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Radio-frequency identification (RFID) provides an efficient means of labeling and identifying various items. The
principal advantage of RFID over the more traditional barcode labeling is that RFID labels are read using a radio
signal. Hence, an unobstructed line-of-sight is not needed between the reader and the label. In addition, RFID labels,
or tags, can carry a significantly larger amount of information than barcodes. They also are physically robust whereas
printed barcodes can easily be smudged or damaged. Furthermore, it is possible to read many RFID tags
simultaneously and the presence of a human operator is generally not needed.

This dissertation focuses on a type of RFID tag that relies on the surface acoustic wave (SAW) technology. SAW RFID
tags are passive devices that reflect the interrogation signal in a form that is modified according to the identification
information stored on the tag. In reflector-based SAW RFID tags, the encoding is based on the positions of metallic
SAW reflectors on the surface of a piezoelectric substrate. In other words, it is based on the time delays of the reflected
signals. The dissertation first discusses the extraction of central SAW reflector parameters and then presents novel
SAW RFID tag designs. In the first part of the work, the reflectivity of narrow reflector electrodes on YZ-LiNbO3

substrate is determined. In addition, a new method for extracting the frequency-dependent reflection, transmission, and
scattering parameters of short metal reflectors is developed. The second part of the dissertation discusses the design of
SAW RFID tags. The main objectives of tag design include the reduction of device size and the enhancement of
information capacity. This dissertation presents a Z-path SAW RFID tag that uses two strongly reflecting inclined
reflectors to fold the acoustic path. The Z-path SAW tag has a significantly smaller size than previously reported SAW
tags. The information capacity of SAW RFID tags is enhanced by combining the conventional time-delay-based
encoding with phase encoding. A compact device size and strong resistance to environmental echoes are achieved
through the application of ultra-wideband (UWB) radio technology. The feasibility of UWB SAW tags is investigated
using simulations and confirmed experimentally. The SAW RFID tags presented in this dissertation are all designed for
the 128◦-LiNbO3 substrate.
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Radiotaajuinen etätunnistus (radio-frequency identification, RFID) on tehokas tapa merkitä ja tunnistaa erilaisia
kohteita. Perinteisiin viivakooditunnisteisiin verrattuna RFID-tunnisteiden keskeisin etu liittyy radioaaltojen käyttöön.
Suoraa näköyhteyttä tunnisteen ja lukulaitteen välillä ei tarvita. Lisäksi RFID-tunnisteiden informaatiokapasiteetti on
merkittävästi suurempi kuin viivakoodien. Ne myös kestävät viivakoodeja paremmin fyysistä kulutusta ja likaisia
olosuhteita. RFID-tunnisteet voidaan lukea automaattisesti ilman ihmisen läsnäoloa. Myös useiden tunnisteiden
samanaikainen lukeminen on mahdollista.

Tässä väitöskirjassa esitetyn tutkimuksen kohteena ovat RFID-tunnisteet, joiden toiminta perustuu akustisiin pinta-
aaltoihin (surface acoustic waves, SAW). SAW RFID -tunnisteet ovat täysin passiivisia laitteita, jotka heijastavat
lukulaitteen lähettämän kyselysignaalin takaisin. Paluusignaali on tunnisteelle tallennetun tunnistetiedon mukaisesti
muunnetussa muodossa. Väitöskirjassa keskitytään tunnisteisiin, joiden koodaus perustuu pietsosähköisen kiteen
pinnalla olevien metallisten SAW-heijastimien sijoitteluun. Työssä käsitellään ensin SAW-heijastimien keskeisten
ominaisuuksien määrittämistä ja esitellään sitten uusia SAW RFID -tunnistetyyppejä. Väitöskirjan ensimmäisessä
osassa määritetään kapeiden heijastimien heijastavuus YZ-LiNbO3-substraatilla. Lisäksi esitellään uusi menetelmä
heijastimien heijastus-, läpäisy-, ja sirontaparametrien määrittämiseksi taajuuden funktiona. Työn toinen osa käsittelee
SAW RFID -tunnisteiden suunnittelua. Tunnistesuunnittelun tärkeimpiin tavoitteisiin kuuluvat laitekoon pienentämi-
nen ja informaatiokapasiteetin kasvattaminen. Väitöskirjassa esitellään edeltäjiään merkittävästi pienempi tunniste,
jossa akustisen pinta-aallon etenemispolku on taitettu Z-kirjaimen muotoon kahden vinon heijastimen avulla. Toinen
esitelty tunniste yhdistää kaksi koodausmenetelmää: heijastimien paikkoihin eli heijastussignaalien aikaviipeisiin
perustuvan koodauksen ja heijastussignaalien vaihetietoon perustuvan koodauksen. Tämän yhdistelmän avulla
tunnisteen informaatiokapasiteettia voidaan kasvattaa huomattavasti. Kolmas esitelty tunniste soveltaa ultra-
laajakaistatekniikkaa (ultra wide band, UWB) ja on erittäin pienikokoinen. Suunnitellun UWB SAW RFID -tunnisteen
sisällä tapahtuvan signaalinkäsittelyn ansiosta tunnistuksen alttius ympäristön häiriösignaaleille vähenee. Kaikissa
tässä väitöskirjassa esitellyissä SAW RFID -tunnisteissa käytetään 128◦-LiNbO3-substraattia.
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1 Introduction

Radio-frequency identification (RFID) [1,2] has already existed for several decades but

it has only recently come into public awareness as an efficient way of labeling and

identifying objects, people, and animals. The principal advantage of RFID over the

more traditional barcode labeling [3–5] is that it is read using a radio signal. Hence, an

unobstructed line-of-sight is not needed between the reader and the label. In addition,

RFID labels, or tags, can carry a significantly larger amount of information than bar-

codes. They also are physically robust whereas printed barcodes can easily be smudged

or damaged. Furthermore, it is possible to read many RFID tags simultaneously [6–10]

and the presence of a human operator is generally not needed.

RFID has numerous applications. It is used, for example, in building access con-

trol [11], production logistics [12–14], supply chain and inventory management [15–17],

collecting of road tolls [18, 19], ticketing of passengers in transportation systems [20],

automatic sorting of luggage at airports and of parcels at postal services [21–23], and

prevention of thefts in shops and libraries [24,25]. Recently, it has also been tested as

an identification method to be used for asset tracking aboard the International Space

Station [10].

RFID tags typically are powered integrated circuits (ICs) containing a computer

microchip. They basically fall into two categories depending on their source of electrical

power. While active tags usually have an on-board battery, passive tags power their

circuitry by using a part of the interrogation signal energy transmitted by an external

reader. This thesis focuses on a type of RFID tag that is even more passive than the

passive IC tag. It does not contain an integrated circuit nor a computer microchip but

relies on surface acoustic wave (SAW) technology. SAW RFID tags are linear passive

devices whose operation does not require a threshold energy. They employ SAW delay

lines and simply reflect the interrogation signal back in a form modified according to

the identification information stored on the tag. SAW tags [26] generate a response at

any power level, usually orders of magnitude lower than what is required for IC tags.

In general, SAW technology lends itself well to the production of RFID tags: SAW

devices can combine long delay times with a small device size. They also have a simple

structure and can achieve low losses.

1.1 Surface Acoustic Wave RFID Tags

The fundamental physical phenomenon lying behind surface acoustic wave devices is

piezoelectricity [27, 28]. This is, in general terms, a coupling between a material’s

electrical and mechanical properties: in certain dielectric crystals, the application of
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Figure 1.1: Operating principle of a SAW RFID tag.

mechanical stress produces an electric polarization and, conversely, such a crystal un-

dergoes a mechanical distortion when an electric field is applied. This property is used

in many applications to produce a mechanical output from an electrical input or vice

versa. In SAW devices, the transduction between an electrical signal and an acous-

tic wave is achieved by utilizing an interdigital transducer (IDT) [29], consisting of

two interlaced comb-like metal structures deposited on the surface of a piezoelectric

substrate.

The operation principle of a SAW RFID tag is illustrated in Fig. 1.1, which schemat-

ically depicts the reader and the essential parts of the tag, that is, the substrate and

the metal structures. As usual, RFID is based on radio communication between the

reader unit and the tag. The reader sends an interrogation signal which is received

by the tag, delayed and modified within the tag according to the stored identifica-

tion information, and finally retransmitted for the reader to detect and process. More

specifically, once received by the tag antenna, the interrogation signal is converted into

a surface acoustic wave by an IDT. The generated wave propagates along the surface

of the substrate and is partly reflected and partly transmitted at precisely positioned

reflectors, consisting of narrow metal strips. Finally, the reflected train of SAW pulses

carries a code based on the delays of individual reflections or, in other words, on the

positions of the reflectors. The encoded acoustic signal is reconverted into electric form

by the IDT and transmitted by the antenna to the reader.

1.1.1 SAW Tag Device Geometries

SAW identification tags generally consist of two parts: first, an IDT, for generating

and receiving SAW pulses, (or several IDTs if the tag input and output are separated)

and, second, a means for modifying (encoding) the interrogation signal before retrans-

mitting it. The earliest SAW tags had an input IDT and several output IDTs as shown
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in Fig. 1.2a. The input IDT and all output IDTs were arranged in-line and connected

to common busbars [30, 31]. The group of output IDTs was spatially separated from

the input IDT, hence providing an initial delay for distinguishing the transmitter and

clutter energy from the reply energy. The drawback of this arrangement is that the

output transducers also act as launch transducers as well as partial reflectors of SAWs.

Spurious responses are thus created when SAWs launched or reflected by the various

encoding transducers are picked up by other transducers.

In improved geometries, the output transducers were distributed into several par-

allel acoustic channels [32–34], as depicted in Fig. 1.2b. However, such multichannel

geometries use more space in the transverse direction and have increased losses. A sug-

gested improvement, sketched in Fig. 1.2c, brought the encoding elements back in one

common acoustic channel by replacing the encoding output IDTs with an array of

chevron-type reflectors [34,35]. With the slanted chevron reflectors, multiple reflections

between encoding elements could be avoided. This configuration already relied on the

invention of replacing the encoding transducers with acoustic wave reflectors [35, 36].

Using reflectors instead of transducers enabled a more efficient use of the substrate

area. As shown in Fig. 1.1, the waves could now make a round trip from the IDT to

the reflectors and back. In the scheme depicted in Fig. 1.1, the same IDT is used for

both input and output. A further reduction of tag length can be obtained by folding

the acoustic channel into, for example, a U-path using track-changing structures [37]

or inclined reflectors [38], as illustrated in Fig. 1.2d. In Paper III, the acoustic channel

is folded into a Z-path using two strongly reflecting inclined reflectors.

Previously reported SAW tag designs use standard bidirectional transducers that

generate wave propagation equally into the two directions perpendicular to the inter-

digital electrodes [34, 39]. For such tags, code reflectors have to be placed on both

sides of the IDT. Otherwise, as is the case for the tags depicted in Fig. 1.2, the device

will inherently have a bidirectionality loss of -3 dB both at generation and reception of

SAWs. However, arranging the reflectors on both sides of the IDT results in a relatively

large tag size as free surface must be provided between the IDT and the reflectors on

the two sides. A unidirectional IDT would generate wave propagation predominantly

in one direction. Then all reflectors could be placed on one side of the transducer

without the burden of bidirectionality loss.

1.1.2 Unidirectional Transducers

Figure 1.3 schematically depicts a few of the early unidirectional transducers. The

configuration (a) [40–42] includes two collinear bidirectional IDTs separated by a dis-

tance λ/4. Unidirectionality is achieved by driving the two transducers in phase quadra-
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(a)  input IDT                output IDTs

(b)  input IDT                output IDTs

(c)  input IDT        chevron-type code reflectors
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Figure 1.2: Tag geometries. The arrows indicate the SAW propaga-

tion path. (a) Input IDT and several output IDTs. (b) Multiple parallel

acoustic channels. (c) Chevron-type code reflectors. (d) U-shaped acoustic

channel.
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Figure 1.3: Early unidirectional transducers (with forward direction to

the right). (a) Two collinear IDTs driven in phase quadrature. (b) Mul-

tistrip coupler unidirectional transducer. (c) Three-phase unidirectional

transducer.

ture. However, this device inherently has a limited bandwidth. The approach (b) [43]

is constructed by placing a bidirectional IDT within a U-shaped multistrip coupler

(MSC) [44, 45] such that the IDT is displaced from the center of the U by a dis-

tance λ/8. This arrangement provides an improvement in bandwidth but has other

drawbacks. It requires a relatively large chip area and is impractical for substrates with

low piezoelectric coupling. The arrangement (c) is the so-called three-phase unidirec-

tional transducer [46,47] that uses three sets of interdigital electrodes driven 120◦ out

of phase. This is a more compact configuration but involves multilayer manufacturing

techniques.

An important innovation in the area was the single-phase unidirectional transducer

(SPUDT) [48]. As shown in Fig. 1.4a, it comprises a conventional split-finger IDT with

a second metal layer on alternate electrodes to provide a superimposed reflector array.

The SPUDT operation relies on internal reflections within the transducer, through

which unidirectionality is achieved by displacing the centers of wave excitation a dis-

tance λ/8 from the centers of reflection. Further developments of this device eliminated

the second metallization step by placing reflector banks in spaces between transducer

sections [49,50] (Fig. 1.4b) or by replacing every second transducer electrode of a split-

finger configuration with a floating electrode, thus creating the floating-electrode unidi-

rectional transducer (FEUDT) [51,52] (Fig. 1.4c). Other SPUDT designs, such as the

distributed acoustic reflection transducer (DART) [53] (Fig. 1.4d) and the electrode-

width-controlled SPUDT (EWC/SPUDT) [54] (Fig. 1.4e) emerged to meet the require-

ment on enhanced control of reflectivity inside the transducer structure. It was also

discovered that with special asymmetric crystal orientations, a standard symmetric
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Figure 1.4: (a) Single-phase unidirectional transducer (SPUDT).

(b) Group-type unidirectional transducer. (c) Floating-electrode unidirec-

tional transducer (FEUDT). (d) Distributed acoustic reflection transducer

(DART). (e) Electrode-width-controlled SPUDT (EWC/SPUDT).

IDT exhibits unidirectionality. The device relying on this phenomenon is called the

natural SPUDT (NSPUDT) [55]. A later important development in the field of unidi-

rectional transducers was the resonant SPUDT (RSPUDT) [56]. It combines regions

with forward and backward unidirectionality such that resonant acoustic cavities are

formed but overall unidirectionality is maintained.

The majority of the SPUDT designs mentioned above have the disadvantage of

a small critical dimension. Linewidths of λ/8 are common among them but beyond the

large-scale fabrication techniques for frequencies well above 1 GHz. SPUDT structures

were taken to the 2-GHz range by employing λ/4-wide (and wider) electrodes [57–61].

The possibility to use a unidirectional transducer in SAW identification tags has

been mentioned by several authors [35, 37, 60, 62, 63] but without a further descrip-

tion of tag design and experimental verification. Section 3.1.2 of this thesis describes

a 2.45-GHz SPUDT design and Papers III and IV present experimental results for tags

employing this transducer.

1.1.3 Encoding Methods

The encoding of the first SAW identification tags (with an input IDT and an array

of output IDTs, as shown in Fig. 1.2a) was based on amplitude modulation, more
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specifically, on on/off-keying [30,64]. The positions for output transducers were equally

spaced throughout the array. The presence of an output IDT within its designated slot

signified a logic 1, while an absent output IDT represented a logic 0. Another suggested

implementation of on/off-keying involved having all output IDTs present and placing

rubber pads in the spaces between them [32, 65]. By applying pressure on one of the

pads, it was possible to disrupt the transmission of SAW to the region distal to the

stressed pad. However, this scheme yielded a very limited code space.

Another implementation of binary coding was through phase modulation. An exam-

ple of using binary phase shift keying (BPSK) involved two tracks connected electrically

in parallel [66]. Each track had an input transducer and an array of output transduc-

ers. The output transducers were placed at equal delays from the input transducers in

the two tracks. However, the electrode polarities were opposite in the two channels.

BPSK, that is, a phase shift of either 0◦ or 180◦, was achieved through disconnection

of an output transducer in either track at each bit position.

A further development of phase encoding for the single-track tag design of Fig. 1.2a

was presented in [67]. In this configuration, all output transducers were present and

equally spaced. The code signals were delayed using 0, 1, 2, or 3 so-called delay pads

deposited in regions between the output transducers in order to provide a phase shift

of 90◦ per pad. While the number of different code sequences obtainable with the basic

on/off-keying was 2n, where n is the number of output transducers, the above described

phase encoding yielded 4n different codes.

In general, the phases of the response signals are sensitive to changes in temperature,

especially for lithium niobate (LiNbO3) substrates that feature a high temperature

coefficient of delay (TCD) defined as [68]

TCD =
1

τ0

τ − τ0
ϑ− ϑ0

, (1.1)

where τ refers to time delay and ϑ to temperature. The subscript 0 stands for refer-

ence values. The 128◦-LiNbO3 and YZ-LiNbO3 substrates have TCDs of 75 ppm/◦C

and 94 ppm/◦C, respectively [69]. At 2.45 GHz, these coefficients correspond to the

respective phase errors of about 66◦/(◦C·µs) and 83◦/(◦C·µs).

To simplify the calibration process, an encoding method based on the time delays

(or time positions) of response signals was proposed [34,38]. In time position encoding,

each pulse occupies a slot of width ∆tslot. To avoid intersymbol interference, the slot

width is made roughly equal to the time-width of the pulses, approximately 1/Bsyst,

where Bsyst is the system bandwidth. These slots form Ng groups of Ns slots. In the

simplest scheme, which is also known as the conventional pulse position modulation

(PPM), only one slot within a group is occupied by a pulse. In this case, the number of
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groups Ng also gives the number of code reflectors on the tag. The number of different

code sequences obtainable through this method is N
Ng
s .

To enhance data capacity, it was suggested to use time slots much narrower than

∆tslot = 1/Bsyst while keeping the total delay of a group unchanged. Slot widths of

∆tslot/5 or ∆tslot/10 were proposed for increasing the number of possible pulse posi-

tions within a group. As discrimination between adjacent pulse positions is very poor

with such slot widths, a small increment or decrement of distance was added between

subsequent pulse positions to provide a phase step of, for example, ±90◦. In this phase

and time shift keying (PTSK), a certain fixed phase was assigned to each possible pulse

position. It is to be noted that in this method, phase shift keying was used so as to en-

sure a correct interpretation of pulse position data rather than to perform simultaneous

and independent time position and phase encoding, as is the case in Section 3.3 and

in Paper IV. Another improvement to PPM was the multiple pulse per group keying

(MPGK) where the slot width was kept at ∆tslot but more than one pulse per group

was allowed. This method provided
(

Ns

Np

)

different codes per group, where Np denotes

the number of pulses per group. A combination of PTSK and MPGK yielded a signifi-

cant enhancement of data capacity. Pulse overlapping due to narrow slots was avoided

either by imposing a minimum pulse spacing rule that gave the number of slots to be

skipped between pulses or by using the slot orthogonality with phase shifts of ±90◦, as

described above. PTSK, MPGK, and their combination were proposed in [63,70,71].

1.1.4 Ultra-Wideband Radio Technology and SAW Devices

The currently emerging ultra-wideband (UWB) radio technology enables short-range

communications with high speed and low power [72]. The principle of this technol-

ogy is to reuse an already occupied frequency spectrum but with very low power and

without causing interference to existing radio services. Regulation for the use of UWB

technology has already been fixed or is currently under way in many countries [73–77].

According to the Federal Communications Commission (FCC), which is the regula-

tory authority in the United States, an UWB device is a device emitting signals with

a fractional bandwidth greater than 20% or a bandwidth of at least 500 MHz.

The use of wideband (spread spectrum) and UWB signals in SAW sensors and SAW-

device-based communication systems has been shown to enable robust data transmis-

sion even in very noisy radio environments. This has been achieved through matched-

filter operation using chirp signals [78–84] or other modulated waveforms [85–88].

A UWB SAW correlator operating within the FCC [73–75] designated band for de-

velopmental UWB communication devices was recently demonstrated [86]. However,

the possibility of using UWB signals in surface acoustic wave identification tags has
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not yet been addressed in detail in the literature, although the use of spread spectrum

signals for tags has been discussed in a few publications [89–94]. Meanwhile, this pos-

sibility is especially attractive because, for SAW tags, the used frequency band B is

of primary importance. According to Shannon’s equation [95], the number of differ-

ent codes that can be obtained (when the signal-to-noise ratio is 1) is determined by

the product BT , where T is the coding time duration. As the coding time duration

is normally limited to 2 µs to 4 µs in SAW devices due to high propagation losses at

GHz-frequencies, the availability of wide frequency bands is a clear benefit when a large

information capacity is desired. Or, if the enhancement of data capacity is not neces-

sary, ultra-wide bands can be exploited to drastically shorten the coding time duration

and hence to reduce the tag size. A design for such a UWB SAW tag is proposed in

Paper V.

1.1.5 Properties of Metal Reflectors

To achieve a reasonably high data capacity, a SAW tag must include around 50 reflect-

ing electrodes (in groups of one or a few electrodes). Such a large number of electrodes

implies that the reflectors in the beginning of the reflective array must have very weak

reflectivities. As discussed in Paper I, this can be achieved by using narrow open-

circuited aluminum electrodes. Their reflectivity can be controlled by varying their

width. In addition to being useful for SAW tags, the weak and controllable reflectivity

of narrow electrodes also offers advances for the design of dispersive delay lines (DDLs),

which are devices imposing different time delays on the different spectral components

of an input signal.

The first SAW DDLs, depicted in Fig. 1.5a, consisted of dispersive IDTs (or chirp

IDTs) [96]. The electrode pitch of these transducers was gradually increased or de-

creased in order to yield a linear frequency modulated (LFM) impulse response. (This

type of IDT can also be used in SAW tags to provide a means for signal processing

within the tag, as discussed in Section 3.4 and in Paper V.) However, these transducer-

type DDLs suffered from spurious signals and were soon replaced by the reflective array

compressor (RAC) [97–99]. The RAC consists of two acoustic tracks coupled together.

As sketched in Fig. 1.5b, one track of a RAC has a short input IDT and an array

of slanted grooves acting as wave reflectors. The other track has a groove array that

is a mirror image of the first one and a short output transducer. The groove spac-

ing is increased with distance from the IDTs. Both groove arrays reflect the incident

SAWs at an angle of 90◦ in the region where the grating periodicity matches the SAW

wavelength and a U-shaped acoustic channel is formed.

Although the RAC had many advantages over its predecessor (such as a low level of
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(a)  input IDT                 output IDT

(b)  input IDT              reflective array

   output IDT

(c)  input IDT     MSC         reflective array

   ouput IDT

(d) 

                      reflective array

      

     input IDT

     output IDT

Figure 1.5: Dispersive delay lines. (a) IDT-type DDL. (b) Reflective

array compressor (RAC). (c) Inline reflective array compressor (ILRAC).

(d) Slanted reflective array compressor (SRAC).
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spurious modes and of multiple reflections, a higher tolerance of defects, and a folded

acoustic path that doubles the dispersion time for a given substrate length), its fabri-

cation involved a complicated and time-consuming process: the transducer metal was

deposited in one step and the grooves were ion-beam-etched one by one in another step.

The reflectivity of the grooves was determined by their depth, which was controlled by

the etching time. In addition, precise alignment was needed between the transducers

and the groove arrays. Another drawback of the RAC was its sensitivity to variations

of temperature. Changes in temperature introduced changes in delays and in reflection

angles.

A single-stage fabrication process was provided by replacing grooves either with

arrays of metal dots [100–102], whose reflectivity was controlled by the dot size and

density, or with metal strips [103–105], for which reflectivity was controlled by either

reflector length or width. Further developments of DDLs included the inline reflective

array compressor (ILRAC) where the reflector arrays (grooves, dots, or metal strips)

were oriented parallel to the input and output IDTs [106–108], as shown in Fig. 1.5c.

With this geometry, a reduction in insertion loss was achieved as two reflections of 90◦

were replaced by a single reflection of 180◦. The design was also simplified since the

velocity and scattering anisotropy needed not to be considered. Configurations aiming

at a reduction of interelectrode reflections, present in both RACs and ILRACs and

degrading the delay line performance, were also proposed. The slanted reflective array

compressor (SRAC) [109,110], schematically shown in Fig. 1.5d, combines slanted input

and output transducers with slanted reflector arrays. In this device, different frequency

portions have their own acoustic channels and need not travel long distances under an

electrode structure with a non-matching periodicity. An alternative for slanted trans-

ducers is offered by the fan-shaped transducer whose electrode pitch changes linearly

along the aperture [110].

In the days of intensive development of RACs, metal strips did not yet present

a valid alternative to grooves at frequencies of several hundred megahertz due to

linewidth limitations. Because of this and the intricacy of the fabrication process,

DDLs have remained expensive and been produced on a piece-by-piece basis. However,

at present, there is a renewed interest [111] to use DDLs in, e.g., UWB communication

systems. Modern standard photolithography also allows for the manufacturing of metal

strips with a width of about 0.4 µm, sufficiently narrow to provide the weak reflectivity

needed in metal RACs.

Although a few early papers [112–116] present some fragmentary data on the re-

flectivity of aluminum electrodes on YZ-LiNbO3, a substrate frequently used for DDLs

due to its reduced diffraction effects [117], comprehensive and easily accessible data are
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unavailable. In Paper I, the reflectivity and SAW attenuation within reflector gratings

consisting of open-circuited aluminum electrodes are determined. For the design of

SAW tags, precise knowledge of reflector parameters is crucially important. The full

set of reflection, transmission, and scattering parameters must be known. Moreover,

in order to be able to control the amplitudes of tag response signals and to use phase-

based encoding reliably, the parameters related to reflection and transmission must be

known as a function of frequency. A series of investigations [118–120] has previously

been carried out to determine the reflection and scattering parameters of short reflec-

tors on 128◦-LiNbO3 but without frequency-dependence. As a response, a method for

calculating the frequency-dependent parameters was recently developed [121] but in-

volves heavy calculation. Section 2.2 and Paper II present a simplified method for the

extraction of frequency-dependent reflector parameters. It is based on the S parameter

data of a tag test device and does not require any specialized software.

1.2 Scope of This Thesis

SAW RFID tags provide many intrinsic advantages over the market-dominating semi-

conductor-based RFID tags. SAW tags are totally passive devices and can be inter-

rogated using low-power readers. Their simple structure, a single-layer metal pattern

deposited on a piezoelectric substrate, can be accomplished by means of standard

photolithography. However, the final commercial breakthrough of SAW tags has not

yet occurred. SAW tags have been criticized for being of too large a size, too expensive,

and not having enough data capacity. The aim of this work has been to investigate

whether SAW tags can be made a valid competitor for semiconductor-based tags, and

to create new tag designs to justify an affirmative answer to this question. The design

and analysis of SAW tag devices have been carried out using results of simulations and

measurements. Compact device geometries have been searched for and solutions for

combining time position encoding and phase encoding have been tested. The feasibility

of UWB SAW tags has been studied through simulations and experiments. Further-

more, the frequency-dependent reflection, transmission, and scattering parameters for

short metal reflectors have been determined in order to achieve accurate tag designs

with reliable coding.

This research mainly limits itself to the level of the SAW tag device. It focuses

on the operation of the entity formed by the piezoelectric substrate, transducers, and

reflectors. Antenna and reader technologies fall outside the scope of the present work.
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2 Extraction of Reflector Parameters

Precise knowledge of reflector properties is one of the prerequisites for accurate tag

designs. The parameters related to reflection, transmission, and scattering of surface

acoustic waves at metal electrodes are needed for the control of amplitudes and phases

of tag response signals. Otherwise, it is difficult to achieve reliable identification.

This thesis work includes two parts of parameter extraction: First, the reflectivity

and SAW attenuation within reflector gratings consisting of narrow metal strips on YZ-

LiNbO3 are determined. Second, a method for extracting the reflection, transmission,

and scattering parameters of short metal reflectors from test device S parameter data

is developed. In both parts, parameter extraction relies on the analysis of simulated

and experimental S parameters. The simulated data are obtained using software based

on the combined finite- and boundary element method (FEM/BEM) [122, 123]. This

method is widely used for the analysis of SAW devices. FEM is well-suited for describ-

ing the electrodes and the semi-infinite substrate is treated using BEM with Green’s

function formalism [123, 124]. The FEM/BEM simulator uses the material constants

for LiNbO3 determined in [125]. For an n-port device, the software calculates a se-

quence of Y parameter matrices, one complex-valued n× n matrix for each frequency

point. The frequency range BW of the simulation and the frequency step ∆f are user-

defined. These determine the width of the time window TW and the time resolution ∆t

obtained when inverse Fourier transform is used for producing the time response. The

parameters TW and ∆t are given by

TW =
1

∆f
(2.1)

∆t =
1

BW

. (2.2)

The Y parameters are readily transformable to S parameters [126], which form the

basis of almost all analysis presented in this work.

2.1 Reflectivity and Attenuation of Narrow Electrodes

Reflectors with weak reflectivity, consisting of narrow metal strips, are needed both

in SAW tags and in DDLs. In Paper I, the reflectivity per wavelength |κλ0| and the

SAW attenuation per wavelength γλ0 within gratings of metal electrodes are deter-

mined. The reflectivity |κλ0| gives the ratio of the wave amplitude reflected within

a distance of one acoustic wavelength to the incident wave amplitude. The acoustic

wavelength is defined as λ0 = v/f0, where v is the free-surface SAW velocity on the
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Port 1  Input                    Port 2  Output

<

>
           transmitted

  reflected

Figure 2.1: Schematic drawing of the test structure used in the extraction

of reflectivity |κλ0| and attenuation γλ0. The IDTs are identical and have

three electrodes per wavelength. They are located symmetrically on the

two sides of the studied reflector.

given substrate and f0 is the SAW frequency. The attenuation γλ0 is used as a measure

of wave damping due to propagation under metal structures. It usually has the unit

dB/λ0 or Np/λ0 (Np stands for neper, 1 Np = 8.686 dB). As the test structures used

in this work involve fundamental-mode reflectors, that is, the electrode spacing within

reflectors is λ0/2, the results obtained for |κλ0| and γλ0 are per two electrodes.

2.1.1 Simulations and Experiments

The test structure used in the extraction of |κλ0| and γλ0 is schematically depicted in

Fig. 2.1. It is a 2-port device with two identical IDTs and a reflector. The reflector is

placed halfway between the IDTs and comprises 49 open-circuited electrodes. The IDTs

have three electrodes per wavelength and operate at a center frequency of 201 MHz.

This type of IDT has lower reflectivity than a standard IDT, which is a useful feature

reducing parasitic signals. The substrate material is YZ-LiNbO3, which is especially

suitable for long structures, such as SAW tags and DDLs, due to its reduced diffraction

effects. For the reflectors to be analyzed, the metal ratio m/p (where m is the electrode

width and p is the electrode pitch, that is, the center-to-center distance between neigh-

boring electrodes) is varied from 0.2 to 0.5 from one test structure variant to another.

The test structures are simulated using FEM/BEM software and experimental data

are obtained through network analyzer measurements on fabricated devices.

2.1.2 Analysis

Reflectivity and attenuation are extracted using the ratio of amplitude reflection and

transmission coefficients, R/T . The use of this ratio was suggested in [127] for extract-
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Figure 2.2: Experimental data for the structure of Fig. 2.1. Left: |S11|

in the time domain. The reflected signal is between the dashed lines.

Right: |S21| in the time domain. The transmitted signal is between the

dashed lines.

ing reflectivity under a SPUDT. For the structure shown in Fig. 2.1, R/T is obtained by

a time-gating method similar to that used in [114]. This is done by first transforming

the S11 and S21 parameters to the time domain using the (inverse) fast Fourier trans-

form (FFT) [128]. Then the reflected signal (with the path input IDT → reflector →

input IDT) is separated from the rest of the S11 data and the direct propagation signal

(with the path input IDT → reflector → output IDT) is time-gated from the S21 data,

as indicated with dashed lines in Fig. 2.2. The ratio S11/S21 of the time-gated signals

is calculated after transformation back to the frequency domain. Figure 2.3 shows

the time-gated signals separately (left) and the ratio of these two signals (right) as

a function of frequency. The IDT performance and the propagation loss have equal

contributions in both signals and are cancelled when the ratio is calculated. Therefore,

S11/S21 of the time-gated signals is in fact equivalent to the R/T of the reflector.

The reflectivity per wavelength |κλ0| can be derived from the coupling-of-modes

(COM) [129,130] equations for reflection and transmission coefficients as [131]

|κλ0| =
λ0
L
asinh

∣

∣

∣

∣

R(fc)

T (fc)

∣

∣

∣

∣

, (2.3)

where λ0 is the wavelength of the reflector structure, fc its center frequency, and

L the reflector length (L = Nelp, where Nel is the number of reflector electrodes and

p = λ0/2 the pitch of the electrodes). The SAW attenuation γλ0 (in Np/λ0) within
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Figure 2.3: Left: Time-gated |S11| and |S21| for the structure of Fig. 2.1

in the frequency domain. Experimental data. Right: Simulated and ex-

perimental |R/T | ratio.

the grating is given by

γλ0 =
4n2π

∣

∣

∣

R(f±n)
T (f±n)

∣

∣

∣

∣

∣

∣

∆fn

fc

∣

∣

∣
(Nel − 1)3|κλ0|

, (2.4)

which directly relates the depth of the notches in the R/T curve to wave attenuation.

In Eq. (2.4), fn is the position of the nth notch, as counted from the main lobe, and

∆fn
fc

=
fn − f−n
fn + f−n

(2.5)

is the relative deviation of fn from the center frequency of the grating [131]. In our case,

n = 1 since we use the first notches around the center frequency. Plus and minus signs

refer to the notches on the high- and low-frequency sides of the main lobe, respectively.

2.1.3 Results

In Paper I, it was estimated that for a typical high-BT DDL device (B = 100 MHz,

T = 50 µs, and fc = 400 MHz), the reflectivity of a single reflector electrode should

be weaker than 0.3%. Experiments showed that for the narrowest electrodes tested

(m/p = 0.2), reflectivities of 0.33% and 0.43% per λ0 (per two electrodes) can be

achieved for the relative metal thicknesses of h/λ0 = 1.15% and 1.73%, respectively.
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Figure 2.4: Extracted reflectivities of open-circuited aluminum elec-

trodes on YZ-LiNbO3. Results are compared to the theoretical data cal-

culated by Chen and Haus [115], for which h/λ = 1%.

Figure 2.4 shows the extracted reflectivities as a function of the metal ratio along

with previously published theoretical values [115]. It is immediately seen that the

reflectivity of open-circuited electrodes is smoothly - almost linearly - dependent on

the metal ratio, which is very convenient for the control of reflectivity in DDLs and in

SAW tags. The metal thicknesses used in the experiment were very small: only 1.15%

and 1.73%. Therefore, reflectivity is mainly due to short-circuiting of the electric

fields and not to mass-loading. The experimental reflectivities are systematically a bit

lower than those simulated, which can be an indication of over-etched electrodes. This

hypothesis is supported by the fact that the relative discrepancy is smaller for wide

electrodes, for which the over-etch would be relatively less important.

The values of attenuation obtained in Paper I can only be considered fair estimates

because the notch depth is easily influenced by the finite frequency step and, especially

for the narrowest electrodes, by electromagnetic (EM) feedthrough. Due to the symme-

try of the device, the reflected signal (input IDT → reflector → input IDT) and a signal

propagating from the input IDT to the output IDT as EM feedthrough and back to

the input IDT as a SAW are received at the same time and are not separable using

time-gating. In simulations, a slightly asymmetric structure was used to separate these
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two signals. In the experimental results, however, the signals are inseparable. Never-

theless, it is believed that for m/p = 0.4 and 0.5, attenuation is estimated correctly. In

these cases, the obtained general level of attenuation is about 1 ·10−3 to 2 ·10−3 Np/λ0.

2.2 Reflection, Transmission, and Scattering Parameters of

Short Metal Reflectors

The second part of parameter extraction involves short metal gratings, that is, reflec-

tors consisting of only one or a few open-circuited electrodes. These are used as code

reflectors in SAW tags. As a reasonably large data capacity implies the use of a consid-

erable number of code reflectors, the reflectors must have weak reflectivity and consist

of only a few electrodes.

Previously, Lehtonen et al. [118–120] have done a series of investigations to deter-

mine the reflection and scattering parameters of reflectors consisting of 1 to 3 electrodes

as a function of relative metal thickness (h/λ) and metal ratio (m/p). They have used

test device Y parameters produced by a FEM/BEM-based simulator, obtained the im-

pulse response through Fourier transformation, and used time-gating to separate the

reflective echoes. However, their results do not give the parameter values as a func-

tion of frequency. The frequency-dependence of reflection, transmission, and scattering

parameters has recently been studied by Wang et al. in [121]. They have developed

a source regeneration method based on Green’s function theory and FEM/BEM that

directly calculates the reflection, transmission, and scattering parameters at each fre-

quency point within a specified range of frequencies. Determining the parameters is

faster this way but includes evaluation of the energy of scattered waves, which is diffi-

cult to accomplish experimentally.

Paper II reports an alternative method for determining the reflection, transmission,

and scattering parameters of short metal reflectors as a function of frequency. This

method takes the FEM/BEM-simulated or experimental S parameters of a test device

as a starting point and analytically extracts the reflection and transmission coefficients

(absolute values and phase angles) and the energy scattered into bulk.

2.2.1 Method

The test device is a primitive SAW tag having only three reflectors, as schematically

depicted in Fig. 2.5. The IDT used for generation and reception of surface acoustic

waves is of standard type and has 10 electrodes with alternating polarities. The three

identical reflectors placed in the acoustic path each consist of a single floating electrode.

The distances L0, L1, and L2 (shown in Fig. 2.5) between the reflectors have been
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Figure 2.5: Schematic drawing of the test structure used for character-

izing single-electrode reflectors. The reference planes for the distances L0,

L1, and L2 are located at the centers of the reflectors and at the center of

the right-most IDT electrode.

chosen such that none of the first four reflections overlaps with any other reflection.

The distance L0 is measured from the center of the right-most electrode of the IDT to

the center of the first reflector. The distances L1 and L2 are defined as the center-to-

center distances of the first and second reflector (R1 and R2) and the second and third

reflector (R2 and R3), respectively. The first three reflections originate from round-trip

propagation between the IDT and the three reflectors, while the fourth one corresponds

to the path IDT → R3 → R2 → R3 → IDT, that is, it involves multiple reflections

between the second and third reflector.

A FEM/BEM simulation was carried out separately for the entire SAW tag struc-

ture described above and for a structure consisting of the IDT only. The S11 parameter

of the IDT was then subtracted from the S11 parameter of the entire device. In this

way, the data to be analyzed only contain the response of the reflectors and are clear

of any contribution from the direct EM signal reflections from the IDT.

The frequency response of each reflection is separated from the total response using

FFT and time-gating techniques. Figure 2.6 (left) shows the total response in the time

domain. The first four reflections are indicated by dashed lines and numbered. After

time-gating these signals, the time-gated data are transformed back to the frequency

domain. Figure 2.6 (right) shows the time-gated S11 parameter for each of the four

reflections of interest in the frequency domain. The ith reflection is denoted by Si.

The signals S1, S2, and S3 overlap in Fig. 2.6 because propagation losses were assumed

negligible in this numerical experiment.

The reflector parameters are directly extractable from the time-gated frequency

responses Si. The analysis also yields the free surface attenuation coefficient α and the
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Figure 2.6: Left: |S11| of the 3-reflector SAW tag in the time domain

and time-gating of the first four reflections. Right: Time-gated |S11| in

the frequency domain for the four reflections of interest. The signals S1,

S2, and S3 overlap.

free surface wavenumber k. These are given by
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k = −
1
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(
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)

. (2.7)

Writing the reflection and transmission coefficients as R = rejϕR and T = tejϕT , re-

spectively, their amplitudes and phases can be calculated from the following equations:

r =

√
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(2.9)

ϕR =
1

2
arg

(

S4/S2
P 21

)

(2.10)

ϕT =
1

2
arg

(

S2/S1
P 21

)

, (2.11)

where P1 = e−αL1−jkL1 represents the propagation from the first reflector to the second

reflector. The fraction of energy scattered into bulk is given by E = 1 − r2 − t2. In
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Figure 2.7: Frequency-dependent parameters for a single-electrode reflec-

tor on 128◦-LiNbO3 substrate (h/λ = 2.5% and electrode width is 0.8 µm).

Extracted from simulated data. Left: Magnitude of the reflection coeffi-

cient. Right: Magnitude of the transmission coefficient.

Eqs (2.6) to (2.11), all multiplications and divisions are performed pointwise at each

frequency. Paper II provides a more detailed derivation of the equations.

2.2.2 Results

In Paper II, the developed method was applied to a few simulated test structures on

128◦-LiNbO3 substrate. The metal thicknesses and the electrode widths of the single-

electrode reflectors varied from one test structure to another. As an example of the

extracted parameters, Fig. 2.7 shows the magnitudes of the reflection and transmission

coefficients as a function of frequency. In this case the relative metal thickness was 2.5%

and the electrode width was 0.8 µm. As reported in Paper II, the extracted parameter

values agree well with those reported by Lehtonen et al. and Wang et al. The developed

method offers a means of extracting frequency-dependent reflector parameters in a fast

way without any specialized software or heavy calculation. The parameters can be

extracted directly from simulated or measured test device S parameters.
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3 SAW RFID Tag Designs

The main objective of this work has been to investigate whether SAW RFID tags can be

a valid competitor for semiconductor-based tags. In pursuit of this goal, several ideas

were tested. They involved tag geometries, encoding methods, loss reduction, and on-

tag signal processing. Small size, large data capacity, reliability of identification, and

minimal losses were the sought properties.

3.1 General Issues in Tag Design

In Papers III-V, SAW tags were designed and analyzed using FEM/BEM simulations.

Device performance was further verified using experimental data obtained from net-

work analyzer measurements. Similarly to the extraction of parameters discussed in

Chapter 2, the tag analysis essentially relied on the simulated and experimental S pa-

rameters.

The SAW tag devices developed in this work use the same IDT for both generating

and receiving surface acoustic waves. This makes them 1-port devices and their sim-

ulated as well as measured S matrices only contain one element, S11. The tag design

process has also necessitated the study of a few auxiliary test structures. These include,

for example, a delay line comprising two identical IDTs facing each other. This struc-

ture has been used for estimating the losses due to transducers. The S21 parameter of

this 2-port device includes the transduction and propagation losses, as well as eventual

losses due to electrical mismatch. Simulations and experiments on two 2-port delay

lines with different inter-IDT distances have been used for determining the free-surface

SAW velocity on a given substrate.

Whenever referring to a surface acoustic wave in this work, a Rayleigh wave [132] is

meant. It has its particle motion mainly in the sagittal plane (the plane containing the

surface normal and the propagation direction) and its amplitude rapidly decreases with

depth into the substrate. The substrate material for the developed SAW tag devices

was chosen as 128◦-LiNbO3. This cut has a low level of spurious responses [133], which

is important for the distinguishing of coded responses from parasitic signals. Another

interesting substrate would be the YZ-cut of LiNbO3, which has the advantage of

reduced diffraction effects. This is an attractive feature for SAW tags since they are

long structures and a low level of losses is preferred.
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3.1.1 Tag Responses

The simulated or measured S11 parameter gives the tag response to a delta pulse. How-

ever, in Papers III and IV, a more realistic idea of the response is desired. The studied

tags are numerically excited using a sinusoidal pulse that has a Gaussian envelope,

that is,

A(t) = ejω0te−a(t−Tpulse/2)
2

, for 0 < t < Tpulse. (3.1)

A pulse length of Tpulse = 25 ns is used and the pulse width is determined by a =

1/(50 ns2). The spectrum of the tag response is obtained through pointwise multipli-

cation of the spectrum of the above defined interrogation signal with the simulated or

measured S11 parameter.

As the time window TW must be sufficiently large to accommodate even the reflec-

tions from the farthest reflectors, the chosen frequency step ∆f must be sufficiently

small, as suggested by Eq. (2.1). An adequate time resolution, for its part, is essential

especially when the phases of response signals are studied. The time step ∆t must

be substantially shorter than the period of the surface acoustic wave. This imposes

a lower limit, according to Eq. (2.2), on the frequency range for which S parameter

data are needed. Since FEM/BEM simulation for tag structures is normally quite

time-consuming, it is not reasonable to run very wide frequency bands, especially for

frequencies where the acoustic response is known to be very small. It is better to use

zero-padding or similar methods to artificially widen the frequency range and thus to

improve the time resolution. In Papers III-V, zero-padding has been realized using

excitation pulses defined for large frequency ranges.

One cycle of SAW is about 0.4 ns at 2.45 GHz and the time frame needed to fit in

all the reflections is about 3 µs for the 14-reflector tags studied in Papers III and IV.

In order to achieve a large enough time window and an adequate time resolution, data

are needed for on the order of 105 frequency points. Performing such a full analysis

would be a matter of weeks or even months of simulation time, depending on the

computing capacity available. However, as the tag response is very weak outside the

passband region, it is not reasonable to calculate exact data for these ranges. Instead,

the zero-padding technique is used to artificially extend the frequency band (measured

and simulated from 2250 MHz to 2650 MHz, in the case of Papers III and IV) down

to 0 Hz and up to 40 GHz. This band yields a time resolution of 0.025 ns. With a

frequency step of 0.25 MHz, a time window of 4 µs is obtained.
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Figure 3.1: SPUDT geometry.

3.1.2 Transducer Design

As one of the goals for this work has been the reduction of losses in SAW tags, the

bidirectionality loss inherent for standard IDTs had to be eliminated. This was ac-

complished by replacing the bidirectional IDT with a unidirectional transducer. In

Papers III and IV, a SPUDT-type transducer was employed for generating and receiv-

ing surface acoustic waves. Inspired by the designs presented in [60], the SPUDT was

designed to include a reflector section of open-circuited electrodes (14 electrodes) sand-

wiched by two standard transducer sections (7 electrodes on the side looking backward,

18 electrodes on the side looking forward), as shown in Fig. 3.1. For unidirectional op-

eration, the reflector section was displaced by λ/8 from the position that would have

been implied by the periodicity of the transducer section, as suggested in [48]. The

forward generated waves thus interfere constructively with the backward generated but

reflected waves. The backward generated waves interfere destructively with the for-

ward generated but reflected waves. To obtain a rectangular passband of width B in

the frequency domain, a negative time-sidelobe is needed at a distance of t = 3/(2B)

from the center of the SPUDT. This is achieved by adding a short transducer section,

with electrode polarities flipped with respect to the periodicity implied by the main

sections, on the side looking to the forward direction. The resistive losses are reduced

by using two parallel signal paths, that is, by connecting two identical SPUDTs in

parallel.

3.1.3 Reflector Array Design

As discussed in Sections 1.1.5 and 2.2, a SAW tag must include several (ten or more)

code reflectors in order to achieve a reasonably large data capacity. This implies that

the reflectors must have weak reflectivity and hence consist of only one or a few elec-

trodes. In the tags reported in Papers III-V, the reflector strengths have been selected
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Figure 3.2: Principle of time position encoding. Schematic drawing.

so as to ensure uniform amplitudes of reflected pulses [63]. This is a way to improve the

reading distance since the weakest signal actually determines the read range. In order

to compensate for the propagation loss and losses due to reflections from preceding

reflectors, code reflector reflectivity is gradually increased along the reflector array by

increasing the number of electrodes in a reflector and by adjusting the metal ratio. The

reflectivity of fundamental-mode (p = λ/2) open-circuited electrodes on 128◦-LiNbO3
has been shown to increase with increasing metal ratio [118,134].

For long structures, such as SAW RFID tags, diffraction effects can not be ignored.

However, for the designs presented in this work, the device geometry (transducer aper-

ture w compared to wavelength λ) is such that all the reflectors stay relatively well

within the near-field region. The Fresnel limit xc for the near-field zone is obtained

from [135]

xc = (1 + γa)
w2

λ
, (3.2)

where the anisotropy parameter γa has a value of -0.43 for 128◦-LiNbO3 [136]. For

the tags reported in Papers III and IV, w = 155 µm and λ = 1.6 µm, which gives

xc = 8.6 mm. The round-trip path lengths for the code reflections range from 4.7 mm

to 10.9 mm. For an accurate compensation of diffraction effects, the straight open-

circuited reflectors could be replaced with curved and segmented reflectors [61, 63].

The shape of these diffraction-compensated electrodes is matched to the shape of the

incident SAW wavefront and their segmentation further prevents currents from flowing

from one part of an electrode to another.
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Figure 3.3: Mask image for a SAW tag having 14 reflectors.

3.1.4 Encoding

The most straightforward way of encoding in SAW tags is the so-called time position

encoding, which is based on the time delays of reflected pulses. This method was

also used in Papers III-V, although combined with phase encoding in Paper IV. In this

scheme, the total time delay is divided into slots of certain duration. To avoid intersym-

bol interference due to the time-overlapping of consecutive pulses, the slot width should

roughly equal the time-width of the pulses. At 2.45 GHz, a band of Bsyst = 40 MHz is

typically used, and the corresponding slot width is thus ∆tslot = 1/Bsyst = 25 ns. In

Papers III-V, groups of 5 slots were formed. In each group, one of the first four slots

was occupied by a reflector while the fifth one, the guard slot, was always left empty

(see Fig. 3.2). Each reflector thus had four possible positions (equal to 2 bits of data)

and the total number of different realizable codes was 4n for a tag having n reflectors.

The tags presented in Papers III and IV have 14 reflectors, as shown in Fig. 3.3.

However, only ten of them are used for encoding itself; the first and the last are used for

calibration and are typically designed to have stronger responses than the others; and

the two reflectors preceding the very last one are used for error control, for creating

a checksum. Ten code reflectors will yield about 106 distinct codes. When all the

reflectors are placed in-line in one acoustic path, the chip space required by these

10 reflectors is about 2.5 mm.

When decoding, the time positions of code reflections are easily and reliably at-

tributed to a code sequence by first locating the calibration reflections, then dividing

the time span in-between into an appropriate number of slots and groups, and finally

determining for each group the slot that corresponds to the local maximum of the

response signal.

3.2 Z-Path SAW RFID Tag

As a SAW identification tag must provide a sufficient time delay in order to separate

environmental echoes from the coded signal, one of its essential functions is to act



- 28 -

SPUDT 

code reflectors 

mirror 

mirror 

> 
X

θe

Figure 3.4: Schematic drawing of the Z-path geometry. The SAW beam

(energy) is reflected through an angle θe at the inclined reflectors.

as a delay line. Time delay is implemented by leaving a region of free surface on the

substrate between the transducer and the encoding elements. An adequate initial delay

is normally about 1 µs, which roughly corresponds to a propagation distance of 4 mm

on 128◦-LiNbO3. For a tag using reflectors for encoding, the needed length of free

surface thus is 2 mm.

Inline tag geometries often result in rather long and narrow structures. The tag

length can be reduced by folding the propagation path of the surface wave. In Paper III,

a Z-path geometry, previously used for miniaturization of SAW filters [137], has been

employed. It involves using two weakly inclined reflectors, as sketched in Fig. 3.4, and

allows the use of the same space in the crystal X-direction for both the initial delay

and the code reflectors. No space is needed for the initial delay alone. However, the

anisotropy of the substrate material has to be taken into account in the design of the

Z-path geometry.

3.2.1 Design

Due to the anisotropy of the substrate material, the phase velocity v of the surface

acoustic wave is a function of the propagation direction θ. This dependence is often

illustrated using a slowness curve, which is a polar plot of the phase slowness s of

the surface wave, defined as s(θ) = 1/v(θ). The slowness curve for 128◦-LiNbO3 is

presented in Fig. 3.5a with θ = 0◦ corresponding to the X-direction.

The reflection of a SAW from an inclined reflector can be examined in terms of the

wave vectors ~ki, ~kr, and ~kG, as shown in Figs 3.5b and 3.5c. The vectors ~ki and ~kr
represent the incident and reflected SAWs, respectively, and ~kG is associated with the

inclined reflector, treated here as a coupler between the incident and reflected waves.
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Figure 3.5: (a) Slowness curve for the free surface of 128◦-LiNbO3 [139].

Values of slowness are in seconds/meter. (b) Wave reflection at an inclined

reflector. (c) Wave vector diagram for a reflection at an inclined reflector.

The grating wave vector ~kG is normal to the reflector electrodes and its magnitude

equals 2π/pG, where pG is the electrode pitch of the inclined reflector. As shown in

Fig. 3.5c, the wave vectors ~ki, ~kr, and ~kG are related by the equation ~ki + ~kG = ~kr
[98, 138].

As a wave vector ~k can be written as ~k = 2πf~s, where f is the frequency of the

wave, a scaled version of the triangle of Fig. 3.5c can be superimposed on the slowness

curve. The sides of the scaled triangle of Fig. 3.5a are the magnitudes si and sr of

slowness for the incident and reflected waves, and the magnitude of the slowness ~sG
corresponding to ~kG. The values of si and sr are given by the slowness chart while sG
can be written as sG = 1/(pGf). The angles of incidence αi and reflection αr (which

are not equal due to the different velocities of the incident and reflected waves) as well

as the reflector pitch pG can be determined using this triangle once αi + αr is fixed.

The angle αi + αr gives the direction of the reflected wave vector ~kr with respect to

the (negative) X-direction.

However, substrate anisotropy also implies that the direction of energy flow θe (see

Fig. 3.4) deviates from the direction of the wave vector, θ. The difference between

these two angles is called the power flow angle and can be obtained as [140]

θ − θe = arctan

(

1

v

dv

dθ

)

, (3.3)
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Figure 3.6: Z-path design.

where θ and θe are in radians.

Calculating the Z-path geometry actually reduces to fixing the positions of the in-

clined mirrors and then finding their correct angle of inclination α. The inclination

angle α, in fact, equals αi, as can be seen from Fig. 3.5b. By fixing the mirror posi-

tions, one also fixes the direction of energy flow θe. With θe fixed, the corresponding

wave vector direction can be determined using Eq. (3.3). This propagation direction

corresponds to αi + αr. The electrode pitch pG of the inclined reflector as well as the

angles αi and αr can be determined from Fig. 3.5a through successive application of

the cosine and sine theorems.

3.2.2 Results

The design of the Z-path SAW tag presented in Paper III is shown in Fig. 3.6. The

device length is about 2 mm shorter than for an equivalent inline design. Figure 3.7

shows the measured response of this 2.45-GHz SAW tag to the interrogation signal

described by Eq. (3.1). As can be seen, the uniformity of peaks is excellent and the

level of losses is good with the code peaks roughly at -55 dB. The loss level can still

be improved through optimization of the inclined reflectors.

3.3 Phase-Encoded SAW RFID Tag

One of the objectives of this work was to enhance the data capacity of SAW RFID tags.

When employing the time position encoding method described above, only the time

delay information of the reflected pulses is used and each code reflector has 4 possible

positions, corresponding to 2 bits of data. However, the data capacity can be signifi-

cantly enhanced, if also the phase information of the response signals is used. An inline
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Figure 3.7: Response of the Z-path SAW tag of Fig. 3.6. Experimental data.

SAW tag that combines time position encoding with phase encoding was designed and

implemented in Paper IV. For this tag, time position encoding is used as described in

Section 3.1.4. In addition, a phase shift of 0◦, -90◦, -180◦, or -270◦ is introduced by

shifting the reflector positions by multiples of λ/8, as shown in Fig. 3.8. This yields

an additional 2 bits of data per reflector.

3.3.1 Decoding

In order to extract the phase information of the reflected pulses, the time response is

divided by a reference signal of the form ejω0t, where ω0 refers to the center frequency of

the interrogation pulse. In this way, the phase of the response signal is compared with

that of the reference signal, and the reflections from the code reflectors are expected

to be represented by segments of constant phase.

In the design, it was assumed that the SAW velocity on 128◦-LiNbO3 is 3978.48 m/s,

and the center frequency 2441.75 MHz of the frequency band allocated for industrial,

scientific, and medical applications (ISM) was used. This corresponds to a wavelength

of 1.629 µm, which was used to determine the positions of the reflectors and hence to

yield the desired phases for the reflected signals. However, both the velocity assumed
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Figure 3.8: Principle of phase encoding. Proportions are not to scale.

in the FEM/BEM simulator and the actual real-world velocity are different from that

assumed in the design. Although small, these differences are sufficient to bring about

significant phase changes. Also, while the design was made for a single frequency

point, the actual device must be decodable for a full range of frequencies within the

operating band. The observed wavelength is thus usually not equal to the wavelength

assumed in the design. The distances between the SPUDT and the reflectors also

vary with temperature changes. In order to compensate for these effects, all extracted

phase data must be corrected accordingly using a linear calibration function (linear

dependency on time delay).

In order to determine the slope of the linear correction, the number of wavelengths

corresponding to a short distance on chip is compared for design and experiment. The

experimental value is obtained from

Nλ = fc∆τ, (3.4)

where fc is the center frequency of the interrogation pulse and ∆τ is the experimentally

observed time delay corresponding to the short distance. In principle, accurate analysis

requires two reflectors (preferably the first two in the array) to lie sufficiently close to

each other. In particular, their separation must be such that the difference between

the designed and experimental total phases corresponding to this distance stays within

±2π. If this is the case, phase ambiguity is avoided and the slope of the linear phase

correction can be obtained as the ratio of the difference between the experimental and
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Figure 3.9: Left: Experimental response of an inline tag sample. The

dashed line indicates the time-gating of the first reflection. Right: Sim-

ulated (circles) and measured (squares) phases for a phase-encoded tag

after phase corrections.

designed phases with the time delay corresponding to the short distance in question.

As the tag design presented in Paper IV does not include such short delays, the differ-

ence of two similar delays has been used in order to obtain a sufficiently short delay.

Resembling techniques were proposed in [39] and [141] for temperature sensors.

3.3.2 Results

Figure 3.9 (left) presents a typical experimental response for an inline time-position

and phase-encoded tag sample. This result can be used to extract the time-position-

based code in the straightforward manner described in Section 3.1.4. The loss level,

that is, the ratio of the amplitudes of the code reflections to the amplitude of the

interrogation signal, is about -38 dB. For comparison, an insertion loss of -53 dB was

achieved for the weakest code reflections in [63]. The difference is due to the fact that

in this work, a unidirectional transducer was used and the structure of the reflector

array was carefully optimized.

Extraction of phase data presented an additional challenge as the procedure pro-

posed in Section 3.3.1 did not produce flat line segments for the phases of the reflected

signals. This anomaly was found to be due to phase distortion caused by the SPUDT.

Based on delay line simulations, the phase error was estimated to be 5◦ to 10◦ depend-

ing on frequency. The distortion was eliminated and flat line segments obtained by

dividing the spectrum of the total tag response by the spectrum of the first reflection
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(indicated by a dashed line in Fig. 3.9). This procedure is based on the fact that each

reflective echo includes a contribution from the SPUDT, from free-surface propagation,

from the reflector at which the reflection has occurred, and from all the reflectors pre-

ceding that reflector. When dividing the spectrum of the total tag response by the

spectrum of the first reflection, the transducer contribution (along with the round-trip

propagation between the IDT and the first reflector, and the reflection from the first

reflector) is eliminated from each reflection.

Figure 3.9 (right) presents the phase data (simulated and experimental) for a phase-

encoded tag sample. After the phase corrections described in 3.3.1 and the elimination

of the SPUDT contribution, the phase-based code can be identified without any am-

biguity.

3.4 Ultra-Wideband SAW RFID Tags

The feasibility of UWB SAW RFID tags was studied in Paper V. As the main goals

in the development of this tag were the reduction of tag size and the reinforcement

of resistance to environmental echoes, a natural choice was to use chirp signals and

matched-filter operation.

3.4.1 Principles of Signal Processing Within the UWB SAW Tag

The analysis of a chirped device involves processing of linear frequency modulated

(LFM) signals, which can be written as [142]

s(t) = a(t) cos [θ(t)] . (3.5)

A standard chirp signal has a flat unit amplitude, in which case a(t) is set to unity for

0 < t < Tchirp and to zero otherwise. Tchirp denotes the length of the chirp pulse. The

phase θ(t) is given by the quadratic function

θ(t) = πµ

(

t−
Tchirp
2

)2

+ 2πfc

(

t−
Tchirp
2

)

+ φ0, (3.6)

where µ = ±B/Tchirp is the chirp rate, B is the used frequency band, fc is the center

frequency, and φ0 is a constant. Waveforms with µ > 0 are called up-chirps and those

with µ < 0 are called down-chirps. In this Section, these signals are referred to by

sup(t) and sdown(t), respectively.

The principle of signal processing during tag interrogation is schematically illus-

trated in Fig. 3.10 for a case where the interrogation signal is an up-chirp pulse. If the

impulse response of the transducer on the tag is the time-reverse of the interrogation
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reflected by the code reflectors, and expanded by the transducer. The

output has a dispersion opposite to that of the interrogation signal. (c)

Reflections from surrounding objects have the same dispersion as the in-

terrogation signal.
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signal, then the SAW pulse propagating on the surface of the substrate will be a nar-

row correlation peak. When this compressed pulse returns to the transducer and is

retransmitted by the tag antenna, the output signal will essentially be the time-reverse

of the interrogation signal. However, the reflections of the interrogation signal from

surrounding objects, that is, the environmental echoes, will have the same waveform

as the interrogation pulse. When the tag responses together with the environmental

echoes are detected at the reader, matched-filtering is performed such that only the

tag response will be compressed. The use of chirp signals and matched-filter operation

thus offers a means for distinguishing the useful signal from parasitic reflections.

3.4.2 Design

As sketched in Fig. 3.10b, the proposed UWB SAW tag consists of a chirp transducer

and an array of narrow code reflectors. The positions of the transducer electrodes

must be chosen in accordance with the anticipated waveform to be launched [143]. As

the impulse response of the transducer must now be linearly frequency-modulated, the

electrode pitch should gradually decrease or increase depending on the type of chirp

desired. The electrode positions can be determined by finding the points at which

s(t) = 1 or s(t) = -1. It can readily be shown that the total number of cycles in s(t) is

fcTchirp. Assuming θ(0) = 0, the time positions tn of the electrodes can be solved from

the equation θ(tn) = nπ, where n = 0,1,2,. . .,2fcTchirp. This yields

tn = −
f1
µ

±

√

(

f1
µ

)2

+
n

µ
, (3.7)

where the plus-sign is used for µ > 0 and the minus-sign for µ < 0. In Eq. (3.7),

f1 = fc ∓ B/2 is the starting frequency of the chirp (the minus-sign is for µ > 0 and

vice versa). The physical positions xn of the electrodes on the substrate surface are

given by xn = vtn, where v is the SAW velocity on the substrate.

As the tag response and the environmental echoes are distinguished from each other

by using matched-filter techniques, the initial delay can be drastically shortened. In

experiments, 150 ns was used instead of the 1 µs needed in ordinary SAW tags. In a

UWB tag operating within a frequency band of 500 MHz, the code reflectors can be

placed in slots as narrow as 2 ns, which corresponds to the width of the compressed

pulse propagating on the substrate surface (∆tslot = 1/Bsyst = 1/500MHz = 2ns).

The reflectors can thus be placed closer to each other than in conventional SAW tags

(operating at 2.45 GHz with a band of 40 MHz), where the slots typically are 25 ns

wide. The shortening of the initial delay and the denser array of code reflectors result

in a very compact tag geometry.
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3.4.3 Analysis

The operation of the designed UWB SAW tag was analyzed based on the simulated

and measured S11 parameter. The studied tag had a transducer with high-frequency

sections closest to the code reflectors and was interrogated using an up-chirp signal. In

order to decrease the level of the time-sidelobes of the correlation peak, the flat-envelope

interrogation signal introduced in Eq. (3.5) was weighted using a cosine window as

sup,w(t) = a(t) cos [θ(t)] cos

(

πt

Tchirp
−
π

2

)

. (3.8)

The spectrum of the tag output G(f) was obtained by multiplying the spectrum

of the interrogation signal Sup,w(f) by the simulated or experimental S11 parameter.

This can be written as

G(f) = Sup,w(f)S11(f), (3.9)

where Sup,w(f) is the Fourier transform of sup,w(t). The parameter S11(f) can be

considered the frequency response of the tag device. The tag response G(f), or its

inverse Fourier transform g(t), is compressed by using a matched filter whose impulse

response is of the form sup(t), that is, essentially the time-reverse of g(t). The spectrum

of the compressed tag response C(f) is thus obtained from

C(f) = G(f)Sup(f), (3.10)

and the time-domain response c(t) can finally be calculated as the inverse Fourier

transform of C(f).

The compressed tag response can also be obtained by interrogating the tag with an

up-chirp signal of duration 2Tchirp and band B, that is, by replacing µ with µ/2. The

output will then be a train of compressed pulses.

3.4.4 Results

Paper V presents a UWB SAW tag design that includes a chirp transducer and 10 code

reflectors. The device is shown in Fig. 3.11 and its chirp transducer in Fig. 3.12. The

chirp IDT operates at a center frequency of fc = 1 GHz and has a band of B = 500 MHz.

Such a low center frequency was chosen in order to keep the simulation time reasonable.

(For higher frequencies, a significantly larger number of transducer electrodes is needed

to produce a chirp of certain duration. The simulation time increases rapidly with the

increase of the number of electrodes.) The designed transducer consists of 100 pairs of

electrodes and has a length of about 400 µm. The chirp duration is Tchirp = 100 ns.
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Figure 3.11: Photograph (taken through a microscope) of the fabricated

UWB SAW tag device. The length of the structure is 1.1 mm.

Figure 3.12: Photograph of the chirp transducer of the UWB SAW tag

shown in Fig. 3.11. The low-frequency sections are on the left and the

high-frequency sections on the right. The transducer length is 400 µm

and aperture 75 µm.
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Figure 3.13: Compressed response of a UWB SAW tag device having 10

code reflectors. Left: Simulated. Right: Experimental.

For this tag, encoding is based on groups of 5 slots with a slot width of 5 ns. The

initial delay is reduced to 150 ns and the length of the entire structure is only 1.1 mm.

The device was simulated using FEM/BEM software and fabricated on 128◦-LiNbO3
using electron beam lithography and liftoff process. Figure 3.13 shows the simulated

(left) and experimental tag responses (right). In both cases, the compressed response

is obtained by applying an ideal chirp signal with band B = 500 MHz and duration

2Tchirp = 200 ns directly to the simulated or measured S11 data. The level of the

compressed peaks is comparable between the two cases. Both responses illustrate the

fact that the total delay is significantly shorter than with ordinary SAW tags.

The UWB SAW tag is feasible. It will be small in size and it will have a reasonably

large data capacity. Estimation of reading range, in Paper V, showed that it can be

interrogated with readers radiating a very low power and still achieve reading ranges

sufficient for many applications. The FCC regulation [73–75] allows a reader power

of -41.3 dBm/MHz for frequencies higher than 1.99 GHz. For an operating bandwidth

of B = 500 MHz (from 2.0 GHz to 2.5 GHz), this corresponds to a total radiated power

of 37 µW and an estimated reading range of about 2.4 m. The achievable reading range

evidently depends on the integration time and other reader characteristics.
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4 Discussion and Conclusion

In this thesis, new variants of surface acoustic wave RFID tags were designed and ana-

lyzed using simulations and experiments. In Papers I and II, the research done on the

extraction of reflector parameters was presented. The reflectivity and SAW attenua-

tion of narrow metal electrodes were determined, and a new method for extracting the

reflection, transmission, and scattering parameters of short metal reflectors was devel-

oped. Papers III-V focused on the design of SAW RFID tags. Novel tag designs were

presented, including a Z-path SAW RFID tag having a reduced size, and a tag com-

bining time position and phase encoding and thus having an enhanced data capacity.

The feasibility of ultra-wideband SAW RFID tags was investigated and a UWB SAW

tag with a compact size and strong resistance to environmental echoes was designed

and implemented.

4.1 Extraction of Reflector Parameters

The first part of the thesis discussed the extraction of the central SAW reflector param-

eters. An accurate knowledge of the reflection, transmission, and scattering parameters

is essential when SAW RFID tags or DDL devices are developed.

Paper I studied the applicability of narrow electrodes to the development of disper-

sive delay lines. Such narrow metal strips are needed in SAW tags as well in order to

achieve a sufficiently weak reflectivity. However, only fragmentary data on the reflec-

tivity of narrow metal electrodes was available in previous publications [112–116]. In

Paper I, it was estimated that a controllable reflectivity of r < 0.3% per electrode is re-

quired in order to design inline DDLs with reasonable parameters. It was demonstrated,

using simulations and experiments, that narrow open-circuited aluminum electrodes are

perfectly suitable for this application. Reflectivities of desired magnitude can easily be

achieved and they can be controlled by varying the electrode width. Today, standard

optical lithography can produce sufficiently narrow linewidths to render metal strips

a valid alternative to grooves, previously used in RACs.

In Paper II, a new method for determining the reflection, transmission, and scat-

tering parameters for short metal reflectors was developed. An accurate knowledge of

these parameters is essential in tag design. Previous methods [118–121] either did not

consider the frequency-dependence of the parameters or involved the use of specialized

software. The new method uses the FEM/BEM-computed S parameters of a SAW

tag device to analytically extract the reflection and transmission coefficients (absolute

values and phase angles) and the energy scattered into bulk as a function of frequency.

Assuming the S parameters available, this is a simple and very fast way to characterize
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short metal reflectors without heavy calculation or specialized software. Although only

used for simulated data in Paper II, the developed method has the advantage of being

applicable to measured data as well.

4.2 SAW RFID Tag Designs

The main focus of this thesis is on the design of novel SAW RFID tags. In Paper III,

a reduced tag size was achieved by employing a Z-path acoustic channel. In Paper IV,

data capacity was enhanced by combining time position encoding with phase encoding.

And finally, in Paper V, the feasibility of ultra-wideband SAW tags that meet the FCC

rules [73–75] for UWB applications was validated.

4.2.1 Z-Path SAW Tag

Previously reported SAW tags used a bidirectional IDT and an inline arrangement of

code reflectors [34,39]. This resulted in a relatively large chip size of about 1 x 10 mm2.

In Paper III, a design and experimental results for an improved SAW tag were pre-

sented. Tag size and losses were reduced by replacing the bidirectional IDT with

a unidirectional IDT. A further reduction of device size was achieved by adopting a Z-

path geometry. Two inclined reflectors were used to fold the propagation path. The

advantage of this configuration is that the same space in the X-direction is used for

both the initial delay and the code reflectors. No space is needed for the initial de-

lay alone. This means that the chip length is finally determined only by the space

required by the code reflectors. The Z-path geometry allows for a reduction of tag

length by about 2 mm as compared to an equivalent single-track configuration using

a unidirectional IDT with the code reflectors placed in-line. The proposed configura-

tion is especially advantageous for tags having a relatively long initial delay compared

to the space required by the code reflectors. For such devices, a chip size of less than

1 x 2 mm2 (at 2.45 GHz) is realizable. Another advantage of the Z-path configuration

is that the direction of the twice reflected wave always remains parallel to the initial

direction. This makes the device operation practically insensitive to the temperature

variations of size and wave velocities. A U-path geometry [38], for example, would not

have this advantage.

4.2.2 Phase-Encoded SAW Tag

In Paper IV, it was shown that the data capacity of SAW RFID tags can be significantly

enhanced by combining the time delay information of reflective echoes with phase data.
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In the presented tags, each echo has four possible time positions and four possible

phases. With ten reflectors used for encoding, this results in 1012 unique codes (40 bits),

which is a significant improvement compared to the 106 distinct codes (20 bits) that

may be realized when using time delays alone. In addition to the enhanced data

capacity, a low loss level of -38 dB was achieved for the reflective echoes.

Extracting and interpreting the phase information of reflected signals demands pre-

cise knowledge of reflector parameters, even in the case of tags having a relatively small

number of code reflectors as those presented in Paper IV. Reflection and transmission

phase shifts must be known accurately. For unambiguous phase calibration, the sepa-

ration of the first two reflectors must be short and fixed. Other calibration procedures,

such as using a reference tag with known phase information, can also be employed for

robust algorithms of reading phase-encoded SAW tags.

In Paper IV, it was found that the SPUDT used for launching and receiving surface

acoustic waves causes a phase distortion of a few degrees. With only four different

phases used for encoding, the compensation of this distortion is not necessary. However,

it will become critical if the phase step for encoding is to be reduced from the 90◦ used in

the present work. Then, a reliable extraction of phase-based codes requires eliminating

the SPUDT phase distortion.

Phase encoding methods are currently intensively investigated [144]. The uncer-

tainty of determining the signal phase depends on the signal-to-noise ratio. When phase

encoding is used, the number of codes per certain chip length increases but a higher

signal-to-noise ratio is required, decreasing the reading range of the tag.

4.2.3 Ultra-Wideband SAW RFID Tags

The feasibility of ultra-wideband SAW RFID tags was studied in Paper V. The UWB

technology gives SAW tags significant advantages. First of all, with wider available

bands, a certain BT (the product that determines the information capacity of the tag)

can be obtained with a shorter coding time T . For example, with B = 500 MHz, a BT

of 200 only requires a coding time of 400 ns instead of the 2 µs typical for 2.45-GHz

SAW tags. With such a coding time, the total length of a SAW chip can be shorter

than 1 mm. In Paper V, it was experimentally demonstrated that a UWB SAW tag

with 106 different codes can have a chip size of about 0.5 x 1 mm2.

Another attractive possibility related to the use of the UWB technology is perform-

ing signal processing within a SAW tag. Using a chirp transducer in the tag allows

for a matched-filter processing of the tag response. In this case, the dispersion of the

interrogation signal is modified within the tag. The tag response thus differs from the

reflections of the interrogation signal from other objects. This makes the system more
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resistant to echoes from the surroundings. Typically, an initial delay of 1 µs is needed

in ordinary SAW tags for the decay of environmental echoes. With UWB tags, this

delay can be significantly shorter.

A shorter total delay also implies lower propagation losses. A propagation time

of 400 ns corresponds to only about -3 dB of propagation loss on 128◦-LiNbO3. In

ordinary SAW tags, the total delay is about 2 µs to 4 µs, and propagation loss corre-

spondingly on the order of -20 dB. UWB SAW tags may then have a reduced total loss

despite the increased loss in the dispersive transducer.

Finally, the reader power may be very low for UWB SAW tags. In the estimations

formulated in Paper V, the total power radiated by a reader is lower than 40 µW.

This is undeniably an attractive level, although the reading range is expected to be

limited to about 2 m to 5 m depending on the integration time and other reader

characteristics. For short reading distances, the interrogation signal will be radiated

for about 1 ms per one reading. This puts the average power at the nanowatt level,

assuming reading of one tag sufficient for many applications. A reduction in the reader

power also implies a reduction of human exposure to electromagnetic radiation. This

should have a positive impact on the general public’s attitude to new wireless services.

4.3 Conclusion

For RFID tags, the two most important issues are the price, which is related to the

chip size, and the power radiated by the reader. In this thesis, it was shown that SAW-

based tags present a viable alternative to semiconductor tags. The competitiveness of

SAW RFID as an automatic identification method was substantiated by experimental

evidence. Novel SAW RFID tag designs that combine a small size and a data capacity

sufficiently large for many applications were presented. In particular, taking SAW tags

to the ultra-wide bands holds great promises such as a drastic reduction of device size,

a stronger resistance to environmental echoes, and a very low reader power.
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Abstracts of Publications

I Narrow, open-circuited aluminum electrodes can provide controllable, weak re-

flectivity necessary for many applications such as surface acoustic wave (SAW)

tags and dispersive delay lines (DDLs). We show, using finite- and boundary

element method (FEM-BEM) based simulations and experiments, that a reflec-

tivity of 0.3% per wavelength can be achieved easily and controlled by varying

the electrode width.

II Reflectors comprised of only a single or a few electrodes provide controllable,

weak reflectivity essential for surface acoustic wave (SAW) radio-frequency iden-

tification (RFID) tags. The reflection, transmission, and scattering parameters

of such reflectors must be known as a function of frequency in order to be able to

control the amplitudes of tag responses and to use phase-based encoding reliably.

In this work, we present a method of extracting the main reflection, transmission,

and scattering parameters for short metal reflectors as a function of frequency.

We use test device S parameters obtained through finite- and boundary-element

method (FEM-BEM) based simulations and, as an example, determine the re-

flection and transmission coefficients (their absolute values and phase angles) and

the energy scattered into bulk for a few different single-electrode reflectors. We

compare these parameter values to earlier results.

Although only used for simulated data in this work, the same method can be

applied to measured data as well. Assuming the S parameters available, this

method is very fast and does not require any heavy calculation or special software.

III Surface acoustic wave (SAW) radio-frequency identification (RFID) tags are soon

expected to be produced in very high volumes. The size and cost of a SAW RFID

tag will be key parameters for many applications. Therefore, it is of primary

importance to reduce the chip size. In this work, we describe the design principles

of a 2.4-GHz SAW RFID tag that is significantly smaller than earlier reported

tags. We also present simulated and experimental results.

The coded signal should arrive at the reader with a certain delay (typically about

1 µs), i.e., after the reception of environmental echoes. If the tag uses a bidi-

rectional interdigital transducer (IDT), space for the initial delay is needed on

both sides of the IDT. In this work, we replace the bidirectional IDT by a uni-

directional one. This halves the space required by the initial delay because all

the code reflectors must now be placed on the same side of the IDT. We reduce

tag size even further by using a Z-path geometry in which the same space in
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x-direction is used for both the initial delay and the code reflectors. Chip length

is thus determined only by the space required by the code reflectors.

IV Surface acoustic wave (SAW) radio-frequency identification (RFID) tags are en-

coded according to partial reflections of an interrogation signal by short metal

reflectors. The standard encryption method involves time position encoding that

uses time delays of response signals. However, the data capacity of a SAW RFID

tag can be significantly enhanced by extracting additional phase information from

the tag responses.

In this work, we have designed, using FEM-BEM simulations, and fabricated,

on 128◦-LiNbO3, inline 2.44-GHz SAW RFID tag samples that combine time

position and phase encoding. Each reflective echo has 4 possible time positions

and a phase of 0◦, -90◦, -180◦, or -270◦. This corresponds to 16 different states,

i.e., 4 bits of data, per code reflector. In addition to the enhanced data capacity,

our samples also exhibit a low loss level of -38 dB for code reflections.

V We discuss the feasibility of surface acoustic wave (SAW) radio-frequency identifi-

cation (RFID) tags that rely on ultra-wideband (UWB) technology. We propose

a design of a UWB SAW tag, carry out numerical experiments on the device

performance, and study signal processing in the system. We also present exper-

imental results for the proposed device and estimate the potentially achievable

reading distance.

UWB SAW tags will have an extremely small chip size (< 0.5 x 1 mm2) and a low

cost. They also can provide a large number of different codes. The estimated

read range for UWB SAW tags is about 2 m with a reader radiating as low as

< 0.1-mW power levels with an extremely low duty factor.
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