactions
in the Ising model description of hydrogen bonds. In otherdspthe approximations
used in Eqg. (3.12) may break down, if the (electrostati@riattion is strong enough (low
salt), or if the Hamiltonian includes many-body effects takien into account by the Ising
model. The latter is true, in fact, for the so-called baselghg of DNA, and may give a

significant contribution to the total interaction energy. [2

To characterize the cooperativity of the B-to-S transitise used a similar analysis as
introduced already by Rouzina and Bloomfield [63]. In ordejustify our free energy
ansatz Eq. (3.12), we have to guarantee that the averagedibeth B- and S-clusters
are larger or of the order of the persistence length. By uiiegformulas given in Ref.
[63] we found that the average number of base pairs in boté dflusters is roughly
30. For the S-DNA this is clearly larger than its persistelargth 1.5bp. However, for
B-DNA 30 correlated base pairs is smaller than its persegdangth of about 150bp.
However, the number of base pairs changes very rapidly wittef meaning that already
at the turning points of the plateau, the number of base pairseds the critical value
150, beingk,, = k4 &~ 180 bp at 1M of salt, and,, = k4, ~ 300 bp, for 10mM case.
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We also studied the dependence of the overstretching ti@msin the salt concentra-
tion. As we can see from Fig. 3.1, the increase in the ovecstireg force is correctly
reproduced by our final force-extension curve. This seemsl®out the need for any
logarithmic corrections in the free energy to explain tharade in reference state used by
other groups [63, 64, 70]. In fact, by expanding the renoizeal stretching parametar®
aroundxb < 1, one can see that the overstretching force depends logacilly on «b.

To better understand the changes that take place during Didfstvetching, we can use
our analytical results to predict the explicit [Nlpdependence of the overstretching force.
A good estimate of the overstretching force may be given byfdihce value, at which the
renormalized external field/ changes sign from positive to negative. Mathematically,

this is defined by the following equation:

H(f) = H = Flgac(5) — (1 + 5)gul )] = 0. (3.14)
Thus, for all values of the salt concentration we have ammegé for the overstretching
force. Clearly, for low ionic strengths this equation agredth the logarithmic form
given by Wenner et al. [70]. In the regime of high salt concatiins, our model achieves
more than that used by Wenner et al. [70], and can be linght@zgive the leading order

salt dependence as
4.29
(ra)?

whereb is the microscopic cutoff, often assumed to be of the ordeghefthickness of
DNA, i.e. Inm, andh(x) is defined byh(z) = e* — Ei(—z). Equation (3.15) provides

foo = 2 4+ Afoy =~ 81.7pN — pN — 0.477 h(kb) pN, (3.15)

a reasonably good approximation for the overstretchingdfarith salt concentrations
higher than 100 mM. In addition, one can notice that the litiganic dependence of over-

stretching force omb comes out automatically in the limith < 1.

3.4 Conclusions

Article IIl deals with the salt dependence of force-indu@erstretching transition of

DNA, with a focus on two major questions, namely, (i) whettiex electrostatic com-
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ponent of the B-to-S transition is a manifestation of eBeateady accounted for in the
mesoscopic elasticity, or whether other (local or glob#§ats are involved, and (ii) how

well the data analyzed conform to the much invoked Manninglensation theory [42].

To address these questions theoretically, we have devebpedel which combines the
Ising model description of internal structure used by Ahstal. [1] and the elasticity

theory by Podgornik et al. [22, 56]. Furthermore, we haveratd the model to account
for effects of electrostatics (salt) on structural and dsparameters, by fitting our force-

extension relation to experimental data.

Based on the theoretical model, we have predicted the fextension relation (or curve)
as a function of the relevant parameters, which in turn démenthe salt concentration.
We have then fitted the theoretical prediction with the aldé experimental data, and
from the fitting determined the numerical values of the mgudehmeters as functions of

the salt concentrations.

The main conclusion of the study are:

(@) One has to include the change of bare elastic moduli fon sagment during the
overstretching transition into theory, in order to get s8sful fitting. A minimal

model to describe this effect is given by Eq. (3.12).

(b) The fitting between the theoretical prediction and thpegxnental data works
remarkably well for all of the salt concentrations inveatgd. Moreover, the fit-
ting reveals that the parameter that is most sensitive te#fteconcentration is
the effective length of charge separation. As shown in Tdbtd Article I,
the salt-dependence of the effective charge separat@mies consistently with
Poisson-Boltzmann and Manning condensation theorieshiorrods i.e., from
about 0.67 nm at low 1 mM (monovalent) salt, to 0.17 nm at 100Dsalt. These

results show that the fit between our model prediction ancetperimental data
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is not only of good numerical quality, but is also physicatiganingful.

(c) Within the range of validity of the theory, corresponglioughly to salt concentra-
tions exceeding physiological salt concentrations (100 falMmonovalent salt),
the Ising structural constantsand H have no salt dependent electrostatic com-

ponents.

Based on these results, we may draw the conclusion that odeln®successful in in-
terpreting the experimental overstretching data, deggités crudeness. The good fit
between our theory and the experimental data suggesthitbaimple effective approach
may have captured in a nontrivial way the most essentialciso¢ the complex electro-

static interactions.

The only thing our theory does not predict explicitly is ttadtslependence of the effec-
tive separation between unit charges along the DiINa']). Basically, this could be
obtained by first solving the counterion distribution arduhe chain like in Sec. 2, and
then integrating the amount of bound counterions on theasarbf the chain. To include
this effect into the model, one has to use a SC-model forrelgtettic interaction energy to
account for nonlinearities. Anyhow, the theoretical fravoek of Manning condensation
works beautifully in the limit of large salt concentratiomhere the nonlinearities are less
significant. Thus, our hybrid theory works very well for sedincentrations exceeding the

physiological salt concentration 100 mM.
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4 Scaling Analysis for the Sedimentation of

Polymer

In the previous Sections we have been developing tools haggoribe the electrostatic,
elastic and internal degrees of freedom of the DNA molecidewever, the dynami-
cal aspects have not been of interest yet, since we have ongidered the equilibrium

distribution of ions around DNA, and equilibrium shape of Bhnder traction.

Here we want to study the sedimentation of a semiflexibleréteng polymer chain,
such as the DNA, but in the presence of a large concentrafisalty such that the role
of electrostatic repulsion between the monomers is mamigrévent the monomers of
collapsing onto each other. In other words, we consider amaffanonomers interacting
through the excluded volume interaction, where the roldexfteostatic repulsion is to in-
crease the excluded volume compared to the absence ofosiiatics, and to renormalize
the elastic moduli, as in Sec. 3. Also, we consider the pit@seof a polymer chain in
the largest scales, where the biggest contribution to th&tielenergy becomes from the

stretching of the chain, i.eH, o« $\r(s)?.

The sedimentation of DNA has become very interesting latie to the development
of the ultracentrifugation techniques for separation dmaracterization of biomolecules
like proteins [24]. Here the most interesting aspect is td &iat the relationship between
the conformation of the sedimenting biomolecules and mting sedimentation veloc-
ity vi;m, Since the separation between the components of the saeyads only on the
limiting velocity of the molecule. It has been shown bothesmentally [7, 65] and theo-
retically [76] that for a long DNA in dilute solution, the setentation velocity decreases
by increasing the rotor speed. This is a consequence of ttietynamic shielding of
the interior of DNA, which causes the drag reduction for tleeecpart compared to the

coil exterior. Thus, the chain ends that are located at thleegterior, lag behind due to
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increased friction, and the chain extends. Later, it has lsBewn through hydrodynamic
simulations [66] that in the limit of zero Reynolds numbeg fholymer chain consists of
a compact leading part and a stretched trailing part. Tlitup seems to be consistent

with experiments, though these simulations neglect thexedf inertial forces.

The sedimentation of rigid bodies such as spheres and sghenod rods is well under-
stood in dilute limit. However, at finite volume fractionsezvthe dynamics of simple
spheres is highly nonlinear. While considering a polymaichone has a many-body
object with complicated elastic and internal interactidingt we considered in Sec. 3.
Thus it is easy to believe that the dynamics of a sedimentaignper contains very rich

physics at different length and time scales.

In studying the dynamics of polymers generally, there ai@ key quantities one should
pay special attention for. The first is the radius of gyrati@measure of the volume the

polymer occupies. It is defined as

1 N

Re =\ + Z((ri —Rew)?), (4.1)

whereN is the number of monomergr;} are the positions of the monomers, drd,,
is the center of mass (CM) of the polymer, i.Rqy = % vazl r;. This is a purely
static quantity, but it is also the most interesting onegeimh characterizes the size of the

polymer.

The second important quantity is the CM diffusion coeffitien

T
DCM = lim dt((SVC]u(t) . 5VCM(0)> (42)
— 00 0

and it is more interesting from the dynamics point of viewcs it describes how small

fluctuations in the velocity of the CM of the polymer decay dsraction of time.

In the symmetric problem the radius of gyration and the CNudibn coefficient scale as

a function of the monomers d%&; «« N* and diffusion coefficient a® « N”?, wherer
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andvp areuniversalscaling exponents.

However, in the case of a sedimenting polymer chain, theissea symmetry breaking
force field, namely the gravitational force. Clearly, it pes all the monomers in the
direction of sedimentation that we will call the paralletetition. This has dramatical
consequences, since it changes the shape of the polymetraiche traditional scaling
does not hold anymore, but instead the polymer deformstsfighthe direction of sed-
imentation. The polymer chain has two characteristic sizeghe parallel direction to
sedimentatio?; |, and in the direction perpendicular to sedimentatity), , so that the

scaling law should transform into

R, o« N7t
(4.3)
R” ox NI,

As a consequence, also the scaling of diffusion coefficiepagates into two components:

DJ_ XX NﬁVD’J‘;
(4.4)

DL x N7¥p.L,

The very intriguing problem here is to develop a theory tocdég the dynamics of a
polymer under the gravitational force, and to predict thaliag exponents and their de-

pendence on the limiting velocity and the Reynolds number.

In Article IV we model quantitatively the steady-state seentation of a single polymer
chain in a good solvent. Here, we explain partly those finsljiioyit we also show new
theoretical results obtained more recently [58]. We stundydcaling of the radius of gy-
ration and the velocity fluctuations under steady state doayguanalytical derivations for
the velocity field around the falling polymer, and the proiigbdistribution function of

the chain. Based on these considerations, we proposegeajnments for both compo-
nents of radius of gyration, and for the chain diffusion ¢cefnt as well, that are in good

harmony with our numerical findings.
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4.1 Model

The model system we simulated in this work is described irti@e8.3 of Article IV of
this Thesis. Basically it contains a continuum descriptmrthe solvent that is modeled
using the incompressible Navier-Stokes (NS) equationplealthrough no-slip boundary
conditions to the polymer molecule. Polymer is describedgithe standard bead-spring
model, with a repulsive Lennard-Jones type pair potengdveen all beads to prevent
overlapping, presenting excluded volume interactiond,aspring type FENE potential
between adjacent segments, describing the stretchingyenrarthis model, there are no
thermal fluctuations, meaning that the particles are naw#ran, with an effective tem-
perature ofl’ = 0, or infinite Péclet number. Consequently, this means thabpy does

not play any role here, while considering the equilibriunmitgurations of the polymer.

To develop a theoretical model for this kind of a system, oeeds to consider the NS
equations coupled to the motion of beads or monomers of thyeneo. In mathematical

terms the NS-equations read as
p(Ov +v-Vv)=—-VP+nV?v +f, (4.5)

together with the incompressibility conditiovi - v = 0. Eq. (4.5) can also be written
in a dimensionless form such that the only parameter thaftss the Reynolds number,
defined as

_pUL

Re , (4.6)
n

whereU andL are typical velocity and length scales of the problem, respely, 1 is the

bulk viscosity ang the density of the fluid.

In the case of an asymmetric polymer chain, one actuallywagharacteristic Reynolds
numbers; one for the direction of the gravity, and one pedprdar to it, characterized by
R and R, respectively. The characteristic velocity field is naliyréhe settling speed

of the chain.
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In the level of linearized hydrodynamics, the velocity otlkeanonomer is assumed to

be given by the Oseen tensor [59]
Vn = ZH(rn — 1) - (=VaU({ra})), (4.7)

whereH(r — r’) is the Green'’s function of Eq. (4.5), in the caBe = 0. This allows
one to write the velocity field more generally at an arbitragint in space as a linear

combination of forces acting on it

N
vr)=>)_ / dr'H(r —r,,) - f,. (4.8)

However, in this study we were not interested in fhe= 0 limit, but actually we wanted
to consider the effect of a non-zero Reynolds number on tidocmation of the sed-
imenting polymer chain. The focus is on finding the stea@dyesequilibrium averages
for radius of gyration and diffusion coefficient. The pramlés that in the simulations of
Article IV T' = 0, and one basically does not have a canonical distributioh kespect
to temperature. However, in the problem of sedimenting p@lythe configuration of the
polymer chain is changing continuously, inducing also cardus velocity fluctuations
into NS fluid. Thus we can define an effective temperatureguGireen-Kubo theory [21]
as

kaTgy = 5= [ A0 o)) 4.9)
whereV is the volume of the system, alﬁtg"’ is the off-diagonal element of the Fourier
transformed viscous stress tensor in the likit— 0. In real space the viscous stress

tensor is defined as

Ov,(r,t)  Oug(r,t)
a,f3 _ o B
%" (r,t) = 00 P (r,t) — 1 ( o + ar.

where{ P(r,t), )v(r,t)} is the solution to Eq.(4.5).

2
) + gnéa,ﬁv . V(I‘, t) (410)

Assuming close-to-equilibrium conditions gives us anafie way to calculate canonical
averages of monomer coordinates and monomer momenta @veistinibution function

2
e~ Pers SalBE+U({rn})]

Z Y

Y(PnsTn) = (4.11)
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whereZ is the canonical partition function for the system, defined a
N 2
z-1] / dp,,dr, e=Perr SalBE+U e (4.12)
n=1

andg = (kgT.;¢)~'. Typically one integrates the canonical momenta, but herangue
that it cannot be done in our case, sintte; anddvey, are related to each other, and are
both functions of the radius of gyration of the polymer cha@ur strategy is to solve
the velocity field from the NS equation (4.5), and obtain drative kinetic energy that

depends only on the monomer coordinates.

4.2 Results

Here we present our numerical and theoretical results fralius of gyration and the
diffusion coefficient of the sedimenting polymer chain. Thain achievements are ex-
plicit expressions for the scaling exponents of radius sagygn and diffusion coefficient

in both directions, parallel and perpendicular to the gedional field. These are given in
Secs. 4.2.2and 4.2.3.

4.2.1 Radius of Gyration

Starting from an initial state with zero velocity, it takdgetpolymer chain typically less
than about 1500 single particle Stokes times to reach iglgtstate distribution. In the
steady state, we determined the components of averages raidjyration from Eq.(4.3).

Without loss of generality, we have chosen the coordinaséesy such that the gravita-
tional force points towards the negativaxis. Thusy axis is the direction parallel to the
flow (||), and thery plane is perpendicularl() to it. In Fig. 4.1 we show a time series of
behavior of the two components of the radius of gyrationfoe= 32. The steady-state

is characterized by large fluctuations in the size of the pely and the overall radius
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of gyration is larger perpendicular to the flow for this valoe/N. It is interesting to
notice that the polymer seems to have two characteristipeshavhere the polymer is
either extended along the flow (with larg&; ) or in the plane perpendicular to it (large
R, ). Furthermore, the extended configuration relaxes quibgk to thexy plane,
but the motion in the plane perpendicularttiappens much more slowly. The minima
and maxima for these two componentsitf are temporally out-of-phase, as expected.
These observations are in accord with the experimental anterical results which have
indicated that rods and spheroids happen to align thensekmendicular to the grav-
itational field, when the Reynolds number is non-zero [33]isTs the total opposite to
the case of vanishing Reynolds numbigr = 0, where these objects keep their initial

conformation, which is due to time reversability of the Stelequation.
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Figure 4.1: Raw data for the components of the radius of gyration Wth= 32 in the
steady-state. The vertical lines indicate the averageevaliihe respective component,
calculated from the whole simulation data, of which only aaimart is shown in the
figure.

In Fig. 4.2 we show snapshots of typical configurations apoading to two different
conformations. We also show how the transition occurs betvwkese two different con-
formations. First, self-avoidance extends the polymehmm direction perpendicular to
gravity. Then, the end of the chain lacks behind due to thididyiction in the exterior

of the polymer coil. As a consequence, the polytadris elongated in the positivedi-

rection, to a rod-like configuration, which quickly relaxgsck onto thery plane. The talil
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part is pulled down by the gravitational force caused by teadhpart, due to difference
in the friction felt by these two parts of the polymer. Fiyalthe self-avoiding effects
extend the relaxed chain in the perpendicular directiod, tae polymer returns back to

its original horizontally extended state.

(@ Sog,

()
Gyt Y F

Figure 4.2: (Color online) Snapshots of typical configurations of alset polymer with
N = 32 in the steady-state. The polymer is elongated in the hota&alirection (a). The
loose end of the polymer feels higher friction, and the padyend lacks the head part of
the chain in the vertical direction (b). The gravitationatde of the head part pulls the
part that is left behind, and the polymer collapses into dgjlar shape (c), which then
expands due to self-avoidance leading back to a shape offibert (a).

We also noticed that the time series data indicate a pertectlation between the poly-
mer’'s CM velocity andR¢  (t). This is in qualitative agreement with the Stokes friction
formula that the limiting velocity should be inversely poyponal to the component per-
pendicular to flow of the radius of the object, namely < F/R¢ , whereF is the
gravitational force acting on the CM of the polymer, ile.= Nmge. We will use this

resultin Sec. (4.2.2) to justify the velocity decompositio

In Fig. 4.3 we show the actual distributions f8F; | and R, for chains of lengthV =
16, 28 and32. These distributions are quantitatively different frone thsual distribution
of Rs in equilibrium. The spatial symmetry-breaking induced gty is also clearly

seen.

In Article 4 of this Thesis we found that power-law scaling bmth components of radius
of gyration is well satisfied, and giveg = 0.79 £ 0.02 andv, = 0.45 £+ 0.01. For
comparison, we also calculated the scaling of the totalusadi gyrationR,; ~ NV,

with » = 0.50 4+ 0.01, indicating that the perpendicular component of radiusyséion
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determines the size of the polymer, for the recent parametieres. All these values
are clearly different from the 3D self-avoiding walk expohén equilibrium, which is
v, = 0.588 [12]. The larger scaling exponent of the parallel componedicates that
the ratioR¢ |/ R,. actuallygrowswith increasingV, and thus the parallel component
becomes eventually larger than the perpendicular one fay &nough chains assuming
that the present scaling holds for larger valued/ads well. This result can be interpreted
as follows; the tail-head structure of the polymer becornesitore pronounced the longer
the chainis. Then finally, at some critical value'ofthe friction of the elongated polymer
finally decreases below the friction felt by the head of thyper, after which the chain
is fully elongated. We suppose the small head regime stisstor infinitely long chains
as well. These numerical findings are in qualitative agregméth a recent numerical

study of polymer sedimentation witke = 0 [66].

4.2.2 Generalized Flory Argument

For a polymer chain in thermal equilibrium, the classic Flarean-field argument [12]
gives a very good approximation of the true scaling expom@ntz;(/N). In order to
explain the numerical scaling results in the previous sective present here a general-
ization of the Flory argument for the present case of a potyohain in a steady-state
flow. We assume that the equilibrium distribution functisngiven by Eg. (4.11), and

then we further calculate the polymer distribution funotas a function of the end-to-end
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Figure 4.3: The distributions of the two components of the radius ofagjgn: (a) in the
direction parallel to gravity, and (b) in the direction perglicular to gravity. The chain
lengths are indicated in the figures.

distance and the CM momenta [12] as
W P) =[] [ v, [ dpatirat (pahoR = Yl — 1, )5P = S o)
= (e PerslUArmD+Ex({enDl§(R — Z[r” —1,1))0(P — Z Pn))

2
— (e PersUUraD 3 Fg 5 (R > e — o))

e—ﬁeff< [U({I‘n})"‘% NPWQLO ]>

Vv

o Pers [UR)+} 35s]

Y

(4.13)
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where the inequality follows from the variational prin@pbf Feynman [14]. Later, the
CM momentumP is to be calculated in what follows from the NS equation. Il we

shown that it depends only on the polymer radius of gyrafign Thus, the total free
energy of the polymer chain consists of the spring forcesvbéen the monomers, the

self-avoidance and the kinetic energy contribution, andlmmawritten as

:’rtotal - - lOg \D(P7 R)

eff
S Eharmonic + ESAW + Ekzinetic (414)
1k 1 1

S iﬁRé —+ §V02R3G —+ i(moN)ch(RG)Q,
where N is the number of monomers, is the spring constant between two monomers,
my is the mass of one monomer, and~ N/R{, is the concentration of monomers per
volume. Furthermorey..,(Rs) = P/Nm, is the velocity of the center of mass for a
given radius of gyratiom?;. The kinetic term describes non-equilibrium behavior, and
setting it to zero recovers the equilibrium scaling limitFbry [15]. If we assume that
the velocity field adapts infinitely fast to configurationabnges of the chain, we can say

thatv.,, = ven(Rq).

Next we try to calculate the average kinetic energy of thgmpelr CM. We make a crude
approximation that the velocity of the polymer chain rensiridat of a sphere. This is
based on the observation that on average the polymer stape on plane perpendicular
to gravity, and it has a quasi-spherical shape describel byHowever, the chain ends
tend to elongate upwards like in Fig. 4.2, and then they sevguickly back to they
plane. This suggests that the average size of these elongadn ends is?. Later,
we think that the CM velocity can be divided into an averagmiting velocity v;,,,
describing the settling of the head of polymer chain, andadhtion part. The fluctuating
part describes the average velocity difference betweehehd of chain and the elongated
chain end. These tail fluctuations are caused by the grentdtforce of the head part,

mediated via the internal friction.



87

It has been shown that in the limite = 0, the vertical velocity of a sphere [72]

Mg

e 4.15
- 67T7]RG7L ( )

Viim

However, here we want to extend Eq. (4.15) to take into adcthaneffects of inertia as
well. In Article IV we showed that one can write the connectlmetween the limiting

sedimentation velocity and number of monomers as a power-la
Viim ¢ NO7VL (4.16)

where the exponertt reduces td in the limit Re — 0, and on the other hanél — 0.5 in

the limit of large Reynolds numbédte > 1.

To consider velocity fluctuations, we used the followingattgy: In the NS-equation
Eqg. (4.5) we divide the velocity into two parts, the limitimglocity v,;,,,, and the fluctua-
tion partov. The limiting velocity is now just a constant given by Eq.1@), and it only

couples to the fluctuation part through the convective teith@ NS equation, Eq. (4.5).

The fluctuation part describes changes in the velocity fehdl is assumed to be caused
by the fluctuating tail of polymer chain. Furthermore, thad® approximation here is

that velocity fluctuations obey the linearized Navier-&®lkequation as

a9
p(a—tV 4 Vi - 0V) = —VP 4+ V2V + £y, (4.17)

where we have linearized the non-linear convective part.

The next step is to consider tlielocity of the tail relative to the head the fluid generated

by falling polymer. TheCM velocity of the tails obtained in the limit of — oo as

1 Nhea.d

Ntail

V(rn)

= (4.18)

Niait Nhead

1
Niqir Z Z Hin,m) -,

n=1 m=1

5V0M,tail =




88

whereH(n,m) is the pre-averaged Oseen tensor of Eq. (4.17) in the timitoo, and it

can be written as [12, 59]:

1 5 e—ik~(rn—rm) .
H(nm) = (G / e (1 k). (4.19)

where brackets mean averaging over monomer coordingtgs In Eq. (4.18) we ex-
plicitly highlight that thevelocity fluctuations of the tail are driven by the head pdid
consider this internal fluctuation, we neglect all the farckie to internal interactions,
and assume that the force is caused by each monomer in th@aegaleing equal to the

gravitational force—myg.

Later, one needs to average the Oseen tensor of Eq. (4.1%hev@monomer coordinates.
As was shown in [59], a reasonable approximation is given l&yaassian monomer-
monomer distribution functio® (r,, —r,,,), with a variance corresponding &g|n — m|”,

a being the segment length. Here, of course, the distributimiction separates into
parallel and perpendicular parts that have variances equah — m|/, respectively.
The calculation of the preaveraged Oseen tensor is pretgthg, but straightforward. It
can be shown that in the presence of the “limiting velocitidfieeven the pre-averaged
Oseen tensor remains with non-zero off-diagonal companevitich vanish if we set the
limiting velocity field to zero [12, 59]. This has a conseqoethat the force variation in

z direction causes a fluctuation of the velocity field also auth plane.

Inthe limita = R, /R < 1, one obtains to the leading order that

S 1 L

gl(Reﬂ,effaa)? (420)

4rnagln — m|"
which is the same as the zero Reynolds number result for a genamus rod, except that
now the scaling functiop1 is more complicated, and depends both on the ratend the
effective Reynolds numbek) ., = ag|n — m/|"I. In thexy plane we found surprisingly

a very different result, showing/Rﬁ dependence on radius of gyration, instead of the

usuall/R,.,,.
v log (Jn — m/*1=")

Hnm,J_z = gQ(Reﬂ,Effa Oé). (421)

2m2Nyimad|n — m|*
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In Eq. (4.20) and (4.21), the scaling functians depend on the effective Reynolds num-
ber in thez direction anda, implying that actually the previous equations hold only

asymptotically in the limitv — 0.

Finally, the CM velocity of the polymer is obtained from E§8) by summing over
n andm, and noticing that only the head part of the polymer contebuo forces on

average. After a tedious calculation one obtains

0 Nhead IOg (Nhead> )
VOM,tail,| X dmn R
4.22
OV tail, | OC Nieaa 10g (Nhead) | |
J<tail, ’
2mn R}

which is the result we were after. It clearly shows that in thermodynamic limit the
fluctuations in the perpendicular direction vanish quickkean in thez direction. One
should realize that in thermodynamic limit the head partooees very small compared
to the tail part, and in fact also the fluctuations in theirection vanish as /R, as they

should.

The limiting velocity of the chainv;;, is independent of the fluctuatinG,. Clearly
the velocity fluctuations, scaling a$,..q4/ R are smaller in magnitude compared to the
limiting sedimentation velocity;;,, o N,fe;;% This means that the crosstetw;;,,, -
oveyr gives the largest contribution to thi&; dependence of the kinetic energy Eq. (4.14),
being of the order

[Viim|Nhead
R

_ Ntait Nhead|Viim|

Ry '

1
QMV%M o< M
(4.23)

Plugging Eqg. (4.23) into Eq. (4.14), we get the free energyhefpolymer chain from
Eq. (4.13) asFiiu = —kT log ¥(R, P), as a function of radius of gyration:
1 N?

2 RG,iRGH

‘Vlim‘Nhead
R

1k
:/rtotal 0.8 éﬁ (Ré,L + Ré,”) +
(4.24)

1
+§(mONtail)



90

Here we have discarded the quadratic ternvjin, being independent oR, and the

logarithmic prefactor of velocity fluctuations, not giviagy contribution to scaling laws.
Also, we assume that in the scaling regiig;; ~ N > Nj..q, SUCh that the size of the
head becomes almost independeniofThe equilibrium is obtained by minimizing the
free energy with respect to bofky; | and R | separately, and using the limiting velocity
given by Eq.(4.16). The derivation is shown in Article I1V,dcahere we mainly state the
final result, which is the scaling of the parallel and perpenidr components of radius

of gyration:

(Rg,)) oc NUPHI20/35, (4.25)
(R ) oc NT=8)/11 (4.26)

It should be noted that for a large Reynolds number,Xhdependence of the terminal
velocity is of the form|v;,,| oc N%9% using our numerical result far, ~ 0.45. In other

words, in this limit theN dependence of;;,,, becomes very weak.

4.2.3 Velocity Fluctuations and Effective Diffusion,

A direct consequence of the random velocity fluctuationsiadothe steady-state limit
is that in analogy to thermal systems, such fluctuations teaithe existence of finite
transport coefficients [32, 34—-36]. In particular, using GBreen-Kubo response function
formalism [16, 31] the effective diffusion coefficient fdre CM of the polymer chain can
be defined as in Eq. (4.2). In thermal equilibrium, the eguilim diffusion coefficient
of a polymer chain in a good solvent is known to scalédasc N~"» wherev, = 1 for
the Rouse model, ang, = v, for the Zimm model. In the case of sedimenting polymer,
we expect this scaling law to generalize to two independelations as was anticipated
in Egs. (4.4).
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In Fig. 4 of Article IV we show the scaling of the components/offor this range of
chain lengthsV € {16,20,28,32}. The surprising result here is that we find for this
range of values o that both diffusion coefficients actualigcreasewith increasingV,

in contrast to the thermal case. Here one should also renreimtsour model does not
include thermal fluctuations, so we don’t get the thermaitlewen by setting gravitational
field to zero. Best fit to the data gives | = —0.22+0.11 andvp ) = —1.0£0.2. From
Eqg. (4.18) we can calculate the magnitude of velocity fluttune in the opposite limit to
the scaling regime of radius of gyration, namely= 2, > R, which is in fact true in

the parameter regime of our simulations, see Fig. 4.1. Theeitg fluctuation of the tail

scales as
N, ea 10 N, ea
OVOM, tail| = - ng}g hees).
L (4.27)
5 o Nhead 1Og (Nhead)
VoM, tail, L = )

212 nUm R2
which is the same as Eq. (4.22), but here the perpendicutaponent of radius of gy-
ration is the largest dimension of the polymer, and is maiagponsible for the friction.
In the same way we get a very rough approximation for diffngioefficient of the chain,

being proportional to the square of the velocity fluctuasicas

Dy Ni%ead — N2(-v1) o LI
5 ;
berp (4.28)

N2
D, RZead _ N2(1—2Vl) ~ ]\[0.27

perp

where we used the numerical resylt,, ~ 0.45, and the approximatioV,.,; o< N. The

empirical predictions of Eq. (4.28) give a reasonably gogeeament with our numerical
results. However, one should notice that these resultgyyappy in a very limited range
of N values, since finally the size of the parallel component diusof gyration exceeds
the perpendicular one, indicating a transition to the sgalegime covered by Eq. (4.22).
In scaling regime, it should happen that the fluctuationd stadecrease, meaning that
one should see a crossover in the behavior of diffusion @effi as a function ofV.

In scaling regime the functional dependence of the veldtittuations inz direction on
radius of gyration is the same as in thermal diffusion, ngniel.,,  1/R;. However,

the driving force is still the gravity, and notkzT" as in thermal diffusion.



92

4.3 Summary and Conclusions

In Article IV we examined the behavior of a coarse-grainelyper chain in steady state
sedimentation due to gravity. Under these conditions tlencheaches a steady state,
in which it continues to fluctuate irregularly through a seriof configurations which
include vertical and horizontal straightening and coliag$ack to a globule. Despite the
irregularity, it is seen that the polymer spends most ofintetin the plane perpendicular
to gravity. However, the shape fluctuations in the direcbbgravity tend to magnify as

a function of monomerizatioV, at least in the regime of simulations.

To explain these results, we developed a generalizatioheftory scaling argument
for the case of steady state sedimentation. It predictsth@inertial forces induced
by the head tail structure of the polymer in non-equilibritlow alter the configuration

probabilities radically.

In Sec. 4.2.2 we explained the physical mechanism driviagptflymer chain into a state
of asymmetric size distribution and diffusive motion. Thisll caused by the convective
motion in the direction of gravity, included approximatetythe NS equation through
the linearized convective term. Convection gives rise twaased tail fluctuations into
direction of gravity, making the chain elongated. Also,rigicts a non-zero contribution
from the gravitational force into motion of perpendiculangponent, being absent in the
symmetric case. This also reveals that the diffusion caefficscales very differently in

parallel and perpendicular directions.

However, in order to quantitatively consider the asymmbetweeniz, R, and D, D,

in the thermodynamic limitvV. — oo, an extended set of simulations is needed. In partic-
ular, it is not clear howD depends on the overall sedimentation velocity of the polyme
through the non-linear convective term, and how the chanfaraation crossover from
perpendicular plane into direction of gravity happens. cAlg would be important to

verify numerically whether the velocity ansatz of Eq. (4.hdlds even qualitatively.
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5 Summary

In this Thesis we have studied the electrostatic propestissongly charged biomolecules,
the conformations of highly stretched and charged biopelgnand dynamics of sedi-
mentation of long biopolymers in the presence of large arhotiadded electrolyte. The
final statement means that in all applications the intevastbetween different biomolecules
and ions under study have a finite range and at large distamwedach other they can be

considered as non-interacting.

In Sec. 2 we considered the distribution of counterions amols around a very strongly
charged surface of the biological macromolecule. Here dlea was to develop a for-
malism to calculate the free energy and electrostatic pietiest a system composed of
a few charged macromolecules, surrounded by a reservoppdsitely charged counte-
rions and similarly charged coions. This electrostaticeptil can be used as an input
to study systems in larger length scales, where the indatidun properties do not have
much importance, like in DLVO theory. Both the free energy #ime electrostatic poten-
tial are straightforwardly related to the ion densities dfedlent ion types in surrounding
medium. The theory developed here predicts these ion-iesns the limit of moderate

or large amount of reservoir salt or electrolyte.

As an application of the electrostatic theory developetiis Thesis, we studied a bench-
mark case of one infinite charged wall surrounded by coumterand coions. Here we
were interested in calculating also the so-cabggarent surface chargeat is equal to
the total amount of charge inside a given distance from thié w@mposed of the wall
charge and all the charged ions inside this distance. We al#@esto show that under cer-
tain concentrations of added electrolyte the apparenggehelnanges sign from negative
to positive, which is typically taken as an indication of mrearging/charge reversal. The
magnitude of the integrated charge depends non-monottynicathe added electrolyte,

valency of the counterions, and also ion radii. This ressiiniagreement with a large
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number of experimental and simulation studies [38, 45—97.,, Also, we argue that the
mechanism behind overcharging is layer formation, wheeeidims in the second layer
behind the condensed layer stick to the ions in the layer teette macrocharge. Our
theory also predicts that the maximum of overcharging shdwalppen at a distance of
two ion-diameters from the charged wall, in accord with thevpus simulation results

for charged colloids [38].

In Sec. 3 we studied the statistical conformations of DNAermekternal stretching force.
Here the interesting question is to find a relationship betwihe force required to pro-
duce the overstretching transition as a function of thetedgde cooncentration. We
developed a formalism that combines the one-dimensionsdrigigion of the internal
structure of DNA [1], i.e., hydrogen bonding, and the mespsc elasticity theory for
the DNA-backbone [56]. The new piece of the theory is that wedua so-called global
coupling between the elasticity and Ising variables, wimcluces the change of the elas-
tic parameters along the overstretching transition. Tbigpting can be seen as a minimal

model to create interaction between the different parthefchain.

The theory predicts the force required to stretch the DNArtageamount, i.e., the force-
extension relation. We used this force-extension relaéisra fitting function with un-
known Ising structural parameters and renormalized séparaetween the charges, to
be determined from fitting to the experimental data [70]. Tiegor result is that despite
of the very complicated form of the data curves, the fitting ba done with just one ad-
justable paramter, which turns out to be the renormalizedisgion between the charges.
Moreover, the value of this separation varies between tietstral separation and Bjer-
rum length, in qualitative agreement with Manning condénsaheory. We also showed
that other fitting parameters have barely any salt depemjamal for the given data they
can be taken as constants. This also demonstrates thatabesaey electrostatic interac-
tions are mediated via elasticity, and there is no need todotce any other terms into the

free energy.
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Finally Sec. 4 considered the sedimentation dynamics of \@rg biopolymers, such
as DNA, under the gravitational field. Here we developed decafe theory to take
into account non-zero Reynolds number contributions tosédimentation velocity, to
the size and the shape, and to the diffusion coefficient ofptiigmer. The theory is
based on the hypothesis that the velocity of the sedimepthgner can be divided into
two parts, consisting of the average sedimentation vel@eit fluctuations described by
linearized NS equations. Furthermore, we took into accthentonvection of the velocity
in the direction opposite to the sedimentation by lineatizenvective term. However, all
the nonlinearities are assumed to be described by the aveedjmentation velocity,
being given by the empirical formula fitted from experimeritke theoretical model was
compared to the simulation data in Article IV giving very gbagreement in the regime

of simulation parameters.

The main results here are that the polymer is driven to a mpunalibrium steady-state,
where it keeps on fluctuating between vertically fully elateyl and compacted confor-
mations. The velocity fluctuations are mainly due to thisinal motion of polymer, and
seem to be magnifying as a function of monomerization in #ggmne of simulations. We
argue theoretically that for longer polymers the chain $thgo through a crossover from
horizontal configuration into elongated one, suct that lyndle chain is fully elongated,
and the horizontal head part of the polymer vanishes. Frendyimamical point of view,
this shows up in the velocity fluctuations that first keep ammeasing up to the crossover,
after which they start to decrease when the length of thendsancreased further. It is
remarkable that the scaling theory developed here prethetghain properties on both

sides of the crossover.
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