
TKK Dissertations 160
Espoo 2009

SOFTWARE EVOLVABILITY – EMPIRICALLY 
DISCOVERED EVOLVABILITY ISSUES AND 
HUMAN EVALUATIONS
Doctoral Dissertation

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Mika Mäntylä

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80703586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


TKK Dissertations 160
Espoo 2009

SOFTWARE EVOLVABILITY – EMPIRICALLY 
DISCOVERED EVOLVABILITY ISSUES AND 
HUMAN EVALUATIONS
Doctoral Dissertation

Mika Mäntylä

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission 
of the Faculty of Information and Natural Sciences for public examination and debate in Auditorium 
T2 at Helsinki University of Technology (Espoo, Finland) on the 8th of May, 2009, at 12 noon.

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering

Teknillinen korkeakoulu
Informaatio- ja luonnontieteiden tiedekunta
Tietotekniikan laitos



Distribution:
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Computer Science and Engineering
P.O. Box 9210 (Tekniikantie 14)
FI - 02015 TKK
FINLAND
URL: http://www.cse.tkk.fi/
Tel.  +358-9-451 4851
Fax  +358-9-451 4958
E-mail: mika.mantyla@tkk.fi

© 2009 Mika Mäntylä

ISBN 978-951-22-9856-3
ISBN 978-951-22-9857-0 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)
URL: http://lib.tkk.fi/Diss/2009/isbn9789512298570/

TKK-DISS-2592

Multiprint Oy
Espoo 2009



AB
 

 

 

 

 

 

 

ABSTRACT OF DOCTORAL DISSERTATION 
HELSINKI UNIVERSITY OF TECHNOLOGY 

P.O. BOX 1000, FI-02015 TKK 

http://www.tkk.fi 

Author   Mika Mäntylä        

Name of the dissertation 

Software evolvability – Empirically discovered evolvability issues and human evaluations       

Manuscript submitted    November 11, 2008 Manuscript revised     April 14, 2009      

Date of the defence       May 8, 2009      

  Monograph   Article dissertation (summary + original articles) 

Faculty   Faculty of Information and Natural Sciences       

Department  Department of Computer Science and Engineering      

Field of research  Software Engineering      

Opponent(s)  Professor Magne Jørgensen      

Supervisor  Professor Reijo Sulonen      

Instructor  Professor Reijo Sulonen      

Abstract 

Evolution of a software system can take decades and can cost up to several billion Euros. Software evolvability refers to 

how easily software is understood, modified, adapted, corrected, and developed. It has been estimated that software 

evolvability can explain 25% to 38% of the costs of software evolution. Prior research has presented software evolvability 

criteria and quantified the criteria utilizing source code metrics. However, the empirical observations of software 

evolvability issues and human evaluations of them have largely been ignored.  

 

This dissertation empirically studies human evaluations and observations of software evolvability issues. This work utilizes 

both qualitative and quantitative research methods. Empirical data was collected from controlled experiments with student 

subjects, and by observing issues that were discovered in real industrial settings.   

 

This dissertation presents a new classification for software evolvability issues. The information provided by the 

classification is extended by the detailed analysis of evolvability issues that have been discovered in code reviews and their 

distributions to different issue types. Furthermore, this work studies human evaluations of software evolvability; more 

specifically, it focuses on the interrater agreement of the evaluations, the affect of demographics, the evolvability issues 

that humans find to be most significant, as well as the relationship between human evaluation and source code metrics 

based evaluations. 

 

The results show that code review that is performed after light functional testing reveals three times as many evolvability 

issues as functional defects. We also discovered a new evolvability issue called “solution approach,” which indicates a 

need to rethink the current solution rather than reorganize it. For solution approach issues, we are not aware of any research 

that presents or discusses such issues in the software engineering domain. We found weak evidence that software 

evolvability evaluations are more affected by a person’s role in the organization and the relationship (authorship) to the 

code than by education and work experience. Comparison of code metrics and human evaluations revealed that metrics 

cannot detect all human found evolvability issues. 

Keywords    Software evolvability issue, Refactoring, Controlled experiment, Observation, Interrater agreement, Code 

review       

ISBN (printed)    978-951-22-9856-3      ISSN (printed)        1795-2239      

ISBN (pdf)          978-951-22-9857-0      ISSN (pdf)              1795-4584                

Language            English       Number of pages    66 p. + app. 80 p.      

Publisher            Helsinki University of Technology, Department of Computer Science and Engineering      

Print distribution      Helsinki University of Technology, Department of Computer Science and Engineering                                                                                                                                                                

  The dissertation can be read at http://lib.tkk.fi/Diss/2009/isbn9789512298570/      

 





 

 

 

 

 

 

 

VÄITÖSKIRJAN TIIVISTELMÄ 
TEKNILLINEN KORKEAKOULU 

PL 1000, 02015 TKK 

http://www.tkk.fi 

Tekijä   Mika Mäntylä       

Väitöskirjan nimi 

Ohjelmistojen jatkokehitettävyys – Empiirisesti havaittuja jatkokehitettävyysongelmia ja ihmisten arvioita      

Käsikirjoituksen päivämäärä    11.11.2008      Korjatun käsikirjoituksen päivämäärä     14.4.2009      

Väitöstilaisuuden ajankohta     8.5.2009      

  Monografia   Yhdistelmäväitöskirja (yhteenveto + erillisartikkelit) 

Tiedekunta Informaatio ja luonnontieteiden tiedekunta       

Laitos  Tietotekniikan laitos       

Tutkimusala Ohjelmistotuotanto       

Vastaväittäjä(t) Professori Magne Jørgensen      

Työn valvoja Professori Reijo Sulonen       

Työn ohjaaja Professori Reijo Sulonen       

Tiivistelmä 

Ohjelmistojärjestelmien evoluutio saattaa kestää vuosikymmeniä ja maksaa miljardeja euroja. Ohjelmiston 

jatkokehitettävyys ilmaisee kuinka helppoa ohjelmiston lähdekoodia on ymmärtää, muokata, korjata ja kehittää edelleen. 

On esitetty, että ohjelmiston jatkokehitettävyys selittää 25–38% ohjelmistoevoluution kustannuksista. Aiempi tutkimus on 

lähestynyt ohjelmiston jatkokehitettävyyden arviointia lähinnä jatkokehitettävyyskriteerien ja niistä johdettujen 

lähdekoodimittareiden avulla jättäen suurelta osin ottamatta huomioon tavallisten ohjelmistokehittäjien kentällä tekemät 

empiiriset havainnot.  

 

Tässä väitöstyössä tutkitaan empiirisesti ihmisten arvioita ohjelmiston jatkokehitettävyydestä ja ihmisten tekemiä 

havaintoja ohjelmakoodin jatkokehitettävyysongelmista. Työssä sovelletaan sekä laadullisia että tilastollisia 

tutkimusmenetelmiä. Empiirinen aineisto on kerätty kontrolloiduilla opiskelijakokeilla ja havainnoimalla teollisuuden 

todellisissa tilanteissa ilmenneitä ongelmia.  

 

Tutkimuksessa esitetään luokittelu ohjelmiston jatkokehitettävyysongelmille. Luokittelun antamaa tietoa syvennetään 

katsomalla tarkemmin koodikatselmuksissa löytyneitä jatkokehitettävyysongelmien tyyppejä ja niiden jakaumia. Lisäksi 

työssä tutkitaan ihmisten tekemiä jatkokehitettävyysarvioita tarkastellen: arvioiden yksimielisyyttä, ihmisten taustan 

vaikutusta tehtyihin arvioihin, merkittävimmiksi koettuja jatkokehitysongelmia sekä ihmisten arvioiden suhdetta 

lähdekoodimittareiden antamiin tuloksiin.  

 

Työn tulokset osoittavat, että kevyen toiminnallisen testauksen jälkeen tehty koodikatselmointi löytää kolme 

jatkokehitettävyysongelmaa yhtä toiminnallista virhettä kohti. Aineistoa analysoidessa havaittiin uusi 

jatkokehitettävyysongelmaluokka jossa ohjelmistossa tehty ratkaisu täytyy ” ajatella uudelleen” ennemmin kuin 

”organisoida uudelleen”. Vaikka tällaiset ongelmat luultavasti ovat tyypillisiä ohjelmistotuotannossa, emme ole tietoisia 

aiemmasta empiirisestä tutkimuksesta, joka olisi tunnistanut ja analysoinut niitä. Ihmisten arvioihin ohjelmiston 

jatkokehitettävyydestä vaikuttavat enemmän ihmisten asema organisaatiossa ja suhde arvioituun ohjelmakoodiin kuin 

ihmisten koulutus tai ohjelmistotuotannon työkokemus. Verrattaessa lähdekoodimittareita ja ihmisten arvioita havaittiin, 

että koodimittareiden avulla ei voida havaita kaikkia ihmisen tunnistamia jatkokehitettävyysongelmia. 

Asiasanat    ohjelmiston jatkokehitettävyysongelmat, refaktorointi, kontrolloitu koe, observointi, vastaajien välinen 

yhdenmielisyys, koodikatselmointi       

ISBN (painettu)     978-951-22-9856-3      ISSN (painettu)     1795-2239      

ISBN (pdf)             978-951-22-9857-0      ISSN (pdf)             1795-4584                

Kieli                       Englanti      Sivumäärä              66 s. + liitt. 80 s.       

Julkaisija      Teknillinen korkeakoulu, Tietotekniikan laitos      

Painetun väitöskirjan jakelu      Teknillinen korkeakoulu, Tietotekniikan laitos      

  Luettavissa verkossa osoitteessa http://lib.tkk.fi/Diss/2009/isbn9789512298570/      

 

AB





 

ACKNOWLEDGEMENTS 

Completing this dissertation has been my main goal for the past five or six years, but my 
work and interest on the topic of software evolvability began even earlier. In the summer of 
2001, I was engaged to serve the public at the Laboratory of Software Business and 
Engineering (SoberIT). My task was to maintain and further develop a measurement tool set 
that had been developed under the recently completed Lucos Tools research project. Certain 
parts of the tool set had high evolvability, but some did not.  

First and foremost, I wish to express my gratitude towards this dissertation’s de-facto 
instructor and supervisor, Casper Lassenius, whose support, guidance, and wit has greatly 
helped this work.  

During my dissertation work, I have participated in three SoberIT research projects: SEMS, 
SHAPE, and ESPA, which have been carried out by the Software Process Research Group 
(SPRG). Most of the work was done in the SHAPE project, some initial studies were made 
under the SEMS project, and the work was finalized in the ESPA project. I am very grateful 
to the “core” members of SHAPE research project team for their ideas, support and 
friendship during this undertaking: Juha Itkonen, Kristian Rautiainen, Jari Vanhanen, and 
Jarno Vähäniitty. Their individual contributions have been so numerous that I cannot possible 
list them all here. Additionally, I wish to thank all the individuals who have participated in 
the SPRG paper review meetings that have greatly improved this thesis.  

I am also thankful to Reijo Sulonen, my official instructor and supervising professor, for 
his help during this work. I also wish to thank my pre-examination professors, Erik Arisholm 
and Tarja Systä, who helped to finalize this dissertation. I am grateful for the anonymous peer 
reviewers of the conferences and journals, whose comments have helped me to improve my 
research. 

I would like to acknowledge the financial support of this project to the National 
Technology Agency of Finland (TEKES), the Department of Computer Science and 
Engineering, and the Graduate School on Software Systems and Engineering (SoSE).    

   Finally, I wish thank my father, Ilmari, and my mother, Sinikka, for their love and 
encouragement. I want to thank my two daughters, Irinja and Venja, who were born during 
the dissertation work, for their existence and for providing me with many moments of 
laughter and joy that have allowed me to take my mind off this work. Finally, special thanks 
to my spouse, Terhi, who has supported and loved me throughout this work. 

   

 



 

LIST OF PUBLICATIONS 

This dissertation is based on the following publications, which are referred to in the text by 
roman numerals. 

I. Mäntylä, M., Vanhanen, J, and Lassenius, C., "A Taxonomy and an Initial 
Empirical Study of Bad Smells in Code", in Proceedings of the International 
Conference on Software Maintenance, pp. 381-384, 2003, Amsterdam The 
Netherlands. 

II. Mäntylä, M. V. and Lassenius, C., "Subjective Evaluation of Software Evolvability 
Using Code Smells: An Empirical Study", Journal of Empirical Software 
Engineering, vol. 11, no. 3, 2006, pp. 395-431.  

III. Mäntylä, M. V., "An Experiment on Subjective Evolvability Evaluation of Object-
Oriented Software: Explaining Factors and Interrater Agreement", in Proceedings 
of the 4th International Symposium on Empirical Software Engineering,  2005, 
Noosa, Australia, 10 pages in electronic proceedings 

IV. Mäntylä, M. V. and Lassenius, C., "Drivers for Software Refactoring Decisions." in 
Proceedings of the 5th International Symposium on Empirical Software 
Engineering, pp. 297-306,  2006, Rio de Janeiro, Brazil. 

V. Mäntylä, M. V. and Lassenius, C. "What Types of Defects Are Really Discovered 
in Code Reviews?", IEEE Transactions on Software Engineering, preprint 15 Aug 
2008,  <http://doi.ieeecomputersociety.org/10.1109/TSE.2008.71>. 

The author of this dissertation is the primary author of all the included publications. He is 
responsible for all the research reported and for all the text in the publication excluding some 
editing of the text. The other authors have helped shape the argumentation of the publications 
and given instructions and improvement suggestion in the research described in the 
publications.   



 1

TABLE OF CONTENTS 

1.  Introduction ..................................................................................................................... 3 

1.1  Motivation and Background .................................................................................... 3 

1.2  Terminology ............................................................................................................ 5 

1.3  Viewpoints to software evolvability ........................................................................ 5 

1.4  Scope ....................................................................................................................... 7 

1.5  Research problem and questions ............................................................................. 8 

1.5.1  Software evolvability issues ............................................................................. 9 

1.5.2  Human evaluations of software evolvability .................................................. 10 

1.6  The structure of the dissertation ............................................................................ 11 

2.  Review of the literature ................................................................................................. 12 

2.1  Software evolvability issues .................................................................................. 12 

2.1.1  Software evolvability criteria ......................................................................... 12 

2.1.2  Quantifying the criteria .................................................................................. 14 

2.1.3  Empirical studies of the benefits of the evolvability criteria ......................... 15 

2.1.4  Empirical studies of evolvability issues ......................................................... 18 

2.2  Human evaluations of software evolvability ......................................................... 19 

2.3  Summary and gaps of existing work ..................................................................... 21 

3.  Methodology ................................................................................................................. 23 

3.1  Research approaches ............................................................................................. 23 

3.2  Software evolvability issues – classifications, types, and distributions ................ 24 

3.3  Human evaluations of software evolvability ......................................................... 25 

4.  Results ........................................................................................................................... 28 

4.1  Classification of software evolvability issues ....................................................... 28 

4.1.1  Classification of code smells .......................................................................... 28 

4.1.2  Empirical validation of the smell classification ............................................. 29 

4.1.3  Classification human identified evolvability issues ....................................... 30 

4.1.4  Combined classification ................................................................................. 31 

4.2  Types and distributions of software evolvability issues ........................................ 32 

4.3  Code review defect distributions ........................................................................... 36 

4.4  Human evaluations of software evolvability ......................................................... 36 

4.4.1  Interrater agreement ....................................................................................... 36 

4.4.2  Effect of demographics .................................................................................. 37 

4.4.3  Code metrics and human evaluations ............................................................. 39 



 2

4.4.4  The impact of the evolvability issues ............................................................. 40 

5.  Discussion ..................................................................................................................... 42 

5.1  Software evolvability issues .................................................................................. 42 

5.1.1  RQ 1.1 ............................................................................................................ 42 

5.1.2  RQ 1.2 ............................................................................................................ 43 

5.1.3  RQ 1.3 ............................................................................................................ 46 

5.2  Human evaluations of software evolvability ......................................................... 48 

5.2.1  RQ 2.1 ............................................................................................................ 48 

5.2.2  RQ 2.2 ............................................................................................................ 49 

5.2.3  RQ 2.3 ............................................................................................................ 50 

5.2.4  RQ 2.4 ............................................................................................................ 52 

5.3  Limitations ............................................................................................................. 52 

5.3.1  Software evolvability issues ........................................................................... 53 

5.3.2  Human evaluations of software evolvability .................................................. 53 

5.4  Practitioner’s implications ..................................................................................... 54 

6.  Conclusions ................................................................................................................... 56 

6.1  Contributions of the research ................................................................................. 56 

6.2  Future work ........................................................................................................... 57 

7.  References ..................................................................................................................... 59 

 



 3

1. INTRODUCTION 

1.1 Motivation and Background 

Currently, software is found everywhere. Besides home computers, the Internet, telephone 
networks, and satellites, software is found in vehicles (cars, trains, airplanes, and ships), 
home electronics (phones, microwaves, dishwashers, cameras, and personal video recorders) 
factories (pulp mills, nuclear plants, and car factories), and buildings (elevators, escalators, 
access controls, and ventilation systems). Thus, modern society is heavily dependent on 
software and the organizations that make software.  

Software evolution is the process of developing the initial version of software and the 
further development of that initial version to reflect the growing and changing needs of 
various stakeholders such as users, customers, company shareholders, programmers, and 
product managers. It has been long recognized that almost all large and successful software 
systems and products need continuous evolution. For example, in his 1975 book, Brooks [24] 
stated “the product over which one has labored so long appears to be obsolete upon (or 
before) completion. Already colleagues and competitors are in a hot pursuit of new and better 
ideas.” and “As soon as one freezes a design, it becomes obsolete in terms of its concepts”.  
Lehman, who studied system evolution at IBM in the 1970s, captured this idea in the first law 
of software evolution [74, 75], the law of continuing change, which states that a system needs 
to be continually adapted to reflect the changes in the real world.  

Thus, for a system of products to be successful, continuous evolution is required. To make 
matters more complicated, the evolution of an individual software product or system can take 
several years. For example, this dissertation was created using Microsoft Word 2003 word 
processor, the eleventh commercial release from the evolution of the 25-year-old Microsoft 
Word product. Thus, evolution of a software system can last for decades and cost a lot of 
money. The Seattle Times [119] estimated1 that the payroll costs alone of developing 
Microsoft’s latest operating system, Vista, were $10 billion. The evolution of Windows Vista 
began in late the 1980s with the development of the Windows NT operating system. The total 
evolution cost of Windows Vista could be roughly $30 billion.   

This study is about software evolvability, a quality attribute that reflects how easy software 
is to understand, modify, adapt, correct, and develop further (for further discussion on the 
term software evolvability, refer to section 1.2). In other words, software evolvability affects 
the costs of software evolution. For example, a one percent savings in the evolution of 
Windows Vista would result in the savings of $300 million. However, the economic impact 
of software evolvability is much larger than one percent.  

Experiments by Bandi et al. [9] and Rombach [107] compared two functionally equal 
systems that had different levels of structural evolvability. Bandi et al. found that adding new 
functionality took 28% longer and fixing errors took 36% longer for the less evolvable 
system. Rombach’s data indicated that requirements changes took 36% longer and error 
fixing took 28% longer in the less evolvable system. Studies utilizing industrial data do not 
have the luxury of comparing two functionally equal systems. Thus, they use regression 
models [10, 29, 77] to show that poor software structure is correlated with lower productivity 
and greater rework. Based on such models, Banker et al. [10] reported that software structure 
may account for up to 25% of the total costs occurring after the initial commercial release. It 

                                                 
1 The Seattle Times had also asked for a figure of evolution costs from Microsoft’s CEO Steve Palmer, but he could not 

provide such a number.     



 4

appears that differences in software structure evolvability can increase the cost of software 
evolution from 25% to 36%.  

In addition to software structure, code layout and code documentation (naming and 
commenting) have also been shown to have an effect on program evolvability [53, 88, 99, 
120]. Miara et al. [88] found that two and four space indentations were correlated with better 
program comprehension when compared with zero and six space indentations. Oman and 
Cook [99] discovered that an advanced form of code commenting and layout (called the book 
paradigm in the original work) is correlated with significantly higher comprehension test 
scores and slightly shorter test times when compared with traditional commenting and layout. 
The results of Tenny [120] indicated that code commenting has a larger effect on program 
comprehension than code structure. Evidence of the benefits of code element naming 
indicates that proper identifier name length is correlated with shorter debugging times [53]. 
Furthermore, studies of source code [93, 125] modifications have shown that code element 
renaming is frequently performed in practice. To summarize, the scientific empirical 
evidence seems to indicate that source code evolvability has a clear economic importance 
through its effect on feature development and error fixing efficiency.   

Practitioners have also recognized that poor software evolvability has economic 
importance. For example, Microsoft’s Office division has determined that 20% of the 
development effort should be budgeted to code modification [39]. An empirical study 11 
years after the original study showed [73] that the actual time spent on making the code more 
maintainable was 15% from the development effort. Although this number is slightly smaller 
than what was stated earlier, it shows that the idea is implemented in practice. Extreme 
programming software development methodology [16] emphasizes short development cycles 
with frequent releases, close collaboration with customers, minimal up-front design, and 
willingness to adapt continuously to change. To be able to cope in such an environment, 
extreme programming emphasizes continuous refactoring as a method of assuring high 
evolvability. Industry experts [7, 49] advocating refactoring claim that high evolvability 
results in several benefits (Table 1). Finally, some industry experts view poorly evolvable 
code as technical debt that can slow development. Thus, debt should be promptly paid back 
to avoid high interest when working with poorly evolvable code [38]. Although the industrial 
sources mostly lack supporting data, it seems that industrial experts consider software 
evolvability important.  

Table 1. Why software evolvability is important - Motivation for refactoring [7, 49] 

• Improves software design [49] 

• Makes programs easier to understand [7, 49] 

• Helps locate bugs [7, 49] 

• Increases software development speed [7, 49] 

• Makes testing, auditing, and documenting easier  [7] 

• Reduces dependency on individuals  [7] 

• Increases job satisfaction  [7] 

• Extends system’s lifetime  [7] 

• Preserves software asset value to organization  [7] 



 5

1.2 Terminology 

In this work, the term software evolvability is a quality attribute that reflects how easy 
software is to understand, modify, adapt, correct, and develop further. Traditionally, this 
quality attribute is referred to as software maintainability that is defined by IEEE [64] as “the 
ease with which a software system or component can be modified to correct faults, improve 
performance or other attributes, or to adapt to a changed environment.” The word 
maintainability is derived from the verb maintain, which according to Merriam-Webster’s 
dictionary2 is “To keep in an existing state (as of repair, efficiency, or validity); to preserve 
from failure or decline (maintain machinery).” Thus, the word maintainability refers to the 
ability to keep software in an existing state or to preserve it from decline. The problem with 
this definition is that software is not consumed or worn down by use. The term software 
maintenance offers a reasonably good fit with software project context where software is 
developed and, after the release, only bug fixes are made to the software. However, even in 
software project context, most software systems are subject to many changes after their initial 
deployment. Studies have also shown that 80% [103] of the maintenance phase changes are 
improvements to the existing system. The term software maintenance also offers a poor 
match with the development of software products such as Microsoft Word, or software 
services such as Google search engine. In software product and service development, the 
development is typically evolutionary and the current product is continuously improved to 
attract new customers and to keep existing customers satisfied. Therefore, based on reasons 
presented in this section, the term software evolvability was chosen over the traditional term 
software maintainability.  

The relationships among the other relevant terms and their definitions are in Figure 1. 

 
Figure 1. Terms and their relationships 

1.3 Viewpoints to software evolvability  

Software evolvability is an internal software quality attribute and it cannot be directly 
experienced by the users of the systems. We have identified four viewpoints regarding 

                                                 
2 http://www.m-w.com/ 



 6

software evolvability (Table 2). First, we may study factors that affect software evolvability, 
e.g., why a piece of software has become poorly evolvable. The list of those factors is likely 
to be extensive, ranging from the programming language used and the motivation of the 
developers, to the business goals and organization of the developing company. Some work in 
this area has been done by Oman et al. [97], who listed several different factors affecting 
software evolvability. Lehman [75] has proposed laws that affect software evolution, some of 
which also affect software evolvability. 

 

Table 2. Viewpoints on software evolvability 

Affecting factors: Which factors can explain the current level of evolvability? 

Evaluation: How can we evaluate software evolvability? 

Improvement: How can we improve software evolvability? 

Effect: What difference does evolvability make (e.g., in terms of development effort)? 

 

Second, we can look at how evolvable a piece of software currently is, and what features in 
the software contribute either positively or negatively to software evolvability. The 
evolvability evaluation can be studied at many abstraction levels, from requirements all the 
way up to the source code. Two main themes can be found in the evolvability evaluation: 
first, software engineering professionals have presented evolvability criteria, i.e., what they 
consider to be the characteristics of highly or poorly evolvable code and design [25, 33, 50, 
78, 102, 115].  Second, several studies have proposed various code and design metrics that 
can be used to quantify evolvability criteria [19, 21, 30, 56, 58-60, 81, 85, 117]. The first 
theme can be thought of as human based evolvability evaluation criteria, while the second 
theme can be viewed as the automation of those criteria. Software evolvablity evaluation is 
further discussed, along with a definition of the scope of this work, in Section 1.4 

Third, the improvement of software evolvability can be divided into at least three 
categories First, it is possible to affect the individuals that perform software development 
through training, personnel selection or other means. Second, it is possible to make 
improvements to the software development environment and organization – having a fully 
automated test harness with excellent test coverage for a large and complex system, for 
example, would improve evolvability because developers would have more courage to make 
modifications to the system and would spend less time testing their modifications. Finally, 
there is the technical improvement of software evolvability, which is often referred to by such 
terms as restructuring, refactoring, or reengineering. In some cases, even rewriting is used to 
improve evolvability. Based on the definitions of software restructuring [7] and refactoring 
[49], both terms essentially refer to a modification made to the internal software structure to 
make the software easier to understand and modify, without affecting the behavior of the 
external software. Reengineering [31] on the other hand, refers to the examination and 
alteration of software in order to reconstitute and implement it in a new form. Generally, 
reengineering is used to refer to major system alterations, whereas refactoring and 
restructuring mean small changes in the code. Often, improvement of software evolvability is 
not studied in isolation. Thus, in a reengineering context, improvement in the software 
evolvability is only one of several goals, and is a partial focus of this thesis.  



 7

Fourth, we can study the effects of the current state of software evolvability on external 
quality attributes such as development efficiency or the number of errors introduced by 
source code modification. This is perhaps the most widely studied viewpoint of software 
evolvability. Several well-constructed studies [9, 20, 77, 107] show that evolvability of 
current system predicts the future development effort. These studies are the motivators for 
this work 

1.4 Scope  

Referring to the previous section regarding the viewpoints of software evolvability, we will 
now examine at the scope of this work. Figure 2 shows the focus areas of this thesis.  The 
main focus is human evaluation of source code evolvablity. This important topic has a limited 
amount of previous research.  

Software evolvability evaluation is important because it assesses the need for evolvability 
improvement and shows what types of improvements should be made. However, it is evident 
that the evaluation is not superior to other viewpoints listed in Table 2 or showed in Figure 2. 
The evaluation can be performed at several levels. We can evaluate evolvability at the level 
of software architecture that consists of systems and sub-systems. We can study the 
evolvability at the sub-system level and look at the package and class design. We can delve 
still deeper into details and study the evolvability of individual classes and methods. The 
code level is important because it always exists and represents the actual software structure. 
With class design and architecture levels, the problem of the accuracy and correctness of 
class design and architecture descriptions is always present, and, in numerous real world 
situations, such descriptions have been completely omitted. However, we see that no 
evaluation level architecture, class design, or code is superior to others. 

Under evaluation of software evolvability, we can identify two fundamentally different 
evaluation approaches: subjective evaluation that is performed by humans, and objective 
metric-based evaluation that is performed predominantly by program analysis tools. Human 
evaluation was chosen as the primary focus of this paper because ultimately, the developer 
decides whether software evolvability should be improved or not. 



 8

Finally, software evolvability evaluation results are affected by at least four factors that are 
depicted in Figure 2. In this thesis, the primary affecting factor being studied is software 
internals, i.e. software structure. Software internals should be the principal component that 
affects software evolvability, although other areas such as change scenario, personal 
background, and environmental support also affect evolvability.  

 
Figure 2 Focus areas of the dissertation.  

Primary focuses are written in bold and underlined. Partial focuses are underlined. 
Other areas are out of scope. 

 

1.5 Research problem and questions  

This dissertation consists of two research areas: software evolvability issues and human 
evaluations of software evolvability. Table 3 shows how the research areas and the research 
questions of this dissertation are linked to the publications of this dissertation.  

 



 9

Table 3. Research areas and research questions 
 Research areas and research questions Publication 
  I II III IV V
 Software evolvability issues      
RQ 
1.1 

How can the evolvability issues, either presented in the literature or identified 
by humans, be classified? 

X X  X X

RQ 
1.2 

What types of evolvability issues are identified in the source code by humans 
and how are they distributed to different types? 

   X X

RQ 
1.3 

What is the distribution of evolvability issues and functional defects found in 
code reviews 

    X

 Human evaluations of software evolvability      
RQ 
2.1 

Do humans achieve interrater agreement when performing code evolvability 
evaluations? 
 

 X X   

RQ 
2.2 

Do the demographics of humans affect or explain the evolvability evaluations, 
and if so, how? 
 

 X X   

RQ 
2.3 

What is the relationship between evolvability evaluations and source code 
metrics, do the evaluations and metrics correlate or explain each other? 
 

 X X X 

RQ 
2.4 

What evolvability issues are seen as the most significant by human evaluators?    X  

1.5.1 Software evolvability issues 

Under software evolvability issues, three research questions were studied with qualitative 
research methods. First, we try to establish an understanding of software evolvability issues 
by classifying them. In many disciplines, but most notably in the natural sciences, 
classifications are created, maintained, and improved to increase scientific knowledge [96], 
e.g., Linnaeus’s classification of the natural world [80] and the periodic table of chemical 
elements. Thus, the classification of evolvability issues has four purposes. First, we hope that 
classification will increase the body of knowledge in software engineering and increase 
understanding of the nature of software evolvability issues. Currently, there is a limited 
number of software evolvability issue classifications and even the existing classifications has 
limitations e.g. we see that the classification by Siy and Votta [113] is not descriptive enough. 
Second, the classification can be useful when creating company coding standards, code 
review checklists, and assigning roles to participant of code reviews. Third, the classification 
can be used as a basis for evolvability assessments (e.g., [1]). Fourth, the defect classification 
can provide input for creating automated defect detectors or developing new programming 
languages. For example, harmful code structures could be excluded from new programming 
languages (e.g., “goto” statements are no longer available in many languages).  

The second research question under software evolvability issues considers the detailed 
evolvability issue types and their distributions. This research question deepens the 
understanding of software evolvability issues from a classification to a more detailed level. 
The distributions of the evolvability issues may reveal consistencies that hold over most 
software systems. However, the fluctuations can also be interesting since they may help 
explain the effect of the context to software evolvability issue types. The detailed evolvability 
issues types provide deeper understanding of the evolvability issues and may reveal new or 
ignored evolvability issue types. The first and second research questions complement each 
other in many ways. Thus, the motivations of the first research question mostly apply to the 
second research question.  



 10

It is important to study the detection mechanisms for evolvability issues. Therefore, the 
distribution between functional defects and evolvability issues detected in code reviews is 
considered in the third research question under software evolvability issues deals with. Prior 
work [113] has suggested that code reviews are a good method for detecting evolvability 
issues and it is vital to investigate this claim further. Making a distinction between functional 
defects and evolvability issues is important for three reasons. First, code reviews are often 
compared with various testing techniques that cannot detect evolvability issues, providing an 
incomplete picture of the benefits of code reviews. Second, code review literature has left the 
impression that code reviews are mainly about finding functional defects. Third, the practical 
implications of the distribution between functional defects and evolvability issues are 
significant. For example, one would expect software product companies to be interested in 
discovering evolvability issues, as their products may need to withstand heavy subsequent 
evolution, whereas software project companies would be less interested in evolvability 
issues.  

1.5.2 Human evaluations of software evolvability  

The research area regarding human evaluations of software evolvability consists of four 
research questions that are studied using quantitative research methods First, we assess the 
interrater agreement of human evaluations of software evolvability. In practice, the 
assessment of evolvability issues is conducted by humans and can be seen as a sort of beauty 
contest of software, e.g., what seems like a nice and cleverly programmed functionality to 
one developer may seem like an ugly hack to another developer. Thus, the levels of the 
agreement of different types of evolvability issues are important to understand. This can help 
identify areas where humans achieve high agreement and areas where the reliability of human 
evaluations is debatable. This information can be used when deciding whether there is a need 
to double check evolvability issues found by individual developers. 

 Second, assuming that there are differences in the human evaluations, we wish to 
understand whether the demographics can explain the differences. For example, does 
experience or education make people more sensitive to evolvability problems? Such 
information can be used when placing evolvability evaluations in a context. For example, if 
we know that less educated developers are less likely to identify evolvability problems, there 
might be a risk of creating poorly evolvable software when using developers with limited 
educations.  

 Third, we wish to understand the relationship between evolvability evaluations and static 
code analysis with source code metrics. Source code metrics have been widely studied, but 
the link to human evaluations has only been partly explored. Understanding the link between 
source code metrics and human evaluations is important in determining whether code metrics 
can be useful in evolvability issue identification and refactoring decision mentoring. For 
example, if we know that people and static analysis tools have a high level of agreement on 
certain evolvability issues then it makes sense to use or develop tools for detecting such 
issues and use human effort for more creative and demanding tasks.  

Fourth, using quantitative methods we study which evolvability issues are seen as the most 
significant by human evaluators. This can be seen as a partial return to the software 
evolvability issues research area. We try to quantify the importance of the evolvability issues 
by linking evolvability issues to the refactoring decisions. In other words, we wish to find out 
which evolvability issues are seen as the most severe. One should note that this severity is 
based on human opinions and it does not mean that such evolvability issues would have the 



 11

highest economical impact. Thus, it only acts as a surrogate for better measures that were not 
available during the study.   

1.6 The structure of the dissertation 

This dissertation consists of six chapters. First, the introduction presents the background 
and relevant terms. Additionally, the research questions are briefly presented and the scope of 
the dissertation is outlined. Next, the literature review chapter presents the relevant literature 
that falls inside the scope presented in Section 1.4. Third, the methodology chapter presents 
the data collection and analysis methods of this study. Additionally, it further discusses and 
motivates the research questions. Fourth, the results chapter summarizes the results of this 
dissertation. Fifth, the discussion chapter discusses the results, answers the research 
questions, and highlights the limitations. Finally, the conclusion chapter presents the 
conclusions of this work and highlights directions for future research. 



 12

2. REVIEW OF THE LITERATURE  

This chapter reviews the relevant literature for this dissertation. We cover the literature 
from the two research areas. First, we look at the literature of software evolvability issues. 
Second, we review the literature on human evaluations of software evolvability. To conclude 
the chapter, we highlight the gaps in existing studies.  

2.1 Software evolvability issues  

In the literature, criteria of software evolvability are presented from two viewpoints. Some 
authors have listed desirable features that increase software evolvability while others have 
listed undesirable features that decrease software evolvability. Because the undesirable and 
the desirable features are opposite ends of the software evolvability quality attribute, they are 
both discussed in this section. 

It must be noted that in many publications, the authors do not state that a particular issue 
would affect software evolvability. Rather, they state whether such a feature is or is not 
desirable in the software. In this work, we have made the interpretation that if the issue 
mentioned by the author is not likely to directly cause external failure or other externally 
visible quality deviation, and is more likely to have an effect on software evolvability, then 
the issue is one of evolvability.  

Next, we present prior works of the evolvability criteria at the class and code levels. It is 
difficult to make a clear distinction between class and code levels, and therefore we do not 
try to make a distinction between them. First, we look at the proposed criteria of software 
evolvability. Second, we see how people have tried to quantify the occasionally vague 
criteria. Third, the section presents the studies that have empirical investigated the benefits of 
the evolvability criteria. Finally, we look at empirical studies that have investigated the 
evolvability issues actually existing in software.   

2.1.1 Software evolvability criteria 

This section reviews the literature of software evolvability criteria and summarizes the 
sources based on their origins.  

Perhaps some of the oldest principles contributing to software evolvability are the ideas of 
high cohesion and low coupling presented in the 1970s [115]. High cohesion means that 
software modules should be composed of elements that are heavily related to each other. Low 
coupling means that relations between software modules should be minimal and simple.  

Parnas [102] suggested the idea of information hiding. This means that every module 
should capture and hide an important design decision from other modules, i.e., decisions that 
are difficult or ones that are likely to change. Furthermore, Parnas stressed that simple 
interfaces revealing as little design information as possible are used to protect the hidden 
information. Parnas suggested that using the information hiding principle increases software 
changeability and comprehensibility, and aid independent module development. 
Decomposition should not be based on other factors such as performing the same type of 
functionality or being executed at the same stage in the program. We can see that the idea of 
information hiding has many similarities with low coupling.  

The old design principles also exist in works that are more recent. Information hiding is 
currently supported in many programming languages through encapsulation mechanisms that 
can be used to enforce the information hiding of certain software elements such as data 
structures or routines. Class responsibility cards (CRCs) [14], a method for object-oriented 



 13

class design, require that every class’s responsibilities be identified. According to the authors, 
responsibilities identify problems to be solved. This is very similar to the idea of information 
hiding in which every module should hide and solve an important design decision. The law of 
Demeter by Lieberherr and Holland [78] states that any method M of an object O may only 
call methods that belong to O itself, to M’s parameters, to the objects M has created, and to 
O’s member objects.  Thus, this is a rule that helps to minimize coupling between objects. 
Coad and Yourdon [33, 34] presented design principles such as: low coupling, high cohesion, 
clarity of design (i.e., consistent class naming and clearly defined responsibilities), and 
keeping classes simple. Bass, Clements, and Kazman [13] presented tactics to achieve high 
modifiability, and two of their three tactics are actually improved and elaborated versions of 
high cohesion and low coupling. Currently, the old design principles can be applied to lower 
level design as the abstractions of programming language has risen significantly since the 
1970s. 

Fowler and Beck [50] have come up with a term called code smell to help software 
developers recognize problematic code. These code smells are general descriptions of bad 
code, e.g., a long method or a large class, that are supposed to help software developers 
decide when code needs refactoring. The goal of code refactoring is to make the software 
easier to understand and/or extend. Thus, code smells can be easily seen as code level 
evolvability criteria.  

Structures similar to code smells are described by Brown et al. [25], who discussed 
software anti-patterns. These anti-patterns describe problems from class to architectural 
levels. Some of them are similar to code smells, e.g., God class is equal to a large class smell. 
However, the scope of their work is wider than software evolvability since they also discuss 
problems in software processes, badly behaving developers, and many other areas. 

Coding conventions [118] or software developer guides [62, 72, 86, 116] can also be seen 
as evolvability criteria as many instructions in such guides have the most significant effect on 
software evolvability. For example, McConnell [86] discussed several characteristics of high-
quality software construction which consists of the principles of class and routine design; the 
properties of high-quality routines; reasons for creating a class; classes to avoid; and 
instructions on the design and implementation of class interfaces, encapsulation, inheritance, 
constructors, member functions, and data. Whereas Fowler and Beck, and Brown et al. 
focused mostly on code structure, coding conventions, and developer guides often have much 
wider focus. They may additionally give instructions on code layout, code file organization, 
code element naming, code commenting, and other issues not related to software evolvability 
directly, such as defensive programming, the usage of suitable tools, and various 
collaboration methods. 

In Table 4, the evolvability criteria based on the type of source it originates from are 
grouped. We have three somewhat distinct sources. First, positive criteria, i.e., works 
presenting desirable features in code or design, are called design principles. Second, negative 
criteria, i.e., works presenting undesirable features, are called evolvability issues. Third, we 
have practitioners’ guides, i.e., coding conventions or software developers’ guides that try to 
summarize the first two sources into practical instruction on programming. Although, 
practitioners’ guides have more items in their evolvability criteria, their ideas are less novel 
and there is less discussion of the evolvability criteria. Practitioners’ guides also have a much 
larger focus than works presenting positive or negative criteria.  



 14

Table 4. Source of evolvability criteria 
 Design principles Evolvability 

issues 
Practitioners’ guides 

Examples Low coupling, 
information hiding 

 

Large class, 
duplicate code 

No code file should exceed 2000 lines, method names 
should be verbs, create classes to model real world 
objects.  

Sources [13, 14, 33, 34, 78, 
102] 

[25, 50, 122] [62, 72, 86, 116, 118] 

 

It must be noted that the evolvability criteria presented in this section is mostly based on 
personal opinions and experiences rather than research. This was true at least when the ideas 
were first introduced. Sections 2.1.3 and 2.1.4 discuss the empirical evidence of the 
evolvability criteria.  

2.1.2 Quantifying the criteria 

This section reviews the literature that has focused on quantifying the evolvability criteria 
through code metrics.  

Code and design metrics have been widely studied [19, 21, 30, 56, 58-60, 81, 85, 117].  
One of the reasons for the high interest in code and design metrics has been the idea that they 
can be used to quantify software quality attributes such as evolvability, understandability, and 
complexity. Furthermore, there are specific metrics that help to follow the design principles 
of high cohesion, low coupling, and information hiding. Thus, code metrics studies can be 
seen as an attempt to quantify the evolvability criteria. According to Fenton and Pfleeger 
[47],  internal product attributes can be measured in two dimensions: size and structure.  

This paragraph introduces some size measures and discusses their relation to software 
evolvability. Line of code (LOC) is the most commonly used software size metric.  Fenton 
and Pfleeger [48] refer to the work by Grady and Caswell [55] for the most widely accepted 
definition of a line of code. According to this definition, a line of code is any statement in a 
program except comments and blank lines (often abbreviated as NLOC, non-commented 
lines of code). This measure can be used as a quantification of whether a method or a class is 
considered too large. Halstead metrics [56] were one of the first metrics for trying to capture 
software size by other means rather than just counting lines of code [48].  The building 
blocks of the Halstead metrics are the number of unique operators and operands, and the total 
occurrences of operators and operands. From those building blocks, Halstead derived a wide 
range of different metrics that are currently seen by many authors as confusing and lacking 
theoretical or empirical basis [26, 48, 57, 124]. Halstead metrics building blocks are, in fact, 
a measure of program size and/or complexity. Despite its criticisms, empirical studies by 
Oman et al. [36, 37, 100, 123] found it a satisfactory predictor of software evolvability. Basic 
building blocks of Halstead metrics can be used like lines of code measure when evaluating 
software evolvability.  We can easily present other size metrics that can be linked to software 
evolvability such as number of methods in a class and number of classes in a package.   

This paragraph presents some structure metrics and focuses on metrics that are claimed to 
quantify some evolvability criteria presented in the previous section. McCabe’s cyclomatic 
complexity measures the number of independent execution paths in a computer program [85]. 
McCabe originally suggested that a small cyclomatic number per program module increases 
the testability and understandability of a module. McConnell [86] listed complexity reduction 
as one of the reasons to create a method or class. Many authors have studied coupling metrics 



 15

and they link directly to low coupling evolvability criteria. In the object-oriented metrics 
suite by Chidamber and Kemerer [30], coupling is defined as occurring between classes when 
methods of one class use the methods or instance variables of another class. To get a good 
overview of coupling metrics, see an article by Briand et al. [21]. Cohesion has also been 
widely studied and it directly links to high cohesion evolvability criteria. Again, a good 
survey of cohesion is measurement is presented by Briand et al. [19]. The information hiding 
design principle has also been studied in the measurement context [106]. However, likely due 
to the vague and subjective description of the principle, the breadth and the quality of the 
work does not come close to the work performed with coupling and cohesion measurements. 

Code metrics, among other things, offer a way to quantify the evolvability criteria and 
enable automatic evolvability evaluation. Code metrics can be roughly divided into size 
metrics and structure metrics. However, as the code metrics are not the primary focus of this 
study, we have only presented the most relevant literature of this widely researched topic. For 
more information on this topic, we refer to cited articles and textbooks by Henderson-Sellers, 
Lorenz and Kidd, and Fenton and Pfleeger [48, 59, 81]. 

2.1.3 Empirical studies of the benefits of the evolvability criteria 

Most of the evolvability criteria presented in Section 2.1.1 is not based on empirical work, 
but rather on the opinions of the authors or in some cases larger consensus among a group of 
experts. Most of the individuals presenting the criteria are highly experienced and respected 
software engineers. Thus, attempting to validate their claims has offered researchers a 
starting point for empirical studies of software evolvability. This section reviews the 
empirical studies of software evolvability criteria. We look at the evolvability criteria for 
software structure, but also for other elements such as code commenting and layout. 
Furthermore, we look at empirical studies linking code metrics and software evolvability 
since code metrics can be seen as a quantification of the evolvability criteria.  

Briand et al. [20] studied object-oriented design guidelines by Coad and Yourdon [33, 34] 
from the perspective of maintainability. Briand et al. used student subjects tasked with 
studying the design documents of two systems with different functionality and design. In the 
task, the students would mark the spots where changes would be needed in order to respond 
to requirement changes. They concluded that the system designed using Coad and Yourdon’s 
principles was easier to maintain than the other system. 

 Arisholm et al. [4] studied the changeability of two object-oriented systems with the same 
functionality but different design. They used student subjects whose task was to perform four 
programming tasks to an existing code. Surprisingly, it was found that the system with “bad” 
design was easier to understand and change. However, in a follow-up study made with 
industrial software consultants, it was found that the “bad” design was more maintainable to 
the junior developers and that the “good” design was more maintainable for the senior 
developers[3]. The implication is that evolvability is not only an attribute of the software but 
it is affected by the developer’s demographics as well. 

Deligiannis et al. [42] studied the maintainability of two object-oriented designs where one 
design was suffering from a god class problem and the other one was not. A god class 
problem refers to a case when an object-oriented class hierarchy contains a single class that is 
too big and has too much functionality. The researchers had 20 student subjects who 
completed a modification task and answered a survey questionnaire. Based on the data, it 
appeared that the system without a god class problem was slightly easier to understand and 
maintain.    



 16

Darcy et al. [40] studied the structural complexity of software through concepts of coupling 
and cohesion. The researchers used 17 software engineers who completed perfective 
maintenance tasks. The study shows that cohesion and coupling alone had no effect on 
software evolvability. However, coupling and cohesion had a significant interaction effect on 
software evolvability. This is depicted in Figure 3. The figure shows that the smallest effort 
was required for systems that had high cohesion and low coupling as one would expect. 
However, the highest effort was not required for a system that had low cohesion and high 
coupling, which is surprising. The study results indicate that jointly, the evolvability criteria 
high cohesion and low coupling have positive effects on software evolvability measured in 
work effort.  

 
Figure 3. Interaction effect of coupling and cohesion on effort [40] 

The works discussed thus far in this section studied design criteria with respect to software 
evolvability. In addition to pure design criteria studies, there are several works in which code 
metrics, which can be seen as surrogates for design criteria, have been used to predict the 
evolvability of software systems. 

Rombach [107] studied source code metrics as maintenance effort predictors. The study 
used four systems, which varied from 1.5 to 15.2 KLOC in size, for which the researcher had 
planned identical maintenance tasks. Rombach’s data indicates that requirements changes 
took 36% longer and fixing errors took 28% longer in the less evolvable system. The results 
propose with high significance that source code metrics can predict maintainability, 
comprehensibility, locality, and modifiability.  

Li and Henry [76, 77] studied the correlation between maintenance effort and object-
oriented metrics with two commercial systems. Maintenance effort was measured in a 
number of changed code lines per class. They concluded with high significance level that the 
chosen object-oriented metrics could be used as maintenance effort predictors. They also 
compared the object-oriented metrics and simple size metrics such as lines of code and 
number of methods. The comparison indicated that object-oriented metrics are better 
maintenance effort predictors than simple size metrics alone.  



 17

Chidamber et al. [29] studied the relation of object-oriented metrics and economic 
variables (productivity, rework, effort, and design effort) on three commercial software 
systems. The results show that high coupling and low cohesion are related to lower 
productivity, greater rework, and greater design effort after controlling the effects of 
individual developers and adjusting for size differences.   

Bandi et al. [9] studied object-oriented code metrics and maintenance effort with university 
students. The study consisted of two different maintenance tasks that lasted between 90 and 
120 minutes. The study results indicate that adding new functionality took 28% longer and 
fixing errors took 36% longer for a less evolvable system. The study showed with high 
significance that the used measures were useful maintenance effort predictors.  

Arisholm [5] studied the impact of structural properties on the changeability of object-
oriented software. The research found that none of the structural attribute measures was a 
significant predictor of change effort.  

Additionally, there have been studies in which the structural properties of the software 
measured with code metrics, have been correlated with and used to predict defect counts [12, 
18, 23, 46, 92, 127]. There have also been studies in which the structural properties of the 
software have been used to create effort prediction models [22, 95]. However, such studies 
are mostly out of the scope of this work as they focused on functional defects.  

In addition to the structural properties of code, other factors affect software evolvability. 
Miara et al. [88] studied the affect of program indentation on program comprehensibility with 
experienced and novice subjects. The researchers found that the style of the indentation – 
blocked or nonblocked – made no difference. However, indentation level had a significant 
effect on program understanding. The highest test scores of program comprehension were 
received from programs with two-space indentation followed by four- and six-space 
indentation. The lowest scores were received from programs with no indentation at all.    

Gorla et al. [53] studied debugging effort with a student experiment. They found that the 
lowest debugging times were associated with blank line share between 10-20%, and having 
8-16 character long data item names.  

Tenny [120] studied the use of comments and program readability with a student 
experiment. The research found that commented programs were easier to understand based 
on the number of right answers in a questionnaire that the students took during the 
experiment. Furthermore, the results of Tenny indicate that code commenting has a larger 
effect on program comprehension than code structure. Some practical implications of this 
were discovered by Lind and Vairavan [79] who found that program comment density is 
correlated with program development effort, indicating that developers used more comments 
for difficult code. 

Oman and Cook [98, 99] presented a book paradigm for program documentation. The book 
paradigm combines a special program layout and program commenting in a format that is 
similar to traditional books. Their studies showed that the book paradigm aided program 
comprehension and reduced maintenance effort. Similarly, Arisholm et al. [6] found that code 
with UML-documents is more maintainable than code without UML-documents.  

Table 5 summarizes the empirical research of the benefits of evolvability criteria. The table 
shows that there actually is empirical support for the proposed evolvability criteria discussed 
in Sections 2.1.1 and 2.1.2. However, whether the support is conclusive is debatable. For the 
first claim, there is a study indicating that evolvability criteria for software structure is not 
equal to all persons since developer experience affects the evolvability criteria. Additionally, 



 18

for the first claim, there have been limited studies of bad code smell and anti-patterns. For the 
second claim, there appears to be conclusive evidence, although some studies do not support 
the claim. For the claims not focusing on software structure, there are limited studies 
supporting the ideas that proper code layout leads to higher evolvability.  

Table 5. Empirical evidence of evolvability criteria 
Claim Studies supporting Studies not supporting 
1. Following evolvability criteria 
of software structure results in 
higher evolvability in terms of cost 
or effort 

Briand et al. [20], Deligiannis et al 
[42], Darcy et al [40] 

Arisholm et al. [4], Arisholm et al 
[3] 

2. Following evolvability criteria 
of software structure quantified 
with code metrics results in higher 
evolvability in terms of cost or 
effort 

Rombach [107], Li & Henry [76, 
77], Chidamber et al. [29], Bandi et 
al. [9] 

Arisholm [5] 

3. Following evolvability criteria 
of code layout results in higher 
evolvability in terms of cost or 
effort 

Miara et al. [88], Gorla et al. [53], 
Oman and Cook [98, 99] 

 

4. Following evolvability criteria 
of code commenting results in 
higher evolvability in terms of cost 
or effort 

Tenny [120], Oman and Cook [98, 
99] 

 

5. Following evolvability criteria 
of code element naming results in 
higher evolvability in terms of cost 
or effort 

Gorla et al. [53]  

 

2.1.4 Empirical studies of evolvability issues 

Only a limited number of studies exist that have presented empirical data of the actual 
reported evolvability problems. In other words, most of the evolvability problems, such as 
code smells by Fowler and Beck [50], or evolvability criteria, such as low coupling and high 
cohesion by Stevens et al [115], have not been empirically studied from the viewpoint of 
numbers and types of such evolvability problems. For example, we currently have little 
knowledge of the nature and the frequencies of the evolvability problems that are discovered 
in software.  

Siy and Votta [113] studied the types of evolvability problems found in code reviews. In 
their study, only 18% of the findings identified were functional defects causing system 
failure, 22% were false positives, and 60% were evolvability issues. The research categorized 
369 evolvability issues of 31 code inspection sessions and created four groups: 
documentation (share 47%), style (46%), portability (5%), and safety (2%). Furthermore, the 
documentation group had subgroups: clarification (need to add or improve comments), 
correction (comments were incorrect), and documentation of future work (refers to future 
development ideas). The style group had subgroups: clean-up (need for modifications to the 
code without changing the meaning of the program to prepare the code for subsequent 
evolution), renaming (renaming of code elements), debugging (need to add information on 
program execution to make debugging easier), and cosmetic (minor modifications, e.g., 
bracket conventions, indentations, blank lines). However, the study also had limitations. First, 
the study provided no detailed analysis of the defects, providing only high-level groups and 
their subgroups. Second, the classification is not descriptive enough. For example, the style 



 19

group is described as issues related to an author’s personal programming style, which could 
be almost anything. In addition, the documentation group contains issues related to code 
commenting, but excludes code element naming; such issues are placed inside the style 
group. Code element naming and commenting should be in the same group, as they both 
communicate the intent of the code to the reader. Furthermore, having a safety group, 
meaning additional checks for scenarios that cannot possibly happen, for evolvability defects 
is unusual. 

There have been studies focusing on the performed refactorings or problems detected in the 
source code. As refactorings are evolvability improvements, such studies are also empirical 
studies of evolvability issues in the source code. A Study of Eclipse IDE usage [93] found 
that renaming was used by all of the 41 developers participating in the study. It was followed 
by the move method and extract method refactorings that were both used by over half of the 
participants. Xing and Stroulia [125] studied source code changes in a software system. Their 
data shows that entity renaming was the most frequent refactoring followed by entity move 
and visibility change. Demeyer et al. [43] used code metrics to detect four type refactorings 
from three systems. The most frequent refactoring was split method followed by move 
method and split/merge subclass with roughly equal shares, and the most infrequent 
refactoring was spilt/merge super class. Additionally, there have been works studying 
duplication in a software system [8, 44, 121]. From Ducasse et al. [44], it was discovered that 
the amount of duplication varied from 6% to 25% in the different systems analyzed. The 
researchers note that in their study, systems with the highest duplication were purposefully 
chosen for the analysis as it was anticipated that they would contain high amounts of 
duplication. Thus, having one-quarter of duplicate code should be considered as an extreme 
value. The studies in this paragraph contain good quantitative data of the evolvability issues. 
Unfortunately, tools cannot detect all the issues a human would notice.  Therefore, these 
studies offer a limited view of the evolvability issues that is restricted to the type of issues the 
analysis program is able to detect. Therefore, tool based analysis alone cannot be seen as a 
sufficient method for studying the types and distributions of evolvability issues.  

To summarize the empirical studies of software evolvability criteria, we state the following. 
First, there has only been a single study, by Siy and Votta [113],  that has holistically studied 
types and distributions of software evolvability issues. Second, there have been studies, 
which reveal frequencies of certain source code modifications, such as renaming, that are 
claimed to have positive effects on software evolvability. Third, there have been studies that 
measure the amount of some feature that make source code less evolvable, such as code 
duplication. We think that there should be more holistic studies looking at the software 
evolvability issues that are identified by humans as focusing only on a certain evolvability 
issues offers only a partial view. 

2.2 Human evaluations of software evolvability 

This section addresses the second research area: human evaluations of software 
evolvability. Here, we look at the prior empirical studies of human evolvability evaluations 
and their possible comparison to source code metrics or other automated analysis.   

Shneiderman et al. (pp. 134-138 [112]) reported results from using peer reviews in 
software code quality evaluation. They conducted three peer review sessions that each had 
five professional programmers who had similar backgrounds and experiences as the 
participants. Each programmer provided one of his or her best programs that were then 
evaluated by the four other participants. The review was performed by answering 13 
questions on a seven-point Likert scale. The questions varied from blank line usage and the 



 20

chosen algorithm, to the ease of further development of the program. The results showed that 
in half of the evaluations, three out of four programmers agreed on the subjective evaluations 
(answers differed by one at the most). Still, in only 43.1% of the evaluations, the difference 
between all four evaluators was two or less. Thus, in over half of the evaluations, the 
difference between the minimum and maximum was three or more, indicating disagreement 
between the evaluators. The researchers tried to explain this by speculating that the subjects 
misunderstood the questions or the scale. However, the research does not account for factors 
such as differences in the developers’ opinions about the program design, structure, and style 
that might explain the results. 

Kafura and Reddy [67] studied the relationship between software complexity metrics and 
software maintainability. Maintainability was measured using system expert evaluations. 
Unfortunately, no details are given on how these evaluations were collected by the 
individuals and no data is provided of the evaluations. Nevertheless, the researchers conclude 
that the expert evaluations on maintainability were in conformity with the source code 
metrics. 

Shepperd [111] validated the usefulness of information flow metrics on software 
maintainability by collecting the opinions of the maintainers for 89 modules of airspace 
software that totaled around 30,000 lines of code. Each maintainer was asked individually to 
classify each module from one to four on the perceived difficulty of some hypothetical 
maintenance task. In 73% of the individual classifications, the differences per module were 
one or less, and thus the researchers concluded that there was a strong correspondence 
between the individual ratings. Shepperd also found high correlation (0.7) between the 
subjective maintainability evaluations and information flow metric. 

The Air Force Operation Test and Evaluation Center (AFOTEC) pamphlet [1] offers 
perhaps one of the most complete guides to performing human-based software 
maintainability evaluations. Its questionnaire part is partly utilized in the studies by Oman et 
al. [36, 37, 100, 123] and Muthanna et al. [94]. According to the pamphlet, the evaluation is 
performed by five evaluators who should have no relationship to the software to ensure that 
they are unbiased. As it is seldom humanly possible to evaluate an entire software system, the 
evaluation is performed on selected source code samples that are representative of the 
system. The evaluation is performed by agreeing or disagreeing, using a six-point ordinal 
scale, with statements that cover different aspects of software maintainability based on the 
source code and available documentation. Before the actual evaluation, a calibration run is 
made to ensure that the evaluators have a “uniform interpretation of how each statement 
applies to the system.” However, the pamphlet particularly stresses that the evaluators should 
never be forced to change a score they have given. Thus, the purpose is to achieve agreement 
through discussion on the interpretation of the statements, while the answers are still allowed 
to vary between evaluators. After the calibration, the team proceeds to the actual evaluation. 
The statements are grouped into four categories: software documentation, module source 
listing, computer software unit, and implementation. Some example statements include 
program initialization is adequately described, identifier names are descriptive of their use, 
and dataflow in this unit is logically organized.  

Oman et al. [36, 37, 100, 123] reported on the construction of a maintainability index. In 
this work, the researchers used source code metrics to create polynomial regression models 
that measured software maintainability. They calibrated the maintainability models based on 
how well they correlated with the subjective evaluations of the software maintainers of eight 
industrial software systems ranging from 1,000 to 10,000 lines of code [100]. After 
calibration, they performed a validation study in which they again acquired opinions and the 



 21

source code on six industrial systems ranging from 1,000 to 8,000 lines of code. In the 
validation study, they also saw discrepancies where one engineer was more lenient and 
another more critical towards the systems they were evaluating. Although the study [100] 
does not directly indicate this, it appears that there was only the opinion of a single individual 
per software system that was used in the creation and the validation of the metric, which 
makes it difficult to effectively study the differences in human maintainability evaluation. 
After performing tests on several industrial systems, the researchers concluded that the 
automatic assessment corresponds well to the subjective view of the experts [123]. 

Muthanna et al. [94] used a similar approach as Oman et al. They started with 18 metrics, 
which they first narrowed down to six because most of the metrics had very high correlation. 
From the remaining six metrics, they chose three, which were found as the best 
maintainability predictors based on the developers’ subjective opinions. From the three best 
maintenance predictor metrics, they created a regression model. They also validated the 
model in a single industrial software system with the size of 92 KLOC. In this validation, 
they compared model maintainability prediction with developers’ opinions. In most cases, the 
prediction model was in line with developers’ opinions, but there were also cases where it 
was not. 

Kataoka et al. [69] analyzed a software system with a tool capable of detecting four simple 
evolvability issues (e.g., remove parameter, useless return value). The original developer of 
the software system analyzed the findings of the tool. The developer agreed with one third of 
the findings, disagreed with one third, and was undecided with the final third.   

Kataoka et al. [70] studied the usefulness of improving software quality with refactoring 
and reported on a comparison between human evaluation and software metrics. According to 
the researchers, the subjective evaluation of an expert on the effectiveness of refactorings 
correlated quite well with measured improvement in the coupling metrics. The drawback in 
the study is that it consisted of only five refactoring cases and only a single developer 
evaluated the effectiveness. 

Genero et al. [52] studied the maintainability of UML-class diagrams. The researchers 
showed that subjective evaluation of understandability, analyzability, and modifiability of 
UML-diagrams correlated with various class level metrics. In a follow-up study [51], they 
found a correlation between subjective complexity evaluation and both the time required to 
understand the UML-diagram (0,242), and objective code metrics based diagram 
classification (0,539). However, these studies are made with UML-diagrams and they lack 
results on the interrater agreement of the evaluations. 

In recent work, Anda [2] compared expert judgment and structural measures in assessing 
software maintainability. The research found that the expert opinions and software metrics 
mostly corresponded to each. However, the research points out that several issues of software 
maintainability were not captured by the source code metrics.  

2.3 Summary and gaps of existing work 

Figure 4 illustrates the topics covered in this literature review and shows how our research 
questions link to these topics. Software evolvability can be, in the context of software 
internals (see Section 1.4 for details of scope of this work), operationalized with software 
evolvability criteria (see Section 2.1.1 for details of the criteria and Section 2.1.2 for details 
of its quantification). These criteria have been mostly created with expert opinions rather than 
empirical research of software systems. Furthermore, software evolvability issues, which are 
a subset of software evolvability criteria, have been studied less than the design principles 



 22

(see Table 4 for details) which are also a subset of software evolvability criteria. Thus, our 
study focuses on increasing understanding about the human identified evolvability issues 
through empirical studies. We believe that this work can lead to improved software 
evolvability criteria, which can then again increase the benefits of applying these criteria. For 
current research on empirical benefits of software evolvability criteria, see Section 2.1.3. The 
only study, that the author is aware of, where researchers have holistically focused on human 
evolvability issues was done by Siy and Votta [113] who studied the types of evolvability 
issues identified in code reviews. Even that study did not contain a very detailed analysis of 
the evolvability issues (see Section 2.1.4 for a detailed description of that study). 

The other research area of this study, human evaluations of software evolvability, was 
chosen because human evaluation plays a key role in software evolvability improvement. For 
example, if an individual does not recognize or consider a certain issue to be a problem, then 
that individual is not likely to remove this issue from the software. Therefore, differences in 
human evaluations can lead to difference in evolvability. Furthermore, this area has not been 
properly investigated. For example, little knowledge was available for assessing the 
reliability of the human evaluations. In many studies, referred in Section 2.2, human 
evaluations are not the primary focus of the study, but they are mentioned as a side note. 
Most of the studies also lack proper statistical analysis. Furthermore, many of the studies 
have been conducted prior to the era of object-oriented languages, which currently dominate 
the field of software development. Additionally, some of the recently suggested evolvability 
issues, i.e., the code smells by Fowler and Beck, lack empirical studies.  

 
Figure 4. Topics covered of existing literature and research questions. 

 



 23

3. METHODOLOGY 

This chapter presents the methodologies used in the studies. First, is an evaluation of the 
research approaches that were used in different parts of this dissertation. A brief presentation 
of the research questions and the methodology used follows. 

3.1 Research approaches 

This research consists of a series of studies that are reported in publication I-V. The 
publications are actually based on three studies that make up three separate data sources. The 
first study, which provides data for articles I and II, was performed in a software product 
company that had problems with evolvability. There, we studied the existence of code smells 
[50] through a survey of software modules that developers were most familiar with. After the 
survey, we gained a better understanding of the survey results through discussions with two 
lead developers. The first study had a number of limitations that were not possible to correct 
in a company setting, so we performed a second study. In that study, which provided data for 
articles III and IV, students evaluated the need for source code refactoring and the existence 
of certain code smells in a controlled experiment. The data collection for the second study 
was done twice, each with a different set of students. In both data collection rounds the 
student evaluated the refactoring needs of ten methods of a small software application. The 
biggest differences between the data collection rounds are as follows:  

• The first round required evaluation of certain code smells for each method. In the 
second round we asked the rationales whether the code should be refactored or 
not. This was changed because we felt the rationales were more interesting than 
the evaluations of some predefined code smells.  

• Data collection for the first round was done using survey forms in a controlled 
classroom setting where students had a pre-set amount of time to answer the 
questions concerning each method. In the second round, we used a web-based 
survey, and the students were free to use as much or as little time as they needed. 
However, in the second round we measured the time each student used to 
complete the survey. The time issue was changed between studies because the 
fixed time slot caused problems in the first round and we suspected that it might 
create even more problems in the second round when we asked for the rationales. 
We moved to a web-based survey because we felt that the extra control of a 
classroom setting was of little value compared to the extra effort it would require 
of the stakeholders in the experiment.   

• In the first round, the students were given points if they simply took part in the 
experiment. In the second round, students were graded based on their rationales. 
We changed this because we wanted to encourage the students to provide their 
rationales for the refactoring decision.  

The third study provided data for article V. In the second data collection round of the 
second study, we collected qualitative data of refactoring rationales that, for the most part, 
described evolvability issues. In the third study, we continued this qualitative study by 
observing and collecting data of code review defects. We observed industrial code review 
sessions and analyzed lists of defect data from students’ code review sessions. We analyzed 
over 700 code review defects by their technical type and created a classification system.   

Table 6 summarizes the research data of each article. In the table, the primary data source, 
data collection, and data analysis methods are presented. The data source is industry (I) or 



 24

students (S); the data collection method is a survey (S), experiment (E), or observation (O); 
and the data analysis is either quantitative (N) or qualitative (L). Data collection in article IV 
was an uncontrolled experiment; the data was collected through a survey and is marked as 
S/E. Furthermore, N&L means that both qualitative and quantitative data analysis were major 
factors in the results. 

One of the strengths of this dissertation is that the use of both student and industrial 
workers provides a nice variety of subjects and reduces the possibility of bias. The data 
collection methods could be improved. Specifically, there are weaknesses in the data 
collection methods of the first two articles. It appears that in those studies, it would have been 
more appropriate to use an interview as a data collection method or at least to interview the 
survey respondents in order to gain additional rationale for the answers. This would have 
provided a richer and more reliable data set for the first two articles. However, the data 
collection methods of the last three articles are suitable. The actual data analysis methods 
used were chosen based on the type of data that was collected, thus they have no major 
weaknesses.  

Table 6. Summary of research data 

 
Article 

I II III IV V 
Data source I I S S I 
Data 
collection S S E S/E O 

Data analysis N N N N&L L 
 

3.2 Software evolvability issues – classifications, types, and distributions 

RQ 1.1 How can evolvability issues, either presented in the literature or identified by 
humans, be classified? 

The philosophy of science divides classifications into logical and factual [96]. Factual 
classifications define classes based on some positive characteristics of the classified 
elements, e.g., the terms “male” and  “female” create a factual classification whereas the 
terms “male” and “not-male” form a logical classification. Furthermore, it was noted by 
Niiniluoto [96] that factual classification are always more or less incomplete, but still 
improving and constructing such classifications is an important step in creating scientific 
knowledge. This terminology relies mostly on classifications done in real natural sciences, 
such as chemistry or biology (e.g., Linnaeus’s classification of natural world [80]). 
Qualitative research literature also recognizes the importance of classifications, although it is 
referred to with the term clusters by Miles and Huberman [89]. However, there are some 
differences, e.g., classification in natural sciences often do not allow overlapping classes, 
whereas qualitative studies may have overlapping clusters.  

Classifications of evolvability issues are presented in articles I, II, IV, and V. All of the 
classifications are created based on similarities in the technical type of the studied 
evolvability issues. Thus, the classification is factual rather than logical. Furthermore, the 
classifications are closer to natural science classifications than qualitative science clusters as 
they describe real concrete constructs and they do not allow overlapping classes in principle.  

The classifications were created based on analytical analysis of the evolvability issue types, 
i.e., the authors looked at the types of evolvability issues and created classifications based on 
similarities in the evolvability issues. In articles I and II, the classified evolvability issues 



 25

were suggested by Fowler and Beck [50]. In articles IV and V, they were found by humans 
when studying the source code and then classified by the researchers. Furthermore, in article 
I, we performed a weak empirical verification for the validity of the classification based on 
the correlations between the issues.   

RQ 1.2 What types of evolvability issues are identified in the source code by humans and 
how are they distributed to different types? 

This research question is studied in articles IV and V. Qualitative data analysis methods 
were used to analyze the data [89, 91, 110], e.g., the coding process and the Atlas.ti program. 
Prior empirical work on the actual evolvablity issues found in the source code is limited, thus 
this research question was exploratory.  

In the study described in article IV, the data came from an experiment in which 37 software 
engineering students evaluated methods in a Java program. The students were asked whether 
they thought the methods should be refactored or not, as well as to provide the rationale 
behind their decisions. The study analyzed the refactoring rationales to find what types of 
evolvability issues were identified. Additionally, the study performed statistical analysis 
using the SPSS program to link the identified refactoring drivers to the refactoring decisions, 
e.g., does a certain evolvability issue indicate higher likelihood in the refactoring decision. 
While writing the summary of this dissertation, the data of article IV was partly reanalyzed to 
make the results of the data analyzes easier to compare with the results of article V. The 
reanalyzed results can be seen in Section 4.2. 

In the study described in article V, the data was gathered from two sources. Observations of 
industrial code review sessions provided the first data set. The second data set came from the 
defect logs of software engineering student code reviews that were performed as an exercise 
in one of our courses. Code reviews were studied because Siy and Votta [113] proposed that 
the majority of code review issues are actually evolvability issues. Thus, the study analyzed 
the types and ratios of issues that were found in the code reviews. 

RQ 1.3 What is the distribution of evolvability issues and functional defects found in code 
reviews? 

This research question is studied in article V. The data collection method for article V was 
described in the previous section. We wished to study the proposition by Siy and Votta [113] 
that most defects discovered in code reviews are evolvability issues rather than functional 
ones. This can help us understand the true benefits of code reviews and help to assess 
whether code reviews are a good tool evolvability evaluation and improvement.  

3.3 Human evaluations of software evolvability 

Research questions 2.1 through 2.4 involve human evaluations of software evolvability and 
are studied in articles II, III, and IV. In all articles, a questionnaire was used to collect 
evaluations of software evolvability. The study in article II was conducted in a software 
product company. The company developers evaluated the evolvability of the software 
modules with which they were most familiar. The evolvability evaluation was performed by 
evaluating the existence of the code smells by Fowler and Beck [50]. Article III is an 
experiment done with software engineering students. In the experiment, the students 
evaluated the evolvability of a small application that was developed by this author especially 
for the purposes of the experiment. The evaluation was performed at the method level; the 
students evaluated the existence of three code smells (long method, long parameter list, 
feature envy), and determined whether the method under evaluation should be refactored in 
order to make the software more evolvable. The study in article IV was also performed with 



 26

software engineering students. The results of the experiment were also partially applied to 
article III. Details of article IV were already described in the previous section under RQ 1.2. 

RQ 2.1 – Do humans achieve interrater agreement when performing code evolvability 
evaluations?  

This research question is studied in articles II and III. When studying interrater agreement, 
we must first consider whether there should be interrater agreement between evaluators. 
When asking people for the best way to spend their holiday, we might not expect high 
interrater agreement, because people are likely to favor different things. However, we might 
expect high interrater agreement when we present the question to judges of ski-jumping 
contests. Thus, the purpose of interrater agreement analysis is to study the amount of 
agreement between the results of evolvability evaluations. In article II, this agreement 
analysis was studied by looking at the distribution and standard deviations of the evolvability 
evaluations. It is assumed that larger distribution and standard deviations indicate 
disagreement among the raters. Usually, distributions and standard deviations are not 
considered to be effective statistical methods when measuring agreement using the ordinal 
scale, but in article II, we had no choice because the number of participants did not allow 
better statistical methods to be used. In article III, more respondents provided evolvability 
evaluations; therefore, we used a robust statistical method, the Kendall coefficient of 
concordance noted as Kendall’s W [71], to study the interrater agreement. Kendall’s W gives 
a value that is between zero and one. A value of one indicates perfect agreement, while a 
value of zero indicates no agreement. Thus, the values of Kendall’s W resemble the values of 
standard correlation analysis such Pearson’s or Spearman’s correlation. To get reference 
points for values of Kendall’s W, we calculated its values using the first-round results of the 
ski-jumping World Cup competition that was held on December 29, 2004, in Oberstdorf, 
Germany. On that occasion, the five judges evaluating fifty jumps achieved Kendall’s W 
0.888 and asymptotic significance p-value 0.000. 

RQ 2.2 – Do the demographics of humans affect or explain the evolvability evaluations and 
if so, how? 

This research question is studied in articles II, and III. In article II, we compared the 
differences between the evolvability evaluation in selected groups, e.g., developers and lead 
developers, more experienced and less experienced. The statistical analysis of the comparison 
is performed using the Mann-Whitney U test. This approach enables us to determine if there 
are differences in the evaluations among the selected groups. In article III, however, a 
different approach was adapted. In that study, we wanted to collect as much relevant 
demographic information from the respondents as possible in order to study which 
background factors, if any, have the strongest effect on the evolvability evaluations. This was 
studied using categorical regression that can be used for ordinal and nominal level data. 
Regression analysis can be seen as a more solid statistical approach than performing several 
Mann-Whitney tests that are likely to find at least some significant differences due to chance 
alone.  

RQ 2.3 – What is the relationship between evolvability evaluations and source code 
metrics; do the evaluations and metrics correlate or explain each other? 

This question is studied in articles II, III, and IV. In article II, this is studied using direct 
comparisons between the human evaluations and the suitable code metrics, e.g., human 
evaluation of the amount of duplicate code line versus the measured duplicated code lines. 
This approach is slightly problematic since human evaluations can be difficult to quantify in 
precise measures. In article III, categorical regression is used to predict the evolvability 



 27

evaluations based on the selected code metrics. This approach allows us to find the metrics 
that are the best predictors for each type of evolvablity evaluation.  In article IV, we 
performed an analytical analysis to determine whether different evolvability issues that were 
found by humans could be identified with automatic static analysis tools or code metrics. 
This would determine if there are evolvability issues that cannot possibly be detected with 
either tools or code metrics. 

RQ 2.4 – What evolvability issues are seen as the most significant by human evaluators? 

This is studied in article IV. We created regression models that linked the identified 
evolvability issues (predictor variables) to the refactoring decision (predicted variable). This 
allowed us to see which issues that were identified in the source code were actually 
contributing towards the decision of whether or not the code needed to be modified. It is 
important to discern which evolvability issues are actually important and which ones are 
simply pointed out because people were asked to find evolvablity issues in the first place.    



 28

4. RESULTS 

This section presents the results of this dissertation. The first section presents the 
classification of the software evolvability issues. The second section shows the detailed types 
and distributions of human identified software evolvability issues. The third section studies 
the amount of evolvability defects detected in code reviews in comparison to functional 
defects. The final section studies human evaluations of software evolvability. 

4.1 Classification of software evolvability issues 

This section presents our classifications of software evolvability issues. We start in the first 
subsection by presenting a classification based on the code smells by Fowler and Beck [50]. 
The original articles I and II describe this work in more detail. Then, at the second 
subsection, we look at classification created when analyzing human identified evolvability 
issues. This is covered in more detail in articles IV and V. Finally, in the last subsection, we 
combine the classifications. This combined classification is not present in the published 
articles. It can be seen as an extension to two prior classifications and an attempt to combine 
the two partly different classifications schemes.  

4.1.1 Classification of code smells  

The first version of the code smell classification was presented in article I. In this section, 
we present the latter version of the classification that was presented in article II.  

In the classification, there are five groups: bloaters, object-orientation abusers, change 
preventers, dispensables, and couplers. Additionally, two smells could not be placed inside 
any of the taxonomy’s groups.  

The bloater smells are long method, large class, primitive obsession, long parameter list, 
and data clumps (for description of code smells see Table 7 or [50]). Bloater smells represent 
something that has grown so large that it cannot be effectively handled. It seems likely that 
these smells grow a little bit at a time.  

The object-orientation abusers are switch statements, temporary field, refused bequest, and 
alternative classes with different interfaces. The common denominator for the smells in the 
object-orientation abuser category is that they represent cases in which the solution does not 
fully exploit the possibilities of object-oriented design.  

The change preventers are divergent change, shotgun surgery, and parallel inheritance 
hierarchies. Change preventers are smells that hinder changing or further developing the 
software. These smells violate the rule suggested by Fowler and Beck pp. 80 [50], which 
states that classes and possible changes should have a one-to-one relationship.  

The dispensables are lazy class, data class, duplicate code, dead code, and speculative 
generality. The common thing for the dispensable smells is that they all represent something 
unnecessary that should be removed from the source code.  

The couplers are feature envy, inappropriate intimacy, message chains, and middle man. 
This group has four coupling-related smells. One design principle that has been around for 
decades is low coupling [115]. This group has three smells that represent high coupling. The 
middle man smell on the other hand represents a problem that might be  created when 
avoiding high coupling with constant delegation. 



 29

Table 7. Description of bad code smells [50] 
Long method is a method that is too long, so it is difficult to understand, change, or extend. 
Large class means that a class is trying to do too much and it has too many instance variables or methods. 
Primitive Obsession smell represents a case where primitives are used instead of small classes. For example, to 
represent money, programmers use primitives rather than creating a separate class that could encapsulate the 
necessary functionality like currency conversion. 
Long parameter list is a parameter list that is too long and thus difficult to understand 
Data clumps smell means that software has data items that often appear together. Removing one of the group’s 
data items means that the those items that are left make no sense, e.g., integers specifying RGB colors. 
Switch statements smell means a case where type codes or runtime class type detection are used instead of 
polymorphism. In addition, type codes passed on methods are an instance of this smell. 
Temporary field smell means that class has a variable that is only used in some situations. 
Refused bequest smell means that a child class does not fully support all the methods or data it inherits. 
Alternative classes with different interfaces smell means a case where a class can operate with two alternative 
classes, but the interface to these alternative classes is different. For example, a class can operate with a ball or a 
rectangle class, and if it operates with the ball, it calls the method of the ball class playBall() and with the 
rectangle it calls playRectangle(). 
Parallel inheritance hierarchies smell means a situation, where two parallel class hierarchies exist and both of 
these hierarchies must be extended. 
Lazy class is a class that is not doing enough and should be removed. 
Data class is a class that contains data, but hardly any logic for it. Classes should contain both data and logic. 
Duplicate code. Duplicated code  
Speculative generality Unnecessary code has been created in anticipating the future changes of the software. 
Predicting the future can be difficult and often this just adds unneeded complexity to the software. 
Message chains smell means a case, where a class asks an object from another object, which then asks another 
and so on. The problem here is that the first class will be coupled to the whole class structure. To reduce this 
coupling, a middleman can be used. 
Middle man smell means that a class is delegating most of its tasks to subsequent classes. Although this is a 
common pattern in programming, it can hinder the program if there is too much delegation. The problem here is 
that every time you need to create new methods or to modify the old ones, you also have to add or modify the 
delegating method.  
Feature envy smell means that a method is more interested in another class or other classes than the one where 
it is currently located. This method is in the wrong place and should be moved. 
Inappropriate intimacy means a smell where two classes are too tightly coupled with each other.  
Divergent change smell means that one class needs to be continuously changed for different reasons, e.g., we 
have to modify the same class whenever we change a database, or add a new calculation formula. 
Shotgun surgery smell is the opposite of the Divergent Change. It means that for every small change we must 
modify a bunch of classes, e.g., whenever we change a database we must change several classes. 

 

4.1.2 Empirical validation of the smell classification 

In order to validate the smell classification, we analyzed the correlations between smells in 
article I. However, because there have been changes in the smell classification since article I 
was published, we have re-drawn Figure 5, which shows the strongest (r > 0.575) and the 
most significant (p < 0.01) correlations between the smells. 

It seems natural that the existence of some smells would correlate positively with some 
other smells while others would have a negative correlation. The taxonomy helps to capture 
strong correlations within groups. Figure 5 shows that 7 correlations are within the proposed 
groups but there are 98 correlations between the actual groups. Since we had 23 smells in our 
survey, this results in 253 correlations between all the smells. The total number of 
correlations within all groups is 36. The total number of between-group correlations is 
naturally 217 (253-36 = 217). This means that 19.4% (7 out of 36) of the total within-group 
correlations are strong, whereas only 4.15% (9 out of 217) of between-group correlations are 



 30

among the strongest. These results seem to indicate that the taxonomy is also supported by 
the correlations between the code smells. 

 We have no further details or qualitative data regarding the nature of the correlations. 
Therefore, we can only speculate as to the nature of the correlations. For example, it is likely 
that large classes are built from long methods. Furthermore, it is quite possible that parallel 
inheritance hierarchies consist of lazy classes that are not doing much, since duplicated class 
hierarchy exists. Still, parallel inheritance hierarchies might lead to refused bequests where 
class is not supporting or using everything it has inherited. However, the nature of the 
correlation is only speculation and has not been empirically validated. Naturally, in such a 
large sample, some correlations will simply be due to chance.  

 

Long Method

Large Class

Primitive Obsession

Long Parameter List

Switch Statements

Temporary Field
Divergent Change Shotgun Surgery

Lazy Class

Data Class

Message Chains

Middle Man

Feature Envy

Inappropriate Intimacy

Incomplete Library Class

Comments

0.75

0.590.59

0.58

0.67

0.72

0.63

0.65

0.69

0.66

Bloaters

Couplers

Object-Orientation 
Abusers

Change Preventers

0.61

0.59

0.57

0.60

- 0.74

0.61

Dispensables

Others

Parallel Inheritance
Hierarchies

Alternative Classes with 
Different Interfaces

Speculative 
Generality

Duplicate Code

Dead Code

Data Clumps

Refused 
Bequest

 

Figure 5. Spearman correlations between smells (r > 0.58 and p < 0.01) and the smell 
taxonomy 

4.1.3 Classification human identified evolvability issues 

Article IV studied a human’s refactoring drivers when evaluating ten Java methods. The 
drivers were separated into negative and positive driver groups. Negative drivers represent 
code problems leading to refactoring. They were further divided into the driver groups 
documentation, visual representation, structure and general. Naturally, one could also create 
subgroups of the positive aspects. However, in that study, only a limited number of positive 
comments could have been grouped. Most of the positive comments were often very short 
and very general indicating only that the method was acceptable and that there was no need 
for changes. Thus, it was not seen as beneficial to create subgroups of the positive comments. 



 31

 Documentation means information in the source code that communicates the intent of the 
code to humans, e.g., commenting and naming of software elements like variables, functions, 
and classes. Visual representation means defects hindering program readability for a human 
eye. Structure stands for the source code composition that is eventually parsed by the 
compiler to a syntax tree. Structure is clearly distinguishable from documentation and visual 
representation, because the latter two have no impact on the program runtime operations or 
the syntax tree generated from the source code. Finally, the group general contained all 
negative comments that were too general to be placed in any of the other groups. 

Article V studied code review findings of nine industrial and 23 student code reviews. That 
study extended the classification evolvability issues of Article IV. The documentation group 
was further divided in to the subgroups textual and supported by language. Supported by 
language issues are embedded in and enforced by the programming language, e.g., declaring 
an immutable variable or limiting the scope of a method. Textual documentation issues are 
those textually documented through naming and code commenting. Traditionally, 
documentation defects have only excluded the documentation defects that are supported by 
the language. Thus, one may question our decision. However, we think that if defects that are 
supported by the language would be moved under structure, the second most suitable group, 
this would make comparison between development languages even more difficult, since then 
such defects would be under documentation or structure, depending on the programming 
language.     

In Article V, the structure group was divided into subgroups: re-organize and solution 
approach. In article IV, the solution approach issues were present, but they were all placed 
inside a single driver called Poor Algorithm.  The Reorganize subgroup consists of issues that 
can be fixed by applying structural modifications to the software. Moving a piece of 
functionality from module A to module B is a good example. Solution approach issues 
propose an alternative way of implementation that often requires only a limited amount of 
structural modification. For example, replacing a program’s array data structure with a vector, 
and knowing the existence of prebuilt functionality that can be used instead of using a self-
programmed implementation, would be considered a solution approach issue. Therefore, 
solution approach recommendations are not about reorganizing existing code, but they refer 
to rethinking the current solution and implementing it in a different way. Thus, coming up 
with a solution approach is likely to require programming wit, out of the box thinking, and 
good knowledge of the development environment and the applied development practices. 
Reorganize issues, on the other hand, can often be found without deep knowledge of the 
development environment and practices, simply by assessing the code under review.  

4.1.4 Combined classification 

Based on the classifications presented in articles I, II, IV, and V, this section presents a 
combined classification shown in Figure 6. From this final classification, we have removed 
the evolvability issue group General because it does not give any detailed information about 
the evolvability issues. Rather it expresses that the evolvability issue description is poorly 
written and cannot be effectively further categorized. 

From the figure, we see that four out of five code smell groups belong under the reorganize 
group because they focus on structural modifications. The only group under the solution 
approach is object-orientation abusers, which represent implementation solutions that are not 
preferable when using object-oriented programming. One could also argue that change 
preventers could be placed under alternative approach. However, fixing such problems, 



 32

moving functionality so that code affecting similar issues is inside the same class, is closer to 
reorganizing code than having a different solution approach to it.  

Evolvability 
Issues

Documentation Visual 
Representation Structure

Textual Supported by 
Language Re-organize Solution 

Approach

Bloatters Couplers
Object-

orientation 
abusers

Change 
PreventersDispensaples

 
Figure 6. Combined classification of the evolvability issues 

4.2 Types and distributions of software evolvability issues 

In this section, we have combined the evolvability issues reported in articles IV and V. The 
numbers and distributions of the evolvability issues are not completely comparable between 
the studies. However, since both studies focus on evolvability issues identified in the source 
code, it makes sense to present them together. In Table 8 through Table 14, industrial reviews 
and student reviews refer to the evolvability issue counts in article V and refactoring 
experiment refers to the number of student answers identifying refactoring drivers in paper 
IV. The refactoring experiment numbers are not unique evolvability issue counts because 
several students might have identified the same issue. Furthermore, if a student identified, for 
example, three documentation issues from a particular method, this increased the count of 
documentation issues by only one because study IV has counted the number of students 
identifying particular type of issues. Therefore, the total numbers in the refactoring 
experiment column do not add up.  

In Table 8, the shares of evolvability issues in different contexts are presented. In the 
reviews, there were 276 and 287 evolvability issues, and in the refactoring experiment, 245 
out of the 360 student answers identified the need for evolvability improvements. In both 
reviews, approximately 10% of the evolvability issues were visual representation issues. The 
share of visual representation issues was only slightly higher in the refactoring experiment 
with about 15%. Roughly one third of the evolvability issues of industrial reviews were 
concerned with the documentation of the code. In the student reviews, almost half of the 
evolvability issues came from the documentation group, but in the refactoring experiment 
only a quarter of the answers identified a need for documentation improvement. In the 
industrial reviews, 55% of the evolvability issues belonged to the structure group, while in 
the student reviews, the percentage was only 43%. However, in the refactoring experiment, 
over 75% of the answers proposed structural modifications. In the refactoring experiment, 
there were 54 incidents where students gave negative comments from the method, but they 
were too general or too vague to be placed inside any of the groups. Such issues are seen as 
poor evolvability issue descriptions and they are not analyzed further in this study.  



 33

It is difficult to find any consistencies in the shares of the evolvability issues in Table 8, 
outside of the share of visual representation issues. It is possible that the high share of 
structural issues in the refactoring experiment was caused by the experiment design that 
particularly stressed the structural reasons for refactoring. Additionally, in the refactoring 
experiment, all the subjects analyzed the same code while in the reviews there were several 
source code documents. Thus, a possible bias of having additional structural issues in the 
refactoring experiment code may also have caused the radical differences in the shares of 
structural issues when compared to the code reviews.   

Table 8. Distribution of evolvability issues 
Type Industrial Reviews Student Reviews Refactoring experiment 
Documentation  96 34.8% 132 46.0% 62 25.1% 
Visual Representation 27 9.8%  31 10.8% 35 14.7% 
Structure  153 55.4% 124 43.2% 190 75.7% 
General 0 0% 0 0% 54 25.9% 
Total 276 100.0% 287 100.0% 245 100% 

 

In Table 9, we can see that textual defects are distributed to two major types: naming and 
comments. Naming indicates poor names for software elements such as variables and 
routines, while comments means there is a problem with code comments, such as not having 
enough comments or having incorrect or unnecessary comments. The majority of the textual 
issues were related to code comments or code element naming with the latter being more 
frequent in the industrial reviews and the former being more frequent in the student reviews 
and the refactoring experiment. In discussions with the participants of the industrial reviews, 
it was clear that the company strongly believed in self-descriptive naming over code 
commenting, which explains the difference. Debug info contains information that is intended 
for a programmer who is debugging the software. Debug info is included in this group since 
it improves programs static and runtime documentation.   

Table 9. Documentation Textual issues  
Type Industrial Reviews Student Reviews Refactoring experiment 
Naming  45 68.2% 30 27.5% 27 44.3% 
Comments  16 24.2% 65 59.6% 43 70.5% 
Debug Info 1 1.5% 13 11.9% 0 0% 
Others 4 6.1% 1 0.9% 0 0% 
Total 66 100% 109 100% 61 100% 

 

In Table 10, issues that were supported by language are listed. Code element type (e.g., int, 
boolean, string), code element immutability (const, final), and code element visibility were 
the three most recognized issues. Article IV does not report any such issues because few of 
them were present in that data set. It may be that such issues were seen as too trivial or minor 
to be considered as refactoring rationale so the students did not report them in the 
experiment. Another possible reason could be that there was a limited number of such issues 
present in the code that was used in the experiment. The higher number of the issues 
supported by language in the industrial reviews can be partly explained by the company’s 
coding standard that required certain issues such as const usage (declaring a variable to be 
immutable) if the variable was not modified.  



 34

Table 10. Documentation Supported by Language issues  
Type Industrial Reviews Student Reviews Refactoring experiment 
Element Type 11 35.5% 12 52.2% 0 0% 
Immutable 13 41.9% 2 8.7% 0 0% 
Visibility 5 16.1% 6 26.1% 1 50% 
Void Parameter 2 6.5% 0 0% 0 0% 
Element Reference  0 0 3 13.0% 1 50% 
Total 31 100% 23 100% 2 100% 
 

In Table 11, visual representation issues are presented. Blank line usage was the most 
frequent issue in the industrial reviews and in the refactoring experiment. In the student 
review, bracket usage was the most frequent issue. Distribution of issues was most even in 
the industrial reviews and had the most variation in the refactoring experiment. Furthermore, 
no space usage issues were identified in the student reviews or in the refactoring experiment, 
thus one may speculate that the students were less prudent than the industrial reviewers.  

Table 11. Visual Representation issues 
Type Industrial Reviews Student Reviews Refactoring experiment 
Bracket Usage 5 18.5% 11 35.5% 3 8.57% 
Indentation 6 22.2% 5 16.1% 4 11.43% 
Blank Line Usage 8 29.6% 7 22.6% 24 68.57% 
Space Usage 4 14.8% 0 0% 0 0.00% 
Grouping 2 7.4% 3 9.7% 12 34.29% 
Long Line 2 7.4% 5 16.1% 1 2.86% 
Total 27 100% 31 100% 35 100% 

 

In Table 12, the structure reorganize issues are listed. In industrial reviews, dead code and 
move functionality were the most frequent issues. In student reviews, these issues were quite 
evenly distributed. In the refactoring experiment, long subroutine and statement issues were 
clearly the most frequent problems. Again, these high frequencies are likely caused by the 
bias towards such issues in the code that was evaluated in the experiment. In the industrial 
reviews, others included splitting up a large file containing several classes and 2,000 lines of 
code; issues where a logical piece of code was unnecessarily split into several places; the 
need to remove wrong couplings between software elements; the need to split up 
functionality into several implementations; and reducing the number of different error 
handling mechanisms. In the student reviews, others included having several return 
statements in a method; using loop variables outside of the loop structure; in-lining a method; 
beginning indexing at zero instead of one; using negative return values instead of positive; 
having too many temporary variables; having variables in class scope instead of method 
scope; having a method with too many parameters; and commented code that should be 
deleted. In the refactoring experiment, the others consisted of having too many parameters, 
having too many conditional statements, using direct references to static class variables, 
using several parameters instead of a parameter object, moving an object creation outside of 
loop structure, and initializing all variables in the same place.   



 35

Table 12. Structure Reorganize issues 
Type Industrial Reviews Student Reviews Refactoring experiment 
Move Functionality 17 23.3 % 4 4.7% 5 3.3% 
Long Sub-routine 9 12.3 % 14 16.5% 77 50.3% 
Dead Code 21 28.8 % 15 17.7% 0 0.0% 
Duplication 11 15.1 % 14 16.5% 4 2.6% 
Complex Code 3 4.1 % 8 9.4% 17 11.1% 
Statement Issues 2 2.7 % 13 15.3% 39 25.5% 
Consistency 3 4.1 % 1 1.2% 0 0.0% 
Others 7 9.6 % 16 18.8% 22 14.4% 
Total 73 100% 85 100% 153 100% 

 

In Table 13, the structure solution approach issues are presented. In article IV, such issues 
were all typed under a single issue called poor algorithm, but here they are reanalyzed to 
correspond with article V. To our knowledge, prior work has largely ignored these types of 
issues.  

 In all data sets, there were a considerable number of semantic duplication cases, which 
means syntactically different code blocks with equal intent, e.g., different sorting algorithms 
such as quick sort and heap sort have equal intent but they are not identical at the code level. 
In the student review and in the refactoring experiment, the semantic duplication mostly 
referred to situations where certain functionality was redundant or more easily implemented 
with Java’s prebuilt libraries.  

Semantic dead code, meaning code fragments that when executed have no meaningful 
purpose and/or have no effect on the result, were only identified in the code reviews. The 
need to change function call to another function were only identified in the industrial 
reviews.  Use standard method means issues in which a standardized way of working should 
be used. For example, using predefined constants rather than magic numbers; using 
exceptions for error messaging instead of return values (students working with the Java 
language only).  

The defect type other contains a wide range of defects that truly represent the solution 
approach in its most fruitful form. In the industrial reviews, this type contained 
implementation changes, such as using arrays instead of other more complex memory 
management structures; changing the code to enable an easier removal of several data items 
from the database; using dedicated arrays for each data element instead of a shared array; and 
using a simpler and more efficient way of keeping records in a database. In the student 
reviews, other defects included suggesting a simpler way of performing computing and 
comparison operations, using Java’s generics data structures, and caching numeric values 
rather than re-computing them. In the refactoring experiment, other issues included 
suggestions to simplifying program logic by preventing improving data structure handling, 
replacing the use of an “instanceof” operator with method overloading, the use of declarative 
interface languages such as XUL and avalon instead of Java Swing, and having several 
search methods instead of a single search method.  

Minor gathers implementation changes, but the defects were easier to fix and seemed less 
important than those categorized under other. These defects were only identified in the 
industrial reviews and in the refactoring experiment. Examples of such issues in the industrial 
reviews are having a default branch in a switch block, changing an if-else block to a switch-
block, and changing comparison element from a class name to a class id. In the refactoring 



 36

experiment, such issues were using arrays rather than vectors, using while-loop rather than a 
for-loop, and using Java’s Iterators rather than indexes when accessing variables.  

Table 13. Structure Solution Approach issues 
Type Industrial Reviews Student Reviews Refactoring experiment 
Semantic Duplication 8 10.0% 7 18.0% 12 23.5% 
Semantic Dead Code 10 12.5% 4 10.3% 0 0% 
Change Function 25 31.3% 0 0% 0 0% 
Use Standard Method 16 20.0% 20 51.3% 2 3.9% 
Create New Functionality 6 7.5% 0 0% 0 0% 
Others 9 11.3% 8 20.5% 21 41.2% 
Minor 6 7.5% 0 0% 16 31.4% 
Total 80 100% 39 100% 51 100% 
 

4.3 Code review defect distributions 

In article V, we also studied the distribution of evolvability issues and functional defects 
found in code reviews. Table 14 shows the distribution of code review findings arranged in 
three main groups: evolvability issues, functional defects, and false positives. We can see that 
in both the industrial and student code reviews, over 70% of the findings were evolvability 
issues. In the industrial reviews, about 20% of the identified defects were functional, while in 
the student reviews, only 13% were functional. Functional defects existed in the code since 
module-level functional testing did not reveal all defects. False positives were issues that 
were identified in the meeting, but that were later or during the meeting found not to be 
defects after all. If we remove false positives, the share of evolvability issues is 77% in the 
industrial review and 85% in the student reviews. Thus, based on our data, it seems that 
roughly 4/5 of the true defects identified in the code reviews were evolvability issues.   

Table 14. Distribution of Code Review Findings 
Main Group Industrial Reviews Student Reviews 
Evolvability issues 276 71.1% 287 77.4% 
Functional defects 83 21.4% 49 13.2% 
False positives  29 7.5% 35 9.4% 
Total  388 100% 371 100% 

 

4.4 Human evaluations of software evolvability 

So far, this work has presented various evolvability issues found in the source code. Next, 
we shift our focus from the evolvability issues and look at the aspects affecting human 
evaluations of the evolvability issues. This is important as it can reveal details about the 
trustworthiness of the human evaluations and give explanations to the variations in the 
evaluations. Furthermore, we try to link the widely studied source code metrics and see how 
well they correlate with human evaluations.    

4.4.1 Interrater agreement 

We studied the interrater agreement in articles II and III. High interrater agreement is a 
positive indication of the reliability of the subjective evaluations. Lack of interrater 
agreement can mean that some evaluators are mistaken in their evaluations or that due to 
their experience or lack of it, they perform disagreeing evaluations.  



 37

In article II, we studied the distributions and standard deviations of the evaluations the 
company’s developers had given about the company’s software modules. The evolvability 
evaluations were performed by answering whether the code smells provided by Fowler and 
Beck existed in the evaluated modules. We found a case in which the developers had a 
perfect agreement of the amount of long method smell in a particular module. However, this 
was unique because for the other smells, the range in seven-point ordinal scale evaluations 
was three or more for the two modules that had received most evaluations (5 and 6). Further 
analysis of other modules revealed that the distributions in the smells evaluations were 
similarly large for the other modules as well. Thus, based on the study, there was at least 
some disagreement between the evaluators.  

However, in article II there was not a sufficient number of data points to use robust 
statistical methods to analysis the interrater agreement. Thus, we performed another study 
reported on paper III that tried to assess these issues. Table 15 shows the results of the 
interrater agreement analysis of paper III. In this study, the evaluators evaluated the existence 
of three code smells and whether the method should be refactored to make it more evolvable. 
For the refactoring part, we performed the experiment twice with different evaluators. The 
interrater agreement is measured by using Kendall’s W3. For those not familiar with this 
measure, we quote Siegel: “Whereas Spearman’s rho and Kendall’s Tau4 express the degree 
of association between two variables measured in, or transformed to, ranks, W expresses the 
degree of association among k such variables that are in association between k sets of 
rankings.” Thus, Kendall’s W can be seen as a correlation between more than two judges. 
From the measures of interrater agreement in Table 15 we can see that the evaluators had a 
high agreement on evaluations concerning the long method and long parameter list smells. 
The agreements concerning the feature envy smell and the refactoring decisions are 
considerably weaker. However, all the W values are significant indicating that the evaluators 
had at least some level of agreement. The W values of the refactoring decision for both 
experiments are close to each other, which strengthens our results. Based on the study, in 
article III it appears that the agreement on simple issues is high whereas agreement on more 
complex issues is lower.  

Table 15. Interrater agreement 
Question N W p-value 
Exp A – Long Method 46 0.777 0.000 
Exp A – Long Parameter List 46 0.816 0.000 
Exp A – Feature Envy 44 0.238 0.000 
Exp A – Refactoring 45 0.353 0.000 
Exp B – Refactoring 36 0.397 0.000 

 

4.4.2 Effect of demographics 

Because people do not always agree on the evolvability evaluations, we wanted to 
determine if demographics could explain the differences of opinion. The effects of 
demographics were studied in articles II and III. Results of article II are based on data 
gathered from a single case company. Results of article III are based on a controlled 
experiment which tries to verify the results of article II. The differences between the results 
of articles II and III are also discussed in this section.  

                                                 
3 Fleiss’ kappa is not applicable here as it can be used only for nominal data. 
4 These two are the most recognized ways of measuring non-parametric correlation.  



 38

In article II, we studied how the role, experience, and knowledge of developers affected the 
smell evaluations. We found that regular developers perceived a higher amount of duplicate 
code than the lead developers. However, lead developers  identified more parallel inheritance 
hierarchies. This result correlates with the idea that regular developers work closer to the 
code level and that lead developers have more design tasks. When studying how knowledge 
affected the smell evaluations, we found that developers who reported higher knowledge of 
the module reported higher levels of lazy class code smell, which refers to a small class that 
should be removed from the application. Again, this would be expected, since the smells that 
are difficult to spot require better knowledge of the code.  

Also in article II, we also studied the effects of work experience on the smell evaluations 
by comparing the two developers with the longest work experience in the case company to 
the rest of the developers. These two developers had worked in the company for seven years, 
whereas the most experienced of the other developers had been with the company for less 
than five years; the rest of the informants had worked for the company for three and a half 
years or less. The two most experienced developers were the only developers who had been 
working in the company for the entire lifetime of the software products. They had also 
provided eleven smell evaluations, which made the comparison to the rest of the informants 
sensible. They tended to observe that the software had many fewer smells, compared to the 
observations of the other ten developers. A possible interpretation of this result is that the two 
developers had an emotional attachment to the software since they had written a great deal of 
it and were reluctant to acknowledge the smells. In addition, the fact that it is easier to 
understand code and design that you have personally created might affect the evaluations. 
Thus, it is possible that we actually studied authorship rather than work experience. Another 
interpretation, suggested by one of the lead developers, is that developers get used to the 
smells. People who have worked with software products for longer periods of time may 
understand that complex software products do not always look like textbook examples. 
Naturally, one should look these results with caution, as the differences between the two 
experienced developers and the others could be due simply to chance. 

We continued to the affect of the demographics in the study reported in article III. This 
study was performed in more controlled settings. In that study, we collected several 
demographic variables and used regression analysis to see whether they predicted the 
refactoring decision or the evaluations of the three code smells: long method, long parameter 
list, and feature envy. For all cases, we found that demographics were not meaningful 
predictors, which is somewhat surprising when comparing with the results of article II.  

Next, we compare the result of articles II and III. In article II, we studied whether the 
developer role made any difference in the evaluations. In article III, we did not have any roles 
since all the subjects were student participating in the experiment. Thus, we cannot make any 
comparisons. In article II, developers had different amounts of knowledge of the modules in 
evaluation. In article III, all the subjects had the same knowledge of the software under 
evaluation. In article III, we asked the students to give self-assessments of their knowledge of 
the Java programming language, but this variable was not a meaningful predictor. Thus, it 
could be that general programming language knowledge is not a meaningful predictor, but 
application-specific knowledge can explain some differences in the evaluations. In article II, 
we found that the two most experienced developers thought the software evolvability was 
better than the other developers thought. In article III, we asked the student about their 
programming work experience, but found that it was not a significant predictor. Thus, it 
appears that work experience in general cannot explain evolvability evaluations. However, it 



 39

is possible that in article II the experience was simply a surrogate variable for ownership and 
emotional attachment that the two most experienced developers had with the software.  

Also in article IV, we found some weak evidence of the effects of demographics. We found 
that more advanced code problems were only identified by two experienced evaluators each. 
The individual who found both of these problems had 6 years of work experience. Two 
individuals found only one of these problems and they had 4.5 and 5 years of work 
experience. Altogether, we had 6 of 36 evaluators who had 4.5 years or more work 
experience. Thus, it seems that work experience increases the likelihood of an individual 
detecting advanced problems, but it cannot guarantee it, as only half of the people that had 
high work experience spotted one of these problems. 

4.4.3 Code metrics and human evaluations 

We studied the relationship between source code metrics and software evolvability 
evaluations in articles II, III, and IV. We decided to compare human evaluations and source 
code metrics because source code metrics have been widely studied in academia, but 
according to our experience with small- and medium-sized software product companies, they 
are rarely used in industry.   

In article II, we compared developers’ code smell evaluations of four smells (large class, 
long method, long parameter list, and duplicate code) against selected source code metrics. 
For the large class smell, the developers evaluated that the two modules had no difference 
when majority of the code metrics suggested that the other module suffered more severely of 
the large class code smell. However, for the large class smell, the chosen measures were also 
conflicting. Lines of code, cyclomatic complexity, number of class variables, and number of 
methods suggested that module A1 had more large class problems, but measure lack of 
cohesion methods (LCOM) suggested that A2 had more large classes. For the long method 
and long parameter list, the developers’ evaluations correlated quite nicely with the code 
metrics.  For the duplicate code, the metrics and the smell evaluations did not correlate. 
Based on the data, it seems that the evaluations by all but one developer conflicted with the 
metrics when it comes to duplicate code. However, in the company copy-paste-modify 
programming had been used, which resulted in some nearly duplicate code that the tool could 
not detect. This limitation might have affected the results.  

In article III, code metrics were used to create a regression model that tried to predict the 
students’ refactoring decisions and the evaluations of three smells, namely long method, long 
parameter list, and feature envy. For the long method and long parameter list code smells 
evaluations, the code metric regression models were able to explain over 70% of the 
variation. This means that code metrics are good predictors for these two code smells. Closer 
examination of the regression models revealed that lines of code was the most important 
predictor for the long method smell, and that number of the parameter was the most important 
predictor for the long parameter list smell. For the feature envy smell, the code metric 
regression models were only able to explain 9.8% of the variation meaning that code metrics 
were not successful predictors of that smell. However, we have to remember that the 
interrater agreement for the smell was also low as we saw in Section 4.4.1 which can partly 
explain the results. For the refactoring decision, we had two sets of informants who gave 
their refactoring decision in two partly different experiments. The code metrics were able to 
explain 31.9% and 26.1% of the refactoring decision. This means that the used code metrics 
can partly explain the refactoring decision and they can be somewhat valuable for developers 
if they are used for suggesting refactoring targets.   



 40

In article IV, we studied the refactoring drivers, i.e., evolvability issues, students had 
identified in the source code, and analyzed whether the identified drivers can be found with 
tools. Strictly speaking, this analysis has a somewhat larger focus than just code metrics. 
However, from a practical viewpoint, code metrics and other tools detecting evolvability 
problems try to solve the same problem, thus they are studied together. We found that many 
refactoring drivers are suitable for automatic detection. However, some drivers would require 
new code measures. For example, we are not aware of any previously introduced measures or 
tools for statement length that would indicate when a single statement should be split into 
several statements. Some drivers could be partly detected. For example, we can say that a 
large number of parameters suggest that parameter objects should be used. However, the 
feasibility of the parameter object must be determined by a human. In addition, we can 
automatically detect that a method is lacking javadoc comments; however, nothing can be 
said about the sensibility of the comments. Two important refactoring drivers cannot be 
automatically detected. Drivers that address the quality of code naming or commenting 
cannot be detected. Drivers belonging to the solution approach group (called poor algorithm 
in the article) also cannot be automatically detected.  

4.4.4 The impact of the evolvability issues 

In the previous section, we saw what types of evolvability issues are detected from the 
source code. This gives us descriptive information on the evolvability issues, but it does not 
differentiate the issues based on their importance. For example, it would seem likely that 
people would consider removing duplication more valuable than finding simple spelling 
errors in the comments. In study IV, we also studied the connection between the evolvability 
issues and the likelihood of a positive refactoring decision.  

In article IV, we created three different regression models to study how the evolvability 
issues given by the students affected their refactoring decision. The regression models are 
shown in Table 16. 

Table 16. Qualitative regression models 
Model Adjusted R2 p-value
Simple model 0.692 0.000
Target model 0.403 0.000
Pure Drivers model 0.377 0.000

 

First, a simple model with two independent variables was created. The first independent 
variable was the count of evolvability issues given by a student. The second variable was 
measured on a binary scale and it indicated whether a student had given any positive 
comments about the method under evaluation.  In Table 16 we can see that the simple model 
has an adjusted R2 of nearly 0.7, meaning that the model is able to explain nearly 70% of the 
variation in the refactoring decision. The details of the simple model, shown in Table 17, 
revealed that both independent variables were highly significant and they both had high 
standardized betas. The variables also have high correlation with each other:  Kendall’s Tau-
b correlation minus 0.613 (p<0.01). This indicates that the two variables often act inversely, 
i.e., if one has high values, the other has low values and vice versa. Not surprisingly, the 
count of evolvability issues (the negative comments) increased the likelihood of refactoring 
and the positive decreased it. This indicates that both positive and negative comments affect 
the refactoring decision.  



 41

Table 17. Predictors in the Simple model 
Driver group Std. β p-value Correlation
Positive -0.407 0.000 -0.779
Negative 0.476 0.000 0.794

 

The second model, called the target model, studied the effect of the evolvability issues 
grouped into driver groups structure, documentation, and visual representation. The target 
model is able to explain a little over 40% of the variation, but the decrease compared with 
The simple model is mostly explained by the fact that the variable measuring the presence of 
positive comments was not present in this model. The details of the target model, in Table 18, 
show that structure issues were the most important predictors. Visual representation also had 
some effect. Documentation did not have any effect on the refactoring decision. It is not 
surprising that structural evolvability issues are seen as the most important reasons for code 
evolvability improvement. However, it is surprising that the visual representation have more 
impact than the documentation issues.   

Table 18. Predictors in the Target model 
Driver Group Std. β p-value Correlation
Structure 0.610 0.000 0.608
Visual Representation  0.197 0.000 0.199
Documentation 0.035 0.400 0.016
 

The third model, called the pure drivers model, contains only the pure evolvability issues 
(referred as pure drivers in article IV) and excludes the positive comments. This model aimed 
at revealing the individual issues that had the greatest effect on the refactoring decision. The 
model had adjusted R2 of only 0.377 indicating that only 37.7% of the variation is explained 
by the model. The model has a R2 (non-adjusted) of 0.587, but the model suffers when the 
adjusted R2 is calculated, because it has a high number of independent variables (61 drivers). 
Next, we present the most significant drivers. The three strongest drivers were long method 
or extract method (std. beta 0.481), not enough blank lines (std. beta 0.237), and long 
statement (std. beta 0.210). Especially the long method or extract method driver appears to be 
a strong indicator of the refactoring decision. The problem with the pure drivers model is that 
there were more than 60 predictors and many of the predictors were seldom mentioned by the 
evaluators meaning that the data matrix is sparse. More than 40 predictors are mentioned less 
than ten times. Furthermore, a regression model that was equally good with the pure drivers 
model was created without the drivers that were mentioned less than five times. The problem 
with the pure drivers model is that there really is not enough data to create a good regression 
model for more than 60 predictors.  

This section has presented different regression models measuring the impact of the various 
refactoring decisions. The regression models indicate only the majority opinions and big 
trends. They do not give any indication of the real effect the evolvability issues have on 
future development effort. The models may also ignore important evolvability issues that are 
discovered by only the more talented developers. Regardless of these limitations, they are 
valuable as they shed at least some light on what are seen as important evolvability issues and 
what are not.  



 42

5. DISCUSSION 

First, this chapter discusses the results and answers the research questions. With each 
research question, this chapter discusses the meaning of the results, their generalizability and 
practical utility, and performs comparisons to related works. Finally, the limitations of this 
work are discussed. 

5.1 Software evolvability issues 

5.1.1 RQ 1.1 

How can the evolvability issues, either presented in the literature or identified by humans, 
be classified? 

This research question was studied in Section 4.1 where various classifications were 
presented. Section 4.1.4 presented the classification that combined the classifications of code 
smells and the classification of the evolvability issues identified by humans.  

We see that the generalizability of the classification is affected by two factors. First, the 
data sets that were used for creating the classification might affect the generalizability. For 
example if our data sets are very different from the usual case, then our classification might 
not be generalizable. Second, the researcher bias might affect the created classification and 
thus it may lead not generalizable classifications. To assess the generalizability of the 
classification created mainly by one researcher based on three data sets is difficult. Thus, 
only time will tell how generalizable the classification will be. However, we may speculate 
that top-level classes of the evolvability issues classification, documentation, visual 
representation, and structure are even generalizable beyond current programming languages. 
For example, we might be able to distinguish the same types of problems from the 
specifications of traditional engineering, such as shipbuilding and building design. In 
traditional engineering, documentation would refer to the clarity of the writing and chosen 
terminology, visual representation would refer to the layout of the document and the clarity 
of the plan part drawings, and structure would refer to the organization of the specification 
and the chosen engineering solutions. Naturally, this is only a speculation, as we have no 
expertise in traditional engineering specifications. 

Next, we try to assess the classification’s usefulness. As previously noted in Section 1.2.1, 
we hope that our classification will serve four purposes. First, the classification increases the 
body of knowledge in software engineering and increases the understanding of the nature of 
software evolvability issues. Second, the classification can be useful when creating company 
coding standards, code review checklists, and assigning roles to the participants of code 
reviews. Third, the classification can be used as a basis for evolvability assessments (see, 
e.g., [1]). Fourth, the defect classification can provide input for creating automated defect 
detectors or developing new programming languages. At this point, it is difficult to say how 
well the classification achieves these goals and only time will tell. 

Next, we compare our classification with the ones presented in prior studies. We are only 
aware of one academic study in which evolvability issues gathered from empirical data would 
have been classified [113]. Several works have presented evolvability issues that should be 
avoided, but they are based more on personal experience than data. For examples of such 
studies, see Section 2.1.1. Siy and Votta proposed the classes of documentation, style, 
portability, and safety. A high-level comparison reveals that both classifications contain class 
documentation, but they are not equivalent. Our definition of documentation is wider since 
we considered the naming of code elements (e.g., variables and routines) to be a part of 



 43

documentation, whereas Siy and Votta only considered the code comments. Furthermore, we 
consider documentation that is supported by the programming language (e.g., key word 
“final” in Java) to be part of the documentation group and these types of issues were also left 
out from the documentation class defined by Siy and Votta. Our classification does not have 
anything that would be comparable with portability and safety, as we would classify such 
issues as functional defects rather than evolvability issues. The style class consists of 
evolvability issues that in our classification belong to structure, visual representation, and 
documentation. The style class by Siy and Votta have a subgroup called clean-up whose 
description is very similar to the structure group of this work. Similarly, style issues have a 
subgroup called cosmetic that is very similar to our group visual representation. Style issues 
also have a subgroup called renaming that in our grouping belongs under documentation. 
Finally, the style issues had a subgroup called debugging that meant adding debugging 
statements to the source code. In our work, such issues were seldom found and they were 
placed under the documentation group. To conclude, we can say that many similar low-level 
evolvability issue types can be found from both classifications. However, there are also 
significant differences on how the classifications are organized. 

Additionally, there have been many works classifying software defects that have also 
considered evolvability issues [11, 17, 32, 45, 54, 63, 68]. However, in those works, only 
Grady [54] has included a class for structural issues, called module design. We see the lack of 
structural issues in those classifications as a major shortcoming; such issues are very 
common issues in many source code documents. Naturally, there are three possible causes: 
first, structural issues were simply ignored; second, they were classified under some other 
defect class; or third, such defects did not exist in the code. As the last explanation seems 
very unlikely, the results of the studies are most likely somewhat biased when it comes to the 
classification of evolvability issues. 

5.1.2 RQ 1.2 

What types of evolvability issues are identified in the source code by humans and how are 
they distributed to different evolvability issues? 

This research question was studied in Section 4.2 where evolvability issue types and 
distributions were presented. Additionally, the classification that was created as the answer to 
RQ1.1 contributes to this research question as it identified the high-level evolvability issue 
types. Next, we discuss the evolvability issues under the three main categories: 
documentation, visual representation, and structure.  

5.1.2.1 Documentation 

Documentation is information in the source code that communicates the intent of the code 
to humans. We separated documentation into two subgroups: textual and supported by 
language. Several past studies have recognized documentation as an issue that should be 
fixed; for example, Siy and Votta [113], El Emam and Wieczorek [45], and Chillarege [32] 
report documentation defects in the code review context. However, in the past studies [32, 45, 
113], documentation consisted only of code commenting. The past studies have not 
considered supported by language issues to be part of documentation. Furthermore, code 
element naming is also excluded from code documentation, which is surprising since clever 
code element naming can significantly reduce the needed code comments. Based on this 
comparison, our documentation group is larger than what has been presented in prior works.   

In our studies, documentation had a 35% share of evolvability issues in the industrial code 
review, a 46% share in the student reviews, and a 25% share in the refactoring experiment. 



 44

We were able to calculate proportions of textual documentation defects (naming and 
commenting) from past studies [32, 45, 113]  This comparison shows that textual 
documentation had a 17% to 50% share of all code review defects. Therefore, it seems that a 
considerable share of evolvability issues is related to documentation, but the actual shares 
fluctuate considerable between different contexts.  

Our data shows that textual issues were more frequent than the supported by language 
issues. The supported by language issues had the highest share in the industrial settings with 
1:2 ratios against the textual issues, second highest in the student reviews with 1:5 ratios, and 
lowest in the refactoring experiment with 1:30.5 ratios. Thus, the majority of documentation 
issues come from the textual documentation, i.e., good naming and commenting, which have 
long been considered part of a good programming style.  

Further analysis of textual documentation shows no consistencies in the ratios between 
commenting and naming. It appeared that in our study the industrial developers were keener 
to improve naming while the students found more commenting issues. In prior work [45], 
when studying defect types identified in two code review sessions, naming issues were 
seldom identified. In the first review of that study, there were no naming issues present when 
half of the code review defects identified were classification as commenting defects. In the 
second review, the ratio between commenting and naming were 17:1. On the other hand, 
study of the Eclipse IDE usage in [93] shows that renaming was used by all of the 41 
developers participating in the study, and it was the most used refactoring feature. Similar 
numbers can be found in [125] which indicates that renaming is very common practice when 
compared with other refactorings. We must note that past studies referred in this section are 
heterogeneous; therefore, comparing them is likely to lead to somewhat conflicting results. 
Nevertheless, it seems very strange that El Emam and Wieczorek [45] found hardly any 
naming issues while Murphy et al., and Xing  and Stroulia [93, 125] found naming changes to 
be one of the most frequent changes in the source code. One possible explanation is that 
people can consider different fixes for the same problem. For example, if code is unclear, one 
individual might suggest commenting while another might suggest additional informative 
code element naming. Another explanation could be the applied organizational standards. For 
example, if an organization has a tight policy about code commenting, it will naturally 
increase the code commenting issues that are found and fixed.  

As previously mentioned, prior studies did not consider supported by language issues to be 
part of the documentation category. Nevertheless, we found empirical data of such issues 
from a study by Xing and Stroulia [125]. From their study of the evolution of Eclipse IDE, 
we found that through version 2.0 to 3.1, there had been 4,4425 changes that we consider 
fixes for supported by language issues. They also found 4,582 renamings indicating that a 
proportion of supported by language issues could be equal to program renaming. They also 
reported individual numbers between three versions (from 2.0 to 2.1, from 2.1.3 to 3.0, and 
from 3.0.2 to 3.1) and in each of these, the proportions between renamings and supported by 
language issues were about equal. In our study, the ratios between renamings and supported 
by language issues were roughly 3:2, 3:2, and 27:2. The last ratio came from the refactoring 
experiment in which hardly any students reported supported by language issues. Thus, it 
seems that in our study, we had a somewhat higher proportion of renamings. However, it is 
difficult to make a comparison as in the study by Xing and Stroulia in which the data was 
automatically collected from the version control. Thus, we do not know which of their 

                                                 
5  This number is calculated from the article’s Table 3 by combining visibility changes, data type changes, and non-access 

modifier changes. 



 45

changes were actually due to evolvability issues and which were changes due to the need for 
new features in the program, e.g., the changes could have been made to meet the needs of 
new features rather than evolvability issues.   

Our studies and the prior works show that there is plenty of empirical evidence of the 
existence of documentation issues and that the proportion of documentation issues also 
appears to be significant when compared with other evolvability problems. We also believe 
these results are generalizable to many software development contexts. Our study did not 
assess the cost related to evolvability issues. However, prior works [53, 120] have shown that 
proper documentation improves program comprehension and it has a larger impact than code 
structure.   

5.1.2.2 Visual Representation 

Visual representation means defects that hinder program readability for the human eye. 
Many of the past studies have not mentioned visual representation issues. It could be that 
such issues have been seen as too trivial. However, we must stress that there is nothing new 
about visual representation issues since such issues have long been discussed in the coding 
standards, such as Sun Microsystems’ Java Coding standard [118]. Siy and Votta categorized 
visual representation as a cosmetic style issue [113]. 

In our data sets, visual representation issues had the lowest proportion of defects with 
percentages varying from 9.8% to 14.7%. In the study by Siy and Votta, visual representation 
had a share of 11%. Thus, based on the data sets, it seems that visual representation has a 
consistent 10% share of evolvability issues. Naturally, as we only have four sources, this 
could be due to coincidence. Nevertheless, it is safe to say that proportion wise, visual 
representation issues represent a minority of the source code evolvability issues. This 
information is important since it indicates that evolvability issues are not mostly simple 
layout issues that could be easily fixed with automatic pretty printers. Nevertheless, we need 
to point out that visual representation is important since it has been shown to have an effect 
on program comprehension [88] and debugging efforts [53].  

5.1.2.3 Structure 

Structure is clearly distinguishable from documentation and visual representation because 
the latter two have no impact on the program runtime operations or the syntax tree generated 
from the source code. Prior works on software evolvability have listed various issues 
concerning source code structure as can be seen in Section 2.1.1. Perhaps one of the most 
important findings in our study is the distinction between two of the structural evolvability 
issue types: solution approach and re-organize. Re-organize issues have been widely 
recognized and studied in the past. Fixing the re-organize issues has been studied extensively 
under the term of refactoring [87]. Furthermore, the automatic detection of re-organization 
issues has been studied through static code analyzers and code metrics tools. Prior works in 
the software engineering domain have not studied or discussed solution approach issues, 
although some of the evolvability issues in the past studies can be classified as solution 
approach issues. Formally, recognition of the solution approach issues highlights the fact that 
software development is creative work-based on skill, knowledge, experience, and education, 
i.e., a craft that cannot be completely controlled with automated and statistical approaches 
that have been successful in the manufacturing industry. We believe that one phenomenon 
that is likely to increase solution approach issues in the future is the growth of software 
libraries and existing solutions. In article V, several solutions in which the modification used 
prebuilt libraries instead of self-programmed solutions were used. If we think back to the 



 46

1970s when many software evolvability criteria were first created, very few, if any, code 
libraries existed.      

The proportions of organization defects have been previously reported by Siy and Votta 
(under the name clean-up), but comparison of the defect proportions reveals no consistencies, 
as they vary from 26% to 55%. The refactoring study by Xing and Stroulia [125] reported 
numbers of organization move functionality issues (in their work called move entity). 
However, since their study did not report all evolvability issues, we need to compare their 
numbers with their shares of program renamings instead of the proportion of all evolvability 
issues. In their study, move functionality and renamings had a ratio of roughly 1:2 when we 
had 1:3, 2:15, 1:5. However, as previously noted, we cannot be sure which of their move 
functionality changes were evolvability issues and which were caused by the need for new 
features.  

The effect of structural issues have been studied widely in the past. For example,  [9, 40, 
77, 107] use code metrics to measure code structure and show that poor structure results in 
increased development efforts. Thus, there are practical benefits of understanding and fixing 
structural issues.  

5.1.3 RQ 1.3 

The results for research question 1.3, “What is the distribution of evolvability issues and 
functional defects found in code reviews,” were presented in Section 4.3. 

Based on our study, roughly 75% of the findings identified in the code reviews were 
evolvability issues that would not cause runtime failures. This research question was 
confirmatory as Siy and Votta [113] had previously proposed: based on data from a single 
company, most code review findings are evolvability issues. Our results confirm their 
findings.  

Comparing our results with the numbers of Siy and Votta shows that our study has a 
slightly higher proportion of evolvability issues, a slightly lower proportion of false positives, 
and similar proportion of functional defects (see Table 19). Siy and Votta used the defect data 
from the repair form after the author had made the fixes. We observed the defects 
encountered during the code review meeting in the industrial reviews and used the defect logs 
returned after the meeting in the student reviews. We used discovered defects while Siy and 
Votta used fixed defects. Therefore, we can speculate that had we observed the actual fixed 
defects, the number of false positives may have increased and the number of evolvability 
issues may have decreased, as the author might have disregarded some defects, considering 
them false positives.  

We recognize that quality assurance made prior to the code review can have a significant 
impact on the results. For example, studies that have used uncompiled code have found large 
amounts of syntax errors. In our case, developers performed automatic unit testing or quick 
functional testing prior to code review. We think that this is the most realistic scenario for 
code reviews. Unfortunately, Siy and Votta [113] did not reveal what quality assurance 
activities were performed prior to code review in their study. 



 47

Table 19. Comparing Our Results with the Results of Siy and Votta 
 Industrial 

Reviews 
Student 
Reviews 

Siy and 
Votta 

Evolvability issues 71.1% 77.4% 60% 
Functional defects 21.4% 13.2% 18% 
False positives 7.5% 9.4% 22% 

 

To determine whether the large number of evolvability issues (compared with functional 
defects) in our study and that of Siy and Votta was simply due to chance, we attempted to use 
public data available from prior code review studies. Unfortunately, we only found three 
studies [32, 45, 101] with   a sufficient number of defects and enough information to try to 
perform an approximation of the defect distributions. We excluded the PSP data sets of 
Humphrey [61] and Runeson and Wohlin [108], as they had high shares of syntactical errors 
because they performed the reviews before compilation. 

Figure 7 compares eight data sets, showing the proportions of functional defects and 
evolvability issues. In five of the eight data sets, the majority of the defects are evolvability 
issues, and in seven of the data sets, over half of the defects are evolvability issues. Based on 
the figure it seems likely that the majority of the defects detected in code reviews are in fact 
evolvability issues. However, there is considerable variation between the studies, for which 
we think there might be three explanations. First, quality assurance performed prior to code 
reviews affects the number and types of defects detected. Unfortunately, such information is 
not available in studies Si, O, E1, E2, and C (see Figure 7 and caption for detailed 
references). In study So [114], a set of acceptance tests provided by the course staff was used 
to ensure a minimal level of functionality. Only minimal functionality was tested, as the 
purpose of the So study was to compare different functional defect detection methods. In our 
studies, the code authors had personally tested the application and were either personally 
responsible (industry case) or had been graded earlier based on the number of faults (student 
case). Thus, it is likely that the higher number of functional defects detected in reviews in So 
is explained by quality assurance performed prior to code review. Second, misclassified 
defects or mistakes in our reclassification in studies E1, E2, and C can cause part of the 
variation. In those studies, the authors had no class for structural evolvability issues, and as 
previously discussed in Section 2.3, it is possible that such evolvability issues were ignored 
or categorized as functional defects. Furthermore, in study C, there appeared to be a defect 
class that possibly contained both functional defects and evolvability issues. Additionally, in 
those studies, the authors did not make a distinction between functional defects and 
evolvability issues. Therefore, we made the separation into evolvability and functional 
defects based on the defect type description, and it is possible that we have misclassified 
some classes. Thus, it is possible that in those studies, the proportions of evolvability issues 
would have been higher, had the original data been available. Third, other unknown context 
factors can also explain the variation, for example, applied coding standards, the strictness of 
the code review process, and the company culture.  Because of these shortcomings, one 
should study Figure 7 with some caution.  

To summarize, we have three data sets in which the authors compared the proportions of 
functional defects and evolvability issues, and these data sets show that the ratios 
(evolvability issues to functional defects) fall between 5:1 and 3:1. In addition, four other 
data sets that are more unreliable produce mixed results.  



 48

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Mi Ms Si O So E1 E2 C

Evolvability
Functionality

 
Figure 7.  Defect distribution between functional defects and evolvability issues  

Mi is industrial data, Ms is student data, Si [113], O [101], So [114], E1 and E2 [45], and 
C [27, 32] 

 

5.2 Human evaluations of software evolvability 

5.2.1 RQ 2.1 

Regarding research question 2.1, “Do humans achieve interrater agreement when 
performing code evolvability evaluations,” we found high interrater agreement for simple 
evolvability issues such as method length. We found lower interrater agreement for more 
complex issues, such as code refactoring. It seems natural that agreement is higher on the 
simple issues than it is on the ones that are more complex. However, it is too early to 
speculate whether this result is generalizable and holds in other contexts. 

Our results indicate that controlling and preventing simple evolvability issues can be 
achieved by coding rules and motivating developers to follow them. To control simple 
evolvability issues, it is not necessary to have senior developers or automatic metric tool 
detectors check the code. Naturally, this is based on the assumption that the developers are 
trustworthy. However, when it comes to more difficult evolvability issues, ranging from 
coupling and class responsibilities heuristics to highly domain specific implementation rules, 
it is a good idea to have some quality control measures in place. For the more complex 
evolvability issues, it is possible that not all developers understand them or that some 
developers have different interpretations of them.  



 49

In a study by Shneiderman et al. (pp. 134-138 [112]) (see Section 2.2 for more details), the 
results showed that in half of the evaluations, three out of four evaluators agreed on the 
evaluations (answers differed by one at most). However, in only 43.1% of the evaluations, 
the range between all the evaluators was two or less. Thus, it seems that in the Shneiderman 
study, there also existed agreement and disagreement in the evaluations. Shneiderman’s book 
contains partial data sets that we used for some calculations (unfortunately, Kendall’s W 
could not be calculated because evaluators’ id could not be traced through the programs that 
they had evaluated.). The three questions with the best agreement considered the chosen 
algorithm, program comprehensibility, and modifiability. The lowest agreement was on the 
four questions addressing compilation and machine independence, whether proper code 
layout was used, and for the quality of high level program design.  Shneiderman’s questions 
were more general and to some extent more subjective than ours, which limits the 
comparability of the results. In Shneiderman’s questions, it is difficult to say which 
evolvability issues are simple and which are complex, thus, the data does not support or 
refute the idea that there is higher agreement for simpler issues.  

Shepperd [111] collected the subjective opinions of the maintainers for 89 modules of 
aerospace software that totaled around 30,000 lines of code. Each developer on the 
maintenance team was asked individually to classify each module on an ordinal scale, from 
one to four, on the perceived difficulty of a hypothetical maintenance task. For 73% of the 
modules, the range was one or less, and thus the researchers concluded that there was a 
strong correspondence between the individual evaluations. However, as no detailed data is 
given, it is difficult to assess the study in more detail.  

To summarize, comparison to prior work [67, 70, 111, 112, 123] is challenging due to the 
lack of proper representation of the evaluation data [100, 111, 123], lack of statistical power 
[70, 82], and use of nonstandard statistical methods6 [82, 111, 112]. All prior work lacks 
calculation of statistical significance on the interrater agreement and Kendall’s W making it 
hard to tell whether the raters really agreed on the evaluated software. 

5.2.2 RQ 2.2 

Research question 2.2 is “Do the demographics of humans affect or explain the evolvability 
evaluations, and if so, how?”  

In article II, it appeared that the demographics might have some impact on evolvability 
evaluations. In that study, we found that regular developers thought there were more code 
level issues where the lead developer thought that there were more high-level evolvability 
issues. We also found that developers with better knowledge of the system thought there were 
more issues that were difficult to find based on superficial examination. Unfortunately, in 
article II, we had only a limited number of developers and could not utilize robust statistical 
methods. In article III, we further investigated the effects of demographics. However, in that 
study, we found that in laboratory settings using statistical methods, demographics do not 
affect the evolvability evaluations. The differences between the studies in articles II and III 
were discussed in Section 4.4.2. It is clear that in article III, the laboratory settings and the 
lack of personal attachment and ownership to the code that were present in article II affected 
the results. In article III, we had no differences in evaluators’ roles, knowledge, and 
ownership and thus could not study them. To answer this research question, we can conclude 

                                                 
6  The researchers have calculated the percentage of answers that were off by n steps in their ordinal scale, or they calculated 

averages and standard deviations from the ordinal scale.   



 50

that people’s relationships to the code may affect the evaluation results, but people’s general 
backgrounds, e.g., experience and education, do not affect the evaluation results. The results, 
assuming that further studies can confirm them, can be used when assessing the reliability of 
human code evaluations. In other words, one should be cautious when getting evaluations 
from developers who have been heavily involved in the development. Of course, this is not 
new since independent evaluations are often used when reliable assessment is needed. 
Further, in our circumstances, the generalizability of the results is not high. Thus, one should 
realize that the answer for this research question is only partly conclusive, and the result 
should be used with caution. 

In related work, we are not aware of any studies where the effect of demographics would 
have been studied in relation to the evaluations of code evolvability. If we broaden the scope, 
we found some studies that researched the effect of demographics in the field of software 
engineering. There is work on the differences between novice and expert coders that has 
focused on the cognitive process and improving novices’ performances, e.g., [65, 126]. A 
study of programmer performance found that better academic record and higher age 
contributed positively to performance [41]. There have also been many studies of personal 
factors and programming aptitude (see [104] for details). Although such related work exists, 
it is too far removed for any meaningful comparison with our work.  

5.2.3 RQ 2.3 

Research question 2.3 is “What is the relationship between evolvability evaluations and 
source code metrics; do the evaluations and metrics correlate or explain each other?” 

In article II, we found that code metrics and smell evaluations were somewhat conflicting 
in large class and duplicate code evaluations. There was agreement between smell 
evaluations and code metrics in the long parameter list evaluations. In article II, the 
developers performed the evaluation on the modules they had primarily worked with, but the 
answers were most likely based on their recollections. In addition, in article II, the number of 
developer evaluations was too small for statistical analysis.  

To fix these shortcomings, article III uses a high number of student subjects in a controlled 
experiment. In that case, we found that simple evolvability issues, long method and long 
parameter list, were highly correlated with the appropriate source code metrics. When 
studying the code metrics, the refactoring decision, and the more complex feature envy issue 
we found that correlation was lower. Comparing these results with the results of research 
question 3 reveals that both the interrater agreement and the metric regression models have a 
similar two-fold structure. Both perform well on simple evolvability issues evaluations. 
Similarly, both the interrater agreement and the regression models have low values when it 
comes to the refactoring decisions and feature envy issue evaluations. There is a connection 
between these two, and it is caused by the fact that the source code metrics of any method 
will remain the same even if there is disagreement between raters. Thus, if there is 
disagreement about whether a certain method should be refactored, it automatically means 
that the code metrics of that method cannot make up a strong regression model that would 
predict the refactoring decision.  

In article IV, we continued our study on the relationship between evolvability issues and 
code metrics. In article IV, we studied the evolvability issues humans find in the source code 
and found that only part of these can be found with automatic tools. Some issues can be 
partly detected, for example, if a human suggest that a parameter object should be used we 
may be able to detect a large number of parameters with metrics tools. Other issues cannot be 



 51

detected at all. For example, issues related to code element naming or code commenting may 
not be detected. In addition, issues in which a better solution approach is suggested are nearly 
impossible to detect with tools, e.g., instead of having this functionality implemented in a 
code, functionality in the code library should be used.  

The results from all three articles seem to have one common theme. The simpler and easier 
to detect the evolvability issue is for both humans and the tools, the higher the correlation is 
between code metrics and human evaluations. For example, duplicate code is a simple issue 
but its detection can be hard both for human and tools. Humans have difficulty finding 
duplicate code from a large code base and tools have problems when duplicated code is 
slightly modified in the duplications. An example of a simple and easy to detect issue for 
both is method length and thus there should be high correlation in human and machine 
evaluations. It is difficult to assess the generalizability of this finding, but since the same 
phenomenon was present in all three studies, it seems plausible to believe that it would be 
generalizable.  

A practical implication of the study is that humans cannot be replaced with tool-based 
evolvability analysis. However, one should use tools to detect issues that are suitable for 
them as this leaves humans more time for productive work. Thus, companies should make 
sure that prior to code review, the code has passed a static analysis detector, so that no time is 
wasted on finding the issues that could be found efficiently with tools. Naturally, there are a 
number of practicalities that may prevent such a scenario, e.g., it would require a 
combination of several tools for finding all the issues we want to find automatically or it 
would take too much effort to get the tools. However, all those excuses should be compared 
against the gained benefits; it might be that it is not worthwhile to find all issues 
automatically.  

In related work, we have found several studies in which the relationship tool-based source 
code metrics were compared against human evaluations of software maintainability. Kafura 
and Reddy [67] studied the relationship between software complexity metrics and software 
maintainability. Maintainability was measured using subjective evaluations by system 
experts. They concluded that the expert evaluations on evolvability were in conformance 
with the complexity source code metric. Shepperd [111] validated the usefulness of 
information flow metrics on software maintainability and found that correlation between the 
subjective maintainability evaluations and information flow metric was high (0.7). Kataoka et 
al. [70] studied the usefulness of improving the software quality with refactoring and reported 
on a comparison between human evaluation and software metrics. According to the 
researchers, the subjective evaluation of an expert on the effectiveness of refactorings 
correlated quite well with the improvement in coupling metrics. Genero et al. [52] studied the 
maintainability of UML-class diagrams. The researchers showed that subjective evaluation of 
understandability, analyzability, and modifiability of UML-diagrams correlated with various 
class level metrics. Oman et al. [100, 123] used subjective evaluations to create a metrics-
based maintainability measure. It is, therefore, quite natural that their metrics correlated well 
with subjective evaluations. Recently, Anda [2] compared expert judgment and structural 
measures in assessing software maintainability. The research found that the expert opinions 
and software metrics mostly corresponded to each. However, the research suggested that 
several issues of software maintainability were not captured by source code metrics. All the 
related works have studied code metrics in relation to a higher-level concept of 
maintainability and have found that maintainability evaluations have been at least somewhat 
in correlation with the chosen metrics.  



 52

On the other hand, we have studied the evaluations of more concrete issues, such as 
method length, against the respective metrics. Our human evaluations of the refactoring need 
are comparable to the maintainability evaluation of the prior works. We have found that the 
correlations between evaluations and metrics are higher for the simple issues and are lower 
for the more complex ones. We have also showed that there are evolvability issues that 
cannot be measured or automatically detected. Thus, it seems awkward that prior studies have 
tried and been successful in correlating maintainability with each metric that was chosen in a 
particular study. Our results seem to be somewhat conflicting to prior works since based on 
our studies, it seems that the concept of maintainability cannot be well correlated with any 
single metric and even when using several metrics to create regression models, there is still a 
lot of unexplained variation in the human evaluations.  

5.2.4 RQ 2.4 

Research question 2.4 is “What evolvability issues are seen as the most significant by 
human evaluators?” 

This was studied in article IV where we considered the evolvability issues found in the 
source code and linked them to the refactoring decision. We found that both positive and 
negative comments affect the refactoring decision, meaning that the count of evolvability 
issues (the negative comments) increased the likelihood of refactoring and the positive 
decreased the likelihood of refactoring. In practice, this means that if a method has some 
evolvability issues it can decrease the likelihood of becoming a refactoring target with having 
some positive aspects, e.g., good commenting to compensate long and complex structure. In 
the article, we also studied the effect of the different types of evolvability issues. We found 
that structure was the most important predictor refactoring decision. Visual representation 
had a much smaller effect and somewhat surprisingly, documentation had almost no effect on 
the refactoring decision. We also studied the detailed evolvability issue types and found that 
the need to perform extract method refactoring, i.e., long method, was the most important 
individual predictor of a refactoring decision.  

Based on the results, we can say that, at the method level, refactoring decisions are affected 
by both positive and negative aspects of the code, structural issues are seen as the most 
important groups, and method length is the most important individual issue. However, the 
generalizability of the results is low as we had limitations: student subjects, a small 
application, and only ten methods were evaluated. It is possible that in different, perhaps 
more realistic settings, the results might have differed, e.g., in our settings, we only had little 
duplicated code, thus, the issue was not an important predictor of the refactoring decision 
according to the regression models.  

Currently, we are not aware of other studies in which qualitative answers concerning code 
evolvability would have been linked to code refactoring decisions or to evolvability 
evaluations. It could be that previous researchers have found this topic, the significance of 
various evolvability issues, too subjective and context dependent.    

5.3 Limitations 

The individual articles of this study have discussed the limitations of each study. Therefore, 
this section presents only a summary of the most notable limitations.  



 53

5.3.1 Software evolvability issues 

Next, we address the limitations related to our research on research question 1.1. We 
created a classification of software evolvability issues. Thus, we need to assess its validity 
and the process that was used to create such classification. In article V, we validated the 
repeatability of the created classification. The agreement between two classifiers can 
measured using Cohen’s Kappa [35]. According to El Emam and Wieczorek Kappa values 
above 0.78 indicated excellent agreement. For the evolvablity issue classification presented 
in this thesis, we achieved a Kappa of 0.79. Admittedly, there still are borderline cases for 
which it is difficult to say whether an evolvability issue belongs to one group or the other. In 
article I, we found weak empirical evidence supporting our code smell classification when we 
found that there was more correlation within the classification groups than there was between 
the groups. In articles IV and V, we used qualitative research methods to analyze the 
evolvability issues and created the classification groups based on this analysis of the 
empirical data. However, it is likely that researcher bias has affected the result as the entire 
analysis was conducted by the author of this dissertation. In articles IV and V, we used data 
from three completely different sources, thus, it seems unlikely that the data source could 
have biased the results. In article I, the creation of the classification was based only on 
analytical analysis of the list and description code smells provided in the literature. Thus, it is 
possible that classification of article I does not really reflect real life phenomenon, even 
though the list of evolvability issues was provided by highly regarded industry professionals. 
Currently, we are not able to provide answers of the external validity and applicability of the 
classification. Only time will determine whether this classification will be considered useful 
by the software engineering community. 

Next, we address the research question 1.2, the types of identified evolvability issues and 
their distributions. The issues identified in the source code and their distributions to different 
classes are affected by many factors. We only had source code from three sources, although 
we had many samples of source code that were evaluated in the last two. With three sources, 
we can provide only preliminary evidence of the types and distributions because the 
evolvability issue types and distributions may fluctuate heavily between different sources. In 
the first research question, the researcher bias may have affected the results; a researcher with 
a different background may have recognized different defect types and classified the defects 
differently.  

Research question 1.3, studying the share of functional defect and evolvability issues found 
in code review also had limitations. The most notable being that we studied the code review 
defect distributions of code that had already passed lightweight functional testing. This 
naturally decreases the amount of functional testing. However, we think such a scenario 
represents a realistic view, since, in our experience, code reviews are often performed after 
initial testing. It would seem awkward to perform team-level code review before the creation 
of unit tests when there are methodologies advocating that unit tests should be created even 
before the code is written [15]. 

5.3.2 Human evaluations of software evolvability 

In studying research question 2.1 and 2.2, interrater agreement on the evolvability 
evaluations and the affect demographics have on evolvability evaluations, we had two data 
sets in article II and III. Both data sets had limitations. Limitations in article II were due to 
using a Web survey as a data collection method, relying on developers’ recollections in 
making the evaluations, and having a limited number of subjects. In article III, all of the 
issues of article II were fixed, but we had a new set of limitations due to using student 



 54

subjects in laboratory type experiments. Thus, in article III, we could not study the effect of 
code ownership on evolvability evaluations that was studied in article II.  

Research question 2.3, the relationship between evolvability evaluations and source code 
metrics, was studied in articles II, III, and IV. The limitations of research questions 2.1 and 
2.2 also apply to this research question. In addition, in article two we could not measure all 
types of evolvability issues in all the modules, which reduced the number of data points even 
further. In article III, where we linked the source code metrics to evolvability evaluation 
through regression models, the subject only evaluated ten different methods. This reduced the 
variability in the evaluated methods and most likely created a bias in the regression models. 
With, for example, 100 different evaluated methods, the regression models would have had a 
larger and more variable set of methods that would have produced different metric values for 
the dependent variables. In article IV, we analyzed whether each type of evolvability problem 
could be detected with source code metrics. This type of approach naturally has limitations, 
as it is not based on empirical data or even on the opinion of an expert board. Rather, it 
represents the author’s attempt to point out what types of issues cannot be detected with 
tools.  

Research question 2.4, the significance of the evolvability issues, was studied in article IV. 
The answer to this research also has limitations as it is based only on a single data set. It is 
possible that an experiment with a different set of methods and people would have resulted in 
different results. For example, had the evaluated code contained a lot of duplication then it is 
likely that the duplicate code would have found as a very significant predictor of the 
refactoring decision. Thus, due to the limitations, the answer to this research question should 
only be considered as a hypothesis for further work.   

5.4 Practitioner’s implications 

This section summarizes the most important findings of this study and the literature from a 
practitioner’s point of view and gives suggestions for how the research results could be 
applied in practice.  

• Based on the literature, software evolvability explains 25% to 38% of the costs of 
software evolution.   

• An established and empirically grounded defect classification (consisting of both 
evolvability and functional defect types) should be used as a baseline when building 
checklists for code reviews or when creating coding standards for the developers, to 
ensure that most typical defect classes are covered.  

• Code reviews seem particularly valuable for software product or service businesses 
in which the same software or service is modified and extended over the years. 
However, organizations working with customer-specific projects may elect to skip 
code reviews, as the higher cost of subsequent evolution is often paid for by the 
customer organization. Naturally, the firms in product or service businesses should 
consider targeting reviews for those modules that are likely to be modified in the 
future.  

• Ninety percent of the evolvability issues belong to structure and documentation 
groups that cannot mostly be automatically detected and fixed. Thus, a human 
element is still required in the process of detecting and fixing evolvability issues.   

• When studying structural evolvability issues, one should consider alternative 
approaches rather than trying to work from the existing solution. Specifically, one 



 55

should think whether there is functionality that is already implemented elsewhere. 
Our research found many cases where functionality existing in the code library had 
been reimplemented in the source code, as the author was unaware of the existence 
of functionality.    

• Tools can help detect simple structural defects and the code metrics and subjective 
human evaluations correlate well for simple issues. Organizations should also 
consider using pretty printers for automatically fixing visual representation defects. 
Having tool help for simple issues would allow people to focus their valuable time 
on issues that are more complex.  

• Humans have good agreement on simple evolvability issues, but they can have 
disagreements on more complex evolvability issues. Similarly, disagreement may 
arise whether a certain piece of code needs refactoring. Thus, developers should 
collaborate on the decisions that are more complex. 

• Human evolvability evaluations are affected by code ownership and organizational 
role. However, factors such as education and experience have little impact. Thus, 
the code author’s assessment of the code evolvability should be studied with 
caution regardless of his or her experience and knowledge.  



 56

6. CONCLUSIONS  

6.1 Contributions of the research 

This research has studied software evolvability issues at source code level. We make four 
contributions. 

First, we have provided classifications of the evolvability issues based on analysis and 
empirical data. We hope that such classifications facilitate understanding about the 
evolvability issues. For example, universities can use it when teaching evolvability issues and 
perhaps companies can organize coding standards, code review checklists or code review 
roles based on it. Article V has more detailed description of using defect types when creating 
roles for code reviews in the context of scenario based reviews and defect based reading by 
Porter et al. [105]. Our classification consists of many issues that have also been recognized 
in prior works. However, based on empirical data we also recognized a new evolvability issue 
type called solution approach, which indicates the need to rethink the current solution rather 
than reorganize it. For solution approach issues, we are not aware of any research presenting 
or discussing such defects in the software engineering domain. However, we understand that 
such issues have always been present in software engineering but they have not been 
formally recognized in the literature.     

Second, we provide empirical results of the types and distributions of the evolvability 
issues. We found interesting evolvability issue types, such as semantic duplication and 
semantic dead code, which were not widely discussed in prior works. We found that visual 
representation accounts for a very small share of evolvability issues. In all cases, it was less 
than 15% of the evolvability issues and three out of the four cases (three data sets by us and 
one by Siy and Votta [113] that was further analyzed in article V)  the share was around 10%. 
For the evolvability issue groups’ structure and documentation, we could not find any 
consistencies. We also found that majority of the issues found in code reviews after initial 
functional testing were evolvability issues. It is difficult to assess the value of these empirical 
findings when there are only a limited number of studies to compare them with. However, 
based on the work to date, we can suggest that code reviews are a good tool for evolvability 
evaluation and improvement. Furthermore, it appears that evolvability issues are mostly 
about code structure and documentation rather than simple layout issues. 

Third, we studied the human aspects in source code evolvability evaluations. We found that 
demographics such as education and general work experience are not good predictors of the 
evolvability evaluations. However, based on limited evidence, it seems that a person’s role in 
the organization and the relationship (authorship) to the code have more effect on the 
evaluations than general demographics. This indicates that a person’s organizational 
background should be taken into account when evaluating the reliability of the evaluations. 
Additionally, we were able to show that that the interrater agreement of the evolvability 
evaluations decreases for the more complex issues. Thus, there should be no need to double 
check whether a company’s developer follows simple rules. However, for the more complex 
ones, there can be different interpretations. Therefore, double checking is a good idea when a 
new developer joins a company.      

Fourth, we studied the relationship between human evolvability evaluations and source 
code metrics. When evaluating large software modules, human evaluations were somewhat 
conflicting with the respective source code metrics. However, when humans performed at 
method level for simple evolvability issues the code metrics human evaluations were highly 
correlated. Furthermore, we found that code metrics were less correlated to the human 



 57

decision whether to refactor a code. This result is partly explained by our qualitative analysis 
of the evolvability issues detected by humans. There we found that humans are able to find 
issues from the source code that cannot be measured and detected with source code metrics. 
For example, if a developer’s code is well programmed from the engineering viewpoint, but 
it implements a functionality that is already available through a class library, then a metrics 
based analysis considers the code correct. However, an experienced developer will notice that 
this code is redundant. Thus, the source code metrics tools, widely studied in academia, are a 
good aid for detecting simple evolvability issues, but they offer a limited view of the source 
code evolvability as a whole.  

6.2 Future work 

In this study, we found preliminary evidence that a person’s role and code authorship 
affects the evolvability evaluations. Besides our study, we have also witnessed anecdotal 
evidence supporting this. For example, student groups in our laboratory’s software project 
course often regarded their own work products as high quality. However, when a new student 
group starts to develop the software, the new group thinks that the original code (developed 
by a student group from previous year’s course) is poor quality. Thus, it appears that there is 
a connection between a person’s relationship with the code and the person’s opinion of the 
code quality. In the future, it would be interesting to see high quality research studying this 
phenomenon.   

We know that poor evolvability leads to increased effort in future development [9, 28, 40, 
53, 77, 88, 107]. We know that software evolvability explains roughly 25% to 38% of the 
software evolution costs [9, 10, 107]. We know that there are companies and development 
methodologies that emphasize the importance of software evolvability by performing 
continuous refactoring [16, 39]. Still, it is difficult for a company to get reliable measures of 
the costs and benefits of software evolvability (e.g., for current software, will it pay off in the 
next two years if 10% of development is budgeted to software evolvability improvement). 
Therefore, to be able to demonstrate the possible costs and payoffs, we would need cost 
benefit models based on empirical data. Currently, we know that evolvability issues increase 
development effort, but we have no idea of the costs versus the benefits.  Future work should 
address this challenging topic. 

This study also found solutions approach issues that had not been previously recognized in 
the software engineering literature. Future work should continue to study these issues, to 
confirm our findings that such issues really exist, to understand them better, to study them at 
the design level, to find better generalizations and possible fixes, and to see what their impact 
is on software development. By having a good understanding about these issues it should be 
possible to reduce problems in the software since the developers would be more aware of 
them and less likely to create such code and more likely to remove the problems.  

In this study, we studied the distributions of code review defects. Similarly, we think that 
the quality impact of quality assurance methods, such as unit testing and acceptance testing, 
merit further study. A recent study of test-first unit testing indicates that it improves software 
design by creating code that has smaller units with less complexity [66]. Having broad 
knowledge of the quality impact, the defect types detected by different quality assurance 
methods would help software engineering practitioners choose the right tools for their quality 
assurance toolboxes depending on their quality goals. 

Furthermore, we would like to see a stronger connection between people making code 
metrics tools and the developers working with actual code. In the past years, the study of 



 58

code metrics has often started in the wrong direction. For example, researchers have come up 
with metrics and then started to think about the possible uses for it. In the future, it should be 
the other way around. Developers would identify the problems in the code and then 
researchers would create tools for detecting such code. Some work has already been done to 
implement these adaptive design flaw detectors [83, 84, 90, 109], and hopefully these tools 
will be integrated into mainstream development tools in future years.  



 59

7. REFERENCES 

[1] AFOTEC, Software Maintainability Evaluation Guide, DEPARTMENT OF THE AIR 
FORCE, HQ Air Force Operational Test and Evaluation Center, 1996. 

[2] Anda,B.C.D., "Assessing Software System Maintainability using Structural Measures 
and Expert Assessments," in the 23rd International Conference on Software 
Maintenance (ICSM 2007), 2007, pp. 204-213. 

[3] Arisholm,E. and Sjoberg,D.I.K., "Evaluating the effect of a delegated versus centralized 
control style on the maintainability of object-oriented software," Software Engineering, 
IEEE Transactions on, vol. 30, no. 8, 2004, pp. 521-534. 

[4] Arisholm,E., Sjøberg,D.I.K. and Jørgensen,M., "Assessing the Changeability of two 
Object-Oriented Design Alternatives--a Controlled Experiment," Empirical Software 
Engineering, vol. 6, no. 3, 2001, pp. 231-277. 

[5] Arisholm,E., "Empirical Assessment of the Impact of Structural Properties on the 
Changeability of Object-Oriented Software," Information and Software Technology, vol. 
48, no. 11, 2006, pp. 1046-1055. 

[6] Arisholm,E., Briand,L.C., Hove,S.E. and Labiche,Y., "The Impact of UML 
Documentation on Software Maintenance: An Experimental Evaluation," Software 
Engineering, IEEE Transactions on, vol. 32, no. 6, 2006, pp. 365-381. 

[7] Arnold,R.S., "Software restructuring," Proceedings of the IEE, vol. 77, no. 4, 1989, pp. 
607-617. 

[8] Balazinska,M., Merlo,E., Dagenais,M., Lague,B. and Kontogiannis,K., "Advanced 
clone-analysis to support object-oriented system refactoring," in Proceedings of Seventh 
Working Conference on Reverse Engineering, 2000, pp. 98-107. 

[9] Bandi,R.K., Vaishnavi,V.K. and Turk,D.E., "Predicting maintenance performance using 
object-oriented design complexity metrics," IEEE Trans. Software Eng., vol. 29, no. 1, 
2003, pp. 77-87. 

[10] Banker,R.D., Datar,S.M., Kemerer,C.F. and Zweig,D., "Software complexity and 
maintenance costs," Commun ACM, vol. 36, no. 11, 1993, pp. 81-94. 

[11] Basili,V.R. and Selby,R.W., "Comparing the Effectiveness of Software Testing 
Strategies," IEEE Trans.Software Eng., vol. 13, no. 12, 1987, pp. 1278-1296. 

[12] Basili,V.R., Briand,L.C. and Melo,W.L., "A Validation of Object Oriented Design 
Metric as Quality Indicators," IEEE Trans. Software Eng., vol. 22, no. 10, 1996, pp. 751-
761. 

[13] Bass,L., Clements,P. and Kazman,R., Software Architecture in Practice, Boston: 
Addison-Wesley, 2003. 

[14] Beck,K. and Cunningham,W., "A laboratory for teaching object oriented thinking," in 
Proceedings of Object Oriented Programming Systems Languages and Applications, 
1989, pp. 1-6. 

[15] Beck,K., Test-Driven Development by Example, Addison-Wesley, 2002. 

[16] Beck,K., Extreme Programming Explained, Canada: Addison-Wesley, 2000. 

[17] Beizer,B., Software testing techniques, Van Nostrand Reinhold Co. New York, NY, 
USA, 1990. 



 60

[18] Binkley,A.B. and Schach,S.R., "Validation of the coupling dependency metric as a 
predictor of run-time failures and maintenance measures," 1998, pp. 452-455. 

[19] Briand,L.C., Daly,J.W. and Wüst,J., "A Unified Framework for Cohesion Measurement 
in Object-Oriented Systems," Empirical Software Engineering, vol. 3, no. 1, 1998, pp. 
65-117. 

[20] Briand,L.C., Bunse,C. and Daly,J.W., "A Controlled Experiment for Evaluating Quality 
Guidelines on the Maintainability of Object Oriented Designs," IEEE Trans. Software 
Eng., vol. 27, no. 6, 2001, pp. 513-530. 

[21] Briand,L.C., Daly,J.W. and Wüst,J.K., "A Unified Framework for Coupling 
Measurement in Object-Oriented Systems," IEEE Trans. Software Eng., vol. 25, no. 1, 
1999, pp. 91-121. 

[22] Briand,L.C. and Wüst,J.K., "Modeling development effort in object-oriented systems 
using designproperties," Software Engineering, IEEE Transactions on, vol. 27, no. 11, 
2001, pp. 963-986. 

[23] Briand,L.C., Wüst,J., Ikonomovski,S.V. and Lounis,H., "Investigating Quality Factors in 
Object-oriented Designs: an Industrial Case Study," in Proceedings of the 1999 
International Conference on Software Engineering, 1999, pp. 345-354. 

[24] Brooks,F.,P.Jr., The Mythical Man-Month: Essays on Software Engineering, 
Anniversary Edition, Addison Wesley Longman, Inc., 1999. 

[25] Brown,W.J., Malveau,R.,C., McCormick,H.W. and Mowbray,T.,J., AntiPatterns: 
Refactoring Software, Architectures, and Projects in Crisis, New York: Wiley, 1998. 

[26] Card,D.,N. and Glass,R.,L., Measuring Software Design Quality, Eaglewood Cliffs, 
New Jersey, USA: Prentice-Hall, 1990. 

[27] Chaar,J.K., Halliday,M.J., Bhandari,I.S. and Chillarege,R., "In-process evaluation for 
software inspection and test," Software Engineering, IEEE Transactions on, vol. 19, no. 
11, 1993, pp. 1055-1070. 

[28] Chan,T.Z., Chung,S.L. and Ho,T.H., "An economic model to estimate software rewriting 
and replacement times," IEEE Trans. Software Eng., vol. 22, no. 8, 08//. 1996, pp. 580-
598. 

[29] Chidamber,S.R., Darcy,D.P. and Kemerer,C.F., "Managerial use of metrics for object-
oriented software: an exploratory analysis," IEEE Trans. Software Eng., vol. 24, no. 8, 
1998, pp. 629-639. 

[30] Chidamber,S.R. and Kemerer,C.F., "A Metric Suite for Object Oriented Design," IEEE 
Trans. Software Eng., vol. 20, no. 6, 1994, pp. 476-493. 

[31] Chikofsky,E.,J. and Cross,J.,H., "Reverse Engineering and Design Recovery: A 
Taxonomy," IEEE Software, vol. 7, no. 1, 1990, pp. 13-17. 

[32] Chillarege,R., Bhandari,I.S., Chaar,J.K., Halliday,M.J., Moebus,D.S., Ray,B.K. and 
Wong,M.-., "Orthogonal defect classification-a concept for in-process measurements," 
Software Engineering, IEEE Transactions on, vol. 18, no. 11, 1992, pp. 943-956. 

[33] Coad,P. and Yourdon,E., Object-oriented analysis, Upper Saddle River, NJ, USA: 
Prentice-Hall, 1991. 

[34] Coad,P. and Yourdon,E., Object-oriented design, Englewood Cliffs, NJ: Prentice Hall, 
1991. 



 61

[35] Cohen,J., "A coefficient of agreement for nominal scales," Educational and 
Psychological Measurement, vol. 20, no. 1, 1960, pp. 37-46. 

[36] Coleman,D., Lowther,B. and Oman,P.W., "The Application of Software Maintainability 
Models in Industrial Software Systems," J.Syst.Software, vol. 29, no. 1, 1995, pp. 3-16. 

[37] Coleman,D., Ash,D., Lowther,B. and Oman,P.W., "Using Metrics to Evaluate Software 
System Maintainability," Computer, vol. 27, no. 8, 1994, pp. 44-49. 

[38] Cunningham,W., "The WyCash portfolio management system," in Addendum to the 
proceedings on Object-oriented programming systems, languages, and applications 
(Addendum), 1992, pp. 29-30. 

[39] Cusumano,M.A. and Selby,R.W., Microsoft Secrets, USA: The Free Press, 1995. 

[40] Darcy,D.P., Kemerer,C.F., Slaughter,S.A. and Tomayko,J.E., "The Structural 
Complexity of Software: An Experimental Test," Software Engineering, IEEE 
Transactions on, vol. 31, no. 11, 2005, pp. 982-995. 

[41] Darcy,D.P. and Ma,M., "Exploring Individual Characteristics and Programming 
Performance: Implications for Programmer Selection," in Proceedings of the 38th 
Annual Hawaii International Conference on System Sciences, 2005, pp. 314a-314a. 

[42] Deligiannis,I., Stamelos,I., Angelis,L., Roumeliotis,M. and Shepperd,M., "A controlled 
experiment investigation of an object-oriented design heuristic for maintainability," The 
Journal of Systems & Software, vol. 72, no. 2, 2004, pp. 129-143. 

[43] Demeyer,S., Ducasse,S. and Nierstrasz,O., "Finding refactorings via change metrics," in 
Proceedings of the conference on Object-oriented programming, systems, languages, and 
applications, 2000, pp. 166-177. 

[44] Ducasse,S., Rieger,M. and Demeyer,S., "A language independent approach for detecting 
duplicated code," in Proceedings of the International Conference on Software 
Maintenance, 1999, pp. 109-118. 

[45] El Emam,K. and Wieczorek,I., "The repeatability of code defect classifications," in 
International Symposium on Software Reliability Engineering, 1998, pp. 322-333. 

[46] El Emam,K., Melo,W. and Machado,J.,C., "The Prediction of Faulty Classes Using 
Object-Oriented Design Metrics," The Journal of Systems and Software, vol. 56, no. 1, 
2001, pp. 63-75. 

[47] Fenton,N.,E. and Ohlsson,N., "Quantitave Analysis of Faults and Failures in a Complex 
Software System," IEEE Trans. Software Eng., vol. 26, no. 8, 2000, pp. 797-814. 

[48] Fenton,N.,E. and Pfleeger,S.,L., Software Metrics, USA: Thomson Publishing Inc., 
1996. 

[49] Fowler,M., Refactoring: Improving the Design of Existing Code, Boston: Addison-
Wesley, 2000. 

[50] Fowler,M. and Beck,K., "Bad Smells in Code," in Refactoring: Improving the Design of 
Existing Code, 1st ed., Boston: Addison-Wesley, 2000, pp. 75-88. 

[51] Genero,M., Piatini,M. and Manso,E., "Finding "early" indicators of UML class diagrams 
understandability and modifiability," in Proceedings of International Symposium on 
Empirical Software Engineering, 2004, pp. 207-216. 



 62

[52] Genero,M., Piattini,M. and Calero,C., "Empirical validation of class diagram metrics," in 
Proceedings of the International Symposium on Empirical Software Engineering, 2002, 
pp. 195-203. 

[53] Gorla,N., Benander,A.C. and Benander,B.A., "Debugging effort estimation using 
software metrics," Software Engineering, IEEE Transactions on, vol. 16, no. 2, 1990, 
pp. 223-231. 

[54] Grady,R.B., Practical software metrics for project management and process 
improvement, Prentice Hall Englewood Cliffs, NJ, 1992. 

[55] Grady,R.B. and Caswell,D.L., Software Metrics: Establishing a Company-wide 
Program, Englewood Cliffs, NJ: Prentice Hall, 1987. 

[56] Halstead,M.,H., Elements of software science, New York: Elsevier, 1977. 

[57] Hamer,P.,G. and Frewin,G.,D., "M.H. Halstead's Software Science - a critical 
examination," in Proceedings of the 6th international conference on Software 
engineering, 1982, pp. 197-206. 

[58] Harrison,R., Counsell,S.J. and Nithi,R.V., "An evaluation of the MOOD set of object-
oriented software metrics," IEEE Trans. Software Eng., vol. 24, no. 6, 1998, pp. 491-
496. 

[59] Henderson-Sellers,B., Object-Oriented Metrics, Upper Saddle River, New Jersey, USA: 
Prentice Hall, 1996. 

[60] Hitz,M. and Montazeri,B., "Chidamber and Kemerer's metrics suite: a measurement 
theory perspective," IEEE Trans. Software Eng., vol. 22, no. 4, 1996, pp. 267-271. 

[61] Humphrey,W.S., A Discipline for Software Engineering, Addison-Wesley Longman 
Publishing Co., Inc. Boston, MA, USA, 1995. 

[62] Hunt,A. and Thomas,D., The Pragmatic Programmer: From Journeyman to Master, 
Boston: Addison-Wesley Professional, 1999. 

[63] IEEE, "IEEE standard classification for software anomalies." IEEE Std 1044-1993, 
1994. 

[64] IEEE, IEEE Standard Glossary of Software Engineering Terminology, New York: The 
Institute of Electrical and Electronics Engineers, Inc., 1990. 

[65] Iio,K., Furuyama,T. and Arai,Y., "Experimental analysis of the cognitive processes of 
program maintainers during software maintenance," in Proceedings of International 
Conference on Software Maintenance. 1997, pp. 242-249. 

[66] Janzen,D., "Does Test-Driven Development Really Improve Software Design Quality?" 
Software, IEEE, vol. 25, pp. 77-84, 2008. 

[67] Kafura,D.G. and Reddy,G.R., "The Use of Software Complexity Metrics in Software 
Maintenance," IEEE Trans. Software Eng., vol. 13, no. 3, 1987, pp. 335-343. 

[68] Kaner,C., Falk,J. and Nguyen,H.Q., Testing Computer Software, New York, NY, USA: 
John Wiley & Sons, 1999. 

[69] Kataoka,Y., Ernst,M.D., Griswold,W.G. and Notkin,D., "Automated support for 
program refactoring using invariants," in Proceedings of International Conference on 
Software Maintenance, 2001, pp. 736-743. 



 63

[70] Kataoka,Y., Imai,T., Andou,H. and Fukaya,T., "A Quantative Evaluation of 
Maintainability Enhancement by Refactoring," in Proceedings of the International 
Conference on Software Maintenance, 2002, pp. 576-585. 

[71] Kendall,M., Sir, "The problem of  m ranking," in Rank Correlation Methods, 5th ed., 
J.D. Gibbons Ed. London: Edward Arnold, 1948, pp. 117-143. 

[72] Kernighan,B.W. and Plauger,P.J., The Elements of Programming Style, New York, NY, 
USA: McGraw-Hill, Inc., 1978. 

[73] LaToza,T.D., Venolia,G. and DeLine,R., "Maintaining mental models: a study of 
developer work habits," in ICSE '06: Proceeding of the 28th international conference on 
Software engineering, 2006, pp. 492-501. 

[74] Lehman,M.M., "Laws of Software Evolution Revisited," in Proceedings of European 
Workshop on Software Process Technology, 1996, pp. 108-124. 

[75] Lehman,M.M., "On Understanding Laws, Evolution, and Conservation in the Large-
Program Life Cycle," The Journal of Systems and Software, vol. 1, 1980, pp. 213-221. 

[76] Li,W. and Henry,S.M., "Maintenance metrics for the object oriented paradigm," in 
Proceedings of the First International Software Metrics Symposium, 1993, pp. 52-60. 

[77] Li,W. and Henry,S.M., "Object-Oriented Metrics that Predict Maintainability," 
J.Syst.Software, vol. 23, no. 2, 1993, pp. 111-122. 

[78] Lieberherr,K.J. and Holland,I.M., "Assuring good style for object-oriented programs," 
Software, IEEE, vol. 6, no. 5, 1989, pp. 38-48. 

[79] Lind,R.K. and Vairavan,K., "An experimental investigation of software metrics and their 
relationship to software development effort," Software Engineering, IEEE Transactions 
on, vol. 15, no. 5, 1989, pp. 649-653. 

[80] Linnaeus,C. and Gmelin,J.F., Systema naturae per regna tria naturae, secundum classes, 
ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Laurentius 
Salvius, 1758. 

[81] Lorenz,M. and Kidd,J., Object-Oriented Software Metrics, Upper Saddle River, New 
Jersey, USA: Prentice Hall, 1994. 

[82] Mäntylä,M.V., Vanhanen,J. and Lassenius,C., "Bad smells - Humans as code critics," in 
Proceedings.20th IEEE International Conference on Software Maintenance, 2004. 2004, 
pp. 399-408. 

[83] Marinescu,R., "Measurement and Quality in Object-Oriented Design," in Proceedings of 
the 21st IEEE International Conference on Software Maintenance, 2005.ICSM'05. 2005, 
pp. 701-704. 

[84] Marinescu,R., "Detection Strategies: Metrics-Based Rules for Detecting Design Flaws," 
in In Proceedings of Software Maintenance, 2004, pp. 350-359. 

[85] McCabe,T.J., "A Complexity Measure," IEEE Trans. Software Eng., vol. 2, no. 4, 1976, 
pp. 308-320. 

[86] McConnell,S., "High-Quality Routines " in Code Complete 2, 2nd ed., Redmond, 
Washington, USA: Microsoft Press, 2004, pp. 161-186. 

[87] Mens,T. and Tourwe,T., "A survey of software refactoring," IEEE Trans. Software Eng., 
vol. 30, no. 2, 2004, pp. 126-139. 



 64

[88] Miara,R.J., Musselman,J.A., Navarro,J.A. and Shneiderman,B., "Program indentation 
and comprehensibility," Commun ACM, vol. 26, no. 11, 1983, pp. 861-867. 

[89] Miles,M.B. and Huberman,M.A., Qualitative Data Analysis, Thousand Oaks, California, 
USA: Sage Publications, 1994. 

[90] Moha,N., Gueheneuc,Y.G. and Leduc,P., "Automatic Generation of Detection 
Algorithms for Design Defects," in Automated Software Engineering, 2006. ASE '06. 
21st IEEE/ACM International Conference on 
, 2006, pp. 297-300. 

[91] Moilanen,T. and Roponen,S., Kvalitativiisen aineiston analyysi Atlas.ti-ohjelman avulla 
("Analyzing qualitative data with Atlas.ti software), Helsinki, Finland: 
Kuluttajatutkimuskeskus, 1994. 

[92] Munson,J.C. and Khoshgoftaar,T.M., "The detection of fault-prone programs," Software 
Engineering, IEEE Transactions on, vol. 18, no. 5, 1992, pp. 423-433. 

[93] Murphy,G.C., Kersten,M. and Findlater,L., "How Are Java Software Developers Using 
the Eclipse IDE?" Software, IEEE, vol. 23, no. 4, 2006, pp. 76-83. 

[94] Muthanna,S., Stacey,B., Kontogiannis,K. and Ponnambalam,K., "A maintainability 
model for industrial software systems using design level metrics," in Proceedings of 
Seventh Working Conference on Reverse Engineering, 2000, pp. 248-256. 

[95] Nesi,P. and Querci,T., "Effort estimation and prediction of object-oriented systems," The 
Journal of Systems & Software, vol. 42, no. 1, 1998, pp. 89-102. 

[96] Niiniluoto,I., "Käsitetyypit ja mittaaminen ("Concept types and measurement")," in 
Johdatus tieteenfilosofiaan: Käsitteen ja teorianmuodostus ("Introduction to  philosophy 
of science: theory building and conception"), 3rd ed., Helsinki: Otava, 1980, pp. 171-
191. 

[97] Oman,P.W., Hagemeister,J. and Ash,D., "A Definition and Taxonomy for Software 
Maintainability," Software Engineering Test Lab, University of Idaho., Tech. Rep. 91-
08, 1991. 

[98] Oman,P.W. and Cook,C.R., "The book paradigm for improved maintenance," IEEE 
Software, vol. 7, no. 1, 1990, pp. 39-45. 

[99] Oman,P.W. and Cook,C.R., "Typographic style is more than cosmetic," Commun ACM, 
vol. 33, no. 5, 1990, pp. 506-520. 

[100] Oman,P.W. and Hagemeister,J., "Constructing and testing of polynomials predicting 
software maintainability," Journal of Systems and Software, vol. 24, no. 3, 1994, pp. 
251-266. 

[101] O'Neill,D. , "National Software Quality Experiment Resources and Results," 2002, 
Accessed 2007 06/13 http://members.aol.com/ONeillDon/nsqe-results.html 

[102] Parnas,D.L., "On the Criteria to Be Used in Decomposing Systems into Modules," 
Communication of ACM, vol. 15, no. 12, December/1972. 1972, pp. 1053-1058. 

[103] Pigoski,T.M., Practical Software Maintenance, John Wiley & Sons Inc., 1996. 

[104] Pocius,K.E., "Personality factors in human-computer interaction: A review of the 
literature," Computers in Human Behavior, vol. 7, no. 3, 1991, pp. 103-135. 



 65

[105] Porter,A.A., Votta,L.G.,Jr. and Basili,V.R., "Comparing detection methods for software 
requirements inspections: a replicated experiment," Software Engineering, IEEE 
Transactions on, vol. 21, 1995, pp. 563-575. 

[106] Rising,L.S. and Calliss,F.W., "An information-hiding metric," The Journal of Systems 
and Software, vol. 26, no. 3, 1994, pp. 211-220. 

[107] Rombach,D.,H., "Controlled Experiment on the Impact of Software Structure on 
Maintainability," IEEE Trans. Software Eng., vol. 13, no. 3, 1987, pp. 344-354. 

[108] Runeson,P. and Wohlin,C., "An Experimental Evaluation of an Experience-Based 
Capture-Recapture Method in Software Code Inspections," Empirical Software 
Engineering, vol. 3, no. 4, 1998, pp. 381-406. 

[109] Schwanke,R.W. and Hanson,S.J., "Using Neural Networks to Modularize Software," 
Mach.Learning, vol. 15, no. 2, 1994, pp. 137-168. 

[110] Seaman,C.B., "Qualitative methods in empirical studies of software engineering," 
Software Engineering, IEEE Transactions on, vol. 25, no. 4, 1999, pp. 557-572. 

[111] Shepperd,M.J., "System architecture metrics for controlling software maintainability," in 
IEE Colloquium on Software Metrics, 1990, pp. 4/1-4/3. 

[112] Shneiderman,B., Software Psychology: Human factors in Computer and Information 
Systems, Cambridge, Massachusetts, USA: Winthrop Publishers, 1980. 

[113] Siy,H. and Votta,L., "Does the modern code inspection have value?" in International 
Conference on Software Maintenance, 2001, pp. 281-289. 

[114] So,S.S., Cha,S.D., Shimeall,T.J. and Kwon,Y.R., "An empirical evaluation of six 
methods to detect faults in software," Software Testing, Verification & Reliability, vol. 
12, no. 3, 2002, pp. 155-171. 

[115] Stevens,W.P., Myers,G.J. and Constantine,L.L., "Structured Design," IBM Syst J, vol. 
13, no. 2, 1974, pp. 115-139. 

[116] Subramaniam,V. and Hunt,A., Practices Of An Agile Developer, Raleigh, North 
Carolina, USA: Pragmatic Bookshelf, 2005. 

[117] Succi,G., Pedrycz,W., Djokic,S., Zuliani,P. and Russo,B., "An Empirical Exploration of 
the Distributions of the Chidamber and Kemerer Object-Oriented Metrics Suite," 
Empirical Software Engineering, vol. 10, no. 1, 01. 2005, pp. 81-104. 

[118] Sun Microsystems. , "Code Conventions for the Java Programming Language," 1999, 
Accessed 1999 7/20 http://java.sun.com/docs/codeconv/ 

[119] Takahashi,D. , 2006, Accessed 2008 4/9 
http://seattletimes.nwsource.com/html/businesstechnology/2003460386_btview04.html 

[120] Tenny,T., "Program readability: procedures versus comments," Software Engineering, 
IEEE Transactions on, vol. 14, no. 9, 1988, pp. 1271-1279. 

[121] Van Rysselberghe,F. and Demeyer,S., "Reconstruction of successful software evolution 
using clone detection," Software Evolution, 2003.Proceedings.Sixth International 
Workshop on Principles of, 2003, pp. 126-130. 

[122] Wake,W.C., Refactoring Workbook, Addison Wesley, 2003. 



 66

[123] Welker,K.D., Oman,P.W. and Atkinson,G.G., "Development and application of an 
automated source code maintainability index," Journal of Software Maintenance: 
Research and Practice, vol. 9, no. 3, 1997, pp. 127-159. 

[124] Weyuker,E.J., "Evaluating software complexity measures," IEEE Trans. Software Eng., 
vol. 14, no. 9, 1988, pp. 1357-1365. 

[125] Xing,Z. and Stroulia,E., "Refactoring Practice: How it is and How it Should be 
Supported-An Eclipse Case Study," in Proceedings of the 22nd IEEE International 
Conference on Software Maintenance 2006, 2006, pp. 458-468. 

[126] Yu,H., Ikeda,M. and Mizoguchi,R., "Helping novice programmers bridge the conceptual 
gap," in Proceedings of International Conference on Expert Systems for Development, 
1994, pp. 192-197. 

[127] Yu,P., Systä,T. and Müller,H., "Predicting fault-proneness using OO metrics. An 
industrial case study," in Proceedings of Sixth European Conference on Software 
Maintenance and Reengineering, 2002, pp. 99-107. 



ISBN 978-951-22-9856-3
ISBN 978-951-22-9857-0 (PDF)
ISSN 1795-2239
ISSN 1795-4584 (PDF)


	1_abstract_en.pdf
	2_abstract_su.pdf
	3_acknowledgements.pdf
	4_List_of_publications_and_authors_contribution.pdf
	5_Final-Thesis_Doctoral_mmantyla.pdf



