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Useimmat tietoliikennejärjestelmätovat luonteeltaan dynaamisia. Järjestelmän tila muuttuu jatkuvasti, kun lähetyksiä
alkaa ja loppuu. Jotta tällaisten järjestelmien käyttäytyminen saataisiin kuvattua ja niiden suorituskyky analysoitua
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dataliikennettä kuljettavia tietoverkkoja vuotasolla käyttäen stokastisia jonomalleja. Kehitämme suorituskykyanalyysi-
menetelmiä sekä mallinnamme ja analysoimme esimerkkijärjestelmiä.

Stokastisten mallien tarkka analyysi on vaikeaa ja muuttuu laskennallisesti vaativaksi järjestelmän koon kasvaes-
sa, joten niiden analysoimiseksi tarvitaan tehokkaita likimääräisiä menetelmiä. Tässä työssä käytämme kahta li-
kimääräistä menetelmää. Arvoekstrapolaatio on työssä kehitetty likimääräinen menetelmä, joka perustuu Markovin
päätösprosessien teoriaan. Sitä voidaan käyttää approksimoimaan Markovin prosessien suorituskykysuureita. Jonosys-
teemeihin sovellettaessa se mahdollistaa tarkkojen tulosten saavuttamisen, vaikka tila-avaruutta olisi supistettu huo-
mattavasti ja siten laskentatyö pidetty rajallisena. Tasapainotettu reiluus (balanced fairness) on Bonaldin ja Proutièren
hiljattain esittelemä kapasiteetinjakomenetelmä, joka yksinkertaistaa suorituskykyanalyysia ja vaatii muita menetel-
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1 INTRODUCTION

1.1 Flow-level Modeling of Elastic Traffic

Mathematical modeling has been used in the performance analysis of tele-
communication systems since the beginning of the 20th century [Erl09,
Erl17]. Most telecommunication systems are dynamic in nature, i.e. new
calls, transmissions, or packets arrive in and depart from the system. Many
characteristics of such systems cannot be captured with static models, in-
stead, stochastic models are needed.

Telecommunications traffic can be modeled at different levels [Eva96].
For instance, the dynamics of a single buffer can be analyzed at packet
level [CH98]. At the other end of the spectrum, aggregated traffic in high-
capacity core networks is often to be assumed constant when dimensioning
or routing is considered [PM04]. The more detailed the traffic model is,
the more complex the analysis and the smaller the instances that can be
studied. Depending on the system and phenomena being considered, a
suitable level of detail is needed in the analysis.

Network traffic can be broadly classified into “stream” or “elastic” traffic
[Rob00]. Stream traffic, e.g. real-time voice or video, has a data rate that is
usually limited by an upper and lower bound and the duration of a transfer
does not depend on the available network capacity. Elastic traffic consists
of flows, e.g. file transfers using the TCP protocol, which are characterized
by the size of the transferred object. An elastic transfer typically uses all the
available capacity. The duration of the transfer depends on the available
capacity, which depends on how the network capacity is allocated among
the competing flows and on the amount of concurrent traffic.

In this thesis we study networks carrying elastic data traffic. When the
quality of service of elastic traffic is evaluated, the most important metric is
the duration of the transfer of a flow. Typically, a user is interested in when
a web page or FTP transfer is completed, but the transmission speed at any
given point during the transfer is not significant. Packet-level characteristics
such as packet delay or jitter are not relevant, and hence a flow-level model
can be used to get meaningful results concerning data networks carrying
elastic traffic.

If the network traffic is elastic, packet-level phenomena can be ignored
and the network can be modeled at flow level (see, e.g., [Rob04]). New
flows arrive stochastically and the flow sizes follow some random distribu-
tion. Network capacity is shared among the active flows according to some
capacity allocation policy. If the flows are large when compared to individ-
ual packets, it can be assumed that the bandwidth resources of the network
are instantaneously reallocated among the flows every time the number of
flows in the system changes, for instance by the TCP congestion control.
Thus, between the epochs of a flow arrival or departure each flow receives
a constant bandwidth. In this case, the network can be modeled as a server
system that allocates capacity to the flows. Queueing happens at the edges
of the network and the packet-level phenomena inside the network can be
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ignored. The policy by which the capacity is shared among concurrent
flows, for example max-min-fairness or proportional fairness [KMT98], af-
fects the behavior and performance of the system.

Recently, egalitarian processor sharing (EPS) models have been in-
troduced as a new paradigm for the flow-level modeling of elastic traf-
fic [MR00, NMM98, HLN97]. If elastic flows share a common bottle-
neck and the capacity allocation is fair, the system can be modeled as an
EPS queue, which allows powerful theoretical results to be used (see, e.g.,
[Jai82, YY07]). In this thesis, we study two different processor sharing con-
cepts that can be used in teletraffic analysis: discriminatory processor shar-
ing (DPS) and balanced fairness (BF). DPS is a non-egalitarian processor
sharing discipline which can be used to model a resource that is shared un-
evenly among the customers. Customers are categorized into classes and
the share of capacity depends on the class. If elastic traffic is restricted by
a single bottleneck and the traffic classes are not treated equally, DPS can
be used in the modeling. The other scheme studied here, balanced fair-
ness, is a new capacity allocation scheme recently introduced by Bonald
and Proutière [BP03a]. In many ways, balanced fairness is the most natural
extension of the single-resource EPS system to the multiclass, multiple-
resources case. Similarly to an EPS queue, BF systems are insensitive to
detailed traffic characteristics, thus allowing the assumptions needed in the
modeling to be relaxed and more general results to be obtained. BF also
inherits the linearity property of EPS; the conditional sojourn times are
proportional to the actual job sizes. BF is more tractable than other ca-
pacity allocation policies and it can be used in the approximation of other
schemes [BMPV06, Tim03].

1.2 Load Balancing in Data Networks

Internet traffic is traditionally routed using the shortest paths. While this
minimizes the resource usage, it may lead to congestion if the traffic con-
centrates on some links. Traffic engineering, specifically load balancing,
tries to utilize the resources better and improve the performance of the sys-
tem.

Load balancing can be broadly categorized into static and dynamic bal-
ancing. Static balancing does not rely on current traffic measurements,
but the routes are fixed on the basis of prior knowledge or expectations
of traffic amounts. On the other hand, dynamic load balancing reacts to
the load of the network and the routes are changed on the basis of cur-
rent traffic measurements. Static load balancing is usually done manu-
ally, while dynamic routing is typically automated. Load balancing can be
done on different time scales. Static load balancing does not react to the
stochastic fluctuations of the traffic. Dynamic load balancing reacts more
quickly, even during short-timed temporary peaks in traffic. Load balanc-
ing can be conducted using traditional routing protocols, e.g. by tuning
link weights in the open shortest path first (OSPF) protocol [Moy98], or
by using more recent technologies such as multiprotocol label switching
(MPLS) [RVC01, RTF+01].

In this thesis, we study load balancing in two settings using flow-level
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modeling. First, load balancing among multiple parallel discriminatory
processor sharing servers is analyzed. DPS queues can be used in model-
ing a variety of systems; the most interesting application is the flow-level
modeling of elastic traffic.

The second setting is applicable to more general data networks. Apply-
ing the balanced fairness concept, load balancing can be studied assuming
that the balancing is executed either at flow or packet level. When packet-
level balancing is considered, a flow can be divided dynamically among
multiple routes, while flow-level balancing routes an arriving flow to a route
which is used during the whole transmission. BF makes the system more
tractable when compared to other capacity allocation policies. Load bal-
ancing under balanced fairness in insensitive to flow size distribution, thus
allowing performance results to be achieved that do not depend on the de-
tailed characteristics of the traffic.

1.3 Wireless Networks

An increasing amount of telecommunications traffic is nowadays carried
over wireless networks. Wireless technologies for both data (e.g. WLAN
networks [sta01]) and telephone (e.g. GSM networks [rgppG]) traffic have
become widespread. Wireless networks make possible user mobility and
lower the cost of deployment, as there is no need for cabling. A down-
side is the lower performance and higher complexity, as the common radio
channel needs to be shared efficiently.

Efficient bandwidth utilization is essential when high-capacity wireless
networks are being designed. Networks require mechanisms that control
the use of the shared medium. Medium access control (MAC) mechanisms
try to ensure that the bandwidth utilization is efficient. MAC protocols
vary from the simple CSMA/CA scheme used in 802.11 WLAN networks
[sta99] to the more recent OFDMA protocol used, e.g., in 802.16 WiMAX
networks [es05].

The performance analysis of wireless networks is more difficult than
when fixed networks are studied. The variety of wireless technologies is
great and the characteristics of the network being analyzed have to be taken
into account in the modeling. The shared nature of the radio channel
makes the dependencies between concurrent transmissions complex. Wire-
less settings often involve user mobility, which complicates the analysis fur-
ther. This complexity typically makes performance analysis computation-
ally demanding.

In this thesis, we focus on wireless data networks. In particular, we as-
sume that the network carries elastic traffic. The networks are studied in
a dynamic, flow-level setting. New transmissions start and end randomly
and, naturally, the performance at any given point in time varies accord-
ingly. While in some applications a static traffic model may capture the
essential behavior of the system, dynamic modeling usually gives a signif-
icantly better insight into the performance perceived by the users. In our
analysis, we are interested in mean flow throughput or mean transmission
time. While mobility is an important aspect in many wireless networks, we
do not consider user mobility but assume the users to be stationary.
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We study two types of networks. In cellular networks, transmissions oc-
cur only between base stations or access points and users. The best-known
cellular networks are mobile phone networks, but WLAN networks too of-
ten have a cellular structure. Typically, the base stations are connected to
a fixed core network and the (often mobile) users’ traffic is relayed via the
base stations.

Wireless multihop networks have recently been the subject of major in-
terest [KM07, BCG05, KRD06]. Instead of relying on fixed infrastructure,
the nodes relay each other’s traffic. Such networks have many applications
in situations where fixed infrastructure is not available, for example in mil-
itary and emergency situations. Multihop networks can also be used in
sensor networks [ASSC02, BPC+07] or in extending the range of networks
with fixed infrastructure.

1.4 Contributions of the Thesis

In this thesis, we model and analyze networks carrying elastic data traffic.
The networks are modeled in a dynamic setting, where new transmissions
arrive and depart stochastically. The networks are modeled at flow level us-
ing stochastic queueing systems. We develop performance analysis method-
ology as well as model and analyze example systems.

We are interested in mean performance measures related to the flows.
The exact analysis of stochastic models is difficult and usually becomes
computationally intractable when the size of the network increases, and
hence efficient approximative methods are needed. In this thesis, we in-
troduce a novel method called value extrapolation for approximating the
performance measures of Markov processes (Publication 1). We also use
the balanced fairness capacity allocation scheme of Bonald and Proutière,
which facilitates performance analysis [BP03a]. Specifically, the asymp-
totic throughput approach introduced in [BPV06] is used. In addition, we
present a computational scheme based on balanced fairness and the Monte
Carlo method that can be used to approximate flow throughput in networks
of moderate size with low or medium loads (Publication 2).

The performance analysis methods are applied in two fields: load bal-
ancing applications in fixed networks and the analysis of wireless networks.
We study load balancing among multiple parallel DPS servers and compare
different load balancing policies (Publication 3). As a new theoretical re-
sult, we show that the relative values corresponding to the queue lengths of
a DPS queue with Poissonian arrivals and Cox distributed service require-
ments are polynomial functions of the system state (Publication 4). We
show that using the relative values of a single queue, a so-called first policy
iteration policy that leads to good performance can easily be derived.

We also discuss load balancing in fixed networks carrying elastic traffic,
executed either at packet or flow level (Publications 5 and 6). On the ba-
sis of the insensitivity results of Bonald and Proutière [BP03a], we derive
linear programming formulations that can be used to determine optimal
insensitive load balancing policies. The flow-level balancing is optimized
both independently of the capacity allocation and jointly with it. In both
cases, the network remains insensitive to flow size distribution, thus allow-
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ing more robust results to be achieved.
In the final part of the thesis, we analyze the performance of wireless

networks carrying elastic data traffic. First, we discuss a simple cellular
network with link adaptation consisting of two base stations and customers
located on a line between them. We model the system and analyze the
performance using different capacity allocation policies (Publication 7).

We also study wireless multihop networks using two different MAC
schemes and balanced fairness capacity allocation. The systems are in-
sensitive to detailed traffic characteristics, which is a desirable property for
performance analysis and dimensioning purposes. On the basis of earlier
work by Penttinen et al. in [PVJ06], we apply the asymptotic throughput
analysis to multihop networks using the STDMA MAC protocol (Publica-
tion 2). We also study multihop networks with random access, assuming
that the transmission probabilities can be adapted upon flow arrivals and
departures (Publication 8). We derive the exact throughput in the two-class
scenario. In the general network case, we present an algorithm for optimiz-
ing the transmission probabilities and compare the throughput behavior of
flow-optimized random access against the throughput obtained by optimal
scheduling.

1.5 Outline of the Thesis

In Chapter 2, we introduce the Markovian modeling setting used in this
thesis. Specifically, we discuss discriminatory processor sharing models and
the balanced fairness capacity allocation scheme.

In Chapter 3, we discuss performance analysis methods suitable for our
setting. We introduce the relevant parts of the theory of Markov decision
processes used in this thesis. We also present value extrapolation, a new
approximative method based on the MDP theory developed during this
work. We present an approximative method based on balanced fairness,
throughput asymptotics, introduced by Bonald et al. in [BPV06]. Finally,
we discuss a new computational scheme based on balanced fairness and
the Monte Carlo method.

In Chapter 4, the performance analysis methods are applied to two load
balancing settings. First we study load balancing among several parallel
DPS queues. We analyze and compare the performance of different routing
policies using value extrapolation. We also study insensitive load balancing
in fixed networks, assuming either packet- or flow-level balancing.

In Chapter 5, the performance of wireless networks is analyzed. We
study a simple cellular scenario in Section 5.3 and multihop networks in
Sections 5.4 and 5.5. In the cellular setting, the performance of different
capacity allocation schemes is compared with balanced fairness using value
extrapolation. Balanced fairness has been applied to multihop STDMA net-
works in [PVJ06]. We apply asymptotic throughput analysis to this setting
in Section 5.4. Finally, we model the flow-level performance of wireless
multihop networks with time-slotted random access and apply asymptotic
BF analysis.
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2 PROCESSOR SHARING MODELS IN TELETRAFFIC ANALYSIS

2.1 Introduction

In this chapter, we provide background information as an introduction to
our own contributions in the later chapters.

Queueing models are suitable for analyzing systems where some lim-
ited resources are used to perform certain tasks. The resources are usually
referred to as servers and the tasks as customers. Each customer has a ser-
vice requirement and, after receiving it, he departs from the system.

The basic queueing model consists of a server, queueing places, and
customers as illustrated in Figure 2.1. The properties of a queue are usually
denoted using Kendall’s notation [Ken53]. Typically, the arrivals of cus-
tomers are stochastic and the service requirements are assumed to follow
some probability distribution, and hence the queue process is random in
nature. Queueing discipline determines how the capacity is divided among
the customers at any given time; for example, the first-in-first-out-discipline
serves the customers in their order of arrival. In this thesis we use queueing
models that utilize a processor sharing discipline, i.e. the capacity of the
server is divided between all concurrent customers. If the sharing is equal,
the queueing discipline is called egalitarian processor sharing (EPS). Of-
ten, processor sharing refers only to egalitarian processor sharing but in this
thesis we use this term to refer to both EPS and non-egalitarian PS, in par-
ticular the so-called discriminatory PS (DPS).

Queueing models have been used in teletraffic analysis since Erlang’s
results concerning telephone systems in the early 20th century [Erl17]. A
telephone link or exchange can be modeled with a queue with one or mul-
tiple servers, where each accepted call reserves a server until the call is fin-
ished. After the early experiments with packet-switched computer networks
in the 1960s, queueing models were applied to study the systems. Networks
of queues were introduced as a way to model the packets and the routers
[Kle64]. Again, one server served one packet at a time.

Processor sharing queues were originally used in the modeling of com-
puter systems, where an operating system schedules processing time among
the processes using a round robin policy [Kle67]. The egalitarian proces-
sor sharing model is an idealization of the round robin policy, where each
job receives an equal amount of service in turn. In addition to EPS mod-
els, more general models, such as discriminatory processor sharing [Kle67]
and generalized processor sharing [DKS89], were introduced, allowing cus-
tomer classes with different weights or priorities to receive different levels of

Arriving
customers

ServerQueue

Figure 2.1: Basic queueing model with one server
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service. Networks of queues were used to model systems in which processes
or users use the resources of multiple servers or processors and a rich theory
was developed during the 1970s [Kel76, BCMP75].

Queueing systems can be used in the modeling of data networks. The
network acts as a server system and shares capacity among the flows. Re-
cently, processor sharing queues have been used in the flow-level modeling
of data networks [MR00, NMM98, HLN97]. If the users share a single ca-
pacity bottleneck in the network, the performance can be analyzed using
a processor sharing queue. If the capacity allocation policy or congestion
control mechanism works fairly, an EPS queue can be used in the model-
ing allowing the extensive theoretical results concerning EPS queues to be
used [Jai82, YY07]. If the flows receive different shares of capacity, a single
EPS queue is not sufficient, but other queueing disciplines or models are
needed. Traffic differentiation can be either intentional, e.g., a quality-of-
service mechanism giving preferential treatment to some flows, or uninten-
tional, e.g., the RTT of a TCP flow affects the capacity share it receives in
a link [AJK04].

In this thesis, we study two different processor sharing concepts that
can be used in teletraffic analysis: discriminatory processor sharing and
balanced fairness. DPS is a processor sharing discipline that can be used
to model a resource that is shared unevenly among customers. The cus-
tomers are categorized into classes and their share of capacity depends on
the class. If elastic traffic is restricted by a single bottleneck and the traf-
fic classes are not treated equally, DPS can be used in the modeling. The
other scheme studied here, balanced fairness, is a recent capacity alloca-
tion scheme introduced by Bonald and Proutière [BP03a]. Based on the
theory of queueing networks, it allows the performance of networks with
several resources to be analyzed. In many ways, balanced fairness is the
most natural extension of the single-resource EPS system to the multiclass,
multiple-resources case. Contrary to other capacity allocation policies it
makes the system more tractable, thus allowing flow-level performance to
be analyzed. A clear distinction between the two approaches is that in DPS
models, a queue models a concrete part of a network, e.g. a link or a router,
while in the BF approach PS queues are related to individual traffic classes
and do not relate to any physical component of the network.

It is well known that an M/G/1-PS queue with a Poissonian arrival pro-
cess is insensitive, i.e. the steady state distribution does not depend on the
service requirement distribution but only on the load of the system. DPS
queues are not insensitive, in particular the mean queue length and state
distribution depend on the service requirement distribution. Balanced fair-
ness models are insensitive. The insensitivity to service requirement distri-
bution makes the model more reasonable for applications in telecommuni-
cations. The insensitivity of BF is even stronger, allowing the assumption of
Poisson flow arrivals to be relaxed and replaced by the assumption of Poisso-
nian session arrivals, where each session consists of file transfers and think
times [BP03a]. Internet traffic measurements have indicated Poissonian
session arrivals [FP01] and heavy-tailed flow size distribution [HCMSS04],
and hence the assumptions needed with DPS models do not fit real traffic
well, while the assumptions of BF models are more reasonable.
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2.2 Markov Modeling of Queueing Systems

In this thesis, Markov processes are used in the modeling and analysis of
queueing systems. Let X(t) be a continuous-time stochastic process de-
scribing a queueing process with state space S. The number of states is
denoted |S|. The state of the process is denoted with vector x ∈ S. The
transition intensity from state x to state y is denoted qxy. It should be
noted, that Markov modeling does not restrict the system to Poissonian ar-
rivals or exponentially distributed service requirements.

The steady state distribution of the process satisfies the global balance
equations

π(x)
∑

y

qxy =
∑

y

π(y)qyx ∀x, (2.1)

where π(x) is the steady state probability of state x. If the state space is
infinite, state distribution can be solved only in some special cases. One
way to deal with an infinite state space is to truncate it into a smaller state
space S̃ ⊂ S in order to solve the set of equations (2.1). If the truncated
state space is large enough, the probabilities of the truncated state space can
be used to approximate the probabilities of the whole state space. Given
the approximative state distribution, many performance measures can be
approximated by summing over the states. The larger the truncated state
space is, the more accurate the results.

2.3 Discriminatory Processor Sharing

Discriminatory processor sharing is a generalization of egalitarian proces-
sor sharing first introduced by Kleinrock in 1967 under the name priority
processor sharing [Kle67]. Customers are categorized into customer classes
and the service rate of a customer depends on its class. The customers of a
given class residing concurrently in the system obtain an equal share of the
service capacity, but the customers of different classes may receive different
shares of the capacity according to class weights or priorities.

We study a DPS system with unit capacity and K customer classes. The
state of the process is x = (x1, . . . , xK)T, where xk is the number of class-k
customers in the queue. The service rate of class k is

φk(x) =
wkxk∑
d wdxd

, (2.2)

where wk is the weight parameter of class k. Classes with higher weights
receive better service at the server. If all the weights are equal, DPS reduces
to the normal egalitarian processor sharing system.

Theoretical results concerning DPS queues are sparse when compared
to EPS queues. A survey on analytical results for DPS systems was recently
presented by Altman et al. [AAA06]. Two important performance mea-
sures, queue length and sojourn time distributions, have been studied in
different settings. Rege and Sengupta presented an analysis that allows one
to obtain the moments of the queue-length distribution as a solution to
a system of linear equations assuming exponentially distributed service re-
quirements [RS96]. The same approach was later generalized by van Kessel

15



et al. assuming more general phase-type service requirement distributions
[vKNB05]. Assuming exponentially distributed service requirements, the
unconditional expected sojourn times may be solved from a system of lin-
ear equations as shown by Fayolle et al. in [FMI80]. Kim and Kim found
that the higher moments are also solvable from linear simultaneous equa-
tions [KK04].

2.4 Balanced Fairness

In this section we provide a brief introduction to the concept of balanced
fairness. First, we discuss the insensitivity results concerning queueing net-
works and then their applications to teletraffic analysis. For a more detailed
presentation, see the original work by Bonald and Proutière, e.g., [BP03a]
and [BP04].

Insensitivity in Processor Sharing Networks
We consider an open queueing network of N nodes. Let X(t) be the
continuous-time Markov process corresponding to the system. The state
of the process is defined by the vector x = (x1, . . . , xN )T, where xi is
the number of customers at node i. The service rate φi(x) of node i may
depend on the state of the network.

External customer arrival process at node i is Poissonian with intensity
νi. Service requirements at node i are exponentially distributed with mean
1/µi. After receiving the requested service at node i, a customer continues
to node j with probability pij and leaves the network with probability pi =
1−∑j pij . The total arrival rate λi at node i is defined by equations

λi = νi +
∑

j

λjpji, j = 1, . . . , N. (2.3)

The load of node i is denoted ρi = λi/µi and ρ = (ρ1, . . . , ρN)T.
The network is a Whittle network if the service intensities φ(x) are bal-

anced, i.e. the rates satisfy the balance conditions [Ser99]

φi(x− ej)

φi(x)
=
φj(x − ei)

φj(x)
∀x, i, j, xi > 0, xj > 0. (2.4)

All balanced service rates can be expressed in terms of a unique balance
function Φ so that Φ(0) = 1, Φ(x) = 0, ∀x /∈ ZN+ , and

φi(x) =
Φ(x− ei)

Φ(x)
∀x : xi > 0. (2.5)

The steady-state distribution of the process is

π(x) =
1

G(ρ)
Φ(x)

N∏

i=1

ρxii , (2.6)

where G(ρ) is the normalization constant

G(ρ) =
∑

x

Φ(x)
∏

i

ρxii . (2.7)
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Assuming that EPS queueing discipline is used at every node, the as-
sumption of exponential service requirements can be relaxed. A network
with EPS nodes is insensitive to the service requirement distribution if and
only if it is a Whittle network [BP02]. The EPS nodes of a Whittle network
can be replaced with sets of EPS nodes allowing phase-type distributions
without affecting the steady state distribution (see, e.g., [BP02, Bon06a]).
The steady-state distribution (2.6) depends on the routing probabilities pij ,
arrival intensities λi and service requirement distributions only through the
node loads ρi.

Application to Data Networks
The processor sharing networks defined in previous section can be used
in teletraffic modeling. Both circuit-switched and data networks can be
modeled at call or flow level [BP02]. In this thesis, we study only data
networks. The customers in the queueing network represent data flows.
The capacity of a PS node is the bit rate allocated for the flows in that node.

We consider a network used by K flow classes. A flow class represents a
set of similar flows in terms of network resource usage. For example, a class
in a wired network corresponds to a path. Let xk be the number of class-k
flows in progress and denote the network state by x = (x1, . . . , xK)T.

External arrivals in the queueing network correspond to session arrivals.
Session arrival process is Poissonian and each session can consist of several
file transfers and think times, see, e.g. [BP02, Bon06a]. Files sizes and
think-time distributions can be arbitrary and even correlated. We denote
by ρk the mean traffic intensity (in bits/s) of class-k flows, defined as the
product of the flow arrival rate and the mean flow size. We use the notation
ρ = (ρ1, . . . , ρK)T.

In each state x the network resources are shared by the contending
flows. Let φ(x) = (φ1(x), . . . , φK(x))T be the vector of capacities allo-
cated to each flow class in state x. The allocation φk(x) is assumed to be
equally shared between the xk flows in each class k. The network resources
are defined by the capacity set C, which is a collection of capacity alloca-
tions φ that can be supported by the network. Depending on the network,
different restrictions limit C. In fixed networks, capacity allocations are lim-
ited by the link capacities. In wireless networks, capacity constraints are
more complex as the transmissions interfere each others.

The throughput experienced by flows depends on how the available
capacity is shared between the active flows. A capacity allocation is insensi-
tive if and only if it satisfies the balance condition (2.4). Balanced fairness
is the most efficient balanced allocation. BF can be constructed recur-
sively starting from an empty network. In each state x > 0, the amount
of allocated capacity is maximized within the capacity set C while satisfy-
ing the balance condition. BF is the only balanced allocation that is con-
strained by the capacity set C at every state. Of all balanced allocations,
BF is the one for which the network is empty with the highest probability
[BP04]. BF allocation can be determined recursively by setting Φ(0) = 1,
Φ(x) = 0, ∀x /∈ ZN+ , and using recursion

Φ(x) = min{α :
(Φ(x− e1), . . . ,Φ(x− eK))T

α
∈ C}. (2.8)
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Capacity allocation in each state x is defined by the balance function:

φk(x) =
Φ(x− ek)

Φ(x)
. (2.9)

A capacity allocation is insensitive if and only if (2.9) holds in each state x.
The capacity ratios in state x are hence fixed by values Φ(x − ei) and the
capacities corresponding to BF are obtained by increasing the capacities
until the border of the capacity set C is reached.

A network with BF capacity allocation is stable if and only if the traf-
fic load vector ρ is within the capacity set C of the networks, i.e. ρ ∈ C
[BMPV06]. The steady state distribution of the system under BF is

π(x) =
1

G(ρ)
Φ(x)

∏

i

ρxii , (2.10)

where G(ρ) is the normalization constant (2.7).
The steady state distribution is insensitive, hence all performance mea-

sures derivable from it are insensitive. We are interested in flow through-
put, defined as the ratio of the mean flow size to the mean flow duration.
The flow throughput γk of class-k can be expressed using Little’s result and
equations (2.7) and (2.6):

γk =
ρk

E[xk]
=

ρk∑
x xkπ(x)

=
G(ρ)
∂
∂ρk

G(ρ)
. (2.11)

For some simple systems the normalization constant (2.7) and, there-
fore, the throughput (2.11) can be solved in closed form [BP03a, BV04,
BPRV03]. Generally, however, one has to resort to numerical analysis.
A straightforward method is to truncate the state space and compute the
state probabilities in the truncated state space. The benefit of BF is that
the (unnormalized) probabilities can be obtained recursively state-by-state
using (2.10) and (2.8), which is much easier than solving the global bal-
ance equations (2.1) essentially entailing a matrix inversion. BF provides
a reasonable approximation of flow throughput in systems where other fair
resource sharing schemes, such as max-min or proportional fairness, are
applied [BMPV06, Tim03]. Thus BF makes it possible to study larger sys-
tems than is feasible with other capacity allocation schemes. For very large
systems, however, the recursive solution ultimately becomes infeasible call-
ing for approximate methods, such as performance bounds [BP04, Bon06b]
and asymptotic approximation [BPV06]. Whether state space truncation or
some other performance approximation method is used, the capacity set C
of the network needs to be defined. It can be determined either explicitly
or implicitly. In many instances, it is infeasible to define the capacity set
explicitly, but the border point of the capacity space is determined only in
a given direction, for example when solving the recursion (2.8).

Sparse Matrix Notation for Balanced Fairness
In some cases, it is beneficial to define balanced fairness using a different
notation. In systems with large number of flow classes it is useful to con-
sider balanced fairness in sparse matrix notation. Especially if the customer
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classes are not numerable, the vector formulation is not feasible. The case
with continuous index set is discussed in [BPV06], in which a wireless net-
work is studied and the class index of a flow is the (continuous) position of
the user.

Let ξ be the set of indices to active flows, i.e., x =
∑
i∈ξ ei. Note that

the same index may appear in ξ more than once. With this notation the
recursion (2.8) can be written:

Φ(ξ) = min{α :
(Φ(ξ \ {ξ̂1}), . . . ,Φ(ξ \ {ξ̂L}))T

α
∈ C ξ̂}, (2.12)

where ξ̂ =
⋃
ξ, i.e. the set of different flow classes in ξ, L = |ξ̂|, and C ξ̂ is

the capacity set defined for flow classes ξ̂ only. In other words, to compute
the value of the balance function, we remove active flows one by one until
we reach Φ(∅), which is 1, by convention.

The sparse matrix notation should be viewed as an alternative imple-
mentation of the recursion (2.8), which is especially suitable for evaluating
values of balance function for a small set of flows when the total number
of flow classes is large. In such a case most of the flow classes are empty
and we can neglect all the resources used only by the empty classes in con-
structing C ξ̂. This significantly reduces the computational burden and and
memory consumption of the recursion compared to applying (2.8). The
notation can often be applied even in cases where the whole capacity set C
cannot be handled.
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3 PERFORMANCE ANALYSIS METHODS

3.1 Introduction

In this chapter, we discuss different performance analysis methods applica-
ble to the models discussed in the previous chapter. After a system has been
modeled as a stochastic process, the performance of the original system can
be analyzed using the model. With complicated systems and models, ap-
proximative methods are usually needed, as exact analysis is often either
infeasible or computationally too heavy. In this chapter, we discuss several
approximative performance analysis methods that are applied to different
telecommunication settings in Chapters 4 and 5.

First, we give a brief introduction to the theory of Markov decision pro-
cesses (MDPs). MDPs are used in modeling systems that are partly random
and partly controllable, e.g., in a telecommunication network the arrival
process is random but routing can be controlled. The aim is to control the
process in such a way that some performance metric is optimized. We use
two different optimization methods, namely linear programming formula-
tion and policy iteration.

We also present a new approximative method based on the MDP setting
called value extrapolation, developed during this work in Publications 1
and 7. It can be used to approximate any performance metric that can be
formulated as the expected value of a function of the system state, which
includes, e.g., the moments of the number of customers in a queueing
system. Using Little’s theorem, the mean time in the system can also be de-
termined. Instead of the state probabilities being solved using the balance
equations, the performance measure is determined directly using relative
values of the states and so-called Howard equations. The advantage of this
approach is that the relative values outside the truncated state space can of-
ten be well extrapolated using a polynomial function, allowing more accu-
rate results to be obtained without any significant computational penalty.
As illustrated in Publication 1, value extrapolation provides accurate per-
formance measures of queueing networks even with heavily truncated state
spaces.

Finally, we discuss the performance approximation of systems using bal-
anced fairness capacity allocation. In [BPV06], Bonald et al. introduced
asymptotic throughput analysis, a method for approximating the mean flow
throughputs of a network. If the proportions of traffic in different classes
are fixed, the throughput of a class can be approximated. Mean throughput
and its derivatives can be determined at zero load, allowing throughput to
be extrapolated as the load of the system increases. If a traffic class is sat-
urated at the capacity limit, the end point of the curve is also known, thus
making possible more accurate interpolation. In some cases, the through-
put derivative at the capacity limit can also be determined. We also present
a novel BF approximation method based on the Monte Carlo method and
introduced in Publication 2. Instead of the state space being recursively
gone through in order, it is sampled randomly and the average throughput
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is calculated.

3.2 Markov Decision Processes

In this section, we briefly introduce the most important concepts of the
theory of Markov decision processes (MDP) relevant to this thesis. For a
more extensive introduction to MDP theory, see, e.g., [Tij94]. Applications
of MDPs in telecommunications are reviewed in [Alt02a].

Markov decision processes are a generalization of Markov processes.
State transitions of Markov processes are random, but in MDPs the state
transitions are partly random and partly controllable. The aim is to control
the process so that the value of a revenue function corresponding to a perfor-
mance metric is maximized (or minimized). Typically either the expected
discounted revenue or the average revenue is maximized. In this thesis, we
are mainly interested in the mean queue length of queueing systems, and
hence the average revenue is optimized.

Depending on the characteristics of a process, different methods can be
used to find the optimal controls. Time, as well as the state space, can be
either discrete or continuous. In this thesis, we study systems with continu-
ous time and discrete state space. The process can be controlled by taking
actions. In each state, action a is selected from the action space A. De-
pending on the model, action space can be either discrete or continuous.
The set of feasible actions can depend on the system state, but in this thesis
we only study systems that have the same action space in every state. Pol-
icy α defines an action for each system state. Transition intensities of the
process depend on the actions. When policy α is used, transition intensity
from state x to state y is denoted qxy(α). Given a fixed policy α, an MDP
reduces to a normal Markov process.

We are interested in performance metrics that can be expressed as a
mean value of a revenue rate that is a function of the system state, most
importantly the mean number of customers in the system. In our applica-
tions, revenue does not depend on the actions, but the formulations can be
generalized allowing that. Let the revenue rate of the process in state x be
r(x). The mean revenue rate of the process depends on the policy and is
denoted rα.

When queueing systems are considered, the mean occupancy E[|X |]
can be determined by using revenue function r(x) = |x|, where notation
|x| = ∑

i xi is used. Similarly, other moments of |X | may be determined.
If metrics concerning only class-k customers are optimized, revenue func-
tions such as r(x) = xk or r(x) = x2

k can be used.
There are several methods for finding the optimal policy, i.e. the one

optimizing the mean revenue. In this thesis, we apply linear programming
formulation and policy iteration.

Linear Programming Formulation
The optimal policy of an ergodic MDP can be found utilizing linear pro-
gramming (LP). The problem is formulated as an LP problem and the solu-
tion gives the optimal policy optimizing the mean revenue r. We formulate
the problem so that it can be applied to the capacity allocation problems
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discussed in this thesis.
The steady state probability that the system is at state x and action

a ∈ A is used is denoted π(x, a). We assume that the decision space A
is a convex hull spanned by actions a′ ⊂ A and that the state transition
intensities are linear combinations of the intensities corresponding to the
spanning vectors. If action a =

∑
i∈a′ bia

′, bi ≥ 0,
∑
i bi = 1 is used in

state x, transition intensities are qxy(a) =
∑
i∈a′ biqxy(a′). For example,

the capacity of a server can be divided between customers in any ratios and
the state transition intensities of the process are proportional to the capacity
shares. The optimization problem can now be formulated as an LP prob-
lem:

max
∑

x

∑

a∈a′
r(x)π(x, a) (3.1)

s.t.
∑

y

∑

a∈a′
π(x, a)qxy(a) =

∑

y

∑

a∈a′
π(y, a)qyx(a) ∀x ∈ S (3.2)

∑

x

∑

a∈a′
π(x, a) = 1 (3.3)

π(x, a) ≥ 0 ∀x, a, (3.4)

where (3.2) corresponds to the global balance equations (2.1) and (3.3) is
the normalization constraint.

Using the solution of the LP problem, the state probabilities and actions
can be determined as

π(x) =
∑

a∈a′
π(x, a) (3.5)

and

a(x) =

∑
a∈a′ aπ(x, a)∑
a∈a′ π(x, a)

. (3.6)

The optimal mean revenue is given by the objective function (3.1).

Policy Iteration
Policy iteration is another method for solving MDP problems. Starting
from some initial policy α0, the policy is iteratively improved until the op-
timum is found. In this section, we assume that the action space is discrete.

Instead of state probabilities, policy iteration is based on a state metric
called relative value. Relative value vα(x) of state x using policy α is the
conditional expected difference in cumulative revenue over infinite time
horizon when starting from state x rather than from equilibrium:

vα(x) = E

[∫ ∞

t=0

(r(Xα(t))− rα) dt
 X(0) = x

]
, (3.7)

where rα is the mean revenue when policy α is used. Relative values vα(x)
and the mean revenue rα satisfy the so-called Howard equations (the equiv-
alent equations are usually called Poisson’s equations in control theory)

r(x) − rα +
∑

y

qxy(α)(vα(y)− vα(x)) = 0 ∀x. (3.8)

23



As seen, only the differences of the relative values appear in the equations,
hence we may set, e.g., vα(0) = 0 when solving the equations. From the
|S| equations, the mean revenue rate rα along with the |S| − 1 unknown
relative values can be solved.

Given a fixed policy, the mean revenue and corresponding relative val-
ues can be solved from the Howard equations (3.8). The policy α mini-
mizing the mean revenue rate rα can be found using policy iteration al-
gorithm, which iteratively improves an initial policy until the optimum is
found. The iteration typically converges quickly [Tij94]. Policy iteration
algorithm proceeds as follows:

1. Select an initial policy α0 and set i = 0

2. Compute the mean revenue rαi and the relative values vαi(x) using
policy αi and the Howard equations (3.8)

3. Specify a new policy αi+1 by selecting in each state the action
ai+1(x) = arg maxa

r(x)P
y qxy(a) +

∑
y

qxy(a)P
z qxz(a) vαi(y)

4. If αi+1 6= αi, set i = i+ 1 and goto 2

Step 2 of the algorithm entails solving the Howard equations (3.8). The
number of equations and unknown variables is equal to the number of states
in the state space.

3.3 Value Extrapolation

Value extrapolation is a new approximation method based on the MDP
theory. It was first briefly introduced in Publication 7 and more thoroughly
discussed in Publication 1. Value extrapolation approach is applicable to
performance measures that can be expressed as a mean value of a revenue
that is a function of the system state. The idea is to solve the mean revenue
using a truncated state space more efficiently than with the straightforward
truncation.

Instead of state probabilities and global balance equations, relative val-
ues and Howard equations are used. Instead of simply ignoring the transi-
tions from the truncated state space to its outside (we refer to this as regular
truncation), the relative values outside are extrapolated using the values in-
side (note that the Howard equations remain a closed set of equations) as
illustrated in Figure 3.1. Depending on the accuracy of the extrapolation,
the accuracy of the mean revenue can be greatly improved. If the rela-
tive values outside S̃ are correctly extrapolated, the mean revenue solved
from the Howard equations (3.8) is exact. While exact results are obtained
only in some special cases, value extrapolation often improves the accuracy
significantly.

The extrapolation problem can be formulated as follows. We want to
fit a function f to the relative values inside the truncated state space S̃ so
that it approximates also the values outside S̃. Function f and the fitting
method need to be chosen so that the approximated relative values outside
S̃ are linear functions of the values inside, so that the group of equations
(3.8) remains linear.
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Truncated state space

Extrapolated
value

Figure 3.1: Two dimensional value extrapolation. Relative value of the
point outside the truncated state space can be extrapolated using the values
inside.

One linear extrapolation method is to use a polynomial function f(x) =∑K
i=1

∑ni
j=0 ai,jx

j
i and least squares fitting. The fitting can be done either

globally or locally. When global fitting is used, all the (x, v(x))-pairs in
S̃ are used. The fitting can also be done locally, i.e. using only a subset
Sf (x) of the truncated state space. The choice of Sf (x) may depend on
the extrapolated point x. Parameters ai,j are determined so that the sum of
squared errors

Q =
∑

x∈Sf
(f(x)− v(x))2 (3.9)

is minimized. Parameter values aij minimizing (3.9) are linear functions
of v(x) and hence also the extrapolation function f(x) is a linear function
of v(x). If the number of free parameters in the extrapolation function and
the number of states in Sf (x) are equal, the least squares fitting reduces to
ordinary polynomial fitting. Function f and set Sf (x) need to be chosen
so that the parameters have unambiguous values, i.e. the number of points
in Sf (x) is equal or greater than the number of parameters. The optimal
parameter values are found by minimizing the error (3.9). The parameter
values and hence also the function f(x) are linear functions of relative
values v(x) inside the truncated state space Sf (x).

The mean revenue rate r can be approximated by defining the Howard
equations (3.8) for the truncated state space and extrapolating the relative
values outside S̃ that appear in the equations. Value extrapolation does not
alter the number of equations or variables in the group of equations, hence
there is no significant computational penalty when value extrapolation is
used.

In this thesis, the extrapolation is done using polynomial fitting. In
particular, quadratic polynomials are used when mean queue lengths are
approximated, e.g., v(. . . , N + 1, . . .) = 3v(. . . , N, . . .) − 3v(. . . , N −
1, . . .)+v(. . . , N−2, . . .), where N is the maximum number of customers
in a class. A strong motivation for this procedure is that value extrapolation
with polynomial fitting leads to exact results in certain queueing systems.
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Consider for example the mean queue length of an M/M/1-queue with
unit capacity. The revenue rate r(x) in a given state x is then simply the
number of customers in that state, i.e. the state index itself. Let arrival rate
be λ, mean service requirement 1/µ and denote ρ = λ

µ . Now the Howard
equations can be written as

x− r+ λ(v(x+ 1)− v(x)) + µ(v(x− 1)− v(x)) = 0, ∀x > 0. (3.10)

The equations are clearly solved by

r =
ρ

1− ρ , v(x+ 1)− v(x) =
x+ 1

µ− λ, (3.11)

from which by setting v(0) = 0, we get

v(x) =
x(x + 1)

2(µ− λ)
. (3.12)

Relative values are defined by a quadratic polynomial of the state variable.
Thus, extrapolating the relative value with a second order polynomial yields
exact value for r no matter how small the truncated space is as long as the
fitting can be done, i.e. at least 3 states are needed. While the results are
not exact for general queueing systems, accurate results can be expected.

Numerical Example
We illustrate value extrapolation and its accuracy using a generalized pro-
cessor sharing (GPS) queue with unit capacity and two customer classes,
see, e.g., [vU03]. GPS is another processor sharing variant with customer
class differentiation. Capacity allocation of class k is defined as follows:

φk(x) =
wk∑

j:xj>0 wj
, (3.13)

where wk is the weight of class k. The arrivals are Poissonian with rates
λ1 and λ2 and the service requirements are exponentially distributed with
means 1/µ1 and 1/µ2. The Howard equations of the system read

r(x) − r +

2∑

i=1

λi(v(x + ei)− v(x)) +

+

2∑

i=1

wiµi∑
j:xj>0 wj

(v(x− ei)− v(x)) = 0, ∀x. (3.14)

We compare accuracy of different polynomial extrapolation functions.
Extrapolation is conducted using polynomial fitting, hence n+1 data points
are needed when nth order polynomial is used. For example, if class 1
is truncated at point N , the linearly and quadratically extrapolated values
outside the truncated state space are

v(N + 1, x2) = 2v(N, x2)− v(N − 1, x2) (3.15)
v(N + 1, x2) = 3v(N, x2)− 3v(N − 1, x2) + v(N − 2, x2). (3.16)
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Figure 3.2: E[|X |] of a GPS process with different extrapolation functions

The parameter values used arew1 = 3/10,w2 = 7/10, λ2 = 2λ1, µ1 =
1/2 and µ2 = 2/3. Arrival intensity is varied so that the load of the system
is either 0.2 or 0.8. When the size of the truncated state space is increased,
the convergence of the queue length approximation can be observed. The
mean queue length is illustrated in Figure 3.2. With the lower load level,
there is no significant difference between the functions as the mean queue
length converges quickly regardless of the extrapolation method. With the
higher load, the differences are more remarkable. Quadratic extrapolation
converges the quickest, allowing accurate results with a heavily truncated
state space. Second moment of the queue length is illustrated in Figure
3.3. In this case, cubic extrapolation yields the best results. In both cases,
linear extrapolation also clearly outperforms regular truncation.

27



0 1 2 3 4 5 6
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Truncation point

E
[|X

|2 ]

Cubic
Quad.
Linear
Reg.

(a) Load 0.2

0 5 10 15 20
0

5

10

15

20

25

30

35

Truncation point

E
[|X

|2 ]

Cubic
Quad.
Linear
Reg.

(b) Load 0.8
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Discriminatory Processor Sharing Queue
As discussed earlier, relative values of an M/M/1 queue are defined by a
quadratic function of the system state. In this section, we provide similar
results related to a DPS queue based on Publication 4.

First, we show that the first moment of the total occupancy of a DPS
system with K customer classes can be exactly calculated using value ex-
trapolation. In this case, the revenue rate in state x is r(x) =

∑
k xk. The

Howard equations of the system read

r(x) − r +
K∑

k=1

λk(v(x + ek)− v(x)) +

+

K∑

k=1

wkxkµk∑K
d=1 wdxd

(v(x− ek)− v(x)) = 0 ∀x ≥ 0.

(3.17)

As a trial for the relative values in the Howard equations (3.17), we use
a second order polynomial function of the form

v(x) =

K∑

k1=1

K∑

k2=1

ak1,k2xk1xk2 +

K∑

k=1

akxk, (3.18)

and assume that ak1,k2 = ak2,k1 . When the trial is substituted into the
Howard equations (3.17), the differences of the relative values appearing in
the expressions reduce to linear polynomials, for example

v(x − ek)− v(x) = −ak + ak,k − 2

K∑

k1=1

ak,k1xk1 . (3.19)

After the substitution, we multiply the equation with
∑K

d=1 wdxd and re-
group the terms. The following equation is obtained:

K∑

k1

(
− r + (ak1,k1 − ak1)µk1 +

K∑

k2

(ak2 + ak2,k2)λk2

)
wk1xk1 +

+
K∑

k1

K∑

k2

(
1− 2µk1ak1,k2 + 2

K∑

k3

λk3ak2,k3

)
wk1xk1xk2

= 0.

(3.20)

The Howard equations (3.17) must be satisfied for all x ∈ S. Equa-
tion (3.20) holds for all x if the coefficient of each xk and each unique
xk1 , xk2 -combination equals zero. When all the coefficients are set equal
to zero we get K2/2 + 3K/2 linear equations. This is exactly the number
of unknown parameters in the trial function (3.18), hence we may select
the parameter values in the trial function so that the Howard equations are
satisfied regardless of the values of the system parameters. Our numerical
experimentations indicate that the group of equations is indeed solvable.
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We conclude that v(x) is a quadratic function of x hence it can be extrapo-
lated exactly with a quadratic polynomial and value extrapolation yields the
total mean occupancy exactly.

A similar deduction can be done for the mean occupancy of class k.
In this case, the revenue rate function is r(x) =

∑
q xk,q . Using the same

trial function (3.18), we obtain an expression similar to (3.20). The num-
ber of unknown parameters is the same as the number of linear equations,
hence the value function is quadratic and value extrapolation yields the
exact mean number of class-k customers.

Higher moments of the occupancy can be determined similarly to the
first moment. When the nth moment is considered, an (n + 1)th order
polynomial trial function is used:

v(x) =

K∑

k1=1

· · ·
K∑

kn+1=1

ak1,...,kn+1 · xk1 · · ·xkn+1 + · · ·+
K∑

k1=1

ak1xk1 .

(3.21)
The differences of the relative values in (3.17) reduce to nth order poly-

nomials and substitution into (3.17) yields an (n + 1)th order polynomial
equation. Similarly to the first moment, the number of unknown parame-
ters in the trial function is equal to the number of linear equations, hence
the parameter values may be chosen so that the Howard equations are sat-
isfied for all x. We conclude that v(x) is an (n + 1)th order polynomial,
hence the nth moment can be solved exactly using (n + 1)th order value
extrapolation.

The same inspection can be conducted with more general processes by
using Cox-distributed service requirements (Publication 4). Cox distribu-
tions can be used to approximate any distribution with arbitrary accuracy.
Also in this case, the relative values are polynomials of the system state.
However, the computational complexity grows quickly as the number of
phases in the distributions increase.

While the exact results obtained with DPS queues are an exception, the
accurate results with the GPS queue suggest that value extrapolation can be
successfully applied to queueing systems. When the mean queue length is
computed, a quadratic polynomial seems to yield the most accurate results.

3.4 Approximative Methods Utilizing Balanced Fairness

Balanced fairness capacity allocation scheme introduced in Section 2.4
facilitates the analysis of telecommunication systems. Equilibrium state
probabilities are easier to solve with balanced fairness than with other ca-
pacity allocation policies as the probabilities can be determined state-by-
state using recursion (2.8), instead of solving the global balance equations
(2.1) entailing a matrix inversion. Still, if the number of traffic classes is
high or the system is heavily loaded, the problem becomes numerically in-
tractable. Two approximative methods, throughput asymptotics and perfor-
mance bounds, based on BF have been introduced to overcome the com-
putational problems.

Bonald et al. approximated the performance of BF systems by studying
the asymptotic throughput in [BPV06]. The mean flow throughput and

30



its derivatives at zero load can be determined and used to extrapolate the
throughput with higher loads. In some cases, mean throughput and its first
derivative can also be computed at the capacity limit of the system allowing
more accurate approximation. In Chapters 4 and 5, we use throughput
asymptotics to analyze various telecommunication systems.

Another approximative approach is to derive performance bounds. In
[BP04], Bonald and Proutière proved that in fixed networks BF always per-
forms better than a network operated using the store-and-forward technique,
hence the store-and-forward network gives a lower performance bound. A
tighter set of bounds was derived in [Bon06b] assuming that the capacity
constraints of the network are linear which covers both fixed and many
wireless networks.

In addition to the existing approaches, we introduce a new approxima-
tive method based on the Monte Carlo method for evaluating large sums.
Instead of the state space being recursively gone through in order, it is sam-
pled randomly and the average throughput is calculated.

Throughput Asymptotics
In [BPV06], Bonald et al. introduced a method for approximative BF per-
formance analysis. By computing the asymptotic throughput value and its
derivative at zero load, one can sketch the throughput behavior in the sys-
tem when load is increased from zero along a given load line. If a traffic
class is saturated at the capacity limit of the system, asymptotic through-
put and, in some cases, its derivative can be computed also at heavy loads
allowing more accurate sketching using interpolation.

We denote by ρ = (ρ1, . . . , ρK)T the traffic profile of the network,
where ρk is the proportion of class-k traffic and

∑
ρk = 1. Load line is the

line segment from zero to the boundary point ρ̂ of the capacity set C in the
direction of vector ρ. The load line can be parameterized as rρ̂, r ∈ [0, 1].

The derivatives of the throughput (2.11) with respect to r at load r = 0
can be determined. The first derivative was presented in [BPV06]. We
extend the approach by providing the explicit expressions needed for the
second derivative. Using notation Gi(ρ) = ∂

∂ρi
G(ρ) the first two deriva-

tives read

γi(0) =
G(0)

Gi(0)
,

γ′i(0) =
Gi(0)G′(0)−G(0)G′i(0)

Gi(0)2
,

γ′′i (0) =
2G′i(0) (G(0)G′i(0)−G′(0)Gi(0))

Gi(0)3
+

+
Gi(0) (Gi(0)G′′(0)−G(0)G′′i (0))

Gi(0)3
,

(3.22)

where G(0) = 1 and the rest of the terms are

G′(0) =

N∑

j=1

Φ(ej)ρ̂j , (3.23)
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G′′(0) = 2
N∑

j=1

N∑

k=j

Φ(ej + ek)ρ̂j ρ̂k, (3.24)

Gi(0) = Φ(ei), (3.25)

G′i(0) =

N∑

j=1

Φ(ei + ej)ρ̂j + Φ(2ei)ρ̂i, (3.26)

G′′i (0) = 2




N∑

j=1

N∑

k=j

Φ(ei + ej + ek)ρ̂j ρ̂k +

+

N∑

j=1

Φ(2ei + ej)ρ̂iρ̂j + Φ(3ei)ρ̂
2
i


 . (3.27)

Similarly, the higher derivatives can be expressed in terms of the values of
the balance function. In order to determine the nth low-load derivative,
the balance function values are needed for all states containing up to n+ 1
flows. Given the starting point and the derivatives, throughput curves can
be sketched.

If a traffic class is constrained at the boundary point ρ̂, its throughput
tends to zero when r → 1. In this case, both the end points are known and
the throughput curve can be interpolated resulting in a more accurate fit.
The derivative of a saturated traffic class at high load can be computed, if
the capacity set of the system is a polytope, i.e., C = {φ : Bφ ≤ e}, where
B is a matrix representing the constraints [BPV06]. Many interesting sys-
tems fall into this category [BMPV06]. Let L represent the set of saturated
constraints l ∈ {1, . . . , L} at r = 1. It is conjectured (proven if |L| = 1,
conjectured if |L| > 1) that the heavy load derivative is given by

γ′i(1) = − 1∑
l∈L bli

, (3.28)

where the bli are the corresponding elements in B. However, the heavy
traffic derivative may not be the best overall descriptor for the heavy load be-
havior. As already discussed in [BPV06], the throughput curve may change
very quickly at the heavy load end of the curve if only one constraint is
saturated but several others are close to saturation. Numerical results in
Publication 2 also suggest that the heavy load derivative usually does not
improve the accuracy of the interpolation.

In some simple systems the functional form of the throughput curve is
known, but in most cases the correct form is unknown. In this thesis, we
interpolate the throughput curves using polynomial functions as they seem
to produce reasonable results. The polynomials are fitted to the end points
and the derivatives at zero load.

Throughput Evaluation in Low to Medium Load Range
In this section, we propose an alternative method for approximating the
throughput directly in low and medium load range (Publication 2). At
small and moderate loads the number of flows in the network is typically
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small. Correspondingly, the performance of the network at this load range
is dominated by the states with only a few active flows. The idea of our ap-
proach is to write the throughput expression in a suitable form and then
approximate the sums contained in the expression by the Monte Carlo
method. The approach is based on the assumption that the capacity set
can be constructed for any given set of flows if the number of flows is small.

The normalization constant (2.7) can be written in terms of increasing
number of flows in the system. Accordingly, (2.11) becomes

γi(r) =

1 + r
∑

j∈A
Φj ρ̂j + r2

∑

j∈A

K∑

k≥j
Φj,kρ̂j ρ̂k + · · ·

Φi + r
∑

j∈A
ci(i, j)Φi,j ρ̂j + r2

∑

j∈A

K∑

k≥j
ci(i, j, k)Φi,j,kρ̂j ρ̂k + · · ·

,

(3.29)
where notations Φi = Φ(ei) and Φi,j = Φ(ei + ej) are used and the
function ci(·) gives the number of indices equalling i in its argument list.

Each n-fold summation in the expression (3.29) corresponds to going
through all states where there are n active flows in total. Obviously, only the
sums corresponding to a few active flows can be evaluated numerically. For
others we use the Monte Carlo method: we draw n flows randomly, com-
pute the corresponding term and repeat the procedure sufficiently many
times to get an average which is then multiplied with the number of terms
in the sum, (K + n− 1)!/K!/(n− 1)!.

Example
Consider the fixed network shown in Figure 3.4 (left), with 20 nodes and
40 links with unit capacity. The flows are characterized by the source-
destination pairs with shortest path routing, totalling in 380 flow classes.
Traffic pattern is uniform, i.e. the traffic load between all node pairs is
equal. We study the throughput of the route shown in the figure. The
boundary point of the capacity set is ρ̂i = 1/112, for all i. Figure 3.4 (right)
shows the approximations of the route throughput. The curves (top-down)
correspond to the throughput when the terms up to {1, 3, 5, 7, 9, 11}-fold
sums are taken into account, respectively. Two first sums are computed by
exhaustive enumeration and the subsequent sums with the Monte Carlo
method using 105 samples. The figure shows also the asymptotic deriva-
tives and the interpolated throughput using a cubic polynomial fitted to the
end points and to the first two derivatives at r = 0. The interpolated curve
fits well with the numerical results. The low load derivatives provide useful
information on the curve but inclusion of the heavy load derivative would
degrade the accuracy of the polynomial fitting.

3.5 Summary

Markov processes may be used in the modeling of many systems. The per-
formance of such systems can be analyzed exactly only in some special
cases, and hence approximative methods are needed. The traditional ap-
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Figure 3.4: Left: Network topology and the studied route. Right: Through-
put of the route by the Monte Carlo method with up to 11-fold sums.
The curves (top-down) correspond to the throughput when the terms up
to {1, 3, 5, 7, 9, 11}-fold sums are taken into account.

proach is to truncate the state space, solve the equilibrium state distribu-
tion, and use it to approximate the performance.

In this chapter, we introduced numerical methods that are used further
in this thesis. We gave a brief overview of Markov decision processes, mostly
on policy iteration and linear programming formulations. Both methods
can be used to find a policy optimizing some performance criteria.

On the basis of the theory of MDPs, we introduced a new approxima-
tion method called value extrapolation, presented in Publications 1 and 7.
It can be used to approximate performance metrics that can be formulated
as the expected value of a function of the system state, which includes, e.g.,
the moments of the number of customers in a queueing system. Instead of
the state probabilities being solved using the balance equations, the perfor-
mance measure is determined directly using the relative values of the states
and the Howard equations. The advantage of this approach is that the rela-
tive values outside the truncated state space can often be well extrapolated
using a polynomial function and least squared error sum fitting without any
significant computational penalty. We demonstrated the accuracy of value
extrapolation by approximating the moments of queue length of a GPS sys-
tem and polynomial fitting as the extrapolation method. In addition, we
showed that value extrapolation yields exact queue length moments when
applied to a DPS queue with Poissonian arrivals and Cox-distributed service
requirement distributions. In addition, the exact relative values of the states
are obtained.

We presented also an approximative method based on the throughput
asymptotics of balanced fairness introduced by Bonald et al. in [BPV06].
Given a traffic profile, i.e. the traffic ratios of different classes, the through-
put and its derivatives can be determined in the low load regime. If the traf-
fic class is saturated at the capacity limit, the throughput tends to zero and
the first derivative can be computed. Using this information, the through-
put behavior can be sketched. As a new result, we gave the explicit expres-
sion of the second derivative at zero load in Publication 2.

We also introduced a computational scheme based on the Monte Carlo
method and applicable to BF systems with low or medium loads (Publica-
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tion 2). Instead of the state space being recursively gone through in order,
it is sampled randomly and the average throughput is calculated. Even in
large systems, the approach converges relatively quickly at moderate loads,
allowing non-trivial networks to be analyzed.
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4 LOAD BALANCING IN PROCESSOR SHARING MODELS

4.1 Introduction

In this chapter, we discuss load balancing, which has important applica-
tions, e.g., in computer and telecommunications systems. Many commu-
nication networks and computer systems use load balancing to improve
performance and resource utilization. The ability to divide the service de-
mands efficiently between the resources of the system can have a significant
effect on the performance.

The most basic load balancing scenario consists of a single source of
service demands and two parallel servers. Even in this simple setting, the
problem can be formulated in many ways and the optimal policy depends
on various system parameters. While the greedy policy of always joining the
shortest queue is the best in many cases [EVW80, TPSC92], it is not always
the optimal policy [Whi86]. All in all, sensitivity to detailed system char-
acteristics makes the solving of the optimal load balancing policy difficult
even in simple scenarios.

In this chapter, we discuss load balancing in two settings. In Section
4.3, we analyze load balancing between parallel DPS queues. In Section
4.4, balanced fairness is used in the load balancing analysis of fixed data
networks.

When we study DPS queues, the system consists of parallel servers and
arriving customers. On the basis of the results of Publication 3 on DPS
queues, we study the effect of load balancing policy on the mean queue
length. We use value extrapolation to compare three heuristic policies to
the optimal policy obtained with policy iteration. In addition, we use so-
called first policy iteration method to obtain well-performing policies that
can be determined without heavy computations.

Similarly to balanced capacity allocations, routing in a network can be
balanced, leading to insensitivity to detailed traffic characteristics. In Publi-
cations 2, 5 and 6, we studied flow- and packet-level load balancing in fixed
networks on the basis of the insensitivity results of Bonald and Proutière
[BP03a]. In packet-level balancing, an ongoing flow can be divided be-
tween multiple routes. In flow-level balancing, we assume that an arriving
flow is routed to one of the routes and the same route is used until the flow
is finished. We formulate the problem as an LP problem in both cases and
provide numerical results.

4.2 Related Research

In this thesis, we discuss insensitive load balancing policies based on Pub-
lications 5 and 6. When BF systems are considered, there is little work dis-
cussing load balancing. When flow-level balancing is used and the capacity
allocation is fixed to some balanced allocation, the network is insensitive if
and only if the routing is balanced [BP02]. In [BJP04], Bonald et al. present
a method to determine optimal insensitive routing with local information
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when capacity allocation and routing are balanced separately. For a variety
of objective functions, including blocking probability, the optimal policy is
simple, i.e. there is only one local state where traffic is rejected. Finding
the optimal policies is straightforward and fast. Instead of separately balanc-
ing capacity allocation and routing, better performance is achieved while
retaining insensitivity if the allocation and routing are balanced jointly as
noted in [BP02]. Jonckheere and Virtamo applied this idea to the flow-level
load balancing problem with one traffic class and local information [JV05].
Jonckheere has compared insensitive load balancing to sensitive balancing
analytically in the case of infinite state space in [Jon06].

4.3 Discriminatory Processor Sharing Systems

We study systems consisting of multiple DPS servers with different service
capacities. Class weights are queue-specific, i.e. the priorities of traffic
classes are not identical in different queues. When a new customer arrives
at the system, it is directed to one of the queues according to the load bal-
ancing policy, which defines how arriving customers are divided between
the queues at each system state. The aim is to balance the load between
the servers so that the performance of the system is optimal. In case of self-
ish users optimizing their own performance, the problem could be studied
using game theory, see, e.g., [ORS93]. Specifically, we are interested in
minimizing the mean total queue length of the system.

We compare three heuristic policies with the optimal policy obtained
using policy iteration. Value extrapolation is used in the performance eval-
uation. As seen in Section 3.3, value extrapolation gives exact results when
applied to a single DPS queue with Poissonian arrivals, hence it can be ex-
pected that accurate results are also obtained in systems consisting of mul-
tiple DPS queues. In addition, relative values of a single DPS queue can be
solved with value extrapolation and this result can be used to approximate
the optimal policy using so-called first policy iteration approach.

Load Balancing between Parallel DPS Queues
The studied system is defined as follows. The number of parallel servers is
denoted L. The are K customer classes. The state of the system is denoted
with a vector x = (x1,1, . . . , x1,K , . . . , xL,1, . . . , xL,K)T, where xs,k is the
number of class-k customers at queue s, s = 1, . . . , L. State space of the
process is S = {x | x ≥ 0}.

The capacity allocated to a customer depends on the system parameters
and on the system state. Each queue allocates capacity independently de-
pending only on the number of customers at that queue. Capacity allocated
for class-k customers at queue s at state x is

φs,k(x) =
ws,kxs,k∑
i ws,ixs,i

Cs, (4.1)

where ws,k is the weight corresponding to class k at server s and Cs is the
capacity of server s.

Arrival process of each customer class is assumed Poissonian and the
arriving customers are divided into different queues depending on the load
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balancing policy. The arrival intensity of class k is denoted λk. Load bal-
ancing policy α is a function that defines the routing at each system state
α(x) = (λ1,1(x), . . . , λ1,K(x), . . . , λL,1(x), . . . , λL,K(x))T, where class-
k arrival intensity at server s is denoted λs,k(x). Policies can be categorized
to static and dynamic ones. If the routing decisions depend on the system
state x, a policy is dynamic, otherwise static. We assume that all customers
are accepted, i.e.

∑
s λs,k(x) = λk ∀x. Service requirements of class-k

customers are exponentially distributed with mean 1/µk.
Prior results concerning a single DPS queue can be used in the analysis

of more complex systems. The mean queue length of a single DPS queue
with Poissonian arrivals and exponential service requirements can be solved
from a system of linear equations [FMI80]. If a static load balancing pol-
icy is used, the queues are independent and the total queue length can be
determined as a sum of the queue lengths of the individual queues. More
importantly, in Section 3.3 we showed that the relative values are polyno-
mial functions of the state x. This result can be used to approximate the
optimal policy using first policy iteration.

Heuristic Policies
We present three dynamic heuristic policies that can be used in the balanc-
ing.

Shortest queue (SQ) An arriving customer is routed to the queue with the
least customers. If several queues are of equal length, the one with
the highest capacity is used.

Least expected work (LEW) An arriving customer is routed to the queue
with the least amount of expected work proportional to the capacity,
i.e. the queue with the lowest value

∑
k xs,k/µk/Cs.

Maximal capacity (MC) From a customers point of view, the best queue is
the one providing the highest capacity, i.e. the one with highest value
φn,k(x+es,k), where es,k is the unit vector corresponding to server s
and class k. MC policy maximizes the quality of service experienced
by the customer on the short term, but the greedy behavior may use
the resources of the system inefficiently leading to poor long term
performance.

Optimal Policies
In addition to the heuristic policies, we use two optimized policies. Opti-
mal stochastic routing (SR) refers to the best static policy. Each flow class
is stochastically routed among the servers and the state-independent proba-
bilities are chosen to minimize the mean total queue length.

Using the theory of Markov decision processes, the optimal dynamic
load balancing policy (OP) can be determined. In each state, an arriving
customer is directed to the queue that minimizes the expected total queue
length over an infinite time horizon. We optimize the load balancing using
policy iteration algorithm described in Section 3.2 as it allows us to trun-
cate the infinite state space using value extrapolation. State spaces of the
systems studied here are infinite, and hence the relative values needed by
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the algorithm cannot be solved. This can be avoided by using value extrap-
olation at each iteration round, thus reducing the infinite state space into a
finite one while still getting an approximation of the optimal mean queue
length. The downside of this approach is that the relative values are only
solved in the truncated state space. As the policy is defined using the rel-
ative values at step 3 of the algorithm, the approximative optimal policy is
only known in the truncated state space limiting its usefulness in practice.

First Iteration Step Policy
The last studied policy is the policy obtained using only one iteration round
of the policy iteration algorithm. If the relative values of a system can be
derived using some policy, first policy iteration approach can be used to
get a policy approximating the optimal one without the computational bur-
den needed in solving the Howard equations. Instead of iterating until the
optimum is found, only one iteration round is taken using step 3 of the algo-
rithm starting from the initial policy. While not optimal, the results of the
first round are often very good. However, the results depend significantly
on the choice of the initial policy, see, e.g., [Koo98].

Static policies are good choices for an initial policy, because the results
concerning a single DPS queue can be used. Relative values of states in
DPS systems with static policies are known, because the queues are inde-
pendent (probabilistic splitting of Poisson arrival process leads to indepen-
dent Poisson processes) and relative values of a single DPS queue can be
determined as discussed in Section 3.3. However, the choice of the initial
static policy affects the quality of the first iteration policy, hence it should be
selected carefully. The exact relative values of the system are known, hence
the first iteration policy is defined in the whole infinite state space and the
policy can be applied in practice. In contrast, the policy obtained with
value extrapolation and complete iteration is only defined in the truncated
state space, hence it can only be used to approximate the performance.

Numerical results
In this section, we demonstrate our approach using numerical examples.
We study a system with two DPS servers and two customer classes and pro-
vide various results illustrating the accuracy of the methods used and the
performance of the different policies. As a specific example we study a sys-
tem with parameter values C1 = 3/2, C2 = 2/3, w1,1 = 9, w1,2 = 1,
w2,1 = 1, w2,2 = 9, λ1 = 5λ2, µ1 = 10, and µ2 = 2. The arrival rates are
varied in order to study the effect of system load on the results. Total queue
length is used as a performance metric.

Accuracy of the results obtained using value extrapolation depends on
the size of the truncated space. In general, the more states are used the
more accurate results. We truncate the state space symmetrically, i.e. the
truncated state space is of the form S̃ = {x | 0 ≤ x ≤ (N,N)T}, where
N is referred to as truncation point. Figure 4.1 illustrates the convergence
with different load balancing policies with system load 0.7. For compari-
son, convergence of the SQ policy is also illustrated without value extrapo-
lation, i.e. the mean queue length is solved in the truncated state space and
the rest of the state space is neglected. Regardless of the policy, the mean
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Figure 4.1: Convergence of mean occupancy as a function of the trunca-
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Figure 4.2: Mean queue length as a function of system load.

queue length converges quickly when value extrapolation is used. With the
relatively high load 0.7, the results do not get significantly more accurate
when the truncation point is increased from 5, while without extrapolation
the point should be over 10 for similar accuracy. It seems that even though
the results are not exact with systems consisting of several DPS queues,
value extrapolation works very well allowing heavy truncation of state space
without significant loss of accuracy. The higher the system load, the larger
truncated state space is needed for accurate results.

Next, we illustrate the performance of the different policies. Mean
queue lengths of the policies are illustrated in Figure 4.2 as a function of
the system load. The results are computed using truncation point 6. As
seen in Figure 4.1, the results should approximate the infinite state space
very accurately. With low loads, there are no significant differences in the
mean queue lengths. As the load increases, the differences of the policies
become more obvious. The optimal policy always outperforms the other
policies and the optimal static policy always performs worse than the heuris-
tic policies. Regardless of the load, the shortest queue policy outperforms
the other heuristic policies, though the differences are small.
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Policy iteration is carried using truncation point 6. Three static policies are
compared to SQ policy as the initial policy.

Finally, we study first iteration policy, especially the effect of the initial
policy. It is known that the initial policy may affect the convergence of
policy iteration algorithm significantly. Figure 4.3 illustrates the effect of
the starting policy with system load 0.5. Four initial policies are used. “Di-
vided” routes class 1 to server 1 and class 2 to server 2. “Capacity” stochas-
tically routes the customers in proportions relative to the server capacities.
SR is the optimal stochastic routing policy. The best of the heuristic poli-
cies, SQ, is used as a point of comparison. Regardless of the starting policy,
the iteration ends up close to optimum in three rounds. It can also be seen
that with a suitable initial policy even the first iteration round ends very
close to the optimum. Another important observation is that the first round
policy starting from a sufficiently good static policy outperforms the heuris-
tic policies. When starting from a static policy, the first iteration round can
be conducted without any significant computational effort as the relative
values are known as seen in Section 3.3, hence the observation has also
practical value.

4.4 Fixed Networks

In this section, we study load balancing in fixed networks conducted at two
different levels. When flow-level balancing is considered, each arriving flow
is routed to a path and the same path is used until the transfer is completed.
On the other hand, packet-level balancing may divide a single flow between
multiple routes and the routes may be changed dynamically as other flows
arrive and depart in the network.

We consider insensitive load balancing, i.e. the steady state probabil-
ities and performance metrics derivable from them do not depend on the
flow size distribution. When packet-level balancing is considered, the prob-
lem reduces to the balanced fairness recursion defined by (2.8) and can be
solved using network flow algorithms. When flow-level balancing is con-
sidered, the routing as well as capacity allocation needs to be balanced.
In the flow-level setting, we assume that the network has an access con-
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trol mechanism limiting the number of flows. While the assumption is
restrictive, it can be argued that such a mechanism would be beneficial
[MR00, Rob04, MR99].

We do not consider implementation issues related to the approaches.
Packet-level balancing may mix up the packet order as delays on different
routes usually differ, hence it causes problems with TCP transfers. Load
balancing is typically conducted on time scales slower than what we are
studying, hence the flow-level balancing approach is not implementable in
currently deployed systems.

Packet-Level Balancing
First, we study load balancing in fixed networks, where each flow can use
resources on multiple routes. This corresponds to packet-level load balanc-
ing. This way, the resources of the network are used more efficiently and
the performance is better than when only one route is used. The problem
is formulated using two different approaches. First, we assume that each
traffic class uses a set of predefined routes. Second, we assume that the traf-
fic classes can utilize all the possible routes in the network. While the first
approach has more practical value, for example in modeling of load bal-
ancing, the second approach gives an theoretically interesting upper limit
of the performance. In both cases, the balanced fairness recursion (2.8) can
be formulated as a network flow problem. In addition, the capacity limit ρ̂
can be derived using the same problem formulation.

First, we formulate the balanced fairness recursion corresponding to
(2.8) in a network with K traffic classes. Each class has one or more pre-
defined routes. System state is denoted by a vector x = (x1, . . . , xK)T,
where xk is the number of active class-k flows. φ now denotes the flow
matrix, where element φi,r is the amount of class-i traffic on route r. R
is the routing matrix, where element Rr,j is 1 if route r uses link j and 0
otherwise. Vector c contains the link capacities. Starting from Φ(0) = 1,
the balanced fairness recursion can be solved as an LP problem:

Φ(x)−1 = max
φ

α,

s.t. φ e = α Φ̃(x),

eTφR ≤ cT,

φ ≥ 0,

(4.2)

where Φ̃(x) = (Φ(x−e1), . . . ,Φ(x−eK))T and Φ(x) = 0 for all x /∈ ZK+ .
The first constraint ensures that the capacity allocation is balanced and the
second constraint is the link capacity constraint.

If the traffic classes can use all possible routes in the network, the pre-
vious approach is not feasible as the number of possible routes explodes
with the size of the network. However, the BF recursion step problem
corresponds to the well-known multicommodity flow problem (see, e.g.,
[AMO93]) and enumeration of all the paths can be avoided by formulating
the problem in the linear programming setting using directed links. In our
formulation, the directed links have individual capacities, but the problem
can be modified allowing a shared capacity between the links in opposite
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directions. Define the link-node incidence matrix S such that element Sj,n
has the value −1 if link j originates from node n, 1 if the link ends in node
n, and 0 otherwise. D is the divergence matrix, i.e. the difference between
the incoming and outgoing traffic in each node. Element Di,n is ±1 if n
is the source (destination) node of class i and 0 otherwise. Matrix φ now
contains the link traffics. Element φi,j is the class-i traffic on link j. The
problem formulation reads

Φ(x)−1 = max
φ

α,

s.t. φS = α diag(Φ̃(x)) D,

eTφ ≤ cT,

(4.3)

where diag(a) denotes the matrix with the elements of the vector a on the
diagonal and 0 elsewhere. The first constraint is the divergence constraint
expressing the balance of incoming and outgoing traffic of each class at
each node, and the second is the link capacity constraint.

The asymptotic performance analysis method discussed in Section 3.4
can be applied straightforwardly to the packet-level balancing setting. Bal-
ance function values needed in equations (3.23) for calculating the low
load derivatives (3.22) are solved using equations (4.2) or (4.3). Given a
traffic profile p defining the proportions of the loads in different classes,
the capacity limit of the network can be determined by solving the optimal
α for the LP problems (4.2) and (4.3) with Φ̃(x) being replaced by p. The
end point ρ̂ of the load line is then given by ρ̂ = αp.

Example Consider the fixed network illustrated in Figure 4.4. The network
has 8 nodes and 19 (undirected) links with unit capacities and an equal
amount of traffic between all the 28 node pairs. Both packet-level formula-
tions are studied. For predefined routes, we choose two shortest link-disjoint
routes between every node pair. The throughput between the extremes is
sketched using a cubic polynomial fitted to the end points and to the first
two derivatives at r = 0. The low load derivatives fit the curve well, but
the heavy load derivative is omitted from the fitting as it does not improve
the results. The curve corresponding to arbitrary routing outperforms the
one with predefined routes. This is expected as the network resources are
utilized more efficiently.

Flow-Level Balancing
Next, we discuss load balancing in fixed networks at flow level. The ap-
proach is based on the insensitivity results by Bonald and Proutière in
[BP02]. In Publications 5 and 6, we presented a method for determining
the optimal insensitive flow-level load balancing policy. Using the theory of
Markov decision processes, the problem is formulated and solved as a linear
programming (LP) problem. The MDP-LP formulation is also used to for-
mulate the more general problem with jointly balanced capacity allocation
and routing. A new feature is that whereas in the ordinary LP formula-
tion of the MDP theory the global balance conditions (2.1) appear as linear
constraints on the decision variables, now, in order to retain insensitivity,
we impose the stricter detailed balance conditions as constraints.
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Figure 4.4: Multipath network (left) and throughput asymptotics of the
class denoted by the bigger nodes (right). Dotted lines illustrate routing
with predefined routes, solid lines arbitrary routing.

Flow-level load balancing can be modeled with a processor sharing net-
work similar to the one in Chapter 2. Again, EPS queues correspond to
traffic classes and customers to flows. We now assume that a customer who
has received the requested service always exits the system. In the queueing
network discussed in Chapter 2, in contrast, a serviced customer could con-
tinue to another node with a given probability. When the queueing model
is applied to data networks, we now have to assume Poissonian flow arrivals
instead of the less restrictive assumption of Poissonian session arrivals.

Similarly to the model in Chapter 2, we study a queueing network with
K nodes. In contrast to the model with static routing, we now assume
that the arrival intensities at the nodes depend on the system state. Arrival
intensity at node i in state x is denoted λi(x). Service rate at node i is φ(x)
and the mean service requirement is σi.

If the service rates are balanced by some function Φ, a network with
state-dependent arrival rates is balanced if and only if the arrival rates satisfy
balance conditions [BP02]

λi(x + ej)

λi(x)
=
λj(x + ei)

λj(x)
∀i, j. (4.4)

The balance conditions are equivalent to the existence of a balance func-
tion Λ so that Λ(0) = 1 and

λi(x) =
Λ(x + ei)

Λ(x)
∀x, i. (4.5)

In this case, the steady-state distribution of the process is

π(x) =
Φ(x)Λ(x)

G(ρ)
, (4.6)

where G(ρ) is the normalization constant.
More general results are obtained if the routing is balanced jointly with

the capacity allocation. In this case, a network is insensitive if and only if
the function ψi(x) defined as

ψi(x) =
λi(x − ei)σi

φi(x)
(4.7)
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is balanced [BP02]:

ψi(x− ej)

ψi(x)
=
ψj(x− ei)

ψj(x)
∀i, j, xi > 0, xj > 0. (4.8)

Balance condition (4.8) is equivalent to the existence of a balance function
Ψ so that Ψ(0) = 1 and

ψi(x) =
Ψ(x− ei)

Ψ(x)
∀x : xi > 0, i. (4.9)

Balance condition (4.8) is also equivalent to detailed balance conditions,
which can be formulates as follows:

λi(x)π(x) =
φi(x + ei)

σi
π(x + ei) ∀x, i. (4.10)

The steady state distribution of the system is

π(x) =
1

G(ρ)Ψ(x)
. (4.11)

The insensitivity results concerning queueing networks can be used to
analyze load balancing in data networks carrying elastic traffic. Optimiza-
tion of flow-level balancing is a more difficult problem than the packet-level
balancing problem. Instead of optimizing only the capacity allocation, also
the routing probabilities need to be considered. The arrival process can
be balanced either separately or jointly with the capacity allocation. Sepa-
rate balancing is easier as the separate problems are smaller than the joint
problem. On the other hand, separate balancing is more restrictive hence
performance is worse than with jointly balanced allocation and routing.

When fixed routes or packet-level load balancing is studied, the capac-
ity allocation policy maximizing the utilized capacity can be determined
recursively one state at a time. The ratios of the capacities are given and
the amount of allocated capacity is decided. The obvious policy choice is to
maximize the allocated capacity in every state. When flow-level balancing
is considered, the situation is not as simple. The amount of arriving traffic
is given and the routing probabilities among the different routes need to
be decided. We assume that the network has an access control mechanism
that guarantees a minimum bit rate φmin

k for accepted class-k flows. We
use the blocking probability as the optimization criterion. However, the
formulations allow the use of other objective functions.

Separately balanced capacity allocation and routing First, we consider
the case with separately balanced routing and capacity allocation. Similarly
to the packet-level balancing problem with predefined routes, each traffic
class has one or more possible routes. State vector x contains elements
xrk denoting the number of active class-k flows on route r. The arrival
intensity of class k is λk and it is stochastially divided between the routes.
Class-k arrival intensity on route r in state x is denoted λrk(x). In order to
retain insensitivity, the arrival intensities λrk(x) need to satisfy the balance
condition (4.4).
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The routing problem can be solved using the LP formulation of MDPs
discussed in Section 3.2. State of the process consists of the network state
and the routing decision. The routing vector is denoted d = (d1, . . . , dK)T,
where dk = r if class-k traffic is directed to route r and dk = 0 if the class
is blocked. φrk(x) is the (balanced) capacity allocated for class-k on route
r. π(x,d) is a decision variable in the LP problem and corresponds to the
probability that the network is in state x and routing d is used. In the or-
dinary LP formulation of the MDP theory, global balance conditions (2.1)
appear as linear constraints on the decision variables. In order to retain
insensitivity, we impose the stricter detailed balance conditions (4.10) as
constraints.

The objective function of the LP problem is the total blocking probabil-
ity. The probability that the system is in state x and blocking class-k traffic
is
∑
d:dk=0 π(x,d) hence the total blocking probability is

∑

k

λk
λ

∑

x

∑

d:dk=0

π(x,d), (4.12)

where λ =
∑

k λk is the total arrival rate. Using this notation the MDP-LP
formulation of the problem reads

min
π(x,d)

∑

k

λk
λ

∑

x

∑

d:dk=0

π(x,d), (4.13)

s.t. λk
∑

d:dk=r

π(x,d)

=
φrk(x + erk)

σk

∑

d

π(x + erk,d) ∀x, k, r ∈ Rk, (4.14)

∑

x

∑

d

π(x,d) = 1, (4.15)

π(x,d) ≥ 0 ∀x,d, (4.16)

where (4.14) is the detailed balance condition ensuring insensitivity and erk
is the unit vector corresponding to class-k flows on route r.

When the problem has been solved, the obtained values π(x,d) can be
used to analyze the optimal policy. For example, the state probabilities are

π(x) =
∑

d

π(x,d), (4.17)

and the class-k arrival rates at the different routes in state x are

λrk(x) =

∑
d:dk=r π(x,d)∑

d π(x,d)
λk . (4.18)

Next, we consider the same load balancing setting but the routing is bal-
anced jointly with capacity allocation.

Jointly balanced capacity allocation and routing In the previous section,
capacity allocation was assumed to be separately balanced and fixed in ad-
vance and only routing was optimized. Better results can be obtained if
routing and capacity allocation are balanced jointly.
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The problem can be formulated and solved as an MDP-LP problem.
In the jointly balanced problem, the decisions consist of capacity alloca-
tion and routing decisions. For each active route in the network, the con-
straining link is identified. Let Cr be the maximum feasible capacity on
route r, i.e. the capacity of the link with the lowest capacity along the
route. The allocation decisions are modeled with a binary vector b =

(b11, . . . , b
|R1|
1 , . . . , b1K , . . . , b

|RK |
K )T, where Rk is the set of routes available

for class k. brk = 1 if capacity Cr is allocated to class k on route r and 0 if
no capacity is allocated.

The decision variable in the LP problem, π(x,d,b), corresponds to
the probability that the system is in state x, routing vector d is used, and
capacity allocation is b. When routing is considered, the accepted traffic
may not exceed the offered traffic. The problem formulation takes this con-
straint into account implicitly. When capacity allocation is considered, the
allocated capacity on any link may not exceed the capacity of the link. In
addition to the detailed balance constraints, the capacity constraints need to
be added explicitly to the problem. Additional constraints are also needed
to guarantee the minimum bit rate φmin

k for the accepted flows. The MDP-
LP formulation of the problem reads

min
π(x,d,b)

∑

k

λk
λ

∑

x

∑

d:dk=0

∑

b

π(x,d,b), (4.19)

s.t. λk
∑

d:dk=r

∑

b

π(x,d,b)

=
Cr

σk

∑

d

∑

b:bd,r=1

π(x + erk,d,b) ∀x, k, r ∈ Rk (4.20)

∑

k

∑

r∈Rk:l∈r
Cr
∑

d

∑

b:brk=1

π(x,d,b)

≤ Cl
∑

d

∑

b

π(x,d,b) ∀x, l, (4.21)

xrkφ
min
k

∑

d

∑

b

π(x,d,b)

≤ Cr
∑

d

∑

b:brk=1

π(x,d,b) ∀x, k, r ∈ Rk, (4.22)

∑

x

∑

d

∑

b

π(x,d,b) = 1, (4.23)

π(x,d,b) ≥ 0 ∀x,d,b, (4.24)

where Cl is the capacity of link l, (4.20) represents the detailed balance
condition, (4.21) the link capacity constraints, and (4.22) the minimum bit
rate constraints.

The optimal π(x,d,b) values can be used to analyze the capacity allo-
cation and routing policy. State probabilities are

π(x) =
∑

d

∑

b

π(x,d,b). (4.25)
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In state x, class-k arrival intensity on route r is

λrk(x) =

∑
d:dk=r

∑
b π(x,d,b)∑

d

∑
b π(x,d,b)

λk (4.26)

and the capacity allocated for class k on route r is

φrk(x) =

∑
d

∑
b:brk=1 π(x,d,b)

∑
d

∑
b π(x,d,b)

Cr. (4.27)

While the problem can be formulated as an LP problem, the compu-
tational burden of solving the problem limits the flow-level approach to
small instances. In contrast, packet-level balancing discussed earlier can be
solved recursively allowing analysis of bigger networks. Next, we present
numerical results and compare the different methods.

Numerical Results In this section, we compare the different insensitive
load balancing methods in a simple network illustrated in Figure 4.5. There
are two parallel links with capacities C1 and C2 and three traffic classes. An
adaptive traffic class can utilize both the links while the links also receive
dedicated background traffic.

The offered arrival rate of the adaptive class is λ0 and the rates of the
background traffic classes are λ1 and λ2. The number of active background
flows on link i is xi and the number of adaptive flows is x0. In addition to
the total number of adaptive flows, the number of flows in the individual
links are needed when static or flow-level load balancing is used. The num-
ber of adaptive flows on link i is denoted x0,i.

The allocated bit rate on link i is φ0,i(x) for the adaptive class and φi(x)
for the background traffic. If capacity is allocated according to balanced
fairness, the capacity of a link is equally shared between all the active flows
utilizing that link. The balance function is

Φ(x) =

(
x1+x0,1

x1

)(
x2+x0,2

x2

)

C
x1+x0,1

1 C
x2+x0,2

2

(4.28)

and the capacities are φ0,i(x) =
x0,i

x0,i+xi
Ci and φi(x) = xi

x0,i+xi
Ci.

We compare different policies using different traffic loads. Each back-
ground class is assumed to make up 10% of the total load and the mean
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Figure 4.6: Blocking probabilities

flow sizes σ0, σ1 and σ2 are assumed identical. We assume unit link ca-
pacities and the minimum bit rate φmin is taken to be 0.2 for all the traffic
classes.

We compare the blocking probabilities of insensitive static load bal-
ancing, flow-level balancing with BF, flow-level balancing with jointly bal-
anced routing and capacity allocation, and packet-level balancing. In or-
der to estimate the performance penalty caused by the insensitivity require-
ment, we also determined the performance utilizing the optimal sensitive
flow-level balancing policy assuming exponentially distributed flow sizes.
The optimal sensitive policy accepts all traffic and routes an arriving adap-
tive class flow to the link that provides more capacity.

Figure 4.6 illustrates the blocking probabilities as a function of the total
offered traffic load. Static load balancing has the worst performance as ex-
pected. Flow-level balancing with separately balanced routing and capacity
allocation outperforms static routing but is the least efficient dynamic pol-
icy. If routing and allocation are jointly balanced, slightly better results are
achieved. Packet-level balancing is significantly better than flow-level bal-
ancing and it performs almost as well as the sensitive flow-level policy. A
key factor is the more efficient capacity usage. When packet-level balanc-
ing is used, an adaptive flow can utilize the capacity of both the links while
with flow-level balancing only one link is used. Especially with low loads
this has a significant effect. If an adaptive flow arrives in empty network,
it utilizes twice the capacity when compared to flow-level routing. While
the packet-level approach utilizes the capacity more efficiently, the sensi-
tive flow-level balancing outperforms it in this example. This is due to the
minimum bit rate constraint. The maximum number of flows depends on
the capacity allocation policy and in this case the sensitive flow-level policy
allows more concurrent flows leading to lower blocking probabilities.
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4.5 Summary

In this chapter, we discussed load balancing among multiple resources.
Such models have numerous applications in many fields, e.g., in computer
and telecommunication systems. We studied two settings: parallel DPS
queues and fixed networks with balanced capacity allocation.

When load balancing between multiple DPS queues is studied, value
extrapolation can be used to approximate flow-level performance using
heavily truncated state spaces. When applied to a single DPS queue, value
extrapolation yields exact results, as shown in Section 3.3, and hence ac-
curate results can also be expected in systems consisting of multiple DPS
queues. Value extrapolation was used jointly with policy iteration to approx-
imate the optimal performance of such systems. The optimal performance
was compared to several heuristic policies and to policies obtained with
one iteration round starting from static policies. Numerical experimenta-
tions illustrated that the policy obtained with one round of policy iteration
with a good initial static policy outperforms the heuristic policies used. As
the relative values of DPS systems with static policies can be easily deter-
mined, such policies can be defined without heavy computations making
them useful for practical applications.

We also studied load balancing in fixed networks using balanced fair-
ness. On the basis of the results of Bonald and Proutière [BP02], we studied
insensitive load balancing in data networks executed on either the packet
or flow level. In contrast to the DPS model, which is only applicable to
parallel servers, the BF approach can be used in networks.

When packet-level balancing is used, the optimal balancing policy can
be determined recursively, facilitating the analysis. The balanced fairness
recursion can be solved as an LP problem, assuming either a set of fixed
routes for each traffic class or arbitrary routing. We used the asymptotic
throughput method in performance analysis.

When flow-level balancing is used, an access control mechanism was
assumed to guarantee a minimum capacity for all accepted flows and to re-
ject arriving flows if the capacity constraint cannot be satisfied. In addition
to balanced capacity allocation, the routing also needs to be balanced in or-
der to obtain insensitive results. The optimal routing policy can be solved
either separately or jointly with the capacity allocation. The flow-level bal-
ancing problem was formulated using the linear programming formulation
of the MDP theory. The global balance equations of the problem were
replaced with the more constraining detailed balance equations, thus en-
suring insensitivity. The size of the LP problem grows rapidly as the size of
the network is increased. In practice, the computational complexity limits
the use of the method to small toy networks.

We compared the performance of the different insensitive load balanc-
ing methods in a toy network. Flow-level balancing is the least efficient
dynamic insensitive policy. The performance is improved if capacity allo-
cation and routing are jointly balanced and optimized. Packet-level balanc-
ing outperforms flow-level balancing, regardless of the network load. Still,
even in this case, some performance penalty has to be paid for insensitivity.
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5 FLOW-LEVEL PERFORMANCE ANALYSIS OF WIRELESS NETWORKS

5.1 Introduction

In this chapter, we model and analyze wireless networks carrying elastic
data traffic. We discuss two different types of wireless networks. In cellular
networks, users send data to and receive data from fixed base stations and
there are no direct transmissions between the users. In wireless multihop
networks, there is no fixed infrastructure and the users relay each other’s
traffic towards the receiving user.

In wireless networks, interactions between simultaneous transmissions
make the analysis considerably more difficult than in fixed networks. The
capacities of links, i.e. the transmission capacity between two nodes, de-
pend on the state of other links. A transmitting node interferes with the
other nodes, reducing their link capacities. Interference phenomena can be
modeled in various ways, ranging from simple Boolean models [JPPQ05]
to more complex SINR models [Sha49].

We are interested in the flow-level performance of the systems being
studied. The performance metrics we use are the mean flow throughput
and the mean number of active transmissions (which is proportional to the
mean transmission duration). The flow-level time scale is assumed to be
longer than packet or medium access scales. The flow-level throughput
is assumed to be constant, while on a shorter time scale it may fluctuate.
For example, in Aloha networks the throughput at any given moment is
stochastic but the expected value can be used in the flow-level analysis. We
also assume that when the state of the network changes, the transient phase
is short when compared to the flow scale, and hence the capacity changes
can be assumed to be instantaneous in the flow-level analysis.

We analyze the performance of wireless networks carrying elastic data
traffic. First, we discuss a simple cellular network with link adaptation con-
sisting of two base stations and customers located on a line between them.
We model the system and analyze the performance using different capacity
allocation policies (Publication 7).

We also study wireless multihop networks using two different MAC
schemes and balanced fairness capacity allocation. On the basis of earlier
work by Penttinen et al. in [PVJ06], we apply the asymptotic throughput
analysis to multihop networks using the STDMA MAC protocol (Publica-
tion 2). We also study multihop networks with random access, assuming
that the transmission probabilities can be adapted upon flow arrivals and
departures (Publication 8). We derive the exact throughput in the two-class
scenario. In the general network case, we present an algorithm for optimiz-
ing the transmission probabilities and compare the throughput behavior of
flow-optimized random access against the throughput obtained by optimal
scheduling.

The structure of this chapter is as follows. In Section 5.3, we discuss a
simple cellular system with two base stations and link rate adaptation, pre-
sented in Publication 7, and compare the flow-level performance of differ-
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ent capacity allocation policies. In Section 5.4, we model and analyze the
performance of multihop networks using the spatial time division multiple
access (STDMA) protocol [NK85], as discussed in Publication 2. Finally,
multihop networks with random medium access are analyzed in Section
5.5 (Publication 8).

5.2 Related Research

Most prior analytical work on wireless networks assume a static user model
(see, e.g., [LCS03, Alt02b]), i.e. the number of transmissions is fixed. In
typical wireless scenarios, however, a dynamic model is needed to capture
the user-level performance. The processor sharing paradigm has recently
been applied to wireless networks (see, e.g., [PV02, BP03b, Bor05]) allow-
ing analysis in the dynamic setting.

Aloha networks were first introduced in 1970 [Abr70] and a lot of sem-
inal work on the subject was published already in the 70s and 80s. Klein-
rock and Silvester have analyzed the capacity of multihop Aloha networks
in many interesting scenarios ([KS78, SK83]). For an example of more
recent interest in random access, Baccelli et al. [BaM06] introduced a de-
centralized random access protocol which attains density of progress equal
to the well-known upper bound of wireless networks derived by Gupta and
Kumar [GK00].

In [BG92] the authors propose a simple iterative approach for solving
the link transmission probabilities to achieve given (feasible) link capacities.
However, they do not provide a solution how to determine the maximum
feasible link capacities with given capacity proportions, which is needed in
performance analysis and one of the contributions of this thesis.

More recently, Wang and Kar [WK06] have considered a rate control
problem in random access networks. They determine jointly the end-to-
end flow rates and the corresponding transmission probabilities so that the
flow rates are proportionally fair. They propose two algorithms which can
also be implemented in a distributed manner. However, the authors do
not consider the performance of such a scheme in a realistic setting, where
file transfers arrive randomly and depart upon completion. Our work can
be seen as an approximation of the flow-level performance if such a propor-
tional fair rate control algorithm were applied in the dynamic scenario. The
advantage of balanced fairness is that it allows mathematical throughput
analysis in the dynamic scenario, which would be overwhelmingly difficult
for proportional fairness.

5.3 Cellular Network with Road Topology

First, we study an example cellular system consisting of two base stations.
While the system is simple, the methods used are applicable to more com-
plex systems. Two base stations, A and B, are used to serve elastic traffic,
or file downloads, destined to users located on a road between the base
stations, cf. Figure 5.1. The base station nearest to the user is always used
for a connection. The base stations are assumed to work coordinatedly, i.e.
the base stations schedule their transmissions in cooperation in order to
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Figure 5.1: Example system with two base stations. Areas A1 and A2 are
served by the station A and areas B1 and B2 are served by the station B. If
both the stations are active simultaneously the maximum rate at A2 or B2
decreases from R1 to R2 due to interference.

optimize the performance of the whole system.
Link adaptation is modeled as follows. Close to the base stations (in

areas A1 and B1) the total downlink rate is alwaysR1 irrespective of the state
of the other station. Further away (in areas A2 and B2) the capacity remains
at R1 only if the other station is not active simultaneously, otherwise the
rate decreases to R2 due to interference.

We describe the system state by the vector x = (x1, x2, x3, x4)T, giving
the number of active flows in each area A1, A2, B2, B1, respectively. We
use the term flow class interchangeably with the term area. The state space
of the system is given by S = {x | x ≥ 0}. In computations we use a
truncated state space which is denoted by S̃.

As the system state evolves dynamically, we need to fix a policy defining
how the network resources are used in any given state. In each state of
the system, a policy defines a rate allocation which corresponds to a rate
vector r = (r1, r2, r3, r4) giving the total rate for each class. The total
rate is shared evenly among the flows which belong to a same class by time
sharing.

The set of feasible allocations is determined as follows. Let R be the
matrix comprising of column vectors each of which specifies the link capac-
ities of an instantaneous “operation mode” under the constraints described
above:

R =




R1 0 R1 0 0 0
0 R2 0 R2 R1 0
0 R2 R2 0 0 R1

R1 0 0 R1 0 0


 . (5.1)

For example, the first column of R represents the mode where both base
stations serve the flows in the nearest class (areas A1 and B1 are being
served), the second column represents the mode where both the stations
are active and serve the traffic in the center-most areas. The policy rate vec-
tor r can take the form of any column of R and, additionally, any convex
combination of the columns. These are available through time multiplex-
ing, which is assumed to take place on a fast small time scale compared to
flow durations. Thus, the available allocations are defined by the convex
hull spanned by the column vectors of R.

Alternatively, one may determine the hyperplanes that jointly constrain
the feasible values of r. This is just another way to describe the convex hull
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and can be done using the standard gift wrapping algorithm [Ski97]. The
feasible rate vectors r are constrained by Dr ≤ eT (e is a vector of ones),
where, assuming that 1

2R1 < R2 < R1,

D =




1
R1

1
R1

0 0

0 0 1
R1

1
R1

R2

R2
1

1
R1

R1−R2

R1R2

R1−R2

R2
1

R1−R2

R2
1

R1−R2

R1R2

1
R1

R2

R2
1


 . (5.2)

In the case that 0 < R2 <
1
2R1 the same matrix applies with the exception

d33 = d42 =
1

R1
. (5.3)

Next we describe the capacity set of the system by finding the maximum
traffic load that the system can sustain. Let α and 1−α denote the fraction
of traffic in A1 and A2, respectively. Assuming symmetry the same fractions
hold also for B1 and B2 and the system serves traffic at rate r = R

2 (α, 1 −
α, 1− α, α), where R is the total capacity to be maximized.

Rmax can be obtained by looking at the constraints D, but can also
be derived intuitively as follows. Assume that the load is high and all the
classes have traffic.

First, let 0 ≤ R2 <
1
2R1. Now it is advantageous to serve the traffic

in areas A2 and B2 so that only one base station is active. Looking at the
base station A; it serves area A1 the time α/R1, area A2 the fraction of
time (1 − α)/R1 and, additionally, must remain quiet the fraction of time
(1− α)/R1 when station B serves area B2. Due to symmetry

Rmax = 2
α+ (1− α)

2(1− α) + α
R1 =

2R1

2− α. (5.4)

Second, let 1
2R1 ≤ R2 ≤ R1. Now the traffic in areas A2 and B2 is

served using both the base stations simultaneously. Looking again at the
station A; it serves class A1 the time α/R1, A2 the time (1 − α)/R2, but
with different rates. Again due to symmetry

Rmax = 2

(
α/R1

α/R1 + (1− α)/R2
R1 +

(1− α)/R2

α/R1 + (1− α)/R2
R2

)

=
2R1R2

R1 −R1α+R2α
.

(5.5)

The performance of the system depends on how the available capacity is
divided between the customers. Next we discuss and compare different
capacity allocation policies.

Performance under different operational policies
We analyze the performance of the system with different capacity allocation
policies. We use three different dynamic policies and compare them to
the static policy corresponding to the fixed rates at the capacity limit. The
considered policies are:
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• The optimal policy maximizing the system throughput

• Max-min fairness

• Balanced fairness

The flow-level performance of the policies are compared. We measure the
performance of the system with the mean number of active flows which is
proportional to the mean flow duration.

The first studied policy optimizes the system performance and can be
determined by utilizing the MDP theory. The policy minimizing the mean
file transfer time can be found using policy iteration. When the optimal
policy is known, value extrapolation is used to determine the performance.
In order to avoid problems caused by the boundary of the state space, the
policy iteration is executed using a larger state space than with value ex-
trapolation. Policy iteration is computationally demanding as the Howard
equations need to be solved multiple times.

While the policy obtained with MDP maximizes the throughput of the
system, it does not explicitly consider how the resources are shared among
the users. In practice, this may lead to situations where some users effi-
ciently use up all the system capacity while others are left without an ac-
ceptable level of service. To avoid such situations, one may impose addi-
tional constraints on the resource sharing to guarantee “fair” capacity allo-
cation. We use max-min fairness as an example policy that takes fairness
into account. The customers are treated more evenly than with the system
optimal policy. In each state, the bandwidth of the flow with least band-
width is maximized. The performance of the max-min policy is evaluated
using value extrapolation.

The third policy we study is balanced fairness. BF recursion (2.8) can
be formulated using the constraint matrix D (5.2) as

Φ(x) = max
i

{
(DΦ̃)i

}
, (5.6)

where Φ̃ = (Φ(x− e1), . . . ,Φ(x− e4))T. The equilibrium distribution is
given by

π(x) =
1

G(ρ)
Φ(x)ρx1

1 ρx2
2 ρx3

3 ρx4
4 , (5.7)

where G(ρ) is the normalization constant and ρi is the amount of class-i
traffic (bit/s). Performance is evaluated using state probabilities of a trun-
cated state space. The mean flow number can then be determined by sum-
ming over the truncated state space. BF is significantly faster to evaluate
than the value extrapolation method. A significantly larger number of states
can be included directly in the analysis to replace the extrapolation need.

We illustrate the performance of the policies with parameter values
R1 = 5 and R2 = 1. The traffic intensities are assumed equal in all
four regions. When value extrapolation method is used, the state space is
truncated so that the maximum number of flows in each class is 6. With
BF, the corresponding limit is 30. These limits result in accurate results
with the traffic loads used.
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Figure 5.2: Mean number of active flows with parameters R1 = 5 and
R2 = 1
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Figure 5.3: Mean number of active flows in classes 1 (lower curves) and 2
(upper curves) with parameters R1 = 5 and R2 = 1

Figure 5.2 illustrates the mean number of active flows with different
system loads. The MDP policy has the best performance but the other
dynamic policies are almost equal. The static policy of allocating equal
bandwidth to all the classes regardless of the system state is significantly
worse than the dynamic policies.

The mean number of active flows in traffic classes 1 and 2 are illus-
trated in Figure 5.3. While MDP policy ensures best service for both the
classes, the differences between the policies are relatively small. Max-min
allocation provides the most equal service to the classes as expected.

The illustrated results are produced with parameter values R1 = 5 and
R2 = 1 which fall into region 0 < R2 <

1
2R1. In this case, it is beneficial to

turn one base station off while the other one serves the flows in the middle
region. In addition, we analyzed a scenario with values R1 = 5 and R2 = 4
when it is more efficient to serve the middle classes simultaneously. While
the policies differ from the illustrated scenario, the performance is relatively
similar.
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5.4 Multihop Networks with TDMA

Next, we consider wireless multihop networks using time division multiple
access MAC-layer. Capacity set of a wireless network is generally difficult to
determine due to various physical constraints and the effects of interference
in the network. In the following, the wireless MAC layer protocol known
as spatial time division multiple access (STDMA) [NK85] is studied. The
modeling approach and the corresponding balanced fairness recursion was
introduced by Penttinen et al. in [PVJ06]. We apply asymptotic analysis in
the same setting.

The STDMA setting is modeled using an approach resembling the one
used in the cellular example in the previous section. Sets of links with
specified transmission parameters are scheduled on a fast time scale to pro-
duce constant (virtual) link capacities on the flow time scale. Each such
set, called a transmission mode, thus defines, which links are active and
which transmission power is used on each active link. For each transmis-
sion mode there is a capacity vector which defines the capacity of each link
when that particular mode is active. Assume that these vectors form the
columns of rate matrix R. When the modes are scheduled on a fast time
scale, the resulting link capacities available for flows are defined by the
convex combinations of the columns of R. The capacity set in the space
spanned by link capacities (referred to as the link space) is thus given by
Clink = {c = Rt : eTt ≤ 1, t ≥ 0}. See [PVJ06] for a more extensive
description of the model.

In principle, from the rate matrix R one can define the capacity set also
as a collection of linear inequality constraints, but generally this approach
is computationally infeasible. However, for any fixed link capacity propor-
tions (i.e., a direction in the link space) one may compute the correspond-
ing boundary point, which defines the maximum available link capacities
with the predefined proportions. The boundary point to the direction of
b is given by cb = b/Υ(b), where the function Υ(b) is defined as the
solution to the LP problem [PVJ06]

Υ(b) = min
q

eTq,

s.t. Rq ≥ b,

q ≥ 0.

(5.8)

Throughput Asymptotics
The throughput behavior of wireless networks at low loads can be straight-
forwardly characterized using the formulae (3.22). The link-flow incidence
matrix is denoted A, i.e. Aji = 1 indicates the flow i uses link j, otherwise
Aji = 0. Given the traffic pattern p, the boundary point in the flow space
is

ρ̂ =
p

Υ(Ap)
(5.9)

and the BF recursion (with, as usual, Φ(0) = 1 and Φ(x) = 0 for all
x /∈ ZN+ ) is [PVJ06]

Φ(x) = Υ(AΦ̃(x)), (5.10)
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where Φ̃(x) is a vector containing the balance function values Φ(x − ek).
In order to apply the heavy traffic derivative formula (3.28), we need to

identify the saturated constraints at r = 1. Consider first the constraints
in the link space. At the boundary of the capacity set in the link space any
saturated constraint is a hyperplane the equation of which is directly avail-
able via duality. To the link space direction Ap the vector u defining the
constraining hyperplane uTcAp = 1 is given by the dual of the scheduling
problem, i.e., it is the vector that solves

max
u

uTAp, (5.11)

s.t. RTu ≤ e, (5.12)
u ≥ 0. (5.13)

In the case that the solution is not unique, i.e. several constraints are sat-
urated simultaneously, one enumerates the spanning vectors of the solu-
tion space. This can be done by solving the dual problem by the simplex
method, storing the optimal basis and carrying out, e.g., a depth-first search
using simplex iterations over all other solutions that do not change the value
of the objective function.

After the link space constraints have been determined, they need to be
translated to the flow space. Let ul be the lth extremal solution of the dual
problem. Now, bli = aT

i ul in (3.28), where ai stands for the ith column
of A. Thus, the heavy load derivative for classes k such that γk(1) = 0 is
given by

γ′k(1) = − 1∑
j aT

k uj
. (5.14)

Example
Consider a wireless mesh network shown in Figure 5.4 (left), with two ac-
cess points (AP), two relays (R) and 18 traffic classes. As the interference
model, we assume that no node can participate in more than one transmis-
sion at a time. In other words, a feasible transmission mode is a matching
on the network graph. We assume that each link has unit capacity when
active. The traffic pattern is pi = i (without normalization) for each class
i. We study the throughput of class 9 (marked with thick line in the left fig-
ure) which has the load ρ̂9 = 3/40 at the capacity limit. Figure 5.4 (right)
shows the asymptotic throughput behavior of class 9. The throughput be-
tween the extremes is sketched using a cubic polynomial fitted to the end
points and to the first two derivatives at r = 0 neglecting the derivative at
r = 1. As seen in the figure, the low load derivative provides reasonable
results while the heavy load derivative does not fit the rest of the curve well,
hence better results are obtained when the heavy load derivative is omitted
from the fitting.

5.5 Multihop Networks with ALOHA

In Publication 8, we consider a synchronized slotted time random access
network (such as slotted Aloha), where the nodes access the channel ran-
domly and independently of each other in each time slot. We assume that
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Figure 5.4: Left: Wireless mesh network and the flow classes. Right:
Throughput asymptotics of the class denoted by the thick line (right).

the medium access time scale is much faster than the flow time scale and
that the transmission probabilities can be adjusted whenever the state of
the network changes. With this assumption, any given set of transmission
probabilities results, from the flow level perspective, in a virtual network
where the capacity of each link is the fraction of the nominal capacity that
corresponds to the probability of successful transmission on that link in a
randomly chosen slot.

The outgoing links of node i are identified by their receiver end nodes
j belonging to the set Li. We denote the transmission probability of link
(i, j), j ∈ Li, by pij . Note that the link transmissions in a single node are
mutually exclusive and

∑
j∈Li pij = Pi, where Pi is the overall transmis-

sion probability of node i. Denote the vector of all pij by p and the vector
of the Pi by P. Each link may be interfered by other transmitting nodes.
We denote the set of nodes that (in case they are transmitting) interfere with
link (i, j) by Nij with the convention that Nij includes the receiving node
j itself.

Assuming unit nominal capacity, the capacity of the link (i, j) is the
probability that there is a transmission on that link and no other node inter-
feres with the reception,

cij(p) = pij
∏

k∈Nij
(1− Pk). (5.15)

Thus the capacity set of the network can be written as

C = {φ : Aφ ≤ c(p), P ≤ 1},

where A is the routing matrix, c(p) is the vector of cij(p), and as explained
above P is related to p by

∑
j∈Li pij = Pi.

First, we discuss capacity sets in a single resource case where all the links
interfere with each other. Then this interference assumption is relaxed and
capacity sets of multihop networks with spatial reuse are considered.

Single resource system
First we consider a simple example proposed already by Kleinrock [Kle76]
but give it a slightly different treatment. Assume n nodes compete for a

61



common channel. Node i attempts to use the channel independent of the
others with the probability Pi. We wish to determine the Pi such that the
throughput si of node i is σis, where the σi are given parameters defining
the traffic profile and the total throughput s is maximized. The throughput
of node i is given by

si = Pi
∏

j 6=i
(1− Pj) =

Pi
1− Pi

q, (5.16)

where q =
∏
i(1− Pi). Now, by setting si = σis, we get

1− Pi =
q

q + σis
⇒ q =

∏

i

(1− Pi) =
∏

i

q

q + σis
, (5.17)

which defines s as a function of q. By derivation with respect to q and
noting that s′ = 0 at the maximum we obtain the relation

∑

i

1

1 + σia
= n− 1, (5.18)

where we have denoted a = s/q. The parameter a can be solved (at least
numerically) from (5.18) which immediately gives the optimal solution:

s = a
∏

i

1

1 + σia
with Pi =

σia

1 + σia
. (5.19)

Note that the boundary of the maximum obtainable link capacities sat-
isfies

∑

i

Pi =
∑

i

σia

1 + σia
=
∑

i

(
1− 1

1 + σia

)
= n− (n− 1) = 1, (5.20)

which is the same optimality condition as obtained in [Kle76] by consider-
ing the determinant of the Jacobian matrix.

Example When n = 2 equation (5.18) reads

1

1 + σ1a
+

1

1 + σ2a
= 1, (5.21)

from which
a =

1√
σ1σ2

. (5.22)

Substitution in (5.19) gives

s =
1

(
√
σ1 +

√
σ2)2

, with Pi =

√
σi√

σ1 +
√
σ2
, (5.23)

and recalling that si = σis the equation for the boundary becomes
√
s1 +

√
s2 = 1. (5.24)
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Multihop random access network
The previous example assumed that all links interfere with each other. With
spatial reuse of the channel the determination of the maximal link capaci-
ties with given proportions becomes more challenging.

Denote a traffic profile byσ, where σij gives the relative capacity of link
(i, j). Thus, σ is a vector defining a direction in the link capacity space.
The maximum sustainable link capacities in this direction are sσ, where s
is the throughput coefficient to be solved.

Consider first a single node i. Locally the throughput coefficient, de-
noted by si, solves

{
pij
∏
k∈Nij (1− Pk) = siσij , ∀ j ∈ Li,∑

j∈Li pij = Pi,
(5.25)

which clearly fixes the link transmission probabilities and leaves only the
node transmission probabilities as unknowns. The local throughput is then
given by

si = Pi


∑

j∈Li

σij∏
k∈Nij (1− Pk)



−1

, (5.26)

with the link transmission probabilities fixed by P,

pij =
σij∏

k∈Nij (1− Pk)
Pi


∑

j∈Li

σij∏
k∈Nij (1− Pk)



−1

. (5.27)

In the global network-wide view, we attempt to increase all si as much
as possible. Thus, parameter s becomes

s = max
P

min
i
Pi


∑

j∈Li

σij∏
k∈Nij (1− Pk)



−1

. (5.28)

We propose solving the problem (5.28) by the following water-filling ar-
gument (see Appendix A in Publication 8 for a more detailed description);
we adjust P so that all si gain approximately equal increments. The actual
algorithm consists of two alternating phases; (i) progressing to a direction
where all the si initially grow at the same pace and (ii) equalization of the
si to a common value in order to correct for the unequality due to finite
step size. The idea of the algorithm is illustrated in Figure 5.5 which shows
the contour of mini si in a two-link scenario where the links interfere and
σ1 = 3

4 and σ2 = 1
4 . The progression of P in the algorithm is visualized

using lines. The phases of the algorithm are clearly visible, every first step
is a step towards increasing all si and every second step sets si-values equal
(boundary s1 = s2 is shown as a dashed line in the figure).

Throughput analysis
Next, we analyze the flow throughput of various Aloha setting assuming
balanced fairness capacity allocation. In order to determine the exact flow
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throughputs (2.11), the state sum (2.7) needs to be solved. First, we derive
an exact result for the throughput in a single channel system with two traffic
classes, which is a nice addition to the set of exactly solvable problems under
BF. We also present an exact analysis of linear networks with only end-to-
end traffic. In general, the throughput cannot be found in closed form,
but one has to resort to numerical methods. We use asymptotic analysis to
approximate the performance of general multihop random access networks.

Single resource system with two classes It is well known (see, e.g., [BP03a])
that when two classes compete for a common resource of unit capacity then
under balanced fairness the system behaves as a single PS queue, each flow
getting an equal share of the common resource. The balance function of
the system is

ΦPS(x) =

(
x1 + x2

x1, x2

)
(5.29)

and the corresponding allocations satisfy

φ1(x) + φ2(x) = 1. (5.30)

The state sum is also well known,

G1(ρ1, ρ2) =
∑

x1,x2

ΦPS(x)ρx1
1 ρx2

2 =
1

1− ρ1 − ρ2
. (5.31)

From the balance function (5.29) one can derive new systems. In par-
ticular using ΦPS(x)α as a new balance function leads to the allocations

φ
(α)
k (x) = φk(x)α, k = 1, 2 (5.32)

satisfying
φ

(α)
1 (x)1/α + φ

(α)
2 (x)1/α = 1. (5.33)

For α = 2 the capacity set defined by (5.33) is precisely the one of a
2-class Aloha system, where two stations are accessing the same channel
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Figure 5.7: Linear network with n links.

(5.24). So the balance function of this system is ΦPS(x)2. In order to cal-
culate the throughputs of different classes we have to determine the state
sum

G2(ρ1, ρ2) =
∑

x1,x2

ΦPS(x)2ρx1

1 ρx2

2 =
∑

x1,x2

(
x1 + x2

x1, x2

)2

ρx1

1 ρx2

2 . (5.34)

It is shown in Publication 8 that the sum results in

G2(ρ1, ρ2) =
1√

1− 2(ρ1 + ρ2) + (ρ1 − ρ2)2
. (5.35)

The throughputs can now be calculated by (2.11)

γi =
G2(ρ1, ρ2)
∂
∂ρi

G2(ρ1, ρ2)
=

1− 2(ρ1 + ρ2) + (ρ1 − ρ2)2

1∓ (ρ1 − ρ2)
, (5.36)

where the minus sign is for i = 1 and plus sign for i = 2.
The throughputs are shown in Figure 5.6 for load ratios 1, 2, and 3 as a

function of the load of the low-load class. The diagonal line corresponds to
the case ρ1 = ρ2.

Linear networks with end-to-end flows Consider a linear network with
unidirectional links and only end-to-end traffic as show in Figure 5.7. As
there is only one traffic class, BF capacity allocation reduces to processor
sharing.

Assume that the interfering nodes of a link are the receiver node of that
link and the subsequent node to the receiver. Then the probabilities of
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successful transmissions of link i, si, are





s1 = p1(1− p2)(1− p3)
...
sn−2 = pn−2(1− pn−1)(1− pn)
sn−1 = pn−1(1− pn)
sn = pn.

(5.37)

It is obvious that in an optimal system all the success probabilities are equal.
Thus, we get a set of equations





p1(1− p2)(1− p3) = p2(1− p3)(1− p4)
...
pn−4(1− pn−3)(1− pn−2) = pn−3(1− pn−2)(1− pn−1)
pn−3(1− pn−2)(1− pn−1) = pn−2(1− pn−1)
pn−2(1− pn−1) = pn−1.

(5.38)

The maximal capacity C is obtained with p1 = 1, hence the set of equa-
tions can be solved. For example, for n = 2 the solution to the equations
gives p1 = 1 and p2 = 1

2 . For n = 3, p1 = 1, p2 = 1
2 and p3 = 1

3 . The
resulting maximal capacities, 1

2 and 1
3 , are exactly the same as in a fully co-

ordinated MAC. If n > 3 the network capacity becomes slightly worse than
that of coordinated MAC. As n→∞ the capacity approaches 4

27 ≈ 0.148,
with pi = 1

3 for all i > 1. In comparison, the capacity of a coordinated
line network with the assumed interference model is 1

3 . In this scenario,
BF capacity allocation corresponds to processor sharing, hence the mean
flow throughput is γ = C−ρ and the throughput curve is a line from point
(0, C) to (C, 0). The maximal capacities C are illustrated in Figure 5.8 and
compared to fully coordinated MAC. The longer the network, the greater
the difference between the approaches.

Multihop networks Finally, we analyze the throughput in general multi-
hop random access networks. For a given state x, the balanced fairness
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recursion step (2.8) can be written as

Φ(x) =
1

s
= min

P
max
i
P−1
i

∑

j∈Li

σij(x)∏
k∈Nij (1− Pk)

, (5.39)

where the traffic profile is given by

σ(x) = AΦ̃(x). (5.40)

The balance function values can thus be solved using the optimization al-
gorithm related to equation (5.28).

Though we were able to derive the throughputs in a two-class single-
channel system in closed form, an exact analysis is not feasible in more
complex networks and hence approximative methods are needed. Again,
we use throughput asymptotics in the analysis.

We denote by ρ = (ρ1, . . . , ρK)T the traffic profile of the network,
where ρi is the proportion of class-i traffic and

∑
ρi = 1. Load line is the

line segment from zero to the boundary of the capacity set C in the direction
of vector ρ. The boundary point ρ̂ = sρ, where s is solved from (5.28) with
σ = Aρ. The load line can then be parameterized as rρ̂, r ∈ [0, 1].

Given both the end points and derivatives at zero load, the throughput
curves can be sketched. In the single channel system with two classes,
the throughput curve (5.36) is a rational function, hence it can be exactly
extrapolated using an appropriate rational extrapolation function. In the
general case the correct functional form is not known. In our numerical
experiments, we use polynomial interpolation functions.

Numerical example In order to demonstrate the asymptotic analysis, we
study the network illustrated in Figure 5.9. The network has 20 nodes and
98 links. A transmitting node is assumed to interfere all receiving nodes
within the transmission distance. We assume 6 traffic classes and denote
class-i source node si and destination node di. All the traffic is routed
using the shortest paths as illustrated in the figure.

Assuming an equal load on all traffic classes, asymptotic analysis is
used to approximate the flow-level performance. Figure 5.10 illustrates the
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throughputs of classes 1, 2 and 3. The extrapolation is done using third
order polynomial functions and the first two derivatives at low load regime.
The results are compared to the performance of optimal fully coordinated
MAC discussed in Section 5.4.

Class-3 and class-2 routes consist of one and two hops, respectively,
hence low load performance of random access is close to the coordinated
operation. As the load increases, the coordination gives a greater benefit
and random access results in worse throughputs. Class 1 has a longer route
consisting of six hops. In this case, the performance difference is significant
also with low loads.

5.6 Summary

In this chapter, we have studied three different wireless data network mod-
els on the flow level. New transmissions arrive and depart dynamically and
we analyzed the mean performance of the system. First, a cellular network
with two base stations was modeled and analyzed. We also discussed multi-
hop networks using either TDMA or ALOHA medium access methods.

When the cellular scenario was considered, we assumed that the base
stations were coordinated and that a simple link rate adaptation scheme
was used. We studied the effect of the operating policy on the performance
of the system using both value extrapolation and balanced fairness. The
effects of link adaptation and transmission coordination are apparent, even
in this simplified model. There is a significant gap between the flow-level
performance resulting from dynamic policies and that from static policies.
Irrespective of operational policies, the flow-level performance analysis of
such systems remains a difficult task. With BF one can go through the state
space recursively and no matrix inversions are needed. Furthermore, the
results are insensitive to the traffic details, thus making the results more
robust. With value extrapolation, the performance of arbitrary policies can
be approximated with heavily truncated state spaces. BF is computationally
the lighter of the two approaches and is a reasonable approximation of the
other capacity allocation policies studied.

We also analyzed flow-level performance in multihop networks. The
resources are shared according to balanced fairness, which serves as an ap-
proximation of common fairness policies such as proportional fairness. On
the basis of the earlier results in [PVJ06], we used asymptotic analysis to
analyze the flow-level performance of multihop STDMA networks.

We also analyzed flow-optimized random access in the same setting.
In particular, we derived the flow throughput analytically in the two-class
case, where the classes share a single resource. For arbitrary flow-optimized
random access networks we provided a general scheme that enables the
throughput to be evaluated. The scheme also entails a novel algorithm to
determine the maximum link capacities with given proportions.

We compared the throughput behavior of flow-optimized random ac-
cess against the throughput obtained by optimal STDMA scheduling. When
the network is lightly loaded, the performance of the flow-optimized ran-
dom access is comparable even to access-level optimal scheduling, but the
performance deteriorates when the capacity limit is approached.
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Figure 5.10: Asymptotic analysis of traffic classes 1, 2 and 3. The upper
curves correspond to coordinated MAC and the lower curves to Aloha.
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6 SUMMARY

In this thesis, we studied the performance analysis of data networks. Most
telecommunication systems are dynamic in nature. The state of the net-
work changes constantly as new transfers start and finish. In order to cap-
ture the behavior of such systems and to realistically evaluate their perfor-
mance, it is essential to use dynamic models in the analysis. We studied
networks carrying elastic traffic, i.e. file transfers or flows which are char-
acterized by the file size and whose performance can be measured with
the transmission duration which depends on the available capacity. Packet-
level phenomena, e.g. packet delay or jitter, can be ignored when the flow-
level performance of such networks is being analyzed. We assumed that
medium access control and the capacity allocation mechanism operate on
a faster time scale than flow level and that transient phases after flow arrivals
and departures are short, and hence the capacities allocated for the flows
can be considered constant between flow arrivals and departures.

The assumptions allow us to model the systems at flow level. Networks
are modeled as stochastic queueing systems in which the flows correspond
to customers and the network acts as a server and allocates a share of ca-
pacity to each concurrent flow. Many interesting performance measures
can be derived from the equilibrium state distribution of the system. In
general, queueing systems are sensitive, i.e., the equilibrium state distribu-
tion depends on detailed system characteristics such as the arrival process
and flow size distribution. In order to facilitate the analysis, restricting as-
sumptions are usually needed. For example, Poissonian flow arrivals and
exponential flow size distributions make a system more tractable. The equi-
librium state distribution of a network can be approximated by truncating
the state space and by solving the state probabilities from the global balance
equations. Such analysis is computationally heavy and becomes intractable
when the size or load of the network is increased, and hence more efficient
approximative methods are needed to study more realistic settings.

In this thesis, we used two performance approximation methods: value
extrapolation and balanced fairness, specifically asymptotic throughput anal-
ysis. In addition, we introduced an approximation method based on bal-
anced fairness and the Monte Carlo method for evaluating large sums that
can be used to estimate the performance of systems with low or medium
loads. Instead of the state space being recursively gone through in order, it
is sampled randomly and the average throughput is calculated.

Value extrapolation is a novel approximative method developed during
this work and based on the theory of MDPs. It can be used to approxi-
mate performance metrics that can be formulated as the expected value of
a function of the system state. In this thesis, we used it to approximate the
mean number of flows (which is proportional to the mean transfer time)
in data networks carrying elastic traffic. Instead of first solving the state
probabilities using the global balance equations, the performance measure
is determined directly using relative values of the states and the Howard
equations. The idea of value extrapolation is that the relative values outside
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the truncated state space can often be accurately extrapolated using a poly-
nomial function, allowing more accurate results to be obtained without any
significant computational penalty. As our numerical studies showed, value
extrapolation works well when queueing networks are studied, allowing the
state space to be heavily truncated while still leading to accurate results.

Balanced fairness is a recent capacity allocation scheme introduced by
Bonald and Proutière. BF is the most efficient insensitive capacity alloca-
tion policy, i.e., the equilibrium distribution depends only on the traffic
amounts as long as session arrivals are Poissonian. Balanced fairness simpli-
fies performance analysis as the equilibrium distribution can be determined
recursively state by state. The performance of balanced fairness is typically
relatively similar to other fair capacity allocation policies, e.g. proportional
or max-min fairness, and can be used to approximate these other schemes.
In [BPV06], Bonald et al. introduced asymptotic throughput analysis, a
method for approximating the mean flow throughputs in a network using
balanced fairness. The mean throughput of a class can be approximated
as a function of the system load. The mean throughput and its derivatives
can be determined at zero load, allowing throughput to be extrapolated as
the load of the system increases. If a traffic class is saturated at the capacity
limit, the end point of the curve is also known, thus making more accurate
interpolation possible. In some cases, the derivative of the throughput at the
capacity limit can also be determined. In the numerical experimentations
conducted in this thesis, throughput asymptotics worked well in various
network settings. The results seemed reasonable and matched well with
the results obtained using other methods. As already discussed in [BPV06],
the heavy load derivative fits the throughput curve only at loads very close
to the capacity limit. Our numerical results further confirmed this, because
the derivative often differed significantly from the approximated curves.

The performance analysis methods are applied in two settings: load bal-
ancing and wireless networks. The purpose of load balancing is to divide the
traffic load efficiently among the network resources in order to improve the
performance. We discussed insensitive load balancing in data networks and
load balancing among parallel discriminatory processor sharing queues.

On the basis of the insensitivity results of Bonald and Proutière, we stud-
ied both packet- and flow-level balancing in fixed data networks. When
packet-level balancing is considered, a flow can be divided among multi-
ple routes. We formulated the balanced fairness recursion step as a linear
programming problem. When flow-level balancing is studied, an arriving
flow is assigned to a route, which is used until the flow is finished. In
contrast to other applications of balanced fairness in this thesis, flow-level
balancing problems cannot be solved recursively state by state, but an LP
problem corresponding to the whole state space needs to be solved, making
the approach feasible only for small toy networks. Our numerical examples
illustrated that, as expected, packet-level balancing outperforms flow-level
balancing and that flow-level balancing performs better if the routing is bal-
anced jointly with the capacity allocation.

Next, we studied load balancing among multiple parallel discrimina-
tory processor sharing queues. Such a system can be used to model, e.g.,
telecommunication or computer systems. We used value extrapolation to
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compare different load-balancing policies. We also showed that value ex-
trapolation can be used to obtain the exact relative values related to the
queue lengths of a DPS queue with Poissonian arrivals and Cox distributed
service requirements. This result can be used to derive so-called first it-
eration policies by taking only the first iteration round of policy iteration
without solving the Howard equations, and hence we were able to derive
policies outperforming the heuristic policies without significant computa-
tions.

Finally, we analyzed the performance of wireless networks carrying elas-
tic data traffic in two settings: a simple cellular setting with road topology
and multihop networks. Wireless networks are gaining more and more pop-
ularity as their advantages, such as easy deployment and mobility, outweigh
their downsides.

The first wireless setting studied was a simple cellular network with two
base stations and link adaptation, where users were located along a line be-
tween the base stations. We compared different capacity allocation policies
using value extrapolation. While value extrapolation facilitates the anal-
ysis of arbitrary policies, balanced fairness is computationally lighter and
approximated the performance of the other policies well. The effects of
link adaptation and transmission coordination were apparent even in this
simplified model. Irrespective of operational policies, the flow-level perfor-
mance of the example system remains a difficult task.

In contrast to most previous analytical work related to wireless multihop
networks using static traffic models, we studied networks in a dynamic set-
ting where new flows appear and depart. We analyzed two different MAC
schemes. Penttinen et al. modeled multihop STDMA networks in [PVJ06]
and formulated the balanced fairness recursion step as an LP problem.
On the basis of their work, we conducted asymptotic throughput analy-
sis. The other scheme studied was multihop networks with random access.
We assumed that the transmission probabilities can be optimized between
flow arrivals and departures. We compared the throughput behavior of
flow-optimized random access against the throughput obtained by optimal
scheduling assuming balanced fairness capacity allocation. In particular,
we derived the flow throughput analytically in the two-class case, where
the classes share a single resource. For arbitrary flow-optimized random ac-
cess networks we provided a general scheme that enables the throughput
to be evaluated. The scheme also entails a novel algorithm to determine
the maximum link capacities with given proportions. When the network is
lightly loaded, the performance of the flow-optimized random access was
comparable even to access-level optimal scheduling, but the performance
deteriorated when the capacity limit was approached.
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