
TKK Dissertations in Information and Computer Science

Espoo 2008 TKK-ICS-D11

INPUT VARIABLE SELECTION METHODS FOR
CONSTRUCTION OF INTERPRETABLE REGRESSION
MODELS

Jarkko Tikka

Dissertation for the degree of Doctor of Science in Technology to be presented with due

permission of the Faculty of Information and Natural Sciences for public examination

and debate in Auditorium T1 at Helsinki University of Technology (Espoo, Finland) on

the 12th of December, 2008, at 12 o’clock noon.

Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Information and Computer Science

Teknillinen korkeakoulu
Informaatio- ja luonnontieteiden tiedekunta
Tietojenkäsittelytieteen laitos

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80703543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Distribution:
Helsinki University of Technology
Faculty of Information and Natural Sciences
Department of Information and Computer Science
P.O. Box 5400
FI-02015 TKK
FINLAND
Tel. +358 9 451 3272
Fax +358 9 451 3277
E-mail: series@ics.tkk.fi

c© Jarkko Tikka

ISBN 978-951-22-9663-7 (Print)
ISBN 978-951-22-9664-4 (Online)
ISSN 1797-5050 (Print)
ISSN 1797-5069 (Online)
URL: http://lib.tkk.fi/Diss/2008/isbn9789512296644

Multiprint Oy
Espoo 2008



Tikka, J. (2008): Input variable selection methods for construction of

interpretable regression models. Doctoral thesis, Helsinki University of Tech-
nology, Dissertations in Information and Computer Science, TKK-ICS-D11, Espoo,
Finland.

Keywords: data analysis, machine learning, function approximation, multire-
sponse linear regression, nonlinear regression, artificial neural networks, input vari-
able selection, model selection, constrained optimization

ABSTRACT

Large data sets are collected and analyzed in a variety of research problems. Mod-
ern computers allow to measure ever increasing numbers of samples and variables.
Automated methods are required for the analysis, since traditional manual ap-
proaches are impractical due to the growing amount of data. In the present thesis,
numerous computational methods that are based on observed data with subject
to modelling assumptions are presented for producing useful knowledge from the
data generating system.

Input variable selection methods in both linear and nonlinear function approxima-
tion problems are proposed. Variable selection has gained more and more attention
in many applications, because it assists in interpretation of the underlying phe-
nomenon. The selected variables highlight the most relevant characteristics of the
problem. In addition, the rejection of irrelevant inputs may reduce the training
time and improve the prediction accuracy of the model.

Linear models play an important role in data analysis, since they are computation-
ally efficient and they form the basis for many more complicated models. In this
work, the estimation of several response variables simultaneously using the linear
combinations of the same subset of inputs is especially considered. Input selection
methods that are originally designed for a single response variable are extended to
the case of multiple responses. The assumption of linearity is not, however, ade-
quate in all problems. Hence, artificial neural networks are applied in the modeling
of unknown nonlinear dependencies between the inputs and the response.

The first set of methods includes efficient stepwise selection strategies that assess
usefulness of the inputs in the model. Alternatively, the problem of input selection
is formulated as an optimization problem. An objective function is minimized with
respect to sparsity constraints that encourage selection of the inputs. The trade-off
between the prediction accuracy and the number of input variables is adjusted by
continuous-valued sparsity parameters.

Results from extensive experiments on both simulated functions and real bench-
mark data sets are reported. In comparisons with existing variable selection strate-
gies, the proposed methods typically improve the results either by reducing the
prediction error or decreasing the number of selected inputs or with respect to both
of the previous criteria. The constructed sparse models are also found to produce
more accurate predictions than the models including all the input variables.
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TIIVISTELMÄ

Suuria tietoaineistoja kerätään ja analysoidaan monenlaisissa tutkimusongelmis-
sa. Modernit tietokoneet mahdollistavat mitattavien havaintojen ja muuttujien lu-
kumäärän jatkuvan lisääntymisen. Analysoinnissa tarvitaan automaattisia mene-
telmiä, koska perinteiset manuaaliset menettelytavat ovat käyttökelvottomia kas-
vavien tietoaineistojen takia. Tässä väitöskirjassa esitetään lukuisia mallinnusole-
tuksien puitteissa havaittuihin tietoaineistoihin perustuvia laskennallisia menetel-
miä tuottamaan käyttökelpoista tietoa datan kuvaamasta systeemistä.

Syötemuuttujanvalintamenetelmiä esitetään sekä lineaaristen että epälineaaristen
funktioiden approksimointitehtävissä. Muuttujanvalinta on saavuttanut yhä enem-
män huomiota monissa sovelluksissa, koska se auttaa alla olevan ilmiön tulkitse-
misessa. Valitut muuttujat korostavat ongelman kannalta merkityksellisimpiä omi-
naisuuksia. Merkityksettömien muuttujien hylkääminen voi lisäksi lyhentää mallin
opetusaikaa ja parantaa sen ennustustarkkuutta.

Lineaarisilla malleilla on tärkeä rooli data-analyysissä, koska ne ovat laskennalli-
sesti tehokkaita ja ne luovat pohjan monille monimutkaisemmille malleille. Väi-
töskirjassa tarkastellaan erityisesti samanaikaista usean vastemuuttujan estimoin-
tia käyttäen samojen syötteiden lineaarikombinaatioita. Muuttujanvalintamene-
telmät, jotka ovat alun perin suunniteltu yhdelle vastemuuttujalle, laajennetaan
monivastetapaukseen. Oletus lineaarisuudesta ei kuitenkaan ole perusteltu kaikis-
sa ongelmissa. Siksi syötteiden ja vasteen välisten tuntemattomien epälineaaristen
riippuvuuksien mallintamisessa sovelletaan keinotekoisia hermoverkkoja.

Ensimmäinen menetelmien joukko sisältää tehokkaat askelettaiset valintastrate-
giat, jotka määrittävät muuttujien hyödyllisyyden mallissa. Vaihtoehtoisesti muut-
tujanvalintatehtävä formuloidaan optimointitehtävänä. Kohdefunktiota minimoi-
daan syötteiden valintaa kannustavan harvuusrajoitteen suhteen. Ennustustark-
kuuden ja valittujen muuttujien lukumäärän välistä kompromissia säädellään jat-
kuva-arvoisella harvuusparametrilla.

Työssä raportoidaan tulokset laajoista kokeista, joissa on käytetty sekä simuloi-
tuja funktioita että todellisia testiaineistoja. Olemassa oleviin muuttujanvalinta-
menetelmiin verrattaessa esitetyt menetelmät parantavat tyypillisesti tuloksia pie-
nentämällä ennustusvirhettä, valitsemalla vähemmän muuttujia tai kummallakin
mainitulla tavalla. Lisäksi konstruoitujen harvojen mallien todetaan tuottavan tar-
kempia ennustuksia kuin mallien jotka sisältävät kaikki syötemuuttujat.
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Chapter 1

Introduction

1.1 Scope of the thesis

Our world is filled with data. Nowadays, it is common to collect information from
many different sources and phenomena, for instance, astronomical objects, envi-
ronment, economics, industrial processes, and functioning of the human genome.
Sizes of databases have dramatically increased in a short period of time, which
has boosted interest toward effective data analysis methods. Extraction of un-
suspected and useful novel information about the system that has generated the
data is known as data mining (Hand et al., 2001). Data mining combines statis-
tics and computer science utilizing advances in both disciplines. Learning from
data relies on statistical models and modern computers allow analyses of huge
databases (Hastie et al., 2001).

Information can be presented in many ways. A data set may include, for example,
images, text, audio, numerical measurements, answers to questionnaires, or any
combination of them. For the analysis purposes, it is typically required that the
data are represented in a numerical format. Qualitative data, such as a degree of
satisfaction, cannot be precisely defined but it can be approximated using numeri-
cal values. In a quantitative data set, variables describe specific quantities and can
therefore be exactly measured. Quantitative variables are expressed on continuous
or discrete scales including nominal and categorical data as well.

In the present thesis, only quantitative data are considered. It is also assumed, that
data are presented by two matrices of size N×d and N×q, where N is the number
of samples or observations, d is the number of input variables, and q is the number
of output or response variables. The matrices are referred as input and output
data, respectively. Advances in measurement techniques and storage capacities
have led to the proliferation of the number of input variables and observations
in various applications. For instance, several thousands of input variables are
encountered in bioinformatics (Hastie and Tibshirani, 2004; Kiiveri, 2008) and
hundreds of thousands of observations are processed in knowledge discovery from
text documents (Mooney and Bunescu, 2007).
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The present thesis concentrates on regression problems, i.e. on the learning of an
input-output mapping from observed data (Cherkassky and Mulier, 1998). The
obtained models should fulfill two goals. First, they should be able to predict
accurately output values for novel observations of the input variables. The second
goal is to find the most important or informative subset of input variables. In other
words, the aim is to reduce the input space dimension such that the generalization
capability of the constructed model is maximal, which corresponds to the problem
of finding the most relevant input variables (George, 2000). Parsimonious and
compact representations of the data allow easier interpretation of the underlying
phenomenon.

The problem of input selection is difficult because of the combinatorial complex-
ity (Kohavi and John, 1997). Consider the problem of finding a subset of k = 10
inputs from the d = 50 available inputs such that the prediction error is mini-
mized. The exhaustive search is impossible even with the most simplest models,
since d!/(k!(d − k)!) > 1010 models should be evaluated. If k was not known in
advance, the number of possible subsets would be 2d > 1015. The computational
methods that are proposed in this thesis approximate the exhaustive search. Both
less complex search strategies and transformations of the input selection process
into a single optimization problem are introduced.

The linear regression models are attractive in many cases because of computa-
tional efficiency and interpretability (Draper and Smith, 1981). The regression
coefficients can be expressed analytically in the closed form, if the classical sum
of squared errors between the observations and the model outputs is minimized.
Also, statistical significance tests for several properties of the model are readily
available. However, the interpretation of the models may be misleading in the pres-
ence of correlated inputs, since the contribution of an input can be compensated
by other ones in that case. Misinterpretations caused by the correlated inputs can
be reduced by input selection procedures. In the case of multiple responses, mod-
eling could be performed individually for each response or simultaneously with
a single model. Although all the separate models would be sparse, it does not
necessarily cause a reduction in the input space dimension. In this thesis, several
input selection algorithms for the simultaneous estimation of several responses are
proposed.

Obviously, all problems cannot be solved by linear models. Although it would
be known that dependency between the inputs and the output is nonlinear, the
obstacle is that the actual underlying functional form is typically completely un-
known. Artificial neural networks (ANNs) are appropriate for modeling nonlinear
dependencies (Bishop, 1995; Haykin, 1999), since they are capable to approximate
a wide class of functions very well without restrictive assumptions about the data
generating process (Hornik et al., 1989). Historically, ANNs can be seen as bio-
logically inspired systems, but in this work they are considered as computational
methodologies to solve problems with little a priori information. The major defi-
ciency of neural networks is their black box characteristics, that is, importance of
an individual input variable is not clearly expressed and even relative importance
of the inputs in the prediction task are hard to assess.

In the present thesis, numerous input selection methods are proposed to improve
interpretability of ANN models. Non-informative inputs are discarded from the
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final network and relative importance of the selected inputs are highlighted. Gen-
eralization performance of the network depends on its complexity that can be
controlled by varying the number of neurons or input variables. In addition to
stepwise selection procedures, optimization strategies to adjust complexity of an
initially oversized network are presented. In optimization approaches, the final
numbers of neurons and inputs are determined by tuning continuous-valued hy-
perparameters.

1.2 Contributions presented in the thesis

The present thesis contains the following scientific contributions:

• Variable selection methods are proposed to produce interpretable and accu-
rate linear models for the simultaneous prediction of multiple responses. The
methods set some of the regression coefficients exactly to zero and shrink the
rest toward zero.

• For the selection and shrinkage in the multiresponse linear regression, vari-
ants of the forward stepwise algorithm and a constrained optimization prob-
lem are introduced. The proposed methods extend the LARS algorithm
and the LASSO formulation to the case of multiple responses. In addition,
an efficient algorithm to follow the entire solution path of the constrained
optimization problem as a function of the shrinkage parameter is presented.

• A computationally fast filter input selection strategy for the MLP network is
proposed. The input variables are selected based on the linear model using
a novel backward input elimination strategy. Subsequently, the obtained
inputs are used in the MLP network. The applicability of the method is
analyzed in detail in the context of the long-term prediction of time series.

• A constraint optimization problem to train the RBF network in the function
approximation problem is proposed. The resulting network can be sparse in
terms of both input variables and basis functions. In addition, a sequential
backward input variable elimination algorithm for the RBF network is pre-
sented. Pruning of the inputs is based on a new relevance measure that is
determined using partial derivatives of the network.

1.3 Publications of the thesis

The present thesis consists of an introductory part and the following seven peer-
reviewed original publications.

1. Timo Similä and Jarkko Tikka (2005). Multiresponse sparse regression with
application to multidimensional scaling, in W. Duch, J. Kacprzyk, E. Oja,
and S. Zadrozny (eds), Artificial Neural Networks: Formal Models and Their
Applications – ICANN 2005, 15th International Conference, Proceedings,
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Part II, Vol. 3967 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 97–102.

2. Timo Similä and Jarkko Tikka (2006). Common subset selection of inputs in
multiresponse regression, Proceedings of the IEEE International Joint Con-
ference on Neural Networks (IJCNN 2006), pp. 1908–1915.

3. Timo Similä and Jarkko Tikka (2007). Input selection and shrinkage in
multiresponse linear regression, Computational Statistics & Data Analysis
52(1): 406–422.

4. Jarkko Tikka and Jaakko Hollmén (2008). Sequential input selection algo-
rithm for long-term prediction of time series, Neurocomputing, 71(13–15):
2604–2615.

5. Jarkko Tikka and Jaakko Hollmén (2008). Selection of important input
variables for RBF network using partial derivatives, in M. Verleysen (ed.)
Proceedings of the 16th European Symposium on Artificial Neural Networks
(ESANN 2008), d-side publications, pp. 167–172.

6. Jarkko Tikka (2007). Input selection for radial basis function networks by
constrained optimization, in J. Marques de Sá, L. A. Alexandre, W. Duch,
and D. Mandic (eds), Artificial Neural Networks – ICANN 2007, 17th In-
ternational Conference, Proceedings, Part I, Vol. 4668 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 239–248.

7. Jarkko Tikka (2008). Simultaneous input variable and basis function selec-
tion for RBF networks, Neurocomputing, Accepted for publication.

In the text, the publications are referred using the above numbering, for instance
Tikka (2008) is referred to as Publication 7.

1.4 Contents of the publications and author’s con-

tributions

Publication 1. The multiresponse sparse regression (MRSR) algorithm for linear
regression is proposed. It extends the LARS algorithm by Efron et al. (2004) to
the case of multiple responses. The MRSR algorithm updates the model with less
greedy steps than a classical forward stepwise input selection strategy, which often
improves the prediction performance. Similä suggested the idea originally, but
the algorithm itself was jointly developed by the author and Similä. The author
carried out the experiments, while the application to multidimensional scaling was
outlined by Similä. The article was written together.

Publication 2. The MRSR algorithm is presented in a more general framework.
The correlation criterion for model construction is defined using the L2- and L∞-
norms in addition to the L1-norm, that is applied in Publication 1. Computational
improvements are also introduced. It is additionally shown that the outcome of
the algorithm is unique, assuming implicitly that the selected inputs are linearly
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independent. Extensive experimental comparisons illustrate the strengths of the
MRSR algorithm in the case of highly correlated inputs. The MRSR algorithm is
further applied to unsupervised input selection in an application of image recon-
struction. Similä was more responsible for the theoretical developments, including
the proof of uniqueness, but the research was continuously supported by the au-
thor. The image reconstruction application was Similä’s idea. Otherwise, the
experiments were designed, carried out, and reported by the author. Similä wrote
the other parts of the article.

Publication 3. The problem of input selection in multiresponse linear regression
is formulated as a convex optimization problem. The sum of squared errors is min-
imized subject to a constraint that encourages sparsity in terms of the inputs. The
proposed problem can be seen as an extension of the LASSO formulation (Tibshi-
rani, 1996) to the case of multiple responses. Necessary and sufficient conditions for
optimality and a condition that ensures the uniqueness of the solution are given.
An interior point method is proposed for solving the optimization problem. A
predictor-corrector variant of the solver suits for following the entire solution path
as a function of the shrinkage parameter. Extensive empirical comparisons are
performed. Similä contributed the theory, implemented the algorithm, and wrote
a large part of the article. The author provided insight into the theory and helped
considerably in the way toward a workable implementation. Furthermore, the
author was responsible for planning, conducting, and reporting the experiments.

Publication 4. The sequential input selection algorithm (SISAL) is proposed
for choosing a parsimonious set of inputs in the problem of long-term prediction
of time series. The SISAL utilizes the backward elimination strategy in a linear
prediction model. The removal of inputs is based on a novel relevance measure that
is estimated using a resampling procedure. Subsequently, a nonlinear predictor is
constructed applying the inputs that are selected by the SISAL. Importance of the
inputs in the nonlinear model is assessed using partial derivatives. Experiments
on problems with varying nonlinearity show that importance of the inputs based
on the linear model reflect very nicely importance of the inputs in the nonlinear
model as well. The SISAL was developed by the author. Experiments were jointly
designed with Hollmén and all of them were conducted by the author. The author
wrote most of the article.

Publication 5. The sequential input selection algorithm for the RBF (SISAL-
RBF) network is presented. One input is deleted at a time starting from the
network including all the inputs. Thus, the number of candidate subsets equals
to the number of available input variables. The pruning of inputs is based on
the ranking of inputs that is evaluated using partial derivatives of the network.
Furthermore, one hyperparameter can be tuned automatically due to the efficient
determination of the leave-one-out cross validation error. Experiments prove the
usefulness of the proposed strategy. The method was developed by the author.
The author designed most of the experiments, conducted all of them, and wrote
most of the article.

Publications 6 and 7. Input variable selection for the RBF network is formulated
as a constrained optimization problem. Complexity of the network is controlled by
two hyperparameters. Each input dimension is weighted by a continuous valued
weighting factor. The first hyperparameter constrains the L1-norm of the factors
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which encourages sparsity in terms of the inputs. The optimization of the weighting
factors is based on the data and the resulting weights reflect relevance of the input
variables. The second hyperparameter is related to the output layer parameters
of the network. The model fitting is penalized by the L2-norm of the parameters
in Publication 6, whereas it is controlled by the constraint implemented by the
L1-norm of the parameters in Publication 7. The advantage of the L1-norm over
the L2-norm is that sparsity is also achieved in terms of the basis functions. In
Publication 6, the problem is solved using an alternating optimization approach. In
Publication 7, a direct optimization procedure is also presented and compared to an
alternating optimization strategy. Convincing results from extensive experiments
and comparisons on both simulated and real world data sets justify the advantages
of the proposed approach. The present author was the sole contributer to these
articles.

1.5 Structure of the thesis

The rest of the introductory part is organized as follows. Chapter 2 briefly reviews
different learning tasks in data analysis and presents the framework of the present
thesis. The problem of variable selection is also motivated and introduced in detail.
Chapter 3 begins with a discussion on variable selection for the single response
linear regression model followed by extensions to the multiresponse case. Chapter 4
includes input variable selection strategies for nonlinear regression models. It
begins by discussing the learning of an unknown nonlinear function by nonadaptive
methods and support vector machines. Chapter 4 continues by a short introduction
to artificial neural networks and a more detailed description of variable selection
methods for neural networks. Chapters 3 and 4 contain examples that illustrate
advances of the proposed methods. Finally, a summary of the thesis with some
conclusions is presented in Chapter 5.
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Chapter 2

Data analysis

2.1 Overview

The purpose of data analysis is to extract useful information from a large collection
of data. Traditionally this has been manual work. Due to the dramatic increase in
sizes of data sets, knowledge extraction needs to be automated. However, a fully
automatized system cannot be expected to work properly since a domain expert
is required, for instance, to judge the relevance of the findings (Mannila, 1997).

Figure 2.1 illustrates the main parts of a data analysis process (Tukey, 1980;
MacKay and Oldford, 2000). The further phases are dependent on the previous
ones, i.e choices that are done affect the subsequent stages. However, it is also
ordinary to go back to the previous steps, although it is not shown in the figure.
During the data analysis process new knowledge is typically obtained and the
previous choices may have to be reformulated (Feelders et al., 2000).

The problem statement defines what is to be learned and it also affects the design
of the following phases. A classical task is to estimate a model to describe depen-
dencies between input variables and a response variable with two goals (Breiman,
2001). First, the model should be able to predict the response accurately based
on the input variables. The second objective is to assist in interpretation of im-
portance of the inputs in the prediction task. Methods that are proposed in the
present thesis are designed to fulfill these two objectives.

The study plan specifies the collection of data. It includes the selection of the
response and inputs variables. The response should describe some feature of a
system or phenomenon as clearly as possible, such that it enables the discovery of
novel knowledge. All the possible variables that may be useful in the prediction of
the response should also be detected. The collection of data includes measuring
the chosen variables. In experiments of the present thesis, it was not possible to
affect the design of data sets except in the cases of simulated data.

Figure 2.2 shows a diagram of the model construction. Training and evaluation of
the model should be based on separate data sets that are independent from each



8 Chapter 2. Data analysis

Problem statement

Study plan

Collection of data

Construction of model

Interpretation

Figure 2.1: The main steps of a data analysis process. The present thesis
concentrates on the construction of model.

Training of Evaluation of

the modelthe model

data
Validation

Training Accept
the modeldata

Reject the model

Figure 2.2: A flow chart of the model construction.

other (Bishop, 1995; Hand et al., 2001). The model is constructed using a training
data set. If the model performs sufficiently well on validation data the model is
accepted to further analyses. Otherwise, the model is retrained with revised initial
conditions. The main contributions of the present thesis contain input variable
selection methods for the construction of linear and nonlinear regression models.

In the interpretation step, the final model is used to answer the questions proposed
in the problem statement. The iterations between the training and validation sets
can introduce overfitting, that is, a model approximates training data accurately
but it performs poorly on novel data. It indicates that the model fits the noise and
it is overly complex. On the other hand, an insufficiently complex model is not able
to predict either training or novel observations. Thus, the prediction performance
of the final model should be assessed using the third independent data set known
as a test data set. Finally, the model should be interpreted, for instance, the inputs
that explain the most of the variation in the response should be indicated. Input
variable selection facilitates interpretation, since useless inputs are not included
into the final model at all.
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2.2 Learning tasks in the data analysis

2.2.1 General framework

Exploratory data analysis (EDA) is usually the first step in the examination of mul-
tivariate data (Tukey, 1977). EDA consists of graphical and numerical techniques
to examine data, for instance, box plots, scatterplots, and principal component
analysis, correlation analysis, and factor analysis (Everitt and Dunn, 1991). In
some cases, EDA may be sufficient for summarizing a data set. On the other
hand, it may reveal that the quality of the data is not good enough for infer-
ence of complex models. EDA is also advantageous in hypotheses generation for
confirmatory data analysis as noted by Tukey (1980) and Chatfield (1995).

Confirmatory data analysis (CDA) can be applied when statistical hypotheses are
available for the problem under study. Statistical testing requires the null and
alternative hypotheses that are mutually exclusive. The null hypothesis proposes
a statement, which is assumed to be true. It is rejected, i.e the alternative hy-
pothesis is accepted, when observations contain enough information to conclude
that it is not probable to obtain such result by a chance under the null hypothesis.
Milton and Arnold (1990) present a wide variety of statistical tests for various ap-
plications. The parametric models and strong assumptions limits the applicability
of statistical tests in complex problems (Breiman, 2001).

In the algorithmic data analysis approach, it is typically assumed that the data
contain independently and identically distributed samples from an unknown prob-
ability distribution (Breiman, 2001). Learning from a finite number of samples by
modern algorithmic methods is also known as machine learning (Cherkassky and
Mulier, 1998). In the machine learning methods, the focus is traditionally laid
on prediction accuracy of the models and training relies heavily on optimization
strategies. In unsupervised learning, desired outputs of the model are unknown and
the model is adapted to a data set to represent its internal structure by minimiz-
ing a representation error criterion (Hinton and Sejnowski, 1999; Oja, 2002). For
example, semiparametric density estimation, feature extraction, and clustering are
unsupervised learning tasks. In supervised learning, the desired responses for the
inputs are known (Haykin, 1999). The mapping between the inputs and the model
output is determined by minimizing an error function between the model output
and the desired responses. Classification and regression problems are examples of
supervised learning tasks.

2.2.2 Density estimation

Let xn, n = 1, . . . , N denote independently and identically distributed samples
from an unknown probability density function p(x). The task is to estimate that
function from the samples xn with subject to modelling constraints.

A classical approach is to specify a parametric density model p(x,ω). The ad-
justable parameters ω are chosen by maximizing the log-likelihood function of the
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N observations xn

maximize
ω

L =

N
∑

n=1

log {p(xn,ω)} . (2.1)

Cherkassky and Mulier (1998) state that according to the maximum likelihood
inductive principle, the observed data have been generated most likely by the
distribution model p(x,ω∗), where ω∗ is the optimal solution for the problem in
Equation (2.1). In some cases, a parametric density model may be overly restricted,
since a model with a finite number of parameters cannot represent all distributions.

An alternative is to use nonparametric approaches, that typically can model any
distribution if there is enough data. However, the computational complexity grows
with increasing amount of data, which may make nonparametric models impracti-
cal (Bishop, 1995). Moreover, the number samples that is required for the accurate
estimation increases rapidly as the dimensionality of a problem grows (Cherkassky
and Mulier, 1998). One of the simplest models is a histogram, but it is only appli-
cable for low-dimensional data. In the kernel density estimation, a kernel function
K(x,xn) is located on each data point xn and the density is estimated as a sum
of the kernel functions

p(x) =

N
∑

n=1

K(x,xn) . (2.2)

A hypercube kernel is known as a Parzen window (Parzen, 1962), but a smoother
density function is obtained, for instance, by a multivariate normal kernel func-
tion (Bishop, 1995).

In a finite mixture model, complexity and flexibility of a density model can be
controlled systematically (McLachlan and Peel, 2000). A finite mixture model is
a linear combination of parametric density functions

p(x) =

J
∑

j=1

πjp(x|j) , (2.3)

where πj are mixture proportions with the properties πj ≥ 0 and
∑J

j=1 πj = 1.
The log-likelihood for a data set is

L =

N
∑

n=1

log





J
∑

j=1

πjp(xn|j)



 . (2.4)

The maximum likelihood estimates can be calculated by the Expectation-Max-
imization algorithm (Dempster et al., 1977; Redner and Walker, 1984). The choice
of the component distribution p(x|j) depends on the problem. For instance, Tikka
et al. (2007) and Myllykangas et al. (2008) model DNA copy number amplification
data using finite mixtures of multivariate Bernoulli distributions.

2.2.3 Feature extraction

In a feature extraction problem, the objective is to transform data from a high-
dimensional space into a low-dimensional one. Dimensionality is decreased by
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forming linear or nonlinear combinations of the original variables. The combina-
tions, known as features, should preserve as much information as possible from the
original data. The number of features is typically clearly smaller than the number
of original variables which speeds up subsequent analyses.

Let us assume that each dimension of samples xT
n = [xn1, . . . , xnd], n = 1, . . . , N

has zero mean and unit variance. In principal component analysis (PCA), a fol-
lowing linear mapping

z = QT x (2.5)

is sought, where zT = [z1, . . . , zk] and k < d (Haykin, 1999). To obtain an
orthogonal transformation that preserves the maximum amount of variance of
the original data, the columns of the matrix Q have to be the eigenvectors of
the sample covariance matrix of the observed vectors xn. The k eigenvectors, i.e.
the loadings of the principal components, are selected according to the k largest
eigenvalues.

Independent component analysis (ICA) can be used to decompose a data set into
independent parts (Hyvärinen and Oja, 2000; Hyvärinen et al., 2001). ICA is
based on a latent variable model

x = As , (2.6)

in which the observed variables x are considered mixtures of independent compo-
nents or sources s. Both sources s and mixing matrix A are unknown and they
have to be estimated. The sources s are assumed to be statistically independent
and distributed according to non-Gaussian distributions. In addition, to simplify
estimation it is usually assumed that the matrix A is square, i.e the number of
sources equals to the number of variables. A fast and statistically robust algorithm
to find the independent components is presented by Hyvärinen (1999).

Nonlinear versions of both PCA and ICA have also been developed. Schölkopf et al.
(1998) present a kernel PCA algorithm to evaluate the standard PCA in a high-
dimensional feature space. Calculations are done implicitly in that space using
kernel functions and the resulting principal components and the original inputs are
nonlinearly dependent. With large data sets, the kernel PCA is computationally
unattractive since a kernel function is placed on each data point. However, Tipping
(2001) presents an extension based on a maximum-likelihood approach, that uses
only a relatively small subset of the training samples. A natural extension of the
ICA model in Equation (2.6) is a nonlinear mixing model

x = F (s) , (2.7)

where F is a real and vector valued mixing function (Jutten and Karhunen, 2004).
In general, the number of solutions is infinite but an unique solution can be ob-
tained by imposing constraints in the estimation (Hyvärinen and Pajunen, 1999).

Autoassociative neural networks can also be applied to linear (Baldi and Hornik,
1989) and nonlinear (Kramer, 1991; Oja, 1991) feature extraction. The same data
is used as the inputs and the responses of the network. Extracted features are the
outputs of the hidden neurons and the amount of compression is controlled by the
number of neurons. In the case of linear autoassociative network, the minimization
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of mean squared error has the unique global optimum and the solution is equivalent
with PCA (Baldi and Hornik, 1989, 1995). Japkowicz et al. (2000) demonstrate
that nonlinearities in the hidden layer are indeed required in some applications
and resulting features are not equal to the principal components. The selection
of a proper number of neurons is however more problematic in the nonlinear case.
DeMers and Cottrell (1993) propose to observe the variances of representation
units and to prune an unit if its variance is below a predefined threshold. Hsieh
(2007) suggests to control complexity of the network by detecting neighboring
samples that are projected far apart from each other.

According to Carroll and Arabie (1980), any nonlinear mapping technique that
searches a low-dimensional representation of high-dimensional data based on given
proximities is known as multidimensional scaling. The representation aims to
preserve similarities dij between features zi and zj as close as possible to given
similarities δij between the corresponding original samples xi and xj . A two-
or three-dimensional feature space is commonly used for reasons of visualization.
If no a priori knowledge is available, similarities are typically measured by the
Euclidean distance. The following well-known and widely applied criterion

minimize
dij

E =
1

∑N
i<j δij

N
∑

i<j

(dij − δij)
2

δij
(2.8)

to rank different representations is proposed by Sammon (1969). A drawback of
solutions of the problem in Equation (2.8) is that only the training samples can be
mapped to the feature space. Webb (1995) and Lowe and Tipping (1996) consider
a parameterized transformation z = f(x,w) which allows also mapping of other
samples. They implement the function f by a RBF network and optimize a rep-
resentation criteria directly as a function of the network parameters. Tipping and
Lowe (1998) propose the computationally more efficient shadow targets algorithm.
In Publication 1, the linear mapping z = Wx is utilized instead of the nonlinear
one and MRSR and the shadow targets algorithm are combined, which results in
a subset of the original variables that are used in the feature extraction.

The main disadvantage of most feature extraction methods is that extracted fea-
tures are combinations of all the original input variables. The dimensionality of the
problem is decreased, but the interpretation of the features may still be difficult.
Even relative importance of the original inputs is commonly unclear.

2.2.4 Clustering

Cluster analysis is ordering of the observed samples xn, n = 1, . . . , N into natural
and meaningful groups or clusters (Jain et al., 1999; Xu and Wunsch, 2005). In a
valid clustering, the samples belonging to the same cluster are more similar to each
other than they are to the samples belonging to the other clusters. Prototypes of
the clusters provide a compact representation of the data (Hollmén and Tikka,
2007).

Since the clustering is based on similarities and dissimilarities of the samples,
the selection of a proximity measure greatly affects results. The most common
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strategy is perhaps to evaluate dissimilarities between the samples using some
distance measure. In the case of continuous valued inputs, for instance the City-
block, Euclidean, Minkowski, or Mahalanobis distance can be applied. Ichino
and Yaguchi (1994) consider the case including both quantitative and qualitative
variables.

Hierarchical and partitional algorithms are perhaps the most used methods in
cluster analysis (Hansen and Jaumard, 1997). A hierarchical algorithm produces a
nested series of partitions and represents the data as a dendrogram. The root node
corresponds to the whole data set and each leaf node represents a single sample.
The final clusterings are obtained by cutting the dendrogram at intermediate levels.
Most hierarchical clustering algorithms are variants of the single- or complete-
linkage algorithms (Jain et al., 1999). A partitional method produces a single
clustering of the data instead of a clustering structure. The k-means (Bishop, 1995)
and support vector clustering (Ben-Hur et al., 2001) algorithms are examples of
the partitional methods. Partitional algorithms are not as flexible as hierarchical
ones since the number of clusters needs to be predefined. On the other hand, it
is faster to evaluate a single partition than a dendrogram especially in the case of
large training data.

The assessment of the clustering results is crucial, because each clustering algo-
rithm produces a partition of the data whether the data is separable or not. The
external validation is based on a priori knowledge of the data, which is, however,
rarely available. The ranking of different clusterings according to indices, that are
evaluated from the data, is known as internal validation. Bezdek and Pal (1998);
Maulik and Bandyopadhyay (2002) discuss and compare several indices for internal
validation.

2.2.5 Classification

In a classification problem, a discrete class label Ck, k = 1, . . . ,K of each input
vector xn, n = 1, . . . , N is known. The objective is to to assign novel input vectors
to one of the given classes.

Bishop (1995) shows that the probability of misclassification of a novel sample x is
minimized if it is assigned to the class Ck having the largest posterior probability
P (Ck|x). The posterior probabilities are evaluated using Bayes’ theorem

P (Ck|x) =
p(x|Ck)P (Ck)

p(x)
, (2.9)

where p(x|Ck) is the class conditional likelihood of the sample x and P (Ck) is a
priori probability of the class Ck. The unconditional density p(x) is independent
of the classes, thus the sample x is assigned to the class Ck if p(x|Ck)P (Ck) >
p(x|Cj)P (Cj) for all j 6= k. The class conditional likelihoods can be estimated,
for instance, using the methods presented in Section 2.2.2.

The classification process can be reformulated by discriminant functions yk(x).
A natural choice is yk(x) = p(x|Ck)P (Ck), but other functions can be applied
as well. In general, on decision boundaries the discriminant functions are equal
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yk(x) = yj(x). In a two class (K = 2) problem, only one discriminant function is
required. It is defined such that y(x) > 0 if x is from the class C1 and y(x) < 0
if x is from the class C2. In the rest of the section, only the two class case is
considered.

A classical discriminant function is a linear combination of the input variables
y(x) = wT x. Fisher (1936) presents that the best separating function is ob-
tained by maximizing the ratio of between-class to within-class measures, which
are defined by the distance between projected means and the sum of variations
of projected samples within classes, respectively. The assumption of linearity is
restrictive for many applications. Thus, Mika et al. (1999) propose to evaluate
Fisher’s linear discriminant implicitly in a feature space using kernel functions
resulting into a nonlinear discriminant function in the original input space.

In the case of linearly separable classes, a separating hyperplane calculated by the
support vector machine (SVM) is closely related to Fisher’s discriminant function
as shown by Shashua (1999). The separating hyperplane is defined such that the
margin between the classes is maximized. In the linearly inseparable case, the
separating hyperplane can be evaluated in a high-dimensional feature space (Cris-
tianini and Shawe-Taylor, 2000). It is highly probable that the data is linearly
separable in a feature space if the transformation is nonlinear and dimensionality
of the feature space is high enough (Haykin, 1999). No explicit definition of the
feature space is typically needed, since calculations are done implicitly by kernel
functions, that allows even infinite dimensional feature spaces (Burges, 1998).

In a linear logistic regression model (Myers and Montgomery, 1997), the logarithm
of the ratio of the posterior probabilities is assumed to be linear

y(x) = log
P (C1|x)

P (C2|x)
= w0 +

d
∑

i=1

wixi = wT x . (2.10)

The bias w0 is included to the parameter vector w by adding a constant variable
to the input vector x. The posterior probabilities can be further written as

P (C1|x) =
ewT x

1 + ewT x
and P (C2|x) = 1 − P (C1|x) =

1

1 + ewT x
. (2.11)

The maximum likelihood estimates of the parameters w are evaluated by min-
imizing the negative conditional log-likelihood of the classes using the observed
samples

L = −

N
∑

n=1

yn logP (C1|xn) + (1 − yn)P (C2|xn) , (2.12)

where yn = 1 if the observation xn belongs to the class C1 and yn = 0 if
xn belongs to the class C2. A nonlinear decision boundary is obtained by set-
ting y(x) = f(x,w) and learning the function f , for example, using neural net-
works (Schumacher et al., 1996; Vach et al., 1996) or kernel functions (Zhu and
Hastie, 2005). Regardless of the functional form of the decision boundary, iterative
optimization methods are required in the determination of the parameters w.
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2.2.6 Regression

In a regression problem, the task is to find a functional representation between an
output y and input x = [x1, . . . , xd] variables. The output variable is formulated
as the sum of a deterministic function f and a random error ε as follows

y = f(x,w) + ε , (2.13)

where w is a vector of adjustable parameters. The estimation of the function f is
based on a finite set of observations D = {yn,x}

N
n=1. It is typically assumed that

the additive errors εn are independently and identically distributed.

Bishop (1995) shows that if the errors are independently and normally distributed
with zero mean and a common finite variance εn ∼ N(0, σ2), the maximization of
the likelihood of the errors yn − f(xn,w) is equivalent to the minimization of the
sum of squared errors

SSE =

N
∑

n=1

(yn − f(xn,w))2 . (2.14)

In regression problems, SSE is perhaps the most commonly used cost function and
it is minimized with respect to the model parameters w. The model output is given
by the conditional average of the output data if the following three requirements
are satisfied (Bishop, 1995). First, the number of observations N is large enough
to approximate an infinite data set. Second, the function f is sufficiently general.
Third, an appropriate minimum for the cost function is found.

A time series prediction problem is an example of the regression tasks. A time series
is an ordered sequence of observations from a variable y at time t. The common
ordering is through equally spaced time intervals denoted by yt, t = 1, . . . , T , but
it can also be taken through other dimensions, such as space (Wei, 2006). The
objective is to predict future values of the time series yt+h, h = 0, 1, 2, . . . using
the model

ŷt+h = f(yt−1, . . . , yt−d1
,xt−1, . . . ,xt−d2

,w) , (2.15)

where yt−i, i = 1, . . . , d1 are the past values of the time series itself and xt−j , j =
1, . . . , d2 are the past values of exogenous variables (Chatfield, 2001). Parameters
w are optimized by minimizing some cost function, usually the sum of squared
errors, between the observations yt+h and the model outputs ŷt+h.

Simple linear functions f(x,w) = wT x are often considered uninteresting, espe-
cially in complex real world applications, due to limited modeling capacity. How-
ever, several reasons support the usage of the linear models (Baldi and Hornik,
1995; Hand et al., 2001). The estimation of the parameters is straightforward and
computationally fast. The resulting models can be analyzed using well-defined
statistical tests (Draper and Smith, 1981), that cannot be generally derived in
the cases of nonlinear functions. Interpretation of the models is uncomplicated,
because estimated values of the parameters describe directly contributions of the
inputs in the model. Linear models can also be used as a baseline for more complex
models. Linear regression is discussed further in Chapter 3.

In some cases, it is known that the input-output relationship is nonlinear, but
the exact functional form is still unknown. Support vector machines (Smola and
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Schölkopf, 2004) and artificial neural networks (Haykin, 1999) are flexible and
powerful models for the learning of nonlinear functions. It is shown by Hornik
et al. (1989, 1990); Hartman et al. (1990); Park and Sandberg (1991, 1993) that
a feedforward neural network with only one hidden layer is able to approximate
arbitrarily well any finite dimensional smooth continuous mapping if the number
of neurons in the hidden layer is sufficiently large. However, flexibility makes non-
linear regression models prone to overfitting (White, 1990; Zhang, 2007). General
strategies to decrease possibility of overfitting are discussed in the next section,
whereas various techniques to learn a nonlinear regression function are presented
in Chapter 4.

2.3 Model complexity

As an example, let us consider a data set that includes N = 50 samples from an
input x and an output y. The input samples are generated independently from a
uniform distribution U(−2, 3). The noisy output samples y = t + ε are obtained
by adding independently normally distributed errors ε ∼ N(0, 22) to the values of
the target function

t(x) = 1 − 4x− x2 + x3 . (2.16)

Figure 2.3 illustrates three estimates of the target function. A linear model does
not perform adequately in this task since it is not flexible enough, see Fig. 2.3(a).
An approximation that is obtained by an over-complex neural network is shown
in Fig. 2.3(b). The over-complex network follows the data points but oscillates
heavily. A smooth approximation by a network with proper complexity is illus-
trated in Fig. 2.3(c). All the three approximations and the actual target function
t(x) are presented in Fig. 2.3(d). However, visual justification is not possible in
high-dimensional problems. Therefore, data-based techniques are used to define
complexity in practice.

The trade-off between model complexity and prediction accuracy is referred as the
bias-variance dilemma (Geman et al., 1992). A simple model has a large bias,
which means that the model output is on average different from the underlying
true function. Sensitivity of the model output to various data sets is called vari-
ance. Since the bias and variance are complementary measures, a compromise
between them is required in order to achieve the optimal generalization perfor-
mance. Basically, a complexity of a regression model depends on the number of
tunable parameters. For instance, in a neural network the number of parameters
can be varied by the numbers of hidden neurons and input variables (Reed, 1993).
Alternatively, the number of effective parameters can be decreased by regulariza-
tion techniques (Girosi et al., 1995).

In the ideal case, three separate data sets are available for the model construction.
Models with varying complexity are estimated using training data by optimizing a
fitting criterion. The trained models are evaluated using validation data, and the
model that maximizes a performance criterion is selected to further analyses. The
prediction performance of the selected model is finally assessed using test data.
Comparisons between different methods should be performed using the test data
set, since it is not applied in the training and model selection phases at all.
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Figure 2.3: Various regression functions that are learnt based on the
data points (the blue dots). (a) An inflexible model. (b) An over-flexible
model. (c) A smooth approximation. (d) All the above approximations
and the correct function (the black line).

However, the number of data points is typically limited. Hence, it is not possible to
have a separate representative validation data set. In such a case, cross-validation
(CV) is a generally applicable model selection strategy (Bishop, 1995). In k-fold
CV, the data is divided into k separate parts. The model is trained using k−1 parts
and the remaining kth part is used for the validation. The process is repeated k
times such that the validation is carried out using each of the k parts in turn. The
overall validation error is the average of these k results. In the extreme case called
leave-one-out CV, only one sample is left out from the training in turn, which
makes it closely related to the jackknife (Efron, 1982). Shao (1993) shows that the
leave-one-out CV is asymptotically inconsistent in the case of linear models, i.e the
probability of selecting the model with the best predictive ability does not converge
to unity as the number of observations approaches infinity. However, leave-one-out
CV is often applied with linear models, since an estimate of the generalization error
can be calculated in a closed form without the repetitive training process (Orr,
1996). The bootstrap (Efron and Tibshirani, 1993) is also based on the resampling
of the original data and it can be applied to model selection as well. Kohavi (1995)
performs extensive experiments to compare CV with the bootstrap and concludes
to recommend 10-fold CV based on the results.

Instead of resampling techniques, the model complexity can be appropriately se-
lected using an information criterion. Typically, it is defined as the sum of two
components. The first term measures the accuracy of the model on the training
data and the second one penalizes from the complexity of the model, i.e no separate
validation data is needed. The optimal value for an information criterion results
into a compromise between accuracy and smoothness of the model. Information
criteria are proposed for various cases, for instance, for a linearly parameterized
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model (Mallows, 2000), for an unregularized model trained by the maximum like-
lihood principle (Akaike, 1974), and for a regularized nonlinear system (Moody,
1991, 1992; Larsen and Hansen, 1994).

2.4 Variable selection

Lately, variable selection methods have gained more and more attention in several
data analysis problems, especially in the applications that contain hundreds or
thousands of variables. Guyon and Elisseeff (2003) motivate the usage of variable
selection algorithms by the following three arguments.

1. The prediction performance of the constructed model may be improved by
discarding irrelevant variables.

2. A more cost-effective model is obtained, that is, training of the model can be
faster, and measuring and storage requirements of the data are decreased.

3. The model provides better understanding of the system that has generated
the data, since the model includes only a subset of available variables.

Although the number of variables would be large, the number of samples is limited
in many cases. However, the number of data points that is required to estimate
the underlying phenomenon accurately increases exponentially as a function of the
dimension of data, which is known as the curse of dimensionality. Thus, fitting
a complex model using an insufficiently small number of high-dimensional data
points probably leads to overfitting. Verleysen (2003) discusses difficulties related
to high-dimensional data and presents examples of surprising distributions of high-
dimensional data points. Feature extraction and variable selection methods can
be used to circumvent problems that are encountered in high-dimensional spaces.

2.4.1 Relevant variables

Blum and Langley (1997); Kohavi and John (1997) present several definitions of
relevance of a variable, which are applied in different contexts. In general, weak
and strong degrees of relevance are needed (John et al., 1994). A strongly relevant
variable xi is indispensable for the model, i.e. the removal of xi from the model
deteriorates the prediction performance. The strong relevance means that the
response y and an input xi are statistically dependent. A weakly relevant variable
is not strongly relevant and it can sometimes contribute to performance of the
model. An input xi is weakly relevant if there exists a subset of the inputs S,
xi /∈ S, such that y and xi are conditionally dependent given S. An input variable
is irrelevant if it is neither strongly nor weakly relevant.

Instead of the estimation of statistical dependencies, the present thesis focuses on
constructing accurate regression models using a parsimonious subset of the original
input variables. The objective is to find a subset of useful variables:



2.4. Variable selection 19

Definition. Let input variables x = [x1, . . . , xd] and a model M be given. A useful
subset of the original inputs xu ⊆ x maximizes the generalization performance of
the model M.

Guyon and Elisseeff (2003) point out that the subset of useful variables does not
necessarily contain all the relevant variables. Redundant, but relevant, variables
may be especially excluded from the subset of useful variables. Thus, finding the
useful subset contradicts finding all the relevant variables. In addition, Blum and
Langley (1997) give an example, that a variable can contain relevant information
but it is useless from the prediction point of view. Irrelevant variables are rarely
useful, and they should be removed from the model (Kohavi and John, 1997). In
the rest of the thesis, a relevant, informative, and important variable refer to the
useful variable.

The optimal useful subset of variables could be selected by evaluating all the
possible subsets. The exhaustive search is computationally infeasible in high-
dimensional problems, since the number of subsets increases exponentially as the
number of available inputs increases. Therefore, computationally more efficient
input selection strategies are required to approximate the exhaustive search.

2.4.2 Filter approach

In a filter approach, input variable selection and learning of the final prediction
model are independent from each other (Blum and Langley, 1997). First, input
selection is performed using a simple model, such as, a linear function (Bi et al.,
2003) or a polynomial (Rivals and Personnaz, 2003; Li and Peng, 2007). Another
alternative is to use mutual information (François et al., 2007), which is computa-
tionally more complex than linearly parameterized models, but it allows to detect
more general dependencies between the input and output variables. Second, a non-
linear prediction model using the selected inputs is trained. Since input selection
is a preprocessing step, any prediction method can be applied. Filter approaches
make a compromise between computational complexity and prediction accuracy.
The final nonlinear prediction model needs to be constructed only once, but it is
not guaranteed that the selected inputs are useful for the final model. In Pub-
lication 4, a filter input selection strategy for a MLP network in the context of
long-term prediction of time series is proposed.

2.4.3 Wrapper approach

A wrapper approach is a simple and widely applicable technique to address the
problem of input selection (John et al., 1994; Kohavi and John, 1997). A prediction
model is considered as a black box and it is retrained with various subsets of
inputs. The subsets are ranked according to an estimate of the generalization
error and the one having the smallest error is chosen. Forward and backward
selection algorithms are classical methods to produce candidate subsets. Forward
selection is started from the empty set and an input is added to the current subset
in each step of the algorithm. In backward selection, the full set of inputs is
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reduced by stepwise deletions. Some models are faster to train with only a few
variables, but interacting inputs may be detected more easily if selection is started
from the full set. Reunanen (2003) finds that greedy search strategies, such as
forward selection, are not prone to overfitting. If a criterion for variable selection
is monotonic, a branch and bound (BB) algorithm finds the optimal subset of
inputs (Narendra and Fugunaga, 1977). However, the computational complexity
of the BB algorithm is usually exponential (Kohavi and John, 1997), but Somol
et al. (2004) present some heuristics to speed up the algorithm. In the case of
a large number of input variables and a complex prediction model, the wrapper
approach is computationally unattractive due to the required repeated training of
the prediction model.

2.4.4 Embedded methods

In an embedded input selection method, the search of candidate subsets of inputs
is guided by approximating changes in the objective function induced by moving
in the input space (Guyon and Elisseeff, 2003). Computational requirements are
reduced by avoiding retraining of the model for every candidate variable to be
eliminated. Guyon et al. (2002) evaluate differences in the objective function of
the SVM classifier that are incurred by varying the subset of inputs and keep-
ing other parts of the model fixed. Refenes and Zapranis (1999) rank the input
variables using various relevance measures based on the partial derivatives, that
are determined with respect to the model output or the error function. Le Cun
et al. (1990); Hassibi and Stork (1993) apply the second order Taylor series to
approximate changes in the objective function caused by pruning a weight of the
MLP network. In Publications 1 and 2, the inputs are added to a multiresponse
linear regression model using a correlation criterion between the input variables
and the current residuals of the model. In Publication 5, a backward input pruning
strategy for the RBF network is proposed. It includes features of both embedded
method and wrapper approach, since pruning is based on the partial derivatives
and the final subset of inputs is selected using leave-one-out CV.

In a direct embedded method, an objective function consisting of two terms is
formalized (Guyon and Elisseeff, 2003). The first term evaluates the goodness-
of-fit and the second term measures the number of input variables. In practice,
the second term is replaced with a regularization term that restricts complexity
of the model. The objective function includes, however, complementary require-
ments since the optimization of the first term leads to an insufficient solution
for the second term, and vice versa. The trade-off between the goodness-of-fit
and the amount of regularization is controlled by a hyperparameter such that the
generalization performance of the model is maximized. Tibshirani (1996) intro-
duces the least absolute shrinkage and selection operator (LASSO) for a single
response linear regression model. In the LASSO formulation, the model fitting is
constrained by forcing the sum of the absolute values of the parameters to be less
than a predefined constant, which may result into a parsimonious set of inputs. In
Publication 3, the LASSO formulation is extended to the case multiple responses.
The LASSO type constraints are also applied to the simultaneous shrinkage and
selection of the input variables for the RBF network in Publications 6 and 7.
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Chapter 3

Variable selection in linear

regression

3.1 Single response linear regression

In a linear regression problem, the objective is to estimate a response variable by
a linear combination of input variables (Draper and Smith, 1981). Let us consider
the case that there are N continuous-valued observations from a one-dimensional
response y and d inputs x = [x1, . . . , xd]. The standard linear regression model is

y = Xβ + ε , (3.1)

where y is an N × 1 vector of response values and X is an N × d matrix of
input values. The columns xi, i = 1, . . . , d of the matrix X correspond to the
variables and the rows xn, n = 1, . . . , N refer to the observations. The common
assumption is that elements εn, n = 1, . . . , N of a noise vector ε = [ε1, . . . , εN ]T

are independently and normally distributed with zero mean and a common finite
variance εn ∼ N(0, σ2). The regression coefficients β = [β1, . . . , βd]

T are unknown.
The bias term is excluded from the model in Equation (3.1), since it is assumed
that all the variables are standardized to have zero mean. Usually, the variables
are additionally standardized to have similar scales.

Bishop (1995) shows that under the previous assumptions, the maximum likelihood
estimates of the regression coefficients minimize the mean of squared errors (MSE)
between the observed and estimated responses

minimize
β

1

N
‖y − ŷ‖2

2 , (3.2)

where ŷ = Xβ. The optimal, i.e the ordinary least squares (OLS) solution, is

βOLS = (XT X)−1XT y . (3.3)

However, the OLS solution is not always satisfactory. For instance, the matrix
XT X is not invertible when d > N , and βOLS cannot even be evaluated.
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The ridge regression is a well-known strategy to improve the OLS estimates (Hoerl
and Kennard, 1970). The regression coefficients are estimated by minimizing the
regularized MSE

minimize
β

1

N
‖y − Xβ‖2

2 + λ

d
∑

i=1

β2
i (3.4)

where λ ≥ 0 is a tuning parameter. The optimal solution is

βRR = (XT X + λI)−1XT y. (3.5)

Due to the regularization term, the absolute values of the estimates βRR are shrunk
toward zero in comparison to the OLS estimates. The amount of shrinkage is
increased by increasing the value of λ. The shrinkage introduces bias to the es-
timates, but it decreases sensitivity of the estimates to the particular set of data
being used. In addition, it may improve the prediction performance of the model.

3.2 Stepwise subset selection methods

The main drawback of the ridge regression estimates βRR in Equation (3.5) is
that all the coefficients are typically nonzero regardless of the value of the tuning
parameter λ (Fan and Li, 2001). Hence, all the variables are present in the model,
although the importance of some inputs would be negligible. For interpretational
reasons it would be beneficial to exclude these useless inputs from the model.
Stepwise subset selection methods (Miller, 1990), such as forward selection and
backward elimination, are traditional strategies to obtain candidate subsets of the
input variables. The classical variants of these methods apply the OLS estimates
that are evaluated using subsets of input variables.

3.2.1 Forward and backward selection

In the best subset regression, one finds the subset of k ∈ {0, . . . , d} inputs that
minimizes the MSE. The subsets including k1 and k2 (k2 > k1) inputs need not be
nested, that is, all the inputs in the smaller subset are not necessarily included in
the larger one. The best subset selection is computationally infeasible for a large
number of input variables due to the exponential complexity.

A forward stepwise selection strategy produces a sequence of nested subsets of
inputs. It starts from an empty set of inputs and adds an input that most decreases
the MSE in each subsequent step. The added input also has the largest absolute
correlation with the current residuals of the model. Backward elimination operates
in the opposite direction by deleting inputs one at the time starting from the full
model. Obviously, the deleted input increases the MSE by the least amount.
Both forward selection and backward elimination produce monotonic curves for
the training error, which cannot be used in the selection of the optimal subset of
inputs. Hastie et al. (2001) suggest to use the F -statistic to evaluate improvement
in the fit between successive additions or deletions. However, it controls model
selection only locally and it does not necessarily find the best subset from the
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candidates. A more secure approach is to select the final model based on an
estimate of the generalization error.

If the OLS estimates are used, backward elimination can be applied only in the case
ofN > d, whereas the forward selection strategy can proceed as long as the number
of selected inputs is less than observations. In both algorithms, decisions that are
made in the early stages of the algorithm cannot be changed anymore. Somol
et al. (1999) present an adaptive floating search method, in which the number
of forward and backward steps are determined dynamically in the course of the
algorithm. Nevertheless, Reunanen (2003) shows that the computationally more
expensive floating search does not necessarily outperform the traditional forward
selection algorithm in accuracy of the predictions.

3.2.2 Sequential input selection algorithm

A simple and efficient backward elimination method, called sequential input selec-
tion algorithm (SISAL), is proposed in Publication 4. In SISAL, the number of
candidate subsets of input variables equals to the number of available inputs. It
is clearly less than, for instance, in the traditional forward selection and backward
elimination algorithms.

In Publication 4, SISAL is presented and applied to time series data. However,
SISAL is not particularly designed to time series analysis and it can be used in
any other regression setting as well. SISAL starts from the full OLS solution. A
resampling technique, such as the bootstrap or CV, is applied to produce B repli-
cations of the regression coefficients βi, i = 1, . . . , d, which formulate the sampling
distributions of the coefficients. The significance of each input variable is measured
using the ratio

ri =
|mβi

|

∆βi

, (3.6)

where mβi
is the median of the B replications. The width of the distribution

is defined by the difference ∆βi
= βhigh

i − βlow
i , where βhigh

i and βlow
i are the

(1 − γ)Bth and γBth values in the ordered list of the B replications, respectively.
The parameter γ ∈ (0, 0.5) defines the central interval of the replications. The
location and the width of the distribution are estimated using the median mβi

and
the difference ∆βi

, since they are reasonable estimates for both asymmetric and
symmetric distributions. In addition, they are insensitive to outliers. The input xi

corresponding to the smallest ratio ri is discarded from the model. The resampling
process is repeated using the remaining inputs as long as there are variables left
to prune.

The proposed ratio ri in Equation (3.6) is closely related to the traditional Z-score
test statistic to test the hypothesis that a particular coefficient βi = 0 (Hastie et al.,
2001). Obviously, any quantity qi(|mβi

|,∆βi
) that increases with the increasing

absolute value of the median |mβi
| and decreases with the increasing width ∆βi

could be used as a relevance measure. Thus, it is possible to adjust an effect of
the values |mβi

| and ∆βi
to the pruning of inputs, for instance, using a priori

knowledge of the problem.
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3.3 Input selection and shrinkage methods

A prediction method is called stable if the estimated regression equation does
not change drastically with small changes in the data. Breiman (1996) shows
that the subset selection strategies are unstable and the ridge regression is stable.
Although the subset selection can be stabilized by averaging over several models,
it may result in the usage of all the input variables. Simultaneous shrinkage and
input selection methods pursue to combine the advantages of both subset selection
and ridge regression, that is, sparsity and stability.

3.3.1 Nonnegative garrote

Breiman (1995) introduces nonnegative (NN) garrote to improve the subset selec-
tion and the ridge regression. The following optimization problem is considered

minimize
c

N
∑

n=1

(yn −

d
∑

i=1

ciβ
OLS
i xni)

2

such that

d
∑

i=1

ci ≤ t, and ci ≥ 0, i = 1, . . . , d .

(3.7)

The NN garrote estimates βNNG
i = ciβ

OLS
i are scaled versions of the OLS esti-

mates. When the hyperparameter t is decreased, more of the shrinkage factors
ci become zero and the remaining nonzero coefficients βNNG

i are shrunk toward
zero. For given t, the NN garrote solution is found by quadratic programming
techniques. A drawback of the NN garrote is the explicit dependency of the OLS
estimates. Instead of the OLS solution, Yuan and Lin (2007) suggest to use the
ridge regression estimates as an initial solution for the NN garrote. Moreover, they
show that the solution path of the NN garrote is piecewise linear and propose an
efficient algorithm to build the whole path.

3.3.2 LASSO

Least absolute shrinkage and selection operator (LASSO) proposed by Tibshirani
(1996) is closely related to the NN garrote. LASSO also shrinks some coefficients
and sets others exactly to zero, but it does not rely on the OLS solution. The
LASSO problem is defined by

minimize
β

1

N
‖y − Xβ‖2

2

such that

d
∑

i=1

|βi| ≤ t ,
(3.8)

which is a quadratic programming problem with a inequality constraint. The
tuning parameter t ≥ 0 controls the amount of shrinkage that is applied to the
estimates. If t ≥ t0 =

∑

|βOLS
i |, the LASSO estimates coincide with the OLS

solution. Otherwise, the estimates are shrunk toward zero, and with a small enough
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t some of the coefficients are set exactly to zero. Thus, the LASSO performs a
kind of continuous subset selection. The value of tuning parameter t should be
chosen such that an estimate of the generalization error is minimized.

Tibshirani (1996) notes that the LASSO constraint
∑

|βi| ≤ t is equivalent to the
addition of a regularization term λ

∑

|βi| to the MSE cost function, i.e. there
is a one-to-one correspondence between the parameters t and λ. However, the
nondifferentiability of the constraints complicates the optimization in both cases.
Schmidt et al. (2007) review and compare several optimization strategies to solve
the regularized formulation for given λ. Osborne et al. (2000) show that the opti-
mal solution trajectory of the LASSO problem is a piecewise linear as a function
of t and propose an efficient algorithm to follow the trajectory.

Zou and Hastie (2005) introduce another simultaneous input selection and shrink-
age method called elastic net. The regression coefficients are evaluated by min-
imizing MSE such that a weighted sum of the ridge

∑

β2
i and LASSO

∑

|βi|
constraints is equal or less than a predefined threshold. The elastic net provides
two extensions for the LASSO problem. First, elastic net is able to select an un-
known group of highly correlated inputs, whereas LASSO tends to select only one
variable from the group. Second, LASSO can select at most N variables in the
d > N case, but elastic net is able to include more than N variables to the model
due to the grouping effect.

Bakin (1999) and Yuan and Lin (2006) consider the selection of known groups of
non-overlapping input variables with a group LASSO problem. The d inputs are
divided into the J groups, and MSE is minimized subject to a sparsity constraint
as follows

minimize
β

1

N
‖y − Xβ‖2

2

such that

J
∑

j=1

‖βj‖2 ≤ t ,
(3.9)

where βj is a vector of regression coefficients of the jth group. With a small

enough t ≥ 0, some of the norms ‖βj‖2 are zero and the corresponding groups of
inputs are excluded from the model.

3.3.3 Least angle regression

Least angle regression (LARS) by Efron et al. (2004) is a less greedy version of
the traditional forward selection algorithm. The LARS algorithm starts from the
empty model, just like the traditional forward selection does. First, an input xi1

that correlates most with the response is added to the model. The largest step
possible in the direction of xi1 is taken, until another input xi2 is as correlated
with the current residuals as xi1 is. Forward selection would continue along xi1 ,
but LARS proceeds in a direction equiangular between xi1 and xi2 , until the third
input xi3 is as correlated with the current residuals as the already added inputs
are. LARS proceeds equiangularly between all the three added inputs until the
fourth input can be added to the model. The algorithm continues similarly until
all the inputs are selected. The model coincides with the OLS solution in the end.
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Turlach (2004) gives an alternative description of the LARS algorithm. In each
iteration, the correlations between all the inputs and the current residuals are eval-
uated. The input variables having the maximum absolute correlation are chosen
and the OLS solution ȳk+1 is calculated using these inputs. The current response
ŷk is moved toward ȳk+1 until a new input will enter the model, i.e. its correlation
with the residuals will coincide with the maximum value.

The estimates of the LARS algorithm are similar to the LASSO estimates. The
sign of a nonzero LASSO estimate equals to the sign of the correlation between a
corresponding input and the residuals of the model, but the LARS algorithm does
not have this property. However, Efron et al. (2004) present also a modified version
of the LARS algorithm that satisfy the previous property. Contrary to the original
LARS algorithm, the modified version is also able to remove the already added
inputs from the model. Furthermore, the modified LARS algorithm produces all
the LASSO solutions if the inputs are added or removed one at a time.

3.3.4 Comparison with simulated data

The prediction performance and the correctness of input selection of SISAL, for-
ward selection, and LARS are illustrated using simulated data sets that are gener-
ated according to the model in Equation (3.1). The number of samples and inputs
are N = 100 and d = 50, respectively. Following Breiman and Friedman (1997),
the rows xn, n = 1, . . . , N , of the matrix X are sampled from a d-dimensional
normal distribution

xn ∼ N(0,Σx), where [Σx]ij = σ|i−j|
x . (3.10)

The parameter σx controls the amount of correlation between the input variables.
The additive independently and normally distributed noise εn ∼ N(0, 0.652) is
used. A sparse structure is obtained by selecting randomly ten inputs. The re-
gression coefficients of the selected ten inputs are drawn independently from a
normal distribution with zero mean and unit variance, and the rest are set to zero.
The prediction performance is measured by the mean squared estimation error

MSE = (β∗ − β)T Σx(β∗ − β) , (3.11)

where β∗ is the actual coefficient vector and β is the estimate of it (Breiman and
Friedman, 1997).

Three values for the parameter σx are considered, i.e. σx = 0, σx = 0.5, and
σx = 0.9. The inputs are uncorrelated with σx = 0, whereas in the case of
σx = 0.9, the data contain nearly uncorrelated and highly correlated inputs. For
each value of σx, the generation of data is repeated 500 times. In SISAL, the
number of bootstrap replications is B = 1000.

On the left column of Figure 3.1, the average mean squared estimation errors are
shown. The average number of correctly selected inputs are presented on the right
column. The prediction accuracies of all the three methods are comparable with
each other. The minimum error SISAL and forward selection models include always
roughly ten inputs, but the number of correctly selected inputs decreases slightly
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Figure 3.1: Average results of SISAL (blue line), forward selection (red
line), and LARS (green line) for 500 replicates of simulated data with
σx = 0 (top row), σx = 0.5 (middle row), σx = 0.9 (bottom row). The
markers indicate the minimum prediction error models and the vertical
lines represent the interval [µ − s, µ + s], where µ is the mean and s is
the standard deviation.

when the value of σx increase. The subsets of inputs obtained by LARS include
more correct inputs, but the total number of selected inputs is approximately 25
with all the values of σx. The standard deviations of the minimum error models
increase as the value of σx increase, especially in the cases of SISAL and forward
selection.
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3.4 Multiresponse linear regression

In a multiresponse linear regression problem, the objective is to estimate several
response variables using a common set of inputs. Let us assume that there are N
observations from q response variables Y = [y1, . . . ,yq] and d input variables X =
[x1, . . . ,xd] for the model construction. A straightforward strategy is to construct
q separate single response models. Even though all the separate models would be
parsimonious in terms of the inputs, all the inputs may still be used. Alternatively,
all the responses can be estimated simultaneously by a single model. Breiman and
Friedman (1997) show by extensive simulations that simultaneous modeling may
provide more accurate predictions than separate single response models, especially
when the responses are correlated. In addition, sometimes the interest might be
in finding a subset of inputs that can explain all the responses well (Barrett and
Gray, 1994). Simultaneous estimation may also be computationally more efficient
than separate modeling (Sparks et al., 1985).

The multiresponse linear regression model is defined as

Y = XW + E , (3.12)

where W is a d × q matrix of regression coefficients and E is a noise matrix of
size N × q. The elements of the matrix E are assumed to be independently and
normally distributed with zero mean and a common finite variance. It is further
assumed that the columns of the matrices X and Y have zero mean, thus a bias
term is not needed. Also, the scales of the columns are assumed to be similar. The
OLS estimates solve the problem

minimize
W

‖Y − Ŷ ‖2
F = ‖Y − XW ‖2

F , (3.13)

where ‖ · ‖2
F denotes the Frobenius norm, that is, the sum of squares of all the

elements of the matrix. The OLS estimates are

W OLS = (XT X)−1XT Y . (3.14)

Each column wj , j = 1, . . . , q of W OLS coincides with the solution of the single
response regression of yj on X.

As in the case of a single response variable, the prediction accuracy of the OLS
estimates in Equation (3.14) can be improved by shrinkage methods. Brown and
Zidek (1980) propose the multivariate version of the ridge regression. The Curds
and Whey methods by Breiman and Friedman (1997) use canonical coordinates
to shrink the OLS solution. In the case of high correlations among both the
responses and the inputs, latent variable methods provide competitive models in
terms of the prediction accuracy (Burnham et al., 1996; Abraham and Merola,
2005). Latent variables are constructed by linear combinations of the original
variables by maximizing an appropriate objective function. The prediction of the
response variables is further based on a small number of latent variables d′ < d.

The inclusion of all the available original input variables into the model is the main
drawback of shrinkage and latent variable models. In Equation (3.12), it is required
that the row wi of W contains only zero elements such that the corresponding
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input xi is excluded from the model. Sparks et al. (1985); Barrett and Gray
(1994) introduce stepwise methods for input variable selection using criteria, that
are generalized from the single response case. The criteria are based on the sum
of squared errors and used to rank subsets of inputs, whereas MacKay (1977)
discusses simultaneous statistical test procedures to select proper subsets of inputs.

3.4.1 Simultaneous variable selection methods

Simultaneous variable selection and shrinkage methods extending the LASSO prob-
lem in Equation (3.8) to the multiresponse case are introduced. The methods are
formulated such that the minimization of the error in Equation (3.13) is con-
strained or penalized by the 1-norm of importance factors ‖wi‖α of the input
variables xi, i = 1, . . . , d. The formulation results in a single convex optimization
problem and the technique is called simultaneous variable selection (Lα-SVS).

Turlach et al. (2005) and Tropp (2006) consider the case α = ∞, that is, the
L∞-SVS problem

minimize
W

1

2
‖Y − XW ‖2

F

such that

d
∑

i=1

‖wi‖∞ ≤ t .
(3.15)

The parameter t ≥ 0 controls the amount of shrinkage and the number of selected
input variables. When the value of t is decreased, more of the factors ‖wi‖∞ are
set to zero, i.e the corresponding inputs are rejected from the model and the rest
of the factors are shrunk toward zero. If N > d and the input variables xi are
orthonormal, an efficient algorithm to follow the solutions of the L∞-SVS problem
as a function of t exists (Turlach et al., 2005). For the general case, Turlach
et al. (2005) propose an efficient interior point algorithm. However, Turlach et al.
(2005) suggest to use the problem in Equation (3.15) just as an explanatory tool to
identify a subset of input variables, and subsequently estimate an unconstrained
model using the selected inputs.

The L2-SVS problem

minimize
W

1

2
‖Y − XW ‖2

F

such that

d
∑

i=1

‖wi‖2 ≤ t
(3.16)

is analyzed by Cotter et al. (2005) and Malioutov et al. (2005) and in Publication 3.
Cotter et al. (2005) propose an M-FOCUSS algorithm to solve a penalized version
of the L2-SVS problem. In the M-FOCUSS algorithm, a sequence of weighted
least squares problems is solved. Malioutov et al. (2005) also solve the penalized
formulation. In contrast to the iterative M-FOCUSS algorithm, Malioutov et al.
(2005) introduce an interior point algorithm in the second order cone programming
framework.

A detailed analysis of the L2-SVS problem is presented in Publication 3. The
optimality conditions for the solution are derived. Furthermore, it is shown that
the solution is unique if the inputs xi corresponding to the nonzero factors wi
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are linearly independent. In Publication 3, a barrier method to solve the L2-
SVS problem for a fixed value of t is proposed. The implementation takes into
consideration the structure of the problem reducing computational complexity
of matrix inversions. In addition, an efficient predictor-corrector algorithm to
evaluate the solution path for a given sequence of points t1 < · · · < tK is proposed.
For each value of tk, calculations are restricted to the active set of inputs, that is,
only the rows wi of the matrix W that are likely to be nonzero are updated. In the
case of a dense sequence, the current solution W tk

is an appropriate initialization
for the next value tk+1, but it can also be improved, if necessary, by a simple
scaling procedure.

Tropp (2006) reports that no empirical or theoretical evidence exists that would
substantially support one problem formulation over another for simultaneous vari-
able selection. In publication 3, L2-SVS and L∞-SVS are compared to each other
using simulated and real data sets. In the case of real data, L2- and L∞-SVS are
comparable in terms of the prediction accuracy and the number of selected input
variables. As Turlach et al. (2005) suggest, the subset OLS solutions are also eval-
uated. The subset OLS models result in the similar minimum prediction errors as
the estimates of the L2- and L∞-SVS problems. However, the subset OLS models
include smaller numbers of inputs than the L2- and L∞-SVS models. The amount
of correlation between the inputs is varied in simulated data sets and L2-SVS is
found to perform better than L∞-SVS in terms of both the prediction accuracy
and the correctness of input selection.

Similä (2007b) introduces the following penalized least squares problem

minimize
W

1

2
‖Y − XW ‖2

F + λ
d
∑

i=1

p(‖wj‖2) (3.17)

for simultaneous variable selection. It is an extension of the work by Fan and
Li (2001) for a one-dimensional response space (q = 1) to the case of multiple
responses (q > 1). The penalty function p(‖wj‖2) can be any increasing, differ-
entiable, and concave function. Particularly, strictly concave penalty functions
are needed to avoid the bias in the case of large true unknown factors ‖wj‖2.
Similä (2007b) proposes a majorize-minimize algorithm to solve the problem and
also suggests an active set strategy for a sequence of descending values of the
regularization parameter λ. In experiments, he uses a penalty function of the form

p(‖wj‖2) = c log

(

1 +
‖wj‖2

c

)

, (3.18)

where the degree of concavity is increased by decreasing the parameter c > 0. It
is reported that models are equally accurate regardless of the value of c. However,
with smaller values of c the total number of selected input variables decreases,
while the number of relevant ones remains approximately unchanged.

3.4.2 The multiresponse sparse regression algorithm

In Publications 1 and 2, the multiresponse sparse regression (MRSR) algorithm
is proposed. It is an extension of the LARS algorithm to the case of multiple
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Algorithm 1 Lα-MRSR

1: Set k = 0, Ŷ k = 0, and Ŵ k = 0, define kmax ≤ min{d,N − 1}
2: Calculate
ck,i = ‖(Y − Ŷ k)T xi‖α, and cmax

k = max
i

{ck,i}

3: Define the active set of inputs Ak+1 = {i : ck,i = cmax
k }

4: Calculate the OLS solution using Xk+1 = [· · ·xi · · · ]i∈Ak+1
:

W OLS
k+1 = (XT

k+1Xk+1)
−1XT

k+1Y , and Y OLS
k+1 = Xk+1W

OLS
k+1

5: Update the MRSR estimates

Ŵ k+1 = Ŵ k + γk(W̄
OLS
k+1 − Ŵ k), and Ŷ k+1 = Ŷ k + γk(Y OLS

k+1 − Ŷ k),

If |Ak+1| < d
the step length γk is defined such that a new input xi, i /∈ Ak+1 is added
to the active set in the next iteration, see details in the text.

Else
γk = 1

6: Set k = k + 1, and go to the 2nd step if k < kmax

responses. The forward selection strategy is adopted and the selected inputs pro-
vide accurate predictions averaged over all the response variables. MRSR takes
careful steps toward the OLS solution in the spirit of the LARS algorithm. Thus,
it combines input selection and shrinkage of the regression coefficients.

The MRSR algorithm is presented in detail in Algorithm 1. It is assumed that the
variables X and Y , the inputs of the algorithm, have zero mean and comparable
scales. The MRSR estimates, the outputs of the algorithm, are initialized to zero
Ŵ k = 0 and Ŷ k = 0 and the maximum number of iterations kmax is defined.
The second step is to evaluate the correlation between each input variable xi

and the residuals (Y − Ŷ k)T , where Ŷ k is the current MRSR estimate of the
responses. The inputs having the maximum correlation cmax

k define the active set

Ak+1 of inputs (Step 3). In the next step, the OLS estimates W OLS
k+1 and Y OLS

k+1

are calculated using only the active inputs Ak+1. In Step 5, the MRSR estimates

Ŵ k+1 and Ŷ k+1 are updated. The nonzero rows of the d×q sparse matrix W̄
OLS
k+1

are indexed by Ak+1 and they are equal to the corresponding rows of W OLS
k+1 . If

the updating step length was always γk = 1, the MRSR algorithm would coincide
with the traditional forward selection approach. Therefore, the choice γk ∈ (0, 1)
shrinks the values of coefficients of the active inputs Ak+1 and keeps the coefficients
of the nonactive inputs zero. The current estimate Ŷ k is moved toward the OLS
solution Y OLS

k+1 until one of the nonactive inputs is as correlated with the residuals
as the active inputs. In the next iteration, the correlations are

ck+1,i(γ) = (1 − γ)cmax
k for i ∈ Ak+1 and

ck+1,i(γ) = ‖uk,i − γvk,i‖α for i /∈ Ak+1 ,
(3.19)

where uk,i = (Y − Ŷ )T xi and vk,i = (Y OLS
k+1 − Ŷ k)T xi. An input xi, i /∈ Ak+1, is

added to the model when the statements in Equation (3.19) are equal. The correct
step length γk is the smallest of the candidate step lengths. Steps 2-5 are repeated
until the maximum number of iterations kmax is performed. If kmax = d < N − 1,
the step length γk = 1 is applied in the last iteration and the MRSR solution
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Figure 3.2: Examples of original unnoisy images of handwritten digits
(top row) and the corresponding normalized noisy images (bottom row).

coincides with the OLS solution.

The MRSR algorithm with α = 1 is proposed in Publication 1. However, the
proposed strategy to evaluate the correct step length γk is inefficient in the case
of a large number of response variables. In Publication 2, the MRSR algorithm
with the choices α ∈ {1, 2,∞} is analyzed. For each choice of α, a step length
evaluation procedure that is also efficient for a high-dimensional response space, is
presented. It is also shown in Publication 2, that there always exists such a step
length γ ∈ (0, 1] for each i /∈ Ak+1 that the common correlation curve (1− γ)cmax

k

and the correlation curve ‖uk,i − γvk,i‖α of a nonactive input xi intersect.

Yuan and Lin (2006) introduce the group LARS algorithm to approximate the
solution path of the group LASSO problem in Equation (3.9). The connection
between the group LARS and L2-MRSR algorithms is discussed in Publication 2,
that is, with rearrangement of Y , X, and W the outcomes of the algorithms are
equal. Similä (2007a) establishes the connection between the L2-MRSR algorithm
and the L2-SVS problem showing that L2-MRSR follows the solution path of the
L2-SVS problem under the assumptions XT X = I. For general X and q > 1,
the solution path of the L2-SVS problem is nonlinear as a function of t, and the
L2-MRSR algorithm only approximates the path.

Illustration of the MRSR algorithm

The image data reconstruction experiment from Publication 2 is revisited. A
sample of handwritten digits 0, . . . , 9, each a 28×28 gray scale image, is analyzed.
Each image is represented as a vector xn = [xn,1, . . . . , xn,784] containing the gray
scale values of pixels. The data set includes 100 observations from each digit (total
N = 1000 images). An equal amount of noise as in Publication 2 is added and
each of the d = 784 variables is scaled to have zero mean and unit variance. The
data are illustrated in Figure 3.2.

The original images are reconstructed from the noisy ones using the MRSR algo-
rithm such that X and Y contain the same set of data. Since Ŵ k is row sparse,
only some of the pixels are used in the reconstruction Ŷ k. The selected input



3.4. Multiresponse linear regression 33

0 100 200 300 400 500 600 700 800

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of inputs, k

0 100 200 300 400 500 600 700 800

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of components, p

Figure 3.3: Mean squared reconstruction errors as a function of the num-
ber of inputs in the L1-MRSR model (left) and the number of principal
components (right).
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Figure 3.4: Importance of the original inputs measured using the factors
‖wi‖1 (top row) and ‖q̃

i
‖1 (bottom row) in the L1-MRSR models and in

the PCA models, respectively.

variables can be considered as principal variables of the data set. The principal
variables preserve information of the data as accurately as possible according to
some criterion (Cumming and Wooff, 2007). Here, goodness of the selected vari-
ables is evaluated using MSE.

PCA is an effective technique for dimensionality reduction by a linear combination
of input variables. For a given dimensionality p, the reconstruction error

‖X − XQ̃‖2
F , (3.20)

where Q̃ = QQT , is minimized under the orthonormality constraint QT Q = Ip if
the columns of Q are the loadings of the principal components of X corresponding
to the p largest eigenvalues (Haykin, 1999; Hastie et al., 2001).

The reconstruction errors for the L1-MRSR models (left) and the PCA models
(right) are shown in Figure 3.3. Only the errors for L1-MRSR are shown, since
it has the smallest errors among the choices α ∈ {1, 2,∞} in this task (see Pub-
lication 2). In Figure 3.3, the vertical lines and circles mark the points in which
the errors of both methods are equal. In these points, the dimension of the PCA



34 Chapter 3. Variable selection in linear regression

model is smaller than the dimension of the L1-MRSR model, i.e p < k. The im-
portance factors of the original inputs are presented in Figure 3.4. The L1-MRSR
algorithm selects reasonable inputs, since relevant information is in the middle of
the images. In the PCA models, none of the factors ‖q̃

i
‖ is ever exactly zero. In

addition, the inputs corresponding to the borders of the images are considered to
be the most important ones with the values p = 135 and p = 332. Thus, these
PCA models give a misleading impression of importance of the original input vari-
ables. Similä (2007a) uses the problem in Equation (3.17) to detect the principal
variables, and finds that the inputs enter the model in the correct order when the
value of λ is decreased.
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Chapter 4

Variable selection in

nonlinear regression

Despite all the nice features of the linear regression models, they are not appro-
priate in every problem. Simply, the assumption on linear dependency between
the inputs and the output is overly restrictive in some real world applications. For
example, the kinetic energy of an object increases with the square of the speed.
Unfortunately, the underlying input-output relationship is typically unknown in
data analysis tasks. In the nonlinear regression problem, the goal is to estimate
an unknown function f in the model

y = f(x) + ε , (4.1)

where ε is random additive noise with zero mean and finite variance.

The estimation of the function f is based on the observed data points {xn, yn}
N
n=1

and the accuracy of f is commonly measured by the mean squared error

MSE =
1

N

N
∑

n=1

(yn − f(xn))2 . (4.2)

However, for an arbitrary function f , the minimization of the error leads to in-
finitely many solutions (Hastie et al., 2001). Any function f that interpolates
exactly the training points is a solution producing zero error. On the other hand,
these models would probably have large errors for novel test data. To obtain a
smooth mapping, some restrictions on the function f must be introduced. How-
ever, it does not totally remove the problem of the multiple solutions, since different
constraints lead to different models that may be equally accurate (Hastie et al.,
2001).

Nonlinear function estimation techniques can be divided into two classes, namely
nonadaptive and adaptive methods (Cherkassky and Mulier, 1998). Nonadaptive
methods are generally computationally fast, since the models consist of unad-
justable predefined basis functions. Adaptive methods are more flexible, since the
basis functions depend nonlinearly on parameters that are optimized based on the
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data. Due to the nonlinearities, iterative optimization strategies have to be used
which increases the computational complexity. Nevertheless, in the present thesis
the objective is to build interpretable adaptive models. The level of interpretability
is hard to judge, but explaining dependencies of highly complex models is obvi-
ously difficult. Thus, the complexity of the model should be limited as much as
possible without sacrificing the approximation accuracy considerably.

4.1 Nonadaptive methods

Specht (1991) presents a general regression neural network (GRNN)

f(x) =

∑N
n=1 yn exp(−‖xn−x‖2

σ2 )
∑N

n=1 exp(−‖xn−x‖2

σ2 )
. (4.3)

The model output is essentially a weighted average of all the observations yn, where
the weights are defined by the basis functions in the input space. The smoothing
parameter σ controls the width of the local neighborhood. For a given value of σ,
the training of the GRNN model is very fast since only the basis functions need to
be evaluated. The fast training makes forward selection or backward elimination
of the inputs applicable. The estimate is also known as the Nadaraya-Watson
weighted average (Hastie et al., 2001), and instead of the Gaussian functions other
weighting schemes can be used as well (Parzen, 1962; Atkeson et al., 1997).

Alternatively, the function f can be modeled by a linear expansion

f(x) =

M
∑

m=1

wmhm(x) + w0 , (4.4)

where hm(x) is a function of the input x. Cherkassky and Mulier (1998) introduce
polynomials and splines and Antoniadis et al. (1994) suggest wavelets to be used
as the basis functions hm(x). After the basis functions are evaluated, the function
f(x) depends linearly on the parameters wm. The number of available basis func-
tions is typically very large and the regularization techniques should be used in
the estimation of the parameters wm (Donoho and Johnstone, 1994; Girosi et al.,
1995). The basis functions may also include tuning parameters that have to be
selected using some model selection criteria.

The parameters wm can be estimated by sparse linear regression techniques that
are presented in Chapter 3. However, sparsity is not achieved in terms of the input
variables if all the basis functions depend on all the inputs. In the multivariate
adaptive regression splines (MARS) model by Friedman (1991), piecewise linear
basis functions are used. The original basis functions and products of them are
added into the model by alternating the forward selection and backward elimina-
tion procedures. The resulting MARS model may or may not be sparse in terms
of the original input variables. Lin and Zhang (2006) propose component selec-
tion and smoothing operator (COSSO) for model selection and model fitting in
the framework of smoothing spline analysis of variance. In the COSSO model,
the sum of component norms of the spline model is penalized such that some of
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the components are discarded from the final model. The original input variable is
not included into the model if all the components depending on the corresponding
input are discarded.

4.2 Support vector machine

Boser et al. (1992) propose the support vector machine (SVM) method for the
classification problem and Drucker et al. (1997) extend it to the regression problem.
A detailed description of SVM for both cases is given, for instance, by Cristianini
and Shawe-Taylor (2000). Basically, the prediction error and complexity of the
model are minimized simultaneously in the construction of the SVM model.

The derivation of SVM starts from the model

f(x) = zTψ(x) + α0 , (4.5)

where ψ(·) is a mapping from the input space x to a high (possible even infi-
nite) dimensional feature space. Instead of the classical MSE, the ǫ-intensive cost
function

|y − f(x)|ǫ =
{

0 if |y − f(x)| ≤ ǫ
|y − f(x)| − ǫ otherwise

(4.6)

is utilized. The errors that are smaller than ǫ do not contribute to the cost function
at all.

With a data set {xn, yn}
N
n=1, the following constrained optimization problem can

be formulated

minimize
z,α0,ξ,ξ̂

1

2
zT z + C

N
∑

n=1

(ξn + ξ̂n)

such that yn − zTψ(xn) − α0 ≤ ǫ+ ξn, n = 1, . . . , N

zTψ(xn) + α0 − yn ≤ ǫ+ ξ̂n, n = 1, . . . , N

ξn, ξ̂n ≥ 0, n = 1, . . . , N

(4.7)

where ξn and ξ̂n are the slack variables and the regularization parameter C > 0
controls the trade-off between prediction error and model complexity. In practice,
the solution is found by formulating the dual problem and the resulting quadratic
programming (QP) problem is solved. The sequential minimal optimization (SMO)
algorithm for the regression problem by Flake and Lawrence (2002) is an efficient
method to find the solution without a QP solver. The resulting model is

f(x) =
N
∑

n=1

αnK(xn,x) + α0 , (4.8)

where Lagrange multipliers α+
n and α−

n are substituted by αn = α+
n − α−

n and
the kernel trick K(xn,x) = ψ(xn)Tψ(x) is applied. Due to the kernel trick,
explicit calculations are not needed in the feature space. Any function that satisfies
Mercer’s conditions can be used as a kernel (Cristianini and Shawe-Taylor, 2000).
The Gaussian kernel K(xn,x) = exp(−‖xn − x‖2/σ2), that corresponds to an
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infinite dimensional feature space, is perhaps the most typical choice. Smola and
Schölkopf (2004) introduce several other options.

There are two major advantages in the SVM model. First, the optimization prob-
lem is convex for given values of C, ǫ, and kernel parameters. Convexity ensures
global optimality of the solution. Second, usage of the ǫ-intensive cost function en-
ables sparseness of the solution with respect to the parameters αn. The drawback
is that appropriate values for C, ǫ, and kernel parameters should be determined
using cross-validation or another model selection criterion, which increases com-
putational burden.

In the kernel ridge regression (KRR) by Saunders et al. (1998) and in the least
squares support vector machine (LS-SVM) by Suykens, Van Gestel, De Brabanter,
De Moor and Vandewalle (2002), the following optimization problem is considered

minimize
z,α0,e

1

2
zT z + C

N
∑

n=1

e2n

such that yn = zTψ(xn) + α0 + en, n = 1, . . . , N .

(4.9)

In practice, it is a ridge regression formulation in the feature space. As in the case
of SVM, the kernel trick is used to avoid explicit calculations in the feature space.
The solution for the problem in Equation (4.9) is again evaluated using the dual
formulation. The resulting LS-SVM model can be written as the SVM model in
Equation (4.8). Now, the Lagrange multipliers αn are found by solving a system
of linear equations which is computationally more efficient than solving the QP
problem in the training of the SVM model. However, it is very unlikely that any
of the coefficients αn would be zero in the LS-SVM model. The LS-SVM model
includes one tuning parameter less than the standard SVM model, which decreases
further the computational load.

Cawley and Talbot (2002) present a reduced rank kernel ridge regression (RRKRR)
method that generates a sparse kernel expansion. The method consists of two
parts. First, such a subset of training samples {xj}j∈S ⊂ {xn}

N
n=1 is found that

the mappings of all the training samples into the feature space ψ(xn) are approx-
imated by a linear combination of the mappings of the samples in S. The search
starts from the empty set and samples are added one at a time such that the re-
construction error is minimized in each step (Baudat and Anouar, 2001). Second,
a ridge regression model is constructed in the reduced space z =

∑

j∈S βjψ(xj).
Espinoza et al. (2006) propose an alternative strategy to build a sparse model.
They maximize an entropy criterion to select M ≪ N support vectors. Further-
more, the mappings ψ(x) are approximated using the selected support vectors and
the primal problem in Equation (4.9) is solved directly. Several other techniques
to approximate the kernel matrix K = {K(xi,xj)}i,j=1,...,N with a sparse lower
rank matrix are presented by Smola and Schölkopf (2000).

The output observations yn can also be taken into account in the construction of a
sparse LS-SVM model. Suykens, De Brabanter, Lukas and Vandewalle (2002) sug-
gest to train the ordinary LS-SVM model first. The support vectors corresponding
to the smallest absolute values of the parameters αn are omitted and the model is
retrained using the reduced training set. Learning algorithms by Nair et al. (2002)
operate in the opposite direction. At each iteration, a support vector is added
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based on the current residuals of the model. In addition, it is monitored that all
the added support vectors are useful in the later stages of the algorithm. Hoe-
gaerts et al. (2004) compare several pruning methods for LS-SVM and conclude
that pruning based on the values of parameters αn results in adequate compromise
between accuracy and computational cost.

4.2.1 Input variable selection for the SVM

All of the SVM and LS-SVM models presented in the previous section are fully
dense in terms of the input variables. It can deteriorate generalization capability
of the SVM model as shown, for instance, by Weston et al. (2001). Bi et al. (2003)
select inputs by constructing several sparse linear SVM models. The inputs having
on average nonzero weights are further used in the training of a nonlinear SVM
model. François et al. (2007) suggest to take nonlinear dependencies between the
inputs into account by introducing a mutual information (MI) criterion for the
input selection. They combine the MI criterion with a stepwise search strategy
to find a proper subset. Obviously, any nonlinear prediction model, e.g. SVM or
LS-SVM, can be built using the obtained subset of inputs.

Guyon et al. (2002) present a recursive feature elimination (RFE) algorithm for
the classification problem, but it can be extended to the regression problem as
well. First, the model is trained using all the input variables. Second, the inputs
are ranked by evaluating the change in the cost function when one input at a
time is removed from the model. The input causing the smallest change is the
least relevant and eliminated. The selection strategy produces a list of ranked
inputs. Rakotomamonjy (2003, 2007) extends the RFE algorithm by modifying
the ranking criterion. The derivatives of the cost function with respect to the
inputs are used. The least informative input has the smallest average absolute
derivatives. In addition to the standard cost function, Rakotomamonjy (2003,
2007) measures sensitivity of the inputs with respect to different generalization
error bounds.

Several authors consider adaptive scaling of the input variables (Weston et al.,
2001; Van Gestel et al., 2001; Chapelle et al., 2002; Grandvalet and Canu, 2003;
Rakotomamonjy, 2007). This is done by applying a kernel of the form

Kw(xn,x) = K(Wxn,Wx) , (4.10)

where W = diag(w1, . . . , wd) is a diagonal matrix of scaling factors. Each input
variable xi has its own factor or weight wi > 0. For instance, the Gaussian kernel
with the adaptive weights is

Kw(xn,x) = exp

(

−

d
∑

i=1

wi(xni − xi)
2

)

. (4.11)

Now, the problem of selecting inputs is equivalent to finding those weights wi that
can be set to zero without impairing the generalization performance considerably.

An alternating optimization strategy (Csiszár and Tusnády, 1984) is typically ap-
plied to perform adaptive scaling. First, the standard model is trained keeping
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the weights wi fixed. Second, the weights wi are optimized keeping the model
otherwise fixed. These two steps are repeated as long as the minimum of the cost
function is reached or the maximum number of iterations is performed. In the
second step, Weston et al. (2001); Chapelle et al. (2002); Rakotomamonjy (2007)
minimize directly bounds on generalization error estimates and propose to delete
the inputs that have the smallest weights. The approach by Grandvalet and Canu
(2003) differs in the optimization of the weights wi. They restrict the sum of the
weights by a predefined constant t and minimize the standard cost function under
that constraint. The purpose of the constraint is to encourage sparsity in terms
of the inputs. The generalization error is estimated for the several choices of the
shrinkage parameter t and other hyperparameters.

Van Gestel et al. (2001) introduce adaptive scaling of the inputs in the LS-SVM
model in the probabilistic framework. The weights are inferred by maximizing
the model evidence under the assumption of uniform prior on the weights. The
input having the smallest weight is rejected and the process is repeated using the
remaining inputs.

4.3 Feedforward neural networks

An artificial neural network (ANN) is a powerful information processing sys-
tem (Bishop, 1995; Haykin, 1999). Originally, the development of ANNs was
inspired by biological systems (Haykin, 1999). In the present thesis, ANNs are
merely considered as highly adaptive nonlinear mathematical models and learn-
ing is the adaptation of model parameters based on the data. Lately, ANNs
have been applied successfully in different data analysis problems, for instance, in
analyses of financial (Roberts, 2008) and ecological (Tomenko et al., 2007) data,
simulation of biochemical systems (Matsubara et al., 2006), classification of gene
expression data (Pirooznia et al., 2008), solving linear integro-differential equa-
tions (Golbabai and Seifollahi, 2007), and voltage stability monitoring of power
systems (Chakrabarti and Jeyasurya, 2007).

The black box characteristics is a disadvantage of ANNs in the sense that inter-
pretation of dependencies between the input and output variables is difficult. In
critical applications, such as medical decision support, a network has to be under-
stood thoroughly before it can be deployed (Dayhoff and DeLeo, 2001). Beńıtez
et al. (1997); Kolman and Margaliot (2005) present rule extraction from the trained
network by expressing the network in terms of simple fuzzy rules. Nonetheless,
the number of extracted rules might be prohibitive in complex problems. In this
work, several input selection algorithms are proposed to improve interpretability
of ANNs. The algorithms are presented in Sections 4.3.2 and 4.3.3.

A neural network consists of input, hidden, and output layers. A network with
a single hidden layer is presented in the top panel of Figure 4.1. The network is
fully connected, i.e. each node in any layer of the network is connected to all the
nodes in the previous layer. In the feedforward network, feedback loops are not
allowed. The bottom panel of the same figure shows a widely applied structure of
the hidden node.
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Figure 4.1: The architecture of feedforward neural network (top). Struc-
ture of a hidden node in the MLP network (bottom)

The input nodes correspond to the input variables xi, i = 1, . . . , d. The network
output ŷ is typically one-dimensional in the regression problems, but the general-
ization to the multidimensional case is straightforward (Hastie et al., 2001). The
number of nodes in the hidden layer affect complexity of the network (Haykin,
1999). In the present thesis, networks with only one hidden layer are considered
since they are universal approximators, i.e. capable to approximate any continu-
ous smooth function with an arbitrary accuracy if the number of hidden nodes is
large enough (Hornik et al., 1989, 1990; Park and Sandberg, 1991, 1993). However,
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a sufficient number depends highly on the problem and the generalization error
estimation techniques are used to find an appropriate value in practice.

In Figure 4.1, the output of the network is

f(x) = ϕ

(

M
∑

m=1

αmφ(vm) + α0

)

, (4.12)

where M is the number of hidden nodes, φ(·) and ϕ(·) are the activation functions
of the hidden and output layers, respectively. In the case of multilayer perceptron
(MLP) network (Rumelhart et al., 1986), the activation of each hidden node de-
pends on the linear combination of the inputs vm = wT

mx + wm0, see the bottom
panel of Figure 4.1. The hyperbolic tangent

φ(vm) = tanh(vm) =
evm − e−vm

evm + e−vm
(4.13)

is a common nonlinear sigmoidal activation function in the hidden layer. In the
output layer, the linear ϕ(z) = z and the softmax activation functions are typical
in the regression and classification problems, respectively (Hastie et al., 2001).

The weights of the network αm and wmi, m = 1, . . . ,M , i = 1, . . . , d, and the
bias terms α0 and w0 are optimized based on the training data. Hastie et al.
(2001) advice to select a large number of hidden nodes and to use a weight decay
regularization

minimize
θ

1

N

N
∑

n=1

(yn − f(xn))2 + λθT θ , (4.14)

where λ is a tuning parameter and the vector θ includes all the weights of the
network. The problem in Equation (4.14) is closely related to the ridge regression
used for linear models, see Equation (3.4). The generalization error estimation
techniques are used to select a proper value for λ. The inputs are usually stan-
dardized to have zero mean and unit variance if a priori knowledge is not available.
Scaling ensures that all the inputs are initially equally important.

Since the optimization problem in Equation (4.14) is highly nonlinear, a solution is
found by iterative optimization strategies, for instance back-propagation (Haykin,
1999), Levenberg-Marquardt (Bishop, 1995) or scaled conjugate gradient (Møller,
1993) algorithms. The problem is also nonconvex, thus there may exist many local
minima. Typically, several different initializations of the weights are used and the
solution producing the smallest error is selected.

Another important neural network model is a radial basis function (RBF) net-
work (Broomhead and Lowe, 1988). The feedforward model in the top panel of
Figure 4.1 presents also the structure of the traditional RBF network if the bias
connections to the hidden nodes are omitted. However, the structure of the hidden
node is different from the MLP network. Now, the activation of the hidden node

φm(x) = φ(‖x − cm‖) (4.15)

is defined by the distance between the input x and the center of the basis function
cm. The most common basis function is perhaps the Gaussian function

φm(x) = exp

(

‖x − cm‖2

σ2
m

)

, (4.16)
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where σm is the scale or width of the basis function and it controls the smoothness
of the mapping. Bishop (1995) presents several other choices for the basis function.
The output of the RBF network with the Gaussian basis functions is

f(x) =

M
∑

m=1

αm exp

(

‖x − cm‖2

σ2
m

)

+ α0 . (4.17)

Training of the network can be carried out in two phases (Bishop, 1995). First,
the centers cm and the widths σm of a predefined number of basis functions are
selected using unsupervised techniques, i.e. based only on the input data. Second,
the output layer parameters αm are optimized by minimizing the error between the
network outputs and the observed outputs. In the second phase, the basis functions
are fixed and the network corresponds to the nonadaptive model in Equation (4.4)
resulting in the evaluation of the parameters αm by the linear regression techniques.
It is also possible to optimize all the parameters cm, σm, and αm in a supervised
manner by minimizing the MSE in Equation (4.2). It is a nonlinear and nonconvex
problem and a solution can be determined using the same iterative algorithms as
in the case of the MLP network.

Alternatively, if the centers of the basis functions are located on the training data
points with equal widths σm = σ and the output layer parameters are optimized
using ridge regularization as suggested by Orr (1996), the resulting RBF network
coincides essentially with the LS-SVM model. Instead of ridge regularization,
Bishop (1991) proposes to regularize the error function by the sum of squares
of the second order derivatives of the network with respect to the inputs. The
regularization should damp out rapid oscillations in the network output.

Also, both input and output variables can be used to determine the placement
of the centers. Orr (1995) presents a regularized forward selection (RFS) method
that combines the ridge regularization and the forward selection procedure. All the
input samples are the candidate centers and the regularization parameter is tuned
automatically based on the generalized cross validation criterion, thus only the
width σ has to be preset. Peng et al. (2007) propose a continuous forward algorithm
(CFA) to train the RBF network. They add the basis functions one at a time into
the network. Instead of using fixed values, they consider the width and the center
as continuous valued parameters and optimize the values by a conjugate gradient
algorithm. Only the most recently added basis function is optimized keeping the
rest fixed. The previous approaches do not allow the rejection of already added
basis functions, although some of them would become unnecessary in later stages of
the algorithms. Huang et al. (2005) introduce a sequential learning strategy called
a generalized growing and pruning algorithm for RBF (GGAP-RBF). They define
the significance of a basis function by its contribution to the overall performance
of the network. A basis function is added or deleted if its significance is greater or
smaller than a predefined threshold.

The architectures of both MLP and RBF networks can be represented as a feed-
forward model and the output is formulated as a linear combination of univariate
functions. Since both are universal approximators, there always exists an RBF net-
work that mimics accurately a given MLP network, or vice versa (Haykin, 1999).
Nevertheless, there are also important differences between the MLP and RBF net-



44 Chapter 4. Variable selection in nonlinear regression

works (Bishop, 1995; Haykin, 1999). The RBF networks include only one hidden
layer whereas the MLP network may consists of several ones. The activation of the
hidden node is evaluated by the inner product between the input and weight vec-
tors in the MLP network and by the distance between the input and the center of
the basis function in the RBF network. In addition, where the sigmoid activation
function in the MLP network has global characteristics, the radial basis functions
are typically localized.

4.3.1 Sensitivity analysis

In several applications, it is required that the model gives insight into importance
of inputs in addition to accurate predictions. Obviously, all the inputs are rarely
equally important. Several criteria exist to assess relative importance of the input
variables. The value of a criterion for a single input is typically noninformative
itself, but the inputs can be ranked by comparing all the values with each other.
Leray and Gallinari (1999) distinguish between the zero, first and second order
methods.

The zero order methods use only the weights of the network to rank the inputs.
Yacoub and Bennani (2000) evaluate the relative contributions based on the ab-
solute values of weights. Both input and output layer weights are considered by
evaluating a product between them. It is assumed that important inputs have the
large absolute weights.

The first order methods are based on the derivatives of the network. Ruck et al.
(1990) propose to measure relevance by the sum of the absolute derivatives

Si =

N
∑

n=1

|δni|, where δni =
∂f(xn)

∂xi

and i = 1, . . . , d . (4.18)

Observe, that the derivatives in Equation (4.18) are not the same that are used in
the training of the model, i.e. the derivatives with respect to the weights. Each
partial derivative describes the local rate of change in the output with respect
to the corresponding input while the rest are kept fixed. The inputs are ranked
based on the values of relevance measure Si and the most important inputs have
the largest values. In addition to the ranking of inputs, a set of scatter graphs of
the partial derivative δni versus the input xni can be plotted (Gevrey et al., 2003).
The graphs enable the visual justification of the dependencies.

In addition to the sum of the absolute derivatives, Refenes and Zapranis (1999) pro-
pose other quantities, for instance the sum of the squared derivatives, the standard
deviation of derivatives, and weighting the values |δni| by |xni/f(xn)|, f(xn) 6= 0
in Equation (4.18). Nevertheless, Leray and Gallinari (1999) remark that the effect
of extreme observations should be discarded in order to obtain robust methods.
In Publication 5, it is proposed to measure relevance by

Si = γmδi
+ (1 − γ)∆δi

, where γ ∈ [0, 1] . (4.19)

It is the weighted sum of the median mδi
and the variability ∆δi

of the absolute
values |δni|. The variability is defined as a difference ∆δi

= |δni|
high − |δni|

low,
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where |δni|
high and |δni|

low are the (1 − q)N th and qN th values in the ordered list
of the N absolute values |δni|. The parameter q ∈ (0, 0.5) defines the width of
the central interval of the absolute values. Thus, both the median mδi

and the
difference ∆δi

are insensitive to the outliers in the data. Either a large variability
∆δi

or a clearly nonzero median mδi
may indicate that the output is sensitive

to the corresponding input xi. In Equation (4.19), the parameter γ defines the
weighting between the median mδi

and the variability ∆δi
in the ranking of inputs,

i.e. the ordering of inputs may be changed by varying γ. The choices γ ∈ [0, 0.5)
and γ ∈ (0, 5, 1] put more emphasis on the variability and the median, respectively,
whereas the choice γ = 0.5 does not impose a priori preference.

In the second order methods, the evaluation of relevances is based on the second
derivatives of the network. Instead of the derivatives with respect to the inputs,
Cibas et al. (1996) suggest to apply the partial derivatives with respect to the
weights of the network. The relevance of the input xi is defined as

Si =
1

2

M
∑

m=1

∂2MSE

∂w2
mi

w2
mi , (4.20)

where wmi is the connection weight between the ith input and the mth hidden
node. This relevance measure approximates the increase in the error function
caused by deleting the input xi. Naturally, the most relevant input causes the
largest increase.

4.3.2 Input variable selection for the MLP network

All the relevance measures presented in Section 4.3.1 can be used in the selection
of input variables for the MLP network. In practice, the selection is based on
backward elimination. The network is trained using all the available inputs and
the least relevant input or subset of inputs is deleted. Castellano and Fanelli (2000)
show a fast strategy to adjust the remaining weights after the elimination of input.
However, they keep the number of nodes in the hidden layer fixed, which may be
suboptimal. Better generalization performance may be obtained by repeating the
nonlinear optimization of the weights from novel initializations and validating the
network architecture. On the other hand, the computational burden quickly gets
intolerable with an increasing number of inputs.

The input variables can also be selected indirectly using the weight pruning strate-
gies. Initially, an oversized network that overfits to the data is trained. Subse-
quently, the network architecture is reduced by eliminating connection weights.
The input xi does not contribute to the network output at all when all the weights
wmi, m = 1, . . . ,M are deleted. In the optimal brain damage (OBD) by Le Cun
et al. (1990), the minimal increase in the training error is used as the criterion
for pruning the weight. The changes in the cost function are determined by the
diagonal quadratic approximation, i.e. using only the diagonal elements of the
Hessian matrix. Hassibi and Stork (1993) recommend to use the full Hessian ma-
trix by introducing the optimal brain surgeon (OBS). However, the inverse of the
Hessian matrix must be evaluated in the OBS, which increases the computational
complexity compared to the OBD.
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In Publication 4, the input variables are selected by the SISAL method (see Sec-
tion 3.2.2) and the MLP network is trained using the obtained inputs. The pro-
posed filter strategy is applied to time series prediction problems with different
degrees of nonlinearities. It is compared to the MLP networks that are built using
the forward selection algorithm and to the MLP networks using all the inputs.
Importance of the inputs obtained by SISAL reflect importance of the inputs in
the nonlinear models very well. In the MLP networks, relative importance of the
inputs are evaluated using the partial derivatives. In summary, SISAL combined
with the MLP network offers a reasonable compromise between the prediction
accuracy and the computational complexity. Following Li and Peng (2007), linear-
in-the-parameter models, e.g. polynomials, could be used in the input selection to
improve the performance of SISAL in highly nonlinear problems.

In Equation (4.14), the weight decay regularization encourages the weights to be
close to zero. However, it is unlikely that any of the weights would be exactly zero,
thus variable selection is not performed. In order to discard an input xi from the
MLP network, it is required that all the outcoming weights wi = [w1i, . . . , wMi]

T

from an input xi are zero. Grandvalet and Canu (1999); Chapados and Ben-
gio (2001); Similä and Tikka (2008) propose techniques to perform simultaneous
model fitting and network architecture selection. All approaches penalize the mean
squared error cost function by groups of weights instead of the individual weights.

Grandvalet and Canu (1999) present an adaptive ridge regression

minimize
w1,...,wd,α

1

N

N
∑

n=1

(yn − f(xn))2 +

d
∑

i=1

λi‖wi‖
2
2 + λd+1

M
∑

m=1

α2
m

such that
1

d+ 1

d+1
∑

i=1

1

λi

=
1

λ
, λi > 0 ,

(4.21)

where the vector wi includes all the outcoming weights from the input xi and αm,
m = 1, . . . ,M are the output layer parameters. Each vector of weights wi has
its own regularization parameter λi. The additional constraint on regularization
parameters is imposed to decrease the number of hyperparameters from d + 1 to
one. An additional advantage of the constraint is that with a large enough λ some
of the parameters λi will be zero and the corresponding inputs are discarded from
the model. The regularization of output layer parameters affects smoothness of
the mapping. However, in the experiments by Grandvalet and Canu (1999) the
adaptive ridge regression is only applied to the additive models and no results for
the MLP network are reported.

Chapados and Bengio (2001) propose the input decay

minimize
w1,...,wd,α

1

N

N
∑

n=1

(yn − f(xn))2 + λ
d
∑

i=1

‖wi‖
2
2

η + ‖wi‖2
2

. (4.22)

The regularization term has two purposes. First, it prevents the outcoming weights
of the useless inputs being far from zero. Second, on a certain point determined
by the hyperparameter η, the regularization term is approximately constant and
independent from the values of weights. With small values of ‖w‖2, the regular-
ization term is nearly quadratic and it mimics the weight decay. A disadvantage
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of the input decay is that it does not regularize the output layer weights at all
and a proper number of hidden nodes must be validated using model selection
techniques.

Similä and Tikka (2008) introduce the following penalized optimization problem
for simultaneous input variable and hidden node selection

minimize
w1,...,wd,α

1

N

N
∑

n=1

(yn − f(xn))2 + λ

(

d
∑

i=1

p(‖wi‖2) +

M
∑

m=1

p(|αm|)

)

, (4.23)

where p(·) is a penalty function. The maximum number of hidden nodes M is
predefined, but only useful inputs and hidden nodes are effective after the training.
Similä (2007b) shows that a differentiable penalty function p(s), s ≥ 0 encourages
blockwise sparse solutions only when p′(0) > 0 holds. Both weight decay p(s) = s2

and input decay p(s) = s2/(η+s2) penalties have p′(0) = 0 and they are not able to
produce sparse solutions in theory. Similä and Tikka (2008) use the function p(s) =
c log(1 + s/c), see also Equation (3.18), that satisfies the sparsity condition since
p′(0) = 1. The parameter c controls the amount of penalization that is imposed
on the weights. By decreasing the value of c, the amount of penalization on large
values of ‖w‖2 is decreased, thereby it has a similar effect as η in Equation (4.22).
Since the penalty function is nondifferentiable in the origin, the problem cannot
be solved directly by gradient methods. Similä and Tikka (2008) use a logarithmic
barrier reformulation to approximate the original problem and propose an efficient
optimization method to find a solution.

4.3.3 Input variable selection for the RBF network

The partial derivatives of the network with respect to the input variables can also
be used in variable selection for the RBF network. The weight pruning strategies,
such as the OBD and the OBS, cannot reduce the number of input variables in
the standard RBF network in Equation (4.17), since each input does not have
its own weights. However, usage of the adaptive weights in the basis functions
as in Equation (4.11) enables input selection by weight pruning. Also, the input
selection approaches for the SVM that are based on the adaptive weights could be
modified to be applicable for the RBF networks as well. Villmann et al. (2006)
compare several metric adaptation methods and report that the scaled Euclidean
metric produces competitive results. In addition, they notify that problem adapted
metrics are generally superior to the standard Euclidean distance.

Variable selection can also be incorporated into the two-phase training strategy
of the RBF networks. Bishop (1995) suggests to consider setting of the basis
function parameters as a density estimation problem. The input data distribution
is estimated by the Gaussian mixture model. Furthermore, means and variances
of the Gaussian distributions are used as the centers cm and widths σm of the
basis functions. Dy and Brodley (2004) apply the forward selection algorithm
to find relevant input variables for the mixture model. They also show that the
maximum likelihood solution is biased toward lower dimensions and they propose
a normalization scheme for the selection criterion. The number of component
distributions is automatically determined for each subset of inputs, which results
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in better performance than usage of a predefined number of components. Law
et al. (2004) avoid combinatorial search by casting the selection of inputs as an
estimation problem. For each input, a real valued saliency si ∈ [0, 1] is estimated.
The saliencies of the irrelevant inputs should be zero. Eventually, they combine
the determination of number of component distributions with the estimation of
saliencies. The main disadvantage of unsupervised techniques is that the output
observations are not considered in variable selection at all. A practical subset of
inputs for the clustering task may be unsatisfactory for the prediction purposes.

Sequential input selection algorithm for the RBF network

In Publication 5, a sequential input selection algorithm for the radial basis function
(SISAL-RBF) network is presented. The algorithm starts by training the RBF
network using all the input variables. The selection of centers cm is circumvented
by placing a Gaussian basis function on each training data point. Equal predefined
widths σm = σ are applied and the output layer parameters αm are estimated using
the ridge regularization. The training procedure includes two hyperparameters, i.e.
the width σ and the regularization parameter λ. However, it is possible to tune λ
automatically as it is explained below.

Orr (1996) shows that for fixed values of σ and λ, the leave-one-out CV error can
be evaluated analytically without retraining and testing the network N times. Fur-
thermore, keeping σ fixed the leave-one-out CV error can be written as a function
of λ as follows

MSELOO(λ) =
1

N
yT P (diag(P ))

−2
Py , (4.24)

where P = IN − Φ(ΦT Φ + λIM )−1ΦT and diag(P ) is of the same size and has
the same diagonal as P but is zero off the diagonal. The elements of matrix Φ

are defined as Φnm = {φm(xn)}, n = 1, . . . , N , m = 1, . . . ,M and the vector y

includes the output observations y = [y1, . . . , yN ]T . In Publication 5, the optimal λ
is found by minimizing the leave-one-out CV error in Equation (4.24) by the golden
section line search method (Bazaraa et al., 1979). Thus, the training methodology
has only one preset parameter, i.e. the width σ.

After the training of the network, the input variables are ranked by measuring the
relevances using a fixed γ in Equation (4.19). The input producing the smallest
value Si is rejected from the model and the network is retrained using only the
remaining inputs. Backward elimination of the inputs produces d nested subsets,
where d is the number of inputs. Due to the efficient evaluation of the leave-
one-out CV error, it is computationally feasible to optimize the hyperparameters
for each subset and to select the inputs based on the validation error instead of
the training error. The parameter γ could also be selected based on the validation
error. However, it would increase the computational complexity significantly, since
it is highly probable that more than d subsets of the inputs needs to be evaluated.

In the experiments of Publication 5, the SISAL-RBF networks have smaller predic-
tion errors than the ordinary RBF networks, i.e. the networks with all the inputs.
The forward selection (FS) algorithm and the proposed training strategy perform
similarly in terms of both prediction accuracy and variable selection. Table 4.1
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Table 4.1: The relative empirical computational times of the RBF net-
works on data sets with different numbers of input variables d in the
experiments of Publication 5.

Data set d Ordinary RBF SISAL-RBF RBF with FS
Add10 10 1 9.4 47
Boston Housing 13 1 14 93
Bank 32 1 33 540
Wine 256 1 250 30000
Computational

O(1) O(d) O(d2)
complexity

shows the relative computational times of the evaluated networks. In the case of
SISAL-RBF, a fixed value γ = 0.5 was applied in the relevance measure, see Equa-
tion (4.19). The proposed variable selection algorithm is clearly faster than the FS
method and the difference is more and more apparent with a large number of input
variables. Table 4.1 also shows that the relative computational complexity of the
SISAL-RBF network depends roughly linearly on the number of input variables,
whereas the relative dependency of the FS procedure is approximately quadratic.
However, the FS algorithm could be stopped before using all the inputs, but al-
ready finding the first input requires the evaluation of d networks, which equals to
the total number of networks evaluated by SISAL-RBF. The actual running time
of SISAL-RBF is more complex than linear with respect to the number of inputs.
It also strongly depends on the number of available observations N .

Input selection for the RBF network by constrained optimization

Poggio and Girosi (1990) propose to extend the norm ‖x−cm‖2 in Equation (4.16)
by a weighted norm ‖x−cm‖2

W = (x−cm)T W T W (x−cm), where W is a square
matrix of size d×d. However, the number of adaptive weights W = {wij}i,j=1,...,d

depends quadratically on the number of input variables. As a compromise between
adaptivity and the number of tunable parameters, separate weights can be assigned
for the input variables as in Equation (4.11) which corresponds to the diagonal
matrix W . In Publications 6 and 7, instead of the standard Euclidean norm the
adaptive weights are applied in the Gaussian basis functions. The output of an
adaptively weighted radial basis function (AW-RBF) network is

f(x,w,α) =
M
∑

m=1

αmKw(cm,x) + α0 (4.25)

and Kw(cm,x) is defined in Equation (4.11). A large weight wi, i = 1, . . . , d
corresponds to a relevant input and the elimination of input variable occurs by
setting wi = 0.

Poggio and Girosi (1990) suggest to optimize the weight matrix W , the centers cm,
and the output layer parameters α by minimizing a regularized cost function using
a gradient descent algorithm. However, no explicit constraints are imposed on the



50 Chapter 4. Variable selection in nonlinear regression

weight matrix W . In Publication 6, the parameters of the AW-RBF network are
determined by solving the following constrained optimization problem

minimize
w,α

Eλ(w,α) =
1

N

N
∑

n=1

(yn − f(xn,w,α))2 + λ

M
∑

m=1

α2
m

such that

d
∑

i=1

wi ≤ t and wi ≥ 0, i = 1, . . . , d ,

(4.26)

where λ and t are the regularization and shrinkage parameters, respectively. The
ridge regularization is applied to the output layer parameters α, since a basis func-
tion is placed on each training data point. The constraint

∑d
i=1 wi ≤ t shrinks

the values of weights toward zero. With a small enough t, some of the weights are
exactly zero. The nonnegativity constraints wi ≥ 0 guarantee that the basis func-
tion in Equation (4.11) is localized. Grandvalet and Canu (1999) apply the similar
constraints on the diagonal weighting matrix in training of the SVM classifier.

In Publication 6, a logarithmic barrier function method (Bazaraa et al., 1979;
Boyd and Vandenberghe, 2004) is used to approximate the constrained problem
in Equation (4.26) by an unconstrained one. A solution is found by performing
successive minimizations with respect to the output layer parameters α and to
the adaptive weights w, that is, when the parameters α are optimized the weights
w are fixed and vice versa. The output layer parameters α are updated by solv-
ing a system of linear equations, whereas updating of the adaptive weights w is
carried out by an iterative optimization algorithm. A convergence analysis of the
alternating optimization strategy is provided by Bezdek et al. (1987).

An AW-RBF network obtained by solving the problem in Equation (4.26) is not
sparse in terms of the basis functions due to the ridge regularization. To be able
to select also the basis functions, a modified version of the problem is considered
in Publication 7. The LASSO type constraints are imposed on both output layer
parameters and weights leading to the following constrained optimization problem

minimize
w,α

E(w,α) =
1

N

N
∑

n=1

(yn − f(xn,w,α))
2

such that

M
∑

m=0

|αm| ≤ r ,

d
∑

i=1

wi ≤ t, and wi ≥ 0, i = 1, . . . , d .

(4.27)

The basis functions are initially located on each training data point. With an ap-
propriate choice of the shrinkage parameter r, some of the output layer parameters
are shrunk toward zero and some of them are set exactly to zero corresponding
to the rejection of basis functions. The values of adaptive weights are penalized
similarly as in Equation (4.26) to encourage sparsity also in terms of the inputs.

Due to the absolute values, the constraint on the output layer parameters αm,
m = 1, . . . ,M , is nondifferentiable when at least one of the parameters αm equals
to zero. For fixed values of the weights w, the output layer parameters α cannot
be updated as easily as in the case of the ridge regularization although efficient
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algorithms to solve the LASSO problem exist (Schmidt et al., 2007). In Publica-
tion 7, the problem in Equation (4.27) is approximated by a logarithmic barrier
reformulation that is differentiable with respect to both α and w, thus, a di-
rect optimization approach is proposed in addition to the alternating optimization
strategy. The direct approach means simultaneous optimization of α and w and
the proposed method is inspired by the Levenberg-Marquardt optimization algo-
rithm. In the experiments of Publication 7, the alternating and direct approaches
produce similar results.

The problems in Equations (4.26) and (4.27) contain two continuous valued hyper-
parameters (λ, t) and (r, t), respectively. The hyperparameters control the trade-
off between the prediction accuracy and complexity of the resulting network. The
model selection is carried out by minimizing an estimate of the generalization error
using a predefined two-dimensional grid of the hyperparameters. For comparison,
the SVM with the Gaussian kernel in the regression problem in Equation (4.7)
contains three tuning parameters (ǫ, σ, C). However, the SVM retains the original
number of input variables, whereas the AW-RBF network is able to discard useless
inputs as shown in the experiments of Publications 6 and 7. In addition to input
variable selection, the weights wi, i = 1, . . . , d describe relative importance of the
inputs in the network, such that the most relevant inputs have the largest weights.
To make the weights comparable with each other, the inputs should have similar
scales. This is obtained easily by standardizing the inputs to have zero mean and
unit variance before the training. Moreover, no computationally expensive search
strategies are needed for input and basis function selection.

An illustrative example

Bishop (1995) reports that the RBF networks are sensitive to the input variables
which have significant variance but which are not important in the determination
of the output variable. In such a case, the RBF network has a large error even
if the number of basis functions is increased significantly. As an example, let us
consider a data set {xn, yn}

N
n=1, where the inputs xn = [xn1, xn2] are sampled

independently from the uniform distribution xni ∼ U(−3, 3). The output yn is
generated from the model

yn = sinc(xn1) + εn, n = 1, . . . , N , (4.28)

where independently normally distributed samples εn ∼ N(0, 0.152) are used as
the additive noise. The sizes of the training and validation sets are Nt = 100 and
Nv = 2000, respectively.

The objective is to compare the standard RBF network with the AW-RBF net-
work trained by solving the problem in Equation (4.27). In both networks, a basis
function is initially located on each training data point. The standard network is
trained using the same fixed width σ in all the Gaussian basis functions and apply-
ing the ridge regularization to restrict the values of the output layer parameters.
The training is repeated using 20 values of the regularization parameter λ and the
width σ, which are logarithmically equally spaced in the ranges λ ∈ [10−3, 5] and
σ2 ∈ [0.02, 10]. The AW-RBF network is trained using 20 logarithmically equally
spaced points of the shrinkage parameters r and t (r ∈ [1, 200] and t ∈ [0.1, 100]).
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Figure 4.2: The normalized mean squared validation errors (top), the
estimated output of the minimum validation error models as a function of
x1 and x2 (middle) and the projections on x1 axis (bottom). The left and
right panels correspond to the standard RBF network and to the AW-
RBF network trained by the constrained problem in Equation (4.27),
respectively. The black crosses mark the minimum validation errors, the
black dots are the training samples and the selected basis functions are
marked by the red circles.

The results are summarized in Figure 4.2. The validation errors of both networks
(the top row) show that the network outputs depend evidently on both of their hy-
perparameters and the minima are found from the centers of the grids indicated by
the black crosses. However, observe that smaller minimum is obtained by the AW-
RBF network than by the standard network. In the original scale, the minimum
validation MSE of the AW-RBF network is 0.025 which is an accurate estimate
for the known variance of the noise 0.152. The middle and bottom rows show that
the irrelevant input x2 does not affect the output of AW-RBF network (the right
panel), whereas the output of the standard RBF network depends strongly on it
(the left panel). In addition, the standard network has clearly difficulties to model
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Figure 4.3: The absolute correlations between the input variables xi,
i = 1, . . . , 256 in Wine data. The red dots mark the inputs that are
selected in the experiments of Publication 7.

the borders of the input space. The bottom right panel shows that the AW-RBF
network (the green line) approximates nearly perfectly the actual sinc function
(the black line). Only 31 out of the initial 100 basis functions are included into the
AW-RBF network that produces the minimum validation error.

Stability of the AW-RBF network

Let us assume that a model M is trained using the data D. According to Breiman
(1996), a training procedure is stable if a small change in the data D does not cause
large changes in the resulting model M. Stability of the AW-RBF network, that
is trained by minimizing the constrained problem in Equation (4.27), is illustrated
by revisiting the experiment on Wine data in Publication 7. The purpose is to
predict the level of alcohol of wine from its observed mean infrared spectrum. The
data include d = 256 input variables and Ntr = 94 and Ntest = 30 observations
in the training and test sets, respectively. The absolute correlations between the
input variables are shown in Figure 4.3. The very high absolute correlations imply
that several inputs contain nearly identical information which complicates variable
selection substantially. In the experiments of Publication 7, only one input is
typically chosen from the groups of highly correlated inputs, see Figure 4.3.

The bootstrap (Efron and Tibshirani, 1993) is a convenient resampling strategy to
generate modified training data sets. A bootstrap sample is created by resampling
the original training data {xn, yn}

Ntr

n=1 with replacement. The size of the bootstrap
sample equals to the size of the original data Ntr but some of the pairs {xn, yn}
appear zero times, once, or twice, etc. in the sample. The resampling procedure
and the training of the AW-RBF network are repeated B = 500 times. With
each resampled data set, the same values of the shrinkage parameters r and t are
applied. These values produced the minimum validation error in the analysis of the
original data in Publication 7. The results are summarized in Figure 4.4. Averages
with standard deviations in parentheses of 500 replications of the test error and
the number of selected inputs are 0.0053(0.0015) and 12.4(2.0), respectively. The
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Figure 4.4: Empirical distributions of the test error (the top left panel)
and the number of selected inputs (the top right panel) for the AW-
RBF network evaluated using the bootstrap resampling procedure. The
frequency of the inclusion of each input variable to the AW-RBF network
in the bootstrap replications (the bottom panel). The red vertical lines
show the test error, the number of inputs and the selected inputs in the
AW-RBF network, when the original data is used in the training.

relatively small standard deviations indicate that the replications are concentrated
close to the average values, which is also shown in the top panel of Figure 4.4. The
averages correspond also very well to the test error 0.0047 and to the number of
inputs 13 that are obtained using the original data. The bottom panel of Figure 4.4
presents the frequencies of the appearances of each input variable in the bootstrap
replications. In many replications, several of the chosen variables are the same
that are also found with the original data. In the case that the chosen input does
not coincide exactly with one of the 13 originally selected inputs, it is typically
highly correlated with at least one of them, see also Figure 4.3. In addition, it is
notable that most of the inputs are always excluded from the AW-RBF network.
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Chapter 5

Summary and conclusions

Efficient computational data analysis techniques are of the utmost importance
due to the growth of sizes of data sets. For instance, Guyon and Elisseeff (2003)
note that the number of variables has increased from dozens to tens or hundreds
of thousands in a short period of time. Data analysis methods should discover
relationships that are useful and improve knowledge of the system. However, a
model producing accurate predictions but including thousands of variables is not
fully satisfactory, since interpretation of dependencies between the variables may
be difficult. According to Fayyad et al. (1996), an understanding of the model and
its induction makes the model more attractive for practical problems.

In the present thesis, several input variable selection methods are proposed to
improve the interpretability of prediction models in both linear and nonlinear
regression problems. By the improved interpretability it is meant that a model
including only a parsimonious set of inputs points out important dependencies
better than a model including all the inputs. The sparsity is also a reasonable priori
assumption, since connections are often sparse in the real world, that is, typically
any given variable only depends on a relatively small subset of others. In addition,
if sparse and full models have comparable prediction errors, the simpler model
should be preferred based on the sparsity principle (Blumer et al., 1987). Thus,
it is natural to define usefulness of an input variable according to its prediction
capability.

In Publication 4, SISAL is introduced as a preprocessing step for the training of
the MLP network. However, SISAL can also be applied to variable selection for a
single response linear regression model. It performs favorably in comparison with
the forward selection and LARS algorithms as presented in Section 3.3.4. The
results show that SISAL produces accurate and sparse models also in the case of
correlated inputs.

The simultaneous estimation of multiple responses using the same subset of input
variables is considered in the context of linear models. In Publications 1 and 2,
the MRSR algorithm is presented. It is an extension of the LARS algorithm to
the case of multiple response variables. The inputs are added one by one to the
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model, and the order of additions reflects importance of the inputs. The main
advantages of the MRSR algorithm are that it is straightforward to implement
and it is computationally efficient also in high-dimensional spaces. Instead of the
stepwise search, simultaneous selection and shrinkage of the inputs is performed
by minimizing a constrained optimization problem in Publication 3. The efficient
evaluation of all the solutions as a function of the shrinkage parameter is intro-
duced. Similä and Tikka (2008) utilize a similar constraint structure in the training
of the MLP network resulting in sparse networks in terms of both input variables
and hidden nodes.

Nonlinear regression techniques include hyperparameters that control smoothness
of the resulting mapping. Nevertheless, the hyperparameters typically restrict only
the effective complexity of the model without reducing the original number of in-
put variables. SISAL-RBF is proposed in Publication 5. It is competitive for input
variable selection for two reasons. First, it includes only one hyperparameter, the
width of the basis function, since the regularization parameter is determined au-
tomatically using the leave-one-out CV error. Second, the backward elimination
of inputs depends linearly on the number of input variables as opposed to usual
quadratic dependency. In Publications 6 and 7, the idea of the usage of a weighted
norm instead of the standard Euclidean distance in the Gaussian basis function
by Poggio and Girosi (1990) is adopted and developed further. The constraint
optimization problems are proposed for simultaneous scaling and selection of the
inputs. Depending on the structure of the constraint imposed on output layer
parameters, either the effective or actual number of basis functions is reduced. In
both cases, variable selection and complexity control is performed by minimizing
a single optimization problem, that includes two continuous-valued hyperparame-
ters.

Extensive experiments are conducted to empirically evaluate the proposed variable
selection methods. They are compared to numerous other methods using both
artificial and real world benchmark data sets. The complexity of each model, such
as the number of inputs in the stepwise methods or the hyperparameters in the
optimization problems, is always automatically defined according to an estimate of
the generalization error. Eventually, the models are compared and assessed based
on the results on a test data set that is completely independent from the data sets
that are used in the training and the complexity determination of the models. All
the conclusions, for example the usefulness of a subset of inputs, are supported by
the prediction accuracy of the model on the test data.

The following arguments justify the proposed input selection methods. First, the
sparse models have nearly always smaller prediction errors than the models in-
cluding all the input variables. Second, the suggested methods are at least equally
accurate as the other evaluated variable selection methods. Third, in most of the
experiments the proposed algorithms select smaller numbers of inputs than the
competing approaches. Fourth, sparsity places focus on the useful variables and
makes interpretation of the model easier. Fifth, relative importance of the selected
inputs is assessed. Sixth, the training is computationally efficient. Seventh, the
correct inputs are found in the cases of artificial data sets. The ultimately best
subsets for real benchmark data sets are not known, but the obtained subsets
certainly produce competitive prediction results.
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There are obviously plenty of possibilities for future research. Overall, it would
be extremely insightful to validate the interpretability of the proposed methods in
cooperation with domain experts. In several applications, the number of inputs
exceeds the number of observations. In such a case, SISAL is not directly appli-
cable, but it could be combined with the ridge regularization. Furthermore, the
additional hyperparameter could be determined similarly as in SISAL-RBF. The
applicability of the proposed methods would also be improved by extensions to
classification problems. A straightforward reformulation for the AW-RBF network
is to replace the current cost function with the negative log-likelihood function that
is shown in Equation (2.12). Moreover, Girolami (2002) and Dhillon et al. (2004)
apply kernel functions to clustering of data. Perhaps, an adaptively weighted
kernel could be utilized in that context as well.
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