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Complex systems are composed of a large number of interacting elements such that the system as a whole exhibits
emergent properties not obvious from the properties of its individual parts. In the network approach, complex systems
are represented as networks whose vertices and edges correspond to the elements and their interactions, respectively.
Many networks, such as networks of protein interactions or social relationships, contain sets of densely interconnected
nodes, communities, which play a concrete functional role in the original system, such as the group of proteins related
to cancer metastasis. Detecting such communities in large networks has rapidly become one of the focal topics in the
science of complex networks. The challenge in community detection is to define what constitutes a community in such
a way that this definition not only yields meaningful communities but also allows for sufficiently fast algorithmic
implementation to find them.
This thesis contributes to our understanding of community detection in complex networks in three ways. 1) The
limitations of global optimization based community detection methods are analyzed. Here, the focus is on the
dependence of the lower size limit of detectable communities on the tuning parameters of the methods. 2) This thesis
significantly improves two community detection methods by extending their applicability domain: the Potts method is
extended such that it can be applied to dense weighted networks, and a new algorithmic implementation for the
k-clique percolation method is presented. The main advantage of the first method is that it allows analysis of dense
weighted networks without discarding any of the link weights, whereas the advantage of the second method is its speed
especially in the community analysis of weighted networks. 3) This thesis attempts to shed light on the formation of
communities in networks. This is done by introducing a weighted model for social networks, whose mechanisms are
based on empirical observations of social tie formation as well as observations on the topological role of tie strenghts.
In this model, communities emerge only if nodes sufficiently favor their strong connections in the process of
establishing new ones. The model is also utilized in studies of the effects of correlations of link weights and community
structure on dynamics taking place on networks. Simulations of an opinion formation model show that the dynamics is
significantly slowed down due to trapping of opinions in homogenized regions corresponding to communities.
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Kompleksisessa systeemissä on suuri määrä keskenään vuorovaikuttavia elementtejä, jotka muodostavat organisoituja
rakenteita ilman ulkopuolista ohjausta. Kompleksisten verkkojen teoriassa tällaiset systeemit kuvataan verkostoiksi,
joiden solmut vastaavat elementtejä ja linkit näiden välisiä vuorovaikutuksia. Monet verkot sisältävät ns.
yhteisörakenteita, jotka ovat tiheästi kytkettyjä solmujoukkoja. Usein yhteisörakenteet vastaavat systeemille oleellisia
toiminnallisia rakenteita, esimerkiksi syövän leviämiseen liittyvät proteiinit voivat erottua omana yhteisönään.
Tällaisten yhteisöjen löytäminen suurista verkostoista on viime vuosina muodostunut yhdeksi verkostotieteen
avainongelmista. Ongelmana on löytää yhteisöille määritelmä, joka löytää sovelluskohteen kannalta mielekkäitä
rakenteita ja lisäksi mahdollistaa tehokkaan algoritmisen toteutuksen.
Tämä väitöskirja edistää ymmärtämystä yhteisörakenteiden etsimisestä kompleksisista verkoista kolmella tavalla: 1)
Väitöskirjassa tutkitaan globaaliin optimointiin perustuvien yhteisöjenhakumenetelmien rajoituksia keskittyen
erityisesti havaittavien yhteisöjen minimikoon riippuvuuteen mallin parametreistä. 2) Väitöskirjassa esitetään kaksi
merkittävää laajennusta yhteisönhakumenetelmiin: ensimmäinen laajentaa Potts-menetelmää soveltuvaksi tiheisiin
painotettuihin verkkoihin, ja jälkimmäinen on uusi algoritminen toteutus k-klikkiperkolaatioon perustuvalle
yhteisöhaulle. Ensimmäisen menetelmän suurin etu on, että se mahdollistaa verkon kaikkien linkkien huomioimisen
yhteisöanalyysissä myös tiheissä painotetuissa verkoissa. Jälkimmäisen menetelmän vahvuus on sen nopeus erityisesti
painotettujen verkkojen analysoinnissa. 3) Yhteisöjen tunnistamisen lisäksi väitöskirjassa tutkitaan yhteisöjä tuottavia
prosesseja. Tähän käytetään väitöskirjassa esiteltävää painotettua sosiaalisten verkkojen mallia, jonka säännöt
perustuvat empiirisiin havaintoihin sosiaalisten siteiden muodostumisprosesseista sekä linkkien vahvuuden
topologisesta merkityksestä. Malliverkoissa muodostuu yhteisöjä vain mikäli solmut suosivat vahvoja linkkejään
riittävän voimakkaasti uusia kontakteja etsittäessä. Mallia sovelletaan analyysissä, jossa tutkitaan linkkien painojen ja
yhteisörakenteiden välisten riippuvuuksien vaikutusta verkoissa tapahtuviin dynaamisiin prosesseihin. Tähän
käytetään mielipiteenmuodostusmallia, jonka dynamiikassa havaitaan merkittävää hidastumista johtuen
homogeenisten alueiden muodostumisesta yhteisöjen sisälle.
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Chapter 1

Introduction

This Chapter provides an introduction to complex systems and networks research.

1.1 Background

Let us begin with a statement by the famous French mathematician and astronomer
Pierre-Simon Laplace:

”We may regard the present state of the universe as the effectof its
past and the cause of its future. An intellect which at a certain mo-
ment would know all forces that set nature in motion, and all positions
of all items of which nature is composed, if this intellect were also
vast enough to submit these data to analysis, it would embrace in a
single formula the movements of the greatest bodies of the universe
and those of the tiniest atom; for such an intellect nothing would be
uncertain and the future just like the past would be present before its
eyes.”

Pierre-Simon Laplace, 1814

This statement summarises the essence of scientific determinism, which dom-
inated the scientific thinking in the 19th century. This rather mechanistic view on
nature was challenged in the beginning of the 20th century bythe development
of quantum physics, which, among other things, states that it is impossible to
measure the position and momentum of a particle at arbitraryprecision. Without
going further into the philosophical debate related to determinism, it is clear that
our inherently limited computational resources severely restrict the applicability
of such a ”brute-force” approach to understanding nature. Currently, supercom-
puters are able to simulate certain molecular systems consisting of approximately
one million particles for a time period of about10−6 s. However, simulating the
behavior of even a single organic cell by integrating the equations of motion for
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each contained atom/molecule neither makes much sense nor is it possible. In-
stead, the key for predicting and understanding the behavior of the world around
us is simplifying. This approach relies on the assumption that the simplified sys-
tem resembles the original one in its relevant properties even though some details
have been discarded. Evidently, choosing the proper level of simplification is not
always easy. Albert Einstein has said: ”Everything should be made as simple as
possible, but not one bit simpler.” This is one of the leadingideas in complex
systems research as discussed below.

1.2 Complex systems

In the times of Leonardo da Vinci it was possible for a single person to master
practically all branches of science. Since then, the scientific field has been seg-
regating to more and more specialized branches each having their own experts
with profound understanding of a specific subject, such as atoms, molecules, neu-
rons, animals, planets,etc. This reductionistic approach, which concentrates on
the properties of single objects and their interactions, has greatly increased our
understanding of these objects. However, there exits numerous systems whose
behaviour can not be understood by considering the constituent elements in iso-
lation. In such systems the interactions between elements are usually strong and
nonlinear, and the systems exhibit complicated collectivebehavior. Consider, e.g.,
climate, cells, human society, economics,etc.The approach which attempts to ex-
plain the behavior of such systems from the properties and interactions of its parts
is known as complex systems research.

Wikipedia1 defines a complex system as follows:

A complex system is a system composed of interconnected parts that
as a whole exhibit one or more properties [...] not obvious from the
properties of the individual parts.

A simple example is traffic, where the flow of cars may suddenlytransform to
complex patterns of slowly moving jams (1). This behavior can be understood by
computer simulations where each driver has simple rules governing his behavior
(attempt to maintain constant speed and avoid collisions).In particular, the drivers
are not controlled by a supervisor nor do their rules containinstructions related to
collective behavior. Instead,the collective behavior emerges from the individual
actions of agents.Another example is the fluctuations of stock prices, which
amplify every now and then to massive bubbles and crashes when stock brokers
try to guess what other stock brokers will do. Also, biology is full of complex
systems: brain, metabolism, food webs,etc. In fact, complex systems showing
spontaneous, emergent behaviour can be found in almost all branches of science

1An open content encyclopedia, see http://wikipedia.org
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and the multidisciplinary nature of complex systems research often requires that
experts of different fields combine their skills for understanding them.

It should be noted that large number of interacting agents does not always
lead to complex behavior. An example is a box containing one liter of air. This
box contains approximately1023 molecules such that integrating the equations of
motion for each particle is far beyond the capacity of any supercomputer. What
can we then say about this system? It turns out that it is not necessary to know
the precise position and momentum of each molecule in the boxto predict phys-
ically relevant quantities. Instead, this system is well described by the laws of
statistical physics (2), which is a framework for relating the microscopic proper-
ties of individual atoms and molecules to the macroscopic properties of materi-
als. Thus, statistical physics connects the microscopic behavior of particles and
large-scale properties of the system. However, the systemsconsidered in classical
statistical physics, such as the example box of air, are often not complex in the
sense defined above: molecules and their interactions may becomplicated but the
behavior of the whole is simple and can be described by a smallnumber of equa-
tions. Of course, this is not always the case. Consider for example Bose-Einstein
condensation (3), which is a collective phenomenon and can not be understood
by studying the constituent atoms in separation. Phase transitions in general can
be regarded as collective behavior, and related concepts and methods are often
used in complex systems research. It can be argued that instead of classifying dif-
ferent systems as ”simple” or ”complex”, the complex systems approach is best
distinguished from alternative approaches by the questions asked, rather than the
specific systems studied.

1.3 Complex networks

Formally, a network is a collection of nodes and links connecting pairs of nodes.
The links and nodes may be physical entities like routers andoptical fibers of the
Internet, or they may represent more abstract relations like networks of word syn-
onyms. The study of networks has a history in mathematics under the name of
graph theory. It was initiated by the mathematician LeonardEuler, who solved
the Königsberg Bridge Problem in 1736. The question is if it is possible to walk
a route that crosses each of the seven bridges of Königsberg exactly once, see
Fig. 1.1(a). Euler’s solution was based on simplifying the problem by eliminat-
ing all features except the landmasses and bridges connecting them, which were
mapped to nodes and links of a network, Fig. 1.1(b). By considering certain gen-
eral properties of this network Euler was able to prove that such a walk is not
possible. Since then, graph theory has become a highly developed field of dis-
crete mathematics (4).

Pure graph theory deals mostly with regular, abstract constructions, which
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(a) The seven bridges of Königsberg (b) Network of bridges and
landmasses

Figure 1.1: (a) A drawing showing the Königsberg bridges on the 18th cen-
tury, and (b) the related network representing the landmasses and the connecting
bridges.

have little in common with real world networks. A significantadvancement in
graph theory took place in 1950s when Erdös and Rényi (ER) initiated the study
of random graphs (5). A particularly famous random graph model is the ER-
model, whose properties have been comprehensively analyzed and which served
as a model for real world networks for several decades. Sociologists were among
the first who noticed that networks provide an efficient way tostudy empirical
data (6). A network could represent for example a system of people and their
friendships. Networks were also used in the analysis of technological, engineer-
ing, and chemical systems (7; 8), and in computer science (9). Much of this work
was limited to rather small data sets and research focused strongly on the proper-
ties of single nodes. Sociologists modeled social networkswith various statistical
models (10) but otherwise network modeling was rare.

The ”new science of networks”, orcomplex networksresearch, was born in the
late 1990s when large electronic data sets and efficient computational resources
allowed investigating large scale complex systems. In the network approach to
complex systems the interacting elements and their interactions are mapped to
network nodes and links, see Fig. 1.2 for examples. This is done in the hope that
the essential properties of the system are not in the detailsof the elements but
rather in their interaction patterns. Even though this simplification may appear
crude, the simplicity and flexibility of the network approach have made it one of
the primary tools in the modern complex system research.

At the end of 1990s Watts and Strogatz (11) and Barabási and Albert (12)
demonstrated in their seminal papers that real-world networks from very different
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fields have certain universal properties. In particular, they found out that real
networks are far from random ER-graphs. Both of these papersare representative
of the modern network approach: in addition to analyzing large networks, they
represent a model for explaining the results and provide newtheoretical measures
to augment the analysis. During the last decade network theory has developed
extremely rapidly, for reviews see, e.g., (13; 14; 15; 16). Currently, network
theory can be regarded as lying between statistical physicsand graph theory, but
it has also borrowed concepts from other fields of science, such as biology and
network sociology.

This thesis focuses on communities in complex networks – in particular their
detection, emergence, and effects on dynamics. Early studies of networks focused
on basic topological properties such asdegree distributions, clustering, and the
small world effect. These basic characteristics are reviewed in Sec. 2.1. Lately,
the focus of network research has been shifting towards functionality and dynam-
ics of networks. Functionality is often related to densely connected sets of nodes,
which are called communities, modules, or clusters. The fundamental problem
is to exactly define what constitutes a community and how suchstructures can
be efficiently identified in large real networks. These issues were addressed by
the author and coworkers in Publications I, II, V, and VI, andthey are the subject
of Sec. 2.2. Another concurrent focal topic of network research is dynamics –
changes of the network structure and/or dynamics of processes taking place on
networks. During the last decade, network models have turned out to be a valu-
able tool in the study of network dynamics, either by providing feasible artificial
network structures for simulations of dynamical processes, or by attempting to
explain the growth and change of the structure of real networks. Currently, there
is a large number of models which attempt to capture the characteristics of var-
ious types of real-world networks. Social networks that mapthe connectivity
patters of individuals are an important class of networks and a number of models
have been proposed to explain their features. Early models focused on replicating
the most salient unweighted characteristics, whereas models incorporating link
weights and/or community structure have been rare. In Publication IV the author
and coworkers addressed the problem of modelling weighted social networks with
communities and Publication III deals with the effects these network characteris-
tics have on a dynamical process taking place on such networks. The background
for the social network analysis and results of PublicationsIII and IV are reviewed
in Chapter 3. Finally, Chapter 4 summarizes the research of this thesis.
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(a) Internet

(b) Yeast (c) Mobile phone calls

Figure 1.2: Illustrations of various networked systems: (a) Internet at the au-
tonomous systems level (17), (b) part of a protein-protein interaction map of yeast
(18), (c) part of a network of mobile phone calls (19).



Chapter 2

Structural properties of networks

Considering the networks in Fig. 1.2 it is immediately clearthat networks are not
homogeneous: they contain significant structure both at small and large scales.
Measuring and characterizing the properties of networks isthe first step in the
process of understanding the origin and functionality of the underlying complex
system. Below, Sec. 2.1 first reviews the most important network characteristics
that are frequently referred to in the attached publications as well as in this intro-
ductory part. For a comprehensive review of network characteristics see Ref. (20).
Having defined the basic network properties, we move on to mesoscopic network
structures, i.e., communities, which is the main theme of research in this thesis.
Section 2.2.1 deals with the general properties of communities and discusses the
various choices one has to make when choosing a suitable community detection
method. Section 2.3.1 reviews the properties of popular community detection
methods based on global optimization and discusses their recently found limita-
tions. The last part of this Chapter deals with a locally defined community de-
tection method,k-clique percolation, whose properties are reviewed and a new
algorithmic implementation of it is presented.

2.1 Basic characteristics

In general, a network may contain several types of nodes, itslinks can be directed
and/or weighted, and there may be self-links and multiple links between a pair
of nodes. However, in this work, all links are considered undirected, self-links
and multiple links are forbidden, and nodes are of a single type unless otherwise
mentioned. These simplifications are common in complex networks theory, with
the exception that directed networks have received some attention, especially in
the study of WWW and biological systems (21; 22; 23; 24; 25).

Matrix representation. Consider now a network consisting ofN nodes and
L (weighted) links. Such a network can be represented by a symmetric weight
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matrix W = [Wij ], where the elementWij is the link weight connecting nodes
νi andνj, and a zero weight indicates the absense of an edge. A relatedmatrix is
the adjacency matrixA = [Aij ], whereAij = 1 if a link exists between nodesνi

andνj , and zero otherwise. Note that for most networks, only a small fraction of
possible links is present, and hence the matrix representations are sparse.

Degree.The degree is a basic property characterising a single node,measur-
ing its number of neighbors. The degree of nodeνi is given byki =

∑N
j=1 Aij .

A related quantity is the degree distributionP (k), which tells the probability that
a randomly chosen node has degreek. For the majority of real-world networks,
P (k) is fat-tailed, meaning that most nodes have a relatively small number of
neighbors but some nodes, ”hubs”, have huge number of connections (15). It
turns out that these hubs are very important in many ways: error and attack tol-
erance (26; 27), thresholds of spreading processes (28; 29), devising efficient
search stragies in networks (30),etc. The most commonly encountered type of
fat-tailed degree distribution in complex networks research is the power-law (or
scale free) distribution whereP (k) ∝ k−γ . This distribution has several interest-
ing properties: as the name suggests, it looks similar on allscales and (depending
on γ) leads to the existence of hubs of very large degrees. Forγ ∈ [2, 3], which
is the range commonly associated with real-world networks,its second moment
diverges, which is the reason behind many peculiarities related to behaviour of
spreading processes and extreme robustness to vertex removal. After the first pa-
per on scale-free networks by Barabási and Albert in 1999 a lot of work has been
put to identifying such networks as well as developing models to explain their
emergence, see e.g. Refs. (31; 32; 33; 34). Examples of scale-free networks in-
clude Internet, WWW, and scientific citation networks to name a few. Scale free
networks are most often modelled using variants of the preferential attachment
process (12), where high degree nodes are more likely to attract new links than
low degree nodes. Interestingly, scale free distributionsin nature have been ob-
served earlier many times (35) and the related preferentialattachment process has
also been described earlier: Pareto’s law of incomes and wealth in 1897 (36),
Zipf’s law of word frequencies in language in 1949 (37), abundance of species in
taxonomic trees (38), populations of cities (39), and papers published by scientists
(40; 41).

Degree-degree correlations.In social sciences it is well-known that popular
people tend to know popular people. Considering the node degree as a measure of
popularity, this means that high degree nodes have disproportionally many con-
nections to other high degree nodes. In general, the existence of degree-degree
correlations in a network means that the degrees of connected nodes are not inde-
pendent. These correlations are fully described by the joint probabilityP (k, k′),
the probability that a node of degreek is connected to a node of degreek′. How-
ever,P (k, k′) is difficult to measure empirically and thus it is often favorable to
define the average nearest neighbor degree of a nodeνi ask̄nn,i = 1

ki

∑

j∈N(νi)
kj ,
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whereN (νi) denotes the neighbors ofνi. Averaging over nodes of degreek one
obtains this distribution as a function ofk, k̄nn(k). If k̄nn(k) is increasing, then
the network is said to beassortative, and if it is decreasing the network isdis-
assortative. Social networks are usually found to be assortative whereas many
technological networks, like Internet, are disassortative (42).

Clustering. When considering the social relationships we have in our every-
day life, it is common that the friends of a person are also friends themselves. This
phenomenon is characterised by the clustering coefficient (11)

ci =
N i

∆

ki(ki − 1)/2
, (2.1)

whereN i
∆ is the number of edges between neighbors ofi, andki(ki − 1)/2 is

the maximum number of such edges. This means thatci is confined to values
between 0 and 1, where 1 is obtained only if all possible connections between
neighbors are present, and 0 if none of them are present. Related quantities are
the average clustering coefficient〈c〉 = 1/N

∑N
i=1 ci and the clustering spectrum

c(k), which is the average clustering coefficient of nodes havingdegreek. In most
observed networks the level of clustering is high, where ”high” means higher than
in a random reference network of the same size (11). Often,c(k) is proportional
to k−1.

Path length. A path in a network is simply a chain of links forming a connec-
tion between two nodes. The distance between two nodes is defined as the length
of the shortest path connecting the nodes, where the length is defined as the num-
ber of links on the path. A basic characteristic of a network is the average distance
between all pairs of nodes, or the maximum distance, which isknown as the net-
work diameter. A famous property of practically all real-world complex networks
is the ”small-world” phenomenon, which means that the network diameter grows
slowly as a function of the number of nodes in the network, typically as log N .
Thus, even in very large networks, any two nodes are connected by a short path
(in practice the length is of the order of ten or less). In regular lattices, on the con-
trary, the path lengths grow relatively fast as a function ofsystem size1 but even a
small number of random links is enough to make the lattice a small-world while
still keeping the local structure practically unchanged. This competition between
order and randomness in the context of small-world networkswas first studied by
Watts and Strogatz in Ref. (11) and Watts has also written popular science books
of the subject (43; 44).

Weighted characteristics.The above mentioned characteristics are related to
purely topological network properties, in other words ignoring the possibility for
link weights. Many real networks display a large heterogeneity in the intensity
of connections in addition to complex topological structure. Examples include

1Diameter scales asN1/d, whered is the dimension of the system



10 Structural properties of networks

Figure 2.1: A network containing communities (51).

strong and weak ties in social networks (19), fluxes in metabolic reaction path-
ways (45; 46), unequal traffic on the Internet (47), or the number of passengers
in airline networks (48). In general, the weights introducean additional degree
of freedom, which often provides significant new information about the system
under study but it also complicates the analysis of observednetworks as well as
the analytical treatment of weighted network models. Some unweighted proper-
ties generalize easily to the weighted case, e.g., degree, which becomes the node
strengthsi =

∑N
j=1 Wij (48). On the other hand, the weighted clustering coeffi-

cient can be defined in several ways and it appears that none ofthe definitions is
free of problems (49). Weighted motifs are measures of localnetwork structure
that have turned out to be useful tools especially in the analysis of financial and
biological systems (50).
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2.2 Communities

Above, we discussed measures characterizing networks at the level of single nodes
(e.g. the degree) and at the level of the entire network. However, in many net-
works, there are structural features of high importance andinterest, which fall
between these two extremes. An important class of such mesoscopic structures
are communities, which are sets of nodes with denser connectivity to each other
than to the rest of the network. Figure 2.1 shows an example network having a
fairly clear community structure. Communities are important because they can
often be closely related to functional units of the system, e.g., groups of individ-
uals interacting with each other in a society (52; 53; 54), WWW pages related to
similar topics (55), compartments in food webs (56), or proteins related to cancer
metastasis (57). Identifying communities can be regarded as coarse graining the
network, but it should be noted that community detection mayalso provide infor-
mation about the roles of individual nodes. For example, a node at the boundary of
a community may work as an important mediator between communities whereas
a central node provides control and stability to the community (58).

Identifying communities has received a lot of attention during the last years
and the field is still rapidly evolving (59). The problem is twofold: first, there
is no unique way to rigorously define what constitutes a community, and second,
any definition is useful in practice only if it allows for sufficiently fast algorithmic
implementation such that even very large networks can be processed. In the fol-
lowing some general properties of communities are first reviewed. Then, selected
recent community detection methods are presented and theirproperties are ana-
lyzed. In particular, the resolution properties of methodsbased on global mod-
ularity optimization are discussed and a new algorithmic implementation of the
k-clique percolation method is presented.

2.2.1 Communities: properties and definitions

During the recent years the problem of detecting communities has received a lot
of attention and thus it is somewhat surprising that a unique, widely accepted def-
inition of what constitutes a community does not exist. Intuitively, a community
can be viewed as a collection of nodes which are densely connected to each other
while being only sparsely connected to the rest of the network. Consider, for
example, a network of the people of a small village, where thenodes represent-
ing the individuals are connected if the corresponding persons have met during a
certain time period, say, one week. It is easy to imagine thatfamilies appear as
densely connected sets in this network whereas connectionsbetween families are
sparse. Perhaps, if given a visualization of the social network of the village, we
would be able to identify the communities in it. However, theintuitive definition
has to be formulated in more rigorous terms for computers such that the analysis
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Figure 2.2: The word ”play” belongs to three overlapping communities in a word
association network. Figure published in Ref. (66), copyright (2005) Nature Pub-
lishing Group.

of networks consisting of millions of nodes becomes possible.
Defining exactly what constitutes a community is unfortunately a tricky task

such that currently a wide variety of definitions exists. Forevery definition sev-
eral choices have to be made: whether the definition relies onglobal or local
network properties, whether nodes can simultaneously belong to several commu-
nities, whether the link weights are utilized, and whether the definition allows for
hierarchical community structure. Global methods, as the name suggests, utilise
the whole network structure for defining the communities. This can be achieved
in several ways, e.g., by global optimization methods (60; 61), by division al-
gorithms based on different global centrality measures (52; 62), by spectral and
synchronisation methods (63; 64), or by recently presentedinformation-theory-
based methods (65; 25). Local methods, on the other hand, define communities
based on purely local network structure. Examples are thek-clique percolation
method (66) and the recent method by Lancichetti et al. (67),which is based on
finding ”natural” communities around nodes by optimizing a local fitness func-
tion. Global methods have been popular during the last decade but it appears that
recently local methods have gained more popularity. This may be due to the reso-
lution problems of several popular global methods (Sec. 2.3.2). In addition, local
methods are often computationally more effective than global ones.

In general, it is possible that some nodes belong simultaneously to several
communities, in which case the communities are said tooverlap. Overlapping
communities are especially abundant in social networks butthey also appear, e.g.,
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in biological networks. An example of overlapping communities is presented in
Fig. 2.2, which shows three communities sharing the word ”play” in a word asso-
ciation network: one comprising drama-related words, one music-related, and one
children-related. Currently, only a few methods are able todeal with overlapping
communities (66; 67; 68).

Another difficulty in community detection is that networks may contain hi-
erarchical structures, which means that communities may beparts of even larger
communities. This leads to the problem of choosing the best partitioning among
different alternatives. One solution was suggested by Girvan and Newman, who
introduced the concept of modularity as a measure for the goodness of a partition-
ing. The modularity will be discussed in Sec. 2.3.1. Sometimes it may be better to
study the community structure from the point of view of nested hierarchy instead
of choosing a single community partitioning (69; 70; 71), which is the motivation
for the multiresolution methods discussed in the followingsections.

2.3 Community detection methods

Given the various choices in defining a community it is natural that a large number
of methods and related algorithms have been proposed over the years. Traditional
methods used in graph theory, such as hierarchical- and K-means clustering (72),
usually perform poorly for large networks as they strongly restrict the solutions
(the number of communities may be fixedetc.) (59). Thus, most community
detection methods used for complex networks have been developed during the
last decade. This section deals with several important globally and locally defined
community detection methods. The global methods referenced in this work are
modularity optimization, the RB-model, and the AFG-model2, whereas thek-
clique percolation method of Sec. 2.3.4 belongs to local methods.

Global optimization methods have been widely used and they have been shown
to perform well for many test networks. However, it was recently shown that the
most popular method, modularity optimization, suffers from serious limitations
(73). These results were generalized by the present author and coworkers for re-
lated, more general global optimisation methods as discussed in Sec. 2.3.2. The
k-clique percolation method represents a completely different approach to com-
munity detection and does not suffer from the above mentioned shortcomings.
Clique percolation has also other advantages compared to most alternatives but it
should be remembered that it is not free of problems, e.g., itis not designed for
hierarchical community structure and its definition is somewhat rigid such that
some nodes may not be assigned to a community at all. The main limitation of
clique percolation has been the poor performance of the existing algorithmic im-
plementations for large networks. A solution to this issue was recently presented

2See page xiii for the list of abbreviations.
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by the present author and co-workers as explained in Sec. 2.3.5.

2.3.1 Global optimization: modularity and the q-state Potts method

The concept of modularity was introduced by Girvan and Newman in 2004 as a
measure for the goodness of a given partition of a network into communities is
(60). The idea is straightforward: compare the number of links inside communi-
ties to the expected number of links in a random reference network which contains
no community structure. More precisely, the modularityQ is given by

Q =

q
∑

m=1

(lmm − K2
m/2L), (2.2)

wherelmm is the number of links inside communitym, L is the number of links
in the entire network,Km is the sum of degrees of nodes comprising community
m, and the sum is over all communities. The termK2

m/2L corresponds to the
expected number of links inside the communitym for a randomized graph of
the same size and same degree sequence as the original network. Equation (2.2)
shows thatQ will obtain a high value, if the density of links within communities
is much higher than expected by the random reference. The maximum value of
Q is one and it can also obtain negative values, which corresponds to assigning
nodes into communities such that communities are more sparse than the random
reference. An example is a network having multipartite structure, that is, the
network consists of several types of nodes and links exist only between nodes of
different types (71; 74).

Originally, Q was used as a criterion for choosing the best community struc-
ture from a hierarchy of communities. In particular, Girvanand Newman sug-
gested that the partition of the network which maximizes modularity is the best
representation of the community structure of the network. SinceQ is independent
of the method of obtaining the communities, it soon became the object function
to be maximized. One of the first algorithms for modularity maximization was
the greedy method by Newman (75), which was later improved byClausetet
al. such that the algorithm scales to very large networks (76). Other approaches
include simulated annealing (77), extremal optimization (78), and spectral meth-
ods (79; 80). Recently it has been shown that modularity optimization is an NP
hard problem, which means in practice that only approximatemethods can be
used since the computational time for obtaining the true global maximum is likely
to scale exponentially. Modularity optimization has been shown to perform well
for several test networks (81) and it has been used in the analysis of numerous real
networks.

A more general framework for community detection containing the modular-
ity optimization as a special case was introduced by Reichardt and Bornholdt (RB)
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(61; 82). Their method is based on theq-state Potts model, which was originally
developed for modelling a system of interaction spins in a lattice (83). The idea of
the RB-method is that the community indices of nodes correspond to spin states
(1 . . . q) and the interaction between spins is ferromagnetic if the corresponding
nodes are connected and anti-ferromagnetic if they are not connected. The goal
is then to assign the nodes into communities in such a way thatthe energy of the
system is minimized. This means that, as a result of the above-defined interac-
tions, densely connected groups of nodes should end up having parallel spins and,
correspondingly, spins in different groups should be different. The energy of the
system can be written in a form which closely resembles Eq. (2.2):

H = −
q

∑

m=1

(lmm − γ[lmm]pij ), (2.3)

wherelmm is again the number of links inside communitym, [lmm] is its expected
number given the null modelpij, andγ is an adjustable parameter. The null model
pij denotes the probability that a link would exists between nodesνi andνj if the
network was random, i.e., in the absence of community structure. In the case of
modularity, the randomized reference network is called theconfiguration model,
which is one possible choice for the null model also for the RB-method. The
configuration model assumes that all links are randomly rewired while preserving
the degrees of the nodes, which leads to connection probability pij = kikj/2L
(61). Thus, two high degree nodes are more likely to be connected than two low
degree nodes. Another reasonable option for the null model is a constant link
probabilitypij = p, corresponding to the classical Erdös-Rényi random network
model (5). The parameterγ allows to explore communities of different sizes such
that small values yield large communities and vice versa forlargeγ. Note that the
RB method reduces to modularity optimization whenγ = 1 and the configuration
model is used for the null model. Regardless of the null modeland choice ofγ,
the energy (2.3) has to be optimized using approximate methods. A simple way to
do this is simulated annealing with single spin flips and block-flipping, but other
optimization methods are also available, e.g., extremal optimization (78).

2.3.2 Limited resolution of global optimization methods

Despite of the popularity of the global optimization methods, their properties were
until recently not properly studied. For example, it would be natural to assume
that the modularityQ would obtain values close to zero for a random network
which contains no community structure. However, this is notthe case, and it has
been shown that the maximum ofQ may be close to one even in randomized
networks (77; 84). Essentially, this is due to random fluctuations. Authors in
Refs. (77; 84) suggest that the obtained maximum value ofQ should always be
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compared to that of a corresponding randomized network. This is the first sign of
the problems of modularity, because in the definition ofQ, modules are already
compared against a random reference, and the above results indicate that the ob-
tained value ofQ still has to be compared to the corresponding value for a random
network.

Another perhaps even more surprising property of modularity was revealed in
2007 by Fortunato and Barthélemy, who showed that modularity optimization is
unable to detect small communities in large networks (73), aphenomenon known
as limited resolution. This result holds even if the communities are as clear as
possible, i.e., complete cliques connected with single links. By considering sev-
eral example cases Fortunato and Barthélemy demonstrated that the resolution
limit depends on the interconnectedness of the communities, and even consider-
ably large communities may remain unresolved. Analysis of real-world networks
showed that a significant fraction of modules may appear merged when they are
detected using modularity optimization and should be further investigated.

The analysis and examples presented by Fortunate and Barthélemy efficiently
demonstrated the problems of modularity optimization, which immediately raised
the question whether the more general RB-method suffers from the same limita-
tions. In particular, what is the role ofγ and the null model with respect to the
resolution limit? These issues were addressed by the authorand coworkers in
Publication I as discussed in the following.

Let us now briefly go through the derivation of the resolutionlimit for the
RB-method, which was the main result of Publication I. A similar analysis was
performed also in Publications II and VI. Suppose that we have an unweighted
network consisting ofN nodes andL links, and the nodes have somehow been
assigned to communities. Note that the assignment can, but does not have to
correspond to the actual community structure of the network. Consider now two
communities,m andn, which are connected to each other bylmn links. These
communities should be merged by the optimization process ifthis would lead to
a decrease of the energy (2.3). This condition can be shown tobe equivalent to

lmn > γ[lmn]pij . (2.4)

where lmn is the number of links between the communities and[lmn]pij is its
expected value, given the null model. For the configuration model, it is known that
[lmn]pij = KmKn/2L, whereKm is the degree sum of nodes in communitym.
Thus, for constantγ, a sufficiently large network size will always trigger merging
because the right hand side of Eq. (2.4) goes to zero whenL → ∞. This result is
illustrated in the case of a simple example network in Fig. 2.3. It turned out that
this property is not restricted to using the configuration model as a null model.
Instead, it applies to any reasonable null model and is essentially a consequence
of the fact that the average probability of connecting nodesdecreases when the
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Figure 2.3: A schematic of the effect of the tuning parameterγ on the resolution
of the RB method. The ring-like network consists of fully connected sets of nodes
(cliques) that are connected by single links. Whenγ is low, consecutive cliques
are combined to communities in the optimization process. Increasingγ increases
the resolution and the optimal value ofγ depends on the network parameters.
When the network structure is more complex there is no simpleway to decide the
optimal value ofγ.

system size grows and〈k〉 remains constant3. Hence the expected number of
links between two communities will decrease whenN increases, which triggers
their merging. Of course,γ can be used to probe communities of different sizes,
but there is no simple way to decide whichγ gives the most relevant communities.
In addition, the suitable range ofγ depends strongly on network sizeN and the
method may also indicate the presence of a hierarchical community structure even
when there is none, as it tends to artificially merge communities.

Arenas, Fernández and Gómez (AFG) have recently proposed a method for
augmenting modularity optimization, which allows tuning the resolution of the
method (85) somewhat similarly to the above RB method. The trick is to add a
self-link of weightr to each node. This changes the total weight in the network
and thus affects the sizes of the obtained communities. The proposed weighted
modularityQw resembles Eq. (2.3) and the effect of adjusting the parameter r is
qualitatively similar to adjustingγ in the RB-method. The connection between
these methods was studied in Publication II. It turned out that the behaviors of the
resolution as a function ofγ andr are not identical, but essentially all conclusions
about the resolution properties of the RB-method apply to AFG-method as well.
In numerical tests their performance was seen to be very similar.

In addition to AFG modularity optimization, the paper by Arenaset al. (85)

3The number of links grows linearly and the number of node pairs quadratically.
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introduced the concept of stable regions, which is a useful tool for community
detection methods involving continuous tuning parameters. ”Stable regions” de-
note ranges of tuning parameter values where the obtained community structure
essentially remains unchanged. Such regions seem to correspond to ”relevant”
community structures of a network. The criterion proposed by AFG for monitor-
ing the stability was to plot the number of communities as a function of the tuning
parameter and observe flat regions in such a plot. As discussed later in this work,
this criterion may be somewhat crude for real networks. Supposing that the stable
regions have somehow been identified, there is still no simple way to judge which
of the stable partitions are the most relevant ones. As notedby AFG, if such a
measure existed it should be used as the function to be optimized. Nevertheless,
sweeping the tuning parameter and observing stable regionsallows for studying
the community structure at multiple resolutions and gives hints which partitions
may be most relevant to the functionality of the network.

2.3.3 The weighted RB-method

The study of networks focuses mostly on systems whose interaction structure is
sparse, that is,〈k〉 ≪ N . However, there are also networks whose natural repre-
sentation is a full or very dense network, such as, correlation and distance based
networks (86). In such cases the functionality and structure is encoded mostly
in the link weights rather than topology. Currently, however, most community
detection methods are unweighted and can thus be applied only to sparse net-
works. Often dense networks are transformed to sparse, unweighted networks by
removing a fraction of the weakest links and considering theremaining links as
unweighted (66). This is known asthresholding. Setting the proper threshold
weight below which links are neglected is a non-trivial taskand it is clear that
this approach may discard valuable information of the system. Thus, there is a
need for weighted community detection methods which utilise the link weights
as well as the topology. A number of such methods have alreadybeen introduced
(67; 85; 87; 88; 89; 25; 74). The various approaches taken in the above mentioned
references show that there is not a single obvious (or optimal) way of incorpo-
rating the weights in community detection. In the simplest cases the weighted
method is obtained by a change of notation, i.e., node degreeki becomes node
strengthsi and so on. While this approach often works fine, the theoretical justi-
fication for the obtained weighted methods may not be as solidas in the case of
unweighted methods. As an example, in Ref. (85) the authors do not define the
used null model. It should be noted that usually the intra-community connections
are implicitly assumed to be strong whereas inter-community links are assumed
to be weak. If this is not true for a particular network, one isforced to use an
unweighted method or to modify the method or the network weights accordingly.

The RB-method was originally introduced in the context of sparse, binary net-
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Figure 2.4:Left: A network consisting ofNb = 4 blocks each havingNc = 10
nodes. Links inside blocks have weightwi = 1 and nodes in different blocks are
connected with links of weightwo = 0.1. Right: An illustration of the effect of
γ on the found modular structure. Large values yield the physical communities
while for small values the communities appear as one large module. If the number
of blocks Nb is large enough, the networks size does not affect the value of γ
where merging happens. The figure is originally published inPublication V.

works but edge weights can readily be taken into account as Reichardt and Born-
holdt mentioned in Ref. (61), without proposing a null model. In Publication VI,
we derived the required weighted null model for the RB-method, discussed its
properties, and applied it to a fully connected stock correlation matrix. In short,
Eq. (2.3) was modified such that strong links inside communities greatly lower
the energy and the expected weight inside a community depends on the strength
sum of the nodes in the community.

Before applying the weighted RB-method to real data, its resolution properties
were analyzed theoretically. The question was when are connected communities
properly resolved, and how does this depend on community sizes, link weights,
number of connecting links,γ, andN . It turned out that the resolution behaves
differently in sparse and dense networks. For sparse networks the resolution be-
haves similarly to the unweighted RB-model, namely, increasing the network size
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decreases the resolution and weak connections between communities reinforce
this behavior, as expected. For the case of dense networks, we considered a sim-
ple example network where all links were present and the modular structure was
purely encoded in the weights. This network hadNb communities each consisting
of Nc nodes and the weights were assigned such that inside the communities the
links had weightwi = 1 and links between nodes in different communities had
weightwb (wb ≤ 1), see Fig. 2.4. Similarly to the analysis in Sec. 2.3.2 the ques-
tion was: when does the weighted RB-method merge two built-in communities
and how does this depend on the network size? We found out that, similarly to
the unweighted RB-method, merging is controlled byγ, i.e., small values yield
large communities andvice versa. However, in the limit of large network size the
resolution does not depend on network size. This happens because the expected
weight between communities[wmn] ≈ N2

c wb is independent of the number of
build-in communitiesNb. Further analysis showed that small communities appear
merged easier than large ones when the weight between communities is increased
by replacing some of the connecting links by stronger ones (wij > wb), but the
network size still does not affect the suitable range ofγ. For practical purposes is-
sues such as the distribution of weights both within and between the communities
are expected to affect these results. In general, analysis of the example networks
in Publication VI suggests that the resolution of the weighted RB-method does
not necessarily decrease when dense networks grow in size, unlike in the case of
sparse networks. In practise this has the consequence that the range ofγ does not
depend onN and the stable regions (see below) are best studied as a function of
γ instead of

√
γ as is done in the case of sparse networks.

In addition to theoretical considerations the weighted RB-model was applied
to a correlation-based network of stock return time series.The structure of this
fully connected correlation matrix had earlier been investigated using a wide vari-
ety of approaches (91; 92; 86; 93), which allowed us to compare the communities
obtained by the weighted RB-method to the known properties of this network. Of
particular interest was the question whether the method is able to reveal stable
regions in the community structure as a function of the tuning parameterγ and
whether these stable communities are relevant with respectto different business
sectors. The results of the numerical optimizations showedthat the number of
communities increases continuously as a function ofγ, meaning that stable re-
gions in the sense mentioned at the end of Sec. 2.3.2 were not seen. However, an
analysis of the sizes of the two largest communities revealed a stable region in the
rangeγ ∈ [1.4, 3], suggesting that the stability of the components should be inves-
tigated using a variety of criteria. Figure 2.5(a) illustrates the classification of the
companies according to Forbes (90), Fig. 2.5(b) shows the obtained communities
whenγ = 1 (weighted modularity), and Fig. 2.5(c) whenγ = 1.4. There it can
be seen thatγ = 1 yields four communities, which appear to be combinations
of the Forbes communities. Forγ = 1.4 (corresponding to the onset of the sta-
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Figure 2.5: (a) The maximal spanning tree and business sectors according to
Forbes (90). (b) The maximal spanning tree and the modular structure obtained
with the RB method forγ = 1. Each color corresponds to a module. (c) The
maximal spanning tree and the modular structure obtained with the RB method
for γ = 1.4. Modules of size larger than two are depicted by different colors
and the rest of the nodes by empty symbols. The figure is originally published in
Publication VI.
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ble region) the obtained communities correspond remarkably well to the Forbes
classification.

According to the above mentioned theoretical and practicalresults it seems
that the weighted RB-method provides a feasible approach for multiresolution
analysis of communities in dense weighted networks. Practical limitations are in
the problem of optimizing the energy function, which has to be done by some ap-
proximate, stochastic method (61; 78). For large systems the energy surface may
be complicated and it is difficult to verify if the obtained solution is close to opti-
mal. One of the problems is that structurally very differentpartitions may result in
only a very small change in the energy. On the other hand, thiscan be interpreted
as a sign that both alternatives represent a feasible community structure.

2.3.4 Clique percolation

Let us now move on from global optimization methods to a localcommunity
detection method, namelyk-clique percolation. A clique, or more precisely ak-
clique, is a set ofk nodes that are all connected to each other, e.g., a 3-clique is
a triangle. As discussed in Sec. 2.1, triangles are abundantin most studied net-
works which is seen as the high value of clustering. When it comes to community
detection, it seems reasonable to argue that most trianglesare confined inside com-
munities. In addition, the larger the value ofk, the more strictly thek-cliques are
restricted to communities because connections between communities are sparse.
The clique percolation (CP) method published by Palla et al.in 2005 (66) relies
on these observations and on the notion that the members of a community should
be reached through densely intra-connected subsets of nodes. Ak-clique commu-
nity is defined as a set of nodes that can be reached by ”rolling” a k-clique over
adjacentk-cliques, where adjacency means that thek-cliques sharek − 1 nodes,
see Fig. 2.6 for illustration. Thus, the clique percolationalgorithm defines the
communities by considering overlapping chains of small cliques, which are likely
to explore a significant fraction of each community, but are not able to ”roll” from
one community to another.

The choice ofk has a significant effect on the found community structure.
Typically used values ofk are between 3 and 6. High value ofk yields tight, in-
ternally cohesive communities whereas small values ofk yield looser and larger
communities. Especially for smallk it is possible that adjacentk-cliques perco-
late through most of the network, which means that there is a single giantk-clique
community which can comprise almost the entire network. In such cases the al-
ternatives are either to use a larger value ofk, or, if the network is weighted, to
remove a fraction of the weakest links similarly to the thresholding in Sec. 2.3.3.
Palla et al. suggested that the most representative community structure for a net-
work is obtained by choosing the largest value ofk where the giant component
may emerge, and then removing all links below a threshold weight w∗, wherew∗
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Figure 2.6: Illustration of ak-clique rolling for k=4. Initial cliqueABCD first
rolls on toBCDE by releasing nodeA and finally it rolls toBDEF by releasing
nodeC. All nodes reached by this type of rolling belong to the samek-clique
community. Figure published in Ref. (66), copyright (2005)Nature Publishing
Group.

is chosen such that the giant component is just about to emerge (66). It should be
noted that it is impossible to knowa priori the suitable value forw∗; instead, it
has to be found by trial and error.

One of the benefits of the clique percolation method when compared to other
community detection methods is that it allows for overlapping communities. As
discussed in Sec. 2.2, overlapping communities are abundant in many types of
networks, in particular in social and biological networks.Therefore, methods
that do not allow overlap are inherently suboptimal for the analysis of such net-
works. Other benefits of the clique percolation method are that it is based purely
on the local topology and it is deterministic meaning that approximative optimiza-
tion methods are not needed. Successful applications of theCP method include
detection of protein communities related to cancer metastasis (57), analysis of
communities in co-authorship, word-association and protein-interaction networks
(66), and time evolution of social groups (94). In the last ofthe above examples
the authors define an interesting way to track communities intime. In general,
this is complicated because communities can appear, merge,grow, break, or dis-
appear as time goes on. The tracking method introduced in Ref. (94) utilizes the
properties ofk-clique communities in a clever way, which, however, is beyond
the scope of this introduction. The main limitations of the CP method are that
some nodes may not be assigned to a community at all, hierarchical structure is
mostly neglected, the performance of current implementations is limited for large
networks, and in general networks whose average degree is very small are prob-
lematic because they may contain only a small number ofk-cliques and thus most
nodes are not assigned to any community.

The popularity of the CP method has been boosted by the publication of a free-
ware program called CFinder (95), which provides a graphical user interface for
performing clique percolation analysis. In the following,the CFinder algorithm
is briefly reviewed in order to compare it to a later implementation. The CFinder
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algorithm begins by finding all maximal cliques in the network, i.e., cliques which
are not subcliques of larger cliques. The algorithm then proceeds by constructing
a clique-clique overlap matrix, whose rows and columns correspond to maximal
cliques and the matrix elements denote the number of common nodes for each
clique pair. Finally, all matrix elements smaller thank − 1 are set to zero and
other elements to 1 with the results that connected components in this thresholded
matrix correspond to thek-clique communities. This approach allows finding
communities for all values ofk from the same overlap matrix. However, if weight
thresholding of the original network is needed, then the whole process including
construction of the clique-clique overlap matrix has to be done separately for each
threshold weightw∗, which is time-consuming. In addition, finding the maximal
cliques may be time consuming for large networks. In general, the performance
of the algorithm heavily depends on the network structure.

2.3.5 Sequential clique percolation

The limitations of the maximum-clique algorithm of CFinderencouraged the
present author and coworkers to develop an alternative clique percolation algo-
rithm. The goal was to design a method which allows rapidly obtaining the com-
munity structure corresponding to multiple weight thresholds and which would
be capable for analyzing networks consisting of millions ofnodes in a reason-
able time. The developed sequential clique percolation (SCP) method fulfils these
goals and provides also a method for visualizing the hierarchical structure ofk-
clique communities in weighted networks. In the following,the basic concepts
of the SCP method and the related visualization scheme are briefly reviewed, for
details see Publication V.

In contrast to the maximum-clique algorithm used in CFinder, which starts
from the full network and proceeds by identifying the maximal cliques, the SCP
algorithm takes the opposite approach. First all links are removed from the net-
work, and then they are restored one-by-one while detectingk-cliques and the
correspondingk-clique communities as they emerge. For unweighted networks
the links can be inserted in an arbitrary order, whereas for weighted networks it
may be desirable to sort the links by their weights. Note that, unlike CFinder, SCP
processes only a single value ofk at a time.

The core of the SCP algorithm consists of constructing thek-clique commu-
nities continuously when newk-cliques appear. For each newk-clique, there are
two possible cases: thek-clique can either form its own community or it can
overlap with one or more existing communities. In the lattercase, all overlap-
ping communities merge to form a single community. Thus, efficient detection of
community overlap is crucial for achieving reasonable performance. Our solution
to this is summarized in Fig. 2.7, which shows how we continuously build and
update a bipartite network betweenk-cliques and(k − 1)-cliques (panels (a) and
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Figure 2.7: Illustration of the algorithm for detectingk-clique communities in a
simple example network. Here,k = 3. a) The original network consists of three
3-cliques labeledA, B, andC. 2-cliques,i.e., nodes connected by single links,
are labeled with lower case letters. b) Bipartite network presentation of the clique
structure. Note that in the bipartite network, the 3-cliques B andC, which form
a 3-clique community, are connected by the shared 2-cliquef . CliqueA forms
another3-clique community. c) 3-cliques detected by the first part ofthe algorithm
as links are sequentially inserted into the network. Each new k-clique is denoted
by red nodes whereas nodes associated with existingk-cliques appear gray. d)
Corresponding updates to the(k−1)-clique network as a result of the second part
of the algorithm.k-clique communities correspond to connected components of
this network (shaded areas). Figure published in Publication VI, copyright (2008)
by the American Physical Society.

(b)), how this network is projected to(k−1)-cliques, and, how its connected com-
ponents correspond to the actualk-clique communities (panel (d)). This process is
very similar to ordinary link percolation, and actually in the practical implemen-
tation neither the bipartite network nor the projected network need to be explicitly
constructed. Instead, only book-keeping of the community index of each(k − 1)
-clique is needed, as well as updating the indices of the merging communities.
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One of the benefits of the SCP method is that it allows for obtaining multiple
weight thresholdsw∗ in a fast way. This is achieved by inputting the network links
to the SCP algorithm in descending weight order. In this casethek-communities
after each added link correspond to those of the original network thresholded with
the weight of the last link. Thus, a large number of weight thresholds is obtained
in a single run providing a clear advantage over the maximum-clique approach.
The community detection process can be stopped at any point,which is useful
especially for analyzing dense networks, where the problemis that thek-cliques
start to percolate throughout the network sometimes already when only a small
fraction of strongest links have been added. This is the casefor example in the
network of 354 product categories on the Finnish online-auction site Huuto.net,
where the network is constructed such that nodes correspondto product categories
and link weights correspond to the number of individuals having traded in both
connected categories. This network has an average degree〈k〉 ≈ 250, meaning
that it is very densely connected. In Publication V this network was analyzed by
tracking the formation and merging ofk-clique communities during the process
of adding links in descending weight order. This allowed us to construct a den-
drogram of the communities, shown in Fig. 2.8, where the horizontal axis denotes
the threshold weight at which each community forms or merges. It appears that
the strongest communities are those where (supposedly) themajority of traders
are women. Less than1% of the strongest links were added before the giant
component emerged. Tracking the formation and merging of communities and vi-
sualizing this process by dendrograms provides a multiresolution-type approach
also for thek-clique percolation method, which had previously been regarded as
a single resolution method.

The computational time of the SCP algorithm was shown to scale linearly as a
function of the number ofk-cliques for all networks, which was expected because
eachk-clique is processed exactly twice (detection and finding overlappingk-
cliques). Scaling is often linear also as a function ofN , but this is not the case for
certain networks where the number ofk-cliques grows faster than linearly when
N increases. Such networks are typically projections of bipartite networks, such
as coauthor (96) and movie actor networks (54; 11). For largebipartite networks
it may thus be preferable to use recently published bipartite variants of the clique
percolation method (97). In practice, the SCP algorithm is very fast for most
networks and obtaining 4-clique communities for a 4 millionnode mobile phone
call network (19) takes about one minute with a desktop computer.

The basic clique percolation method considers the link weights only indirectly
through the network thresholding process. The weighted clique percolation algo-
rithm (WCP) published in 2007 by Farkas et al. (89) improves this situation by
assigning a weightIc to eachk-clique, whereIc is defined as the geometric mean
of the link weights in the clique (also known as clique intensity (50)). Similarly to
the weight thresholding in normal CP method, WCP involves thresholding such
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Figure 2.8: Dendrogram visualization of the community structure of the trading
categories of the Finnish online auction site Huuto.net detected with the SCP algo-
rithm for k = 3 (a) andk = 4 (b). Figure published in Publication VI, copyright
(2008) by the American Physical Society.

that only cliques havingIc larger than a chosen limitI∗c are included in the clique
percolation process. The WCP method differs from the CP method because it al-
lows thek-cliques to contain links weaker than the thresholdI∗ (c.f. w∗ for the CP
method) and can thus be argued to be more tolerant with respect to small noise
in the link weights. For networks where strong links prefer to be neighbors of
other strong links the methods give similar communities, but for networks where
the strong links prefer to have weak links as neighbors the resulting communities
can differ strongly. A small modification of the new sequential clique percolation
method allows to use it also for weighted clique percolation. This is achieved by
first detecting allk-cliques, then sorting them according to their intensitiesand
finally constructing the communities by processing thek-cliques in descending
order of intensity. Again, multiple intensity thresholds are obtained in a single
run of the algorithm. Note also that thek-clique weight can be an arbitrary func-
tion instead of intensity, e.g., coherence or sum of link weights.

In conclusion, the clique percolation method discussed above has many de-
sirable properties: it is deterministic, based on local topology, allows overlapping
communities, resolution is tunable by changingk or threshold limit, and the new
sequential clique percolation algorithm allows its usage for very large networks.
The main limitations are the somewhat restricted treatmentof hierarchies and the
fact that a large fraction of nodes may not be assigned to any community. Com-
pared to most other methods it is simple, reliable, and fast.
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Chapter 3

Social networks

The recent high level of interest in social networks is largely due to their relevance
to various processes taking place in society, such as spreading of cultural fads
or diseases. In addition, analysis and modelling of social networks helps us to
understand how the behavior of individuals and their interactions translate into
large-scale social systems. In this Chapter the history of social network analysis is
first briefly reviewed together with the most prominent features of social networks.
Then, we move on to social network models, where of particular interest is the
weighted networks model by the present author and co-workers. This model plays
a central role in our attempt to explain the connection between microscopic rules
of social tie formation and the formation of communities.

3.1 Background

According to the network paradigm, "the social world consists of a web of inter-
actions and relationships channelling information and resources of various kinds
among social actors. Thus, social life consists of the flow and exchange of norms,
values, ideas, and other social and cultural resources." (98) In general, a social
network is a set of actors and relationships among them. The actors can vary from
individuals to nations, and their relationships can be, e.g., friendship, kinship,
sexual, business, or political contacts, or a mixture of those. Here, the focus is on
networks between individuals.

Social networks were among the first networked systems to be studied. So-
ciologists conducted first empirical studies of social networks in mid-1930s, but
it was not until the late 1950s that the sociological community started developing
an interest in applications of graph theory (6; 99). Social relationships between
individuals were typically mapped through questionnaires, which allowed taking
a wide spectrum of interactions into account. However, acquiring respondents and
processing such questionnaires was laborious and costly, restricting the studies to
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small samples consisting of at most hundreds of individuals. In addition to small
sample size, this approach has the problem that the interactions are based on indi-
vidual recollection containing possibly significant individual biases. For example,
it has been observed that the reported mutual interactions are often asymmetric,
i.e., person A may name person B as a very close friend whereasB considers his
relation to A as rather distant (100; 101).

Physicists entered the field of social networks (and complexnetworks in gen-
eral) in the end of 1990s when the availability of large electronic data sets and ef-
ficient computational resources allowed studying systems whose sizes vary from
thousands to millions of individuals (16). Earlier, sociologists had focused mostly
on the properties of single nodes, e.g., a typical question being who is the most
central or influential individual in a network? However, single-node-level proper-
ties become relatively meaningless in large networks, where the interesting ques-
tions are related to distributions, statistical properties and averages of various
quantities. This approach is familiar for physicists who have plenty of experi-
ence in working with statistical mechanics, critical phenomena,etc., and numer-
ous concepts of physics have turned out to be very useful in the network analysis.
The role of physicists in the field of social networks has concentrated to analysis
of the topological properties of networks, developing new concepts, algorithms,
and models, and applying the methods, whereas drawing conclusions about the
social concepts has been mostly left for sociologists who have been slow in em-
ploying the physics methodology. Also, not all sociologists have been happy with
physicist entering their field (10).

3.2 Structure of social networks

Large scale social networks which have been studied so far include e-mail (102;
103; 104), phone calls (19; 105), co-authorship (96; 106; 107), movie actors
(11; 108), and instant messaging networks (109) to name a few. It should be noted
that networks obtained from electronic data sets involve only a very restricted
scope of social interactions, be it phone calls, number of e-mails, etc. Thus, it
should be understood that the resulting network serves onlyas a proxy for the
underlying ”true” social network. The advantage of electronic data sets is that
they are large, relatively easy to process, and accurate in the sense that subjective
biases are absent.

Perhaps one of the best-known concepts of network sociologyis the ”small-
world effect”, which was already discussed in Sec. 2.1. Thiseffect was first de-
scribed in a fictional story by Karinthy in 1929 (110) and in more scientific terms
in an influential paper by Pool and Kochen in 1978 (111)1. The first experimental
studies of the small-world effect were conducted by Milgramin the late 1960s

1This paper was written already in 1958 and circulated twentyyears in preprint form.
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(112). The idea of these experiments was to choose a target person and a set of
random starting individuals, who were each given a package and instructions to
pass the package to a person who they considered to be closer to the target person.
However, the package was to be passed only to a person who was familiar by first
name basis to the current package holder. The packages were supposed to travel
by these rules until they reach the target person. The outcome of the study was
that 64 of the 296 packages reached the target, the median number of intermediate
acquaintances being 5.2. This lead to the famous phrase ”sixdegrees of sepa-
ration”, which appears nowadays often in popular culture, including magazines
(113; 114), TV series (115), plays and movies (116), and games (117; 118).

Another famous concept of sociology is the weak link hypothesis by Gra-
nowetter, which states that the overlap of the circles of friendship around two
individuals increases as a function of the strength of the tie connecting these two
individuals (119). Essentially, this means that strong ties bind communities to-
gether whereas weak ties function as bridges between communities, thus playing
an important role for the flow of information and innovation.This phenomenon is
known as ”the strength of weak ties”.

The recent picture emerging from analysis of large social networks constructed
from electronic databases shows the following common (unweighted) features:i)
degree distributions are skewed or fat-tailed2, ii) high-degree nodes are dispro-
portionally often connected to other high-degree nodes (assortative mixing),iii)
the average clustering coefficient〈c〉 is high compared to random networks,iv)
the average shortest path lengths are small (the small-world property), andv)
communities are abundant. Weighted characteristics have been studied in large
scale systems only recently. One of the first studies was the analysis of a mobile
phone call network consisting of millions of individuals byOnnelaet al.(19; 120).
Nodes in this network correspond to phone numbers and edge weights represent
the total call time between the involved numbers. This network was shown to
obey the above characteristicsi)-v) and the analysis of the connection between
network topology and edge weights supported the weak-link hypothesis, which,
even though having been widely accepted in sociology, had never been empiri-
cally verified for a large data set. In particular, it was shown that weak and strong
links have different roles in the network such that the weak ties maintain the global
integrity of the network while strong ties maintain the communities. This affects,
for example, the speed of information spreading.

3.3 Modeling social networks

The above mentioned empirical findings raise the question how such universal
properties emerge from the actions of individuals, and whether this emergence

2Extremely high degree nodes are absent because no-one can have 10 000 friends.
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can be modelled with simple microscopic rules. In the following, the general
framework for modelling social networks is briefly reviewedand then a weighted
social network model by the present author and coworkers is presented in more
detail.

3.3.1 Basic rules

Modeling social networks helps us to understand how social networks form and
evolve. In addition, artificial networks are useful in simulations of processes tak-
ing place in society, such as spreading of infection or rumor. Over the years,
numerous models for social networks have been proposed. These range from
the simple small-world model by Watts and Strogatz (11) to more complicated
models, where agents may search for new contacts (121; 122; 123; 124), move
(125; 126; 127), try to be different from the average (128), or the model may be
formulated in a purely abstract mathematical form (129).

Basically all models which bear resemblance to real social networks involve
randomness in the network construction rules, which is natural considering the
complex and irregular structure of such networks. In the following, we concen-
trate on two important classes of social network models, namely topological mod-
els and spatial models. The difference between these is thatthe former utilizes
only the network structure in its rules, whereas the latter assigns an intrinsic (ran-
dom) coordinate for each node and close nodes are more likelyto be linked to each
other than distant nodes. In spatial models the node coordinates can be interpreted
as real geographic coordinates or alternatively as coordinates in an abstract ”so-
cial space”, which may represent hobbies, opinions, occupation, etc. (130; 131).
The reasoning for spatial models can be derived from the sociological concept of
homophily (132), meaning the tendency for like to interact with like.

Topological models, on the other hand, try to mimic real networks by basing
the network construction rules solely on the network topology. These models
can be further divided to dynamic and growing models. Growthmodels (133;
51) may be a good choice for modeling systems where links are rarely removed
and new individuals continuously join the system, e.g., online social networking
systems. However, many social systems are essentially constant in size, or grow
at such a slow speed that the growth can be neglected. This is the case for many
social relationships encountered in our everyday life, e.g., friends, co-workers,
people we meet at hobbiesetc. For such systems the natural representation is a
dynamic model, where the network sizeN is constant but links are continuously
created and removed. In dynamic models the networks are constructed from an
initial network by repeating the network evolution rules until the network reaches
a steady state where its statistical properties do not change anymore.

Each topological model, growing or dynamically evolving, has to specify the
rules for addition and removal of links. Network sociology identifies two funda-
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mental processes for tie formation:cyclic closureandfocal closure(102). Cyclic
closure refers to forming ties with close network neighbors, whereas focal clo-
sure refers to forming ties independently of the network distance, and is attributed
to forming social ties through shared activities. Focal closure is typically mod-
eled simply by connecting random nodes. Note that usually this automatically
guarantees short average path lengths in the network. The other tie formation pro-
cess, cyclic closure, is responsible for the formation of ”non-random” structures
in networks, and the most important form of cyclic closure istriadic closure, i.e.,
triangle formation (102). In a model by Davidsenet al. triadic closure was mod-
eled by choosing two random neighbors of a node and connecting them (121).
Marsili et al. took another approach, where each node searches for new ”friends”
by forming links to nodes reached with two step random walks (123). It should
be noted that the concepts of cyclic and focal closures did not appear in physics
literature until 2007 (124) and, therefore, it seems that most topological models
have been based on intuition and common sense of social tie formation instead of
empirical findings.

For link removal there are two basic choices: removing nodesincluding all
its links or removing single links. The node deletion process can interpreted such
that the node leaves the visible scope of the network. For example, in a mobile
phone call network an individual changes the operator. Since the network size is
constant a new node must appear after each node removal. The latter link removal
mechanism could correspond to dissolving and eventual disappearance of social
ties between individuals (134).

Most likely an ultimate model for social networks should incorporate both
spatial and topological mechanisms as well as both link deletion mechanisms.
However, these would significantly complicate the model anda proper analysis of
such a model would be extremely difficult. Currently, there are several topological
models that are able to reproduce the essential topologicalproperties of social
networks, i.e., skewed degree distribution, assortative mixing, high clustering, and
small path lengths. Some models contain also community structure (122; 51) but
in general it appears that there is no single model which is able to simultaneously
capture all topological properties (135). In addition, social network models that
scale to larger than hundreds of nodes have so far been unweighted, which is a
significant drawback considering the important role of linkweights in real social
networks (19; 119; 120).

3.3.2 Weighted social network model

In Publication IV the present author and coworkers presented a weighted social
network (WSN) model, which attempts to be as simple as possible while still
capturing the interplay between link weights and topology.The WSN model is a
topological model, where links are created by weighted local searches and random
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Figure 3.1: The rules of the local search for new acquaintances in the weighted
social network model: nodei chooses one of its neighbors, nodej, with probabil-
ity wij/si, wherewij is the weight of the link connectingi andj andsi =

∑

j wij

the strength ofi. If the chosen nodej has other neighbors apart fromi, it chooses
one of them, sayk, with probabilitywjk/(sj −wij). (a): If k is already connected
to i, this link is reinforced byδ. (b): If the search ends to a node that is not a
neighbor ofi, this link is established with probabilityp∆. (c): Nodei can also
create a link to random nodel with probabilitypr. In cases a) and b) the weights
of involved links are increased byδ. Figure published in Publication IV, copyright
(2007) by the American Physical Society.

attachment, and the number of links is controlled by random node removal. The
essential difference to previous models is that the local search, which consists of
two random steps from the initial node3, utilizes the link weights such that the
search most likely follows strong links. In addition, each time a link is visited in a
local search its weight is increased byδ ≥ 0. This weight reinforcement process
can not be justified by direct empirical findings, but it seemsplausible that every
interaction makes further interaction even more likely. For detailed explanation
of the model rules see Fig. 3.1. Typical simulations were conducted forN =
5 · 104 networks such that simulations consisted of 25000 iteration steps, which
was enough to reach the steady state. Even larger networks could be generated
if needed, the upper limit with current desktop computers issomewhere between
105 and106 nodes depending on how many days one is willing to wait. Measuring
statistical properties requires a large number of network realizations for each set
of parameters, which accordingly increases the required computational time.

The most essential parameter in the model is the amount of weight reinforce-
mentδ, while other parameters can be regarded as tuning parameters for achieving
desired average degree and controlling the number of randomlinks. The WSN
network properties were thus studied as a function ofδ. In the unweighted case
δ = 0, the WSN model was found to capture the basic properties of social net-
works except community structure [featuresi)-iv) of Sec. 3.2], which was ex-

3Each node searches for new acquaintances by first choosing (uniformly) randomly one of its
neighbors, say nodeνj , and continues by choosing a random neighbor of nodeνj .
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Figure 3.2: The effect of changingδ is seen in the snowball samples (136) of
WSN networks with (a)δ = 0, (b) δ = 0.1, (c) δ = 0.5, and (d)δ = 1. Link
colors change from green (weak links) to yellow and red (strong links). The aver-
age degree is 10 for each network. Figure published in Publication IV, copyright
(2007) by the American Physical Society.
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Figure 3.3:Rk=4 (�) and〈ns〉 (△) as a function ofδ for WSN networks of size
N = 5 × 104. Results are averaged over 100 network realizations and error bars
are measured standard deviations. Figure published in Publication IV, copyright
(2007) by the American Physical Society.

pected because forδ = 0 the WSN model resembles the unweighted models by
Marsili (123) and Davidsen (121). Forδ > 0, these basic characteristics were
found to remain essentially unaltered, which is a sign that they are robust against
small variations in the implementation of the triadic and focal closure processes.

The most important observation in Publication IV was that sufficiently large
values ofδ lead to the formation of communities in the network. This is illustrated
in Fig. 3.2. For large values ofδ, the used paths rapidly gain more weight because
the local search process favors strong links and reinforce them further. Thus,
the local searches have a tendency to end up to familiar neighborhoods, which
eventually leads to communities with strong internal linksand weak links between
them (as seen in Fig. 3.2 and confirmed by link percolation analysis). Figure 3.3
shows the relative size of the largest 4-clique communityRk=4 and the average
size of communities excluding the largest one〈ns〉 as a function ofδ. When
δ = 0, communities are small and the largest community contains approximately
50 nodes. Increasingδ makes the network first homogeneous in the sense that 4-
cliques percolate through most of the network, but asδ becomes larger the nodes
begin to condensate in tighter communities. Whenδ > 0.2 the network contains
communities whose average size is about 20 nodes while the largest community
consist of several hundred nodes.

The significance of the WSN model is that it demonstrates thatthe weights are
an essential part of the microscopic mechanisms responsible for the formation of
communities in social networks. It seems reasonable to assume that similar pro-
cesses might also be (at least partly) responsible for the formation of communities
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in other types of networks.

3.3.3 Dynamics on WSN networks

In addition to demonstrating the importance of weights on community formation,
the WSN model is suitable for producing realistic large scale weighted networks
to be used in simulations of dynamic processes. Typical dynamical processes
related to society include disease spreading (137), spreading of information or ru-
mors (138), opinion formation, and strategic games like Prisoner’s dilemma (139).
Historically, these processes were first studied under the assumption of homoge-
neous mixing, which means that every agent in the system has equal probability
to interact with any other agent (140). Often this approach allows for analyti-
cal treatment of the model through differential and rate equations, but it is clear
that neglecting the networked structure of contacts is a severe limitation. Thus,
it is not surprising that all of the above mentioned processes have recently been
studied on networks (141; 28; 142; 143). As expected, the network structure has
significant effect on the behavior of the models, e.g., the existence of hubs in net-
works decreases the epidemic threshold dramatically meaning that diseases spread
and persevere much more easily than in the homogeneous mixing case. On the
other hand, vaccinating the hubs provides an efficient way toprevent the outburst
of contagious diseases (144; 29; 27). The effect of community structure has also
been studied to some extent. For example, it is found that communities cause trap-
ping of information (19) and that in the Prisoner’s Dilemma game communities
promote cooperation (145).

In Publication III the WSN model was used to study the effectsof link weights
and community structure on the dynamics of a weighted opinion formation model.
Thesocial influence (si)model used here is based on an unweighted model , the
AB model, which concerns the competition of two extreme opinions A and B and
also includes a third state AB between these (146). The AB state can be regarded
as neutral or ambivalent, and state A can change to B (and viceversa) only through
this intermediate state. Each node is in one of the three possible states and nodes
change their state depending on the states of their nearest neighbors. In particular,
the probability of a node to switch to state A is the larger thelarger fraction of
its neighbors in state A is (and similarly for state B). Thesi-model is a weighted
modification of the AB model such that the interaction strengths are taken into
account in the state switching probabilities. At the beginning of the simulation
the states of the nodes are drawn randomly and the simulationproceeds by up-
dating the states in a random order until a consensus is reached. The question of
interest is under which conditions consensus is reached andwhat is the process
of emergence and growth of spatial domains of nodes in the same state. This
was investigated by numerical simulations for networks of size N = 3000 and
δ = 0.5, corresponding to fairly pronounced community structure.In addition to
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the weighted social network models, we used two types of randomized reference
networks: 1) fully randomized networks where the links of the model networks
were randomly permuted while preserving the degree sequence, and 2) networks
where the link weights of the model networks were randomly permuted while
keeping the network topology unchanged. All results were averaged over a large
number of network realizations. When comparing the simulation results for each
network type we observed that both the distribution of weights within network
topology and the community structure have a pronounced effect on the time it
takes for the system to reach consensus. In particular, the dynamics turned out to
be much slower in the weighted social network model than in the reference net-
works, which can be attributed to trapping of homogenous domains of opinions
inside communities, so that global consus was difficult to reach.

Thesesi-model simulations demonstrate that the correlations of link weights
and community structure have significant effect on the dynamics taking place
on the network. Thus, in the future there is a growing need formore realistic
weighted network models, which can help us to understand various dynamic pro-
cesses on networks. Possible applications are, for example, predicting and pre-
venting the spread of infectious diseases, or manipulatingthe spread of political
opinions, fashion etc.



Chapter 4

Summary of the results and
discussion

Section 4.1 below summarizes the research of this thesis, especially the findings
in the attached publications. Then, Sec. 4.2 discusses the future aspects of com-
munity detection and related complex network research.

4.1 Summary of the research

The limited resolution of theq-state Potts method was studied in Publication I.
This work generalizes the results of Fortunato and Barthélemy, who showed ear-
lier that modularity based community detection methods have a resolution limit
such that small communities in a large network are invisible. The q-state Potts
method, or RB-method, is a general framework for community detection and it
contains the modularity optimization as a special case. In particular, the null
model, which describes the random reference network to which the actual net-
work is compared, is arbitrary in the RB-method. Furthermore, it contains a pa-
rameterγ which allows probing communities of different sizes. The communities
are obtained by assigning nodes to communities such that theenergy of the sys-
tem is minimized. Our goal was to find out how the resolution ofthe RB-method
depends on the null model andγ.

First, we studied the optimal network structure for the RB-method, i.e., the
structure that gives the minimum energy. The result was thatthe optimal network
consist of a ring ofn∗ fully connected communities, wheren∗ ≈ √

γL andL is
the number of links in the network. This means that, given a ring-like network
of n maximally intraconnected cliques (n > n∗), the obvious built-in commu-
nities are not resolved by optimizing the RB energy; instead, some communities
appear merged, which is counter-intuitive and clearly an unwanted property of the
method. We continued by considering the resolution threshold for a general null
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model, where the main result was that communities of approximately the same
size are not properly resolved if their sizes are less than approximately

√

Nlst/γ,
wherelst is the number of links connecting the communities. This order of mag-
nitude estimate does not depend on the chosen null model. Themain argument
was that because the null model has to be properly normalized, i.e., the expected
number of links isL, then the average connection probability between nodes has
to decrease asN increases. This, in turn, decreases the number of expected links
between any groups of nodes, and eventually triggers merging. We illustrated
these results with several example cases. The results of Publication I indicated
that when the community structure is not known beforehand, there is no simple
way to decide whichγ gives the most relevant communities and the ”natural”
choiceγ = 1 is of no special importance. However, the ability to changeγ pro-
vides a clear advantage to traditional modularity optimization, which is restricted
to a single resolution.

The above mentioned problems of modularity optimization encouraged Are-
nas, Fernández and Gómes (AFG) to propose a new community detection method,
which extends the modularity by introducing a self-link of weightr to each node.
By varying r one is able to change the resolution of the method. This method
has several similarities with the RB-method, and thus it wasworth studying if the
AFG-method suffers from the same limitations as the RB-method. We first pub-
lished the results in a conference proceedings (not included in this thesis) and later
in a shortened form in Publication II. There it was shown by theoretical derivations
that the resolution of the AFG-method is limited similarly to the RB-method even
though the methods are not identical. These results were augmented by numerical
simulations, where the methods performed very similarly. In the last example case
in Publication II we used a weighted version of the RB-methodas introduced in
Publication I (the AFG-method was originally formulated for weighted networks
). No stable plateaus were seen when plotting the number of communities as a
function ofγ or r, which suggested that the finding the relevant communities by
these methods may not be as straightforward as claimed by AFGin Ref. (85).

In Publication VI we continued the work related to the RB community detec-
tion method, this time by considering its application to weighted networks. Even
though including the weights in RB method is not particularly difficult, one has
to be careful with the null model. In fact, as mentioned above, we introduced
a weighted RB-model already in Publication I, but the null model in Publica-
tion VI was better justified. We derived the weighted null model and theoretically
analyzed the resolution properties of the weighted RB-method by using simple
example networks. We found out that for sparse networks the behavior is qualita-
tively similar to the unweighted model whereas if the network is dense (or full),
then the resolution of the method is independent of the network sizeN . In par-
ticular, the range ofγ does not depend onN . We then applied the method to
a full stock correlation matrix and found out that the methodwas able to obtain
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meaningful communities. By monitoring the sizes of the two largest communities
we identified a stable region, which corresponded well to theForbes company
classification. It seems that the RB-method is a reasonable choice for analyzing
the community structure of weighted networks, in particular for dense networks
where most methods have to discard the majority of links by thresholding them.

Publication V dealt with an another kind of community detection method,
namelyk-clique percolation. This method has several desirable properties, for
example, it is able to deal with overlapping communities. However, the available
implementations have been extremely slow for large networks. In Publication V
we presented a new sequential clique percolation algorithm(SCP) which is effi-
cient for small values ofk allowing the analysis of networks of millions of nodes
and links. The scaling of the computational time of the algorithm was investigated
by applying it to three types of networks of varying sizes. Itwas found out that
for each network type the computational time scales linearly as a function of the
number ofk-cliques in the network. This scaling was justified by simpletheo-
retical arguments. The SCP method was found to be particularly well suited to
the analysis of weighted networks as discussed in Publication V. In particular, it
is able to extract the community structure at multiple weight thresholds in a sin-
gle run, which is a significant improvement compared to earlier implementations.
This feature can be utilized, e.g., in constructing a dendrogram visualization of the
hierarchical structure of the communities, which we demonstrated by applying the
method to a product category network obtained from a Finnishonline auction site.
The main limitation of the SCP method is its poor performancefor large values of
k for networks containing large cliques. However, currentlyin practical applica-
tions of the clique percolation method the best results havebeen obtained whenk
has been 5 or less. The SCP method is simple to modify such thatit can be used
for weighted clique percolation, as described in Publication V.

Publications III and IV consider how to model networks containing commu-
nities and how such structure affects the dynamics taking place on the networks.
In Publication IV we presented a model for weighted social networks, which was
inspired by the actual processes responsible for social tieformation as identified
in the social sciences. Our goal was to keep the model as simple as possible while
still capturing the most salient topological features and weight-topology correla-
tions of real social networks. The model contains a parameter δ, which controls
how strongly the local search processes reinforce visited links. Whenδ = 0 the
model is unweighted, whereasδ > 0 generates weighted networks. We observed
that the basic topological properties of the resulting networks corresponded well
to those observed in real social networks for all values ofδ, but community struc-
ture emerged only ifδ was large enough, approximatelyδ > 0.1. This effect
was analyzed using the clique percolation method (where thealgorithm of Publi-
cation V was used because existing methods were too slow) andthe connection
between link weights and topology was further investigatedby link percolation.
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The results showed that strong links are restricted to communities whereas links
between communities are mainly weak, which is in agreement with empirical
findings. The introduced model demonstrated that weights and the related micro-
scopic rules are likely to play an important role in the formation of communities
in social networks. It seems that the model provides an excellent way to gener-
ate artificial networks resembling real weighted social networks. Unfortunately,
because of correlations between weights and topology, an analytical treatment of
the model has proven to be difficult and despite of numerous attempts none of the
basic characteristics can currently be derived analytically.

The model networks of Publication IV were used in Publication III to study
the effect of link weights, community structure, and the correlations of these to
the dynamics of a three state voter model. We first reviewed briefly the related
results of the Voter model and AB model for unweighted networks containing
communities and defined then a weighted extension of the AB model. A question
of interest was the time it takes to reach consensus and how homogeneous spatial
domains emerge and grow. Simulation of thesocial influnence (si)-model on
WSN networks and on randomized reference networks showed that the layout of
the weights as well as the community structure both increasethe time to reach
the consensus significantly. Essentially, nodes in each community were rapidly
homogenized to the same opinion, but global consensus was difficult to reach
because communities were weakly connected to each other.

4.2 Discussion

During the last decade numerous community detection methods have been pro-
posed. However, it should be noted that so far the practical applications of com-
munity detection methods have been few, if one does not countthe applications
used for demonstrating the performance of each method. Often such applications
are somewhat artificial because showing that a method detects the communities
properly requires that one more or less knows the communities beforehand. For
such networks there is not really a need for community detection. Currently, how-
ever, there are several efficient community detection methods and it can be ex-
pected (or hoped) that in the future the focus will change from developing new
community detection methods to actually using the existingmethods in the anal-
ysis of various networks.

The most common application of community detection methodsis to find out
which nodes comprise the communities. Consider, for example, proteins related
to cancer metastasis (57). Even greater potential for interesting applications can
be achieved by combining meta-data about the nodes with the knowledge of the
communities. As an example, in the context of mobile phone call networks such
meta-data could be the post code, gender, and age of the ownerof each phone
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number. The relation of such meta-data to network structurehas recently been
studied by Lambiotteet al. in Ref. (125), Lescovec and Horvitz in Ref. (109), and
Blondel et al. in Ref. (147), of which the last one included communities in the
analysis.

Another example of possible future use of community analysis – and the net-
work approach in general – is augmenting the customer data analysis of compa-
nies. This is particularly straightforward for online networking services1 where
the networks naturally form from the interactions of the individuals. By analyz-
ing the resulting networks it could be possible to target marketing, bonus features,
new products, rumors, etc. to a small fraction of the most influential users, who
would then rapidly spread these to their friends. When it comes to communities
it is known that usually new ideas spread fast inside communities but slowly be-
tween them. Therefore, it might be advantageous to identifythe most influential
users in each community and target marketing to them. In addition, some com-
munities are more central than others and one could concentrate only on the most
important individuals in the most important communities. By grouping the users
into communities it would also be possible to monitor how fast the users in each
community adopt new products and how this depends of the community charac-
teristics (average age, gender, etc). This information could provide new insight to
the future product development as well as to marketing.

In addition to customer data analysis it would be possible toconstruct net-
works of products. A link connecting two products could reflect, for example,
how many people own both products or how often they have been purchased at
the same time. For obtaining such data the various bonus-card programs would
be valuable. Analysis of these product networks could provide information of the
buying patterns and interests of the users, which could be used in designing new
products and targeting marketing. Undoubtedly some of these ideas are already in
use in the industry, but it may take a long time until more advanced concepts will
be adopted outside the scientific community.

Multiresolution methods and the problem of limited resolution receive a lot
of attention in this thesis. Even though multiresolution methods are able to de-
tect communities of various sizes and their resolution can be continuously tuned,
the problem of choosing the ”best” community structure among the numerous al-
ternatives remains. In fact, often there may not be a single proper community
representation of a network. Communities can be consideredas dense sets of
nodes compared to their surroundings, but the problem is to define what exactly
is the definition of ”density”, what is the threshold densitythat suffices to form a
community, and how large the included surroundings are. In away detecting com-
munities in networks is analoguous to asking what are the peaks of a mountain
chain. First, at large scales the highest peaks are easily found but when looking

1Consider, e.g., FaceBook or Habbo Hotel
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closer one starts to see smaller peaks that stand out on the slopes of larger peaks.
These smaller peaks are relevant to some extent but ultimately the smallest peaks
appear on microscopic scales and this information is hardlyuseful2. This same
feature is also present in community detection, namely, thedefinition of a relevant
community structure depends of the specific questions asked.

The weighted social network model introduced in Publication IV has received
some attention among network physicists and even among somesociologists. The
simple rules of the model make it easy to understand and thereare numerous ways
one could extend and modify the model, e.g., by tweaking the local search and
link reinforcement rules as well as link deletion mechanism. Currently, the nodes
in the network are considered homogeneous in the sense that all nodes obey the
same rules, but this does not necessarily have to be the case.An example would
be a model where some nodes are more active in searching for new acquaintances
than others. The effect of requiring reciprocity before a new link is established
would also be worth studying. In this case a new link between two nodes would
be established only if both nodes would choose each other in the local search
process. This would make the life of unpopular nodes hard as gaining new links
would be very difficult. Of course, such modifications are most useful only after
the properties of the current model are properly understood, which is work in
progress.

2Consider, e.g., how to name the ”significant” peaks of a mountain chain.
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