
TKK Research Reports in Computer Science and Engineering A TKK-CSE-A1/09
Espoo 2009

IMPROVED ALGORITHMS
FOR STRING SEARCHING PROBLEMS
Doctoral Dissertation

Leena Salmela

Dissertation for the degree of Doctor of Science in Technology to be presented with due
permission of the Faculty of Information and Natural Sciences for public examination and
debate in Auditorium T2 at Helsinki University of Technology (Espoo, Finland) on the 1st
of June, 2009, at 12 noon.

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Teknillinen korkeakoulu
Informaatio- ja luonnontieteiden tiedekunta
Tietotekniikan laitos

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80703592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Distribution:
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
P.O. Box 5400
FI-02015 TKK
FINLAND
URL: http://www.cse.tkk.fi/
Tel. +358 9 451 3228
Fax +358 9 451 3293
e-mail: lsalmela@cs.hut.fi

c© Leena Salmela
c© Cover photo: Teemu J. Takanen

ISBN 978-951-22-9887-7
ISBN 978-951-22-9888-4 (PDF)
ISSN 1797-6928
ISSN 1797-6936 (PDF)
URL: http://lib.tkk.fi/Diss/2009/isbn9789512298884/

Multiprint Oy
Espoo 2009

AB
ABSTRACT OF DOCTORAL DISSERTATION HELSINKI UNIVERSITY OF TECHNOLOGY

P. O. BOX 1000, FI-02015 TKK
http://www.tkk.fi/

Author Leena Salmela

Name of the dissertation

Manuscript submitted 09.02.2009 Manuscript revised 11.05.2009

Date of the defence 01.06.2009

Article dissertation (summary + original articles)Monograph
Faculty
Department

Field of research
Opponent(s)
Supervisor
Instructor

Abstract

Keywords string matching, approximate string matching, multiple string matching, parameterized string matching,
weighted string matching, q-grams, bit parallelism, text indexing

ISBN (printed) 978-951-22-9887-7

ISBN (pdf) 978-951-22-9888-4

Language English

ISSN (printed) 1797-6928

ISSN (pdf) 1797-6936

Number of pages 153 p.

Publisher Department of Computer Science and Engineering

Print distribution Department of Computer Science and Engineering

The dissertation can be read at http://lib.tkk.fi/Diss/2009/isbn9789512298884/

Improved Algorithms for String Searching Problems

X

Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
Software Systems
Prof. Maxime Crochemore
Prof. Jorma Tarhio
Prof. Jorma Tarhio

X

We present improved practically efficient algorithms for several string searching problems, where we search for a short
string called the pattern in a longer string called the text. We are mainly interested in the online problem, where the
text is not preprocessed, but we also present a light indexing approach to speed up exact searching of a single pattern.
The new algorithms can be applied e.g. to many problems in bioinformatics and other content scanning and filtering
problems.

In addition to exact string matching, we develop algorithms for several other variations of the string matching problem.
We study algorithms for approximate string matching, where a limited number of errors is allowed in the occurrences
of the pattern, and parameterized string matching, where a substring of the text matches the pattern if the characters of
the substring can be renamed in such a way that the renamed substring matches the pattern exactly. We also consider
searching multiple patterns simultaneously and searching weighted patterns, where the weight of a character at a given
position reflects the probability of that character occurring at that position.

Many of the new algorithms use the backward matching principle, where the characters of the text that are aligned with
the pattern are read backward, i.e. from right to left. Another common characteristic of the new algorithms is the use
of q-grams, i.e. q consecutive characters are handled as a single character. Many of the new algorithms are bit parallel,
i.e. they pack several variables to a single computer word and update all these variables with a single instruction.

We show that the q-gram backward string matching algorithms that solve the exact, approximate, or multiple string
matching problems are optimal on average. We also show that the q-gram backward string matching algorithm for the
parameterized string matching problem is sublinear on average for a class of moderately repetitive patterns. All the
presented algorithms are also shown to be fast in practice when compared to earlier algorithms.

We also propose an alphabet sampling technique to speed up exact string matching. We choose a subset of the alphabet
and select the corresponding subsequence of the text. String matching is then performed on this reduced subsequence
and the found matches are verified in the original text. We show how to choose the sampled alphabet optimally and
show that the technique speeds up string matching especially for moderate to long patterns.

AB
VÄITÖSKIRJAN TIIVISTELMÄ TEKNILLINEN KORKEAKOULU

PL 1000, 02015 TKK
http://www.tkk.fi/

Tekijä Leena Salmela

Väitöskirjan nimi

Käsikirjoituksen päivämäärä 09.02.2009 Korjatun käsikirjoituksen päivämäärä 11.05.2009

Väitöstilaisuuden ajankohta 01.06.2009

Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit)Monografia
Tiedekunta
Laitos
Tutkimusala
Vastaväittäjä(t)
Työn valvoja
Työn ohjaaja

Tiivistelmä

Asiasanat merkkijonohaku, likimääräinen merkkijonohaku, monen hahmon haku, parametrisoitu merkkijonohaku,
painotettujen hahmojen haku, q-piirre, bittirinnakkaisuus, tekstin indeksointi

ISBN (painettu) 978-951-22-9887-7

ISBN (pdf) 978-951-22-9888-4

Kieli Englanti

ISSN (painettu) 1797-6928

ISSN (pdf) 1797-6936

Sivumäärä 153 s.

Julkaisija Tietotekniikan laitos

Painetun väitöskirjan jakelu Tietotekniikan laitos

Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/2009/isbn9789512298884/

Parannettuja algoritmeja merkkijonohakuongelmiin

X

Informaatio- ja luonnontieteiden tiedekunta
Tietotekniikan laitos
Ohjelmistojärjestelmät
Prof. Maxime Crochemore
Prof. Jorma Tarhio
Prof. Jorma Tarhio

X

Esitämme parannettuja käytännössä tehokkaita algoritmeja useisiin merkkijonohakuongelmiin, joissa etsitään lyhyttä
merkkijonoa eli hahmoa pitkästä merkkijonosta eli tekstistä. Keskitymme pääasiassa ongelman muunnelmaan, missä
tekstiä ei esikäsitellä, mutta esitämme myös kevyen hakemistorakenteen, joka nopeuttaa yhden hahmon tarkkaa hakua.
Esitettyjä uusia algoritmeja voidaan soveltaa mm. moniin bioinformatiikan ongelmiin ja erilaisiin haku- ja suodatus-
ongelmiin.

Tarkan merkkijonohaun lisäksi kehitämme algoritmeja moniin muihin merkkijonohakuongelmiin. Käsittelemme
merkkijonojen likimääräistä hakua, missä sallitaan rajattu määrä virheitä hahmon esiintymissä, ja parametrisoitua
hakua, missä tekstin osajono täsmää hahmoon, jos osajonon merkit voidaan nimetä uudelleen siten, että hahmo täsmää
tarkasti tähän uudelleennimettyyn osajonoon. Tarkastelemme myös usean hahmon yhtäaikaista hakua ja painotettu-
jen hahmojen hakua, missä kunkin merkin paino kussakin positiossa kuvaa kyseisen merkin todennäköisyyttä esiintyä
kyseisessä positiossa.

Monet uusista algoritmeista lukevat hahmon kanssa kohdistetun tekstin osajonon taaksepäin eli oikealta vasemmalle.
Toinen yhteinen piirre esitetyille algoritmeille on q-piirteiden käyttö eli algoritmit käsittelevät q:ta peräkkäistä merkkiä
yhtenä merkkinä. Monet näistä uusista algoritmeista ovat bittirinnakkaisia eli ne pakkaavat monta muuttujaa samaan
tietokoneen sanaan ja päivittävät kaikkia näitä muuttujia yhdellä käskyllä.

Näytämme, että taaksepäin täsmäävät q-piirrealgoritmit, jotka ratkaisevat tarkan, likimääräisen tai usean hahmon
merkkijonohaun, ovat keskimäärin optimaalisia. Lisäksi todistamme, että parametrisoidun haun taaksepäin täsmäävä
q-piirrealgoritmi on keskimäärin alilineaarinen joukolle kohtalaisen toisteisia hahmoja. Näytämme myös, että kaikki
esitetyt algoritmit ovat käytännössä nopeita verrattuna aikaisempiin algoritmeihin.

Lopuksi esitämme aakkostonkarsintamenetelmän, joka nopeuttaa tarkkaa merkkijonohakua. Menetelmässä valitaan
aakkoston osajoukko ja vastaava tekstin alijono. Hahmoa haetaan tästä lyhennetystä tekstistä ja löydetyt esiintymät
tarkistetaan alkuperäisestä tekstistä. Näytämme, miten aakkoston osajoukko valitaan optimaalisesti ja että menetelmä
nopeuttaa merkkijonohakua erityisesti kohtalaisen pitkillä hahmoilla.

Preface

First of all, I would like to thank my supervisor, Professor Jorma Tarhio. He recruited
me to the String Algorithms Group when I was still an undergraduate student and
introduced me to the many interesting problems in string algorithms. I would also
like to thank Hannu Peltola who has always been ready to listen to my complaints and
questions and to help with the more practical mysteries of university life. Also other
members of SAG deserve their thanks. It has been a pleasure to work with you.

This thesis was written while I was working at the Department of Computer Sci-
ence and Engineering at Helsinki University of Technology. For financial support I
would like to thank Helsinki Graduate School in Computer Science and Engineering
and the Academy of Finland.

I am also grateful for the opportunity to visit University of Chile in April 2008. It
was very inspiring to work with Professor Gonzalo Navarro and Francisco Claude. The
two weeks away from the usual distractions also proved to be very helpful in getting
started on writing this thesis.

I would also like to thank the pre-examiners, Professor Esko Ukkonen and Profes-
sor Erkki Sutinen, for many useful comments that helped to improve this work.

Finally, I would like to thank my family and friends for their support throughout
my studies. Especially, I thank Teemu Takanen for taking the cover photo for this
thesis.

Espoo, May 2009

Leena Salmela

vii

viii

Contents

Preface vii

Contents ix

1 Introduction 1
1.1 Applications . 2

1.1.1 Bioinformatics . 2
1.1.2 Data Scanning . 2
1.1.3 Plagiarism Detection . 3
1.1.4 Image Searching . 3

1.2 Results and Contributions . 3
1.3 Organization . 4

2 Background 5
2.1 Basic Concepts . 5

2.1.1 Alphabets, Strings, and String Matching 5
2.1.2 Bit Vectors . 6

2.2 Common Algorithmic Techniques 6
2.2.1 q-Grams . 6
2.2.2 Bit Parallelism . 7

2.3 String Matching Algorithms . 7
2.3.1 Boyer-Moore-Horspool Algorithm 7
2.3.2 Shift-Or Algorithm . 8
2.3.3 Backward Nondeterministic DAWG Matching 9
2.3.4 Rabin-Karp Algorithm . 10

2.4 Tools for Analysis . 11

3 Approximate String Matching with Small Alphabets 17
3.1 Preliminaries . 18

3.1.1 Definitions . 18
3.1.2 Dynamic Programming . 18
3.1.3 Previous Algorithms . 20

3.2 Algorithm for the k-Mismatch Problem 22

ix

x CONTENTS

3.3 Algorithms for the k-Difference Problem 24
3.4 Analysis . 28
3.5 Experimental Results . 31

4 Parameterized String Matching 39
4.1 Definitions . 39
4.2 Earlier Solutions . 41

4.2.1 One-Dimensional Algorithms 41
4.2.2 Two-Dimensional Algorithms 42

4.3 Horspool Style Algorithms . 42
4.3.1 Three One-Dimensional Algorithms 42
4.3.2 A Two-Dimensional Algorithm 45

4.4 Analysis . 45
4.4.1 The One-Dimensional Algorithms 46
4.4.2 The Two-Dimensional Algorithm 48

4.5 Experimental Results . 49

5 Multiple String Matching with Very Large Pattern Sets 57
5.1 Definitions . 58
5.2 Earlier Solutions . 58

5.2.1 Aho-Corasick . 58
5.2.2 Set Horspool . 60
5.2.3 Set Backward Oracle Matching 60
5.2.4 Wu-Manber . 60
5.2.5 Rabin-Karp Approach . 61
5.2.6 Comparison of the Earlier Algorithms 62

5.3 Filtering Algorithms . 62
5.3.1 Multi-Pattern Shift-Or with q-Grams 63
5.3.2 Multi-Pattern BNDM with q-Grams 65
5.3.3 Multi-Pattern Horspool with q-Grams 65

5.4 Analysis . 66
5.5 Experiments . 71

5.5.1 SOG Algorithm . 71
5.5.2 BG Algorithm . 74
5.5.3 HG Algorithm . 74
5.5.4 Comparison of the Algorithms 77
5.5.5 Comparison Against the Suffix Array 83

6 Weighted String Matching 85
6.1 Preliminaries . 85

6.1.1 Definitions . 85
6.1.2 Related Work . 86
6.1.3 Bit-Parallel Algorithms for Approximate String Matching . . 87

CONTENTS xi

6.2 Weighted String Matching with Positive Restricted Weights 89
6.2.1 Weighted Shift-Add . 90
6.2.2 Weighted BNDM . 91

6.3 Weighted String Matching with Inverted Weights 91
6.3.1 Inverted Weighted Shift-Add 93
6.3.2 Inverted Weighted BNDM 93

6.4 Enumeration Algorithms . 94
6.5 Experimental Results . 95

6.5.1 Bit Parallel Algorithms . 96
6.5.2 Algorithms for a Single Pattern 96
6.5.3 Algorithms for Multiple Patterns 99

7 Alphabet Sampling 103
7.1 Sampled Semi-Index . 103
7.2 Tuning the Semi-Index . 105
7.3 Optimal Sampling . 106
7.4 Experimental Results . 110

8 Conclusions 117

Bibliography 119

A Comparison of the Suffix Array and the BG Algorithm 129

B Experiments with the Sampled Semi-Index 137

xii CONTENTS

Chapter 1

Introduction

The most fundamental problem in string algorithms is the exact string matching prob-
lem. The input of this problem is two strings, a text and a pattern, and the task is to
find all exact occurrences of the pattern in the text. Over the years, several variations
of this basic problem have emerged. In the approximate string matching problem, a
limited number of errors is allowed in the occurrences of the pattern in the text. An-
other variation is the parameterized string matching problem [16], where the pattern
matches a substring of the text if the characters of the text substring can be renamed
in such a way that the pattern matches the renamed substring exactly. Other variations
include searching for multiple patterns simultaneously and searching for a weighted
pattern, where in each position of the pattern a weight is given to each character of the
alphabet describing the probability of the character occurring at that position.

Algorithms that solve string matching problems come in two flavors: online and
indexing. Online algorithms can preprocess the pattern, but they do not preprocess
the text. Indexing algorithms are able to speed up searching by preprocessing the text.
This work concentrates mainly on online algorithms, but in Chapter 7, we will also
look at a light weight indexing approach to speed up online searching.

Lower bound on the worst case complexity of the online approach to the exact
string matching problem has been proved to be Ω(n), where n is the length of the
text. The first algorithm to reach this bound was the Knuth-Morris-Pratt algorithm
[57]. In practice, the best algorithms do not inspect every character of the text, and
the lower bound of the average case complexity of the problem has been proved to
be Ω(n logσ m/m) [111], where σ is the size of the alphabet and m the length of
the pattern. For example, the Backward DAWG Matching (BDM) algorithm [30] has
been proved to be optimal on average, but other nonoptimal sublinear algorithms, like
the Boyer-Moore-Horspool algorithm [49], are very competitive in practice. Similar
results have been shown for the approximate string matching problem [25] and the
multiple string matching problem and a combination of them [42]. In this work, the
emphasis is on developing practical algorithms with good average case complexity for
several variations of the string matching problem.

1

2 1. INTRODUCTION

In general, sublinear string matching algorithms work best when the alphabet is
large and the distribution of characters is even because then the probability of match-
ing a random string of characters is low. As this is not the case in many practical situa-
tions, like searching natural language texts or DNA sequences, we show that practical
methods can be developed to boost string matching algorithms in these cases.

1.1 Applications

1.1.1 Bioinformatics

DNA and protein sequences have a central role in modern biology. The rapidly grow-
ing databases of such sequences present a challenge for developing efficient string
matching algorithms. The DNA sequences of related species and even individuals
within a species can differ slightly, and thus there is a need for approximate searching
of the sequences in addition to exact searching.

In many cases, approximate matching is not sufficient to model the complex bio-
logical variation present in real sequences. A weighted pattern is one model that has
been successfully applied to model, for example, transcription factor binding sites [93]
and protein families [44]. In bioinformatics, the terms position weight matrices, posi-
tion specific scoring matrices, or profiles are often used to refer to weighted patterns.

New DNA sequencers produce massive amounts of short reads of DNA text in a
single run [20]. If a reference genome is known, a first step in processing these short
reads is to map them to the reference genome. As the number of these short sequences
is very large, new efficient multiple string matching algorithms are needed to complete
this task.

1.1.2 Data Scanning

Multiple string matching algorithms are needed in various data scanning problems.
Two examples of such an application are anti-virus scanning [74] and intrusion detec-
tion [37, 68, 102].

In anti-virus scanning, signatures are defined to describe known computer viruses,
and the first task in these applications is to locate these signatures in large amounts of
data. When a signature is found, more sophisticated methods are needed to confirm the
presence of a computer virus. The rapidly growing set of signatures calls for efficient
multiple string matching algorithms.

In intrusion detection applications, strings related to attacks are defined. These
strings are then searched for in network traffic, and the system is alerted for further
inspection if a suspicious sequence of these strings is found.

1.2. RESULTS AND CONTRIBUTIONS 3

1.1.3 Plagiarism Detection
Plagiarism has become a growing concern in education [55, 92]. In computer science,
a particular problem is the copying of code for programming assignments. A common
modification to a copied program is the change of variable names. If the program
is considered as a sequence of tokens, parameterized matching can detect a copied
program even if variable names have been changed [41].

1.1.4 Image Searching
Searching for images is an extension of string matching to two-dimensional objects.
Several algorithms have been presented to solve the exact matching problem [15, 19,
22, 43, 53, 100, 114]. We consider the two-dimensional version of parameterized string
matching, which can identify an image even if its color map has been changed.

1.2 Results and Contributions
The main results of this thesis are as follows:

• We show that the average case complexity of the Boyer-Moore-Horspool algo-
rithm with q-grams is O(n logσ m/m), which is optimal.

• We present practical Boyer-Moore-Horspool style algorithms for approximate
string matching with optimal average case complexity of O(n(logσ m + k)/m)
for k/m < 1/2−O(1/

√
σ), where k is the maximum number of differences in

the occurrences of the pattern in the text.

• We develop Boyer-Moore-Horspool style algorithms for parameterized string
matching in one and two dimensions with sublinear average case complexity for
moderately repetitive patterns.

• Two algorithms for multiple pattern matching with optimal average case com-
plexity of O(n logσ(rm)/m), where r is the number of patterns, and another
algorithm with linear average case complexity are presented. The algorithms are
practical even for very large pattern sets.

• Practical algorithms for the weighted string matching problem are developed.

• A light weight indexing scheme to speed up online search on natural language
texts is presented.

This thesis includes material from the original publications [26, 52, 60, 86, 87, 88,
89, 90], but for example, many of the analytical results are new. The co-authors have
a contribution in some of the results. Most notably, the initial ideas for the multiple
string matching algorithms in Chapter 5 are by Jorma Tarhio and Jari Kytöjoki, and

4 1. INTRODUCTION

the initial idea for the sampled semi-index in Chapter 7 is by Gonzalo Navarro. Most
of the algorithms have been implemented by the author. The sampled semi-index in
Chapter 7 was implemented by Hannu Peltola and the approximate matching algo-
rithms in Chapter 3 were developed jointly by the author, Janne Auvinen, Petri Kalsi,
and Jorma Tarhio.

1.3 Organization
We start by introducing the needed definitions, basic algorithms, and some tools for
analyzing the new algorithms in Chapter 2. We then study two variations of string
matching where the criteria for matching have been changed. Chapter 3 studies the
approximate string matching problem with an emphasis on small alphabets, and Chap-
ter 4 discusses efficient algorithms for the parameterized matching problem. Then we
turn to two variations of string matching where the pattern is more complex. Chap-
ter 5 studies multiple string matching with an emphasis on very large pattern sets, and
Chapter 6 explores the weighted string matching problem. In Chapter 7, we return to
the exact string matching problem in the context of natural language texts and develop
an alphabet sampling technique to speed up the search process.

Chapter 2

Background

2.1 Basic Concepts

2.1.1 Alphabets, Strings, and String Matching
Definition 2.1. An alphabet Σ is a set of characters. The size of the alphabet is denoted
by σ. An integer alphabet is a set of integers from the range [1, σ]. A constant alphabet
is a finite set of constant size.

Most of the algorithms presented in this thesis assume that the alphabet is an integer
alphabet. A constant alphabet is easily transformed to an integer alphabet by preparing
a mapping table that maps each character to a unique integer in the range [1, σ].

Definition 2.2. A string is a sequence of characters drawn from an alphabet. If S =
s1s2 . . . sn is a string, then S ′ = si1si2 . . . sim , where 1 ≤ i1 < i2 < . . . < im ≤ n,
is a subsequence of S. Furthermore, S ′′ = sisi+1 . . . sj , where 1 ≤ i ≤ j ≤ n, is a
substring of S. If i = 1, then S ′′ is a prefix of S, and if j = n, then S ′′ is a suffix of S.
The empty string ε of length 0 is both a prefix and a suffix of any string.

We will use capital letters to denote strings and the corresponding lower case letters
to denote the characters of the string. We will denote by Σq the set of all strings of
length q drawn from an alphabet Σ.

The problems studied in this thesis are string matching problems. The simplest
string matching problem is the exact string matching problem.

Problem 2.3. Given two strings, a text T = t1 . . . tn and a pattern P = p1 . . . pm,
the exact string matching problem is to find all substrings of the text that match the
pattern. These matching substrings are called the occurrences of the pattern.

There are many variations of this basic problem. The criteria for matching can be
different. For example, a limited number of substitutions, insertions, or deletions can
be allowed. The pattern can also be a more complex structure, like a set of strings.
These variations will be defined in the forthcoming chapters as they are needed.

5

6 2. BACKGROUND

2.1.2 Bit Vectors

Definition 2.4. A bit vector is a sequence of bits. We will denote a bit vector of width
w as E = ew . . . e1, where e1 is the least significant bit, and ew is the most significant
bit.

We define the following operators on bit vectors: | denotes the bit-wise or operator,
& the bit-wise and, and ˆ the bitwise xor operator. The operation E � n shifts the
bits of the bit vector E n positions to the left inserting zeroes to the least significant
bits, and � shifts the bits to the right in a similar fashion. Arithmetic operations,
like addition, are defined on bit vectors as with normal binary numbers. We use the
shorthands 1x and 0x to denote a bit value that is repeated x times.

2.2 Common Algorithmic Techniques

2.2.1 q-Grams

Many string matching algorithms rely on a fairly large alphabet for good performance.
The idea behind using q-grams is to make the alphabet perceived by the algorithm
larger. When using q-grams, we process q consecutive characters as a single character.
There are two ways of transforming a string of characters into a string of q-grams.
We can either use overlapping q-grams or consecutive q-grams. When overlapping
q-grams are used, a q-gram starts at every position of the original text, while with
consecutive q-grams, a q-gram starts in every q:th position. For example, transform-
ing the word “pony” into overlapping 2-grams results in the string “po-on-ny”, and
transforming it into consecutive 2-grams yields the string “po-ny”.

In many algorithms, q-grams are used to index tables. For maximum performance,
it is crucial how this index value of a q-gram is computed. One way is to map the
characters to integers and to use the following loop to construct a bit representation of
a q-gram:

bits = 0
for (i = 1 to q)

bits = (bits� b) | map(gram[i]) ,

where gram is the textual representation of the q-gram, map is an inline function that
maps the characters to integers, b is the number of bits needed to represent the inte-
gers, and bits is the bit representation of the q-gram. When using bytes as characters,
2-grams and 4-grams can be easily read by a single instruction on machines that do not
require memory references to halfwords or words to be aligned on (half)word bound-
aries [38].

2.3. STRING MATCHING ALGORITHMS 7

2.2.2 Bit Parallelism

Bit parallelism takes advantage of the bit operations of processors by packing several
variables into a single computer word. These variables can then be updated in a single
instruction making use of the intrinsic parallelism of bit operations. For example, if
we needed to keep track of m ≤ w boolean variables, where w is the length of the
computer word, we could store all these variables in a single computer word. Further-
more, we can update all the variables in one instruction instead of m instructions. As
the length of the computer word in modern processors is 32 or 64, this technique can
give us a significant speedup.

2.3 String Matching Algorithms
A myriad of string matching algorithms have been developed. Here we will review
only those algorithms that are used when constructing the new algorithms presented
in this thesis. For more information, see the many books on string matching algo-
rithms [32, 33, 46, 80]. All the following algorithms solve the exact string matching
problem for a single pattern.

2.3.1 Boyer-Moore-Horspool Algorithm

The Boyer-Moore algorithm [23] was the first sublinear string matching algorithm.
The algorithm processes the text in windows of length m. The key idea of the algorithm
is that in each window the characters are read from right to left, and when a mismatch
is found, the window is shifted based on the text characters read. In many cases,
this allows the algorithm to entirely skip reading some text characters. The original
algorithm uses two shifting heuristics, the bad character heuristic and the good suffix
rule. The bad character heuristic determines the shortest possible shift such that the
rightmost character of the current window matches the pattern after the shift. If no
such shift is possible (i.e. the rightmost character of the current window does not occur
in the pattern), the bad character heuristic recommends a shift of length m. The good
suffix rule is more involved. It assures that the matching suffix of the current window
matches the pattern also after the shift if it is then aligned with the pattern.

Horspool [49] proposed to use only the bad character heuristic because in most
cases that heuristic determines the shift length. In practice, the Boyer-Moore-Horspool
algorithm is faster than the original Boyer-Moore algorithm. Several other improve-
ments to the Boyer-Moore algorithm have also been proposed [7, 21, 30, 50, 85, 96,
98, 113].

The preprocessing phase of the Boyer-Moore-Horspool algorithm consists of cal-
culating the bad character function S[c], which will be used for shifting the window
during the search phase. The bad character function is defined as the distance from
the end of the pattern P = p1p2 . . . pm to the last occurrence of the character c in the

8 2. BACKGROUND

2 3 4 5
p a t t e r

6
n

70 1

ε

Figure 2.1: The nondeterministic automaton recognizing the pattern “pattern”

pattern excluding the last character:

S[c] = min{h | pm−h = c, 1 ≤ h ≤ m− 1} .

If the character c does not appear in the prefix of the pattern p1 . . . pm−1, S[c] = m.
In the searching phase, the last character of the window is compared with the last

character of the pattern. If they match, the whole window is compared against the
pattern to check for a match. After that or if the last characters did not match, the
window is shifted by S[c], where c is the last character of the window. The worst case
complexity of the Boyer-Moore-Horspool algorithm is O(mn), and the average case
complexity is O(n(1/m + 1/σ)) [10].

It is well known (see e.g. [9, 23, 57]) that the use of q-grams can increase the
average length of shift in the algorithms of Boyer-Moore type. In the Boyer-Moore-
Horspool algorithm, the bad character function is now replaced by the bad q-gram
function, which is defined as the distance from the end of the pattern to the last occur-
rence of the q-gram G excluding the last q-gram of the pattern:

Sq[G] = min{h | pm−h−q+1 . . . pm−h = G, 1 ≤ h ≤ m− q} .

If the q-gram does not occur in the prefix of the pattern p1 . . . pm−1, Sq[G] = m−q+1.
In the searching phase, the shift is then based on the last q-gram of the text window.
This basic bad q-gram function can be improved by defining the maximal shift length
to be m and also considering the cases when the suffix of the q-gram matches the prefix
of the pattern when defining the function.

2.3.2 Shift-Or Algorithm
Shift-and [2, 34] was the first bit parallel string matching algorithm, but shift-or [11]
is a very similar algorithm, which can be implemented more efficiently. The shift-or
algorithm is a bit-parallel algorithm simulating a simple nondeterministic automaton
that recognizes the pattern. An example of such an automaton is shown in Figure 2.1.

In the preprocessing phase, a descriptor bit vector B[c] encoding the transitions of
the automaton is initialized for each character c of the alphabet. The bit in position i is
set to zero in the bit vector if the i:th character in the pattern is c, in which case there
is a transition on that character from state i− 1 to state i in the automaton. Otherwise
the bits are set to one.

2.3. STRING MATCHING ALGORITHMS 9

The algorithm maintains a state vector E, which encodes the active states of the
automaton with zeroes. In the beginning of the matching phase, the state vector E is
initialized to 1m. Then the text is read one character at a time from left to right, and
the state vector is updated as follows:

E = (E � 1) | B[c] ,

where c is the character read. Shifting the bits left by one inserts a zero into the state
vector which corresponds to the first state of the automaton always being active. Or’ing
the bits with the preprocessed descriptor bit vector B[c] corresponds to activating a
state of the automaton if the previous state was active and the correct character was read
from the text. If the m:th bit is zero after this update, the final state of the automaton
is active, and thus we have found a match. The worst and average case complexity of
shift-or is O(n) when the length of the pattern is less than or equal to the length of the
computer word.

2.3.3 Backward Nondeterministic DAWG Matching
The Backward Nondeterministic DAWG Matching (BNDM) algorithm [79] has been
developed from the Backward DAWG Matching (BDM) algorithm [32]. In the BDM
algorithm, the pattern is preprocessed by forming a DAWG (directed acyclic word
graph) of the reversed pattern. The text is processed in windows of size m, where m is
the length of the pattern. The characters of the window are read from right to left, and
using the DAWG, we search for the longest prefix of the pattern that matches a suffix
of the window. When this search ends, we have either found a match (i.e. the longest
prefix is of length m) or the longest prefix. If a match was not found, we can shift the
start position of the window to the start position of the longest prefix. If a match was
found, we can shift on the second longest prefix (the longest one is the match we just
found).

The BNDM algorithm [79] is a bit-parallel simulation of the BDM algorithm. It
uses a nondeterministic automaton instead of the deterministic one in the BDM algo-
rithm. An example of such a nondeterministic automaton is shown in Figure 2.2. For
each character c, a descriptor bit vector B[c] encoding the transitions of the automaton
is initialized in the preprocessing phase. The i:th bit is one in this vector if c appears
in the reversed pattern in position i so that there is a transition from state i− 1 to i on
that character in the automaton. Otherwise the i:th bit is zero.

The algorithm maintains a state vector E, which encodes the active states of the
automaton with ones. The state vector is initialized to B[c], where c is the last character
of the window. The same kind of right to left scan in a window of size m is performed
as in the BDM algorithm. The state vector is updated in a similar fashion as in the
shift-and algorithm [2, 11, 34]:

E = (E � 1) & B[c] ,

10 2. BACKGROUND

p a t t e r n
7 016 25 34

ε
ε

ε
ε

ε
ε

ε

Figure 2.2: The nondeterministic automaton recognizing the reversed prefixes of the pattern
“pattern”

where c is the character read. Shifting the bits to the left inserts a 0 to the vector,
which corresponds to the first state being active only in the beginning, and and’ing
the bits with the descriptor bit vector B[c] corresponds to activating a state only if the
previous state was active and the correct character was read. If the m:th bit is one
after this update operation, we have found a prefix of length j, where j is the number
of updates done in this window. If j is equal to m, a match has been found. If none
of the states are active, i.e. E = 0, we can stop the scanning and shift the window
according to the longest prefix we have found. The worst case complexity of the basic
BNDM algorithm is O(nm). There are variations of BNDM with linear worst case
complexity, but in practice, they are slower. The average case complexity of BNDM
is O(n logσ m/m) when the length of the pattern is smaller than or equal to the length
of the computer word.

The BNDM and shift-or algorithms use a very similar approach to encode the active
states and to update the state vector. However, the BNDM algorithm encodes the
active states with ones and uses an and operation to update the state vector, whereas
the shift-or algorithm encodes the actives states with zeroes and uses an or operation
to update the state vector. Encoding active states with zeroes is convenient in the shift-
or algorithm because shifting the bits to the left by one introduces a zero to the least
significant bit representing the first state of the automaton which is always active. In
the BNDM algorithm, the first state is active only when we start handling a window,
and thus it is convenient to represent active states with ones as then the first state
automatically becomes nonactive after shifting the bits to the left.

2.3.4 Rabin-Karp Algorithm

The Rabin-Karp algorithm [54] uses a hash function from strings to integers to quickly
discard most positions of the text. As preprocessing, the hash value of the pattern is
computed. At each position i of the text, the hash value of the string ti . . . ti+m−1 is
computed and compared to the hash value of the pattern. If these are equal, the position
is verified by pairwise comparison. Karp and Rabin proposed to use a hash function
h(S) that can be quickly computed from the previous hash value h(ti−1 . . . ti+m−2) and
the next text character ti+m−1. When using such a hash function, the time complexity

2.4. TOOLS FOR ANALYSIS 11

of the algorithm is O(n + occ · m + focc · m), where occ is the number of matches
and focc is the number of false matches, i.e. positions where the hash value matches
the hash value of the pattern but the substring does not match the pattern.

2.4 Tools for Analysis
In this section, we will define the q-gram backward string matching algorithm and
analyse its average case complexity. When analyzing the average case complexity,
we assume that each character of the text and the pattern is chosen independently and
uniformly at random.

The q-gram backward string matching algorithm does not solve a specific string
matching problem nor does it present a complete algorithm, but rather the aim is to
provide a framework of an algorithm that captures the behaviour of many algorithms
for various string matching problems in such a way that we can analyse the asymptotic
average case complexity. The framework captures the following important features of
many string matching algorithms: The algorithm proceeds by aligning the pattern re-
peatedly with a window of text, and then shifting this window forward. The windows
are read backward (i.e. from right to left), and the algorithm makes a maximal shift if
the last q-gram of the window does not match the pattern in any position. An exam-
ple of such an algorithm is the q-gram Boyer-Moore-Horspool algorithm adapted for
various string matching problems.

The windows of text examined by a q-gram backward string matching algorithm
are divided into good and bad windows. A window is good if the last q-gram of the
window does not match the pattern in any position. All other windows are bad.

The q-gram backward string matching algorithm is defined by two constants, A
and B, and three functions, s(·), f(m, ·), and g(q):

1. There is a constant A > 0 and a function s(·) such that the probability of a
window to be bad is at most

m · s(·)
σAq

.

The constant A and the function s(·) depend on the string matching problem and
also the arguments of the function s(·) depend on the string matching problem.
In most cases, A = 1 and then s(·) is an upper bound on the number of q-grams
that match a given q-gram.

2. The function f(m, ·) gives the length of the shift after a good window. After a
bad window, the algorithm shifts the window by at least one position. In most
cases, f(m, ·) = f(m, q) = m− q + 1.

3. The function g(q) gives the length of a q-gram. Thus, the last q-gram of a win-
dow is completely outside a previous window if the pattern has been shifted
between the two windows by at least g(q) positions. Clearly g(q) ≤ q as there

12 2. BACKGROUND

search (T = t1 . . . tn, n)

1. i← 1
2. while (i ≤ n)
3. algorithm specific processing
4. i← i + shift

Figure 2.3: General q-gram backward string matching algorithm. Note that shift must be equal
to f(m, ·) if the window is good, i.e. the last q-gram of the window does not match the pattern
in any position.

are q characters in a q-gram. For one-dimensional string matching algorithms,
g(q) = q, but for higher dimensional algorithms, g(q) is often less than q.

4. In a good window the work done by the algorithm is O(q).

5. There is a constant B > 0 such that the work done by the algorithm in a bad
window is O(mB · s(·)B). The value of B often relates to the complexity of
naive checking of a window.

The general pseudocode of the algorithm is given in Figure 2.3.
The following theorem is a useful tool for analyzing time complexities of q-gram

backward string matching algorithms. The proof of the theorem is inspired by a similar
proof for the Reverse Factor algorithm by Crochemore et al. [30].

Theorem 2.5. The average case complexity of the q-gram backward string matching
algorithm is

O
(

n

f(m, ·)
· q
)

if q > B+1
A

logσ(m · s(·)) and g(q) ≤ f(m, ·).

Proof. Let us divide the search phase of the algorithm into subphases. Let wi, i =
1, 2, . . . , be the windows of the algorithm. The first subphase starts with w1. Let
ws be the first window of a subphase. Then the first good window in the sequence
ws+g(q)·k, k = 0, 1, . . . , is the last window of that subphase. If we is the last window of
a subphase, then we+1 starts a new subphase. Thus each subphase consists of X groups
of g(q) windows and one final good window, where X ≥ 0 is a random variable. Each
of the X groups of g(q) windows starts with a bad window, and the rest g(q) − 1
windows in each of the X groups may be of any type. Figure 2.4 shows an example of
dividing the windows into subphases.

The type of a window following a group of g(q) windows is independent of the first
window of the group, because the pattern has been shifted by at least g(q) positions

2.4. TOOLS FOR ANALYSIS 13

bad good good︸ ︷︷ ︸ good︸︷︷︸ bad bad bad good good︸ ︷︷ ︸ bad bad good︸ ︷︷ ︸ good︸︷︷︸ . . .

Figure 2.4: Dividing the search phase into subphases when g(q) = 2. The windows whose
type influences the division are shown in boldface.

between them, and the type of a window is determined solely by the last q-gram of
the window. If f(m, ·) ≥ g(q), the type of a window after a good window is also
independent of the good window, i.e. the q-gram determining the type of the next
window contains only characters that have not been previously read. Because each
subphase contains at least one good window, the text of length n will be covered after
O(n/f(m, ·)) subphases.

We assumed that the probability of a bad window is at most m · s(·)/σAq and that
the work done by the algorithm is O(q) in a good window and O(mB · s(·)B) in a
bad window. Therefore, the expected work done by the algorithm in one subphase of
searching will be less than

O(q) · P (X = 0) +
∞∑
i=1

(
O(q) + i · g(q) · O

(
mB · s(·)B

))
· P (X = i)

= O(q) +
∞∑
i=1

i · g(q) · O
(
mB · s(·)B

)
· P (X = i)

≤ O(q) + q · O
(
mB · s(·)B

) ∞∑
i=1

i ·
(

m · s(·)
σAq

)i

.

This sum converges if m · s(·)/σAq < 1 or equally if q > (1/A) logσ(m · s(·)), and
then

O(q) + q · O
(
mB · s(·)B

) ∞∑
i=1

i ·
(

m · s(·)
σAq

)i

= O(q) + q · O
(
mB · s(·)B

) m·s(·)
σAq(

1− m·s(·)
σAq

)2

= O(q) + q · O
(
mB · s(·)B

) m · s(·) · σAq

(σAq −m · s(·))2
.

If we choose q ≥ C logσ(m · s(·)), where C > 1/A is a constant, then σAq ≥
mACs(·)AC . Because AC > 1, σAq −m · s(·) = Ω(σAq), and therefore

1

σAq −m · s(·)
= O

(
1

σAq

)
.

14 2. BACKGROUND

Now the work done by the algorithm in one subphase is less than

O(q) + q · O
(
mB · s(·)B

) m · s(·) · σAq

(σAq −m · s(·))2

= O(q)

(
1 +O

(
mB+1s(·)B+1σAq

σ2Aq

))
= O

(
q · m

B+1s(·)B+1

σAq

)
= O(q)

if C > (B + 1)/A.
There are O(n/f(m, ·)) subphases and the average complexity of one subphase is

O(q). Overall the average case complexity of the q-gram backward string matching
algorithm is thus

O
(

n

f(m, ·)
· q
)

if q > B+1
A

logσ(m · s(·)) and g(q) ≤ f(m, ·).

A corollary of the above theorem gives the average complexity of the q-gram
Boyer-Moore-Horspool algorithm for exact string matching.

Corollary 2.6. The average complexity of the q-gram Boyer-Moore-Horspool algo-
rithm for exact string matching is O(n logσ m/m) for q = Θ(logσ m) and m2 < σm.

Proof. The q-gram Boyer-Moore-Horspool algorithm is a q-gram backward string
matching algorithm with the following parameters. The probability of a bad window
is equal to the probability that the last q-gram of the window matches the pattern in at
least one position. This probability is at most m/σq as there are a total of σq different
q-grams and less than m of them can occur in the pattern. Thus A = 1 and s() = 1.
If the pattern has been shifted by at least q positions between two windows, then the
last q-gram of the second window is completely outside the first one, and so g(q) = q.
If a window is good, the algorithm clearly reads O(q) characters and makes a shift of
length f(m, q) = m−q+1. In a bad window, the algorithm will read the last q charac-
ters of the window to determine the shift length. Additionally, we need to determine if
there is a match in that window. In the worst case, the last q characters of the window
match because the window is bad, and the next q compared characters match because
the previous shift was of length q. The average number of comparisons to determine if
the rest of the pattern matches a random string is

m−2q−1∑
i=0

(
1

σ

)i

=
σ

σ − 1

(
1− 1

σm−2q

)

2.4. TOOLS FOR ANALYSIS 15

because the i + 1:st character of the random string is read only if all previous char-
acters matched and the probability for this is 1/σi (see [10]). This is O(1) asymp-
totically for σ and m if q ≤ m/2. In this case, the work done by the algorithm in
a bad window is bounded by 2q + O(1) = O(q). If we choose q = O(logσ m),
then O(q) = O(logσ m) = O(mB) for any B > 0. By Theorem 2.5, if we choose
q > B+1

A
logσ m = (B+1) logσ m such that q ≤ m−q+1, then the average complexity

of the q-gram Boyer-Moore-Horspool algorithm isO(nq/(m− q +1)). The condition
q ≤ m−q+1 is equal to q ≤ (m+1)/2, which always holds if the constraint q ≤ m/2
holds. An appropriate q can be found if logσ m < m/2 or equally if m2 < σm. If we
choose q = (B + 1) logσ m + ε = Θ(logσ m), where ε > 0 is a constant, the average
case complexity becomes O(n logσ m/m).

Yao [111] has proved that the lower bound for the average case complexity of the
exact string matching problem for a single pattern is Ω(n logσ m/m), and so the q-
gram Boyer-Moore-Horspool algorithm for exact string matching is average optimal
for an appropriate choice of q.

16 2. BACKGROUND

Chapter 3

Approximate String Matching with
Small Alphabets

In this chapter, we develop backward q-gram string matching algorithms for two vari-
ations of approximate string matching, the k-mismatch problem and the k-difference
problem. Both of these problems are variations of the string matching problem, where
the criteria for matching have been modified. In both of the problems, the pattern
matches a substring of the text if the distance between the substring and the pat-
tern is at most k. In the k-difference problem, the distance between two strings
is the standard edit distance, where substitutions, deletions, and insertions are al-
lowed. The k-mismatch problem is a more restricted one using the Hamming dis-
tance, where only substitutions are allowed. Chang and Marr [25] have proved that the
lower bound for the average complexity of the approximate string matching problem
is Ω(n(k + logσ m)/m), and they also give an algorithm that reaches this bound.

Several algorithms [75] for both variations of approximate string matching have
been presented. For example, there are algorithms based on the dynamic programming
table [24, 61, 95, 103, 104], bit parallel algorithms like the algorithm by Baeza-Yates
and Navarro [13] and the Myers algorithm [73], and filtering algorithms including the
approximate BNDM algorithm [79], the algorithm by Baeza-Yates and Perleberg [14],
the algorithm by Sutinen and Tarhio [99], the approximate Boyer-Moore algorithm
[101], and the algorithm by Fredriksson and Navarro [42]. Many of the algorithms
have been developed with text data in mind, and these algorithms do not necessarily
work well with a small alphabet. Our aim is to develop algorithms specifically for
small alphabets, like DNA, which has lately attracted attention as approximate search-
ing of large volumes of gene sequences has become common.

17

18 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

3.1 Preliminaries

3.1.1 Definitions
A substitution changes one character of a string into another character, an insertion
inserts one character into any position of the string, and a deletion deletes one character
from the string. The two most commonly used distance metrics in approximate string
matching are the Hamming distance and the edit or Levenshtein distance [62].

Definition 3.1. The Hamming distance of two strings of equal length, S and R, is the
minimum number of substitutions needed to transform R into S.

Definition 3.2. The edit distance of two strings, S and R, is the minimum number of
substitutions, insertions, and deletions needed to transform R into S.

For example, the Hamming distance of the strings “cata” and “acta” is 2. Similarly,
the edit distance of the strings “cata” and “cca” is 2.

The two approximate string matching problems studied in this chapter are then
defined as follows.

Problem 3.3. Given two strings, a text T = t1 . . . tn and a pattern P = p1 . . . pm, and
an integer k, the k-mismatch problem is to find all substrings of the text such that the
Hamming distance between the pattern and the substring is at most k.

Problem 3.4. Given two strings, a text T = t1 . . . tn and a pattern P = p1 . . . pm, and
an integer k, the k-difference problem is to find all substrings of the text such that the
edit distance between the pattern and the substring is at most k.

Instead of reporting all the approximately matching substrings, most algorithms for
the k-difference problem report either the starting or ending positions of occurrences.
This is convenient because if the pattern matches a substring S with i < k differences,
then a substring S ′ starting at the same position but ending one position earlier or later
matches with at most i + 1 ≤ k differences as we can transform S ′ into S with one
deletion or insertion. Note, however, that the number of matches can vary depending
on whether we report the starting or ending positions. Our algorithms report the ending
positions of occurrences.

3.1.2 Dynamic Programming
Dynamic programming is a well known technique to calculate the edit distance be-
tween two strings, R = r1 . . . rm and S = s1 . . . sn [66, 82, 91, 94, 105, 106]. The
dynamic programming table D of size (m + 1) × (n + 1) is initialized by setting
D[i, 0] = i for 0 ≤ i ≤ m and D[0, j] = j for 0 ≤ j ≤ n. The rest of the entries are
filled with the recurrence relation:

D[i, j] = min


D[i− 1, j − 1] + α,
D[i− 1, j] + 1,
D[i, j − 1] + 1,

where α =

{
0 if ri = sj,
1 otherwise.

3.1. PRELIMINARIES 19

D
t g g c a a

i\j 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6

c 1 1 1 2 3 3 4 5
a 2 2 2 2 3 4 3 4
t 3 3 2 3 3 4 4 4
a 4 4 3 3 4 4 4 4

(a)

D
t g g c a a

i\j 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0

c 1 1 1 1 1 0 1 1
a 2 2 2 2 2 1 0 1
t 3 3 2 3 3 2 1 1
a 4 4 3 3 4 3 2 1

(b)

D
t g g c a a

i\j 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0

c 1 0 1 1 1 0 1 1
a 2 0 1 2 2 1 0 1
t 3 0 0 1 2 2 1 1
a 4 0 1 1 2 3 2 1

(c)

Figure 3.1: The edit distance table D for the strings R = “cata” and S = “tggcaa” with
different initializations

Here the first alternative D[i−1, j−1]+α takes care of both substitutions and matches,
and the second and third alternatives represent insertions and deletions. From this
table, we can get the edit distances between the prefixes of R and the prefixes of S. In
other words, the starting positions of the compared substrings are fixed to the beginning
of the strings. The entry D[m, n] gives the edit distance between the two strings. The
entry D[i, n], where 0 ≤ i ≤ m, gives the edit distance between the prefix r1 . . . ri and
the string S. Similarly, D[m, j], where 0 ≤ j ≤ n, gives the edit distance between
the string R and the prefix s1 . . . sj . Figure 3.1(a) gives an example of edit distance
calculation for the strings “cata” and “tggcaa”.

We can also initialize the first row to zero by setting D[0, j] = 0 for 0 ≤ j ≤ n
and then fill the table with the same recurrence relation as before. Now deletions are
free in the beginning of the string S, and thus D[m, j] gives the minimum edit distance
of aligning the string R against any substring of S ending at position j. Figure 3.1(b)
shows an example of this kind of initialization. This initialization can be used to solve
the k-difference problem by setting R = P and S = T [95]. An occurrence ending at
position j is reported if D[m, j] ≤ k.

It is also possible to initialize the table by setting D[i, 0] = 0 for 0 ≤ i ≤ m and
D[0, j] = 0 for 0 ≤ j ≤ n. Again we fill the table with the same recurrence relation
as before. Now the starting position of either one, but not both, of the compared
substrings can vary. D[m, n] gives the minimum edit distance when aligning the string
R against the string S, where deletions in the beginning of either R or S are free.
Furthermore, the entry D[m, j] gives the minimum edit distance when aligning the
string R against the prefix s1 . . . sj , where deletions in the beginning of either R or the
prefix of S are free. Figure 3.1(c) shows an example of the edit distance table with this
initialization.

Dynamic programming can also be used to calculate Hamming distances. Because
the Hamming distance only allows substitutions, it is only possible to calculate the

20 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

D
t g g c a a

i\j 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0

c 1 0 1 1 1 0 1 1
a 2 0 1 2 2 2 0 1
t 3 0 0 2 3 3 3 1
a 4 0 1 1 3 4 3 3

Figure 3.2: The Hamming distance table D for strings R = “cata” and S = “tggcaa”.

Hamming distance of two strings of equal lengths. Thus only initializing the first
row and column to 0 makes sense. Also the recurrence relation for filling the table is
different:

D[i, j] = D[i− 1, j − 1] + α, where α =

{
0 if ri = sj,
1 otherwise.

Suppose that m ≤ n. Then the entry D[m, n] gives the Hamming distance of aligning
the string R against the end of S. The entries D[m, j], where 0 ≤ j ≤ n, give the
Hamming distance for aligning the string R against sj−m+1 . . . sj . Figure 3.2 shows an
example of the Hamming distance table for strings “cata” and “tggcaa”.

3.1.3 Previous Algorithms
Here we will review algorithms based on the backward matching principle. For details
on other algorithms, see the survey on approximate string matching by Navarro [75].
Many algorithms have been developed based on Boyer-Moore string matching [23] for
the k-mismatch problem. Here we consider mainly ABM [101] and FAAST [65], but
two other variations developed by Baeza-Yates and Gonnet [12], and El-Mabrouk and
Crochemore [35] are worth mentioning.

The shift function of the Baeza-Yates-Gonnet algorithm generalizes the good suf-
fix rule of the Boyer-Moore algorithm to the k-mismatch problem. We first observe
that the number of mismatches between two strings is a metric distance obeying the
triangular inequality. Thus, if the last j characters of the pattern match the text win-
dow with at most k mismatches and the last j characters of the pattern match another
substring of the pattern with at least 2k + 1 mismatches, then the end of this text win-
dow will induce at least k + 1 mismatches when aligned against this substring of the
pattern. Therefore, we can shift the window so that this substring of the pattern is
not aligned with the end of the previous window. As preprocessing we can then pre-
compute the shifts by comparing the pattern against all possible shifts of the pattern
and choosing for each j, 1 ≤ j ≤ m, the minimum shift that will induce at most 2k
mismatches between the j length suffix of the pattern and the shift of the pattern. The

3.1. PRELIMINARIES 21

Baeza-Yates-Gonnet algorithm achievesO(nk) average case complexity for searching
and O(m(m− k)) time for preprocessing.

The El-Mabrouk-Crochemore algorithm applies the Shift-Add approach [11]. How-
ever, the bit-parallel counters of shift-add are updated by reading characters in a win-
dow from right to left, and the processing of a window stops when all the counters have
exceeded k. The algorithm then makes a shift based on the read characters, and the
information already present in the counters is preserved. The average case complexity
of the El-Mabrouk-Crochemore algorithm is O(n + kn/(m − k)) for the searching
phase, and its complexity for preprocessing is O(σm2).

The approximate Boyer-Moore (ABM) algorithm [101] is an adaptation of the
Boyer-Moore-Horspool algorithm [49] to approximate matching. ABM uses the bad
character heuristic for shifting and is thus a direct generalization of the Boyer-Moore-
Horspool algorithm [49]. Instead of stopping at the first mismatch in the current win-
dow, the algorithm stops at the k + 1:st mismatch or when an occurrence of the whole
pattern is found. The shift is calculated considering last k + 1 characters of the current
window. The shift is the minimum of the precomputed shifts for those k+1 characters.
After shifting, at least one of these characters will be aligned correctly with the pattern
or the pattern will not be aligned with all these characters anymore. The average case
complexity of searching in ABM is O(nk(1/(m− k) + k/σ)), and the preprocessing
cost is O(m + kσ).

ABM performs well on moderately large alphabets and low error levels although
its average case time complexity is not optimal. Obviously, ABM was originally not
designed for small alphabets, and in fact, it performs rather poorly on them. Liu et
al. [65] tuned the k-mismatch version of ABM for smaller alphabets. Their algorithm,
called FAAST, uses a stronger shift function based on a variation of the Four-Russians
technique [8, 69, 109] to speed up the search. Instead of minimizing k + 1 shifts
during search, it generalizes the bad q-gram function for the k-mismatch problem and
uses a precomputed shift table for the last q-gram of the window, where q ≥ k + 1
is a parameter of the algorithm. (The original paper used the notation (k + x)-gram.)
The shift table is calculated so that after the shift at least q − k characters are aligned
correctly or the window is shifted past the last q-gram of the previous window. It is
obvious that this stronger requirement leads to longer shifts in most situations when
q > k +1, and the shift is never shorter than the shift of ABM. Note that for q = k +1
the length of the shift is the same for both the algorithms, but the shift is minimized
during preprocessing in FAAST, while ABM performs the minimization of k+1 shifts
during the search phase. So the algorithms are different even for q = k+1. The optimal
value of q for maximum searching speed depends on other problem parameters and the
computing platform. However, an increment of q makes the preprocessing time grow.
FAAST presents a clear improvement on solving the k-mismatch problem for small
alphabets as compared to the ABM algorithm. The preprocessing phase of FAAST is
advanced because it includes the minimization step of ABM. The preprocessing cost of
FAAST isO(q((m− k)σq +m)), and the analysis in this work establishes the average

22 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

case complexity of searching in FAAST to be O(n(logσ m + k)/m), which has been
shown to be optimal for approximate string matching [25].

A version of the ABM algorithm can also solve the k-difference problem, while
the other Boyer-Moore type algorithms discussed above are limited to the k-mismatch
problem. For the k-difference problem, the preprocessing cost of ABM isO((k+σ)m)
and the average case complexity for searching in ABM is

O
(

σ

σ − 2k
kn

(
k

σ + 2k2
+

1

m

))
if 2k + 1 < σ.

Other approximate string matching algorithms utilizing the backward matching
paradigm are approximate BNDM (ABNDM) [79] and the backward matching ver-
sions of the algorithm by Fredriksson and Navarro [42]. Both of these algorithms
can solve both versions of the approximate string matching problem. ABNDM is a
bit-parallel simulation of an automaton that identifies approximate matches of factors
of the pattern in each alignment and then shifts the pattern according to the found
matches. The k-difference version of ABNDM is a filtering algorithm, and so the
found matches must be verified. The average case complexity of searching in ABNDM
is

O
(

n
α + α∗ logσ m/m

(1− α)α∗ − α

)
,

where α = k/m is the error level and α∗ is the maximum error level for which the
probability of a random pattern matching a string with at most k differences is expo-
nentially decreasing with m [75]. The preprocessing time of ABNDM is O(σ + m).

The algorithm by Fredriksson and Navarro [42] reads consecutive q-grams (`-
grams in the original paper) in a window and with the help of preprocessed tables de-
termines the minimum number of mismatches or differences for aligning the q-grams
with the pattern in some way. When the minimum number of mismatches or differ-
ences exceeds k, the window is shifted so that the first of these q-grams is not included
in the new window. The potential matches must be verified. The algorithm has only
been analyzed for the k-difference problem. The average case complexity of searching
isO(n(k +logσ m)/m) if k/m = 1/2+O(1/

√
σ), and the complexity of preprocess-

ing is O(mσq).

3.2 Algorithm for the k-Mismatch Problem
Our aim is to develop a faster algorithm for small alphabets based on FAAST, which
uses a q-gram for shifting, where q ≥ k + 1. We refine the usage of the Four-Russians
technique [8, 69, 109] by making two major changes to FAAST. First, we implement
a simpler and faster preprocessing phase based on dynamic programming. FAAST
counts the number of mismatches in the last q-gram of the window during the searching

3.2. ALGORITHM FOR THE K-MISMATCH PROBLEM 23

phase. Our second improvement is to compute this number during preprocessing,
which improves the searching speed.

For each q-gram G = g1 . . . gq ∈ Σq, the preprocessing phase computes the Ham-
ming distance when aligning the q-gram against the end of all prefixes of the pattern.
As explained in Section 3.1.2, we get all these Hamming distances using dynamic pro-
gramming by initializing the first row and column of the dynamic programming table
to 0 and filling the rest of the table using the recurrence relation for Hamming dis-
tance. The bottom row D[q, j], where 0 ≤ j ≤ m, will then give the needed Hamming
distances.

As an example, let us consider a situation where the pattern P = “tggcaa” has been
aligned with the text window “gcata”, and k = 2, q = 4 holds. The last q-gram
of the window is now “cata”, and the corresponding Hamming distance table of size
(q + 1) × (m + 1), calculated during preprocessing, is shown in Figure 3.2. First
of all, we see that the last cell D[q, m] = 3 > k, and therefore it is not possible
to find a match at this position, as already the suffix of the window contains too many
mismatches. Otherwise, we would have to check for a match by examining the amount
of mismatches in the beginning of the window.

We will also look at the bottom row of the table and find the rightmost cell D[q, j]
with a value h ≤ k, except for the last cell D[q, m]. This is the rightmost position
of the pattern where the last q-gram of the current window matches the pattern with
at most k mismatches, and thus the correct shift is equal to m − j. In our example,
the rightmost cell with a value at most 2 is D[q, 2] = 1, and thus we would shift the
window by 6− 2 = 4 positions.

As we do not need the whole table to obtain this information, we just store the cal-
culated Hamming distance for each generated q-gram in a table M . The precalculated
shifts are stored in a table Sq, which is a generalization of the bad q-gram function
for approximate matching. During the searching phase, we read the last q-gram G of
the window and check for an occurrence if M [G] ≤ k. Finally, we shift the window
according to Sq[G].

We can improve the preprocessing time by applying the technique used previously
by Fredriksson and Navarro [42] for approximate matching and Navarro et al. [81] for
indexed approximate matching. If the q-grams are generated in the lexicographical
order, the dynamic programming table differs only by the last few rows in most cases.
Therefore, we can speed up the preprocessing if we only recalculate the last rows of
the table at each step, starting from the first changed character.

This can be implemented by traversing the trie built of all q-grams in depth first
order. Nodes at the i:th level of the trie correspond to strings of length i. Thus there
are σi nodes on level i, and the total number of nodes in the trie is

q∑
i=0

σi =
σq+1 − 1

σ − 1
= O(σq) .

If we have the dynamic programming table for a node in the trie, the tables for the
children nodes can be obtained by calculating one more row to the dynamic program-

24 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

ming table, taking O(m) time per child. Thus calculating the dynamic programming
tables for all nodes in the trie takes O(σqm) time. At the leaf nodes, we have the
dynamic programming table for the corresponding q-gram, and we need to figure out
the number of mismatches entered to table M and the shift value entered to table Sq,
which takes O(m) time. The extra calculation needed at leaf nodes is thus O(σqm)
because there are σq leaf nodes. Therefore, the time complexity of the preprocessing
phase is O(σqm). Note that we do not need to explicitly build the trie if we imple-
ment the traversing of the trie by recursion. The preprocessing time of FAAST is
O(q((m − k)σq + m)), and therefore our preprocessing is asymptotically faster by a
factor of q.

This algorithm for the k-mismatch problem is called FAAST2, and the pseudo code
of the algorithm is shown in Figure 3.3. The shift behaviors of FAAST2 and FAAST
are exactly the same. In FAAST, the number of mismatches in the last q-gram of an
alignment is computed during the searching phase, whereas in FAAST2, this is fetched
from a table. However, we still need to read the q-gram, and thus the time complexity
of the search phase of FAAST2 is the same as in FAAST.

3.3 Algorithms for the k-Difference Problem
FAAST2 can be easily modified to solve the k-difference problem. As in FAAST2,
we construct a dynamic programming table D′ for each q-gram and the pattern during
preprocessing. We do not store these tables but only use them to fill the tables M and
Sq. To get the values for these tables, we need the edit distance of each q-gram aligned
with the end of each prefix of the pattern. The example in Figure 3.4 shows the align-
ments of the pattern “tggcaa” with the q-gram “cata”. As explained in Section 3.1.2,
we get these edit distances by initializing the first row and column of the table D′ to
0 and applying the recurrence relation for edit distance. The needed edit distances are
then found in the last row D′[q, j], where 0 ≤ j ≤ m. For each q-gram, we store the
minimum number of mismatches, insertions, and deletions needed to align the q-gram
against the end of the pattern to the table M . This value is obtained from D′[q, m]. To
enter the shift values to Sq, we find the largest j < m such that D′[q, j] ≤ k and enter
m− j to the table Sq.

The searching phase now considers windows of length m + k because the length
of a match can vary as deletions and insertions are allowed. The searching phase starts
by considering the text window ending at position m−k. In order to observe correctly
an occurrence of the pattern in the beginning of the text, we assume that t−2k+1...t0
hold a character not in the pattern. When examining a window ending at position s,
all matches ending before that position have been reported. If M [ts−q+1 . . . ts] ≤ k,
we need to check for an occurrence ending at s by using dynamic programming. We
initialize the table by setting D[0, j] = 0, where 0 ≤ j ≤ m + k, and D[i, 0] = i,
where 0 ≤ i ≤ m, because we do not know the exact position of the start of the
occurrence. As the maximum length of the occurrence is m + k, it is sufficient to

3.3. ALGORITHMS FOR THE K-DIFFERENCE PROBLEM 25

preprocess_helper (P = p1 . . . pm, m, k, q, i, G)

1. if (i = q + 1)
2. M [G]← D[q, m]
3. for (j = m− 1 down to 1)
4. if (D[q, j] ≤ k)
5. Sq[G]← m− j
6. break
7. else
8. for (c ∈ Σ)
9. for (j = 1 to m)

10. D[i, j]← D[i− 1, j − 1] + α, where α =

{
0 if c = pj,
1 otherwise

11. preprocess_helper(P , m, k, q, i + 1, G + c)

preprocess (P = p1 . . . pm, m, k, q)

1. for (i = 0 to q)
2. D[i, 0]← 0
3. for (j = 0 to m)
4. D[0, j]← 0
5. preprocess_helper(P , m, k, q, 1, "")

search (T = t1 . . . tn, n, k, q)

1. s← m
2. while (s ≤ n)
3. if (M [ts−q+1 . . . ts] ≤ k) /* possible occurrence */
4. c = M [ts−q+1 . . . ts]
5. for (i = 1 to m− q)
6. if (ts−q−i+1 6= pm−q−i+1)
7. c = c + 1
8. if (c > k) break
9. if (c ≤ k)
10. Report an occurrence at ts−m+1 . . . ts with c mismatches
11. s← s + Sq[ts−q+1 . . . ts]

Figure 3.3: FAAST2 preprocessing and search phases

26 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

tggca-a tggc--a ..tggc
...cata ...cata cata--

..tgg ..tg ...t
cat-a cata cata

Figure 3.4: The alignments of the q-gram “cata” and the prefixes of the pattern “tggcaa” with
minimum edit distance. The dots indicate free deletions and the hyphens normal deletions
or insertions. These are examples of alignments with minimum edit distance. Also other
alignments with the same edit distance are possible.

D′

t g g c a a
i\j 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0
c 1 0 1 1 1 0 1 1
a 2 0 1 2 2 1 0 1
t 3 0 0 1 2 2 1 1
a 4 0 1 1 2 3 2 1

(a)

D
a a g g c a t a

i\j 0 1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0 0 0

t 1 1 1 1 1 1 1 1 0 1
g 2 2 2 2 1 1 2 2 1 1
g 3 3 3 3 2 1 2 3 2 2
c 4 4 4 4 3 2 1 2 3 3
a 5 5 4 4 4 3 2 1 2 3
a 6 6 5 4 5 4 3 2 2 2

(b)

Dr

a t a c g g a a
i\j 0 1 2 3 4 5 6 7 8

0 0 1 2 3 4 5 6 7 8
a 1 1 0 1 2 3 4 5 6 7
a 2 2 1 1 1 2 3 4 5 6
c 3 3 2 2 2 1 2 3 4 5
g 4 4 3 3 3 2 1 2 3 4
g 5 5 4 4 4 3 2 1 2 3
t 6 6 5 4 5 4 3 2 2 3

(c)

Figure 3.5: Normal and reversed edit distance tables for k-difference problem (k = 2, q = 4)
with the pattern “tggcaa” and the test window “aaggcata”. Sizes of the tables are (q + 1) ×
(m + 1) for D′ and (m + 1)× (m + k + 1) for D and Dr.

construct a (m + 1) × (m + k + 1) edit distance table D with the current window
ts−(m+k)+1 . . . ts against the pattern. A match will be reported if D[m, m + k] ≤ k.
After this operation, we will shift the pattern according to Sq.

The preprocessing phase can be improved using the same technique as for
FAAST2. The only difference is that we now use the recurrence relation for edit dis-
tance when filling the dynamic programming table. The modification of FAAST2 for
the k-difference problem is called FAASTd.

Example tables for the k-difference problem are shown in Figures 3.5(a) and 3.5(b),
using a pattern “tggcaa”, a text window “aaggcata”, and parameters k = 2 and q = 4.
We can see from the first table that Sq[“cata”] = 6−5 = 1 and M [“cata”] = D′[q, m] =
1. Therefore, we would construct a table D, find that D[m, m+k] = 2 ≤ k, and report
a match. We would then continue the search by shifting the window by one position.

In the k-mismatch problem, we did not need to reread the last q characters from
the window when checking for an occurrence. Instead, we had stored the number of

3.3. ALGORITHMS FOR THE K-DIFFERENCE PROBLEM 27

mismatches in the table M , and we could extend the match based on that information.
For the k-difference problem, the situation is not quite as simple because we need to
compute the dynamic programming table to check for an occurrence. The problem
with FAASTd is that the window is read forward when checking for an occurrence,
while during the preprocessing phase, we have generated the dynamic programming
table for the last characters of the pattern. In order to use that information and avoid
rereading the last q characters, we need to reverse the calculation of the dynamic pro-
gramming table so that we start building the table from the end of the pattern and the
text window.

Suppose that we want to check for an occurrence ending at position s. We can
build the edit distance table for the reversed pattern pm . . . p1 and the reversed text
substring ts . . . ts−(m+k)+1. For the reversed strings, the starting position of the occur-
rence is fixed, so we initialize the table by setting Dr[0, j] = j and Dr[i, 0] = i for
i ∈ [0, m], j ∈ [0, m + k]. This reversed table gives equivalent results when it comes
to calculating the actual edit distance between the pattern and the window. When this
reversed edit distance table Dr has been finished, we have to search for a match at the
last row. To be exact, we need to check 2k +1 different cells of the table for a possible
match because the match can contain up to k insert or delete operations, and the match
length can therefore vary. All possible matches that end in the character ts will be
found in the last 2k + 1 cells of the last row of the reversed table. We can either report
the first match with at most k differences or search for the match with the minimum
differences. The current window ts−(m+i)+1 . . . ts matches the pattern p1 . . . pm with at
most k differences if

Dr[m, m + i] ≤ k

for any i ∈ −k . . . k. Figure 3.5(c) shows an example of the reversed edit distance
table.

To avoid rereading the last q-gram of a window for constructing the edit distance
table, we can calculate the reversed edit distance table for each q-gram and the pattern
during preprocessing. During searching, we can then check for a complete occurrence
by filling the rest of the table columns from ts−q down to ts−(m+k)+1. We can therefore
store the last column of the reversed table Dr[j, q], j ∈ [0, m], for each q-gram during
the preprocessing phase. This column can then be used to fill up the rest of the table by
dynamic programming during the search phase when the window needs to be checked
for an occurrence, and thus we do not need to run dynamic programming for the whole
table every time. However, we still need the normal edit distance table to obtain the
values for tables Sq and M .

When verifying an occurrence, we need the last 2k+1 columns to be able to check
the cells Dr[m, m + i], where i ∈ −k . . . k. Thus only the first of these columns can
be computed during preprocessing, and so we must choose q ≤ m− k.

We modify FAASTd to use the reversed table during the search phase, and we also
store the last column of the reversed tables generated during the preprocessing phase.
The new algorithm is called FAASTd2, and its pseudo code is given in Figure 3.6.

28 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

For simplicity, the preprocessing part of the pseudo code does not use the optimiza-
tion of generating the q-grams in lexicographic order and recalculating the dynamic
programming table only for those rows that have changed.

The preprocessing phase of FAASTd has the same time complexity as that of
FAAST2, as the only difference is that the dynamic programming table is filled using
the recurrence relation for edit distance in FAASTd, while the preprocessing phase of
FAAST2 uses the recurrence relation for Hamming distance. In FAASTd2, we need to
calculate both the original dynamic programming table and the reversed one. Because
a q-gram is read in opposite directions when calculating these two tables, we have to
enumerate the q-grams twice. However, the asymptotic time complexity remains the
same.

FAASTd and FAASTd2 degenerate to calculating the dynamic programming table
at each position of the text in the worst case. Thus the worst case complexity of
FAASTd and FAASTd2 is O(nm2).

The worst case complexity can be improved to O(nm) by doing the verification
forward and incrementally. This technique has previously been used to improve the
worst case complexity of ABM [101] as well as many other approximate string match-
ing algorithms based on filtering [75]. We now store the end position of the previous
verification and also the last column of the dynamic programming table of the pre-
vious verification. When we need to perform another verification, we first check if
the starting position of this new verification is before the end position of the previous
verification. If so, we continue the verification from the end position of the previous
verification. This guarantees that we never traverse a text position twice for verifica-
tion purposes. Now in the worst case, the pattern is always shifted by one position and
a verification is triggered in each position. To compute the shifts, we readO(qn) char-
acters, and the verification cost in each position is O(m), as we add one new column
to the dynamic programming table. Thus the worst case complexity is O(nm). This
modification of the algorithm is called FAASTdw.

To compute a new column to the dynamic programming table, we only need the
previous column of the table, so it is enough to save the previous and current columns
of the table. The space needed for verification in FAASTdw is thus O(m).

3.4 Analysis

In the worst case, FAAST and FAAST2 will readO(m) characters in each window, and
thus their worst case complexity is O(nm). The worst case complexity of FAASTd
and FAASTd2 is O(nm2), and the worst case complexity of FAASTdw is O(nm) as
stated above.

Let us then analyse the average case complexity of the algorithms. Here we assume
the standard random string model, where each character of the text and the pattern is
chosen independently and uniformly at random. We will make use of the following

3.4. ANALYSIS 29

preprocess (P = p1 . . . pm, m, k, q)

1. for (i = 0 to q)
2. D′[i, 0]← 0
3. Dr[0, i]← i
4. for (j = 0 to m)
5. D′[0, j]← 0
6. Dr[j, 0]← j
7. for (G = g1 . . . gq ∈ Σq)
8. for (i = 1 to q)
9. for(j = 1 to m)

10. D′[i, j]← min


D′[i− 1, j − 1] + α,
D′[i− 1, j] + 1,
D′[i, j − 1] + 1,

α =
{

0 if gi = pj ,
1 otherwise

11. Dr[j, i]← min


Dr[j − 1, i− 1] + α,
Dr[j − 1, i] + 1,
Dr[j, i− 1] + 1,

α =
{

0 if gq−i+1 = pm−j+1,
1 otherwise

12. M [G]← D′[q, m]
13. lastColumn[G]← Dr[0 . . .m, q]
14. for (j = m− 1 down to 1)
15. if (D′[q, j] ≤ k)
16. Sq[G]← m− j
17. break

search (T = t1 . . . tn, n, k, q)

1. for (i = q + 1 to m + k)
2. Dr[0, i]← i
3. s← m− k
4. while (s ≤ n)
5. if (M [ts−q+1 . . . ts] ≤ k) /* possible occurrence */
6. Dr[0 . . .m, q]← lastColumn[ts−q+1 . . . ts]
7. for(i = q + 1 to m + k)
8. for (j = 1 to m)

9. Dr[j, i]← min


Dr[j − 1, i− 1] + α,
Dr[j − 1, i] + 1,
Dr[j, i− 1] + 1,

α =
{

0 if ts−i+1 = pm−j+1,
1 otherwise

10. if (Dr[m,m + i] ≤ k, i ∈ −k . . . k)
11. Report match at ts−(m+i)+1 . . . ts with Dr[m,m + i] differences
12. s← s + Sq[ts−q+1 . . . ts]

Figure 3.6: FAASTd2 preprocessing and search phases

30 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

Lemmas originally proved by Chang and Marr [25], but here we use the rewritten
form by Fredriksson and Navarro [42], which is more convenient for our purposes.

Lemma 3.5. The probability that two random q-grams have a common subsequence
of length (1 − c)q is at most aσ−dq/q for constants a = (1 + o(1))/(2πc(1 − c)) and
d = 1− c + 2c logσ c + 2(1− c) logσ(1− c). The probability decreases exponentially
for d > 0, which surely holds if c < 1− e/

√
σ.

Lemma 3.6. If G is a q-gram that matches inside a given string P (longer than q) with
less than cq differences, then G has a common subsequence of length q− cq with some
q-gram of P .

Theorem 3.7. If k/m < 1/2 − O(1/
√

σ), the average case complexity of FAAST,
FAAST2, FAASTd, FAASTd2, and FAASTdw is O(n(logσ m + k)/m) if we choose
q = Θ(logσ m + k).

Proof. Let us choose a constant c such that d > 0, and therefore the probability of
matching given by Lemma 3.5 decreases exponentially when q increases. Given the
number of mismatches or differences k ≤ cq, the probability that a q-gram matches
inside the pattern with at most k mismatches or differences is at most ma/(qσdq),
because there are less than m q-grams in the pattern, and by Lemma 3.6 one of them
has to have a common subsequence of length q − k ≥ q − cq with the q-gram, and the
probability for this event is given by Lemma 3.5.

We will now show that FAAST, FAAST2, FAASTd, FAASTd2, and FAASTdw
are q-gram backward string matching algorithms as defined in Section 2.4. The length
of a q-gram is clearly q, and so g(q) = q. A window is bad if the last q-gram of the
window matches the pattern in any position with at most k mismatches (for FAAST and
FAAST2) or differences (for FAASTd, FAASTd2, and FAASTdw). This probability
is at most ma/(qσdq) < ma/σdq, so s() = a and A = d.

In a good window, all the algorithms will read the last q characters of the window
and conclude that a shift of length f(m, q) = m− q + 1 can be made. Thus the work
done in a good window is bounded by O(q). If the window is bad and the last q-gram
of the window matches the end of the pattern with at most k mismatches, FAAST and
FAAST2 will compare the rest of the pattern against the text and count the number of
mismatches. Thus the work in bad windows can be bounded by O(m) in FAAST and
FAAST2, and therefore B = 1. In FAASTd, FAASTd2, and FAASTdw, the dynamic
programming table will be built if the last q-gram of the window matches the end of
the pattern with less than k differences, and so the work on bad windows is bounded
by O(m2), and so B = 2.

By Theorem 2.5, the average case complexity of FAAST, FAAST2, FAASTd,
FAASTd2, and FAASTdw is therefore O(nq/(m − q + 1)) if we choose q >
(B +1)/d logσ(ma) such that q ≤ (m−q+1), which is equal to q ≤ (m+1)/2. Thus
m− q + 1 = Ω(m), and the average case complexity is then O(nq/m). Additionally,
q ≥ k/c, so a safe choice for q is q = (B+1)/d logσ(ma)+k/c = Θ(logσ m+k), and

3.5. EXPERIMENTAL RESULTS 31

then the average case complexity of the algorithms isO(n(logσ m+k)/m). An appro-
priate q exists if k/c < (m+1)/2 and (B+1)/d logσ(ma) < (m+1)/2. The condition
k/c < (m+1)/2 becomes k/(m+1) < 1/2−O(1/

√
σ) if we choose c < 1− e/

√
σ,

which also assures that d > 0. The latter condition (B + 1)/d logσ(ma) < (m + 1)/2
is equal to σm+1 > (ma)2(B+1)/d, which holds asymptotically for σ and m.

The lower bound for the average complexity of the approximate string matching
problem was proved to be Ω(n(logσ m + k)/m) by Chang and Marr [25], and thus
FAAST and the new algorithms presented here are average optimal for an appropriate
choice of q when k/m < 1/2−O(1/

√
σ).

Recall that the preprocessing time of our algorithms is O(mσq). With the choice
q = Θ(k + logσ m), the preprocessing time becomes O(σΘ(k)mΘ(1)). The preprocess-
ing time of FAAST is O(q((m− k)σq + m)), which becomes O((logσ m + k)((m−
k)σO(k)mO(m) + m)) with the choice q = Θ(logσ m + k).

FAAST2 uses two preprocessed tables, M and Sq, both of which are of size σq.
During the preprocessing phase, we will additionally need space for the dynamic pro-
gramming table, which requires O(mq) space. Thus the total space requirement for
FAAST2 is O(σq + mq) = O(σΘ(k)mΘ(1) + m logσ m + mk).

FAASTd uses similar preprocessed tables and a similar dynamic programming
table in the preprocessing phase as FAAST2, but additionally it needs to build the
dynamic programming table in the searching phase requiring an extra O(m2) space.
Thus, the space complexity of FAASTd is O(σΘ(k)mΘ(1) + m logσ m + mk + m2).

FAASTd2 adds another structure to those of FAASTd. It also stores the last row of
the dynamic programming table for each q-gram. The additional space needed for this
is O(mσq) = O(σΘ(k)mΘ(1)). Thus the asymptotic space complexity of FAASTd2 is
also O(σΘ(k)mΘ(1) + m logσ m + mk + m2).

FAASTdw uses the same structures as FAASTd except that it stores only the two
last columns of the dynamic programming table during searching. Thus the asymptotic
space complexity is O(σΘ(k)mΘ(1) + m logσ m + mk).

3.5 Experimental Results

Tests were run on an AMD Athlon 1.0 GHz dual core CPU with 2 GB of memory, 64
kB L1 cache, and 512 kB L2 cache. The computer was running Linux 2.6.23. The
algorithms were written in C and compiled with the gcc compiler. For comparison in
the k-mismatch case, we used the following algorithms:

• ABM: The original ABM algorithm.

• FAAST: Our implementation of FAAST.

• FN: The mismatch version of the algorithm by Fredriksson and Navarro [42].

32 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

For the k-difference problem, we compared FAASTd and FAASTd2 against the fol-
lowing algorithms:

• ABM: A version of ABM for the k-difference problem.

• Myers: Myers algorithm [73] is a linear time bit-parallel algorithm for patterns
shorter than the computer word.

• BYP: The algorithm by Baeza-Yates and Perleberg [14] divides the pattern into
smaller pieces. If the pattern now occurs at some position, at least one of
the pieces must have an exact occurrence at that position. The algorithm then
searches for exact matches of the pieces and verifies the occurrences found by
the exact search. We use the implementation by Baeza-Yates and Navarro [13],
which adapts the Sunday algorithm [98] for searching the pattern pieces.

• FN: The algorithm by Fredriksson and Navarro [42] for the k-difference prob-
lem.

All the results are shown with the q-value gaining the fastest searching speed in FAAST
and our new algorithms if not otherwise stated. The best q-value is generally the same
for our algorithms and for FAAST. We tried several versions of the single pattern al-
gorithm by Fredriksson and Navarro generally getting the best results with the version
that reads the window backwards (-Sb option). Also for this algorithm we show the
results with the best value for the parameter q. The other algorithms do not utilize the
parameter q.

The searched text is a 22 MB sequence of the fruit fly genome. The patterns have
been extracted randomly from the text. Each pattern set consists of 200 different pat-
terns of the same length, and they are searched sequentially.

Table 3.1 shows the search times for the original ABM, FAAST, FN, and FAAST2
in the k-mismatch problem, and Figure 3.7 further illustrates the results. We used the
code by Fredriksson and Navarro to measure the times for the FN algorithm. The code
is designed for multiple patterns, and the precision of measuring preprocessing time
is not good enough to get reliable results for a single pattern. Thus the preprocessing
times for the FN algorithm are not shown. As can be seen, FAAST2 is the fastest for
this setting, and it is generally about 30% faster than FAAST in the k-mismatch case
for k ∈ [1, 2]. Also, the preprocessing phase of FAAST2 is 10 to 30 times faster than
that of FAAST.

Experimental results for the k-difference problem are shown in Table 3.2, and Fig-
ure 3.8 further illustrates the results. In the k-difference problem, our new algorithms
are faster than the Myers, BYP, and ABM algorithms. They are also faster than the FN
algorithm with short patterns, but with longer patterns, the FN algorithm is faster. The
basic version of the Myers algorithm is limited by the 32-bit word size, and it cannot
handle patterns with m > 32. The modifications in FAASTd2 decrease search time by
20-30% when compared to FAASTd.

3.5. EXPERIMENTAL RESULTS 33

Table 3.1: Search times in seconds for k-mismatch, using best observed q-values. The cor-
responding preprocessing times are shown in parenthesis. The runtimes of the algorithm by
Fredriksson and Navarro shown here are for the options -Sb. The algorithms was slightly
faster with options -Sb -O for m = 10, k = 2 yielding the runtime 73.83.

(a) k = 1

ABM FAAST FN FAAST2

m runtime (s) runtime (s) q runtime (s) q runtime (s) q

10 53.98 (0.03) 16.70 (0.15) 5 26.11 5 10.97 (0.02) 5
15 51.16 (0.01) 10.80 (1.39) 6 13.98 5 7.32 (0.02) 5
20 50.57 (0.06) 8.06 (2.01) 6 9.99 6 5.59 (0.14) 6
25 51.57 (0.04) 6.64 (2.26) 6 7.92 6 4.55 (0.16) 6
30 51.69 (0.10) 5.68 (3.27) 6 6.00 6 3.97 (0.12) 6
35 51.59 (0.17) 4.92 (4.03) 6 5.75 6 3.43 (0.20) 6
40 49.51 (0.21) 4.43 (4.75) 6 5.34 5 2.99 (0.35) 6

(b) k = 2

ABM FAAST FN FAAST2

m runtime (s) runtime (s) q runtime (s) q runtime (s) q

10 102.72 (0.02) 26.25 (0.62) 6 74.63 5 16.15 (0.13) 6
15 99.92 (0.02) 16.46 (5.88) 7 25.06 7 10.50 (0.17) 6
20 95.30 (0.05) 11.79 (8.16) 7 14.01 9 8.28 (0.14) 6
25 97.23 (0.06) 9.80 (10.74) 7 9.99 8 7.09 (0.18) 6
30 96.88 (0.13) 8.38 (13.41) 7 8.06 8 6.28 (0.22) 6
35 95.59 (0.09) 7.41 (16.00) 7 7.51 9 5.86 (0.16) 6
40 94.49 (0.24) 6.74 (18.66) 7 6.65 9 5.30 (1.21) 7

34 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

 0

 5

 10

 15

 20

 25

 10 15 20 25 30 35 40

R
un

 ti
m

e
(s

)

m

FN
FAAST

FAAST2

(a) k = 1

 0

 10

 20

 30

 40

 50

 10 15 20 25 30 35 40

R
un

 ti
m

e
(s

)

m

FN
FAAST

FAAST2

(b) k = 2

Figure 3.7: Runtime comparison of the algorithms for the mismatch problem

3.5. EXPERIMENTAL RESULTS 35

Table 3.2: Search times in seconds for k-difference, using best observed q-values. The runtimes
of the algorithm by Fredriksson and Navarro shown here are for the options -Sb. For k = 1,
the algorithm was slightly faster with options -Sb -L for m = 10 yielding the runtime 52.07.
For k = 2, the algorithm was faster with options -Sf for m = 10 and with options -Sb -O
for m = 15 yielding the runtimes 112.30 and 59.98, respectively.

(a) k = 1

ABM Myers BYP FN FAASTd FAASTd2

m runtime (s) runtime (s) runtime (s) runtime (s) q runtime (s) q runtime (s) q

10 112.78 57.29 33.53 56.41 4 22.11 7 18.04 6
15 76.97 57.47 26.45 18.81 6 16.43 7 13.98 7
20 68.00 57.67 25.79 10.89 6 14.15 7 11.92 7
25 67.97 59.10 25.89 8.10 6 13.79 7 11.17 7
30 67.70 57.76 25.86 6.34 6 13.35 7 10.56 7
35 67.85 - 25.89 5.99 6 13.79 7 10.67 7
40 67.12 - 25.37 4.92 6 14.91 7 10.84 7

(b) k = 2

ABM Myers BYP FN FAASTd FAASTd2

m runtime (s) runtime (s) runtime (s) runtime (s) q runtime (s) q runtime (s) q

10 392.37 60.30 159.78 174.42 8 79.51 8 56.41 8
15 268.95 58.15 61.93 69.75 6 57.50 9 42.65 8
20 197.90 58.38 41.43 18.58 9 45.55 9 38.85 9
25 151.94 57.65 37.54 13.92 9 41.02 9 43.76 9
30 124.78 57.76 37.10 8.84 9 38.56 9 31.42 9
35 100.43 - 38.23 8.27 9 36.89 9 29.47 9
40 86.95 - 36.85 7.62 9 37.48 9 29.07 9

36 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40

R
un

 ti
m

e
(s

)

m

ABM
Myers

BYP
FAASTd

FAASTd2
FN

(a) k = 1

 0

 50

 100

 150

 200

 10 15 20 25 30 35 40

R
un

 ti
m

e
(s

)

m

ABM
Myers

BYP
FAASTd

FAASTd2
FN

(b) k = 2

Figure 3.8: Runtime comparison of the algorithms for the difference problem

3.5. EXPERIMENTAL RESULTS 37

Table 3.3: Preprocessing times and search times for k-difference with different q-values (k =
1, m = 20)

Preprocessing Search

q FAASTd FAASTd2 FAASTd FAASTd2

2 <0.01 0.01 4578.31 3500.39
3 0.01 0.02 1053.72 748.52
4 0.03 0.05 236.29 158.90
5 0.04 0.15 66.19 44.76
6 0.23 0.57 23.72 16.59
7 1.27 2.37 14.15 11.92
8 4.83 9.78 19.08 17.14
9 19.29 39.80 28.23 28.13
10 77.06 159.41 34.51 34.54

The effect of increasing the precalculated edit distance table size, and thus increas-
ing preprocessing time with a large q-value is shown in Table 3.3. With small values
of q, the search time decreases as the amount of preprocessing increases, but after a
certain limit, increasing the q-value will begin to slow down the search. For these pat-
tern lengths and k-values, the optimal q-value was typically k + 4 for the k-mismatch
problem and k + 6 for the k-difference problem.

In the implementation of FAASTd, preprocessing is optimized by generating the
q-grams in lexicographic order and recalculating the dynamic programming table only
for those characters that differ from the previous q-gram, while FAASTd2 needs to do
this recursion twice, once to generate the normal dynamic programming table and once
to calculate the reversed one. Thus the preprocessing times in Table 3.3 are longer for
FAASTd2 than for FAASTd.

38 3. APPROXIMATE STRING MATCHING WITH SMALL ALPHABETS

Chapter 4

Parameterized String Matching

In this chapter, we explore string matching under another matching criterion, parame-
terized matching [16]. Two strings are a parameterized match if the characters of the
first string can be renamed in such a way that it is transformed into the second string.
The parameterized string matching problem is a variation of the string matching prob-
lem, where all substrings of the text that are a parameterized match with the pattern
should be reported.

The parameterized string matching problem has been investigated in two dimen-
sions by Amir et al. [5] and Hazay et al. [48]. Other related work includes parame-
terized matching of multiple patterns [51], parameterized matching with mismatches
[47], and approximate parameterized search [18].

Previous research of parameterized string matching has been focused on develop-
ing algorithms with good worst-case performance. Some effort to develop an algo-
rithm fast on average was made by Baker [17], who developed an algorithm based on
the Boyer-Moore algorithm [23], but the average case complexity was not analyzed.
Fredriksson and Mozgovoy [41] have also recently developed sublinear algorithms for
one dimensional parameterized string matching.

In this chapter, we introduce q-gram backward string matching algorithms for both
the one-dimensional and two-dimensional parameterized string matching problems.
We analyze the time complexities of the algorithms for random texts and moderately
repetitive patterns. The experimental results confirm the results of the analysis and
show our algorithms to be fast in practice.

4.1 Definitions
Definition 4.1. Two strings, S = s1 . . . sm and R = r1 . . . rm, drawn from an alphabet
Σ are a parameterized match (or p-match for short) if there exists a bijection π : Σ 7→
Σ such that for each i, si = π(ri).

Strings “abac” and “bcba” are a p-match because the bijection π(a) = c, π(b) =
a, π(c) = b transforms “bcba” into “abac”. On the other hand, strings “aabb” and

39

40 4. PARAMETERIZED STRING MATCHING

“acbb” are not a p-match because a bijection cannot map both ’a’ and ’c’ to ’a’, and
thus there is no bijection that can transform “acbb” to “aabb”.

Problem 4.2. Given a text T = t1 . . . tn and a pattern P = p1 . . . pm in an alphabet
Σ, the parameterized string matching problem is to find all substrings of the text that
are a p-match with the pattern.

Problem 4.3. Given a text T of size n × n and a pattern P of size m ×m, the two-
dimensional parameterized string matching problem is to find all those m × m sub-
strings of the text that are a p-match with the pattern.

Two disjoint alphabets were used in the original definition of the parameterized
string matching problem by Baker [16]. One of the alphabets was a fixed alphabet
like in the standard string matching problem, and the other one was a parameterized
alphabet like our Σ. Both the pattern and the text could contain characters from both
alphabets, but characters from the fixed alphabet were required to match exactly. We
decided to use only the parameterized alphabet because that is natural for the two
dimensional problem of image search, and we wished to give a unified treatment to
both the one dimensional and two dimensional cases.

Many of the algorithms make use of so called predecessor strings. A string S
is transformed into a predecessor string as follows. If a character in position i has
occurred previously in the string in position j and j is the most recent such position,
the position i in the predecessor string contains i− j. Otherwise the predecessor string
contains 0. For example, the string “aabac” is transformed into 0-1-0-2-0. Now it
can be fairly easily seen that two strings are a p-match if and only if their predecessor
strings match exactly [16].

Another way to transform the two strings so that the transformed strings will match
exactly if the original strings were a p-match is to replace all occurrences of the first
occurring character with 1, the second one with 2, and so on. For example, the string
“aabac” is transformed into 1-1-2-1-3. The resulting sequence of integers is called a
restricted growth function.

Definition 4.4. A restricted growth function (RGF) of length m is a sequence of m
integers, s1, . . . , sm, satisfying the following criteria:

s1 = 1

si ≤ max{s1, . . . , si−1}+ 1, if 2 ≤ i ≤ m .

The properties of restricted growth functions have been studied previously, see e.g.
Kreher and Stinson [59]. There are bk different RGFs of length k, where bk is the k:th
Bell number, which is defined as follows:

bk =
k∑

i=1

1

i!

i∑
j=1

(−1)i−j

(
i

j

)
jk .

4.2. EARLIER SOLUTIONS 41

RGFs can also be ranked. A ranking algorithm for RGFs determines the position of
a given RGF with regard to some order. In our case, the exact ordering imposed by
the ranking algorithm is not relevant. We just need to get a unique integer for each
RGF. When ranking RGFs, we have used the ranking algorithm described in Kreher
and Stinson [59], which runs in O(q) time, where q is the length of the RGF.

Definition 4.5. A pattern is (q, `)-repetitive if in all q-grams of the pattern, at least `
characters have occurred previously in that q-gram, i.e. there are at most q− ` distinct
characters in the q-gram.

The pattern “aaaa” is (2, 1)-repetitive, while the pattern “aabb” is (3, 1)-repetitive
but not (2, 1)-repetitive because the substring “ab” contains no repetition. Similarly, a
two-dimensional pattern is (q2, `)-repetitive if for all substrings of size q × q (a two-
dimensional q-gram), at least ` of the characters have occurred earlier in that substring.

4.2 Earlier Solutions

4.2.1 One-Dimensional Algorithms
In her original paper, Baker [16] gave a suffix tree based algorithm for finding pa-
rameterized matches. The algorithm first preprocesses both the text and the pattern
by transforming them into predecessor strings. After this preprocessing, the problem
can almost be solved by conventional exact string matching algorithms. The only re-
maining problem is that if we are considering a window on the text, the predecessor
pointers might point to positions outside the window. Baker proposed modifications
to the suffix tree construction algorithm that take care of this problem. The resulting
construction algorithm runs inO(n log n) time. The construction of the suffix tree was
further improved by Kosaraju [58], who developed an algorithm with time complexity
O(n(log λ + log σ)), where σ and λ are the sizes of the parameterized and the fixed
alphabet. Cole and Hariharan [28] also further explored the construction of the suffix
tree and developed a randomized linear time algorithm.

Baker [17] has also proposed a Boyer-Moore based algorithm, which uses prede-
cessor strings. The algorithm is a modification of the TurboBM algorithm [30] using
predecessor strings to find p-matches. The worst case time complexity of the algorithm
is O(n log min(m, σ)). The average case complexity of the algorithm was not studied
in the paper.

Amir et al. [6] have proposed an algorithm for the parameterized string matching
problem based on the Knuth-Morris-Pratt algorithm [57] for exact string matching.
Their algorithm runs in the worst case in O(n log σ) time. They also prove that their
algorithm is optimal in the worst case if the alphabet is unbounded.

Fredriksson and Mozgovoy [41] have also developed sublinear algorithms for one-
dimensional parameterized matching. Their algorithms are based on the shift-or [11]
and backward DAWG matching (BDM) [30] algorithms. The shift-or based algorithm

42 4. PARAMETERIZED STRING MATCHING

runs in O(ndm/we) worst case time with average case complexity O(n logλ m/w),
where w is the size of the computer word and λ is the size of the fixed alphabet, and
the BDM based algorithm has average case complexity O(n logλ m/m). The BDM
based algorithm can also be modified to search for multiple patterns simultaneously.
The average case analysis of these algorithms relies on the text containing a substantial
fraction of symbols from the non-parameterized alphabet.

4.2.2 Two-Dimensional Algorithms
The two-dimensional parameterized matching problem was first considered by Amir
et al. [5] in the context of function matching. They give an algorithm that prepro-
cesses the text into a predecessor representation suitable for two-dimensional strings
and then applies a conventional two-dimensional algorithm. The worst case running
time of the algorithm isO(n2 log2 m). Hazay et al. [48] give another algorithm for two-
dimensional parameterized matching that is based on the “duel-and-sweep” paradigm.
In the worst case, this algorithm runs in O(n2 + m2.5polylog(m)) time. Both of these
algorithms are quite complicated, and neither one of them has been implemented as
far as we know.

4.3 Horspool Style Algorithms
In this section, we describe q-gram backward string matching algorithms for param-
eterized matching. Our algorithms are generalizations of the q-gram Boyer-Moore-
Horspool algorithm.

4.3.1 Three One-Dimensional Algorithms
We need to make two changes to the Boyer-Moore-Horspool algorithm to adapt the
q-gram Boyer-Moore-Horspool algorithm for parameterized matching. First of all, we
need to modify the checking of the window to recognize p-matches instead of exact
matches. Secondly, the algorithm for parameterized matching must shift the window
so that the last q-gram of the window is a p-match with the pattern after the shift.

The recognition of parameterized matches when checking a window can be done in
a straightforward way. During preprocessing, we transform the reversed pattern into a
predecessor string, and when checking for a match during searching, we transform the
reversed window of text into a predecessor string and compare these two predecessor
strings.

To shift the window correctly in the parameterized algorithm, we need to redefine
the bad q-gram function Sq[G]. The bad q-gram function for parameterized matching
is defined as follows:

Sq[G] = min{h | pm−h−q+1 . . . pm−h =p G, 1 ≤ h ≤ m− q} ,

4.3. HORSPOOL STYLE ALGORITHMS 43

tcgtc 12312 36
rank RGFtransform to RGF

tcgtc
transform to predecessor string

0 00 11 011

0 0 0 3 3

2
= 27

0 0 0 3 3tcgtc 0+0+0+3+3=6
transform to predecessor string

PBMH−RGF:

PBMH−Hash:

FPBMH:

Figure 4.1: Transforming the 5-gram “tcgtc” into an index in PBMH-RGF, FPBMH, and
PBMH-Hash algorithms.

where =p denotes parameterized matching. If the q-gram is not a p-match with any
q-gram of the prefix of the pattern p1 . . . pm−1, Sq[G] = m − q + 1. Now we could
enumerate all q-grams and for each q-gram find the rightmost (except for the last) q-
gram of the pattern that is a p-match with it. We would then store this information for
all possible q-grams. However, it turns out that we need to use larger q-grams with the
parameterized matching algorithm than with the exact one, and thus it is not practical
to store the shifting information for all q-grams. To solve this problem, we note that
all q-grams that are a p-match with each other give the same shift. Thus, we can use
the predecessor strings or RGFs to index the shift table. An obvious solution is to use
the rank of the RGFs as indexes. We call this algorithm Parameterized Boyer-Moore-
Horspool with RGF or PBMH-RGF for short.

Figure 4.1 gives an example of the index calculation. First, the q-gram “tcgtc”
is transformed to a restricted growth function by replacing all ’t’:s, which is the first
occurring character, with 1:s, all ’c’:s with 2:s, and all ’g’:s with 3:s. Then we apply
the RGF ranking algorithm to the resulting RGF “12312”, getting a result of 36. This
number can then be used to index the shift table.

The problem with this approach is that although calculating the rank of an RGF of
length q can be done in O(q) time, there is a fairly large constant in the time complex-
ity, and this operation needs to be done for each inspected window. Another alternative
for calculating the indexes is to transform the q-gram into a predecessor string and then
to reserve enough bits for each character of the predecessor string in the index. The i:th
character of the predecessor string takes values between 0 and i−1, and so dlog2 ie bits
are needed to represent it. The index thus has a constant width of s =

∑q
i=2dlog2 ie.

Figure 4.1 shows an example of the index calculation for this case too. First, we
transform the q-gram “tcgtc” to a predecessor string. As the first character ’t’ has not
appeared before, it is transformed to 0. Similarly, the second character ’c’ and the third
character ’g’ are transformed to 0:s. The fourth character is a ’t’, which has occurred

44 4. PARAMETERIZED STRING MATCHING

Table 4.1: The number of entries in the shift table for PBMH-RGF, FPBMH, and PBMH-Hash
for various values of q.

Algorithm 2 3 4 5 6 7 8 9 10

PBMH-RGF 2 5 15 52 203 877 4 140 21 147 115 975
FPBMH 2 8 32 256 2 048 16 384 131 072 2 097 152 33 554 432
PBMH-Hash 2 4 7 11 16 22 29 37 46

previously in position one. Since that was three positions ago, the fourth element in the
predecessor is 3. Similarly, the last character ’c’ is replaced with a 3. Now the resulting
predecessor string “00033” is transformed into an index. No bits are reserved for the
first character because it is always the same, and thus it is not used in the calculation.
One bit is reserved for the second character, and so the first bit in the index will be 0.
The third character uses two bits, and thus we transform the 0 into bits 00, and so on.
The resulting index is 000110112 in binary, which represents the number 27.

We call this algorithm Fast Parameterized Boyer-Moore-Horspool or FPBMH for
short. This approach wastes space, but the indexes are much faster to calculate. The
RGF approach needs a table of size bq, where bq is the q:th Bell number, while the
FPBMH algorithm needs a table of size 2s, where s =

∑q
i=2dlog2 ie. Table 4.1 shows

the number of entries in the shift table for both approaches for different values of q.
In a random text, the distribution of the predecessor strings is very steep. The most

common predecessor string of length q, 0q, has a high probability if the alphabet is
reasonably large, while the least common predecessor string, 01q−1, has a probability
close to 0. Therefore we might need to use quite large q-grams, which is a problem
for FPBMH. On the other hand, hashing the q-grams cleverly might let us use even
larger q-grams than the PBMH-RGF algorithm can handle. For those q-grams that
have the same hash value, the minimum shift will be stored in the shift table, and so
the shifts will be somewhat shorter than without hashing. We tried hashing the q-grams
by transforming them first to predecessor strings and then adding up all the positions
of the predecessor string.

In the example of Figure 4.1, the q-gram “tcgtc” is transformed into an index us-
ing this hashing scheme. First, the q-gram is transformed into the predecessor string
“00033” exactly like in the FPBMH algorithm. Next, we add up all the characters of
the predecessor string, yielding the index value 6.

With this hashing scheme, the most common q-gram is the only one hashed to 0,
and thus the hashing might even out the distribution of the q-grams. The value of the
hash function is surely at most

0 + 1 + . . . + (q − 1) =

q−1∑
i=1

i =
q(q − 1)

2
,

4.4. ANALYSIS 45

and thus the table size is q(q − 1)/2 + 1. This modification of the algorithm is called
PBMH-Hash. Table 4.1 also includes the space requirement for this approach.

4.3.2 A Two-Dimensional Algorithm
The two-dimensional algorithm is based on the two-dimensional string matching algo-
rithm by Tarhio [100], which is a cross of the Boyer-Moore-Horspool algorithm and
the Kärkkäinen-Ukkonen algorithm [53]. In the algorithm by Tarhio, the text is di-
vided into d(n −m)/me + 1 strips, each of which has m columns. Each strip is then
searched with a Boyer-Moore-Horspool type algorithm, and each potential match is
verified with the trivial algorithm.

In each position, the character at the lower right hand corner is investigated. If this
character occurs in the lowest row of the pattern, there is a potential match, which has
to be verified. These are found with the help of two tables, M and N . M [c] is the
column where the character c occurs first in the lowest row of the pattern, and N links
the occurrences of c in the lowest row of the pattern. The pattern is shifted down the
strip with another table S, which is a generalization of the bad character function:

S[c] = min{h | ∃i s.t. pm−h,i = c, 1 ≤ h ≤ m− 1, 1 ≤ i ≤ m} .

If c does not appear in the first m− 1 rows of the pattern, S[c] = m.
The algorithm can be modified to read several characters and calculate the shifts

based on all these characters. If we read q × q characters (a two-dimensional q-gram),
the text will be divided into d(n−m)/(m−q+1)e+1 strips, each containing m−q+1
columns.

This algorithm, which uses q-grams, can fairly easily be extended to parameter-
ized matching in a similar fashion as the Boyer-Moore-Horspool algorithm was ex-
tended for one-dimensional parameterized matching. The resulting algorithm pro-
ceeds exactly like the algorithm by Tarhio, but the read q-grams are transformed into
predecessor strings, and these are then used to index the tables. To transform the
two-dimensional q-gram into a predecessor string, we first transform it into a one-
dimensional string by concatenating the rows. This string can then be transformed
to a predecessor string, which is further used to index the tables. As with the one-
dimensional case, there are several ways to transform the predecessor strings into in-
dexes. We implemented the transformation the same way as in the FPBMH algorithm.

4.4 Analysis
We first analyze the worst and average case complexity of the one-dimensional algo-
rithms and then turn to the two-dimensional case. When analyzing the average case
complexity, we assume the standard random string model, where each character of the
text is chosen independently and uniformly at random.

46 4. PARAMETERIZED STRING MATCHING

4.4.1 The One-Dimensional Algorithms
The preprocessing phase of the algorithms consists of initializing the shift table, which
takes time proportional to the number of entries in the table. Additionally, to prepro-
cess the pattern, we need to keep track of where the different symbols of the alphabet
occurred previously, and thus the preprocessing of the q-grams of the pattern takes
O(σ + mq) time, where σ is the size of the alphabet. As stated earlier, the number of
entries in the shift table is bq for PBMH-RGF, 2s for FPBMH, and q(q − 1)/2 + 1 for
PBMH-Hash, where bq is the q:th Bell number and s =

∑q
i=2dlog2 ie. The following

lemma gives a nice formulation to the space complexity of FPBMH:

Lemma 4.6. If q ≥ 2, then 2s ≤ qq−1, where s =
∑q

i=2dlog2 ie.

Proof. When q = 2, it holds that 2
Pq

i=2dlog2 ie = 2 = 22−1, and so the Lemma holds
when q = 2.

Let us then assume that the Lemma holds for the value q. Now with the value q+1,
we get

2
Pq+1

i=2 dlog2 ie = 2
Pq

i=2dlog2 ie · 2dlog2(q+1)e ≤ qq−1 · 21+log2 q = 2 · qq .

Here we have used the assumption that the Lemma holds for the value q, and thus
2

Pq
i=2dlog2 ie ≤ qq−1, and the inequality dlog2(q + 1)e ≤ 1 + log2 q.

We know that the function
(

q+1
q

)q

= (1 + 1/q)q is an increasing function, which
approaches Napier’s constant as q approaches infinity. When q = 2, (1+1/q)q = 2.25,

and thus 2 ≤
(

q+1
q

)q

, when q ≥ 2. Therefore,

2
Pq+1

i=2 dlog2 ie ≤ 2 · qq ≤
(

q + 1

q

)q

· qq = (q + 1)q .

This proves that if the Lemma holds for the value q, it also holds for the value
q + 1. Since the Lemma also holds for q = 2, by induction the Lemma holds for all
q ≥ 2.

Therefore, the preprocessing phases of PBMH-RGF, FPBMH, and PBMH-Hash
have time complexities O(bq + σ + mq), O(qq−1 + σ + mq), and O(q2 + σ + mq),
respectively.

The only difference in the matching phase of our algorithms is how q-grams are
used to index the shift table. In both PBMH-RGF and FPBMH, two q-grams are trans-
formed into the same index if and only if they are a p-match, and the transformation
is done in O(q) time. Therefore, the matching phases of PBMH-RGF and FPBMH al-
gorithms have the same time complexities. The hashing in the PBMH-Hash algorithm
slightly changes the time complexity of the algorithm since two q-grams are some-
times transformed into the same index even if they are not a p-match. However, such
collisions are sufficiently rare with large alphabets, and so the analysis holds also for
PBMH-Hash when the alphabet is large.

4.4. ANALYSIS 47

In the worst case, the one-dimensional algorithms find a match in each window,
and the length of the shift is always one, yielding a total of n − m + 1 windows. In
each window, all characters are read and compared to the pattern. Thus, the worst case
complexity of PBMH-RGF, FPBMH, and PBMH-Hash is O(nm).

Let us then analyze the average case complexity. In order to do that, we need to
consider the probability distribution of the different predecessor strings corresponding
to random q-grams. Let σ denote the size of the alphabet, and let z be the number of
zeroes in the given predecessor string. Because the predecessor string of a q-gram is
also of length q, clearly z ≤ q. Each of the zeroes presents a different character in the
original string, and each non-zero element of the predecessor string is defined by the
zeroes. Because each zero represents a different character and there are σ characters in
the alphabet, it must also hold that z ≤ σ. The characters corresponding to the zeroes
in the predecessor string can be chosen in σ · (σ − 1) · . . . · (σ − z + 1) ways, and
there are a total of σq different strings. Thus, the probability that the given predecessor
string of length q and with z zeroes matches the predecessor string of a random string
is

σ · (σ − 1) · . . . · (σ − z + 1)

σq
=

σ!

σq · (σ − z)!
.

Theorem 4.7. If we choose a q ≤ m/2 such that the pattern is (q, logσ m)-
repetitive, then the average case complexity of searching in PBMH-RGF and FPBMH
is O(nq/m).

Proof. PBMH-RGF and FPBMH are q-gram backward string matching algorithms as
defined in Section 2.4 with the following parameters. The length of a q-gram is clearly
q, and thus g(q) = q. The probability that a random q-gram is a p-match with the
pattern in any position is less than

m · σ!

σq · (σ − z)!
<

m

σq−z
,

where z is the maximum number of zeroes in any q-gram of the pattern. This is also
the probability that a window is bad, and thus s(σ, z) = σz and A = 1. Because we
have chosen q so that the pattern is (q, logσ m)-repetitive, z ≤ q − logσ m. Clearly
the algorithms will make a shift of length f(m, q) = m− q + 1 after a good window,
and the work done by the algorithms in a good window is O(q), because in a good
window the last q-gram of the window does not match the pattern in any position. If
the window is bad, then in the worst case the last q characters of the window match,
and the previous q characters match because of the previous shift. Because q > z,
at least every q:th element of the predecessor string of the pattern is not zero. The
probability of matching for these non-zero elements is 1/σ. Thus, the average number
of characters read by the algorithms in a bad window is at most

2q +

bm/qc−3∑
i=0

q · 1

σi
= 2q + q · σ

σ − 1

(
1− 1

σbm/qc−2

)
,

48 4. PARAMETERIZED STRING MATCHING

which is asymptoticallyO(q) if q ≤ m/2. Because the pattern is (q, logσ m)-repetitive,
q = O(z + logσ m), and then the work done by the algorithms in a bad window is
O(z + logσ m) = O(σBzmB) = O(s(σ, z)BmB) for any B > 0. By Theorem 2.5,
the average complexity of PBMH-RGF and FPBMH is then O(nq/(m − q + 1)) =
O(nq/m) if q > (1+B)(logσ m+z) for any constant B > 0 such that q ≤ m− q +1.
The condition q ≤ m − q + 1 is equal to q ≤ (m + 1)/2, which always holds if the
constraint q ≤ m/2 holds. An appropriate q can be found if there is a q ≤ m/2 such
that the pattern is (q, logσ m)-repetitive.

If we have both a fixed and a parameterized alphabet, the preprocessing time of the
algorithms will change slightly because the size of the shift table will depend on the
fixed alphabet also. The preprocessing phase of PBMH-RGF, FPBMH, and PBMH-
Hash will have time complexities O(λqbq + σ + mq), O(λqqq−1 + σ + mq), and
O(λqq2 + σ + mq), respectively, where λ is the size of the fixed alphabet. The above
analysis for the average time complexity holds also in this case. In fact, the fixed
alphabet makes the problem easier. In this case, the average case complexity of the
algorithms isO(nq/m) if we choose a q ≤ m/2 such that at least max(logσ m, logλ m)
characters in each q-gram of the pattern are either from the fixed alphabet or have
occurred earlier in the q-gram.

4.4.2 The Two-Dimensional Algorithm
Let us first consider the complexity of the preprocessing phase. The two-dimensional
algorithm uses the strategy of the FPBMH algorithm when calculating the indexes
of the shift table. Thus, the number of entries in the shift table is 2s, where s =∑q2

i=2dlog2 ie. As with the one-dimensional algorithms, we also need to keep track of
the previous occurrences of the alphabet symbols, and thus a table of size σ is needed
for that. Therefore, the complexity of the preprocessing phase of the two-dimensional
algorithm is O((q2)q2−1 + σ + m2q2).

The worst case for the two-dimensional algorithm occurs when all the (n−m+1)2

windows of the text match the pattern, and thus the worst case time complexity of the
two dimensional algorithm is O(n2m2).

Theorem 4.8. If we choose a q ≤ (m + 1)/2 such that the pattern is (q2, logσ m2)-
repetitive, then the average case complexity of searching in the two-dimensional algo-
rithm is O(n2q2/m2).

Proof. Let us consider the time complexity of the algorithm when it matches the pat-
tern against one strip of the text. Then the two-dimensional algorithm is a q2-gram
backward string matching algorithm as defined in Section 2.4 with the following pa-
rameters. The length of a q2-gram is q, and so g(q2) = q < q2. The probability that a
random q-gram is a p-match with the pattern in any position is less than

m2 · σ!

σq2 · (σ − z)!
<

m2

σq2−z
,

4.5. EXPERIMENTAL RESULTS 49

where z is the maximum number of zeroes in the predecessor string of any q-gram in
the pattern. This is also the probability of a bad window, and thus s(m, σ, z) = mσz

and A = 1.
Clearly the work done by the algorithm in a good window is O(q2), and the algo-

rithm makes a shift of length f(m, q) = m− q +1 after a good window. If the window
is bad, then on average only in O(1) alignments the last q-gram matches because the
pattern is (q2, logσ m)-repetitive. Furthermore, in the worst case also the previous q-
gram in that alignment matches because of the previous shift. Thus, the complexity of
a bad window is

2q2 +

bm2/q2c−3∑
i=0

q2 · 1

σi
= 2q2 + q2 σ

σ − 1

(
1− 1

σbm2/q2c−2

)
,

because the pattern is (q2, logσ m2)-repetitive, and thus the predecessor string of each
q-gram of the pattern contains at least one non-zero element, i.e. z < q2. The work
in a bad window is thus clearly O(q2) if q2 ≤ m2/2, which holds if q ≤ (m +
1)/2. Because we have chosen q so that the pattern is (q2, logσ m2)-repetitive, q2 =
O(z + logσ m2), and then the work in a bad window is bounded by O(logσ(m2σz)) =
O(mBs(m, σ, z)B) for any B > 0. By Theorem 2.5, the average case complex-
ity of matching the pattern against one strip of the text is O(nq2/m) if q2 > (1 +
B)(logσ m2 + z) for any B > 0 such that q ≤ m − q + 1, which is equal to
q ≤ (m + 1)/2. There are a total of n/(m − q + 1) = O(n/m) strips, and so the
average complexity of the two-dimensional algorithm is O(n2q2/m2).

4.5 Experimental Results
The analysis predicts that the value of q should be chosen so that the pattern is
(q, logσ m)-repetitive. To validate this, we ran our algorithms with several patterns
and a randomly generated text with alphabet size 256. Figures 4.2, 4.3, and 4.4 show
the proportion of read characters and the runtime for some patterns. The proportion of
read characters is calculated as lookups divided by the length of the text, and thus for
a sublinear algorithm, this value is less than one. The runtime does not include time
used for preprocessing. All these tests were run on a computer with a 1.0 GHz AMD
Athlon processor, 512 MB of memory, and 256 kB on-chip cache. The computer was
running Linux 2.6.18. The algorithms were written in C and compiled with gcc 4.1.1.

Figure 4.2 shows that choosing a larger q with a highly repetitive pattern does not
make the algorithms perform faster. Using 2-grams already guarantees long enough
shifts, and thus assembling larger q-grams just wastes time. Figure 4.3 presents a
completely different scenario. Here the pattern is not (q, `)-repetitive for any q, and
as can be seen, we cannot choose a large enough q to guarantee the sublinearity of
the algorithms. In Figure 4.4, the situation is something in between. The pattern is
(3,1)-repetitive but not (2,1)-repetitive. As can be seen, the value q = 3 is optimal in
this situation, and using larger q-grams only makes the algorithms do more work.

50 4. PARAMETERIZED STRING MATCHING

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14

P
ro

po
rt

io
n

of
 r

ea
d

ch
ar

ac
te

rs

q

PBMH-RGF
FPBMH
PBMH-Hash

(a)

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 2 4 6 8 10 12

R
un

tim
e

(s
)

q

PBMH-RGF
FPBMH
PBMH-Hash

(b)

Figure 4.2: The pattern “aaaaaaaaaaaaaaaa”: (a) proportion of read characters and (b) runtime
in a random text

4.5. EXPERIMENTAL RESULTS 51

 11.8

 12

 12.2

 12.4

 12.6

 12.8

 13

 13.2

 13.4

 13.6

 13.8

 2 4 6 8 10 12 14

P
ro

po
rt

io
n

of
 r

ea
d

ch
ar

ac
te

rs

q

PBMH-RGF
FPBMH
PBMH-Hash

(a)

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 2 4 6 8 10 12

R
un

tim
e

(s
)

q

PBMH-RGF
FPBMH
PBMH-Hash

(b)

Figure 4.3: The pattern “qwertyuiopsadfgh”: (a) proportion of read characters and (b) runtime
in a random text

52 4. PARAMETERIZED STRING MATCHING

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 3 4 5 6 7 8 9

P
ro

po
rt

io
n

of
 r

ea
d

ch
ar

ac
te

rs

q

PBMH-RGF
FPBMH
PBMH-Hash

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 3 4 5 6 7 8 9

R
un

tim
e

(s
)

q

PBMH-RGF
FPBMH
PBMH-Hash

(b)

Figure 4.4: The pattern “aassddssaa”: (a) proportion of read characters and (b) runtime in a
random text

4.5. EXPERIMENTAL RESULTS 53

The analysis further predicts that our algorithms are sublinear on average if the
pattern is (q, logσ m)-repetitive. To verify this, we measured the proportion of read
characters on random patterns and texts with fairly small alphabet sizes. When the
alphabet size is small, most of the patterns are (q, logσ m)-repetitive even for a fairly
small q, and in fact, if we choose q = σ + `, all patterns are (q, `)-repetitive.

Figure 4.5 shows the results of these experiments for the FPBMH and PBMH-Hash
algorithms. Because the PBMH-RGF algorithm has exactly the same shift behavior
as the FPBMH algorithm, the proportion of read characters is also exactly the same.
Thus, the PBMH-RGF algorithm is not included in the figure. As can be seen, the
proportion of read characters falls below 1 for all the algorithms with large enough m.
The PBMH-Hash algorithm performs poorer than the FPBMH algorithm in these tests
because the alphabet size is quite small, which makes hash collisions more frequent.
Figures 4.2(a), 4.3(a), and 4.4(a) show that with a larger alphabet, the proportion of
read characters is in practice the same for PBMH-Hash and the other algorithms.

Table 4.2 shows a runtime comparison of our one-dimensional algorithms and the
following algorithms:

• Parameterized Boyer-Moore (PBM) by Baker [17]

• Parameterized Knuth-Morris-Pratt (PKMP) by Amir et al. [6]

• Parameterized Shift-Or (PSO) by Fredriksson and Mozgovoy [41]

• Fast Parameterized Shift-Or (FPSO) by Fredriksson and Mozgovoy [41]

• Parameterized Backward DAWG Matching (PBDM) by Fredriksson and Moz-
govoy [41]

The text used in these experiments is randomly generated with alphabet size 256, and
these times exclude the preprocessing time. We used a version of the PBM algo-
rithm that only utilizes the Boyer-Moore shift rule since that turned out to be faster
in practice. Our algorithms are faster when the pattern contains a substantial amount
of repetition, while the linear worst case time algorithms, PSO and PKMP, are faster
when there is no repetition in the pattern.

To further test our algorithms and to compare them against the other algorithms,
we ran some tests with DNA data and random data with alphabet size 10. In the
DNA test, the text was a chromosome from the fruit fly genome (22 MB). In both
cases, the patterns were chosen randomly from the text. For those algorithms that have
parameters affecting their performance (like the value of q in our algorithms), we chose
the parameter values that gave the shortest running time. Figures 4.6(a) and 4.6(b)
show the averages over 200 runs excluding the preprocessing time. As can be seen,
our algorithms have characteristics typical to Boyer-Moore based algorithms. With
longer patterns, the shifts get longer, and thus the algorithms are faster. The figures
also show that the FPBMH algorithm is the fastest in both cases when the patterns are

54 4. PARAMETERIZED STRING MATCHING

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50 60

P
ro

po
rt

io
n

of
 r

ea
d

ch
ar

ac
te

rs

m

FPBMH (q=4)
FPBMH (q=6)
FPBMH (q=8)

PBMH-Hash (q=4)
PBMH-Hash (q=6)
PBMH-Hash (q=8)

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 10 20 30 40 50 60

P
ro

po
rt

io
n

of
 r

ea
d

ch
ar

ac
te

rs

m

FPBMH (q=4)
FPBMH (q=6)
FPBMH (q=8)

PBMH-Hash (q=4)
PBMH-Hash (q=6)
PBMH-Hash (q=8)

(b)

Figure 4.5: The proportion of read characters for the FPBMH and PBMH-Hash algorithms
with various values of q. Text used in the experiment was (a) a chromosome from the fruit fly
genome and (b) a random text with alphabet size 10.

4.5. EXPERIMENTAL RESULTS 55

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50 60

R
un

tim
e

(s
)

m

PKMP
PBM
PSO

PFSO
PBDM

PBMH-Hash
PBMH-RGF

FPBMH

(a) DNA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60

R
un

tim
e

(s
)

m

PKMP
PBM
PSO

PFSO
PBDM

PBMH-Hash
PBMH-RGF

FPBMH

(b) Random (σ = 10)

Figure 4.6: Runtime comparison of the parameterized matching algorithms with (a) DNA data
and (b) random data with alphabet size 10

56 4. PARAMETERIZED STRING MATCHING

Table 4.2: Runtime comparison of the one-dimensional algorithms in a random text

Algorithm P=aaaaaaaaaaaaaaaaaa P=qwertyuiopasdfgh P=aassddssaa

PBM 0.128 s 0.598 s 0.128 s
PKMP 0.125 s 0.141 s 0.127 s
PSO 0.065 s 0.065 s 0.065 s
FPSO 0.022 s 2.876 s 0.049 s
PBDM 0.019 s 0.841 s 0.035 s
PBMH-RGF 0.019 s 0.682 s 0.034 s
FPBMH 0.013 s 0.518 s 0.022 s
PBMH-Hash 0.016 s 0.654 s 0.028 s

Table 4.3: Proportion of read characters for two different texts and several different patterns.
All the patterns are of size 8× 8.

Text Pattern: single-character Pattern: no repetitions Pattern: repetitions

Random 0.25 7.90 0.25
Map 1.14 0.25 0.33

at least 10 characters long. With the larger alphabet, the PSO algorithm is fastest with
shorter patterns.

We ran also some tests with the two-dimensional algorithm. We used two different
texts, a randomly generated text, where the characters were drawn from an alphabet of
256 characters, and a picture of a map1 from the photo archive Gimp-Savvy.com. We
examined the proportion of read characters for three different patterns of size 8×8. The
first one contained repetitions of one character, the second contained no repetitions,
and the third contained a map symbol with some repetition. Table 4.3 shows the results
of the tests run with the two-dimensional algorithm using 3-grams. As can be seen, the
algorithm performs well when the text or the pattern contains repetitions.

1 http://gimp-savvy.com/PHOTO-ARCHIVE/UFWS/FULL/B81641997.gif

http://gimp-savvy.com/PHOTO-ARCHIVE/UFWS/FULL/B81641997.gif

Chapter 5

Multiple String Matching with Very
Large Pattern Sets

In this chapter, we consider a variation of string matching, where multiple patterns are
given, and we need to find all occurrences of all the patterns. Many good solutions have
been presented for this problem, e.g. Aho-Corasick [3], Commentz-Walter [29, 80],
and Rabin-Karp [54, 72] algorithms with their variations. However, most of the earlier
algorithms have been designed for pattern sets of moderate size, i.e. a few dozens,
and they unfortunately do not scale very well to larger pattern sets. In this work, we
concentrate on practical methods that can efficiently handle several thousand patterns
with moderate memory usage.

We develop filtering algorithms that use q-grams to boost the filtering efficiency.
Three algorithms are presented, HG, SOG, and BG, which are based on the Boyer-
Moore-Horspool [49], shift-or [11], and BNDM [79] algorithms, respectively. Of
these, HG and BG are q-gram backward string matching algorithms, and we prove
that they are optimal on average. Wu and Manber [108] have previously used q-grams
to boost a Boyer-Moore-Horspool type algorithm for multiple pattern matching, but
we use q-grams in a different way to improve filtration efficiency. Related methods for
a single pattern have been suggested by Fredriksson [38].

The following experimental setting was used throughout this chapter if not other-
wise stated. We used a 32 MB randomly created text in the alphabet of 256 characters.
Also the patterns were randomly generated in the same alphabet. The times are aver-
ages over 10 runs using the same text and patterns. Both the text and the patterns reside
in the main memory in the beginning of each test in order to exclude reading times.
The tests were run on a computer with a 1.0 GHz AMD Athlon dual core processor,
2 GB of memory, 64 kB L1 cache, and 512 kB L2 cache. The computer was running
Linux 2.6.23. The algorithms were written in C and compiled with the gcc compiler.

57

58 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

5.1 Definitions
Problem 5.1. Given a text T = t1 . . . tn of n characters over an alphabet Σ of size
σ and r patterns P1, . . . , Pr of length m in the same alphabet, the multiple string
matching problem is to find all exact occurrences of all the patterns.

If the lengths of the patterns are not equal, we select a substring from each pattern
according to the length of the shortest pattern. We consider cases where m varies
between 4 and 32 and r between 100 and 500,000.

5.2 Earlier Solutions
Many of the earlier algorithms for multiple pattern matching build a pattern trie in the
preprocessing phase and use it for matching. For example, the Aho-Corasick algo-
rithm [3], the Commentz-Walter based algorithms [29], and the Set Backward Oracle
Matching (SBOM) algorithm [4] take this approach. While this works reasonably well
for a small set of patterns, the memory requirements for huge pattern sets are intolera-
ble because the trie data structure grows quite rapidly.

Another previous solution is to use hashing algorithms. For example, the Rabin-
Karp algorithm [54] can be extended to multiple patterns. Also the Wu-Manber al-
gorithm [108] uses hashing to extend the Boyer-Moore-Horspool algorithm [49] to
multiple patterns. Another hashing approach is described in [56].

An attempt to combine the best parts of the previous solutions is described in [64].
In this solution, the pattern set is partitioned based on the length of the patterns, and
then the best possible algorithm for each subset is used.

5.2.1 Aho-Corasick
The classical Aho-Corasick algorithm [3] has been widely used for multiple pattern
matching. We used code based on the implementation by Fisk and Varghese [37] to
test the Aho-Corasick algorithm. We tested three alternative implementations of the
goto-function: table, hash table, and binary tree. The hash table version was tested with
different table sizes. We also tried a combination of table and hash table implementa-
tions. In this approach, the table version was used in the first levels of the trie, while
in deeper levels, the hash table implementation was utilized. We also implemented the
advanced Aho-Corasick algorithm, where the failure function is incorporated into the
goto function. This modification has been reported to be the fastest in practice [80].
Figure 5.1 shows the results of these experiments.

Although the speed of the Aho-Corasick algorithm is constant for small pattern
sets, the situation is different for large sets even in an alphabet of moderate size. The
run time graph of Figure 5.1(a) shows a steady increase. Given the memory graph
of Figure 5.1(b), the hierarchical memory could explain this behavior. The advanced
Aho-Corasick algorithm turned out to be the fastest also in our experiments.

5.2. EARLIER SOLUTIONS 59

 0

 0.5

 1

 1.5

 2

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

AC tables
Advanced AC tables

AC binary trees
AC table/hash table hybrid 1
AC table/hash table hybrid 2

(a) Runtime

 0

 50000

 100000

 150000

 200000

 0 20000 40000 60000 80000 100000

M
em

or
y

(k
B

)

Number of patterns

AC tables
Advanced AC tables

AC binary trees
AC table/hash table hybrid 1
AC table/hash table hybrid 2

(b) Memory usage

Figure 5.1: Performance of different trie implementations of the Aho-Corasick algorithm. The
table/hash table hybrid 1 uses tables in the first two levels of the trie and hash tables of size 64
deeper. The second table/hash table hybrid uses tables in the first three levels and hash tables
of size eight deeper.

60 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

5.2.2 Set Horspool

The Commentz-Walter algorithm [29] for multiple patterns has been derived from the
Boyer-Moore algorithm [23]. A simpler variant of this algorithm is called Set Hor-
spool [80]. (The same algorithm is called set-wise Boyer-Moore in [37].) This algo-
rithm is developed from the Boyer-Moore-Horspool algorithm [49] for single patterns
by generalizing the bad character function. The bad character function for the set of
patterns is defined as the minimum of the bad character functions of individual pat-
terns.

The reversed patterns are stored in a trie. The initial endpoint is the length of the
shortest pattern. The text is compared from right to left with the trie until no matching
entry is found for a character in the text. Then the bad character function is applied to
the endpoint character, and the pattern trie is shifted accordingly.

We used the code of Fisk and Varghese [37] to test the Set Horspool algorithm. The
same variations as for the Aho-Corasick algorithm were tried. The results on memory
usage were similar to those of the Aho-Corasick algorithm because the trie structure
is very similar. Also the test results on run times resemble those of the Aho-Corasick
algorithm, especially with very large pattern sets. This is probably due to the memory
usage.

5.2.3 Set Backward Oracle Matching

The third algorithm making use of a trie is the Set Backward Oracle Matching (SBOM)
algorithm [4]. In the preprocessing phase of the SBOM algorithm, first a trie of the
reversed patterns is built. Then some additional transitions are added to the trie so that
at least all factors of the patterns can be recognized with the resulting factor oracle. In
the matching phase, the text is scanned backward with the factor oracle. If the oracle
fails to recognize a factor at a given position, we can shift the pattern beyond that
position.

We ran tests on the SBOM algorithm also. The same variations for the implemen-
tation of the trie were tried. The hashing approach proved to be quite slow with SBOM
because the hash tables need to have a more complex structure. In the trie built by the
SBOM algorithm, a node can have several incoming links. This means that another
structure is needed to implement the chaining of colliding hash table entries, while in
the tries built by the AC and Set Horspool algorithms such a structure is not needed.
Thus, the table implementation of the trie turned out to be the fastest.

5.2.4 Wu-Manber

The Wu-Manber algorithm [108] is a variation of the Boyer-Moore-Horspool algo-
rithm for multiple patterns. It uses two hash tables of the last q-grams of patterns,
one for determining the shift and another to locate match candidates which are verified

5.2. EARLIER SOLUTIONS 61

with pairwise comparison. Zhou et al. [112] have lately tuned the Wu-Manber algo-
rithm for larger pattern sets by using more than one hash value of the last q-grams of
the patterns and considering optimal alignments of patterns to increase the number of
q-grams not appearing in any pattern in the last position.

To test the Wu-Manber algorithm, we used the code from the agrep tool [107],
which is a collection of different algorithms. It uses the original Wu-Manber algorithm
for exact matching of multiple patterns. We tuned the code to cope with larger pattern
sets by trying larger hash tables. We tried using 2-grams without hashing, which gives
the size 216 for both tables. The code in the agrep tool uses hashed 3-grams. We tried
four sizes for the hash tables, 212, 215, 218, and 221 for determining the length of the
shift and 213, 216, 219, and 222 to locate the match candidates. Using 2-grams was best
for small pattern sets, and using larger hash tables with hashed 3-grams was better for
larger sets.

5.2.5 Rabin-Karp Approach
A well-known solution [45, 72, 114] to cope with large pattern sets with less memory is
to combine the Rabin-Karp algorithm [54] with binary search. During preprocessing,
hash values for all patterns are calculated and stored in an ordered table. Matching can
then be done by calculating the hash value for each m-character string of the text and
searching the ordered table for this hash value using binary search. If a matching hash
value is found, the corresponding pattern is compared with the text. We implemented
this method for m = 8, 16, and 32. The hash values for patterns of eight characters
are calculated as follows. First, a 32-bit integer is formed of the first four bytes of
the pattern and another from the last four bytes of the pattern. These are then xor’ed
together resulting in the following hash function:

Hash(s1 . . . s8) = s1s2s3s4ˆs5s6s7s8 .

The hash values for m = 16 and 32 are calculated in a similar fashion:

Hash16(s1 . . . s16) = (s1s2s3s4ˆs5s6s7s8)ˆ(s9s10s11s12ˆs13s14s15s16) ,

Hash32(s1 . . . s32) = ((s1s2s3s4ˆs5s6s7s8)ˆ . . . ˆ(s25s26s27s28ˆs29s30s31s32)) .

Muth and Manber [72] use two-level hashing to improve the performance of the
Rabin-Karp method. The second hash is calculated from the first one by xor’ing to-
gether the lower 16 bits and the upper 16 bits. At preprocessing time, a bitmap of 216

bits is constructed. The i:th bit is zero if no pattern has i as its second hash value and
one if there is at least one pattern with i as its second hash value. When matching, one
can quickly check from the bit table when the first hash value does not need further
inspection and thus avoid the time consuming binary search in many cases. In the
following, we use the shorthand RKBT for the Rabin-Karp algorithm combined with
binary search and two-level hashing.

62 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

Advanced AC tables
Set Horspool tables
Wu-Manber
SBOM tables
RKBT

Figure 5.2: Run time comparison of the earlier algorithms

The Rabin-Karp approach was tested both with and without two-level hashing. The
use of the second hash table of 216 bits significantly improves the performance of the
algorithm when the number of patterns is less than 100,000. When there are more
patterns, a larger hash table should be considered because this hash table tends to be
full of ones and the gain of two-level hashing disappears.

5.2.6 Comparison of the Earlier Algorithms

Figure 5.2 shows a comparison of the earlier algorithms. The times do not include
preprocessing. The run times of the Wu-Manber algorithm are the best ones obtained
by different sizes of the hash tables. In the experiments of Navarro and Raffinot [80],
Wu-Manber was the fastest algorithm for 1,000 patterns for m = 8, which holds true
also for our experiment.

5.3 Filtering Algorithms

A filtering method is able to determine fast that a position does not match, for example,
by figuring out that a substring of the window does not match any of the patterns.
However, the candidate matches returned by a filtering method can be false positives,
and thus these must be verified later to determine the true matches.

5.3. FILTERING ALGORITHMS 63

In this work, we develop filtering algorithms for multiple pattern matching. All of
our algorithms operate in three phases. The pattern is first preprocessed, in the second
phase we search the text with a filtering method, and the candidate matches produced
by the filtering are verified in the third phase.

All of our algorithms can be viewed as character class filters although the gen-
eralized pattern with character classes is not explicitly built. A character class filter
algorithm first builds a generalized pattern containing character classes which matches
all of the patterns in the pattern set. For example, if the pattern set is {“pattern”, “fil-
ters”}, then the corresponding generalized pattern is [f,p][a,i][l,t][t][e][r][n,s]. This
generalized pattern is then given to a single pattern algorithm able to handle character
classes to generate the candidate matches. Given this scheme, it is obvious that all
actual occurrences of the patterns will be reported by the filter, but there are also false
positives. In the previous example, “falters” is an example of a false positive.

When the pattern set grows, the filtering efficiency of the above scheme starts to
deteriorate as the character classes in each position contain almost all characters. To
counter this problem, the patterns can first be transformed into sequences of over-
lapping q-grams. For example if we utilized 2-grams, the above pattern set would
become {“pa-at-tt-te-er-rn”, “fi-il-lt-te-er-rs”}, and the generalized pattern would be
[fi,pa][at,il][lt,tt][te][er][rn,rs].

A filtering algorithm always requires an exact algorithm to verify the candidate
matches. In principle, any of the presented earlier methods could be used for this
purpose. A trie-based method is fast if the trie does not grow too large. With large
pattern sets, we can limit the depth of the trie to control memory requirements. Another
possibility is to use the RKBT method, which has very modest memory requirements,
but the binary search can be time consuming. We have implemented our methods by
using RKBT to verify the candidate matches.

5.3.1 Multi-Pattern Shift-Or with q-Grams
The shift-or algorithm is easily extended to handle classes of characters in the pat-
tern [2, 11], and thus developing a filtering algorithm for multiple pattern matching
is straightforward. The preprocessing phase now initializes the bit vectors for each
character in the alphabet as follows. The i:th bit is set to 0 if the given character is
included in the character class in the i:th position. Otherwise the bit is set to 1. The
filtering phase proceeds then exactly like the matching phase of the shift-or algorithm.
Given this scheme, it is clear that all actual occurrences of the patterns in the text are
candidates. However, there are also false positives as the generalized pattern matches
also other strings than the original patterns. Therefore, each candidate must be verified
with the RKBT method.

When the number of patterns grows, this approach is no longer adequate as the gen-
eralized pattern accepts almost all characters in each position. The filtering capability
can then be considerably improved by utilizing q-grams. The patterns are transformed
to sequences of m − q + 1 overlapping q-grams, i.e. a q-gram starts at each position

64 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

of the patterns and we only consider those q-grams that are fully inside the patterns.
The bit vectors are initialized for each q-gram, and so the i:th bit is 0 if the q-gram
occurs in any of the patterns starting at position i, and otherwise the i:th bit is set to 1.
In the filtering phase, we read overlapping q-grams from the text and use the q-grams
to index the tables. Note that the next overlapping q-gram can be computed from the
previous q-gram and the next character of the text in O(1) time. A candidate match
has been found if the m− q + 1:th bit of the state vector is 0. We call our modification
SOG (short for Shift-Or with q-Grams). The improved efficiency of this approach is
achieved at the cost of space. The bit vectors will now take mσq bits space.

Baeza-Yates and Gonnet [11] present a way to extend the shift-or algorithm for
multiple patterns for small values of r. Patterns P1 = p1

1 . . . p1
m, . . . , Pr = pr

1 . . . pr
m

are concatenated into a single pattern:

P = p1
1p

2
1 . . . pr

1p
1
2p

2
2 . . . pr

2 . . . p1
mp2

m . . . pr
m .

The patterns can then be searched in the same way as a single pattern, except that the
shift of the state vector will be for r bits, and a match is found if any of the r bits
corresponding to the highest positions is 0. This method can also be applied to SOG
to make the algorithm faster for short patterns. The pattern set is divided into four or
two subsets based on the first q-gram. Each subset is then transformed into a general
pattern like in the plain SOG algorithm. The extension method of Baeza-Yates and
Gonnet is then applied to these general patterns.

The above organization for P is convenient in the sense that when the state vector
is shifted r bits to the left, the r rightmost bits are automatically initialized to zero.
However, we could also think of organizing the characters in P slightly differently:

P = p1
1p

1
2 . . . p1

mp2
1p

2
2 . . . p2

m . . . pr
1p

r
2 . . . pr

m .

With this organization, we need to shift the state vector one bit to the left, clear the
bits corresponding to the first characters of the patterns, and a match is found if any
of the bits corresponding to the last characters of the patterns are zero. This approach
is more cumbersome than the previous approach if all patterns are of the same length.
However, if the patterns have varying lengths, the latter definition of P allows for more
efficient utilization of the bits in a computer word. In this case, we can partition the
pattern set according to the length of the patterns. For example, we could have one set
for patterns of length 4 to 7, one set for patterns of length 8 to 12, and so on.

Fredriksson and Grabowski [39, 40] have proposed a modification to enhance the
performance of the shift-or algorithm. In their scheme, several patterns are formed
from the original one by taking every k:th character starting at different offsets. For
example, for k = 2 the pattern ‘pony’ would produce patterns ‘pn’ and ‘oy’. Now
we can scan the text reading every k:th character and use the shift-or algorithm to find
likely matches. These candidates can then be verified. We tried this modification for
SOG, but the shorter patterns produced more spurious hits, and the scanning is a bit
more complicated. Thus, this modification did not make SOG faster.

5.3. FILTERING ALGORITHMS 65

5.3.2 Multi-Pattern BNDM with q-Grams

Our second filtering algorithm is based on the BNDM algorithm by Navarro and Raf-
finot [79]. This algorithm has been extended to classes of characters in the same way
as the shift-or algorithm. We call the resulting multiple pattern filtering algorithm BG
(short for BNDM with q-Grams). The bit vectors of the BNDM algorithm are initial-
ized in the preprocessing phase so that the i:th bit is 1 if the corresponding character
is included in the character class of the reversed generalized pattern in position i. In
the filtering phase, the matching is then done with these bit vectors. As with SOG, all
match candidates reported by this algorithm must be verified. The verification phase
of the algorithm uses the RKBT method.

Just like in SOG, q-grams can be used to improve the efficiency of the filtering.
That is, the pattern is transformed into a string of q-grams, the bit vectors are initialized
for each q-gram rather than for a single character, and the text is read one q-gram at
a time. Also the division to subsets, presented for the SOG algorithm, can be used
with the BG algorithm although with variable length patterns the gain is not so good
as in SOG as the maximum shift length will still be limited by the shortest pattern.
This scheme works in the same way as with SOG algorithm, except that the subsets
are formed based on the last q-gram of the patterns.

5.3.3 Multi-Pattern Horspool with q-Grams

The last of our algorithms uses a Boyer-Moore-Horspool [49] type method for match-
ing the generalized pattern against the text. Strictly speaking, this algorithm does not
handle character classes properly. It will return all those positions where the gener-
alized pattern matches and also some others. This algorithm is called HG (short for
Horspool with q-Grams).

The preprocessing phase of HG constructs a bit table for each of the m pattern
positions. The first table keeps track of characters contained in the character class of
the first position of the generalized pattern, the second table keeps track of characters
contained in the character classes of the first and the second position in the generalized
pattern, and so on. Finally, the m:th table keeps track of characters contained in any
of the character classes of the generalized pattern. Figure 5.3(a) shows the six tables
corresponding to the pattern ‘qwerty’.

These tables can then be used in the filtering phase as follows. First, the m:th
character is compared with the m:th table. If the character does not appear in this
table, the character cannot be contained in the character classes of positions 1 . . . m
in the generalized pattern, and a shift of m characters can be made. If the character
is found in this table, the m − 1:th character is compared to the m − 1:th table. A
shift of m− 1 characters can be made if the character does not appear in this table and
therefore not in any character class in the generalized pattern in positions 1, . . . ,m−1.
This process is continued until the algorithm has advanced to the first table and found
a match candidate there. The pseudo code is shown in Figure 5.3(b). Given this

66 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

1-gram tables:
1. 2. 3. 4. 5. 6.
q q q q q q

w w w w w
e e e e

r r r
t t

y

(a)

hg_matcher (T = t1 . . . tn, n)

1. i = 1
2. while(i ≤ n−m + 1)
3. j = m
4. while (1)
5. if (not 1GramTable[j][ti+j−1])
6. i = i + j
7. break
8. else if (j = 1)
9. verify_match (i)
10. i = i + 1
11. break
12. else
13. j = j − 1

(b)

Figure 5.3: The HG algorithm: (a) the data structures for the pattern ‘qwerty’ and (b) the
pseudo code for the search phase.

procedure, it is clear that all positions matching the generalized pattern are found.
However, also other strings will be reported as matches. For example, ‘qqqqqq’ is a
false candidate in the example of Figure 5.3(a). In the verification phase, the candidates
are verified by using the RKBT method described in Section 5.2.5. As with SOG and
BG, the filtering efficiency of HG can be considerably improved with large pattern sets
by utilizing q-grams.

5.4 Analysis

Let us consider the time complexities of the new algorithms, HG, SOG, and BG. The
algorithms can be divided into three phases: preprocessing, filtering, and verification.
When considering the average case complexity, we assume the standard random string
model, where each character of the text and the patterns is selected uniformly and
independently at random.

All of our algorithms use the RKBT method for the verification phase. In the best
case, no match candidates are found, and then checking needs no time. In the worst
case, there are n −m + 1 = O(n) candidates, and all the patterns and text positions
have the same hash value. In this case, we need to inspect the text pairwisely with each
pattern, and the worst case time complexity is thus O(nrm). If we assume that all

5.4. ANALYSIS 67

patterns produce different hash values, the worst case complexity is O(n(log r + m)),
where O(log r) comes from the binary search and O(m) from pairwise inspection.

The preprocessing phase of the filtering phases of the three algorithms is similar,
and it works in O(rm) in BG and SOG and in O(rm2) in HG, as HG sets O(m) bits
for each of theO(rm) q-grams of the patterns, while BG and SOG only set one bit per
q-gram. Additionally, the initialization of the descriptor bit vectors needs O(σq). The
preprocessing of the verification phase consists of calculating the hash values of the
patterns and sorting the patterns according to these values. The sorting of the patterns
takes O(r log r). 1

Let us first consider the filtering phase of SOG. We assume that m ≤ w holds,
where w is the word length of the computer. Furthermore, we consider the time com-
plexity of SOG without division to subsets.

Theorem 5.2. On average the combined cost of filtering and verification in SOG is
O(n) if we choose q so that

q ≥ m logσ r

m− logσ(m + log r)
.

Proof. In SOG, the filtering phase is clearly linear with respect to n. The probability
that a random q-gram matches a given position in any of the patterns is at most r/σq

because there are σq different q-grams, and at most r of these can appear in the given
position in at least one of the patterns. Thus, the number of candidates in SOG is

Cq ≤ (n−m + 1)
(r

σq

)bm/qc
< n

(r

σq

)bm/qc
.

Note that this estimate considers only those q-grams which do not overlap. Thus, the
real number of candidates is lower. The average complexity of verification in SOG is
thus

n
(r

σq

)bm/qc
· O(m + log r) . (5.1)

If this complexity is O(n), then the combined complexity of filtering and verification
in SOG is also linear. This will surely be the case if(r

σq

)bm/qc
(m + log r) ≤ 1 .

For the sake of this analysis, we will now assume that q divides m so that bm/qc =
m/q. Note that the analysis could then be extended to hold for any m ≥ q because we
can choose an m′ < m such that q divides m′ and use pattern prefixes of length m′ for

1Our current implementation utilizes the Quicksort algorithm, which runs inO(r2) time in the worst
case and in O(r log r) time in the average case.

68 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

the filtering phase. By taking logarithms of both sides of the above equation, we get

m

q
(logσ r − q) + logσ(m + log r) ≤ 0

m

q
logσ r ≤ m− logσ(m + log r)

q ≥ m logσ r

m− logσ(m + log r)
.

Therefore, the verification cost of SOG is O(n) on average if q is chosen according to
the above equation, which completes the proof.

With the above choice of q = Θ(logσ r), the space complexity of SOG is O(σq +
rm) = O(rΘ(1) + rm), which includes also structures for verification. Similarly, the
time complexity of preprocessing including initialization of the descriptor bit vectors
and preprocessing for verification is O(rm + σq + r log r) = O(r ·max(m, log r) +
rΘ(1)).

Let us then consider the filtering phase in BG and HG. For BG, we assume that
m ≤ w holds, where w is the word length of the computer, and we consider the time
complexity of BG without division to subsets. The worst case complexity of filtering
in both BG and HG is O(mn) because in the worst case both algorithms always read
the whole window of m characters and always shift the pattern by one position.

The following theorem establishes the average case complexity of filtering for both
HG and BG.

Theorem 5.3. If q = c logσ(rm) ≤ m/2 for a constant c > 1, then the average case
complexity of filtering in BG and HG is O(n logσ(rm)/m). The analysis is valid for
r < σ

m
2 /m.

Proof. The filtering phase in both BG and HG is a q-gram backward string matching
algorithm as defined in Section 2.4. The length of a q-gram is clearly q, and so g(q) =
q. The probability that a random q-gram matches any of the patterns in any position is
at most rm/σq, because there are σq different q-grams, and less than rm of these can
occur in the patterns. This is also the probability that a window is bad, and so s(r) = r
and A = 1. Clearly both algorithms read O(q) characters in a good window and make
a shift of length f(m, q) = m− q + 1 after that.

If the window is bad, both algorithms will read some of the previous q-grams to
determine if there is a potential match. Both algorithms will stop if they encounter a
q-gram that does not occur in any of the patterns. In the worst case, the last q characters
match because this is a bad window, and the previous q characters match because of
the previous shift. The average number of characters read by the algorithms is thus at
most

2q +

bm/qc−3∑
i=0

q ·
(rm

σq

)i

= 2q + q · σq

σq − rm

(
1−

(rm

σq

)bm/qc−2
)

,

5.4. ANALYSIS 69

which is asymptotically O(q) if c logσ(rm) ≤ q ≤ m/2, where c > 1 is a constant.
Note that this estimate is conservative as we are considering only those q-grams that
are independent, i.e. do not overlap. If we choose q = c logσ(rm) = Θ(logσ(rm)),
then the work done in bad windows is O(q) = O(logσ(rm)) = O(s(r)BmB) for
any B > 0. By Theorem 2.5, the filtering in HG and BG is thus O(nq/(m − q +
1)) = O(n logσ(rm)/m) if q > (B + 1) logσ(rm) for any constant B > 0 such that
q ≤ m − q + 1. The condition q ≤ m − q + 1 is equal to q ≤ (m + 1)/2, which
always holds if q ≤ m/2. Such a q can be found if logσ(rm) < m/2 or equally if
r < σ

m
2 /m.

Navarro and Fredriksson [77] have shown that the lower bound for the average
complexity of multiple string matching is Ω(n logσ(rm)/m), and the following theo-
rems prove that with an appropriate choice of q, both BG and HG are average optimal.

Theorem 5.4. The complexity of filtering and verification in BG is O(n logσ(rm)/m)
on average if we choose q = c logσ(rm) for a constant c > 1 such that

m logσ r

m + logσ logσ(rm)− logσ(m + log r)− logσ m
≤ q ≤ m/2 .

The analysis is valid for r < σ
m
2 /m.

Proof. Theorem 5.3 shows that if r < σ
m
2 /m, the cost of filtering in BG is

O(n logσ(rm)/m) if q = c logσ(rm) for a constant c > 1 such that q ≤ m/2. It
remains to show that the verification cost of BG is also bounded byO(n logσ(rm)/m).

The expected number of candidates for the BG algorithm is the same as for the
SOG algorithm, and so the complexity of the verification phase of BG is also given by
Equation 5.1. However, filtering in BG is sublinear on average so we need a stricter
condition to assure that the complexity of verification phase is not higher than the com-
plexity of filtering. Clearly the complexity of the verification phase will be bounded
by O(n logσ(rm)/m) if(r

σq

)bm/qc
(m + log r) ≤ logσ(rm)

m
.

To simplify this analysis, we will again assume that q divides m. When we take loga-
rithms on both sides, we get

m

q
(logσ r − q) + logσ(m + log r) ≤ logσ logσ(rm)− logσ m

m

q
logσ r ≤ m + logσ logσ(rm)− logσ(m + log r)− logσ m

q ≥ m logσ r

m + logσ logσ(rm)− logσ(m + log r)− logσ m
.

So if we choose q according to the above equation and Theorem 5.3, then the average
complexity of filtering and verification in BG is O(n logσ(rm)/m).

70 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

Theorem 5.5. The complexity of filtering and verification in HG isO(n logσ(rm)/m)
on average if q = c logσ(rm) for a constant c > 1 such that

m logσ(rm)

m + logσ logσ(rm)− logσ(m + log r)− logσ m
≤ q ≤ m/2 .

The analysis is valid for r < σ
m
2 /m.

Proof. Theorem 5.3 shows that if r < σ
m
2 /m then the cost of filtering in HG is

O(n logσ(rm)/m) if q = c logσ(rm) for a constant c > 1 such that q ≤ m/2. Thus, it
remains to show that the verification cost of HG is also bounded byO(n logσ(rm)/m).

The probability of a q-gram appearing in the j:th q-gram table is at most rj/σq

because there are σq different q-grams and at most rj of these have been added to
the j:th table at the preprocessing phase. The probability of finding a candidate in
the HG algorithm is the probability that each q-gram in the window is found in the
corresponding q-gram table. Thus, the expected number of candidates is

Cq < (n−m + 1)

bm/qc∏
j=1

rj + r(q − 1)(j − 1)

σq

< n
(rm

σq

)bm/qc
.

Note that as with SOG and BG, this estimate considers only those q-grams which
do not overlap, and therefore the real number of candidates is lower. The average
complexity of verification in HG is thus

n
(rm

σq

)bm/qc
· O(m + log r) .

The verification cost is clearly bounded by O(n logσ(rm)/m) if(rm

σq

)bm/qc
(m + log r) ≤ logσ(rm)

m
.

We will again assume that q divides m. By taking logarithms on both sides of the
previous equation, we get

m

q
(logσ(rm)− q) + logσ(m + log r) ≤ logσ logσ(rm)− logσ m

m

q
logσ(rm) ≤ m + logσ logσ(rm)− logσ(m + log r)− logσ m

q ≥ m logσ(rm)

m + logσ logσ(rm)− logσ(m + log r)− logσ m
.

So if we choose q according to the above equation and Theorem 5.3, then the average
complexity of filtering and verification in HG is O(n logσ(rm)/m).

5.5. EXPERIMENTS 71

With the above choice of q = Θ(logσ(rm)), the space complexity of BG and HG is
O(σq +rm) = O((rm)Θ(1)), which includes also structures for verification. Similarly,
the time complexity of preprocessing including initialization of the descriptor bit vec-
tors and preprocessing for verification isO(rm+σq +r log r) = O(r log r+(rm)Θ(1))
in BG and O(rm2 + σq + r log r) = O(r ·max(m2, log r) + (rm)Θ(1)) in HG.

5.5 Experiments

We tested the new algorithms with various values of q. For alphabet size 256, the 2-
gram versions optimize the reading of a 2-gram by using a single instruction to fetch a
halfword from memory [38].

5.5.1 SOG Algorithm

The analysis predicts that we should use q = Θ(logσ r) in the SOG algorithm to assure
linear running time. To verify this, we ran tests with different values of q for the
standard test setting with alphabet size 256, and to get more fine grained results, we
also tried the algorithm with alphabet size 4. In the latter test, the text used was a
chromosome from the fruit fly genome (22 MB), and the patterns of length 32 were
randomly generated. The time to preprocess the patterns is not included in the runtime
of the algorithm.

When we switch from 2-grams to 3-grams with alphabet size 256, the memory
used by the structure of SOG grows from 64 kB to 16 MB. This slows the algorithm
down considerably because a 16 MB table does not fit into the cache of the processor.
To alleviate this problem, we also tried hashing the characters to 6- or 7-bit values
before forming the 3-gram.

The results of these test are shown in Figure 5.4. The analysis predicts that with
σ = 256 and m = 8, 1-grams suffice for 100 patterns and 2-grams until about 20,000
patterns. After that 3-grams should be used. The results of the experiments confirm
nicely to these analytical results, as the 1-gram version is as fast as the 2-gram version
until 200 patterns, the 2-gram version has a constant running time until 20,000 patterns,
and the runtime of the 3-gram version stays constant for all tested values of r. The
results with σ = 4 are similar. Figure 5.4(b) shows that the minimum applicable value
for q is clearly proportional to log r.

To test the sensitivity of SOG to other parameters, we ran some more tests with
alphabet size 256 using 2-grams, as the 2-gram version performs reasonably well until
100,000 patterns. First, SOG was tested with pattern lengths m = 8, 16, and 32,
see Figure 5.5(a). The figure shows the algorithm is slower for longer patterns. The
structures of the SOG algorithm take 64 kB memory for m = 8, 128 kB for m =
16, and 256 kB for m = 32. The increased memory usage seems to slow down the
algorithm.

72 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

 0

 0.5

 1

 1.5

 2

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

SOG 1-grams
SOG 2-grams
SOG 3-grams (6-bit)
SOG 3-grams (7-bit)
SOG 3-grams (8-bit)

(a) σ = 256

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

SOG Q=4
SOG Q=5
SOG Q=6
SOG Q=7
SOG Q=8
SOG Q=9
SOG Q=10

(b) σ = 4

Figure 5.4: The effect of the parameter q in SOG

5.5. EXPERIMENTS 73

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

SOG m=8
SOG m=16
SOG m=32

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

SOG 1 subset
SOG 2 subsets
SOG 4 subsets

(b)

Figure 5.5: The SOG algorithm. (a) The effect of pattern length. (b) The effect of one, two,
and four subsets.

74 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

The use of subsets with the SOG algorithm was tested for m = 8. We tried versions
with one, two, and four subsets, see Figure 5.5(b). The versions using two and four
subsets have a better filtering efficiency, and thus their run time remains longer constant
when the pattern set size is increased. However, they are again hindered by larger
memory requirements. The basic version with one subset needs 64 kB of memory,
while the version using two subsets needs 128 kB of memory and the four subsets
version 256 kB of memory.

Given r patterns, using four subsets should result in roughly as many false matches
as using one subset with r/4 patterns because in the version with four subsets only one
subset can match at a given position. The results of the tests show that there are a little
more matches than that. This is due to the more homogeneous sets produced by the
division of patterns.

5.5.2 BG Algorithm
To determine good values of q for the BG algorithm, the same experimental settings as
with SOG were used. Figure 5.6 shows the results of these experiments. The analysis
predicts that when σ = 256 and m = 8, 1-grams suffice for 100 patterns, 2-grams
until 10,000 patterns, and 3-grams should be used after that to keep the verification
cost down. Figure 5.6(a) shows that the runtime indeed grows drastically some time
after these values. However, there is a slight increase of running time even before
that. According to the analysis, if we want to keep the filtering time average optimal,
we should use 2-grams when there are less than 10,000 patterns and 3-grams after
that. Figure 5.6(a) shows that it is better to use 2-grams until 50,000 patterns, but the
runtime starts to increase already earlier. The results for σ = 4 and m = 32 are similar.
Comparing with Figure 5.4, we note that the optimal value of q in BG is slightly larger
than in SOG.

As with SOG, we also ran some further test with alphabet size 256 using 2-grams.
We tested the performance of the BG algorithm for m = 8, 16, and 32. Figure 5.7(a)
shows the results of these tests. The algorithm is almost as fast in all these cases. The
greater memory requirement slows the algorithm down with longer patterns, but on the
other hand, longer patterns allow for longer shifts. These two effects seem to balance
out each other with smaller pattern sets. When the pattern set grows, the performance
degrades faster with shorter patterns because the filtering is less efficient.

The use of subsets with the BG algorithm was tested for m = 8 with one, two, and
four subsets, and the results are shown in Figure 5.7(b). The results of these tests are
very similar to the ones of the SOG algorithm.

5.5.3 HG Algorithm
We used the same experimental settings as with BG and SOG to determine practical
values of q for the HG algorithm. The results of these experiments are shown in Fig-
ure 5.8. The 1-gram version is not shown for σ = 256 because it was not competitive

5.5. EXPERIMENTS 75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

BG 1-grams
BG 2-grams
BG 3-grams (6-bit)
BG 3-grams (7-bit)
BG 3-grams (8-bit)

(a) σ = 256

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

BG Q=4
BG Q=5
BG Q=6
BG Q=7
BG Q=8
BG Q=9
BG Q=10
BG Q=11
BG Q=12

(b) σ = 4

Figure 5.6: The effect of the parameter q in BG

76 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

 0

 0.05

 0.1

 0.15

 0.2

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

BG m=8
BG m=16
BG m=32

(a)

 0

 0.05

 0.1

 0.15

 0.2

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

BG 1 subset
BG 2 subsets
BG 4 subsets

(b)

Figure 5.7: The BG algorithm. (a) The effect of pattern length. (b) The effect of one, two, and
four subsets.

5.5. EXPERIMENTS 77

even when r = 100. For HG, the analysis of verification predicts that for σ = 256
and m = 8 when r varies from 100 to 1,000, 2-grams should be used, 3-grams suf-
fice until 100,000 patterns, and 4-grams should be used for larger pattern sets. From
Figure 5.8(a), we see that this is a little pessimistic as the runtime increases drastically
later than that. For the filtering to be average optimal, the analysis predicts the same
values of q as for BG. Again, using 2-grams slightly longer gives better results in prac-
tice although HG requires a larger q than BG. The results with the DNA text follow
the analysis similarly.

As with SOG and BG, some further tests were run with HG for the alphabet size
256 using 2-grams. Figure 5.9 shows the runtime of the algorithm with different pat-
tern lengths. The times do not include verification of candidates in this case since
we implemented the RKBT method only for m = 8, 16, and 32. If the verification
would be done, the performance of the algorithm would worsen for those set sizes that
produce spurious hits. Most of the candidates reported by the HG algorithm are false
matches because the probability of finding a real match is very low in our setting.

Figure 5.9 shows that when there are less than 10,000 patterns, HG is faster for
longer patterns because they allow longer shifts. When the number of false matches
grows, the algorithm is faster for shorter patterns because most positions match anyway
and the overhead with shorter patterns is smaller.

5.5.4 Comparison of the Algorithms
A run time comparison of the algorithms is shown in Figures 5.2 and 5.10(a) based on
Table 5.1. These times include verification but exclude preprocessing. The memory
usage and the preprocessing times of the algorithms are shown in Table 5.2. These
are results from tests with patterns of eight characters, where our algorithms and the
Wu-Manber algorithm use the optimal q-value for each pattern set size. Recall that the
size of the text is 32 MB.

Figure 5.10(a) shows that our algorithms are considerably faster than the algo-
rithms presented earlier except for the Wu-Manber algorithm, which is only slightly
slower than BG, the best of the new algorithms. The HG, BG, and Wu-Manber al-
gorithms are the fastest until 10,000 patterns, while the new algorithms are equally
fast between 10,000 and 50,000 patterns. The BG algorithm has the best overall ef-
ficiency. With larger pattern sets, the use of subsets with these algorithms would be
advantageous.

Table 5.2 shows that the preprocessing phase of our algorithms is fast. Table 5.2
also shows that the memory usage of our algorithms is fairly small, which helps the
new algorithms to achieve fast running times because of the hierarchical memory. The
memory usage of our filtering techniques is constant for a fixed q. Because our algo-
rithms use RKBT as a subroutine, their numbers cover also all the structures of RKBT
including the second hash table. The space increase in Table 5.2 is due to the need to
store the patterns for the verification phase and switching from 2-grams to 3-grams.
The space for the patterns could be reduced by using clever hash values. For example,

78 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

HG 2-grams
HG 3-grams (6-bit)
HG 3-grams (7-bit)
HG 3-grams (8-bit)

(a) σ = 256

 0

 0.05

 0.1

 0.15

 0.2

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

HG Q=4
HG Q=5
HG Q=6
HG Q=7
HG Q=8
HG Q=9
HG Q=10
HG Q=11
HG Q=12

(b) σ = 4

Figure 5.8: The effect of the parameter q in HG

5.5. EXPERIMENTS 79

 0

 0.05

 0.1

 0.15

 0.2

 100 1000 10000

R
un

tim
e

(s
)

Number of patterns

HG m=4
HG m=6
HG m=8
HG m=12
HG m=20

Figure 5.9: Runtimes of the 2-gram version of the HG algorithm for different pattern lengths

Table 5.1: Run times of the algorithms when r varies for m = 8 and σ = 256. AC, Set
Horspool, and SBOM algorithms use the table implementation of the trie. Our algorithms use
the best observed value of q, and Wu-Manber algorithm uses the best observed sizes of hash
tables.

100 500 1,000 5,000 10,000 50,000 100,000

Advanced AC 0.133 0.293 0.351 0.618 1.053 4.308 6.185
Set Horspool 0.110 0.411 0.493 0.835 1.287 4.360 6.162
Wu-Manber 0.030 0.032 0.034 0.052 0.086 0.299 0.500
SBOM 0.062 0.092 0.129 0.397 0.627 1.163 1.272
RKBT 0.340 0.301 0.327 0.559 0.884 3.412 6.740
HG 0.033 0.036 0.040 0.078 0.091 0.129 0.190
SOG 0.075 0.075 0.075 0.076 0.075 0.144 0.205
BG 0.016 0.018 0.020 0.036 0.046 0.124 0.189

80 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

Advanced AC tables
Wu-Manber
SBOM tables
RKBT
HG
SOG
BG

(a) σ = 256, m = 8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000 100000

R
un

tim
e

(s
)

Number of patterns

Advanced AC
SBOM tables
RKBT
HG
SOG
BG

(b) σ = 4, m = 32

Figure 5.10: Run time comparison of the algorithms. Our algorithms use the best observed
value of q, and Wu-Manber algorithm uses the best observed sizes of hash tables.

5.5. EXPERIMENTS 81

Table 5.2: Memory usage and preprocessing times of the algorithms for r = 100 and 100,000.
AC, Set Horspool, and SBOM algorithms use the table implementation of the trie. Our algo-
rithms use the best observed value of q, and Wu-Manber algorithm uses the best observed sizes
of hash tables.

Memory (kB) Preprocessing (s)

Algorithm r = 100 r = 100, 000 r = 10, 000 r = 100, 000

Advanced AC 797 661,496 0.55 12.49
Set Horspool 706 565,743 0.23 1.18
Wu-Manber 326 20,782 0.01 0.08
SBOM 708 571,544 0.39 1.62
RKBT 9 1,180 0.01 0.29
HG 65 2,720 0.01 0.17
SOG 73 1,440 0.01 0.05
BG 73 1,440 0.01 0.05

for m = 8 we could store only four characters of each pattern and use a 32-bit hash
value such that the other four characters can be obtained from these characters and the
hash value.

We also run tests on DNA data. The text was a chromosome from the fruit fly
genome (22 MB), and we used random patterns of 32 characters. We tried the values 4
through 12 of q in our filtering algorithms. The results using the best observed values
for q are shown in Figure 5.10(b). Again the new algorithms are considerably faster
than the previous ones.

Our algorithms are filtering methods so they are not designed for searching texts
that contain a lot of matches. Nevertheless, we tested the algorithms also in a setting
where the text contained matches. Results of these tests show that our algorithms
perform surprisingly well also in this setting, see Figure 5.11(a).

To further test our algorithms with a text containing matches, we ran several tests
on English text getting somewhat controversial results. We used the King James ver-
sion of the Bible as a text. First, we used patterns that were formed from at least 8
character long words from the text. Because our algorithms require the patterns to be
of equal length, we used 8 character long prefixes of the words. There were 4,216
distinct prefixes. Figure 5.11(b) shows the results of this experiment. The Rabin-Karp
method was not competitive in this setting and is thus not shown in the figure. The
Set Horspool algorithm, which is also not shown in the figure, was a bit slower than
the SBOM algorithm. As the figure shows, Wu-Manber is the fastest of the earlier
methods, which confirms with earlier results [80]. However, SOG and BG are equally
fast until 1,000 patterns and slightly faster after that.

82 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

 0

 0.5

 1

 1.5

 2

 100 1000 10000 100000 1e+06

R
un

tim
e

(s
)

Number of matches

Advanced AC
Wu-Manber
SBOM
RKBT
HG
SOG
BG

(a)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 100 1000

R
un

tim
e

(s
)

Number of patterns

Advanced AC
Wu-Manber
SBOM with tables
HG
SOG
BG

(b)

Figure 5.11: (a) Run times of the algorithms when using 10,000 patterns and a text containing
a variable amount of matches. (b) Run times of the algorithms when searching English words
from the King James version of the Bible.

5.5. EXPERIMENTS 83

In the other experiments with English text, we used 8 character long strings ran-
domly chosen from the text. In these tests, the traditional algorithms performed faster
than our new ones. The good performance of our algorithms in the first test is probably
due to the patterns not containing any space characters, which are very frequent in the
text. This allows our algorithms to filter out most of the text positions.

In all these tests, we used pattern sets where all patterns were of equal length. It
is worth noting that the new algorithms are not as flexible as for example the Aho-
Corasick algorithm when handling patterns of varying length.

5.5.5 Comparison Against the Suffix Array
We also compared BG against the suffix array [67]. We chose the BG algorithm be-
cause it was the fastest for random data with alphabet size 256, and it also wins over
HG for DNA data if preprocessing time is taken into account. The suffix array imple-
mentations are from the PizzaChili site2. The first implementation, SAu, uses 32-bit
integers for suffix array entries, while the second one, SAc, uses log n bits to represent
each entry. We ran this experiment both for DNA data and random data with alphabet
size 255.3 The DNA data for this experiment was also obtained from the PizzaChili
site. All DNA patterns used in this experiment were of length 32, and the patterns for
the experiment with alphabet size 255 were of length 8.

Figures A.1, A.2, and A.3 show the results of these experiments for random data
with alphabet size 255, and Figures A.4, A.5, and A.6 show the results for DNA data.
Figures A.1 and A.4 show a comparison of search times, Figures A.2 and A.5 a com-
parison of combined preprocessing and search times, and Figures A.3 and A.6 show a
comparison where preprocessing is included in the search time of our algorithms but
not in the search time of the suffix array.

As can be seen, BG is superior when comparing the combined preprocessing and
search times. If the preprocessing time of the suffix array is excluded, we can see that
our approach is faster until some text length which depends on the data and the number
of patterns. The more patterns we have, the longer the text must be for the suffix array
to be competitive. If the preprocessing time for BG is included, it is beneficial to index
somewhat shorter texts than if the preprocessing time is excluded.

Figure 5.12 further shows a comparison of BG and suffix array for random data
with alphabet size 255 and DNA data. For these experiments, we used a text of length
20 MB and varied the number of patterns. The figures show the runtime excluding
preprocessing. For this setting, the multiple string matching approach is better if the
number of patterns is at least 10,000 for alphabet size 255 or 20,000 for DNA data.
Overall, these experiments show that matching multiple patterns simultaneously is a
competitive alternative to indexing.

2 http://pizzachili.dcc.uchile.cl/
3The suffix array implementations had difficulties with the null character, and thus an alphabet of

256 characters could not be used.

http://pizzachili.dcc.uchile.cl/

84 5. MULTIPLE STRING MATCHING WITH VERY LARGE PATTERN SETS

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 100 1000 10000 100000 1e+06 1e+07

R
un

tim
e

(s
)

Number of patterns

SAu
SAc
BG

(a) Random data, σ = 255

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100 1000 10000 100000 1e+06 1e+07

R
un

tim
e

(s
)

Number of patterns

SAu
SAc
BG

(b) DNA data, σ = 4

Figure 5.12: Runtime comparison of BG and suffix array excluding preprocessing times

Chapter 6

Weighted String Matching

In this chapter, we consider the matching of weighted patterns against an unweighted
text. For each position, a weighted pattern assigns a weight to each character of the
alphabet, and the weighted pattern matches a string if the score, which is the sum of
the weights in the pattern corresponding to the aligned characters in the string, is larger
than some given score threshold. The weight of a character can be, for example, the
logarithm of the probability of that character occurring at that position, and then the
score of a text substring is the logarithm of the probability of that substring matching
the pattern.

We adapt some standard string matching algorithms to this problem. We con-
sider two bit-parallel algorithms, shift-add and BNDM. The developed algorithms are
similar to the bit parallel algorithms for (δ, γ)-matching [31]. We also consider the
enumeration of all strings matching a given weighted pattern and searching for these
strings by the multiple string matching algorithms developed in the previous chapter.

6.1 Preliminaries

6.1.1 Definitions

Definition 6.1. A weighted pattern of length m is an m × σ matrix P of integer co-
efficients P [i, c], which give the weight of the character c ∈ Σ at position i, where
1 ≤ i ≤ m.

We will denote by Pi...j a weighted pattern which consist of the weights of the
pattern P from position i to position j including positions i and j. If j < i, the pattern
Pi...j has length 0.

Figure 6.1 shows an example of a weighted pattern. Here we will only consider
weighted patterns with integer weights. Weighted patterns are obtained from entropy
or log odd matrices that have real coefficients, but in practice, these are rounded to
integer matrices to allow for more efficient computation.

85

86 6. WEIGHTED STRING MATCHING

i 1 2 3 4 5 6 7 8 9 10 11 12

a 7 −6 −5 −10 −8 −10 4 −10 −10 −2 −10 −10
c −5 −8 −10 14 −10 −8 −10 −10 −10 11 −10 −10
t 6 13 −10 −8 −10 12 −10 −10 −10 −3 −10 9
g −5 −6 13 −10 14 −1 11 14 14 −10 14 6

Figure 6.1: An example weighted pattern corresponding to the EGR-1 family extracted from
TRANSFAC [70]

Definition 6.2. Given a weighted pattern P of length m and a string S = s1 . . . sm of
length m drawn from the alphabet Σ, the score of the pattern aligned with the string is

score(P, S) =
m∑

i=1

P [i, si] .

Problem 6.3. Given a weighted pattern P of length m, a score threshold α, and an
unweighted text T = t1 . . . tn, the weighted string matching problem is to find all such
substrings ti . . . ti+m−1 of the text that score(P, ti . . . ti+m−1) ≥ α.

Given a weighted string matching problem, p-value [27, 97] is a measure that can
be used to estimate the statistical significance of the returned substrings.

Definition 6.4. Given a weighted string matching problem with pattern P and score
threshold α, p-value(P, α) is the probability that a given background model produces
a string S such that score(P, S) ≥ α.

In this work, we assume that the background model is the standard random string
model, where each character of the string is chosen independently and uniformly at
random. In this case, the p-value can be computed with the following recursion [63]:

p-value(P1...0, α) =

{
1 if α ≤ 0,
0 otherwise.

p-value(P1...i, α) =
1

σ

∑
c∈Σ

p-value(P1...i−1, α− P [i, c])

6.1.2 Related Work
The brute force algorithm for the weighted string matching problem calculates the
score of aligning each substring of the text against the pattern and reports those sub-
strings that yield a score higher than the score threshold. Lately various techniques
have been proposed to speed up this scheme. Here we will review those techniques
that are relevant to our work. See [84] for a survey on previous work.

6.1. PRELIMINARIES 87

Several algorithms use the lookahead technique [110], which provides a way to
prune the calculation in a single alignment. For all suffixes of the pattern, there is a
maximum score that they can contribute to the overall score. If after matching the
prefix of the pattern, the score is not at least the score threshold minus maximum score
of the suffix, there cannot be a match at this alignment. By calculating the maximum
score for each pattern suffix, the overall computation time can be significantly reduced.

Pizzi et al. [83] have developed an algorithm based on enumerating all matching
strings and searching for these with a multi pattern algorithm similar to our enumer-
ation approach. However, they use a different multiple string matching algorithm to
search for the enumerated strings, while we use an algorithm tuned for very large pat-
tern sets and low expected number of occurrences.

In Section 6.5, we will compare our algorithms to the algorithm by Liefooghe et
al. [63]. Their algorithm uses the lookahead technique, and additionally, it divides the
pattern into submatrices and precalculates for all possible strings the score yielded by
each submatrix. For example, if we had a pattern of length 12, we could divide it to
three submatrices of length four and then precalculate the scores of each submatrix for
all the σ4 possible strings. At matching time, we can then just lookup the scores of
each submatrix in a table.

6.1.3 Bit-Parallel Algorithms for Approximate String Matching
We will adapt two bit-parallel approximate string matching algorithms, shift-add [11]
and ABNDM [79], to weighted string matching. In this section, we review these algo-
rithms for the k-mismatch problem.

Shift-Add

The shift-add algorithm [11] is an adaptation of the shift-and algorithm for the k-
mismatch problem. For each pattern position i from 1 to m, the algorithm has a
variable Ei indicating with how many mismatches the suffix of length i of the text
read so far matches the pattern prefix of length i. If each of the variables Ei can be
represented in b bits, we can concatenate all these variables into a single state vector
E = EmEm−1 . . . E1 of length mb. Given a pattern P = p1 . . . pm, we initialize for
each character c in the alphabet a descriptor bit vector B[c], where the bits in the posi-
tion of Ei are 0b if c equals pi and 0b−11 otherwise. The vector E (and hence also the
variables Ei) can then in the matching phase be all updated at the same time when the
next character c is read from the text:

E = (E � b) + B[c] .

The algorithm has found a match if Em ≤ k.
If the variables Ei count mismatches, the maximum value that they can reach is m,

but in the k-mismatch problem, it is enough to be able to represent values in the range

88 6. WEIGHTED STRING MATCHING

[0, k + 1], yielding b = dlog(k + 1)e. However, we need an additional bit so that the
possible carry bits do not interfere with the next variable. With this modification, the
update operation of the algorithm becomes:

E = (E � b) + B[c]

of = (of � b) | (E & (10b−1)m)

E = E & (01b−1)m .

Here the first line updates the variables Ei, the second one keeps track of those vari-
ables Ei that have overflowed, and the last one clears the carry bits. When checking
for a match, we now also need to check that the variable Em has not overflowed, which
can be seen from the of vector. The shift-add algorithm for the k-mismatch problem
has time complexity O

(
n
⌈

mb
w

⌉)
, where b = dlog(k + 1)e+ 1 and w is the size of the

computer word in bits.

ABNDM

The approximate BNDM (ABNDM) algorithm [79] adapts the BNDM algorithm for
approximate matching. Here we describe the version for the k-mismatch problem.

As in the BNDM algorithm, the text is processed in windows of length m, which
are read backward. In each window, our goal is to recognize the longest suffix of the
window that matches a prefix of the pattern. In order to avoid reading extra characters,
we will also need to recognize when the suffix of the window does not match any factor
of the pattern, as we can stop processing the window at that point. After a window is
processed, we can shift the pattern based on the longest suffix of the window that
matches a prefix of the pattern.

To reach this end, the algorithm has a variable Ei for each position of the pattern. If
we have read the j last characters of the window, then the variable Ei holds the number
of mismatches needed to align the factor pi . . . pi+j−1 against the j last characters of
the window. If E1 is less than or equal to k, the prefix p1 . . . pj matches the suffix of the
window. When we read a new character c, the variables Ei are updated simultaneously
as follows:

Ei = Ei+1 +

{
0 if c = pi,
1 otherwise.

If the variables Ei can be represented in b bits, we can concatenate them all into
a single bit vector E = E1E2 . . . Em of length mb. During preprocessing, we now
initialize for each symbol c of the alphabet a descriptor bit vector B[c], where the bits
in the position of Ei are 0b if c equals pi and 0b−11 otherwise. In each window during
the matching phase, the vector E is now initialized to B[c], where c is the last character
of the window, and the vector is updated as follows when a new character c is read from
the window:

E = ((E � b) | (k + 1)) + B[c] ,

6.2. WEIGHTED STRING MATCHING WITH POSITIVE RESTRICTED . . . 89

where the bitwise or with k+1 invalidates those variables that are not valid. If E1 ≤ k,
then the suffix of the window matches a prefix of the pattern. If all variables Ei >
k, the suffix of the window does not match any factor of the pattern with at most k
mismatches.

Similarly to the shift-add algorithm, it is sufficient that the variables Ei can repre-
sent values in the range [0, k + 1]. This can be achieved by using b = dlog(k + 1)e+ 1
bits, where the last bit is a carry bit, and clearing the carry bits similarly to the shift-add
approach. If we now store the distances plus 2b−1 − (k + 1), we can check in constant
time if all the distances are greater than k by checking that all the carry bits are set.

6.2 Weighted String Matching with Positive Restricted
Weights

The bit-parallel algorithms have problems dealing with negative numbers. Thus, we
now define a restricted version of the weighted string matching problem that is more
easily solved by the bit-parallel algorithms.

Problem 6.5. The weighted string matching problem with positive restricted weights is
a weighted string matching problem, where the weights have the following properties:

1. ∀i, 1 ≤ i ≤ m, ∀c ∈ Σ, 0 ≤ P [i, c] ≤ α ,

2. ∀i, 1 ≤ i ≤ m, ∃c ∈ Σ such that P [i, c] = 0 ,

where P is the weighted pattern of length m and α is the score threshold.

Property 1 is needed for the correct operation of the algorithms, while Property 2
merely serves as a way to lower the score threshold and thus lower the number of bits
needed for presenting scores as will be seen later.

In the weighted string matching problem, the weights can be, and in practice often
are, negative. The following observation points us to a way to transform any weighted
string matching problem to a weighted string matching problem with positive restricted
weights. Let P be a weighted pattern of length m, and let P ′ be a weighted pattern
such that for some i, 1 ≤ i ≤ m, P ′[i, c] = P [i, c] + h for all c ∈ Σ and some constant
h, and for all j 6= i , 1 ≤ j ≤ m, and all c ∈ Σ P ′[j, c] = P [j, c]. Then the following
holds for the scores of P and P ′ aligned with any string S of length m:

score(P ′, S) = score(P, S) + h .

Therefore, the weighted string matching problem for a text T , pattern P , and score
threshold α returns exactly the same alignments as the weighted string matching prob-
lem for a text T , pattern P ′, and score threshold α′ = α + h.

Now given a weighted pattern matching problem with a score threshold α and a
pattern P containing any integer weights, we can transform the problem into an equiv-
alent problem with a score threshold α′ and a pattern P ′ containing only non-negative

90 6. WEIGHTED STRING MATCHING

weights by adding an appropriate constant h to all weights in the same position and by
adjusting the score threshold also by h.

To reduce the score threshold, we further transform the pattern so that in each
position at least one of the weights equals zero by adding an appropriate negative
constant h to all weights in that position and by adjusting the score threshold also by
h. Furthermore, if now any weight is larger than the score threshold, it can be truncated
to the score threshold without affecting the returned alignments because the score of
an alignment cannot get smaller as more characters are read. The scores of those
alignments will, however, be lower. As a result, we have transformed a weighted string
matching problem into a weighted string matching problem with positive restricted
weights.

6.2.1 Weighted Shift-Add

The adaptation of the shift-add algorithm to weighted string matching with positive
restricted weights is quite straightforward. Now instead of counting mismatches, we
will be calculating scores so the variables Ei contain the score of the suffix of length i
of the text read so far as compared to the prefix of length i of the pattern. For the update
operation, the bits corresponding to Ei in the preprocessed descriptor bit vectors B[c]
now contain the weight of the character c at position i. The update operation is exactly
as in the shift-add algorithm for the k-mismatch problem. If after the update operation
the score Em ≥ α or the variable Em has overflowed, a match is reported.

Property 1 of the weighted string matching problem with positive restricted weights
states that all weights are non-negative and thus

score(P1...i, tj . . . tj+i+1) ≤ score(P1...i+1, tj . . . tj+i+2) .

Because the score can only increase when reading a new character, we can truncate
the score values to α. Property 1 further states that all weights are at most α. Thus if
we truncate the score values to α, after the update operation the variables Ei ≤ 2α so
one carry bit is enough. Therefore, we need to reserve b = dlog αe + 1 bits for each
variable Ei, and the time complexity of the weighted shift-add algorithm is

O
(

n

⌈
m(dlog αe+ 1)

w

⌉)
.

In practice, weighted patterns are obtained by rounding log-odd or entropy matri-
ces to integer matrices. Thus, the values of the weights depend on how much precision
is preserved by this rounding, and furthermore, practical values of the threshold α de-
pend on the weights. Because of the dlog αe+1 factor in the running time, the weighted
shift-add algorithm, and also all the other bit-parallel algorithms for weighted match-
ing presented in this work, are somewhat sensitive to the precision of this rounding
unlike other algorithms.

6.3. WEIGHTED STRING MATCHING WITH INVERTED WEIGHTS 91

6.2.2 Weighted BNDM
ABNDM can be adapted to the weighted string matching problem with positive re-
stricted weights similarly to the shift-add algorithm. As with the shift-add algorithm,
the variables Ei now count scores instead of mismatches, and we initialize the descrip-
tor bit vectors B[c] so that the bits corresponding to a variable Ei contain the weight
of the character c in position i.

In weighted BNDM, we need to be able to check if the suffix of the window
matches any factor of the pattern. As Ei equals the score of aligning the subpat-
tern Pi...i+j−1 against the suffix of the window, we now need to be able to tell if this
match can be extended to become a full match. For this end, we will have to add the
maximum scores of the prefix P1...i−1 and the suffix Pi+j...m to the variable Ei.

Let max_score(i . . . j) be the maximum score of the subpattern Pi...j . To include
the maximum scores of the pattern suffixes Pi+j...m in the scores Ei, we initialize the
variables with

Ei = smaxi = min(max_score(i + 1 . . . m), α)

when we start to process a new window. To include the maximum score of the pattern
prefix P1...i−1 in the scores Ei, we add

pmaxi = min(max_score(1 . . . i− 1), α)

to the scores Ei before comparison. If for all of the variables Ei + pmaxi < α, then
the alignment of the suffix of the window against any factor of the pattern cannot be
extended to a full match, and thus we can stop processing this window. When E1 ≥ α,
we have found a pattern prefix that matches the suffix of the window, and if we have
traversed the whole window, a match has been found.

Similarly to the weighted shift-add algorithm, we can truncate the values of the
variables Ei to α and use one carry bit to handle the overflow of the variables. Thus
we need b = dlog αe+ 1 bits for each of the variables. If we now store the scores plus
2b−1−α, we can easily check if the scores have exceeded α by checking the carry bits.
This is easily done by redefining

smaxi = min(max_score(i + 1 . . . m), α) + 2b−1 − α .

The pseudo code for searching in the weighted BNDM algorithm is shown in Fig-
ure 6.2.

6.3 Weighted String Matching with Inverted Weights
The bit-parallel algorithms presented in the previous section need many bits to repre-
sent the variables Ei. In typical cases, the p-value is low so that not too many matches
are returned. Therefore, the score threshold α tends to be fairly close to the maximum

92 6. WEIGHTED STRING MATCHING

search (T = t1 . . . tn, n, P = p1 . . . pm, m)

1. i = m
2. while (i ≤ n)
3. last = m
4. j = 1
5. E = smax + B[ti]
6. while (true)
7. if ((E & 10b−1+b(m−1)) = 10b−1+b(m−1))
8. if (j = m)
9. report an occurrence starting at i−m + 1
10. break
11. last = m− j
12. if (((E + pmax) & (10b−1)m−j(0b)j−1) = 0)
13. break
14. E = (E � b) + B[ti−j]
15. j = j + 1
16. i = i + last

Figure 6.2: Searching in weighted BNDM. The handling of carry bits is left out because in
practice the scores do not exceed 2α.

score that the pattern can produce when aligned against any string. Thus instead of
calculating the score, it could be more efficient to calculate how much lower the score
is than the maximum possible score.

We now define the inverted pattern P̄ . The weight of the character c in the position
i in the inverted pattern is the difference between the maximum weight of any character
in position i in the original pattern and the weight of the character c in position i in the
original pattern:

P̄ [i, c] = max
x∈Σ

(P [i, x])− P [i, c] .

Similarly, the inverted score threshold ᾱ is the difference between the maximum score
of the pattern and the original threshold:

ᾱ = max_score(1 . . . m)− α .

In the original weighted string matching problem, we were looking for all such sub-
strings ti . . . ti+m−1 of the text that the score of that substring aligned with the pattern
is at least α. The inverted problem returns the same text substrings if we require that
the score of the substring aligned with the pattern is at most ᾱ.

Definition 6.6. Given an inverted weighted pattern P̄ and an inverted score thresh-
old ᾱ, the inverted weighted string matching problem is to find all such substrings
ti . . . ti+m−1 that score(P̄ , ti . . . ti+m−1) ≤ ᾱ.

6.3. WEIGHTED STRING MATCHING WITH INVERTED WEIGHTS 93

All weights of the inverted weighted pattern are positive and at least one weight in
each position is 0. Therefore, the inverted weighted string matching problem is already
a inverted weighted string matching problem with positive restricted weights, and so
we can apply bit parallel algorithms to this inverted problem. We can solve such a
problem with algorithms which are essentially the same as the bit-parallel algorithms
for (δ, γ)-matching [31].

6.3.1 Inverted Weighted Shift-Add

To adapt the weighted shift-add algorithm to the inverted version of the problem, we
just need to make one change. If after the update operation, the score Em ≤ ᾱ, we
have found a match. In this inverted version of the algorithm, we need to implement
overflow handling unlike in the weighted shift-add algorithm, because in practice, the
variables Ei do overflow in this case.

6.3.2 Inverted Weighted BNDM

The inverted weighted BNDM algorithm is simpler than the weighted BNDM algo-
rithm. We no longer need to add smax and pmax to the score of the factor of a pattern
because the minimum score reached by extending the match of the factor is the score
of the factor plus zero, but we still need to initialize the variables to 2b−1− ᾱ− 1 when
we start processing a window. Thus, line 5 of the pseudo code in Figure 6.2 would
change to

E = init + B[ti] ,

where init is a bit vector, where each of the m fields are set to 2b−1 − ᾱ− 1. A match
on line 7 is now detected if the overflow bit is not set:

if ((E & 10b−1+b(m−1)) = 0) .

We simplify line 12 to

if ((E & (10b−1)m) = (10b−1)m)

and change line 14 to

E = ((E � b) + B[ti−j]) | 2b−1 ,

which sets the overflow bit for the variables that are not valid. As with the inverted
weighted shift-add algorithm, we will now also need to implement overflow handling
as the variables Ei do now overflow in practice.

94 6. WEIGHTED STRING MATCHING

enumerate (P , α)

1. recurse(1, 0)

string S

recurse (i, score)

1. if (α > score + max_score(i...m))
2. return
3. if (i > m and score ≥ α)
4. add_string(S)
5. else
6. for each c ∈ Σ
7. si = c
8. recurse(i + 1, score + P [i, c])

Figure 6.3: Pseudo code for enumerating all strings that produce a score higher than or equal
to the score threshold α

6.4 Enumeration Algorithms
For short patterns, it is possible to enumerate all matching strings, which are the strings
that produce a score higher than the score threshold when aligned with the weighted
pattern. The enumerated strings can then be searched for with an exact multiple string
matching algorithm.

The enumeration of matching strings is done with a recursive algorithm. At recur-
sion level i, we have constructed a string of length i − 1 that is a possible prefix of a
matching string, and we try to expand that prefix with all characters of the alphabet.
This way we have to calculate the score of each prefix only once. The recursion can
further be pruned with the lookahead technique. Suppose we have enumerated a prefix
of length i−1 with score scorei, and the maximum score of a suffix of length m− i+1
is max_score(i...m). If now the score threshold α > scorei + max_score(i...m), then
at this branch of the recursion no matching strings can be found. The pseudo code for
enumerating the matching strings is given in Figure 6.3.

The number of enumerated strings is often very large so the algorithms presented
in Chapter 5 are well suited to this task. We implemented the method both with the
SOG and the BG algorithms.

p-value(P, α) gives the probability of a random string to produce a score equal
to or greater than α when aligned with the weighted pattern P . If the background
model assumes that all characters are chosen independently and uniformly at random,
p-value(P, α) gives the proportion of all possible strings for which the score is at least

6.5. EXPERIMENTAL RESULTS 95

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30

m

Figure 6.4: The length distribution of patterns in the TRANSFAC database

α. Thus, the expected number of enumerated strings is σm · p-value(P, α) because
there are σm different strings of length m.

In practice, it turned out to be reasonably fast to enumerate matching strings up
to pattern length 16. With longer patterns, we enumerated only 16 characters long
prefixes of the matching strings, and the algorithm verifies the found matches later.

The enumeration approach is easy to adjust to searching for multiple weighted
patterns at once. All we need to do is to enumerate for all of the weighted patterns the
strings producing high enough scores and then search for all these enumerated strings.

6.5 Experimental Results

For all experimental testing, we used a computer with a 2.0 GHz AMD Opteron dual-
processor and 6 GB of memory. The machine was running the 64-bit version of Linux
2.6.25. The tests were written in C and compiled with the gcc 4.3.0 compiler. The
patterns were extracted from the TRANSFAC database [70]. Figure 6.4 shows the
length distribution of the patterns. As can be seen, the length of most patterns is
between 8 and 22. In particular, there are only a few patterns of length over 22, and
thus the results concerning these pattern lengths are only tentative. The text we used
was a chromosome from the fruit fly genome (22 MB). The algorithms were run 10
times with each pattern, and the average runtime was calculated. The figures show

96 6. WEIGHTED STRING MATCHING

average runtimes of patterns of same length. The measured runtimes exclude the time
used for preprocessing.

6.5.1 Bit Parallel Algorithms

Figure 6.5 shows a runtime comparison of the bit parallel algorithms, weighted shift-
add (wSA), inverted weighted shift-add (iwSA), weighted BNDM (wBNDM), and
inverted weighted BNDM (iwBNDM) for two p-values. We see that the runtime of
the algorithms increases each time we need more words to represent the state vec-
tor. The weighted matching algorithms, wSA and wBNDM, need state vectors of size
{1, 2, 3, 4, 5} words for pattern lengths {5 − 8, 8 − 14, 15 − 21, 19 − 24, 25 − 30}.
Between lengths 19 and 21, some patterns need state vectors of 3 words, while oth-
ers need 4 words. Similarly for pattern length 8, some patterns need state vectors of
1 word, while others need already 2 words. The number of words needed does not
change from the p-value 10−3 to the p-value 10−5.

For p-value 10−3, the inverted weighted string matching algorithms, iwSA and
iwBNDM, need state vectors of size {1, 2, 3, 4, 5} words for pattern lengths {5 −
10, 10− 18, 17− 24, 22− 28, 29− 30}, respectively. For p-value 10−5, vectors of size
{1, 2, 3, 4} words are needed for pattern lengths {5− 14, 11− 20, 17− 24, 25− 30},
respectively

Figure 6.5 shows that the wSA algorithm is faster than the iwSA algorithm. The
iwSA algorithm requires less words to represent the state vector, but the need for over-
flow handling still makes it slower than the wSA algorithm. The runtimes of wBNDM
and iwBNDM are much closer. For higher significance levels and longer patterns,
iwBNDM clearly takes the lead, but otherwise the differences are not significant.

In almost all situations, the wSA algorithm is the fastest of the bit parallel algo-
rithms. For low significance levels, the wBNDM and iwBNDM algorithms need to
read too many characters in each alignment to be competitive, and even for p-value
10−5, they are faster than the wSA algorithm only for pattern lengths from eight to ten.

6.5.2 Algorithms for a Single Pattern

Figure 6.6 shows a runtime comparison of the algorithm by Liefooghe, Touzet, and
Varré (LTV) [63], weighted shift-add algorithm (wSA), inverted weighted BNDM
(iwBNDM), and the enumeration algorithm with BG (eBG) and SOG (eSOG) for two
p-values.

For the LTV algorithm, we did not count the optimum length of the submatrices
as presented in the original paper by Liefooghe et al. [63] because the optimum length
calculation does not take into account cache effects, and these surely have a significant
effect on the runtime. Instead, we tried the algorithm with submatrix lengths from 4 to
8 and included the best results in the comparison. With this modification, the method
is actually the same as the superalphabet algorithm of Pizzi et al. [83].

6.5. EXPERIMENTAL RESULTS 97

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30

R
un

tim
e

(s
)

m

iwBNDM
wBNDM
iwSA
wSA

(a)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 5 10 15 20 25 30

R
un

tim
e

(s
)

m

iwBNDM
wBNDM
iwSA
wSA

(b)

Figure 6.5: Runtime comparison of the bit parallel algorithms for p-values (a) 10−3 and (b)
10−5

98 6. WEIGHTED STRING MATCHING

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 5 10 15 20 25 30

R
un

tim
e

(s
)

m

LTV
iwBNDM

wSA
eSOG

eBG

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 5 10 15 20 25 30

R
un

tim
e

(s
)

m

LTV
iwBNDM

wSA
eSOG

eBG
eBG (r=10, amortized)

eBG (r=100, amortized)

(b)

Figure 6.6: Runtime comparison of different methods for p-values (a) 10−3 and (b) 10−5

6.5. EXPERIMENTAL RESULTS 99

The optimal value for q in the LTV algorithm is lower for shorter patterns and for
higher p-values, but it does not affect the runtime of the algorithm very much until it
reaches the value 8 when the tables no longer all fit into the cache. We can see that
for the p-value 10−3, the runtime increases slowly until pattern length 11, and for the
p-value 10−5, the runtime stays almost constant until pattern length 15. Until that time,
it is almost always sufficient to calculate the index of the first precalculated score table
corresponding to the first submatrix because the lookahead technique then reports that
a match at that position is not possible. When the pattern length increases further, more
and more accesses are needed to the second precalculated table until at pattern length
14 for the p-value 10−3 and at pattern length 19 for the p-value 10−5 at almost every
position we need to consult both the first and the second precalculated table.

We ran the enumeration algorithms with several different values of q and chose
the value that gives the best runtime. For the p-value 10−3 and pattern lengths {5 −
7, 8, 9 − 10, 11, 12 − 15}, the values {4, 5, 6, 7, 8}, respectively, gave the best results,
and for the p-value 10−5 and pattern lengths {5 − 10, 11 − 13, 14 − 16, 17 − 20},
the values {4, 6, 7, 8}, respectively, gave the best results when using BG for multiple
pattern matching. When using SOG for multiple pattern matching, the optimal value
for q was slightly smaller. For the p-value 10−3 and pattern lengths {5−6, 7−11, 12−
14, 15}, the values {4, 6, 7, 8}, respectively, gave the best results, and for the p-value
10−5 and pattern lengths {5− 10, 11− 19, 20}, the values {4, 6, 8}, respectively, gave
the best results. We did not run the enumeration algorithms for longer pattern lengths
because the number of enumerated patterns grew too large, and already with these
pattern lengths, the algorithms started to significantly slow down.

Overall, Figure 6.6 shows that for low significance levels (i.e. high p-values), the
weighted shift-add algorithm is the fastest. For higher significance levels (i.e. lower
p-values), the weighted shift-add algorithm is the fastest for pattern lengths smaller
than 7. The enumeration algorithm with BG is fastest for pattern lengths 8 to 16. For
longer patterns, the weighted shift-add algorithm is the fastest at least until pattern
length 25. After that the differences between weighted shift-add and LTV are so small
that it is hard to say anything conclusive because the TRANSFAC database contained
so few long patterns.

The preprocessing of the bit parallel algorithms is very fast taking less than 0.01 s
regardless of the pattern length. The preprocessing time for the LTV algorithm ranges
from less than 0.01 s to 0.09 s. The preprocessing time of the enumeration algorithms
is exponential in the length of the pattern. It stays under 0.01 s until pattern length
13 for the p-value 10−3 and until pattern length 16 for the p-value 10−5. For longer
patterns, the preprocessing time increases to 0.6 s for the p-value 10−3 and pattern
length 15 and to 0.4 s for the p-value 10−5 and pattern length 20.

6.5.3 Algorithms for Multiple Patterns
We also ran some experiments with the multiple pattern version of the enumeration
algorithm using BG. We chose BG for this setting because SOG outperformed BG

100 6. WEIGHTED STRING MATCHING

only when the enumeration approach was not the best approach. Because the single
pattern algorithm worked well only for high significance levels, we ran the multiple
pattern version only for the p-value 10−5. To get reliable results, we needed more
patterns of each length than is provided by the TRANSFAC database. To increase
the number of patterns for each pattern length, we took prefixes of longer patterns and
added these to our pool of patterns until we had a hundred patterns of each length. This
worked up to pattern length 16 after which including prefixes of all longer patterns did
not bring the number of patterns to one hundred.

Figure 6.7 shows how the runtime of the algorithm behaves as a function of pattern
length and pattern set size r. As can be seen, the runtime decreases for all pattern sets
as pattern length increases until pattern length 8 because the BG algorithm can make
longer shifts. After pattern length 12, the filtering efficiency of the BG algorithm starts
to deteriorate, and we need to make more verifications, which increases the runtime.
The filtering efficiency could be boosted by increasing the value of parameter q, but
this would increase the amount of memory needed so that the structures frequently
used by the algorithm no longer fit in the data cache, and this imposes an even larger
penalty on the runtime.

Figure 6.7(b) shows that the runtime increases only slightly when the pattern set
size is increased for pattern lengths 6 through 12. For shorter pattern lengths, the
performance of the algorithm deteriorates faster because so many positions match at
least one of the patterns. For longer patterns, the filtering efficiency is a problem
even when searching for a single pattern, and this problem is further emphasized by
increasing the pattern set size.

Preprocessing time of the multiple pattern algorithm is less than 0.01 s for all pat-
tern set sizes when the pattern length is at most 11. Figure 6.8 shows the preprocessing
times for longer patterns and various pattern set sizes.

The amortized running times (i.e. the running times per pattern) for the multipl
pattern enumeration algorithm are shown also in Figure 6.6(b) for pattern set sizes 10
and 100. As can be seen, these times are much lower than the running times of the
other algorithms until pattern length 16. After that the runtime starts to increase, and
after pattern length 20, it is probably faster to match one pattern at a time using either
the shift-add or the LTV algorithm.

6.5. EXPERIMENTAL RESULTS 101

 0

 0.5

 1

 1.5

 2

 4 6 8 10 12 14 16 18 20

R
un

tim
e

(s
)

m

r=100
r=90
r=70
r=50
r=30
r=10

(a)

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50 60 70 80 90 100

R
un

tim
e

(s
)

r

m=5
m=6
m=8

m=12
m=14
m=16
m=18

(b)

Figure 6.7: The runtime of the multiple pattern enumeration algorithm as a function of (a)
pattern length and (b) pattern set size

102 6. WEIGHTED STRING MATCHING

 0.001

 0.01

 0.1

 1

 10

 100

 12 13 14 15 16 17 18 19 20

R
un

tim
e

(s
)

m

r=100
r=90
r=70
r=50
r=30
r=10

Figure 6.8: Preprocessing times for the multiple pattern enumeration algorithm

Chapter 7

Alphabet Sampling

In the online approach to string matching, the preprocessing of the text is not allowed.
Thus these algorithms need to scan the text when searching, and their time cost is of
the form O(n · f(m)). The second approach, indexed searching, tries to speed up
searching by preprocessing the text and building a data structure that allows searching
inO(m·g(n)+occ·h(n)) time, where occ is the number of occurrences of the pattern in
the text. Popular solutions to this approach are suffix trees and suffix arrays [67]. The
first gives anO(m+occ) time solution, while the suffix array gives anO(m log n+occ)
time complexity, which can be improved to O(m + occ) using extra space [1]. The
problem of these approaches is that the space needed is too large for many practical
situations (4–20 times the text size). Recently, a lot of effort has been spent to compress
these indexes [78], obtaining a significant reduction in space but requiring considerable
implementation effort [36].

In this chapter, we explore sampling the text by removing a set of characters from
the alphabet. We apply an online algorithm to this sampled text, obtaining an approach
in between online searching and indexed searching. We call this kind of structure a
semi-index. This is a data structure built on top of a text, which permits searching faster
than any online algorithm, yet its search complexity is still of the form O(n · f(m)).
To be interesting, a semi-index should be easy to implement and require little extra
space. Several other semi-indexes exist in the literature, even without using that name.
For example, q-gram indexes [76], directly searchable compression formats [71], and
other sampling approaches are such semi-indexes.

7.1 Sampled Semi-Index

The main idea of our approach is to choose a subset of the alphabet to be the sampled
alphabet and then to build a subsequence of the text by omitting all characters not in
the sampled alphabet. At regular intervals, we map the positions of the sampled text to
their corresponding positions in the original text. When searching, we build the sam-
pled pattern from the pattern by omitting all characters not in the sampled alphabet and

103

104 7. ALPHABET SAMPLING

1 2 3 4 5 6 7 8 9 10 1 2 3 4
T : a b a a c a b d a a P : a c a b

↘ ↙ ↘ ↙
T̃ : b c b d P̃ : c b
M : 5 8

Figure 7.1: Example of preprocessing

then search for this sampled pattern in the sampled text. For each candidate returned
by this search, we verify a short range of the original text with the help of the position
mapping.

Let T = t1t2 . . . tn be the text over the alphabet Σ and Σ̃ ⊂ Σ the sampled alphabet.
The proposed semi-index is composed of the following items:

• Sampled text T̃ : Let T̃ = ti1ti2 . . . tiñ be the sequence of the ti’s that belong to
the sampled alphabet Σ̃. The length of the sampled text is ñ.

• The position mapping M : A table of size bñ/qc, where M [i] maps the character
t̃q·i to its corresponding position in T , so t̃q·i = tM [i].

Given a pattern P = p1p2 . . . pm, search on this semi-index is carried out as follows.
Let P̃ = pj1pj2 . . . pjm̃

be the subsequence of pi’s that belong to the sampled alphabet
Σ̃. The length of the sampled pattern is thus m̃. The sampled text T̃ is then searched
for P̃ , and for every occurrence, the positions to check in the original text are delimited
by the position mapping M . If the sampled pattern is found in position i in T̃ , the area
tM [i/q]+(i mod q)−j1+1 . . . tM [i/q+1]−(q−i mod q)−j1+1 is checked for possible startings of
real occurrences.

For example, if the text is T = abaacabdaa, the sampled text built omitting the
a’s (Σ̃ = {b, c, d}) is T̃ = t2t5t7t8 = bcbd. If q = 2, we map every other position in
the sampled text, and then the position mapping M is {5, 8}. For searching the pattern
acab, we omit the a’s and get P̃ = p2p4 = cb. We search for P̃ = cb in T̃ = bcbd,
finding an occurrence at position 2. The previous mapped position is M [1] = 5, so t̃2
corresponds to t5, and the next mapped position is M [2] = 8, so t̃4 corresponds to t8.
Because the first sampled character in P is in position 2, we verify the area 4 . . . 5 in
the original text finding the match at position 4. Preprocessing for the text and pattern
of the previous example is shown in Figure 7.1.

Because the sampled patterns tend to be quite short, we implemented the search
phase with the Boyer-Moore-Horspool algorithm [49], which has been found to be
fast in such settings [80]. Figure 7.2 shows the algorithm for this basic method.

7.2. TUNING THE SEMI-INDEX 105

search (T̃ = t̃1t̃2 . . . t̃ñ, P̃ = p̃1p̃2 . . . p̃m̃, T = t1t2 . . . tn,
P = p1p2 . . . pm, j1, q, M [0 . . . ñ/q − 1])

1. for (c ∈ Σ) S[c]← m̃
2. for (i← 1 to m̃− 1) S[p̃i]← m̃− i
3. i← 1
4. while (i ≤ ñ− m̃ + 1)
5. j ← m̃
6. while (j > 0 and t̃i+j−1 = p̃j) j ← j − 1
7. if (j = 0)
8. Check for occurrence from M [i/q] + (i mod q)− j1 + 1
9. to M [i/q + 1]− (q − i mod q)− j1 + 1
10. i← i + S[t̃i+m̃−1]

Figure 7.2: Searching the sampled text for a sampled pattern with the Boyer-Moore-Horspool
algorithm

7.2 Tuning the Semi-Index
Although the above scheme works well for most of the patterns, it is obvious that there
are some bad patterns, which would be searched faster in the original text. The average
complexity of the Boyer-Moore-Horspool algorithm is

n ·
(

1

m
+

m + 1

2mσ
+O

(
1

σ2

))
= O

(
n

(
1

m
+

1

σ

))
= O

(
n

min(m, σ)

)
assuming a uniform and independent distribution of the characters of the alphabet [9].
If the distribution is not uniform, a better approximation is to replace σ by the effec-
tive alphabet size σ̄, which is defined as the inverse of the probability of two random
characters matching, i.e. 1/σ̄ =

∑
c∈Σ p2

c , where pc is the empirical probability of
occurrence of the character c.

We tried several strategies to determine if it would be faster to just search the
pattern in the original text. In all cases, we calculated a function f(·) with varying
arguments both for the sampled text and the sampled pattern and for the original text
and pattern. If the value was better for the original text and pattern, we only search the
original text. We tried the following functions:

• f1(n, m) = n
m

106 7. ALPHABET SAMPLING

• f2(n, m, σ̄) = n
min(m,σ̄)

• f3(n, m, σ̄) = n ·
(

1
m

+ 1
σ̄

)
• Based on the empirical probabilities pc of characters in the text, we calculated

the expected shift length for the given pattern

s̄ =
∑
c∈Σ

pc · S[c] ,

where S[c] is the bad character function. The compared function is then f4(n, s̄) =
n/s̄.

• f5(n, m, σ̄) = n ·
(

1
m

+ m+1
2mσ̄

)
.

7.3 Optimal Sampling
A question arises from the previous description of our sampling method: How to form
the sampled alphabet Σ̃? We will first analyze how the average running time of the
Boyer-Moore-Horspool algorithm changes when we sample the text, and then based on
this, we will develop a method to find the optimal sampled alphabet. Throughout this
section, we assume that the characters are independent, and we analyze the approach
for a general pattern not known when preprocessing the text.

Let us define

bA =
∑
c∈A

pc

aA =
∑
c∈A

p2
c ,

where A ⊂ Σ. Now the length of the sampled text will be bΣ̃n and the average length
of the sampled pattern bΣ̃m if we assume it distributes similarly to the text. The prob-
ability of two random characters matching in the sampled text is now∑

c∈Σ̃

(
pc∑

x∈Σ̃ px

)2

=
aΣ̃

b2
Σ̃

.

Given the average complexity of the Boyer-Moore-Horspool algorithm, O(n(1/m +
1/σ̄)), the average search cost in the sampled text is

O

(
bΣ̃n

(
1

bΣ̃m
+

aΣ̃

b2
Σ̃

))

= O
(

n

(
1

m
+

aΣ̃

bΣ̃

))
.

7.3. OPTIMAL SAMPLING 107

When considering the verification cost, we assume for simplicity that the mapping
M contains the position of each sampled character in the original text, i.e. q = 1. For
a larger q, the verification cost would increase because the area that we need to verify
increases for each triggered verification.

The probability that the sampled pattern is of length i is(
m

i

)
bi
Σ̃
(1− bΣ̃)m−i .

A position in the sampled text triggers a verification if all the characters of the sampled
pattern match the substring of the sampled text starting at that position. If the length
of the sampled pattern is i, then the probability for this event is(

aΣ̃

b2
Σ̃

)i

.

Hence, the probability that a position has to be verified is

pver =
m∑

i=0

(
m

i

)
bi
Σ̃
(1− bΣ̃)m−i

(
aΣ̃

b2
Σ̃

)i

=
m∑

i=0

(
m

i

)(
aΣ̃

bΣ̃

)i

(1− bΣ̃)m−i

=

(
aΣ̃

bΣ̃

+ 1− bΣ̃

)m

.

If we assume that each verification costs O(m), then the cost of verification is

n · pver · O(m)

= n ·
(

aΣ̃

bΣ̃

+ 1− bΣ̃

)m

· O(m) .

The total cost of searching in our scheme is thus

O
(

n ·
(

1

m
+

aΣ̃

bΣ̃

+

(
aΣ̃

bΣ̃

+ 1− bΣ̃

)m

·m
))

,

and hence the optimal sampled alphabet Σ̃ minimizes the cost per text character

E(Σ̃) =
1

m
+

aΣ̃

bΣ̃

+

(
aΣ̃

bΣ̃

+ 1− bΣ̃

)m

·m ,

which can be divided into the search cost in the sampled text

Esearch(Σ̃) =
1

m
+

aΣ̃

bΣ̃

108 7. ALPHABET SAMPLING

and the verification cost

Ever(Σ̃) =

(
aΣ̃

bΣ̃

+ 1− bΣ̃

)m

·m .

Hence the verification cost always increases when a character is removed from the
alphabet, and so the search cost in the sampled text must decrease for the combined
cost to decrease. If R = Σ\Σ̃ is the set of removed characters, the function

hR(p) =
1

m
+

aΣ − aR − p2

1− bR − p

gives the search cost in the sampled text, per text character, if an additional character
with probability p is removed. The derivative of hR(p) is

h′R(p) =
−2p (1− bR − p) + (aΣ − aR − p2)

(1− bR − p)2

=
p2 − 2p (1− bR) + (aΣ − aR)

(1− bR − p)2

=
(1− bR − p)2 − (1− bR)2 + (aΣ − aR)

(1− bR − p)2

= 1− (1− bR)2 − (aΣ − aR)

(1− bR − p)2
.

We then solve the zeroes of the derivative:

h′R(p) = 0

(1− bR)2 − (aΣ − aR)

(1− bR − p)2 = 1

p2 − 2(1− bR)p + (aΣ − aR) = 0

p = (1− bR)±
√

(1− bR)2 − (aΣ − aR) .

Of these only
pz = (1− bR)−

√
(1− bR)2 − (aΣ − aR)

is in the interval [0, 1 − bR]. We can see that the function hR(p) is increasing until pz

and decreasing after that. Solving the equation

hR(pR) = hR(0), pR 6= 0

1

m
+

aΣ − aR − p2
R

1− bR − pR

=
1

m
+

aΣ − aR

1− bR

,

we get

pR =
aΣ − aR

1− bR

.

7.3. OPTIMAL SAMPLING 109

So removing a single additional character decreases the search cost in the sampled text
only if the probability of occurrence for that character is larger than pR. Otherwise,
both the search cost in the sampled text and the verification cost will increase, and thus
removing the character is not beneficial.

Suppose now that we have already fixed whether we are going to keep or remove
each character with probability of occurrence higher than pc, and now we need to
decide if we should remove the character c. If pc > pR, we will need to explore both
options as removing the character will decrease search cost in the sampled text and
increase verification cost. However, if pc < pR, we know that if we added only c to R,
the searching time in the sampled text would also increase, and therefore we should not
remove c. But could it be beneficial to remove c together with a set of other characters
with probabilities of occurrence less than pR? In fact it cannot be. Suppose that we
remove a character c with probability pc < pR. Now the new removed set will be
R′ = R ∪ {c}, and so we get aR′ = aR + p2

c and bR′ = bR + pc. Now the new critical
probability will be

pR′ =
aΣ − aR′

1− bR′
=

aΣ − aR − p2
c

1− bR − pc

.

We know that
hR(pc) > hR(pR) = hR(0)

because pc < pR. Therefore,

hR(pc) > hR(0)

1

m
+

aΣ − aR − p2
c

1− bR − pc

>
1

m
+

aΣ − aR

1− bR

,

and so

pR′ =
aΣ − aR − p2

c

1− bR − pc

>
aΣ − aR

1− bR

= pR .

Thus even now it is not good to remove a character with probability less than the crit-
ical value pR for the previous set, and this will again hold if another character with a
small probability is removed. Therefore, we do not need to consider removing char-
acters with probabilities less than pR. Note, however, that removing a character with
a higher probability will decrease the critical probability pR, and after this, it can be
beneficial to remove a previously unbeneficial character. In fact, if the sampled alpha-
bet contains two characters with different probabilities of occurrence, the probability
of occurrence for the most frequent character in the sampled alphabet is always larger
than pR. Thus, it is always beneficial for searching in the sampled text to remove the
most frequent character.

The above can be applied to prune the exhaustive search for the optimal set of
removed characters. First, we sort the characters of the alphabet in the decreasing
order of frequency. We then figure out if it is beneficial for searching in the sampled
text to remove the most frequent character not considered yet. If it is, we try both

110 7. ALPHABET SAMPLING

Ropt = {}
sort characters of Σ in descending order of frequency
find_opt(1, {})
return Ropt

find_opt (i, R)

1. if (i = σ + 1)
2. if (E(Σ\R) < E(Σ\Ropt))
3. Ropt = R
4. else
5. pR = aΣ−aR

1−bR

6. if (pi > pR)
7. find_opt(i + 1, R ∪ {i})
8. find_opt(i + 1, R)
9. else
10. find_opt(σ + 1, R)

Figure 7.3: Pseudo code for searching for the optimal set of removed characters

removing and not removing that character and proceed recursively for both cases. If it
is not, we prune the search here because none of the remaining characters should be
removed. Figure 7.3 gives the pseudo code.

In practice when using this pruning technique, the number of examined sets drops
drastically as compared to the exhaustive search, although the worst case is still ex-
ponential. For example, the number of examined sets drops from 261 to 2,810 when
considering the King James Bible as the text.

In our experiments, the optimal set of removed characters always contained the
most frequent characters up to some limit depending on the length of the pattern, as
shown in Table 7.1. Therefore, a simpler heuristic is to remove the k most frequent
characters for varying k and choose the set that predicts the best overall time. However,
if the verification cost is very high for some reason (e.g. going to disk to retrieve
the text, or uncompressing part of it), it is possible that the optimal set of removed
characters is not a set of most frequent characters.

7.4 Experimental Results
To determine the sampled alphabet, we ran the exact algorithm of Section 7.3 for
different pattern lengths to choose the sampled alphabet that produces the smallest
estimated cost E(Σ̃). For all pattern lengths, the algorithm recommended removing a
set of most frequent characters. To see how well these results correspond to practice,

7.4. EXPERIMENTAL RESULTS 111

Table 7.1: Predicted and observed optimal number of removed characters for the King James
Bible. The predicted optima are computed with the algorithm suggested by the analysis, which
in our experiments always returned a set of most frequent characters.

m 10 20 30 40 50 60 70 80 90 100

Predicted by analysis 3 7 9 11 12 13 14 15 16 16
Observed optimum 3 7 11 13 14 15 17 17 16 18

we tested the semi-index approach by removing the k most frequent characters from
the text for varying k. We used a 2 MB prefix of the King James Bible as the text, and
the patterns are random substrings of the text. For each pattern length, 500 patterns
were generated, and the reported running times are averages over 200 runs with each
of the patterns. The most frequent characters in the decreasing order of frequency were
“ ethaonsirdlfum,wycgbp”, where is the space character. The tests were run on a
1.0 GHz AMD Athlon dual core processor with 2 GB of memory, 64 kB L1 cache,
and 512 kB L2 cache, running Linux 2.6.23. The code is in C and compiled with gcc
using -O3 optimization.

Figure 7.4 shows the results of these experiments with the basic method mapping
every 64:th sampled character to its position in the original text. If we make the map-
ping sparser, the running time will start to increase a little earlier, but the effect is quite
mild. The results for zero removed characters correspond to the original Boyer-Moore-
Horspool algorithm. We see that the semi-index is up to 5 times faster, especially when
the patterns are long. We also see that for each pattern length, there is an optimal num-
ber of characters to remove. A comparison of these optima and those given by the
analysis is shown in Table 7.1. We see that the analysis gives reasonably good results
although it recommends removing too few characters with long patterns because we es-
timated the verification time quite pessimistically. When more characters are removed,
it is unlikely that we would need to read m characters for each verified position.

Figures 7.5, 7.6, 7.7, 7.8, and 7.9 show the results for the tuned versions of the
sampled semi-index presented in Section 7.2. In these methods, we search the original
text if it looks like that will be faster than searching the sampled text. Also in all
these tests, every 64:th sampled character is mapped to its position in the original text.
Figure 7.5 shows that using the function f1(n, m) = n/m yields good predictions
for short patterns but longer ones are affected adversely. When using the functions
f3(n, m, σ̄) = n · (1/m + 1/σ̄), f4(n, s̄) = n/s̄, and f5(n, m, σ̄) = n · (1/m + (m +
1)/(2mσ̄)) shown in Figures 7.7, 7.8, and 7.9, respectively, the prediction works well
for small number of removed characters, but then the runtime suddenly increases to
much more than the runtime of the plain Boyer-Moore-Horspool algorithm. Figure
7.6 shows that using the function f2(n, m, σ̄) = n/ min(m, σ̄) suffers from the same
phenomenon, but it is much milder, making this the best tuned method.

112 7. ALPHABET SAMPLING

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

m=10
m=20
m=30
m=50
m=70
m=100

(a) Mean

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

m=20
m=50
m=100

(b) Distribution

Figure 7.4: The running time for various pattern lengths for the basic method. The top figure
shows the mean running time; the bottom figure shows the median, minimum, maximum, and
25% and 75% quartiles.

7.4. EXPERIMENTAL RESULTS 113

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

m=10
m=20
m=30
m=50
m=70
m=100

Figure 7.5: Runtime for the tuned version of the sampled semi-index using f1(n, m) = n/m

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

m=10
m=20
m=30
m=50
m=70
m=100

Figure 7.6: Runtime for the tuned version of the sampled semi-index using f2(n, m, σ̄) =
n/ min(m, σ̄)

114 7. ALPHABET SAMPLING

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

m=10
m=20
m=30
m=50
m=70
m=100

Figure 7.7: Runtime for the tuned version of the sampled semi-index using f3(n, m, σ̄) =
n · (1/m + 1/σ̄)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

m=10
m=20
m=30
m=50
m=70
m=100

Figure 7.8: Runtime for the tuned version of the sampled semi-index using f4(n, s̄) = n/s̄

7.4. EXPERIMENTAL RESULTS 115

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

m=10
m=20
m=30
m=50
m=70
m=100

Figure 7.9: Runtime for the tuned version of the sampled semi-index using f5(n, m, σ̄) =
n · (1/m + (m + 1)/(2mσ̄))

As we can see, the optimal number of removed characters is closer to being the
same for all pattern lengths in the best tuned approach than in the basic approach.
For example, by choosing to remove the 13 most frequent characters, we would do
reasonably well for all pattern lengths using just 0.18 times the original text size to
store the sampled text. Figure 7.10 shows the distribution of the runtime for the best
tuned sampled semi-index. Comparing Figures 7.4(b) and 7.10, we see that the median
running times are almost the same, but the maximum and the 75% quartile are lower
for the tuned method. This is also reflected in the average values.

To further test the results of the analysis, we generated all those sets of removed
characters that the exact algorithm of Section 7.3 tries. Out of these, we selected
all sets of size at most 20 and ran experiments with the semi-index using those sets.
Results for the basic method are shown in Tables B.1 and B.2. The first table shows
the best 20 sets of removed characters sorted by runtime, and the second table shows
the best 20 sets sorted by the number of characters read. From these results, we can see
that removing vowels seems to be somewhat more beneficial than suggested by their
frequency, especially when the optimal set of removed characters is small. This is
probably due to the alternating structure of vowels and consonants in natural language
texts. Results of the same experiments for the best tuned method are shown in Tables
B.3 and B.4. For the best tuned method, more characters should be removed, and thus
the benefits of removing vowels rather than consonants are not so pronounced.

116 7. ALPHABET SAMPLING

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

R
un

 ti
m

e
(m

s)

Number of different characters removed

m=20
m=50
m=100

Figure 7.10: The distribution of running time for various pattern lengths for the best tuned
sampled semi-index. The figure shows the median, minimum, maximum, and 25% and 75%
quartiles.

Chapter 8

Conclusions

We have developed algorithms for several string matching problems using the q-gram
backward string matching paradigm. The Boyer-Moore-Horspool algorithm was ex-
tended for approximate and parameterized string matching by exploiting q-grams, and
two q-gram backward string matching algorithms were developed for multiple string
matching. Of these, we showed that the algorithms for exact, approximate, and multi-
ple string matching are optimal on average. The average complexity of parameterized
string matching is not known, but we showed that the q-gram backward string matching
paradigm results in sublinear average case complexity for a class of moderately repet-
itive patterns in this case also. Thus, the q-gram backward string matching paradigm
proved to be an effective tool to develop string matching algorithms.

Not all average optimal string matching algorithms are q-gram backward string
matching algorithms. Fredriksson and Grabowski [39, 40] have recently introduced
a family of average optimal algorithms that are not based on the backward matching
principle. Their algorithms read every q:th character of the text and verify a position if
the read characters indicate that there could be a match at that position.

We carried out extensive experiments to compare the new algorithms with older
ones and found the new algorithms to be very competitive in most scenarios. The
various experiments on DNA data show that the developed algorithms for approximate
string matching, weighted string matching, and multiple string matching are faster
than old ones for many search problems on DNA sequences. The new algorithms for
multiple string matching also performed very well on random data with alphabet size
256, which is a scenario similar to anti-virus scanning. However, further experiments
on real data would be needed to confirm the good performance in real applications.

In string matching problems, the probability of finding an occurrence of the pattern
typically decreases exponentially when the pattern length increases. This is crucial for
the success of backward string matching because the average number of characters
we need to read in a window to deduce that there cannot be a match increases only
logarithmically in the length of the pattern. Thus the algorithms can skip larger and
larger parts of the text as the pattern length increases.

117

118 8. CONCLUSIONS

In the weighted string matching problem, the probability of finding an occurrence
of the pattern is fixed by the significance level. This changes the statistics of the string
matching problem radically, as increasing the length of a pattern no longer translates
into an exponential decrease in the probability of finding an occurrence. From an
algorithmic point of view, the average number of characters we need to read to be
able to deduce that there cannot be a match at a given position increases linearly in
the length of the pattern. Thus, linear average case complexity might be the best we
can achieve in many cases for weighted string matching. The experimental results of
Chapter 6 support these ideas. The linear time bit parallel algorithms are better than
the backward matching ones, and the best backward matching algorithm, eBG, is only
competitive for high significance levels and fairly short patterns, whereas in traditional
string matching problems, backward matching algorithms typically excel with long
patterns.

Another interesting finding of this work is that multiple string matching is a com-
petitive alternative to indexing methods. This is especially true for applications where
large sets of patterns arrive at the same time rather than one pattern at a time over a
longer period of time. Not only is the time to search the patterns shorter than in index-
ing methods, but the memory usage of the new multiple string matching algorithms is
also moderate, making them very practical.

Exploiting the nonuniform character distribution of real texts is not a new idea in
online string matching. For example, Boyer-Moore-Horspool type algorithms which
sort the characters of the pattern in increasing order of probability of occurrence in the
text and check the characters of a text window in this order have been developed [98].
The idea of the sampled semi-index is similar in spirit although the actual approach is
quite different. An interesting area of further work would be to integrate the statistical
dependencies of nearby characters into these models.

Bibliography

[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees with en-
hanced suffix arrays. Journal of Discrete Algorithms, 2(1):53–86, 2004.

[2] K. Abrahamson. Generalized string matching. SIAM Journal on Computing,
16(6):1039–1051, 1987.

[3] A.V. Aho and M.J. Corasick. Efficient string matching: An aid to bibliographic
search. Communications of the ACM, 18(6):333–340, 1975.

[4] C. Allauzen and M. Raffinot. Factor oracle of a set of words. Technical Re-
port 99-11, Institut Gaspard-Monge, Université de Marne-la-Vallée, 1999. (in
French).

[5] A. Amir, Y. Aumann, R. Cole, M. Lewenstein, and E. Porat. Function matching:
Algorithms, applications and a lower bound. In Proceedings of the 30th Inter-
national Colloquium on Automata, Languages and Programming (ICALP’03),
volume 2719 of LNCS, pages 929–942. Springer-Verlag, 2003.

[6] A. Amir, M. Farach, and S. Muthukrishnan. Alphabet dependence in parame-
terized matching. Information Processing Letters, 49(3):111–115, 1994.

[7] A. Apostolico and R. Giancarlo. The Boyer-Moore-Galil string searching strate-
gies revisited. SIAM Journal on Computing, 15(1):98–105, 1986.

[8] V.L. Arlazarov, E.A. Dinic, M.A. Kronrod, and I.A. Faradzev. On economic
construction of the transitive closure of a directed graph. Doklady Academi
Nauk SSSR, 194:487–488, 1970. (in Russian). English translation in Soviet
Mathematics Doklady 11:1209–1210, 1975.

[9] R. Baeza-Yates. Improved string searching. Software – Practice and Experi-
ence, 19(3):257–271, 1989.

[10] R. Baeza-Yates. String searching algorithms revisited. In Proceedings of
the Workshop on Algorithms and Data Structures (WADS’89), volume 382 of
LNCS, pages 75–96. Springer-Verlag, 1989.

119

120 BIBLIOGRAPHY

[11] R. Baeza-Yates and G.H. Gonnet. A new approach to text searching. Commu-
nications of the ACM, 35(10):74–82, 1992.

[12] R. Baeza-Yates and G.H. Gonnet. Fast string matching with mismatches. Infor-
mation and Computation, 108(2):187–199, 1994.

[13] R. Baeza-Yates and G. Navarro. Faster approximate string matching. Algorith-
mica, 23(2):127–158, 1999.

[14] R. Baeza-Yates and C.H. Perleberg. Fast and practical approximate string
matching. Information Processing Letters, 59(1):21–27, 1996.

[15] R. Baeza-Yates and M. Régnier. Fast two-dimensional pattern matching. Infor-
mation Processing Letters, 45(1):51–57, 1993.

[16] B.S. Baker. A theory of parameterized pattern matching: Algorithms and appli-
cations (extended abstract). In Proceedings of the 25th Annual ACM Symposium
on the Theory of Computation (STOC’93), pages 71–80. ACM Press, 1993.

[17] B.S. Baker. Parameterized pattern matching by Boyer-Moore-type algorithms.
In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’95), pages 541–550. SIAM, 1995.

[18] B.S. Baker. Parameterized diff. In Proceedings of the 10th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’99), pages 854–855. SIAM, 1999.

[19] T.P. Baker. A technique for extending rapid exact-match string matching to
arrays of more than one dimension. SIAM Journal on Computing, 7(4):533–
541, 1978.

[20] D.R. Bentley. Whole-genome re-sequencing. Current Opinion in Genetics &
Development, 16(6):545–552, 2006.

[21] T. Berry and S. Ravindran. A fast string matching algorithm and experimental
results. In Proceedings of the Prague Stringology Club Workshop’99, pages
16–26. Czech Technical University, 1999.

[22] R.S. Bird. Two dimensional pattern matching. Information Processing Letters,
6(5):168–170, 1977.

[23] R.S. Boyer and J.S. Moore. A fast string searching algorithm. Communications
of the ACM, 20(10):762–772, 1977.

[24] W.I. Chang and J. Lampe. Theoretical and empirical comparisons of approxi-
mate string matching algorithms. In Proceedings of the 3rd Annual Symposium
of Combinatorial Pattern Matching (CPM’92), volume 644 of LNCS, pages
175–184. Springer-Verlag, 1992.

BIBLIOGRAPHY 121

[25] W.I. Chang and T.G. Marr. Approximate string matching and local similarity. In
Proceedings of the 5th Annual Symposium on Combinatorial Pattern Matching
(CPM’94), volume 807 of LNCS, pages 259–273. Springer-Verlag, 1994.

[26] F. Claude, G. Navarro, H. Peltola, L. Salmela, and J. Tarhio. Speeding up string
matching with text sampling. In Proceedings of the 15th International Sympo-
sium on String Processing and Information Retrieval (SPIRE’08), volume 5280
of LNCS, pages 87–98. Springer-Verlag, 2008.

[27] J.-M. Claverie and S. Audic. The statistical significance of nucleotide position-
weight matrix matches. Computer Applications in the Biosciences, 12(5):431–
439, 1996.

[28] R. Cole and R. Hariharan. Faster suffix tree construction with missing suffix
links. In Proceedings of the 32nd Annual ACM Symposium on the Theory of
Computation (STOC’00), pages 407–415. ACM Press, 2000.

[29] B. Commentz-Walter. A string matching algorithm fast on the average. In
Proceedings of the 6th Colloquium on Automata, Languages and Programming
(ICALP’79), volume 71 of LNCS, pages 118–132. Springer-Verlag, 1979.

[30] M. Crochemore, A. Czumaj, L. Gąsieniec, S. Jarominek, T. Lecroq,
W. Plandowski, and W. Rytter. Speeding up two string-matching algorithms.
Algorithmica, 12(4–5):247–267, 1994.

[31] M. Crochemore, C.S. Iliopoulos, G. Navarro, Y.J. Pinzon, and A. Salinger. Bit-
parallel (δ, γ)-matching and suffix automata. Journal of Discrete Algorithms,
3(2–4):198–214, 2005.

[32] M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, New
York, 1994.

[33] M. Crochemore and W. Rytter. Jewels of Stringology. World Scientific Press,
2002.

[34] B. Dömölki. An algorithm for syntactic analysis. Computational Linguistics,
3:29–46, 1964. Hungarian Academy of Sciences, Budapest.

[35] N. El-Mabrouk and M. Crochemore. Boyer–Moore strategy to efficient ap-
proximate string matching. In Proceedings of 7th Annual Symposium on Com-
binatorial Pattern Matching (CPM’96), volume 1075 of LNCS, pages 24–38.
Springer-Verlag, 1996.

[36] P. Ferragina, R. González, G. Navarro, and R. Venturini. Compressed text in-
dexes: From theory to practice! Manuscript. http://pizzachili.dcc.
uchile.cl/, 2007.

http://pizzachili.dcc.uchile.cl/
http://pizzachili.dcc.uchile.cl/

122 BIBLIOGRAPHY

[37] M. Fisk and G. Varghese. Fast content-based packet handling for intrusion de-
tection. Technical Report CS2001-0670, University of California, San Diego,
2001.

[38] K. Fredriksson. Shift-or string matching with super-alphabets. Information
Processing Letters, 87(4):201–204, 2003.

[39] K. Fredriksson and S. Grabowski. Average-optimal string matching. Journal of
Discrete Algorithms. (In press).

[40] K. Fredriksson and S. Grabowski. Practical and optimal string matching. In
Proceedings of 12th International Conference on String Processing and Infor-
mation Retrieval (SPIRE’05), volume 3772 of LNCS, pages 376–387. Springer-
Verlag, 2005.

[41] K. Fredriksson and M. Mozgovoy. Efficient parameterized string matching.
Information Processing Letters, 100(3):91–96, 2006.

[42] K. Fredriksson and G. Navarro. Average-optimal single and multiple approxi-
mate string matching. ACM Journal of Experimental Algorithmics, 9(1.4):1–47,
2004.

[43] Z. Galil and K. Park. Truly alphabet-independent two-dimensional pattern
matching. In Proceedings of the 33rd Annual Symposium on Foundations of
Computer Science (FOCS’92), pages 247–256. IEEE, 1992.

[44] M. Gribskov, A.D. McLachlan, and D. Eisenberg. Profile analysis: Detection
of distantly related proteins. Proceedings of the National Academy of Sciences
of the United States of America, 84(13):4355–4358, 1987.

[45] B. Gum and R. Lipton. Cheaper by the dozen: Batched algorithms. In Pro-
ceedings of the 1st SIAM International Conference on Data Mining (SDM’01),
2001.

[46] D. Gusfield. Algorithms on strings, trees and sequences: Computer science and
computational biology. Cambridge University Press, 1997.

[47] C. Hazay, M. Lewenstein, and D. Sokol. Approximate parameterized match-
ing. In Proceedings of the 12th Annual European Symposium on Algorithms
(ESA’04), volume 3221 of LNCS, pages 414–425. Springer-Verlag, 2004.

[48] C. Hazay, M. Lewenstein, and D. Tsur. Two dimensional parameterized match-
ing. In Proceedings of the 16th Annual Symposium on Combinatorial Pattern
Matching (CPM’05), volume 3537 of LNCS, pages 266–279. Springer-Verlag,
2005.

BIBLIOGRAPHY 123

[49] R.N. Horspool. Practical fast searching in strings. Software – Practise and
Experience, 10(6):501–506, 1980.

[50] A. Hume and D. Sunday. Fast string searching. Software – Practise and Expe-
rience, 21(11):1221–1248, 1991.

[51] R.M. Idury and A.A. Schäffer. Multiple matching of parameterized patterns.
Theoretical Computer Science, 154(2):203–224, 1996.

[52] P. Kalsi, L. Salmela, and J. Tarhio. Tuning approximate Boyer-Moore for gene
sequences. In Proceedings of the 14th International Symposium on String Pro-
cessing and Information Retrieval (SPIRE’07), volume 4726 of LNCS, pages
173–183. Springer-Verlag, 2007.

[53] J. Kärkkäinen and E. Ukkonen. Two and higher dimensional pattern matching
in optimal expected time. In Proceedings of the 5th Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA’94), pages 715–723. SIAM, 1994.

[54] R.M. Karp and M.O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987.

[55] J.E. Kasprzak and M.A. Nixon. Cheating in cyberspace: Maintaining quality in
online education. Association for the Advancement of Computing In Education,
12(1):85–99, 2004.

[56] S. Kim and Y. Kim. A fast multiple string-pattern matching algorithm. In
Proceedings of 17th AoM/IAoM Conference on Computer Science, 1999.

[57] D.E. Knuth, J.H. Morris, Jr., and V.R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6(2):323–350, 1977.

[58] S.R. Kosaraju. Faster algorithms for the construction of parameterized suffix
trees. In Proceedings of the 36th Annual Symposium on Foundations of Com-
puter Science (FOCS’95), pages 631–637. IEEE, 1995.

[59] D.L. Kreher and D.R. Stinson. Combinatorial Algorithms: Generation, Enu-
meration and Search. CRC Press, 1999.

[60] J. Kytöjoki, L. Salmela, and J. Tarhio. Tuning string matching for huge pat-
tern sets. In Proceedings of 14th Annual Symposium on Combinatorial Pattern
Matching (CPM’03), volume 2676 of LNCS, pages 211–224. Springer-Verlag,
2003.

[61] G. Landau and U. Vishkin. Fast parallel and serial approximate string matching.
Journal of Algorithms, 10(2):157–169, 1989.

124 BIBLIOGRAPHY

[62] V.I. Levenshtein. Binary codes capable of correcting spurious insertions and
deletions of ones. Problems of Information Transmission, 1(1):8–17, 1965.

[63] A. Liefooghe, H. Touzet, and J.-S. Varré. Large scale matching for position
weight matrices. In Proceedings of 17th Annual Symposium on Combinatorial
Pattern Matching (CPM’06), volume 4009 of LNCS, pages 401–412. Springer-
Verlag, 2006.

[64] P. Liu, Y.-B. Liu, and J.-L. Tan. A partition-based efficient algorithm for large
scale multiple-strings matching. In Proceedings of the 12th International Con-
ference on String Processing and Information Retrieval (SPIRE’05), volume
3772 of LNCS, pages 399–404. Springer-Verlag, 2005.

[65] Z. Liu, X. Chen, J. Borneman, and T. Jiang. A fast algorithm for approximate
string matching on gene sequences. In Proceedings of 16th Annual Symposium
on Combinatorial Pattern Matching (CPM’05), volume 3537 of LNCS, pages
79–90. Springer-Verlag, 2005.

[66] R. Lowrance and R.A. Wagner. An extension of the string-to-string correction
problem. Journal of the ACM, 22(2):177–183, 1975.

[67] U. Manber and G. Myers. Suffix arrays: A new method for on-line string
searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[68] E.P. Markatos, S. Antonatos, M. Polychronakis, and K.G. Anagnostakis.
Exclusion-based signature matching for intrusion detection. In Proceedings of
the IASTED International Conference on Communications and Computer Net-
works (CCN’02), pages 146–152. ACTA Press, 2002.

[69] W.J. Masek and M.S. Paterson. A faster algorithm for computing string edit
distances. Journal of Computer and System Sciences, 20(1):18–31, 1980.

[70] V. Matys, E. Fricke, R. Geffers, E. Gößling, M. Haubrock, R. Hehl, K. Hor-
nischer, D. Karas, A.E. Kel, O.V. Kel-Margoulis, D.-U. Kloos, S. Land,
B. Lewicki-Potapov, H. Michael, R. Münch, I. Reuter, S. Rotert, H. Saxel,
M. Scheer, S. Thiele, and E. Wingender. TRANSFAC R©: transcriptional regu-
lation, from patterns to profiles. Nucleic Acids Research, 31(1):374–378, 2003.

[71] E.S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible
word searching on compressed text. ACM Transactions on Information Systems,
18(2):113–139, 2000.

[72] R. Muth and U. Manber. Approximate multiple string search. In Proceedings
of the 7th Annual Symposium on Combinatorial Pattern Matching (CPM’96),
volume 1075 of LNCS, pages 75–86. Springer-Verlag, 1996.

BIBLIOGRAPHY 125

[73] G. Myers. A fast bit-vector algorithm for approximate string matching based on
dynamic programming. Journal of the ACM, 46(3):395–415, 1999.

[74] C. Nachenberg. Computer virus-antivirus coevolution. Communications of the
ACM, 40(1):46–51, 1997.

[75] G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

[76] G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin, 24(4):19–27,
2001.

[77] G. Navarro and K. Fredriksson. Average complexity of exact and approxi-
mate multiple string matching. Theoretical Computer Science, 321(2–3):283–
290, 2004. Errata in http://www.dcc.uchile.cl/~gnavarro/
erratas/tcs04.html.

[78] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):1–61, 2007.

[79] G. Navarro and M. Raffinot. Fast and flexible string matching by combining bit-
parallelism and suffix automata. ACM Journal of Experimental Algorithmics,
5(4):1–36, 2000.

[80] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings: Practical
On-line Search Algorithms for Text and Biological Sequences. Cambridge Uni-
versity Press, 2002.

[81] G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approxi-
mate q-grams. In Proceedings of the 11th Annual Symposium on Combinatorial
Pattern Matching (CPM’00), volume 1848 of LNCS, pages 350–363. Springer-
Verlag, 2000.

[82] S.B. Needleman and C.D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequences of two proteins. Journal of Molec-
ular Biology, 48(3):443–453, 1970.

[83] C. Pizzi, P. Rastas, and E. Ukkonen. Fast search algorithms for position specific
scoring matrices. In Proceedings of the 1st International Conference on Bioin-
formatics Research and Development (BIRD’07), volume 4414 of LNBI, pages
239–250. Springer-Verlag, 2007.

[84] C. Pizzi and E. Ukkonen. Fast profile matching algorithms – a survey. Theoret-
ical Computer Science, 395(2–3):137–157, 2008.

http://www.dcc.uchile.cl/~gnavarro/erratas/tcs04.html
http://www.dcc.uchile.cl/~gnavarro/erratas/tcs04.html

126 BIBLIOGRAPHY

[85] T. Raita. Tuning the Boyer-Moore-Horspool string searching algorithm. Soft-
ware – Practise and Experience, 22(10):879–884, 1992.

[86] L. Salmela and J. Tarhio. Sublinear algorithms for parameterized matching. In
Proceedings of the 17th Annual Symposium on Combinatorial Pattern Matching
(CPM’06), volume 4009 of LNCS, pages 354–364. Springer-Verlag, 2006.

[87] L. Salmela and J. Tarhio. Algorithms for weighted matching. In Proceedings
of the 14th International Symposium on String Processing and Information Re-
trieval (SPIRE’07), volume 4726 of LNCS, pages 276–286. Springer-Verlag,
2007.

[88] L. Salmela and J. Tarhio. Fast parameterized matching with q-grams. Journal
of Discrete Algorithms, 6(3):408–419, 2008.

[89] L. Salmela, J. Tarhio, and P. Kalsi. Approximate Boyer-Moore string matching
for small alphabets. Algorithmica. (In press).

[90] L. Salmela, J. Tarhio, and J. Kytöjoki. Multipattern string matching with q-
grams. ACM Journal of Experimental Algorithmics, 11(1.1):1–19, 2006.

[91] D. Sankoff. Matching sequences under deletion/insertion constraints. Pro-
ceedings of the National Academy of Sciences of the United States of America,
69(1):4–6, 1972.

[92] P.M. Scanlon and D.R. Neumann. Internet plagiarism among college students.
Journal of College Student Development, 43(3):374–385, 2002.

[93] T.D. Scheiner, G.D. Stormo, L. Gold, and A. Ehrenfeucht. Information con-
tent of binding sites on nucleotide sequences. Journal of Molecular Biology,
188(3):415–431, 1986.

[94] P.H. Sellers. On the theory and computation of evolutionary distances. SIAM
Journal on Applied Mathematics, 26(4):787–793, 1974.

[95] P.H. Sellers. The theory and computation of evolutionary distances: Pattern
recognition. Journal of Algorithms, 1(4):359–373, 1980.

[96] P.D. Smith. Experiments with a very fast substring search algorithm. Software
– Practise and Experience, 21(10):1065–1074, 1991.

[97] R. Staden. Methods for calculating the probabilities of finding patterns in se-
quences. Computer Applications in the Biosciences, 5(2):89–96, 1989.

[98] D. Sunday. A very fast substring search algorithm. Communications of the
ACM, 33(8):132–142, 1990.

BIBLIOGRAPHY 127

[99] E. Sutinen and J. Tarhio. On using q-gram locations in approximate string
matching. In Proceedings of the 3rd Annual European Symposium on Algo-
rithms (ESA’95), volume 979 of LNCS, pages 327–340. Springer-Verlag, 1995.

[100] J. Tarhio. A sublinear algorithm for two-dimensional string matching. Pattern
Recognition Letters, 17(8):833–838, 1996.

[101] J. Tarhio and E. Ukkonen. Approximate Boyer–Moore string matching. SIAM
Journal on Computing, 22(2):243–260, 1993.

[102] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-
efficient string matching algorithms for intrusion detection. In Proceedings of
the 23rd Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM’04), volume 4, pages 2628–2639, 2004.

[103] E. Ukkonen. Algorithms for approximate string matching. Information and
Control, 64:100–118, 1985.

[104] E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms,
6:132–137, 1985.

[105] T.K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics
and System Analysis, 4(1):52–57, 1968.

[106] R.A. Wagner and M.J. Fisher. The string-to-string correction problem. Journal
of the ACM, 21(1):168–173, 1974.

[107] S. Wu and U. Manber. Agrep – a fast approximate pattern-matching tool. In
Proceedings of the Usenix Winter 1992 Technical Conference, pages 153–162,
1992.

[108] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Techni-
cal Report TR-94-17, Department of Computer Science. University of Arizona,
1994.

[109] S. Wu, U. Manber, and G. Myers. A subquadratic algorithm for approximate
limited expression matching. Algorithmica, 15(1):50–67, 1996.

[110] T.D. Wu, C.G. Nevill-Manning, and D.L. Brutlag. Fast probabilistic analysis
of sequence function using scoring matrices. Bioinformatics, 16(3):233–244,
2000.

[111] A.C.-C. Yao. The complexity of pattern matching for a random string. SIAM
Journal on Computing, 8(3):368–387, 1979.

128 BIBLIOGRAPHY

[112] Z. Zhou, Y. Xue, J. Liu, W. Zhang, and J. Li. MDH: A high speed multi-phase
dynamic hash string matching algorithm for large-scale pattern set. In Proceed-
ings of the 9th International Conference on Information and Communications
Security (ICICS’07), volume 4861 of LNCS, pages 201–215. Springer-Verlag,
2007.

[113] R.F. Zhu and T. Takaoka. On improving the average case of the Boyer-Moore
string matching algorithm. Journal of Information Processing, 10(3):173–177,
1987.

[114] R.F. Zhu and T. Takaoka. A technique for two-dimensional pattern matching.
Communications of the ACM, 32(9):1110–1120, 1989.

Appendix A

Comparison of the Suffix Array and
the BG Algorithm

129

130 A. COMPARISON OF THE SUFFIX ARRAY AND THE BG ALGORITHM

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=2

(a) 10,000 patterns

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=3

(b) 100,000 patterns

Figure A.1: Search times of BG and suffix array with random data of alphabet size 255

131

 0

 2

 4

 6

 8

 10

 12

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=2

(a) 10,000 patterns

 0

 2

 4

 6

 8

 10

 12

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=3

(b) 100,000 patterns

Figure A.2: Combined preprocessing and search times of BG and suffix array with random
data of alphabet size 255

132 A. COMPARISON OF THE SUFFIX ARRAY AND THE BG ALGORITHM

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=2

(a) 10,000 patterns

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=3

(b) 100,000 patterns

Figure A.3: Combined preprocessing and search times of BG and search times for the suffix
array with random data of alphabet size 255

133

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=8

(a) 10,000 patterns

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=11
BG Q=10
BG Q=9
BG Q=8

(b) 100,000 patterns

Figure A.4: Search times of BG and suffix array with DNA data

134 A. COMPARISON OF THE SUFFIX ARRAY AND THE BG ALGORITHM

 0

 2

 4

 6

 8

 10

 12

 14

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=8

(a) 10,000 patterns

 0

 2

 4

 6

 8

 10

 12

 14

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=11
BG Q=10
BG Q=9
BG Q=8

(b) 100,000 patterns

Figure A.5: Combined preprocessing and search times of BG and suffix array with DNA data

135

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=8

(a) 10,000 patterns

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

R
un

tim
e

(s
)

Text Length

SAu
SAc
BG Q=11
BG Q=10
BG Q=9
BG Q=8

(b) 100,000 patterns

Figure A.6: Combined preprocessing and search times of BG and search times for the suffix
array with DNA data

136 A. COMPARISON OF THE SUFFIX ARRAY AND THE BG ALGORITHM

Appendix B

Experiments with the Sampled
Semi-Index

137

138 B. EXPERIMENTS WITH THE SAMPLED SEMI-INDEX

Table
B

.1:T
he

bestsets
ofrem

oved
characters

forthe
basic

m
ethod

sorted
by

runtim
e.T

he
firstrow

show
s

the
runtim

es
ofthe

B
oyer-M

oore-
H

orspoolalgorithm
.

m
=

10
m

=
20

m
=

30
m

=
50

R
em

oved
Set

R
untim

e
(s)

R
em

oved
Set

R
untim

e
(s)

R
em

oved
Set

R
untim

e
(s)

R
em

oved
Set

R
untim

e
(s)

1.0035
0.6891

0.5897
0.5127

1.
eho

0.9337
ethaons

0.4978
ethaonsirdly

0.3202
ethaonsirdluw

0.2029
2.

eaoi
0.9363

ethaon
0.5004

ethaonsird
0.3235

ethaonsirdlum
c

0.2036
3.

eha
0.9364

ethaonsr
0.5011

ethaonsirdum
0.3269

ethaonsirdlfu,w
0.2044

4.
ehai

0.9366
ethaonr

0.5045
ethaonsirdluy

0.3286
ethaonsirdlfm

w
0.2049

5.
ehao

0.9373
ethaonid

0.5049
ethaonsird,

0.3303
ethaonsirdl

0.2052
6.

ehaon
0.9387

ethaoni
0.5050

ethaonsrdl
0.3308

ethaonsirdlm
,

0.2054
7.

eao
0.9414

ethaonir
0.5072

ethaonsirdlu
0.3315

ethaonsirdl,
0.2055

8.
eta

0.9417
ethaonirl

0.5077
ethaonsirdm

0.3317
ethaonsirdlum

0.2057
9.

eo
0.9426

ethaonsd
0.5086

ethaonsirlu
0.3330

ethaonsirdlfu
0.2059

10.
ean

0.9427
ethaonidl

0.5086
ethaonsirdl,

0.3333
ethaonsirdl,c

0.2060
11.

eaos
0.9429

ethaonsl
0.5092

ethaonsidlu
0.3336

ethaonsirdlm
y

0.2062
12.

etai
0.9444

ethaonl
0.5112

ethaonsirdl,y
0.3337

ethaonsirdlfum
0.2063

13.
etoi

0.9467
ethaonsi

0.5131
ethaonsirdfu

0.3344
ethaonsirdlu

0.2064
14.

ea
0.9468

ethaonrl
0.5136

ethaonsirdu
0.3347

ethaonsirdl,w
0.2067

15.
et

0.9475
ethaonil

0.5142
ethaonirdlu

0.3355
ethaonsirdlm

0.2067
16.

etn
0.9484

ethaoird
0.5163

ethaonirdl
0.3361

ethaonsirdlm
,g

0.2069
17.

ets
0.9489

ethaondl
0.5176

ethaonsiru
0.3370

ethaonsirdlfu,
0.2069

18.
ehni

0.9492
ethaonsir

0.5177
ethaonsirdlc

0.3377
ethaonsirdluc

0.2069
19.

etaod
0.9498

ethaoidl
0.5188

ethaonsrdlu
0.3378

ethaonsirdlf
0.2069

20.
eai

0.9501
ethaoir

0.5191
ethaonsirdlf

0.3384
ethaonsirdlum

w
0.2070

139

Ta
bl

e
B

.2
:

T
he

be
st

se
ts

of
re

m
ov

ed
ch

ar
ac

te
rs

fo
rt

he
ba

si
c

m
et

ho
d

so
rt

ed
by

th
e

nu
m

be
ro

fr
ea

d
ch

ar
ac

te
rs

.T
he

fir
st

ro
w

sh
ow

s
th

e
nu

m
be

r
of

re
ad

ch
ar

ac
te

rs
fo

rt
he

B
oy

er
-M

oo
re

-H
or

sp
oo

la
lg

or
ith

m
.

m
=

10
m

=
20

m
=

30
m

=
50

R
em

ov
ed

Se
t

R
ea

ds
%

R
em

ov
ed

Se
t

R
ea

ds
%

R
em

ov
ed

Se
t

R
ea

ds
%

R
em

ov
ed

Se
t

R
ea

ds
%

58
90

12
.1

29
.5

37
78

26
.2

18
.9

30
32

74
.0

15
.2

23
92

60
.6

12
.0

1.
eh

ao
i

50
21

99
.2

25
.1

et
ha

on
i

26
83

11
.5

13
.4

et
ha

on
si

rd
ly

17
57

91
.4

8.
8

et
ha

on
si

rd
lu

m
11

10
70

.3
5.

6
2.

ea
oi

50
38

64
.7

25
.2

et
ha

on
il

27
00

73
.7

13
.5

et
ha

on
si

rd
17

67
68

.0
8.

8
et

ha
on

si
rd

lu
m

w
11

13
26

.9
5.

6
3.

eh
ao

50
48

63
.3

25
.2

et
ha

on
ir

l
27

03
95

.8
13

.5
et

ha
on

si
rd

l
17

68
31

.8
8.

8
et

ha
on

si
rd

lu
11

14
85

.5
5.

6
4.

et
ao

i
50

62
16

.1
25

.3
et

ha
on

ir
27

06
00

.9
13

.5
et

ha
on

si
rd

u
17

70
90

.2
8.

9
et

ha
on

si
rd

lu
,

11
16

31
.2

5.
6

5.
ea

o
50

66
43

.8
25

.3
et

ha
on

27
06

00
.9

13
.5

et
ha

on
si

rd
lu

y
17

80
12

.9
8.

9
et

ha
on

si
rd

lm
w

11
16

78
.0

5.
6

6.
et

ao
50

77
03

.5
25

.4
et

ha
on

s
27

17
30

.7
13

.6
et

ha
on

si
rd

lu
17

88
46

.6
8.

9
et

ha
on

si
rd

lm
11

16
99

.2
5.

6
7.

eh
ao

n
50

90
85

.0
25

.5
et

ha
on

l
27

19
00

.7
13

.6
et

ha
on

si
rl

17
96

79
.1

9.
0

et
ha

on
si

rd
lm

,
11

18
43

.9
5.

6
8.

et
ai

50
92

24
.1

25
.5

et
ha

on
r

27
25

20
.1

13
.6

et
ha

on
si

rd
um

18
00

54
.8

9.
0

et
ha

on
si

rd
lu

w
11

19
12

.9
5.

6
9.

eo
i

50
93

98
.3

25
.5

et
ha

on
id

27
26

51
.2

13
.6

et
ha

on
si

rl
u

18
03

27
.8

9.
0

et
ha

on
si

rd
lm

,w
11

20
71

.3
5.

6
10

.
eh

ai
50

95
12

.3
25

.5
et

ha
on

sl
27

32
43

.7
13

.7
et

ha
on

sr
dl

18
06

42
.4

9.
0

et
ha

on
si

rd
lu

m
c

11
21

33
.1

5.
6

11
.

et
a

50
98

74
.5

25
.5

et
ha

on
rl

27
39

86
.5

13
.7

et
ha

on
sr

d
18

07
05

.6
9.

0
et

ha
on

si
rd

l,
11

22
59

.3
5.

6
12

.
eh

o
50

99
00

.6
25

.5
et

ha
on

si
27

41
52

.1
13

.7
et

ha
on

si
r

18
08

51
.8

9.
0

et
ha

on
si

rd
lu

c
11

23
60

.1
5.

6
13

.
eh

oi
50

99
28

.4
25

.5
et

ha
on

d
27

41
62

.6
13

.7
et

ha
on

si
ru

18
09

49
.5

9.
0

et
ha

on
si

rd
l

11
23

62
.6

5.
6

14
.

ea
i

51
00

52
.3

25
.5

et
ha

on
sr

27
48

08
.6

13
.7

et
ha

on
sr

du
18

13
52

.4
9.

1
et

ha
on

si
rd

lu
m

,
11

24
22

.5
5.

6
15

.
eh

a
51

00
82

.4
25

.5
et

ha
oi

d
27

53
92

.2
13

.8
et

ha
on

si
rd

m
18

13
65

.8
9.

1
et

ha
on

si
rd

lm
c

11
24

87
.3

5.
6

16
.

eh
an

51
01

35
.4

25
.5

et
ha

oi
27

59
85

.2
13

.8
et

ha
on

ir
dl

u
18

13
82

.9
9.

1
et

ha
on

si
rd

lw
11

25
71

.0
5.

6
17

.
eo

51
03

01
.8

25
.5

et
ha

on
dl

27
64

03
.7

13
.8

et
ha

on
si

rd
lu

g
18

17
25

.7
9.

1
et

ha
on

si
rd

lf
u

11
26

03
.3

5.
6

18
.

eh
n

51
05

71
.7

25
.5

et
ha

on
sd

27
66

08
.3

13
.8

et
ha

on
si

rd
lm

18
17

72
.5

9.
1

et
ha

on
si

rd
lu

,c
11

26
42

.6
5.

6
19

.
eh

on
51

09
19

.5
25

.5
et

ha
on

sr
l

27
66

47
.5

13
.8

et
ha

on
si

rd
l,

18
18

14
.1

9.
1

et
ha

on
si

rd
l,w

11
26

71
.6

5.
6

20
.

ea
51

09
20

.8
25

.5
et

ha
on

id
l

27
71

23
.7

13
.9

et
ha

on
ir

dl
18

19
98

.2
9.

1
et

ha
on

si
rd

lm
w

g
11

26
82

.2
5.

6

140 B. EXPERIMENTS WITH THE SAMPLED SEMI-INDEX

Table
B

.3:
T

he
bestsets

of
rem

oved
characters

for
the

besttuned
m

ethod
sorted

by
runtim

e.
T

he
firstrow

show
s

the
runtim

e
of

the
B

oyer-
M

oore-H
orspoolalgorithm

.

m
=

10
m

=
20

m
=

30
m

=
50

R
em

oved
Set

R
untim

e
(s)

R
em

oved
Set

R
untim

e
(s)

R
em

oved
Set

R
untim

e
(s)

R
em

oved
Set

R
untim

e
(s)

1.0035
0.6891

0.5897
0.5127

1.
ethaonsirf

0.8018
ethaonsirdl

0.4593
ethaonsirdluy

0.3006
ethaonsirdlfu,

0.2035
2.

ethaonsif
0.8024

ethaonsirdlf
0.4599

ethaonsirdly
0.3024

ethaonsirdlu,c
0.2042

3.
ethaonsid

0.8043
ethaonsirdlc

0.4618
ethaonsirdlug

0.3063
ethaonsirdlum

y
0.2044

4.
ethaonsirl

0.8046
ethaonsirdlw

0.4642
ethaonsirdluyg

0.3065
ethaonsirdlum

,
0.2045

5.
ethaonsirm

0.8047
ethaonsirdlyc

0.4648
ethaonsirdl

0.3068
ethaonsirdlum

0.2046
6.

ethaonsidu
0.8056

ethaonsirl,
0.4659

ethaonsirdlu
0.3069

ethaonsirdlfm
0.2046

7.
ethaonsir

0.8063
ethaonsirdl,w

0.4663
ethaonsirdluw

y
0.3075

ethaonsirdlu,
0.2046

8.
ethaonsiru

0.8066
ethaonsirduw

0.4664
ethaonsirdlm

0.3090
ethaonsirdlm

,w
0.2046

9.
ethaonsirdm

0.8078
ethaonsirdm

,
0.4666

ethaonsirdluw
0.3098

ethaonsirdlm
c

0.2060
10.

ethaonsirfm
0.8086

ethaonsird,w
0.4668

ethaonsirdlw
0.3100

ethaonsirdluw
c

0.2064
11.

ethaonsirlf
0.8093

ethaonsirdfu
0.4674

ethaonsirdlm
y

0.3106
ethaonsirdlm

0.2064
12.

ethaonsrd
0.8093

ethaonsirdlm
w

0.4678
ethaonsirdlyc

0.3111
ethaonsirdlfum

w
0.2065

13.
ethaonsilf

0.8101
ethaonsirdlfg

0.4681
ethaonsirdlum

0.3114
ethaonsirdlf,w

0.2066
14.

ethaonsrdu
0.8107

ethaonsirdlfy
0.4688

ethaonsirdlf
0.3118

ethaonsirdlu,g
0.2067

15.
ethaonsidm

0.8112
ethaonsirdlm

c
0.4693

ethaonsirdlu,y
0.3119

ethaonsirdlm
,y

0.2068
16.

ethaonsird
0.8117

ethaonsirdl,
0.4698

ethaonsirdluyc
0.3120

ethaonsirdl,w
0.2068

17.
ethaonsirdu

0.8122
ethaonsirdfm

0.4700
ethaonsirdlum

w
0.3121

ethaonsirdluw
g

0.2069
18.

ethaonsidl
0.8135

ethaonsirdluy
0.4703

ethaonsirdlc
0.3122

ethaonsirdlm
w

g
0.2071

19.
ethaonirdu

0.8138
ethaonsirdu

0.4711
ethaonsirdlm

,
0.3127

ethaonsirdlf,
0.2071

20.
ethaonsirlu

0.8139
ethaonsirlm

0.4713
ethaonsirdlfu

0.3131
ethaonsirdlfum

0.2072

141

Ta
bl

e
B

.4
:

T
he

be
st

se
ts

of
re

m
ov

ed
ch

ar
ac

te
rs

fo
r

th
e

be
st

tu
ne

d
m

et
ho

d
so

rt
ed

by
th

e
nu

m
be

r
of

re
ad

ch
ar

ac
te

rs
.

T
he

fir
st

ro
w

sh
ow

s
th

e
nu

m
be

ro
fr

ea
d

ch
ar

ac
te

rs
fo

rt
he

B
oy

er
-M

oo
re

-H
or

sp
oo

la
lg

or
ith

m
.

m
=

10
m

=
20

m
=

30
m

=
50

R
em

ov
ed

Se
t

R
ea

ds
%

R
em

ov
ed

Se
t

R
ea

ds
%

R
em

ov
ed

Se
t

R
ea

ds
%

R
em

ov
ed

Se
t

R
ea

ds
%

58
90

12
.1

29
.5

37
78

26
.2

18
.9

30
32

74
.0

15
.2

23
92

60
.6

12
.0

1.
et

ha
on

si
f

46
66

42
.9

23
.3

et
ha

on
si

rd
l

25
77

26
.2

12
.9

et
ha

on
si

rd
lu

y
16

72
83

.0
8.

4
et

ha
on

si
rd

lu
m

w
11

06
96

.4
5.

5
2.

et
ha

on
si

r
46

67
00

.9
23

.3
et

ha
on

si
rd

ly
25

80
64

.7
12

.9
et

ha
on

si
rd

lu
16

79
69

.3
8.

4
et

ha
on

si
rd

lu
m

11
08

47
.0

5.
5

3.
et

ha
on

ir
l

47
08

05
.9

23
.5

et
ha

on
si

rd
,

25
94

93
.2

13
.0

et
ha

on
si

rd
ly

16
93

15
.5

8.
5

et
ha

on
si

rd
lu

,
11

11
73

.7
5.

6
4.

et
ha

on
si

rf
47

12
39

.1
23

.6
et

ha
on

si
rd

l,
25

97
00

.8
13

.0
et

ha
on

si
rd

lu
m

16
96

06
.1

8.
5

et
ha

on
si

rd
lu

w
11

14
25

.0
5.

6
5.

et
ha

on
si

l
47

15
48

.1
23

.6
et

ha
on

si
rl

,
25

98
99

.6
13

.0
et

ha
on

si
rd

lu
m

y
16

98
02

.2
8.

5
et

ha
on

si
rd

lu
m

,
11

14
53

.3
5.

6
6.

et
ha

on
si

d
47

22
75

.5
23

.6
et

ha
on

si
rd

lw
26

01
44

.5
13

.0
et

ha
on

si
rd

lu
yg

16
99

26
.7

8.
5

et
ha

on
si

rd
lu

,w
11

14
66

.4
5.

6
7.

et
ha

on
si

ru
47

25
20

.5
23

.6
et

ha
on

si
rd

lm
26

03
53

.9
13

.0
et

ha
on

si
rd

lu
w

y
16

99
65

.5
8.

5
et

ha
on

si
rd

lu
11

14
85

.5
5.

6
8.

et
ha

on
si

rm
47

28
63

.7
23

.6
et

ha
on

si
rd

f
26

04
00

.1
13

.0
et

ha
on

si
rd

lu
g

17
01

30
.9

8.
5

et
ha

on
si

rd
lu

m
,w

11
15

46
.3

5.
6

9.
et

ha
on

sr
l

47
32

62
.1

23
.7

et
ha

on
si

rd
lf

26
05

65
.9

13
.0

et
ha

on
si

rd
l

17
02

98
.2

8.
5

et
ha

on
si

rd
lm

w
11

16
78

.0
5.

6
10

.
et

ha
on

ir
d

47
36

41
.5

23
.7

et
ha

on
si

rd
m

26
07

83
.0

13
.0

et
ha

on
si

rd
lu

w
17

04
31

.9
8.

5
et

ha
on

si
rd

lm
11

16
99

.2
5.

6
11

.
et

ha
os

ir
d

47
41

77
.8

23
.7

et
ha

on
si

rd
,w

26
08

76
.0

13
.0

et
ha

on
si

rd
lu

c
17

05
66

.7
8.

5
et

ha
on

si
rd

lm
,

11
18

43
.9

5.
6

12
.

et
ha

on
si

lf
47

42
13

.2
23

.7
et

ha
on

si
r

26
10

77
.0

13
.1

et
ha

on
si

rd
lu

yc
17

06
25

.1
8.

5
et

ha
on

si
rd

lu
m

c
11

19
46

.1
5.

6
13

.
et

ha
on

ir
lf

47
53

41
.5

23
.8

et
ha

on
si

rd
l,y

26
11

71
.7

13
.1

et
ha

on
si

rd
lu

,
17

07
57

.5
8.

5
et

ha
on

si
rd

lf
u

11
20

70
.6

5.
6

14
.

et
ha

on
sr

lf
47

58
13

.2
23

.8
et

ha
on

si
rd

lc
26

12
83

.0
13

.1
et

ha
on

si
rd

lu
,y

17
08

55
.7

8.
5

et
ha

on
si

rd
lm

,w
11

20
71

.3
5.

6
15

.
et

ha
on

sr
d

47
64

12
.3

23
.8

et
ha

on
si

rl
m

26
14

63
.7

13
.1

et
ha

on
si

rd
lf

u
17

08
83

.6
8.

5
et

ha
on

si
rd

lf
u,

11
20

77
.0

5.
6

16
.

et
ho

ns
ir

d
47

65
60

.2
23

.8
et

ha
on

si
rd

m
,

26
16

00
.5

13
.1

et
ha

on
si

rd
lm

y
17

09
01

.0
8.

5
et

ha
on

si
rd

lu
m

b
11

21
84

.6
5.

6
17

.
et

ha
on

si
dm

47
71

68
.1

23
.9

et
ha

on
si

rd
m

w
26

16
24

.5
13

.1
et

ha
on

si
rd

lw
y

17
10

98
.9

8.
6

et
ha

on
si

rd
lu

m
g

11
21

89
.4

5.
6

18
.

et
ha

on
si

lu
47

74
39

.5
23

.9
et

ha
on

si
l

26
17

32
.0

13
.1

et
ha

on
si

rd
lm

17
16

16
.0

8.
6

et
ha

on
si

rd
lu

,c
11

21
97

.7
5.

6
19

.
et

ha
os

ir
du

47
81

40
.1

23
.9

et
ha

on
si

rd
u

26
19

66
.8

13
.1

et
ha

on
si

rd
lf

y
17

19
21

.3
8.

6
et

ha
on

si
rd

lu
m

y
11

22
09

.0
5.

6
20

.
et

ha
on

47
82

71
.8

23
.9

et
ha

on
si

rl
m

,
26

19
81

.1
13

.1
et

ha
on

si
rd

l,y
17

20
02

.7
8.

6
et

ha
on

si
rd

l,
11

22
59

.3
5.

6

	Preface
	Contents
	Introduction
	Applications
	Bioinformatics
	Data Scanning
	Plagiarism Detection
	Image Searching

	Results and Contributions
	Organization

	Background
	Basic Concepts
	Alphabets, Strings, and String Matching
	Bit Vectors

	Common Algorithmic Techniques
	q-Grams
	Bit Parallelism

	String Matching Algorithms
	Boyer-Moore-Horspool Algorithm
	Shift-Or Algorithm
	Backward Nondeterministic DAWG Matching
	Rabin-Karp Algorithm

	Tools for Analysis

	Approximate String Matching with Small Alphabets
	Preliminaries
	Definitions
	Dynamic Programming
	Previous Algorithms

	Algorithm for the k-Mismatch Problem
	Algorithms for the k-Difference Problem
	Analysis
	Experimental Results

	Parameterized String Matching
	Definitions
	Earlier Solutions
	One-Dimensional Algorithms
	Two-Dimensional Algorithms

	Horspool Style Algorithms
	Three One-Dimensional Algorithms
	A Two-Dimensional Algorithm

	Analysis
	The One-Dimensional Algorithms
	The Two-Dimensional Algorithm

	Experimental Results

	Multiple String Matching with Very Large Pattern Sets
	Definitions
	Earlier Solutions
	Aho-Corasick
	Set Horspool
	Set Backward Oracle Matching
	Wu-Manber
	Rabin-Karp Approach
	Comparison of the Earlier Algorithms

	Filtering Algorithms
	Multi-Pattern Shift-Or with q-Grams
	Multi-Pattern BNDM with q-Grams
	Multi-Pattern Horspool with q-Grams

	Analysis
	Experiments
	SOG Algorithm
	BG Algorithm
	HG Algorithm
	Comparison of the Algorithms
	Comparison Against the Suffix Array

	Weighted String Matching
	Preliminaries
	Definitions
	Related Work
	Bit-Parallel Algorithms for Approximate String Matching

	Weighted String Matching with Positive Restricted Weights
	Weighted Shift-Add
	Weighted BNDM

	Weighted String Matching with Inverted Weights
	Inverted Weighted Shift-Add
	Inverted Weighted BNDM

	Enumeration Algorithms
	Experimental Results
	Bit Parallel Algorithms
	Algorithms for a Single Pattern
	Algorithms for Multiple Patterns

	Alphabet Sampling
	Sampled Semi-Index
	Tuning the Semi-Index
	Optimal Sampling
	Experimental Results

	Conclusions
	Bibliography
	Comparison of the Suffix Array and the BG Algorithm
	Experiments with the Sampled Semi-Index

