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Abstract: Organizations must take decisions on how to allocate resources to `go/no-
go' projects to maximize the value of their project portfolio. Often these
decisions are complicated by several value criteria, multiple resource
types and exogenous uncertainties that in�uence the projects' values.
Especially when the number of projects is large, the e�ciency of the re-
source allocation and the quality of the decision making process are likely
to bene�t from systematic use of portfolio decision analysis.
This Dissertation develops and applies novel methods to manage uncer-
tainty in decision analytic models for project portfolio selection. These
methods capture incomplete information through sets of feasible model
parameter values and use dominance relations to compare portfolios.
Based on the computation of all non-dominated portfolios, these meth-
ods identify i) robust portfolios that perform well across the range of
feasible parameter values and ii) projects that should surely be selected
or rejected in the light of the incomplete information.
These methods have several implications for project portfolio decision
support. Explicit consideration of incomplete information contributes to
the reliability of analysis, which is likely to increase the use of portfolio
decision analysis in new contexts. Furthermore, cost and time savings in
data elicitation may be achieved, because these methods can give robust
decision recommendations based on incomplete data and identify projects
for which additional information is bene�cial. Finally, these methods
support consensus building within organizations as di�erent views about
projects' quality or exogenous uncertainties can be considered simultane-
ously to identify projects on which further negotiations should be focused.
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Tiivistelmä: Organisaatiot joutuvat tekemään päätöksiä siitä, miten jakaa resurssit
projektiehdokkaille pyrkiessään maksimoimaan projektiportfolionsa ar-
voa. Näitä päätöksiä vaikeuttaa useiden arvokriteerien ja resurssi-
tyyppien huomioiminen sekä projektien arvoon vaikuttavat ulkoiset
epävarmuudet. Erityisesti projektiehdokkaiden määrän kasvaessa
portfoliopäätösanalyysimenetelmien soveltaminen auttaa saavuttamaan
tehokkaampia resurssiallokaatioita ja parantaa päätösprosessin laatua.
Tässä väitöskirjassa kehitetään ja sovelletaan uusia menetelmiä epä-
varmuuden hallitsemiseen päätösanalyyttisissä projektiportfoliovalinta-
malleissa. Nämä menetelmät mallintavat epätäydellisen informaa-
tion käypien malliparametrien joukkoina ja käyttävät dominanssirelaa-
tioita portfolioiden vertailuun. Kaikkien ei-dominoitujen portfolioiden
ratkaisuun perustuen voidaan tunnistaa i) robustit portfoliot, jotka ovat
hyviä kaikilla sallituilla malliparametrien arvoilla ja ii) projektit, jotka
tulisi hyväksyä tai hylätä huolimatta informaation epätäydellisyydestä.
Nämä menetelmät hyödyttävät projektiportfoliopäätöstukea useassa suh-
teessa. Epätäydellisen informaation mallintaminen lisää analyysin ja sen
tulosten luotettavuutta, mikä avaa uusia sovellusmahdollisuuksia portfo-
liopäätösanalyysille. Menetelmät mahdollistavat rahallisten ja ajallisten
säästöjen saavuttamisen datan keruussa, koska robustien päätössuosi-
tusten antaminen on mahdollista epätäydellisellä datalla ja ne projektit,
joista lisäinformaation hankkiminen on hyödyllistä, voidaan tunnistaa.
Lisäksi menetelmät tukevat yhteisymmärryksen rakentamista organisaa-
tioissa mahdollistamalla useiden näkemyksien huomioimisen projektien
hyvyydestä tai ulkoisista epävarmuuksista ja tunnistamalla projektit, joi-
hin jatkoneuvottelut tulisi kohdistaa.

Avainsanat: Päätösanalyysi, projektiportfoliovalinta, monitavoiteoptimointi, moni-
tavoitteinen arvoteoria, hyötyteoria, epätäydellinen informaation, ske-
naariot, riskimitat, robustisuus.
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1 Introduction

The allocation of resources to `go/no-go' projects (e.g., products, infrastructure investments,
research themes, policy options) is an important decision problem in public administration
and companies. Achieving maximal project portfolio value for the resources used is often com-
plicated by multiple value criteria, several resource types (e.g., budget, human-resources) and
project interdependencies caused by synergy/cannibalization e�ects or logical dependencies
(Kleinmuntz, 2007; Stummer and Heidenberger, 2003). Presence of exogenous uncertainties
that in�uence the projects' future values motivates consideration of portfolio risks (Gustafsson
and Salo, 2005).

Because the number of alternative portfolios grows exponentially with the number of
projects, the use of decision analytic modeling to address these issues is likely to increase
the quality of portfolio decisions by improving the e�ciency of the resource allocation and
management of risks. Systematic use of these models may also contribute to the quality
of the decision making process by increasing its transparency and by supporting equatable
treatment of project proposals.

Indeed, it is not surprising that plenty of research has been done to develop models for
project portfolio selection. Earliest contributions were published under capital budgeting
(Lorie and Savage, 1955; Bernhard, 1969) using strictly �nancial measures to value projects
and portfolios. Later advances in optimization algorithms and increase in computational
power have made it possible to solve large (mixed integer) optimization models that account
for multiple resources, project interactions and multiple time periods (e.g., Lockett and Gear,
1975; Heidenberger, 1996). In these models, approaches for capturing uncertain project values
vary from assumption of normally distributed project values (e.g., Weingartner, 1966) to
scenario trees that make it possible to model risk-preferences and mutually dependent project
values (Gustafsson and Salo, 2005).

Yet, simple scoring methods that prioritize projects based on aggregate value derived
from their performance on several evaluation criteria (see, e.g., Archer and Ghasemdazeh,
1999) are widely used in practice (Cooper et al., 1999). This may partly be explained by
their applicability, transparency and use of multiple value criteria. Financial measures do
not alone capture the value of projects in not-for-pro�t-organizations wherefore multi-criteria
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approaches are called for. Even in for-pro�t-organizations di�culties in obtaining reliable esti-
mates for �nancial measures are addressed by using supplementary criteria (such as alignment
with business strategy) as indicators of probable long term �nancial performance.

Project scoring methods do not necessarily ensure the quality of portfolio selection, be-
cause they do not explicitly take into account portfolio level considerations, such as multiple
resource constraints, portfolio balance requirements and other project interactions. Multi-
criteria project portfolio models, on the other hand, seek to combine project portfolio op-
timization with explicit consideration multiple value criteria (Golabi et al., 1981; Golabi,
1987). These models build on the well established multi-attribute value theory (MAVT; see,
e.g., Keeney and Rai�a, 1976) to aggregate the multi-criteria project values into a portfolio
overall value and use integer linear programming to determine the optimal composition of
the project portfolio subject to resource and other constraints. Several high impact applica-
tions of multi-criteria portfolio models have been reported in the �elds of military resource
allocation (Ewing et al., 2006), R&D portfolio selection (Golabi et al., 1981), product release
planning (Ruhe and Saliu, 2005) and healthcare capital allocation (Kleinmuntz, 2007), among
others.

In terms of managing uncertainty, earlier project portfolio models are not entirely aligned
with decision support needs. First, optimization models stemming from the capital budgeting
literature assume known probability distributions for project values in the form of decision
or scenario trees, for instance (Heidenberger, 1996; Salo and Gustafsson, 2005). While these
methods are well-suited for dealing with concrete projects with clear sources of uncertainties,
obtaining the needed parameter estimates may be impossible within the time and resources
available when dealing with less concrete projects such as research themes or policy options.
Second, multi-criteria portfolio models rely solely on ex-post analysis of the optimal portfolio's
sensitivity to uncertainties in the model parameter values (see, e.g., Beaujon et al., 2001).

This Dissertation develops methods for managing uncertainty in project portfolio models.
These methods i) explicitly capture incomplete information about model parameter values
through set inclusion and ii) identify the implications of such incomplete information for
project and portfolio decisions. More speci�cally, Papers [I] and [II] develop the Robust
Portfolio Modeling (RPM) methodology, which extends multi-criteria project portfolio models
to address incomplete information about the decision maker's (DM's) preferences, projects'
values, available resources and projects' costs. RPM is applied to support the formation
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of a strategic product portfolio in a telecommunications company in Paper [III]. Paper [IV]
presents a case study in which multi-criteria methods that capture incomplete information are
used in forming priorities for research projects. Paper [V] extends scenario based modeling of
exogenous uncertainties in project portfolio selection to account for incomplete information
about the scenario probabilities and risk preferences.

The rest of this summary article is structured as follows. Section 2 discusses some key
methodological foundations in decision analysis and project portfolio selection. Section 3
summarizes the contributions of the Papers. Section 4 discusses the implications of the
methodological developments for project portfolio decision support and Section 5 concludes.

2 Methodological Foundations

2.1 Multi-Criteria Value of Project Portfolios

Multi-attribute value theory (MAVT; see, e.g., Keeney and Rai�a, 1976; French, 1986; Bel-
ton and Stewart, 2001) o�ers a normative model for decision making in view of multiple
(con�icting) objectives. The mutually exclusive decision alternatives are described by their
performance on several attributes (or criteria) that measure the alternatives' achievement of
the objectives. Under reasonable assumptions the DM's preferences can be captured with
an additive value function in which i) the alternatives' criterion-speci�c performances are
mapped to scores using the (possibly non-linear) criterion-speci�c value functions and ii) the
overall value of an alternative is the weighted sum of its scores. The weights re�ect the relative
importance of the criteria, i.e., the value gained when the criterion-speci�c performance of an
alternative is changed from the worst performance level to the best. Although the validity
of the assumptions behind the additive value function are not always thoroughly tested in
applications, it is often accepted as a reasonable approximation, because more complex value
functions would undermine the transparency of the decision support model (for applications
of MAVT see, e.g., Keefer et al., 2004; Hämäläinen, 2004).

Many project prioritization methods aggregate projects' performances on several criteria
into overall project priorities (cf. overall value), often using approaches that fall into the
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MAVT framework. These priorities are then used to form an optimal portfolio by selecting
projects in descending order of the priority-cost ratios until the budget constraint is met
(Hendriksen and Traynor, 1999; Kleinmuntz and Kleinmuntz, 1999; Phillips and Bana e
Costa, 2007). However, such heuristics do not extend to settings with multiple resources or
project interactions. Indeed, overall values for the portfolios need to be captured to strictly
comply with MAVT framework, since portfolios correspond to the decision alternatives.

Golabi et al. (1981) model the portfolio overall value as a sum of projects' values included in
the portfolio. Optimizing the portfolio overall value subject to multiple resources constraints
leads to a zero-one linear programming problem (ZOLP), for which several solution algorithms
exist (see, e.g., Bertsimas and Tsitsiklis, 1997). The ZOLP formulation can accommodate
various project interactions through use of linear constraints and dummy variables (see, e.g.,
Stummer and Heidenberger, 2003). The additive portfolio value model captures non-linear
criterion-speci�c value functions at the project level, but does not allow decreasing marginal
portfolio value. However, the ZOLP-formulation can be used to restrict the criterion-speci�c
performances of the portfolios to levels where the constant marginal value assumption serves
as a feasible approximation (Kleinmuntz, 2007).

2.2 Scenario-Based Project Portfolio Selection

The values of projects may be in�uenced by exogenous uncertainties, such as market growth,
wherefore the projects' values become mutually dependent. Exogenous uncertainties are a
considerable source of portfolio risk as they may realize as low values for several projects in
the portfolio simultaneously, thus signi�cantly declining the overall portfolio value, too. In
contrast, large deviations from the expected portfolio value are not likely, if the projects'
values are uncertain but mutually independent due to project-speci�c uncertainties.

Managing risks caused by project-speci�c uncertainties should be addressed at the project
level. For instance, decision tree analysis of each project's implementation plan can be used
to identify these risks and optimal mitigation actions (see, e.g., Poland, 1999). Exogenous
uncertainties, on the other hand, should be addressed at the portfolio level because depen-
dencies between projects' values can be exploited to structure the portfolio so that it hedges
against these uncertainties (see, e.g., Kouvelis and Yu, 1997).
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Scenarios o�er a practical tool for capturing exogenous uncertainties for two reasons. First,
an extensive literature exists on processes and methods to structure scenarios (for a survey
see Bunn and Salo, 1993). Second, modeling of risk preferences in scenario based portfolio
models generally results in computationally manageable optimization problems (Rockafellar
and Uryasev, 2000; Gustafsson and Salo, 2005).

The expected utility theory (EUT; von Neumann and Morgenstern, 1947) is the standard
normative theory for modeling decision under risk. If a DM complies with the rationality
axioms of EUT then i) her risk preferences can be captured by a utility function that maps
outcomes of decision alternatives (portfolio values) onto a utility scale and ii) the most pre-
ferred alternative (portfolio) is the one that maximizes expected utility. Risk aversion, i.e.,
preferring a certain outcome to a uncertain one with equal expectation, corresponds to a
concave utility function, wherefore optimizing expected utility of a portfolio generally leads
to a non-linear optimization problem.

Another approach to model risks stems from the context of optimizing a portfolio of market
traded �nancial instruments (Markowitz, 1952; Artzner et al., 1999), where risk measures that
map each random variable (portfolio value) to a real-valued measure for risk are widely used
in practice. For instance, Value-at-Risk (VaR; Jorion, 1996) measures the greatest loss with a
certain con�dence interval. However, VaR does not comply with the requirements for coherent
risk measures (Artzner et al., 1999), because in some cases diversi�cation can increase VaR.
Therefore, Conditional Value-at-Risk (CVaR), the expectation of losses exceeding VaR, has
recently become increasingly popular measure for risk in �nancial portfolio models (see, e.g.,
Rockafellar and Uryasev, 2000).

Portfolio optimization models use risk measures by i) maximizing portfolio expected value
subject to constraints on the portfolio risk (e.g., Dentcheva and Ruszczynski, 2006), ii) min-
imizing the portfolio risk subject to constraints on the portfolio expected value (Markowitz,
1952) or iii) aggregating risk and expected value into a single objective function (e.g., Gustafs-
son and Salo, 2005).
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2.3 Modeling Incomplete Information

In project portfolio selection and decision analysis, the model parameters often describe pref-
erences or subjective beliefs. Hence, obtaining complete information about these parameters
may be time-consuming and costly. Relying on point estimates may result in decision rec-
ommendations that are sensitive to errors in these estimates, caused by misinterpretation of
parameters describing preferences, for instance. Ex-post sensitivity analysis is not readily
applicable for producing robust decision recommendation in problems with dozens of param-
eters.

Motivated by these considerations, methods for incorporating incomplete information (also
partial or imprecise information) about the model parameters have been developed in context
of choosing one of few mutually exclusive, explicitly de�ned, decision alternatives. For in-
stance, Preference Programming methods build on MAVT and model incomplete information
about the criterion weights and scores (e.g, Kirkwood and Sarin 1985; Hazen, 1986; Weber,
1987; Arbel, 1989; Rios Insua and French, 1991; Salo and Hämäläinen, 1992, 1995, 2001; Salo
and Punkka, 2005; Mustajoki and Hämäläinen, 2005). Several approaches also consider in-
complete information about the probability distributions and utility functions (e.g, Fishburn,
1965; White et al., 1981; Rios Insua, 1992; Moskowitz et al., 1993; Smith, 1994).

These methods model incomplete information though set inclusion, i.e., by considering
sets of feasible parameter values that i) are consistent with the given preference statements
or evaluations and ii) are assumed to include the `correct' parameter values. Decision rec-
ommendations are often based on dominance relations: An alternative dominates another, if
it has greater overall value (expected utility) for all feasible weights and scores (probability
distributions and utility functions) and strictly greater for some. Hence, dominated alterna-
tives can be discarded from further analysis and e�orts of eliciting more complete information
can be focused on the remaining non-dominated alternatives. Decision rules can be used to
identify robust alternatives that perform reasonably well across the set of feasible parameter
values.

Incorporating incomplete information in the project portfolio context is not straightfor-
ward. Establishing dominance relations is based on pairwise comparisons of all alternatives
with suitable linear programming formulations. However, in the project portfolio context the
decision alternatives are de�ned implicitly through resource and other constraints, wherefore
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use of pairwise comparisons would require enumeration of all feasible portfolios. Since the
number of portfolios grows exponentially with the number of projects, this approach is appli-
cable only up to some 30 projects and may take several hours (Stummer and Heidenberger,
2003). More e�cient algorithms have been developed in the �eld of multi-objective zero-one
linear programming (MOZOLP; Bitran, 1977; Villareal and Karwan, 1981; Kiziltan and Yu-
caoglu, 1983), which, however, are applicable for solving non-dominated portfolios only for
some special forms of incomplete information.

3 Contributions

The contributions of Papers [I]�[V] are summarized in Table 1. Papers [I], [II] and [V] extend
the methods of multi-criteria and scenario based project portfolio selection to handle incom-
plete information. Papers [III] and [IV] present case studies where multi-criteria methods
that account for incomplete information were applied to support project portfolio selection
and priority setting processes.

Speci�cally, Paper [I] develops the Robust Portfolio Modeling methodology (RPM) that
builds on the additive project portfolio value optimization model of Golabi et al. (1981),
but following Preferences Programming methods, captures incomplete information about the
projects' scores and criterion weights by means of set inclusion. For instance, instead of giving
precise criterion weights, ordinal statements of the form `a unit increase in project net present
value is more valuable than a unit increase in market share' can be used without quantifying
the exact value di�erence. Similarly, projects can be evaluated by assessing intervals on the
criterion-speci�c performances, which can be interpreted as preferential uncertainty (e.g. `the
project's strategic �t -score is between 50 and 60') or uncertainty about future outcomes (e.g.
`the project will generate cash-�ows between 100 and 120 thousand euros').

As in Preference Programming, the focus on portfolios that are non-dominated is well
justi�ed: For any feasible dominated portfolio it is possible to identify a non-dominated
portfolio with greater overall value for all feasible criterion weights and project scores. Decision
rules are applicable in project portfolio context as well to identify robust non-dominated
portfolios whose worst-case overall value across feasible parameters is maximal, for instance.
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Table 1: Contributions of the Papers
Paper Research objectives Methodology / Approach Main results

[I] Extend the use of in-
complete information
to multi-criteria project
portfolio problems

Multi-attribute value the-
ory and multi-objective
zero-one linear program-
ming

RPM methodology that
produces robust project
and portfolio decision rec-
ommendations based on
the computation of all
non-dominated portfolios

[II] Extend the RPMmethod-
ology to account for
project interdependencies
and incomplete informa-
tion on project costs and
budget

RPM methodology and
multi-objective zero-one
linear programming

Budget level dependent
decision recommenda-
tions and cost-to-bene�t
analyses based on compu-
tation of all (cost)e�cient
portfolios

[III] Study the bene�ts of
RPM methodology to
project portfolio decision
support in practice

A case study in sup-
porting strategic product
portfolio formation in a
telecommunication com-
pany

RPM methodology is es-
pecially useful in organi-
zational portfolio decision
contexts to account for
di�erent views and sup-
port consensus building

[IV] Study the applicability of
Preference Programming
methods in participatory
formation of priorities

A case study in a Scandi-
navian research program

Systematic use of multi-
criteria methods con-
tributes to the trans-
parency and equitability
of a priority setting
process

[V] Develop a scenario-based
project portfolio selec-
tion model that accounts
for incomplete informa-
tion on scenario probabil-
ities and risk preferences.

Expected utility theory,
coherent risk measures
and multi-objective zero-
one linear programming

Methodology to identify
portfolios that have de-
sired levels of expected
value and risk in view of
incomplete information

The composition of non-dominated portfolios can be used to analyze the quality of individ-
ual projects. For this purpose RPM de�nes project's core index as the share of non-dominated
portfolios that include the project. Based on the core indexes projects are classi�ed into three
groups: core projects are included in all, exterior projects in none and borderline projects in
some but not all non-dominated portfolios. Therefore, core projects are certain choices, since
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the optimal portfolio would contain all core projects for any weights and scores within the
feasible sets. Similarly, exterior projects can be discarded from further consideration as they
are not included in any of the non-dominated portfolios. E�orts of obtaining additional in-
formation, i.e., narrower project score intervals, should be focused on the borderline projects:
Additional information on core or exterior projects does not reduce the set of non-dominated
portfolios and therefore will not result in more core or exterior projects.

Paper [II] extends the RPMmethodology to account for i) variable resource levels (e.g. bud-
get), ii) incomplete information on projects' resource consumption (e.g. costs) and iii) project
interactions such as project synergies and logical dependencies. Following the usual practice,
project interactions are modeled with additional linear feasibility constraints and dummy
projects whose criterion scores and costs represent the synergy/cannibalization e�ects (see,
e.g., Stummer and Heidenberger, 2003). However, the novel feature in the RPM methodology
is that these e�ects can be modeled as intervals and analyzed with the help of their core
indexes. If a synergy is not active in any non-dominated portfolio, the positive e�ects of the
synergy are not strong enough to justify selection of a portfolio that utilizes this synergy.

For cases where the resource constraints (e.g. budget) are not �xed, Paper [II] builds on
the concept of (cost) e�cient portfolios: A feasible portfolio is e�cient if any feasible portfolio
that dominates it is also more expensive. Since the set of e�cient portfolios includes non-
dominated portfolios for all budget levels, overall values of the non-dominated portfolios and
the core indexes can be visualized as a function of the budget level. This gives insights into
what marginal value could be achieved with additional resources or at which budget levels a
certain project is a core project. Such information can be used for cost-bene�t analyses of
projects and portfolios, and to support determination of the optimal budget level.

The computation of non-dominated portfolios leads to a MOZOLP problem with interval-
valued objective function coe�cients (interval-MOZOLP). Paper [I] develops a dynamic pro-
gramming algorithm for this problem, but assumes non-negative coe�cients in the objective
functions and constraints. This assumption is relaxed in Paper [II], which makes it possible
to solve e�cient portfolios and to handle project interactions. Indeed, the algorithm of Paper
[II] may be of boarder interest outside project portfolio modeling as it is the �rst algorithm
for solving an interval-MOZOLP problem.

Paper [III] studies the challenges in applying RPM methodology through a case study in
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strategic product portfolio formation in a telecommunication company. The value of each
product was evaluated with regard to expected pro�ts, market risk and technology risk.
Adding a product into the portfolio required human resources in terms of marketing and
technical support personnel. Product evaluation was carried out by e-mail and based on
these evaluations non-dominated product portfolios and products' core indexes were com-
puted. These results were then used in a decision workshop, in which the company personnel
responsible for the product lines selected the �nal portfolio. Some key factors that contributed
to the applicability of RPM in this case study can be identi�ed. First, the model was readily
understood by the workshop participants without strong mathematical background. Second,
criterion-speci�c interval values allowed the consideration of the di�erent views on products'
values. Finally, use of core indexes as a primary way of giving decision recommendations left
room for holistic judgement in the workshop.

Paper [IV] presents a case study where Preference Programming methods were applied to
support priority setting in a Scandinavian research program. The focus is on the formation
of priorities, which were later used in the `call for proposals' -mechanism that would produce
the research project proposals. The case study is of interest from the viewpoint of portfolio
selection as well, because the implementation of the priorities through the selection of a
project portfolio can succeed only if suitable project proposals are available. A similar priority
setting process can also be used in other contexts as a preparatory process for project portfolio
selection.

Paper [V] considers scenario-based project portfolio selection under incomplete informa-
tion. The exogenous uncertainties are captured through scenarios and projects' values are
evaluated in each scenario. EUT is used to model risk preferences in view of sets of feasible
scenario probabilities and utility functions. This makes it possible to consider ordinal proba-
bility statements such as `scenario 1 is more probable that scenario 2' without de�ning how
much more probable. Also risk preferences can be incompletely de�ned; allowing all concave
or linear utility functions avoids de�ning the precise level of risk aversion, but still implies
that a certain value is preferred to an uncertain one with equal expectation.

The non-dominated portfolios (no other feasible portfolio has a greater expected utility for
all feasible scenario probabilities and utility functions) are computed by solving a MOZOLP
problem, whereafter linear programming is used to discard portfolios that are dominated in
view of the given information on scenario probabilities and risk preferences. As in RPM
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methodology, the MOZOLP formulation makes it possible to account for portfolio balance
requirements, synergy e�ects and logical project dependencies.

The composition of non-dominated portfolios can be used to identify projects that should
be selected/rejected in view of the incomplete information and projects whose selection is
contingent on the level of acceptable portfolio risk. Paper [V] also develops methods to
use CVaR with incomplete scenario probabilities, wherefore the selection from the set of non-
dominated portfolios can be done by interactively constraining the level of acceptable portfolio
risk.

4 Implications for Project Portfolio Decision Support

In addition to the case study in Paper [III], the RPM methodology has been used in several
other applications, such as the screening of innovation ideas for the Finnish Ministry of Trade
and Industry (Könnölä et al., 2007), supporting development of research agendas for the
Finnish Forestry Industry (Könnölä et al., 2008) and for the International Research Program
on Wood Material Science (Brummer et al., 2008a/b), ex-post portfolio evaluation in con-
text of an innovation programme (Salo et al., 2006) and optimization of bridge maintenance
programs for the Finnish Road Administration (Mild, 2006).

The experiences from these applications suggest that the modeling of incomplete informa-
tion contributes to the applicability of portfolio decision analysis methods. Decision support
processes that do not require precise parameter estimates seem to be more readily accepted
in practice, but when building such processes, overly complex models to produce decision rec-
ommendations have to be avoided to ensure transparency. The methods of this Dissertation
help avoid these pitfalls by using a relatively simple model for incomplete information (i.e.,
set inclusion) and by producing the entire set of defensible decision recommendations (i.e.,
non-dominated portfolios).

Another novelty that has been well received by the DMs is that while the portfolio opti-
mization is performed at the portfolio level � enabling explicit modeling of (multiple) resources
and project interactions � the focus is on analyzing the implications for project-speci�c deci-
sions. Portfolios are more readily interpreted through the projects they contain, rather than
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the numerical portfolio overall values. Also the e�ects of incomplete information are often
best understood by explicitly showing which project decisions are contingent on the exact
parameter values, rather than the range in which portfolio overall values vary.

In many of these applications, elicitation of precise preferences or project value estimates
would have been impossible or at least required time-consuming interviews with the DMs.
Therefore, the timely implementation of these decision support processes has bene�ted from
the use of RPM methodology, as it i) produces decision recommendations based on incomplete
information and ii) identi�es parameters for which more precise information would possibly
result in more conclusive portfolio and project decision recommendations. Especially, if the
number of projects is large, focusing the e�orts of eliciting additional information only on the
borderline projects may lead to cost savings.

The methods of this Dissertation show promise in organizational contexts, where one key
function of decision support is to help reach a consensus decision such that the whole organi-
zation is motivated to implement it. Rather than force agreement on the model parameters,
these methods consider di�erent opinions simultaneously and identify which projects can be
agreed upon and on which further negotiations should be focused. Such negotiations are likely
to catalyze discussion on arguments that support the di�erent views, enhance distribution of
knowledge and thus increase the quality of the decision making process.

5 Conclusions and Future Research Directions

The methods of this Dissertation introduce a novel approach to capture uncertainty in project
portfolio models; they build on relatively simple project portfolio models, but recognize that
the parameter values are not precise. This incomplete information is modeled through sets of
feasible parameter values and decision recommendations are given based on the computation
of non-dominated portfolios.

The developed methods bene�t decision support in that preferential uncertainties, un-
certain evaluations and di�erent opinions of DMs in group contexts can be readily used to
produce robust portfolio and project decision recommendations and to identify projects for
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which additional information is bene�cial. This reduces requirements for evaluation data
which may enable time and resource savings in decision support processes. In organizational
contexts these methods support building consensus by identifying projects on which further
negotiations should be focused on.

Apart from project portfolio selection, the methods can be applied in continuous portfolio
management, where project decisions have to be made in view of the current portfolio and
resources that can be freed through the termination of ongoing projects. Based on the compu-
tation of non-dominated portfolios that can be structured from all new proposals and ongoing
projects (with updated value estimates), it is possible to give decision recommendations on
which ongoing projects should be terminated and which new proposals accepted. If needed,
linear constraints can be used to ensure the continuation of ongoing projects that are not in a
suitable stage for termination. Even if no new proposals exist, identi�cation of cost e�cient
portfolios that can be formed from the ongoing projects provides insights into which projects
should be terminated if the resources are cut down by one third, for instance.

This Dissertation suggests several avenues for future research. Empirical case studies are
needed to test the methodological developments of Papers [II] and [V] in practice. Extending
the scenario-based model of Paper [V] to account for scenario probabilities that are contingent
on the project decisions may open up new application areas for such case studies. For instance,
if scenarios represent risk events, the selection of risk mitigation actions that reduce the
probability of these events can be modeled as a project portfolio problem.

The extended RPM methodology of Paper [II] could be applied in supporting hierarchial
resource allocation in organizations, where the top management de�nes the strategic objec-
tives and allocates resources to business units to pursue these objectives. However, more
research is needed on methods and processes that ensure consistent measurement of projects'
values across the organization.

In settings where several DMs have formal power to accept or reject projects that produce
di�erent bene�ts for each DM, game theoretic aspects have to be taken into account. Here
RPM methodology o�ers an appealing platform for group negotiation support, because mod-
eling of incomplete preference information may help to identify projects that are core projects
from the view point of each DM.
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