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1. Introduction

Recent advances in biological high-throughput measurement technologies

have led to several new challenges in data analysis. Technologies such as

DNA microarrays hold great potential for uncovering the laws governing

the cell at the molecular level, but generate large amounts of noisy high-

dimensional data. Additionally, the samples and biological conditions un-

derlying the data correspond to highly complex and heterogeneous pheno-

types, e.g., tumor specimens [54].

One of the chief tasks in molecular biology is to understand the phe-

nomenon of transcription by which DNA is used to synthesize RNA tran-

scripts. DNA microarrays have been effectively used for this purpose, but

several computational tasks related to the analysis of gene expression

DNA microarray data still lack satisfactory solutions. Among those tasks

are biclustering and information retrieval, which are the concern of this

thesis.

The proposed methods for handling biclustering and information re-

trieval problems belong to the graphical model family. Graphical models

such as Bayesian networks [110] are probabilistic frameworks for mod-

elling partially observable, stochastic systems with noisy measurements

[119]. The observed data is assumed to be the product of a probabilistic

generative process involving unobserved, hidden latent variables that con-

vey the assumptions about the underlying system. Reverse engineering

the latent variables corresponds to a well-defined posterior inference prob-

lem that typically yields efficient computational procedures. Graphical

models are currently being successfully used as general problem-solving

tools involving noisy data stemming from natural processes, but remain

an open research topic. In general, graphical modelling can be seen as an

inductive formalism, providing a departure from classical, deductive com-

puter science frameworks [14]. The proposed methods make use of recent
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advances in graphical modelling, such as topic models [15] and stochastic

processes on combinatorial structures [113], in order to design models for

biclustering and information retrieval problems.

Biclustering is an unsupervised learning task in which the aim is to an-

alyze an input data matrix in order to find submatrices with desirable

properties. Biclustering can be seen as a generalization of clustering; it

is useful in gene expression analysis because it allows finding groups of

genes which are related in a subset of the studied conditions. In this the-

sis, three novel probabilistic biclustering models are proposed. The first

model is a Bayesian extension of the plaid model [82]. The second model

is based on a stochastic process on trees known as the nested Chinese

restaurant process [14] and allows obtaining a hierarchy of conditions, as-

sociating with each part of the hierarchy the genes that are co-expressed

in the corresponding conditions. The third model is a general bicluster-

ing framework akin to the mixture-of-experts model family [10, 68]. This

model also makes use of a nonparametric Bayesian prior, in this case the

Indian buffet process [45], and is easily adaptable to varying assumptions

and input data types, therefore providing a flexible and general frame-

work for performing biclustering.

Information retrieval is a well-known task in the natural language and

Internet domains, and critically relies on the availability of large amounts

of data. As the use of DNAmicroarrays for measuring gene expression has

become ubiquitous, thousands of studies have been deposited in databases

such as ArrayExpress [108], which brings in the challenge of retrieving

relevant microarrays to a given query. In this thesis, two related methods

are proposed for querying with and retrieving biological conditions corre-

sponding to subsets of microarrays. The proposed frameworks are based

on differential expression, with studies being converted into sets of com-

parisons between conditions. Then, latent variable mixture models are

coupled with a model-based relevance measure, in order to both infer pat-

terns of differential expression and perform information retrieval. The

proposed methods are competitive with existing approaches and the re-

sults led to a follow-up study in which it was found that the gene SIM2s is

under-expressed in malignant pleural mesothelioma patients, which con-

stitutes a novel biological finding based on an information retrieval search

engine.

This thesis is organized as follows: The first two chapters provide brief

background material on molecular biology, transcriptomics, and graphi-

14
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cal modelling. The remaining two chapters describe the contributions on

biclustering and information retrieval, respectively.
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2. Molecular Biology and
Transcriptomics

This chapter provides basic background material on molecular biology,

gene expression measurement technologies, and computational analysis

of gene expression data.

2.1 Basic Aspects of Molecular Cell Biology

The genetic material contained in a cell is known as its genome. The

genome has the information required for the cell to function within its en-

vironment. While in some viruses the genome is made of ribonucleic acid

(RNA), in all known organisms and most viruses the genome is composed

of deoxyribonucleic acid (DNA), which is identically present in every cell of

a given organism. In organisms known as eukaryotes, most DNA is stored

in an enclosed cellular compartment known as the nucleus. Nuclear DNA

is organized as a set of linear DNAmolecules known as chromosomes [74].

The DNAmolecule forms a double helix structure with a sugar-phosphate

backbone, containing two strands of nitrogenous bases of which there are

four types: Adenine (A), thymine (T), cytosine (C), and guanine (G). Bases

in opposing strands form hydrogen bonds with the complementary base

pairing rules A–T and G–C.

Within a DNA molecule there is a number of functional units known as

genes. Genes are transcribed into complementary RNA sequences, which

then undergo a maturation process. The resulting mature RNA may be

an end-product, in the case of non-coding RNAs such as transfer RNAs

(tRNAs) or microRNAs (miRNAs), or it may be translated into a protein.

The latter type of RNA is known as messenger RNA (mRNA). Proteins

possess a large number of roles, from enzymatic activity to DNA repair or

transport of other molecules across the cell membrane.
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Molecular Biology and Transcriptomics

The process of transcription followed by translation, shown in Figure

2.1, is the basic means by which the information encoded in DNA elicits a

cellular response to the environment. Understanding the principles that

govern transcription and translation is thus essential for understanding

the biology of organisms and improve healthcare. The process of going

from DNA to RNA and protein is known as gene expression, although the

same designation is usually applied to refer only to the process of tran-

scription. In this thesis, “gene expression” is used as a synonym for tran-

scription. The study of transcriptional data is known as transcriptomics.

The regulation of transcription and translation is a multilayered pro-

cess. In order to fit within the nucleus, DNA binds to histone proteins,

forming a structure known as chromatin; this packaging process makes

some genes less prone to transcription than others, with chromatin re-

modelling modulating transcription [120]. Molecules such as transcrip-

tion factor proteins may bind specific DNA regions, altering the transcrip-

tion rate of one or more genes [37]. Regulatory RNAs such as miRNAs

may post-transcriptionally repress or degrade mRNA transcripts [22]. Fi-

nally, proteins may undergo post-translational modifications such as phos-

phorylation or addition of chemical groups [93].

The system of regulatory interactions constitutes a series of modular,

complex networks [71], which drive biological processes such as develop-

ment [85] or metastasis [83]. In general, genes work not as isolated units,

but rather in the context of larger networks and pathways [89].

Figure 2.1. Transcription and translation in an eukaryotic cell. Figure adapted from
Lodish et al. [89].
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2.2 Gene Expression Measurement Technologies

Biological processes in the cell are not only complex but involve a large

number of unique molecules. For instance, the number of genes in the hu-

man genome is estimated at 20,000–25,000 [127]. Recent high-throughput

technologies that produce data about thousands of molecules in parallel

are thus extremely important in the molecular biology field.

Several types of high-throughput assays exist, for instance to measure

protein-DNA interactions [65] or to detect single-nucleotide polymorphisms

[150]. In this thesis, the focus is on gene expression data generated via

DNA microarrays. Real-time polymerase chain reaction (RT-PCR) assays

are also briefly described, as they were used in Publication V to validate

an in silico computational prediction.

While high-throughput sequencing technologies are emerging [151], DNA

microarrays are the current standard for high-throughput mRNA expres-

sion profiling. Gene expression microarray data sets are routinely de-

posited in databases such as ArrayExpress [108] or the Gene Expression

Omnibus [6]. A DNA microarray consists of a substrate on which single-

stranded DNA sequences or probes are deposited [33]. Probes are de-

signed so that they are complementary to known transcripts. On single-

channel microarrays, the mRNA from the sample of interest is reverse

transcribed into fluorescent dye-labelled complementary DNA (cDNA),

which is then also deposited on the microarray. The cDNA sequences that

hybridize to complementary probes are retained in the microarray. The

resulting light intensity of each spot is a measure of the deposited cDNA.

In two-channel microarrays, two samples are simultaneously deposited on

the microarray, with the fluorescent dye used to label each sample having

a different emission wavelength. The light intensities in each spot are

then informative of the relative transcript abundance between the two

deposited samples.

Pre-processing of microarray data involves a series of steps aimed at

ignoring erroneous spots, correcting for background intensities and sys-

tematic bias, and normalizing the expression data within and across mi-

croarrays. For microarray platforms in which a set of probes is used to

detect the signal from any given gene, a further aggregation step is nec-

essary to obtain a single numerical expression value per gene [42]. An

important concern is how probes map to transcripts. It has been shown

that, because probe designs are based on genomic annotations that be-
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come outdated, probes are often measuring different transcripts from the

ones they were originally meant to measure [29]. This has been used to

show that relabelling probes according to updated annotations yields sig-

nificantly different differential expression results [29].

RT-PCR is another technique for measuring gene expression [152]. After

reverse transcribing sample mRNA into cDNA, PCR consists of a number

of cycles in which the mixture is first heated to induce strand separation

and then cooled. Two short DNA primers of opposing polarity, DNA poly-

merase, and deoxynucleotides (dNTPs) are present in excess. The two

primers represent the start and end subsequences of a larger sequence

which is to be amplified. The use of the two primers as templates for

DNA replication in the cooling phase leads to the sequence of interest be-

ing ideally doubled every cycle. There is thus an exponential increase in

the number of copies of the desired sequence, until dNTPs are depleted.

In RT-PCR, the amplification data is collected throughout the PCR pro-

cess, typically by use of dyes that become fluorescent in the presence of

double-stranded DNA [74]. This process generates a threshold cycle (CT ),

which is the cycle at which the fluorescence signal surpasses a given de-

tection threshold [122]. In Publication V, fold-change values between two

conditions from an RT-PCR assay are computed using the comparative Ct
method, which is standard practice [122].

RT-PCR measurements are often taken to confirm a subset of results

obtained via microarrays in gene expression profiling studies. While both

approaches have inherent pitfalls, it has been shown that the correla-

tion between microarray and RT-PCR measurements is significantly high

among differentially expressed transcripts [101].

2.3 Differential Expression

Gene expression data is computationally analyzed in a multitude of tasks

[3]. For instance, classification methods are commonly used to find the

molecular basis that distinguishes between phenotypes [48], and unsu-

pervised learning methods such as hierarchical clustering are already a

standard part of transcription profiling studies [34]. Computational infer-

ence of gene expression-based biomarkers [147] and connecting diseases

to drug responses at the transcriptional level [79] is also an active area of

research with implications for personalized medicine [121, 132, 146].
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One of the main paradigms in gene expression analysis is to look for

differentially expressed genes between two phenotypes of interest, for in-

stance healthy vs. diseased tissue or treatment vs. control. Differential

expression tests in a high-throughput context bring in the additional chal-

lenge of controlling for multiple hypothesis testing, which is achieved via

family-wise error rate correction methods such as Bonferroni correction

[33] or alternatively via false discovery rate correction [129].

Classical hypothesis testing methods such as Student’s t-test [99] are

routinely used to detect differentially expressed genes [64]. However, lists

of differentially expressed genes derived from independent studies often

have a low overlap despite being enriched for common functional cate-

gories [116, 123].

Recently, the field has shifted towards more robust methods that directly

test for the differential expression of a set of related genes [1, 46, 88, 103,

131, 141]. Gene sets may correspond for instance to known pathways or

groups of miRNA or transcription factor targets, and can be obtained from

databases such as the Molecular Signatures Database (MSigDB) [131].

Gene set differential expression tests are based on the notion that genes

act in tandem within a larger context. This suggests the hypothesis that

differences in gene expression patterns between biological conditions typ-

ically consist of a coherent accumulation of small changes in the expres-

sion of related genes, rather than large changes in the expression of a few

isolated genes [100].

Gene set tests can be divided in two broad categories: Competitive and

self-contained tests [46, 141]. A competitive test asserts if the genes in

a given gene set tend to appear among the most differentially expressed

genes. The main issue with competitive tests is that they do not directly

test if a gene set is up or down-expressed. Self-contained tests, on the

other hand, test against the null hypothesis that no gene in the gene set

is differentially expressed. A caveat concerning self-contained tests is that

a gene set is considered to be differentially expressed even if only one of

its genes is effectively differentially expressed.

Publications II and Vmake use of Gene Set Enrichment Analysis (GSEA)

[100, 131], a well-known competitive gene set test. GSEA is described in

detail in Subsection 5.2.2.
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3. Graphical Models

The aim of this chapter is to succinctly introduce some of the most im-

portant notions in probabilistic modelling, as well as the tools that were

used in the publications discussed in this thesis. The chapter starts with

a brief, practical description of some of the basic properties of probability

distributions that are directly used in probabilistic modelling, avoiding a

detailed measure-theoretic treatment (e.g., [19]). Then, several aspects of

graphical modelling are described, namely the structure of Bayesian net-

works, general techniques for inference and learning, recent advances in

nonparametric Bayesian statistics that allow defining flexible priors on

combinatorial structures, and relevance measures that can be used for

performing model-based information retrieval.

3.1 Basic Properties of Probability Distributions

The probability distribution of a random variable X formalizes the notion

of uncertainty or subjective belief among multiple outcomes [73]. Assum-

ingX takes on a finite or countable set of values, the probability of a given

outcome x is designated by P (X = x), where P is a non-negative function

and
∑

x P (X = x) = 1. For instance, if X represents the outcome of a fair

coin toss, then P (X = heads) = P (X = tails) = 0.5. When X has a con-

tinuous support, the notion of probability distribution has to be adjusted

due to P (X = x) being zero for any given value x. In that case, a non-

negative probability density function p is used instead, with the property

that
∫
p(x)dx = 1. The probability of an event is then defined as

P (a ≤ X ≤ b) =

∫ b

a
p(x)dx. (3.1)

A probability distribution can also be defined over a collection of ran-

dom variables. The joint distribution of two random variables X and Y
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is defined as P (X,Y ), with any particular assignment having the prob-

ability P (X = x, Y = y). The marginal probability of X is defined as

P (X = x) =
∑

y P (X = x, Y = y).1 Two random variables are indepen-

dent when, for any x and y, P (X = x, Y = y) = P (X = x)P (Y = y). Given

the notions of independence and marginal probability, the conditional dis-

tribution of Y given X is defined as

P (Y |X) =
P (X,Y )

P (X)
. (3.2)

This yields an equivalent definition of independence, whereby X and Y

are independent when P (Y |X) = P (Y ) and vice-versa. The notion of

independence can be generalized to conditional independence: X and Y

are conditionally independent given Z when P (X,Y |Z) = P (X|Z)P (Y |Z).
From (3.2) it is straightforward to derive Bayes’ rule, which states that

P (X|Y ) =
P (X)P (Y |X)

P (Y )
. (3.3)

When having a set of random variables, their joint distribution can be fac-

torized into a product of conditional distributions according to the chain

rule,

P (X1, . . . , Xn) = P (X1)P (X2|X1) . . . P (Xn|X1, . . . , Xn−1), (3.4)

with the above factorization being valid for any permutation of the ran-

dom variables. Finally, the expectation of a function of the random vari-

able f(X) over P (X) is defined as

E [f(X)] =
∑

x∈Dom(X)

P (X = x)f(x), (3.5)

where Dom(X) is the domain of X.

When defining conditional probability distributions, it is common to

make use of conjugate distributions for analytical tractability purposes.

A distribution P (X) is conjugate to P (Y |X) when P (X|Y ) ∝ P (X,Y ) is

from the same parametric family as P (X) [8, 40].

3.2 Graphical models

Graphical models [9, 73, 81, 110] are a general framework for the proba-

bilistic modelling of a given system. In a graphical model, system compo-

nents are modelled as random variables, represented as nodes in a graph,

1For continuous random variables, summation is replaced by integration.
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where edges in that graph determine the conditional dependency struc-

ture of the model. The graph can be directed, undirected, or combine both

types of edges [20]. In the publications featured in this thesis, the focus

is solely on graphical models with directed acyclic graphs, also known as

Bayesian networks (BNs).

3.2.1 General Structure

A BN specifies a directed acyclic graph [27] that defines the conditional

independence structure of the corresponding model. Formally, let Xi des-

ignate the random variable corresponding to node i with parents π(i). The

joint probability of the set X of n random variables in the model is given

by

P (X) =
n∏
i=1

P (Xi|Xπ(i)). (3.6)

This decomposition does not depend on any specific parametric assump-

tions about each conditional probability distribution P (Xi|Xπ(i)). An ex-

ample of a BN is shown in Figure 3.1 [15], where the joint probability of

the model variables factorizes as

P (α,β,θ, z,w) = P (α)P (β)

M∏
i=1

P (θi|α)
N∏
j=1

P (zij |θi)P (wij |zij ,β). (3.7)

The consequences of the joint probability decomposition (3.6) can be fully

Figure 3.1. Example of a BN, in this case the Latent Dirichlet Allocation (LDA) model
[15]. The grey node corresponds to observed data. A compact representa-
tion of sets of variables is achieved via the use of nested rectangles or plates.
The outer plate indicates that there exist M variables θi. The inner plate
indicates that, for each i ∈ {1, . . . ,M}, there exist N variables zij and wij .
The directed arrow between the nodes in the inner plate indicates a paired
dependency between each zij and the corresponding wij , while the directed
arrow between θ and z indicates a dependency between each θi and the cor-
responding set of variables zij . Figure taken from Blei et al. [15].
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understood via the concept of directed separation (d-separation). Intu-

itively, two sets of random variables X and Y are said to be d-separated

given a third set of variables Z if there can be no information flow from

any node X ∈ X to any node Y ∈ Y given the observed nodes Z [9].

Formally, this amounts to verifying that every undirected path between

X ∈X and Y ∈ Y obeys one of the following properties2:

X → Z → Y , Z ∈ Z, (3.8)

Y → Z → X ,Z ∈ Z, (3.9)

X ← Z → Y , Z ∈ Z, (3.10)

X →W ← Y ,W /∈ Z, ∀V ∈descendants(W )V /∈ Z. (3.11)

The first two conditions above state that a chain of nodes between X ∈X
and Y ∈ Y must be blocked by an observed variable Z ∈ Z. The third con-

dition states that whenX and Y have a common ancestor node, it must be

an observed variable in Z, so that X and Y are rendered conditionally in-

dependent. Finally, the fourth condition states that when X and Y have

a common descendant W , neither W nor any of its descendants are ob-

served, otherwise any observation X may yield information about Y due

to the observation of some of their shared descendants. If an undirected

path fails the above test, it is said to be active, i.e., it allows information

to pass between X and Y given Z. Therefore, X and Y are d-separated

given Z iff there are no active undirected paths between X and Y given

the observed nodes Z.

It can be shown that the set of d-separations in a BN is equivalent to the

set of conditional independence statements defined by almost all probabil-

ity distributions that factorize in the same manner as specified by the BN

[73]. The concept of d-separation leads to the notion of a Markov blanket.

The Markov blanket of Xi is the minimal set of variables that, when ob-

served, renderXi independent from the remaining variables in the model.

This minimal set of variables consists of the parents of Xi, the children

of Xi, and the co-parents of the children of Xi, as can be shown either

analytically [9] or using the notion of d-separation.

2In a directed graph, an undirected path or trail between Xi and Xj consists
of an acyclic sequence of nodes (Xi, . . . , Xj), where for each consecutive pair Xi,
Xi+1 there is either a directed edge Xi → Xi+1 or a directed edge Xi+1 → Xi.
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3.2.2 Inference of Posterior Distributions

In a BN, some of the random variables are clamped to specific values that

correspond to a given data set, being known as the observed variables,

while the remaining random variables are known as latent or hidden

variables [9]. Conceptually, a BN specifies a statistical process that is

assumed to give rise to a data set; as such, BNs are commonly referred

to as generative models. A central task is then to compute the posterior

distribution P (X|Y ,Θ) of a given set of variables X given another set of

variables Y , where Θ is a set of parameters.

The computational complexity of posterior inference depends on the graph

structure of the BN that incorporates the assignment Y = y. For trees

and polytrees [27] the sum-product algorithm can be applied [75], while

arbitrary graphs require the more general junction tree algorithm [69].

While the sum-product algorithm has a linear time complexity in the

number of nodes, the junction tree algorithm is exponential in the size of

the largest clique in the undirected graph obtained by first converting all

directed edges in the original BN to undirected edges, then “moralizing”

the graph by connecting all nodes that share a common child node, and fi-

nally triangulating the graph by connecting all non-neighboring nodes in

loops with four or more nodes [67]. Obtaining a triangulated graph with

the smallest maximal clique is an NP-hard problem [69]; in fact, exact

inference in BNs is NP-hard [73].

Approximate inference methods attempt to provide computationally effi-

cient alternatives to exact inference methods. While several successful ap-

proximate inference approaches exist, for instance expectation-propagation

[97] or belief propagation [154], here the focus is on the ones used in the

papers featured in this thesis, namely Gibbs sampling and mean field

variational inference. Both of these frameworks yield well-performing

and relatively straightforward inference algorithms, and are currently the

most popular approaches for inference in graphical models.

Gibbs Sampling

Gibbs sampling is a Markov chain Monte Carlo (MCMC) approach for

obtaining samples from the posterior distribution P (X|Y ,Θ) [41, 118].

Those samples can then be used to compute unbiased estimates of expec-
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tations as

EX|Y ,Θ [f ] =

∫
f(X)P (X|Y ,Θ)dX ≈ 1

n

n∑
i=1

f(xi), (3.12)

where xi is the i-th sample and n is the number of obtained samples

[73]. MCMC methods are named as such because the generated samples

form a Markov chain that converges to the desired posterior distribution

P (X|Y ,Θ) [9]. Gibbs sampling works by considering each variable Xi in

turn and sampling from the corresponding conditional posterior distribu-

tion P (Xi|X−i,Y ,Θ). The proof that a Gibbs sampler converges to the

desired posterior distribution relies on viewing the Gibbs sampler as a

particular instance of the Metropolis-Hastings framework [9].

The appeal of the Gibbs sampler as a general-purpose inference tool

is that while the global posterior distribution P (X|Y ,Θ) is usually in-

tractable, the conditional distributions P (Xi|X−i,Y ,Θ) are typically easy

to sample from in BNs. In practice, the initial samples obtained by the

Gibbs sampler are discarded as part of the burn-in period, before the sam-

pler reaches its stationary distribution. Also, because successive samples

from the Gibbs sampler are correlated, in order to obtain two indepen-

dent samples from the desired posterior distribution one must use lagged

samples.

A variation of the Gibbs sampler which is typically used in conjugate

mixture models is the collapsed Gibbs sampler [87]. This approach con-

sists of applying a Gibbs sampler to a posterior probability distribution in

which some of the model variables have been integrated out,

P (X|Y ,Θ) =

∫
P (X,U |Y ,Θ)dU , (3.13)

where the integrated-out variables U are known as the nuisance vari-

ables. These variables may effectively correspond to variables which are

not of interest for the subsequent analysis, or they can alternatively be in-

tegrated out and later estimated using the obtained Gibbs samples [51].

The advantage of collapsed Gibbs samplers with respect to the classical

Gibbs sampler is that they typically converge faster to a local mode, al-

though the integration induces correlations between the sampled vari-

ables, which in turn may deter the sampler from moving between differ-

ent modes and may also induce a computationally more complex sampling

process. Collapsed Gibbs samplers were used in all publications except for

Publication IV.
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Mean Field Variational Inference

Variational inference methods [67, 149] are methodologically different

from MCMC methods. In variational inference, one considers a family

of variational posterior distributions with a simpler parametric form than

the original, intractable posterior. The variational posterior is indexed by

a set of variational parameters, and the aim is to find the configuration

of parameters that brings the variational posterior distribution “closest”

to the intractable posterior. While variational inference methods gener-

ally lack the same theoretical guarantees of convergence as MCMC meth-

ods, their deterministic approximation setup yields optimization problems

that are faster to solve and whose convergence is easier to monitor.

Formally, the setup consists of approximating P (X|Y ,Θ) by a varia-

tional distribution Q(X;λ) parameterized by the variational parameters

λ. Here, the approximation is obtained by minimizing the Kullback-

Leibler divergence DKL(Q||Ppost), where Ppost designates the posterior dis-

tribution P (X|Y ,Θ). However, it is possible to minimize other α-divergence

measures, yielding alternative approximate inference schemes [98]. Min-

imizing DKL(Q||Ppost) is equivalent to optimizing a lower bound on the

marginal log-probability of the observed nodes Y , as can be seen in the

following derivation:

logP (Y |Θ) = log

∫
P (Y ,X|Θ)dX

= log

∫
P (Y ,X|Θ)

Q(X)

Q(X)
dX

≥
∫

(logP (Y ,X|Θ)− logQ(X))Q(X)dX

= H [Q] + EQ [logP (Y ,X|Θ)] , (3.14)

where the inequality is obtained by making use of Jensen’s inequality [18]

and H designates the entropy functional. It is straightforward to observe

that the difference between logP (Y |Θ) and the lower bound is precisely

DKL(Q||Ppost). Thus, minimizing DKL(Q||Ppost) is equivalent to maximiz-

ing the lower bound, because they sum to the constant term logP (Y |Θ).

A main challenge is how to choose a variational distribution that both

yields a feasible optimization problem and leads to a satisfactory solution.

The mean field approach consists of choosing a fully factorized distribu-

tion

Q(X;λ) =
∏
i

Qi(Xi;λi). (3.15)

It can be shown that the resulting problem yields an iterative optimiza-

tion procedure, where each λi is optimized in turn, given the remaining
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λj �=i, but requiring only the parameters corresponding to the variables

that belong to the Markov blanket of Xi [11]. In certain classes of mod-

els that include log-normalization terms, such as models with logistic or

multinomial regression terms, the resulting optimization problem is still

infeasible. In those cases, an additional lower bound on the problematic

terms must be created, indexed by an additional set of variational pa-

rameters [10, 13, 62]. This was done in Publication IV for a multinomial

regression term, using the same approach as Blei and Lafferty [13].

3.2.3 Point Estimation and the Expectation-Maximization Algorithm

When the aim is to obtain a point estimate for Θ, the standard approach

is to compute the Θ that maximizes either the log-probability of the ob-

served nodes logP (Y |Θ) or the log-posterior probability of Θ,

logP (Θ|Y ) = logP (Θ) + logP (Y |Θ)− logP (Y ). (3.16)

TheΘ that results from maximizing each of these criteria is known as the

maximum likelihood (ML) solution or the maximum a posteriori (MAP)

solution, respectively. For succinctness, only the ML estimation case is

described.

Obtaining a ML solution is usually a hard optimization task that con-

tains multiple local optima, due to the non-trivial variable dependency

structure stipulated in a given BN. Assuming that the objective function

is continuous and differentiable with respect to Θ, gradient-based opti-

mization techniques such as gradient descent or quasi-Newton methods

can be used [4]. However, the most common approach is to apply a general

iterative scheme known as the Expectation-Maximization (EM) algorithm

[30].

In the EM literature, the log-likelihood of Θ, logP (Y |Θ), is known as

the incomplete data log-likelihood, due to the unobserved status of the

variables X, which are here designated as Z to use standard notation.

The EM algorithm alternates between expectation and maximization steps

(E-step and M-step, respectively). The E-step consists of computing the

expectation of logP (Y ,Z|Θ) over the posterior distribution of Z given Y

and the current estimate of Θ, designated as θold. The log-joint proba-

bility logP (Y ,Z|Θ) is known as the complete data log-likelihood. This

30



Graphical Models

expectation is computed as a function f of θ,3

f(θ;θold) = EZ|Y ,Θ=θold [logP (Z,Y |Θ = θ)] . (3.17)

In the M-step, a new estimate of θ is obtained by maximizing f . It can be

shown that each round of the EM algorithm increases the log-likelihood

of Θ [9].

The EM algorithm can be understood in terms of optimizing a lower

bound on the log-likelihood of Θ [104]. Using the inequality in (3.14),

logP (Y |Θ) ≥ EQ [logP (Y ,Z|Θ)] + H [Q] , (3.18)

where Q is any distribution over Z. The difference between the left-hand

side and the right-hand side is DKL(Q||P ), where P is the posterior distri-

bution of Z. Therefore, maximizing the lower bound amounts to setting

Q(Z) = P (Z|Y ,Θ). This is equivalent to forming the function f in the E-

step. When obtaining the exact solution Q(Z) = P (Z|Y ,Θ) is infeasible,

an approximate variational solution for Q can be computed. When a vari-

ational Q is used, the resulting EMmethod is known as a variational EM.

The M-step is clearly equivalent to maximizing the lower bound, as the

term H [Q] does not depend on Θ. This information-theoretic perspective

allows conceptualizing the EM algorithm as a coordinate ascent approach,

where Q and Θ are alternatively optimized [61], and also allows under-

standing both standard and variational EM approaches under the same

framework.

The EM algorithm is ubiquitously used in graphical modelling, and sev-

eral classical methods such as K-means or the Baum-Welch method can

be seen as instances of this algorithm [9].

3.2.4 Recent Bayesian Nonparametric Methods

A recent area of research in graphical models has been the use of non-

parametric Bayesian statistics methods as model selection tools. Specifi-

cally, in unsupervised learning models that assume the existence of latent

combinatorial structures, e.g., partitions, trees, or binary feature vectors,

these nonparametric methods provide prior distributions over those la-

tent structures.
3In the EM literature, f is often designated as Q. That terminology is avoided to
distinguish f from the variational posterior distribution Q.

31



Graphical Models

The Dirichlet Process

The theoretic basis for several nonparametric priors is the Dirichlet Pro-

cess (DP) [38]. The DP is a distribution on probability measures over a

measurable space Ψ, i.e., each draw from a DP is a probability measure

on Ψ. A DP is characterized by a concentration parameter α0 and a base

probability measure G0. Intuitively, G0 stipulates the expected mass as-

signed to any measurable subspace of Ψ, while α0 governs the variance.

Formally, if G ∼ DP(α0, G0), then for any finite measurable partition of

Ψ, designated by (A1, . . . , An), the random vector (G(A1), . . . , G(An)), i.e.,

the mass assigned by the random variable G to each component of the

partition of Ψ, follows a Dirichlet distribution

(G(A1), . . . , G(An)) ∼ Dir(α0G0(A1), . . . , α0G0(An)) (3.19)

[138]. As described above, each draw from a DP is a probability measure

on Ψ. It has been shown that the drawn probability measures are discrete

with probability one, i.e., almost all probability measures drawn from a

DP are probability measures over the positive natural numbers [38]. This

is the property that enables the DP to be used as a prior distribution on

class assignments.

In practice, there exist alternative descriptions of the DP that make it

more amenable to use in the context of BNs, namely the stick-breaking

[125] and Chinese restaurant process (CRP) [12] formulations. The stick-

breaking construction for the DP defines a random variableG ∼ DP(α0, G0)

as

G =
∞∑
k=1

πkδφk , (3.20)

where each φk|G0 ∼ G0 is a draw from G0, δφk is an atomic probabil-

ity measure that concentrates its mass on φk, πk = vk
∏
i<k(1 − vi), and

vi ∼ Beta(1, α0). Intuitively, this constructive definition of the DP in-

volves sampling a countable number of atoms δφk from G0 and assigning

to each atom a probability πk that vanishes as k increases, in a manner

given by the product of terms involving the variables vk; this product is

intuitively akin to a stick-breaking process, hence the name of this alter-

native description of the DP. The sequence π = (πk)
∞
k=1 is said to follow

the Griffiths, Engen, and McCloskey (GEM) distribution, π ∼ GEM(α0)

[113].

Another alternative description of the DP is as a Polya urn scheme [12].

The Polya urn scheme describes the joint distribution of a sequence of in-

dependent draws from G ∼ DP(α0, G0), where G has been integrated out.
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The conditional probability of the i-th variable gi given the DP parameters

α0 and G0, as well as the previous draws g1, . . . , gi−1, is given by

gi|g1, . . . , gi−1, α0, G0 ∼
i−1∑
k=1

1

i− 1 + α0
δgk +

α0

i− 1 + α0
G0, (3.21)

i.e., gi has a non-zero probability of being exactly equal to one of the pre-

vious draws, while also having a non-zero probability of constituting a

novel draw from G0. This process can be understood intuitively as an urn

model. Each ball i of unit size in the urn corresponds to a draw from G,

with the colour of the ball corresponding to the atom δgi . There is also

a special ball with size α0 that indicates a novel atom. Obtaining a new

sample corresponds to drawing a ball from the urn. If the special ball is

retrieved, then a new atom and corresponding colour are created, and a

ball of unit size with that colour is inserted in the urn, along with the

special ball. If, instead, a ball with an existing colour is retrieved, then

a new ball with that colour is created and both balls are inserted back in

the urn.

The Polya urn scheme can be equivalently described using a gastronomi-

cal metaphor known as the Chinese restaurant process [113]. Assuming a

Chinese restaurant with an unbounded number of tables and where each

table can hold as many clients as needed, when a new client arrives at the

restaurant he picks a table with probability proportional to the number of

clients already sitting at the table; with probability proportional to α0, he

chooses to sit at a new table.

Two properties stem from the above descriptions of the DP: First, there

is a clustering property, in the sense that if a table contains a relatively

high number of clients, then there is a high probability that the follow-

ing client will choose that same table/atom. Second, the distribution of

table/atom assignments is exchangeable, i.e., the probability of a collec-

tion of table assignments is the same regardless of the order in which

the clients are assigned to tables. While the former property constitutes

a desideratum of a prior distribution over class assignments, the latter

property is useful in the development of inference engines for models that

incorporate the DP.

The DP has been successfully used in models where objects are par-

titioned into classes, for instance in mixture models [43, 115, 138]. In

fact, the DP can be obtained in the context of a mixture model by use of

a limit argument [115]. Both MCMC and variational inference methods

have been developed for the DP [16, 60, 105], and both sampling and es-
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timation procedures for α0 exist [14, 36]. Several extensions of the DP

are already in place. For instance, while the original DP yields an expo-

nential decay in the number of objects assigned to each cluster, a more

general two-parameter process known as the Pitman-Yor process yields a

power-law distribution that has been shown to be more adequate in the

natural language processing domain [135]. Another extension is the hi-

erarchical DP (HDP), which allows for mixture components to be shared

across different data groups [138].

Among the various extensions of the DP is the nested Chinese restau-

rant process (nCRP) [14]. The nCRP is essentially a recursive version of

the CRP that yields a probability distribution over trees. Succinctly, the

nCRP starts by running a standard CRP procedure. Then, each cluster

obtained via the standard CRP is used as the basis for running another

CRP; this recursion continues either indefinitely or until a maximum pre-

defined depth has been reached, as shown in Figure 3.2. In Publication

III the nCRP was used as a tree prior, in a model where microarray sam-

ples are assigned to leaf nodes in the tree, thus yielding a hierarchical

decomposition of a microarray data set.

Figure 3.2. Running the nCRP for six objects and two recursion levels. Figure taken from
Publication III.

The nCRP is conceptually distinct from the HDP model. The HDP uses

a two-level hierarchy of DPs that makes different DPs share the same

atoms, allowing different data groups to share the same components within

a mixture modelling framework; this process can be described via a gas-

tronomical metaphor known as the Chinese restaurant franchise [138].

On the other hand, in the nCRP the aim is not to share all atoms drawn

from different DPs, but rather to partition them into different groups. In

general, hierarchical and nesting strategies constitute two different mod-

eling concepts in nonparametric Bayesian modelling [66].
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The Indian Buffet Process

An approach akin to the CRP, known as the Indian buffet process (IBP),

has been proposed for the case when objects, rather than being assigned

to mutually exclusive classes, contain each an instantiation of a binary

feature vector [45]. Here, the aim is to directly learn the number of fea-

tures from the data. The IBP has been originally proposed as the limit

K → ∞ to the following generative process for a binary matrix Z with n

rows and K columns:

πk|α ∼ Beta
( α
K
, 1
)
, (3.22)

zik|πk ∼ Bernoulli(πk), (3.23)

where α > 0 is a pre-specified parameter. In the limit K → ∞ and after

integrating each πk out of the model, the marginal distribution of Z can

be described via the following stochastic process: In an Indian buffet, n

clients decide which of a countable number of dishes to try. With prob-

ability mk/i, the i-th client tries a given dish k that has been tried by a

previous client, where mk ≥ 1 is the number of previous clients that have

already tried dish k. Then, client i tries a set of new dishes, with the

number of new dishes following a Poisson(α/i) distribution.

The IBP, like the DP, enjoys clustering and exchangeability properties.

In addition, any matrix Z generated via the IBP is typically sparse, in the

sense that the expected number of ones in Z can be shown to be equal to

nα.

Two-parameter and power-law variations of the IBP have been proposed

[45, 136], and both Gibbs sampling and variational inference methods

exist for models that involve the IBP [32]. Finally, both stick-breaking

[137] and Beta process formulations [139] have been derived for the IBP.

In Publication IV, the finite version of the IBP was used as a prior for

bicluster membership.

3.2.5 Model-Based Relevance Measures for Information Retrieval

Often, it is of interest to perform information retrieval (IR) on data which

is modelled by a BN. Formally, assume a number of objects, with each ob-

ject r corresponding to the observed data yr. An object may be for instance

a gene associated with a number of expression measurements. Here, the

aim is to compute the relevance of each object r to a given query object q

corresponding to the observed data yq.
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While multivariate data points can be easily related via standard sim-

ilarity measures such as Spearman correlation, an alternative is to use

the BN to perform IR. A formulation originally proposed for the natural

language domain is to relate q and r based on how well yq is modelled by

the same variables used to model yr [21, 128]. Formally, this corresponds

to the following definition:

rel(q, r)
def
=

∫
Θ
P (yq|Θq = θr)P (Θ|Y )dΘ, (3.24)

whereΘ are the model variables and P (yq|Θq = θr) is defined as the prob-

ability of yq given that the model variables associated with q are equal to

the variables associated with r. This approach depends on the ability to

map objects to subsets of model variables. For instance, in mixture mod-

els such as LDA, each object r is associated with a probability over com-

ponents θr. In this setting, a natural choice for performing model-based

IR is to consider the probability of the query data yq given that θq = θr.

Using a model-based relevance metric has the potential advantage that,

as a model is used to infer the relevance between data points, the model

structures can be used to interpret the retrieval results. It is also a flexi-

ble tool in the sense that the same IR principle can be applied to different

model families. When a Gibbs sampler is used, (3.24) can be approximated

by a mean over samples, while for variational inference engines the poste-

rior probability P (Θ|Y ) can be replaced by a variational approximation.

The model-based relevance measure described above was used in Publi-

cations II and V, as well as in Publication III, in the context of information

retrieval and biclustering, respectively.
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4. Biclustering of Gene Expression
Data

This chapter presents the contributions on biclustering of gene expression

data. It starts with a brief motivation and review of existing work, fol-

lowed by a description of specific contributions, namely a Bayesian plaid

model (Publication I), a hierarchical biclustering method (Publication III),

and a general probabilistic biclustering framework (Publication IV).

4.1 Motivation and Earlier Work

Biclustering, also commonly known as co-clustering, is a generalization

of clustering in which multidimensional objects are grouped, with each

group or bicluster being restricted not only to a subset of objects but also

to a subset of the objects’ features [24, 25, 55, 91, 114]. Biclustering meth-

ods aim at capturing local rather than global similarities between objects.

For instance, in the context of gene expression, a group of patients may

exhibit similar expression patterns for disease-related genes while being

dissimilar for the remaining genes, or a family of drugs may yield consis-

tent expression only among genes related to the drugs’ common targets.

The overall computational complexity of biclustering can be analyzed

via a graph representation of a data matrix. A data matrix can be re-

garded as a weighted bipartite graph, i.e., a graph in which nodes are

partitioned into two sets VA and VB, and where all weighted edges (u, v)

verify the properties u ∈ VA and v ∈ VB. To see this, set VA to the set of

objects and VB to the set of conditions in the data matrix. Then, set the

weight of each edge (u, v) between object u and condition v to the value of

the corresponding entry in the data matrix. Using this graph representa-

tion, the problem of finding the largest bicluster of ones in a binary data

matrix can be regarded as one of finding the maximum edge biclique in
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a bipartite graph, which is an NP-complete problem [91, 111]. Therefore,

although the computational complexity depends on the specific bicluster-

ing problem at hand, it is expected that most relevant variants of biclus-

tering problems are only approximately solvable. Biclustering can also

be related to the classical data mining task of finding frequent itemsets

[124].

The first known biclustering algorithm is the direct clustering method

proposed by Hartigan [55]. Biclustering has been originally proposed as

a meaningful task for gene expression data in several independent stud-

ies [25, 44, 142]. A taxonomy for biclustering methods can be derived by

considering either the kind of bicluster structures that are obtained by

each method, e.g., if the method allows biclusters to overlap, or by con-

sidering each method’s underlying assumptions [91]. Several methods

attempt to find homogeneous blocks in a data matrix (e.g., [25, 96, 142]);

other approaches infer a two-way coupling of one-way clustering meth-

ods (e.g., [44]); the bipartite graph representation of a data matrix has

also been successfully used as a basis for biclustering [133, 134]; linear

models are also a common tool for biclustering [82], having the advantage

that when coupled with categorical regression frameworks based on link

functions, yield methods that are suitable for both continuous and dis-

cretized data sets [95]. Other successful approaches include probabilistic

multiplicative models [56] and Chernoff bound-based methods for finding

dense biclusters in sparse binary data matrices [145]. Finally, probabilis-

tic frameworks such as LDA or the HDP have also been adapted to the

biclustering case [39, 43].

4.2 Bayesian Biclustering with the Plaid Model

The plaid model [82] is arguably one of the most general biclustering

methods. In the plaid model, biclusters may correspond to any subset

of objects and conditions, and may also freely overlap. Biclusters are rep-

resented by two binary matrices ρ and κ of dimensions N ×K andM ×K,

respectively, where N is the number of objects, M is the number of con-

ditions, and K is the number of biclusters.1 Each bicluster k corresponds

to an Analysis of Variance (ANOVA) model with parameters μk, αk, and

1Here, the use of upper case letters for representing matrices is avoided in order
to maintain coherence with the notation used in Publication I.

38



Biclustering of Gene Expression Data

βk, where μk is a scalar, αk is a vector of length N , and βk is a vector of

length M . Assuming the existence of a bias term μ0, the expression level

for the object-condition pair (i, j) is given by

Yij = μ0 +

K∑
k=1

(μk + αik + βjk)ρikκjk, (4.1)

i.e., the plaid model consists of an additive combination of biclusters or

layers. As in standard ANOVA, α and β are intended to be interpreted

as departures from the mean parameter μ, and so obey the following con-

straints for every bicluster k:
N∑
i=1

ρikαik = 0, (4.2)

M∑
j=1

κjkβjk = 0. (4.3)

In the original plaid model, the parameters are inferred using a greedy,

heuristic fitting procedure that aims at minimizing the quadratic error

between the model and the observed data matrix, thus assuming a Gaus-

sian noise model. It is therefore of interest to investigate if the model is

amenable to more standard optimization or inference approaches.

In Publication I, the main contribution was to endow the plaid model

with a Bayesian framework and develop a corresponding collapsed Gibbs

sampling method. A connection between the plaid model and two other

existing methods was also established [7, 95]. Both ρk and κk were as-

sumed to consist of a set of beta-binomial models,

πk ∼ Beta(δ(k)ρ , γ(k)ρ ), (4.4)

λk ∼ Beta(δ(k)κ , γ(k)κ ), (4.5)

ρik|πk ∼ Bernoulli(πk), (4.6)

κjk|λk ∼ Bernoulli(λk). (4.7)

For simplicity, the parameters μk were removed and the constraints (4.2)

and (4.3) were eliminated. In effect, keeping the constraints yields pos-

itive semidefinite covariance matrices that make the resulting sampler

unnecessarily complex [126]. The proposed model does not result in de-

creased identifiability, although the resulting bicluster parameters have

a necessarily different interpretation from the parameters in the original

plaid model, as they already incorporate the original mean parameter μk.

A homoscedastic noise model for the data was also assumed,

Yij |αi,βj ,ρi,κj , σ2 ∼ N

(
μ0 +

K∑
k=1

(αik + βjk)ρikκjk, σ
2

)
, (4.8)
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with μ0, α, and β having zero-mean Gaussian priors that share the same

scalar variance σ2. The assumption of proportional noise in the data and

parameters is a commonly used assumption in Bayesian analysis that

facilitates integrating out some of the model variables [40]. Finally, a

scaled inverse-chi-square distribution for σ2 was assumed. The specific

selection of conjugate distributions allows integrating out μ0, α, β, and σ2

from the model. The proposed collapsed Gibbs sampler aims at obtaining

samples from the posterior distribution P (ρ,κ|Y ).

In order to validate the proposed approach, its performance was com-

pared both against a random baseline and a standard hierarchical clus-

tering method in a small proof-of-concept study involving human gene ex-

pression data from across a wide range of tissues [130]. In particular, the

methods were compared on four independent data subsets corresponding

to four Gene Ontology (GO) [5, 72] gene sets related to rhythmic processes,

regulation of biosynthetic processes, growth regulation, and cell division.

It was first assessed if, for each bicluster, pairs of conditions are signif-

icantly more similar when considering only genes included in the same

bicluster rather than all the genes in the data, with similarity being mea-

sured via Pearson correlation and significance being assessed by random

permutations. In all four GO categories the average correlation gain is

significant (p < 0.05), which shows that the genes assigned to a bicluster

typically increase the correlation between conditions assigned to the same

bicluster. A classification-based test was also used to show that in three

out of four gene sets the method outperforms hierarchical clustering with

respect to finding biclusters whose genes are functionally homogeneous.

The main limitation of the proposed approach is that it does not scale

up to data matrices with thousands of objects and conditions. Due to

its linear model formulation, sampling each variable involves performing

matrix inversion. While using the Sherman-Morrison-Woodbury formula

[47] allows for faster sampling, this is still not enough. Future work may

involve using faster inference engines, e.g., mean field variational infer-

ence. Alternatively, Gu and Liu [52] devised a similar collapsed Gibbs

sampler with the added constraint that biclusters cannot overlap, which

facilitates and accelerates the sampling process.

It was thus shown that the plaid model is amenable to a Bayesian anal-

ysis, although the inference engine must still be adapted in order to scale

up to thousands of objects and conditions.
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4.3 Hierarchical Generative Biclustering

Publication III focussed on investigating the use of nonparametric Bayesian

priors, namely the nCRP, for hierarchically organizing a microarray data

set. Concretely, the problem of interpreting clustering results was consid-

ered. Clustering methods, although being ubiquitously used in biological

studies, often provide results that are hard to interpret or translate into

biological findings [31, 34]. The aim was to additionally indicate for each

cluster which genes tie the clustered conditions together. This yields a

biclustering formulation, since each (bi)cluster is now associated not only

with a subset of conditions but also with a subset of genes. Additionally,

the biclusters were intended to follow a hierarchical organization.

Assuming a tree of biclusters, each microarray maps to a leaf node in the

tree, belonging to all biclusters on the unique path from the root to that

leaf node. The intuition is to generate high-level biclusters, corresponding

to nodes closer to the root, to which many samples belong, representing

expression patterns that are common across conditions but that typically

involve few genes; at the same time, nodes closer to leaf nodes repre-

sent specific expression patterns corresponding to fewer microarrays but

a larger number of genes. In order to do so, the model assumes that a

gene which belongs to a bicluster associated with node u also belongs to

all biclusters corresponding to nodes that are descendents of node u.

The main contribution in Publication III was therefore to provide the

first hierarchical biclustering model that allows one to simultaneously in-

fer a tree structure where conditions map to leaf nodes, and at the same

time explicitly indicate for each node in the tree which genes exhibit ho-

mogeneous expression for the conditions under the scope of that node.

The model is also the first one to use the nCRP for modelling contin-

uous data. A preliminary study about the applicability of model-based

relevance measures to conduct information retrieval using the proposed

model was also conducted.

The generative process for the model is divided into three parts: First,

a tree structure is created, with nodes representing biclusters, and mi-

croarray samples are assigned to leaf nodes in that hierarchy. Second,

genes are placed along multiple nodes in the hierarchy, with the place-

ment of gene g in node u meaning that conditions associated with u have

homogeneous expression for g. Third, the expression data is assumed to

be generated using parameters associated with each node/bicluster.
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In order to create a tree structure and assign samples to leaf nodes in

the hierarchy, the nCRP was used, as described in the previous chapter.

Although the nCRP has been recently extended to handle infinite-depth

trees, for simplicity the original finite-depth formulation of the nCRP [15]

was used. In the second part of our model, genes were represented as

binary features that are originally inactive at the root, that may switch

to one along any given directed path, and that do not switch back to zero.

The model assumes the existence of edge length variables

l(u,v) ∼ Beta(α = 1, β = 1) (4.9)

for every edge (u, v). Then, for every gene j in node v with parent node u,

the following activation model is assumed:

P (zjv = 1|zju = 0, l(u,v)) = l(u,v), (4.10)

P (zjv = 1|zju = 1, l(u,v)) = 1, (4.11)

where zjv is the latent variable that asserts if gene j is active at node

v. This activation model guarantees a one-way switching process for the

binary latent variables, wherein latent variables may switch from zero to

one but cannot switch back. Intuitively, each edge length variable l(u,v)
models the fraction of inactive features at node u that are expected to

become active in the child node v.

In the third part of the model, it is assumed that for every gene j each

node/bicluster u is associated with mean and variance parameters μju and

σ2ju, with Gaussian and inverse-Gamma priors, respectively. Assuming

that gene j switches to one at node u, the model assumes the following

distribution for the expression data of the samples under the subtree that

has u as its root, considering only gene j:

Y jSu ∼ N(μju1, σ
2
juI), (4.12)

where Su is the set of samples under node u. This specification highlights

the central idea of the model: When a gene switches to one at a given

node, the samples under that node are assumed to have a similar expres-

sion for that gene. Each node/bicluster is therefore a refinement of its

parent node/bicluster, involving less samples but being homogeneous for

a potentially larger group of genes. Finally, it is also assumed that when

a gene is still zero at a leaf node, then the corresponding data points are

independently generated from a baseline standard Gaussian distribution.
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The inference engine is based on a collapsed Gibbs sampler, where the

edge length, mean, and variance parameters are integrated out. An auxil-

iary variable scheme to sample the nCRP hyperparameter based on sim-

ilar schemes originally developed for the Dirichlet process is also used

[36, 138]. Finally, the model-based relevance measure described in the

previous chapter is used to relate samples.

The proposed method was applied to a large miRNA expression data

set profiling human miRNAs across a wide panel of tissues and cell lines

[90]. It was shown that the method outperforms other biclustering ap-

proaches with respect to GO and tissue class enrichment measures. Fur-

thermore, the inferred tree effectively separates samples from different

tissues, and the hierarchical organization allows for the inference of a bi-

cluster of leukemia samples, which is then partitioned into two biclusters

that separate leukemia cell lines from leukemic tissue. A case study that

highlights how the model’s added interpretability can be exploited sug-

gested that miR-224 may have a role in the known association between

melanoma and non-Hodgkin lymphoma [84].

Finally, regarding information retrieval, two aspects were tested: First,

if the tree structure learned by the model is useful for relating samples,

and second, if the generative relevance measure described in the previous

chapter yields a strong performance. In order to do so, three methods for

relating samples were considered: the inverse of the Euclidean distance,

the generative relevance measure, and a simple heuristic measure that

counts the number of Gibbs sampler runs in which two samples fall un-

der the same node in the posterior mode. Using a two-class retrieval task

in which the aim is to retrieve samples from the same tissue, and evaluat-

ing the performance with the standard area under the receiver-operating

curve measure [94], a maximal performance was obtained when using the

heuristic tree measure, with the inverse Euclidean distance performing

better than the generative relevance measure. This suggests that while

the structures learned by the model are indeed useful, the generative rel-

evance measure does not appear to effectively leverage those structures

for relating samples. Future work may involve using alternative IR mea-

sures such as the area under the precision-recall curve, which may be

more adequate due to the class imbalance intrinsic to the tissue retrieval

task.
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4.4 A Mixture-of-Experts Approach to Biclustering

The aim in Publication IV was to develop a general probabilistic bicluster-

ing framework that could be easily adapted to varying assumptions and

data types. The motivation is based on the fact that existing methods

such as the plaid model, despite being flexible in the sense of allowing

arbitrary, overlapping bicluster structures, suffer from two main draw-

backs: First, the assumption that parameters from different biclusters

combine additively is restrictive; second, forcing the practitioner to spec-

ify a linear model may yield models that contain artificial and complex

assumptions purely for the purpose of model soundness. An alternative

leading to more straightforward approaches is to consider that biclusters

overlap when they are able to provide roughly equally good models for the

corresponding data points. The proposed framework, which is similar to

mixture-of-experts models [10, 68], incorporates this notion.

Mixture-of-experts models are applied to data sets consisting of input-

output pairs (xi, yi), e.g., regression or classification data sets. These mod-

els assume that there areK components or experts, with each expert being

a simple model that is adequate only for a subset of the data. The main

idea behind mixture-of-experts models is that the input xi probabilisti-

cally determines which expert is used to model the output yi. As for the

proposed method, it takes as input a data matrix Y N×M , which has the

input-output triplet form (i, j, yij), i ∈ {1, . . . , N}, j ∈ {1, . . . ,M}, i.e., ev-

ery data point includes row and column indices, which are conceptually

the input, and the value yij , which is conceptually the output. The model

also assumes the existence of K experts or biclusters, each corresponding

to a simple model of the data. Each expert specifies a region of exper-

tise, which indicates a data submatrix for which the model is adequate.

The choice of expert for each data point is probabilistically determined by

membership of the data point to each expert’s region of expertise, i.e., it is

probabilistically determined by the row and column indices.

The generative process for the model shares some similarities both with

the plaid model and overall with mixture models. First, two binary ma-

trices UN×K and V M×K define the expertise regions, akin to the binary

matrices defined in the plaid model. Each of these matrices is generated

via the finite approximation for the IBP, as described in (3.22) and (3.23).

Then, it is assumed that each data point chooses a single bicluster, as is

standard practice in mixture models. In order to model the notion that the
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expertise regions influence the bicluster choice, the following multinomial

regression formulation is used:

P (zij = k|U ,V ,β) = exp{uikvjkβk1 + (1− uikvjk)βk0}∑
k′ exp{uik′vjk′βk′1 + (1− uik′vjk′)βk′0} (4.13)

where βk0 and βk1 are additional model variables. The multinomial re-

gression formulation has the following interpretation: If (i, j) falls within

the expertise region of bicluster k, then uikvjk = 1, making the probabil-

ity of choosing bicluster k proportional to eβk1 . Otherwise, uikvjk = 0 or

equivalently 1 − uikvjk = 1, making the probability of choosing bicluster

k proportional to eβk0 . It is expected that for each bicluster k, βk1 is a

high value and βk0 is a low value, indicating that bicluster k provides a

good model for its region of expertise but a bad model for the rest of the

data set. Finally, each bicluster is associated with a parameter set θk.

In the experiments, Gaussian experts are used for continuous data, i.e.,

θk = (μk, σ
2
k), and Bernoulli experts for binary data, i.e., θk = pk. The flex-

ibility of the proposed model relies in the separation between the process

of choosing an expert and the model provided by each expert. Although

each data point chooses a single bicluster, the regions of expertise may

freely overlap, and uncertainty over which bicluster is chosen by a data

point reflects the ability of each expert to model that data point.

To perform point estimation and inference, a variational EM algorithm

was used. In order to handle the problematic log-sum stemming from the

denominator of the multinomial regression formulation, a second-order

lower bound was created, using the same approach as Blei and Lafferty

[13]. Recently, another type of lower bound to a log-sum term has been

proposed [17]. It remains an open question whether it performs better

than the currently used approach. All technical details are provided in

Publication IV.

The method was applied to a continuous miRNA data set also analyzed

in Publication III and to a binary copy number variation data set compiled

from several independent studies [102]. In both data sets the method per-

forms well with respect to other biclustering methods, which shows that

the approach is robust with respect to different data types and model as-

sumptions. While for the miRNA data set the method partitions the data

similarly to the method in Publication III, in the copy number variation

data set the inferred biclusters typically confirm existing biological knowl-

edge regarding the association between neoplasm types and chromosomal

aberrations. The proposed framework thus appears to be a promising gen-

eral probabilistic solution to biclustering.
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4.5 Discussion

This chapter described the contributions about biclustering of gene ex-

pression data.

Regarding Publication I and the plaid model, it remains an open ques-

tion whether alternative inference engines would allow maintaining the

model’s flexible assumptions and at the same time accelerate the infer-

ence process, allowing the model to be used in larger data sets.

As for the hierarchical model described in Publication III, the most im-

mediate improvement on the model would be the use of unlimited-depth

rather than fixed-depth trees. This would also allow some parts of the

tree to have a deeper depth than others. As can be seen in Publication

III, Figure 4, when the model does not find a hierarchical bicluster struc-

ture it still creates two hierarchy levels, with the second level having a

single child node, which is clearly an artifact of the model assumptions.

Other improvements include allowing microarrays to choose more than

one path along the tree, and having a feature activation model that would

allow genes to be activated in accordance to pre-specified pathway mem-

berships.

As for the general biclustering framework proposed in Publication IV,

it would be interesting to assess model performance when more complex

experts are used, instead of the simple Gaussian and Bernoulli experts.

The inference engine also appears not to be robust with respect to ini-

tialization procedures, which brings in the question of whether global op-

timization techniques such as simulated annealing [144] would improve

this aspect.

Overall, the proposed probabilistic biclustering methods achieve state-

of-the-art performance, and are thus promising tools for this computa-

tional task. In particular, the proposed mixture-of-experts approach to

biclustering can replace several existing biclustering methods as it allows

performing biclustering under a variety of data types and model assump-

tions. The proposed hierarchical biclustering framework is also useful

with respect to existing methods, as it is currently the only method that

allows inferring a hierarchy of samples and explicitly indicate the genes

that tie each node in the hierarchy, an aspect which facilitates the subse-

quent biological analysis.
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5. Model-Based Information Retrieval in
Gene Expression

This chapter describes the contributions about information retrieval in

gene expression data corresponding to Publications II and V. The chapter

starts with a brief motivation and a review of related work. Then, the

proposed pipelines involving the use of probabilistic latent variable mod-

els are described. The chapter ends with a description of an RT-PCR val-

idation experiment, based on an in silico prediction made by the method

described in Publication V.

5.1 Motivation and Earlier Work

Information retrieval can be defined as the computational task of obtain-

ing the data which is most relevant to an information need [94]. For in-

stance, Internet search engines [107] are routinely used to relate objects

from multiple media types such as movies, images, or hypertext. Given

the pace at which biological data is being generated due to the emergence

of high-throughput technologies, it makes sense to develop IR tools that

systematically find similarities across data from different studies, in order

to accelerate research and obtain both novel and robust findings. While

this applies to any kind of biological data and suggests the use of inte-

grative IR frameworks that couple multiple data sources, here the focus

is on information retrieval for gene expression data obtained with DNA

microarrays.

Gene expression IRmethods are divided into text-driven and data-driven

approaches. Text-driven approaches detect similarities in the textual an-

notations of the studies [92, 155]. These methods are effective at finding

studies corresponding to conditions that are known to be related, which

is an important task when the aim is, for example, to collect all avail-

47



Model-Based Information Retrieval in Gene Expression

able public data regarding a particular disease and a given treatment.

However, data-driven approaches hold a greater potential for uncovering

novel biological findings, as the bulk of the information about a study is

contained in the measured data itself, rather than in the textual annota-

tions.

Data-driven IR is intrinsically related to gene expression meta-analysis.

Since the aim of meta-analysis is to analyze a large set of independent

studies, meta-analysis and IR methods ultimately share several technical

challenges, including the sparseness of annotation data, variability across

samples and experimental protocols, the use of different microarray plat-

forms, and the inherent complexity and stochasticity of the biological con-

ditions under study.

Data-driven IR in gene expression data has been suggested as far as

1999 as a form of alignment [70], and methods exist at least since 2001,

with the work of Hunter et al., who propose a measure of relevance based

on a Bayes factor that compares the hypothesis that two microarrays cor-

respond to the same biological condition vs. two different biological con-

ditions [59]. More recent IR and meta-analysis approaches rely on using

differential expression as a solution to the problem of between-study in-

commensurability. Two known examples of meta-analysis methods based

on differential expression are Module Maps [123] and Oncomine [117],

with both methods being applied to study the differential expression of

gene sets across multiple neoplasms. Another influential approach is the

Connectivity Map [80], in which the authors produced a data set of treat-

ment response in cell lines, along with a nonparametric correlation pro-

cedure which allows querying the data set with a gene set of interest,

retrieving the most relevant compounds.

Current state-of-the-art meta-analysis and IR approaches typically rely

on connecting studies using nonparametric correlation measures that take

into account the differential expression patterns observed in each study

[76]. In general, using differential expression as a basis for encoding and

relating studies is an effective way to deal with expression data incom-

mensurability.
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5.2 Latent Variable Models for Information Retrieval

Both existing meta-analysis and IR approaches, as well as the proposed

methods from Publications II and V, can be seen as instances of a gen-

eral meta-analysis and information retrieval framework consisting of four

components: First, each gene expression profiling study is transformed

into a set of comparisons between biological conditions. Second, the dif-

ferential expression of genes or gene sets is computed, using measures

such as fold-change, or statistical methods such as the t-test or GSEA.

Third, differential expression patterns are extracted from the data using

unsupervised learning methods. Fourth, a relevance measure between

studies, conditions, or microarrays is used to find interesting connections

in the data.

A flowchart outlining the proposed methods is shown in Figure 5.1. In

the following subsections the main parts of the flowchart are described in

detail.

Figure 5.1. Flowchart for the methods presented in Publications II and V. Figure
adapted from Publication V.

5.2.1 Study Decomposition

Regarding the decomposition of a study’s experimental design into a set

of comparisons between pairs of conditions, the proposed approach mini-

mizes the influence of confounding factors andmaximizes the interpretabil-

ity of the derived comparisons.

Using the same terminology as in the ArrayExpress database [108],

each study contains a set of experimental factors, e.g., “disease-state”, “tis-

sue”, or “compound”. Any given sample in the study contains an instanti-

ation of each experimental factor. For instance, a given sample may have

the annotation “disease-state = normal”, “tissue = liver”, and “compound

= none”. The instantiation of a given experimental factor is known as an

experimental factor value.

For every study, a set of comparisons between pairs of conditions is au-

tomatically derived. This is done by exhaustively finding all maximally
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large sample groups in which all experimental factors share the same

value, except for a single experimental factor which has either of two

possible values. For instance, a given set of samples may share the an-

notations “tissue = liver” and “compound = none” for the “tissue” and

“compound” experimental factors, but have one of two possible annota-

tions “disease-state = cardiomyopathy” or “disease-state = normal” for the

“disease-state” experimental factor. This yields a comparison between car-

diomyopathy and normal samples, in the context of “tissue = liver” and

“compound = none”.

Alternative methods, e.g., Module Maps [123], in which a sample is com-

pared against the average expression of all samples in a study, yield com-

parisons that depend intrinsically on the conditions that were used to

compute the average expression, therefore containing an additional layer

of study-specific bias. Also, approaches that compare pairs of conditions

without regarding contextual information [35, 57, 58] hinder the subse-

quent analysis, due to the influence of confounding factors.

The above approach for decomposing a study was proposed in Publi-

cation II; in Publication V it was refined by introducing the notion of a

neutral factor. A neutral factor is a factor that (1) does not yield mean-

ingful comparisons without any further processing, for instance the factor

“age”, whose values are typically not categorical, e.g., “age ≥ 65” or “age

≤ 65”, but rather numerical, and that (2) usually contains a high number

of unique factor values, as many as one per sample, e.g., unique patient

identifiers. In order to avoid generating a large number of meaningless

comparisons, a list of neutral factors was manually built and removed

from the experimental design annotation.

5.2.2 Gene Set Enrichment Analysis

After decomposing studies into sets of comparisons between biological

conditions, differential expression patterns were extracted from each com-

parison. Concretely, GSEA was used in each comparison to test for the

differential expression of a set of 639 canonical pathways obtained from

MSigDB [131].

The use of a gene set test rather than a gene test is due to the fact that

procedures that test for the differential expression of gene sets have been

observed to be more robust across studies [131]. Using a gene set test

also allows re-using biological knowledge of pathways in the context of
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meta-analysis and IR.

Intuitively, GSEA tests if the genes in a gene set tend to appear among

the most differentially expressed genes. Unlike classical enrichment tests

such as the hypergeometric test, GSEA does not require a preprocess-

ing step wherein genes are classified as differentially expressed or non-

differentially expressed. Instead, it takes as input the whole list of genes

in a given study, sorted according to a differential expression measure

such as the log-ratio (sorting the list in descending or ascending order

makes GSEA look for differentially over or under-expressed gene sets, re-

spectively).

GSEA computes a running score by traversing the sorted list of genes

in the study. The score is increased whenever a gene from the gene set is

found and is decreased otherwise. Formally, given a gene set S, the score

at position i in the list is computed via the following recursive formula:

score(i) =

⎧⎪⎨
⎪⎩
score(i− 1) + |ri|p

NR
, i ∈ S

score(i− 1)− 1
N−NH

, i �∈ S
(5.1)

where ri is the differential expression measure assigned to the gene at po-

sition i in the list, NR =
∑

i∈S |ri|p, N is the total number of genes in the

study, NH is the size of gene set S, and p is an exponent that weighs the

contribution from each gene in the gene set. In the original GSEA publi-

cation, p was set to zero, which induced a positive score bias for gene sets

whose genes are not differentially expressed [131]. In both Publications

II and V, p is set to one, as suggested by the GSEA authors [131].

The final enrichment score (ES) for a gene set is computed as the max-

imum of the running score described above. Significance is assessed by

performing 1000 random permutations of the phenotype labels and re-

computing the corresponding ES’s. The ES is also normalized by dividing

it by the mean of the random ES’s. Finally, the genes in the gene set that

were found before the running score reached its maximum are collectively

known as the gene set’s leading edge subset. This subset corresponds to

the most differentially expressed genes in the set.

For each comparison, the 50 gene sets with the highest normalized ES

were collected, ignoring the direction of differential expression. While

this threshold-based selection procedure is partly heuristic, in prelimi-

nary studies it was found that it leads to a better IR performance than

choosing gene sets based on the standard cut-off value of q < 0.05, which

yields an excessively sparse encoding where the majority of comparisons
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has zero differentially expressed gene sets.

In Publication II, each comparison was encoded as a vector where each

entry corresponds to a gene set. For each of the top 50 gene sets, the cor-

responding entry contained the number of genes in the gene set’s leading

edge subset. The entries for the remaining gene sets were filled with ze-

roes. This encoding is equivalent to the bag-of-words representation in

the natural language domain, where a document is represented by a vec-

tor of word frequencies. In Publication V, the actual genes that belong to

the leading edge subset of each of the top 50 gene sets were used. This

was done in order to also model gene-wise differential expression. Thus,

the proposed approaches represent each comparison in terms of its corre-

sponding GSEA output.

5.2.3 Probabilistic Modelling

Given a large number of comparisons represented by their corresponding

GSEA output, the next step in the proposed pipeline is to perform a prob-

abilistic modelling of the observed GSEA results. Latent variable mixture

models were used in both Publications II and V. Here, the aim is to use

the models both for inferring patterns of differential expression that occur

across multiple comparisons, and for providing a basis for performing IR.

Both probabilistic models assume the existence of a certain number of

so-called mixture components. In Publication II, each component cap-

tures a co-occurrence pattern among gene sets, while in Publication V,

each component captures a co-occurrence pattern among gene sets cou-

pled with a co-occurrence pattern among genes. The intuitive idea is to

detect groups of gene sets or genes that are often differentially expressed

together. Both models also create a soft mapping from comparisons to

these components, as described in detail below.

In Publication II, LDA [15] was used to model the GSEA output. In

LDA, components are known as topics, with each topic k corresponding

to a multinomial distribution over gene sets φk. Here, a topic has the

biological meaning of representing a group of gene sets that are often si-

multaneously differentially expressed. LDA assumes a generative process

wherein each GSEA comparison i has a multinomial distribution over top-

ics θi. Each observation of a gene set in a GSEA comparison is assumed

to arise by first selecting a topic k using θi and then choosing the gene set

using φk. Both θi and φk are assigned conjugate Dirichlet priors, with in-
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ference and estimation being performed using a collapsed Gibbs sampler

[51].

In Publication V, a novel latent variable mixture model was proposed.

Each component k corresponds to two vectors φk and ψk, with φks ∈ [0, 1]

representing the activation probability of gene set s and ψkg ∈ [0, 1] rep-

resenting the activation probability of gene g. The generative process as-

sumes that the data for a given comparison i and gene set s arises by

choosing a component k, then activating the gene set with probability φks
and finally, if the gene set is active, creating its leading edge subset by

sampling the activation status of each gene g in the gene set using ψkg.

The model also assumes a two-level component selection procedure that

allows modelling correlations between components [86]. As in LDA, each

GSEA comparison i has a distribution θi over so-called modules. Each

module in turn has a distribution ηm over components. A component is

chosen by first choosing a module m from θi and then choosing the com-

ponent from ηm. Intuitively, a module represents a soft combination of

differential expression components that aims at capturing higher-level

biological phenomena. Dirichlet and Beta conjugate priors are used for

the model variables, and a collapsed Gibbs sampler was used to perform

inference and estimation.

Finally, in both probabilistic models, the generative probability formu-

lation described in Chapter 2 was used as a relevance measure between

comparisons.

5.3 Results

Both methods were applied to large sets of microarray studies obtained

from the ArrayExpress database. In Publication II, the method was ap-

plied to slightly less than 800 comparisons derived from 288 human stud-

ies, while in Publication V the method was applied to a larger data set

consisting of 6925 comparisons derived from 1082 studies involving three

species (human, mouse, and rat).

The proposedmethods were evaluated according to their IR performance,

as well as according to the biological relevance of the inferred components

and selected IR case studies.
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5.3.1 Retrieval Performance

The analysis of the methods’ IR performance was restricted to a subset

of so-called interpretable comparisons in which a condition is compared

against a control. These were named “interpretable” because IR results

restricted to these comparisons are inherently easier to systematically

assess.

In Publication II the Average Precision performance measure [94] was

used, with the proposed method being compared to a random baseline

when querying with either of 27 cancer vs. normal comparisons involving

different cancer types. The results showed that in 20 out of 27 compar-

isons the model performance was superior to the 99% confidence interval

of the random baseline.

In Publication V, the evaluation approach relied on using a controlled

vocabulary known as the Experimental Factor Ontology (EFO) [92] which

characterizes some of the existing experimental factor values. A mapping

from experimental factor values to ontology terms was successfully ob-

tained for 219 interpretable comparisons, and a ground-truth relevance

measure between comparisons was derived based on the shared path be-

tween the corresponding terms in the EFO. Since this approach yields a

non-binary relevance measure between comparisons, the Average Preci-

sion performance measure was replaced by the Normalized Discounted

Cumulative Gain (NDCG) measure [63, 94], which effectively handles

non-binary relevance measures. The results showed that the proposed

method performs competitively with existing approaches.

5.3.2 Qualitative Evaluation

As for the biological interpretation of the components, each component

can be analyzed by either looking at its most probable elements or by

significance-based approaches such as the one outlined in Publication V.

In both cases, it was shown that components correspond to functionally

coherent groups related to biological processes such as apoptosis, respira-

tion, metabolism, or inflammation.

Several biological case studies were also provided in both publications

II and V, indicating how the model can be used to obtain connections

between comparisons that correspond to existing knowledge and hint at

potential novel findings.
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Finally, in Publication II information visualization tools for visualizing

both the model and the information retrieval results were also developed.

In Publication II, Figure 1, a proposed graph-based visualization tool al-

lowed for a holistic analysis of the relations between comparisons, com-

ponents, and gene sets. In Publication II, Figure 4, an IR-based nonlin-

ear dimensionality reduction method [148] was used to visualize both the

retrieval results and the importance of each component in each compar-

ison. Both of these tools facilitate the inspection of the results, with the

corresponding figures provided in Publication II showing the biological

meaningfulness of the inferred model structures and IR results.

5.4 An Application to SIM2s Expression in Pleural Malignant
Mesothelioma

A more detailed case study in Publication V concerned a computationally

predicted connection betweenmalignant pleural mesothelioma (MPM) and

the transcription factor single-minded homolog 2, short isoform (SIM2s).

MPM is a rare form of cancer that develops in the pleura and which is

primarily caused by asbestos exposure. SIM2 is a basic helix-loop-helix

transcription factor with short (SIM2s) and long (SIM2l) isoforms. SIM2

is located on chromosome 21 and has been associated with Down syn-

drome [26]. It has also been observed to be differentially expressed in

prostate [53] and breast cancer [77].

In Publication V, when querying the model with a comparison of MPM

versus normal pleural tissue in human [49], the third most relevant re-

sult was a comparison of an RNA interference (RNAi) knockdown assay

of SIM2s in a human colon carcinoma cell line [2]. Specifically, the com-

parison was of “time = 18h” versus the “time = 0h” control. No known

connections between MPM and SIM2s exist, although it has been shown

that Sim2 mutant mice incur in pleural defects [50]. This suggests that

SIM2s may be differentially expressed in MPM samples compared to a

control, although in the MPM study analyzed by the model this was not

the case.

In order to follow-up on the computationally predicted connection be-

tween MPM and SIM2s, an independent set of 10 MPM samples and a

healthy pleural control were analyzed. Concretely, an RT-PCR assay was

performed to measure the expression of both SIM2 isoforms, as well as a
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small number of genes known to be SIM2s targets, namely MMP2, MMP3,

SNAI1, SNAI2, and MYOM2. This set of known SIM2s targets was ob-

tained via a literature search which aimed at collecting all known SIM2s

targets. The expression of MMP14 was also measured, as MMP14 has

been recently observed to be differentially expressed in MPM [28].

The primary result was that SIM2s is significantly under-expressed in

the MPM samples (p < 0.05). Differential expression of MMP14 was not

confirmed, although its expression was significantly correlated with that

of MMP2 (r = 0.74, p < 0.05), which is consistent with the knowledge that

MMP2 requires MMP14 for its activation [28]. SNAI2 was differentially

over-expressed (p < 0.05), which is consistent with its putative role as a

repressive transcriptional target of SIM2s [78].

Observing differential expression of SIM2s in an independent set of

MPM samples suggests that SIM2s may effectively have a role in the dis-

ease. In Publication V, it is hypothesized that the role of SIM2s in MPM is

related to estrogen signalling and the epithelial-mesenchymal transition

(EMT) network.

Regarding estrogen signalling, both gender and estrogen receptor-β (ERβ)

expression have prognostic power in MPM [112], although it is an open

question the extent to which estrogen signalling is important in MPM.

The GADD45A gene, which was over-expressed in the SIM2s RNAi study

that the probabilistic model connected to MPM [2], is a transcriptional

target of ERβ [109]. SIM2s depletion in a mouse model also yields ER-

negative tumours [78]. Finally, in the probabilistic model, the three over-

all most probable gene sets in both the MPM and the SIM2s studies are

“metabolism of xenobiotics by cytochrome p450”, “androgen and estro-

gen metabolism”, and “arachidonic acid metabolism”. Cytochrome p450

enzymes mediate estrogen metabolism [143], and the “arachidonic acid

metabolism” gene set significantly overlaps with the “metabolism of xeno-

biotics by cytochrome p450” gene set (p < 0.05).

The EMT network is a group of related genes with an important role

in tissue development that has also been associated with cancer progres-

sion [140]. It has been observed that SIM2s depletion in mouse induces

a transition similar to the EMT [78]. It has also been recently observed

that EMT genes, including SNAI2, are over-expressed in MPM [23].

In summary, the computationally predicted connection between MPM

and SIM2s has been validated via a follow-up RT-PCR study, yielding an

hypothesis that SIM2s has a role in MPM, potentially via the estrogen
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signalling and EMT networks.

5.5 Discussion

This chapter presented the contributions regarding IR in gene expression

data. The proposed approach can be extended in several directions. For

instance, using a nonparametric Bayesian prior based on the Hierarchi-

cal Dirichlet Process model [138] would allow automatically learning the

number of components. Additionally, the differential expression encoding

could be based on alternative methods, such as sparse linear classifiers

[153] instead of GSEA. In the future, it will also become important to

adapt the proposed framework to new high-throughput sequencing tech-

nologies such as RNA-Seq. Finally, significance-based measures of rele-

vance may be used in the future to automatically suggest the most inter-

esting directions of exploration of the retrieval results.

On the biological side, all described case studies suggest follow-up ex-

periments for uncovering the molecular basis underlying the found con-

nections between biological conditions. In particular, regarding the SIM2s

case study, future studies may potentially involve studying the expression

of SIM2s in a human MPM cell line after treatment with estrogen-related

compounds.

In general, it is an open question how far SIM2s drives the gene expres-

sion profile observed in MPM patients. Ultimately, a better understand-

ing of the mechanisms of estrogen signalling and EMT networks, as well

as the corresponding role of SIM2s, may yield better prognostication and

more targeted treatment in MPM.
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6. Summary and Conclusions

This thesis summarized contributions on using graphical models for per-

forming biclustering and IR of gene expression data.

Biclustering is a relevant challenge in bioinformatics since it aims at

finding local regions of interest in high-throughput data sets, namely sub-

sets of measurements and biological conditions that corresponds to mean-

ingful data patterns. In Publications I, III, and IV, novel methods were

proposed for various biclustering tasks. It was shown that the models

had a state-of-the-art performance and were able to learn multiple types

of bicluster structures, such as a bicluster hierarchy (Publication III) or

a set of partially overlapping biclusters (Publications I and IV). Those

inferred structures were biologically meaningful and allowed formulating

novel hypotheses on associations between diseases and miRNA genes or

chromosomal bands.

IR in gene expression data is a timely task due to the ever-increasing

number of data sets deposited in public repositories. Reutilizing existing

data via a “Google-like” exploration will potentially accelerate the pace

of biological research. In Publications II and V, a pipeline for IR in gene

expression data was proposed, with the aim being to provide an effec-

tive approach for relating the large number of independent microarray

gene expression studies deposited in public databases. The proposed IR

pipeline combines a differential expression-based representation of stud-

ies with probabilistic modelling that finds recurrent patterns of differen-

tial expression and provides a sound basis for performing IR. The models

were able to learn meaningful patterns of differential expression and pro-

vide valid connections between independent studies.

The proposed methods highlight the merits of graphical models. Graph-

ical models are flexible, modular tools for data analysis that allow com-

bining multiple “probabilistic blocks” in order to approach hard compu-
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tational tasks. The existence of a large number of graphical modelling

approaches, as well as general-purpose inference and estimation methods

such as the EM algorithm or the Gibbs sampler, provides a large method-

ological basis from which novel models and the corresponding inference

and estimation procedures can be developed.

As for future work, there is wide scope of applications for the proposed

methods. For instance, the proposed IR pipeline may be used for drug re-

purposing, by connecting diseases, drugs, and pathways, with the aim of

explaining the connections via similarities in observed differential expres-

sion patterns. There is also the possibility of extending the IR pipeline

in order to perform a more thorough pre-processing of microarray data

sets. In the proposed approach, fully pre-processed microarray data sets

are imported and probe-set-to-gene dictionaries are obtained from sources

such as MSigDB. However, as described in Section 2.2, it has been shown

that probe-to-transcript mappings are often inaccurate due to the genomic

annotations available at the time when the correspondingmicroarray plat-

forms were developed [29]. A future approach may involve an additional

microarray pre-processing step that uses up-to-date probe-to-transcript

mappings in order to pre-process a given data set for obtaining more ac-

curate transcript levels. Another direction of research is integration of

multiple data types, which was not explored in the methods described in

this thesis but is becoming a more relevant task due to the emergence of

large-scale projects such as the Cancer Genome Atlas [106].

In general, the bioinformatics field is witnessing the emergence of new

high-throughput sequencing technologies and a greater effort towards large-

scale, multi-modal data acquisition [80, 106]. The advent of “big data”

will bring about fundamental challenges in graphical modelling, placing

stronger requirements on model scalability and interpretability. Regard-

ing scalability, inference and estimation methods will be required to cope

with large amounts of data and provide results that are robust with re-

spect to initialization procedures. This will be particularly important for

models that infer complex combinatorial structures, which so far lack

standard solutions for assessing the robustness of the findings. Regarding

interpretability, tools such as information visualization techniques will

become increasingly important for providing a holistic analysis of the com-

putational structures inferred by the models.

Finally, the main biological finding described in this thesis is the differ-

ential expression of SIM2s in MPM described in Publication V. So far,
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SIM2s has been shown to be related to components of the EMT and es-

trogen signalling networks, which are important players in cancer. For

instance, the EMT network is known to be a driver of metastasis [140],

while estrogen-related signalling is a potential cause for gender differ-

ences in survival time in MPM [112]. The exact role of SIM2s is not

presently understood, although it is known to interact with EMT and es-

trogen signalling-related genes such as GADD45A and SNAI2. A better

understanding of the role of SIM2s may in turn lead to a better under-

standing of EMT and estrogen signalling, with implications for the treat-

ment of MPM. It is tempting to speculate that ultimately, expression pat-

terns of SIM2s and related genes may be used to stratify MPM patients in

order to provide more targeted treatments that increase overall survival.
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