
Helsinki University of Technology
Department of Signal Processing and Acoustics

Espoo 2008 Report 2

PROPAGATION PARAMETER ESTIMATION IN MIMO SYSTEMS
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Multiple antenna techniques are in the heart of modern and next-generation wireless communications systems, such as
3GPP Long-Term Evolution (LTE), IEEE 802.16e (WiMAX), and IMT-Advanced (IMT-A). Such techniques are
considered for the high link capacity gains that are achievable from spatial multiplexing, and also for the system
capacity, link reliability, and coverage benefits that are possible from spatial diversity, beamforming, and spatial
division multiple access techniques. Accurate spatial channel models play a key role on the characterization of the
propagation environment and determination of which techniques provide higher gains in a given scenario. Such models
are also fundamental tools in network planning, link and system performance studies, and transceiver development.

Realistic channel models are based on measurements. Hence,there is a need for techniques that extract the relevant
information from huge amount of data. This may be achieved byestimating model parameters from the data. Most
estimation algorithms are based on the assumption that the channel can be modeled as a combination of a finite number
of specular, highly-concentrated paths, requiring estimation of a very large number of parameters. In this thesis,
estimators are derived for the parameters of the concentrated propagation paths and the diffuse scattering component
that are frequently observed in Multiple-Input Multiple Output (MIMO) channel sounding measurements. Low
complexity methods are derived for efficient computation ofthe estimates. The derived methods are based on a
stochastic channel model, leading to a lower-dimensional parameter set that allow a reduction in computational
complexity and improved statistical performance comparedto methods found in the literature.

Simulation results demonstrate that high quality estimates are obtained. The large sample performance of the
estimators are studied by establishing the Cramér-Rao lower bound (CRLB) and comparing it to the variances of the
estimates. The simulations show that the variances of the proposed estimation techniques attain the CRLB for
relatively small sample size for most parameters, and no bias is observed.
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Moniantennitekniikat ovat keskeisessä osassa kehittyneissä uuden sukupolven langattomissa tietoliikennejärjestelmissä
kuten 3GPP Long-Term Evolution (LTE), IEEE 802.16e (WiMAX)ja IMT-Advanced (IMT-A). Näillä tekniikoilla
saavutetaan tietoliikennejärjestelmissä merkittäviä etuja: radiospektriä voidaan hyödyntää tehokkaammin ja
radiolinkin kapasiteetti moninkertaistaa useaa datavirtaa tukevilla moniantenni (MIMO) lähetin-vastaanotin
rakenteilla. Toisaalta systeemin kapasiteettia, tiedonsiirron luotettavuutta ja tiedonsiirron kattavuutta voidaan parantaa
lähetysdiversiteettimenetelmien, keilanmuodostuksen ja tilajakoisen kanavoinnin avulla. Tarkat ja realistiset
moniulotteiset kanavamallit ovat avainasemassa etenemisympäristön karakterisoinnissa, ja edellytys edellämainittujen
moninantennitekniikoiden suorituskyvyn vertailulle erilaisissa käyttöympäristöissä. Nämä kanavamallit ovat myös
keskeisiä työkaluja radiolähettimien ja vastaaonottimien kehitystyössä, radioverkkojen suunnittelussa, ja suorituskyvyn
tarkastelussa sekä linkki- että systeemitasolla.

Realistiset kanavamallit kehitetään mittauksiin perustuen eristämällä relevantti informaatio valtavasta
mittausaineistosta. Tämä voidaan saavuttaa tilastollisilla menetelmillä estimoimalla mallin parametreja tehdyistä
havannoista. Useimmat kirjallisuudessa esitetyt menetelmät perustuvat oletukseen, jossa kanava koostuu suuresta
määrästä peiliheijastuksia. Tällöin estimoitavien parametrien määrä muodostuu hyvin suureksi. Tässä tutkimuksessa
on johdettu estimaattoreita keskittyneiden etenemispolkujen ja diffuusin sirontakomponentin parametreille, jotka
esiintyvät yleisesti MIMO-kanavan luotausmittauksissa.Tutkimuksessa on lisäksi johdettu laskennallisesti tehokkaita
menetelmiä estimaattien muodostukseen. Kehitetyissä menetelmissä käytetyn stokastisen kanavamallin ansiosta
tuntemattomia parametrejä on vähemmän kuin kirjallisuudesta löytyvissä menetelmissä. Tämän vuoksi kehitetyt
menetelmät ovat laskennallisesti tehokkaampia ja tilastolliselta suorituskyvyltään parempia.

Simulaatiotulokset osoittavat, että lasketut estimaatitovat korkealaatuisia. Estimaattoreiden asymptoottista
suorituskykyä on tutkittu johtamalla Cramér-Rao alarajat(CRLB) eri parametreille ja vertaamalla sitä estimaattoreiden
variansseihin. Simulaatiot osoittavat, että useimpien parametrien tapauksessa johdettujen estimaattoreiden varianssit
saavuttavat Cramér-Rao alarajan suhteellisen pienelläkin otoskoolla ja että estimaatit ovat harhattomia.
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Chapter 1

Introduction

1.1 Motivation of the thesis

Multiple antenna techniques are a key enabling technology in modern and next-generation

wireless communications systems, such as 3GPP Long-Term Evolution (LTE) [1] and IEEE

802.16e (WiMAX) [2], as well as fixed wireless communications and last-mile networks [3].

Figure 1.1 illustrates a system with multiple antennas at transmitter and receiver, usually

known as multiple-input multiple-output (MIMO) system. Such techniques are considered

for the high link capacity gains that are achievable from spatial multiplexing, but also for

the system capacity benefits, improved link reliability, and extended range that are possi-

ble from spatial diversity, beamforming, spatial division multiple access, and interference

cancellation techniques [4, 5, 6, 7]. In general, all these gains cannot be achieved simul-

taneously, as they are dependent on antenna configuration and scattering environment.

Hence, good knowledge of the characteristics of the propagation environment is crucial for

maximizing the achievable MIMO gains. In fact, the very demanding performance tar-

gets set for next-generation systems are virtually impossible to reach without an efficient

utilization of multiple antennas both at transmitter and receiver side.

The decision on which techniques should be employed in each situation in order to

obtain higher performance gains depends on many factors, such as the type of data/voice

traffic, the number of users in the system, the quality of service parameters, and, very

importantly, the characteristics of the propagation environment. It is well known that

while beamforming techniques benefit from strong spatial correlation among the antennas,

spatial multiplexing techniques obtain higher gains for rich scattering environments [4].

Hence, deep understanding of propagation phenomena and accurate knowledge of the
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Figure 1.1: Illustration of a typical MIMO system, where the transmitter has Mt antennas
and the receiver has Mr antennas.

propagation environment is required in order to meet the ambitious targets of such systems.

Accurate multidimensional spatial channel models play a key role in the characteriza-

tion of the propagation environment [8]. Although wireless propagation mechanisms have

been studied for a long time, modern wireless communications systems are assumed to op-

erate on higher frequencies and with larger bandwidth than previous systems. Moreover,

previous single antenna measurements do not allow for characterization of spatial informa-

tion. Hence, there is a need of new measurement campaigns that utilize transmitters and

receivers equipped with multiple antennas. Realistic channel models are based on measure-

ments, and, consequently, there is a need for techniques for estimation of model parameters

from data. Typically, MIMO channel measurements are very high dimensional, implying

that a huge amount of data is collected. Hence, it is important to condense the relevant

information to a few parameters. This is also useful for development of low-complexity

channel models for specific scenarios, to be used, e.g., by system designers.

Advanced estimation algorithms have been derived as well, with the goal of extract-

ing high-precision estimates of the parameters that describe the spatial channel, like the

SAGE-based method in [9] and RIMAX [10]. Most estimation algorithms are based on

the assumption that the channel can be modeled as a combination of rays that travel from

the transmitter to the receiver reflecting on objects scattered around the environment, as

illustrated in Figure 1.2. Such models are useful for describing a variety of propagation

scenarios, but since a large number of rays might be needed to characterize the envi-

ronment, the estimation algorithms based on such deterministic models become highly

complex [9, 10].

One approach to solve this problem and obtain powerful models with few parameters

is to utilize a stochastic model instead of a deterministic model [11, 12]. Such a model
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Figure 1.2: Illustration of MIMO propagation channel.

is suitable to describe diffuse scattering, which is the part of the received signal that

cannot be resolved into distinct specular paths. Even tough diffuse scattering is usually

neglected and considered as noise, recent investigations have shown that both specular

and diffuse propagation mechanisms contribute significantly to the wave propagation [8,

13]. Moreover, it should be noted that diffuse scattering is a significant part of the rich

scattering that gives diversity and multiplexing gains in MIMO systems [14]. In [10]

a data model for channel parameter estimation is proposed, which combines these two

models. It is shown that an estimator that accounts for both, concentrated propagation

paths and distributed scattering, outperforms estimators that ignore either of the channel

components. However, in [10] the estimator is derived assuming that the contribution

of the distributed scattering is an i.i.d. process in the angular domain at TX and RX.

It only accounts for the correlation of the distributed scattering in the time-delay and

the frequency domain and ignores the correlation in angular domain. So far no channel

parameter estimation results have been published which provide more information about

the angular properties of diffuse scattering in radio channels.

Parameter estimation algorithms based on the assumption of slightly-scattered sources

can be found in the literature , such as GAM [15] and Spread-F [16] methods, among others

[16, 17, 18]. Such algorithms are based on the assumption that scattering around the mean
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angle is small, and hence cannot be applied for the estimation of angular characteristics

of the diffuse scattering component of the channel.

It should be noted that the problem of MIMO channel sounding is closely related to

that of MIMO radars [19, 20], where the goal is to detect and track moving targets. Hence,

the algorithms and analysis derived in this thesis are applicable to the context of MIMO

radars as well.

1.2 Scope of the thesis

The scope of this thesis is to develop novel estimation techniques for channel sounding

applications in MIMO systems. This thesis contributes to physical layer research in wireless

multiantenna communications systems, e.g., 3GPP Long-Term Evolution (LTE) [1], IEEE

802.16e (WiMAX) [2], and IMT-Advanced [21] systems. The developed techniques can

be applied for development of accurate MIMO channel models, which are fundamental

tools in network planning, link- and system-level studies, and transceiver development.

In particular, the developed techniques take into account the diffuse scattering, which is

commonly neglected in measurement campaigns.

The goal of this thesis is to develop efficient estimation algorithms that gives high-

precision estimates with a reduced parameter space. By explicitly modeling the diffuse

scattering component, the number of parameters is reduced significantly compared to com-

monly used techniques. Such simplified models are important tools for transceiver design,

for example. In order to keep the overall complexity low, the proposed algorithms must

also be computationally efficient. This allows their application in practical measurement

campaigns, which can be used, e.g., for standardization of next generation wireless systems

and network planning.

1.3 Contributions and structure of the thesis

This dissertation contributes to the field of propagation parameter estimation. Realistic

channel models are derived from measurements, and hence optimal or close to optimal

estimation of model parameters is necessary. The estimation methods derived in this thesis

are particularly useful for propagation environments where a significant portion of energy

is received as a result of diffuse scattering. In particular, the derived estimation methods

jointly estimate the parameters of the concentrated propagation paths and the distributed
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scattering component that are frequently observed in Multiple-Input Multiple Output

(MIMO) channel sounding measurements. The diffuse scattering component is modeled

using a stochastic model, which allows a compact description of the scattering phenomena,

resulting in efficient estimation methods. Diffuse scattering component provides significant

part of MIMO gains. If the concentrated component is estimated only and diffuse part

ignored, the designer may get a biased view of the MIMO system performance.

The joint angular-delay domain model leads to a correlation matrix with high dimen-

sionality, which makes direct implementation of a maximum-likelihood (ML) estimator

unfeasible. Novel low complexity methods are derived for computing approximate ML

estimates that exploit the structure of the covariance matrices. An iterative two stage

procedure is proposed that alternates between the estimation of the parameters of the

concentrated propagation paths and the parameters of the distributed scattering. For the

distributed scattering, the estimator first optimizes the parameters describing their time-

delay structure. Then, using the estimated time-delay parameters, the parameters of the

angular distributions are optimized.

A model for the diffuse scattering component in spatial domain is proposed that is

based on a mixture of von Mises PDFs, which is a suitable PDF for angular data [22]. The

estimation methods are derived taking the mixture model into account, which allows for

flexible characterization of a variety of propagation environments, covering from uniform

distribution to highly concentrated angular distributions.. The mixture model allows mod-

eling of multimodal and skewed angular data, which correspond to clusters of scatterers

often observed in measurement campaigns.

Optimality of the proposed methods is analyzed by establishing the Cramér-Rao lower

bound (CRLB), which gives a lower bound for the variance of unbiased estimators. The

simulation results show that the variances of the proposed estimation techniques reach

the CRLB for relatively small sample size for most parameters, and no bias is observed

for any parameter. Estimated time-delay and angular distributions are compared to the

actual distributions, demonstrating that high quality estimates are obtained.

This thesis is organized as follows. Chapter 2 presents an overview of multiple an-

tenna systems, describing the many benefits such system can present over single antenna

systems. Moreover, it is highlighted how different techniques are more suitable for certain

propagation environments. Chapter 3 gives an overview on channel sounding. Several

recently developed MIMO channel models are presented. Chapter 4 presents several pa-
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rameter estimation techniques, including recent developments for estimation of scattered

sources. Spectral-based estimation techniques are presented for comparison. Chapter 5

describes the main contributions of this thesis. The joint angle- and delay-domain esti-

mation method is described, together with performance bounds, and simulation results.

Finally, Chapter 6 summarizes the results and the contributions of the thesis.

1.4 Summary of the publications

This thesis consists of an introductory part and seven original publications. The publi-

cations are listed at page xi, and appended at the end of the manuscript starting from

page 103. The first four publications address the estimation of diffuse scattering param-

eters, with emphasis on angular-domain parameters. In Publications I and IV, it is also

developed a method for estimation of delay-domain parameters assuming a pseudo-noise

sequence is used for channel sounding. The CRLB for the angular parameters is derived

in Publication II. In Publication IV, the estimation procedure and CRLB are developed

for an extended angular model, including parameters from the transmit antenna array as

well. In Publication III a model of the diffuse scattering based on a mixture of angular

distribution is introduced, and the estimation method is extended to suit the model.

The last three publications address the joint estimation of angular- and delay-domain

parameters. In Publications V and VII a computationally efficient estimation procedure

for joint estimation of angular- and delay-domain parameters is developed. A procedure for

searching new specular paths is derived in Publication VI, and it is applied for the detection

of a weak specular path in the presence of diffuse scattering, using the estimation procedure

derived in publications V and VII. An initialization procedure for the estimation method,

and CRLB for the angular and delay parameters are also derived in Publication VII.

All the simulation software for all the original publications included in this dissertation

was written solely by the author, except for the initialization phase of the estimation

method in Publications V, VI, and VII, which uses in part the software for the RIMAX

estimation method.

In Publications I-VII, the original estimation procedure was the idea of the first author.

All derivations and simulations were performed by the first author as well. The co-authors

provided guidance in the theoretical modeling, in the design of the experiments, and helped

in writing the papers.
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Chapter 2

Overview of MIMO Systems

Multiple-input multiple-output (MIMO) systems using multiple transmit and receive an-

tennas are considered as one of the main enabling technologies for future wireless com-

munications systems. Signal streams can be combined by adaptive algorithms at the

transmitter and the receiver in order to use the wireless channel efficiently. In this chapter

we summarize the main aspects and advantages of MIMO systems, which motivate the

MIMO channel modeling and parameter estimation techniques described in the remaining

chapters. A review of MIMO systems and their applications can be found, e.g., in [5, 7, 4].

2.1 Introduction

Figure 2.1 illustrates a typical MIMO system, with Mt transmit (TX) antennas, and Mr

receive (RX) antennas. The multiple channels connecting the individual channel elements

at both sides give extra degrees of freedom for the design of the communications system.

If the multiple channels are fading independently, it is possible to design the combiners at

both TX and RX such that diversity gain is obtained. In this case, the gain comes from

the fact that the probability that all channels will fade at the same time is small [5]. By

coherently combining the signals, it is possible to obtain also array gain (also called power

gain), since the effective total received power scales with the number of receive antennas

[7]. Moreover, multiple channels can be used in order to create parallel data pipes, thus

providing multiplexing gain.

The benefits and applications that can be obtained from the above mentioned gains

include [4]

• Coverage: the receiver can form an antenna pattern matched to the MIMO chan-
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Figure 2.1: Illustration of a typical MIMO system, where the transmitter has Mt antennas
and the receiver has Mr antennas.

nel between the transmitter and the receiver, increasing signal-to-noise ratio (SNR)

compared to a single-antenna reception. Hence, in a noise-limited cellular system,

this increase in SNR extends the coverage area of a base station (BS). If angular in-

formation is available, this procedure is equivalent to forming a beam in the direction

of the received signal.

• System capacity : MIMO systems can increase the signal-to-interference plus noise

ratio (SINR), allowing for more users to be active in the system. If channel state

information (CSI) of the receivers is known, it is possible for the transmitter to

create beams in the direction of each receiver, allowing simultaneous transmission to

different terminals on the same time-frequency resources.

• Increased user throughput : transmission quality on each link is improved, implying

that transmission with higher data rates are possible. Moreover, it is possible to

exploit the different subchannels between each transmit and receive antennas in

order to create parallel data streams that increase user throughput.

• Improved spectral-efficiency : higher spectral efficiency (measured in bits/s/Hz) is

obtained as a combination of the increased user throughput and higher system ca-

pacity.

• Location: information about the direction of arrival (DoA) of the terminals can be

used for location-based services, and also to locate users in emergency situations.

There is a trade-off in achieving these gains, and not all gains can be obtained simulta-

neously. Correlation between signals in each antenna element of the arrays is a key factor

for the realization of MIMO gains. For example, DoA estimation algorithms described in
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Chapter 4 require high correlation among the antenna elements. However, higher mul-

tiplexing gains are obtained when correlation between antenna elements is close to zero,

as seen in Section 2.2. Similarly, high correlation between antenna elements is required

in order to use beamforming techniques, while highest diversity gains are obtained if the

individual channels are fading independently. In the following sections, the main results

from MIMO systems are presented from an information theoretic point of view, and the

most relevant design strategies are reviewed as well.

2.2 Information-theoretic aspects

Let us assume a narrowband (or frequency flat) system model, where the relative time

delays experienced by the impinging signals are small compared to the symbol period. In

this case, the model for the system in Figure 2.1 can be written as

y = Hs + n, (2.1)

where y is the length-Mr vector with the signals at the output of each antenna element

of the receive array, s is the length-Mt vector with the originally transmitted symbols, n

is the length-Mr vector with measurement noise, and H is the Mr ×Mt matrix with the

channel response. H is defined as

H =




h0,0 . . . h0,Mt−1

...
...

hMr−1,0 . . . hMr−1,Mt−1


 , (2.2)

where entries hi,j are the transfer functions from the j-th transmit antenna element to

the i-th receive antenna element. Different strategies for modeling the elements of H are

discussed in Chapter 3.

For a memory-less single-input single-output (SISO) system with non-fading channel,

capacity is given by [4]

C = log2(1 + ρ|h|2) b/s/Hz, (2.3)

where ρ is the SNR at any RX antenna. Considering now the case where there multiple

antennas at both transmitter and receiver ends, the capacity can be shown to be given by
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[4, 5]

C = log2

[
det

(
IMr +

ρ

Mt
HRsH

H

)]
b/s/Hz, (2.4)

where IMt is the Mt ×Mt identity matrix and Rs is the covariance matrix of the transmit

data. It is intuitive that capacity in equation (2.4) increases linearly with min(Mt,Mr),

since the number of non-zero eigenvalues of HRsH
H is upper-bounded by min(Mt,Mr).

If only the receiver or only the transmitter has more antennas this result does not hold,

since in this case the capacity can be shown to grow logarithmically with respect to the

number of antennas [5].

The MIMO channel can be used to create parallel data pipes, which can be used to

improve rate or diversity [4, 5]. Spatial multiplexing techniques usually transmit different

signals from each antenna, thus increasing the data rate. Diversity and beamforming

techniques, on the other hand, transmit the same signal from all antennas, with the goal

of improving the SINR at the receiver. If link adaptation is used, these techniques also

increase data rate indirectly, since higher-order modulations and higher-rate codewords

can be used.

For the capacity formulas shown above, it is assumed that the channel is deterministic.

For flat-fading channels this capacity definition is not applicable, since the channel coeffi-

cients are random variables. In this case, two different capacity definitions are commonly

used: ergodic capacity and outage capacity. Ergodic capacity denotes the expected value

of capacity, while outage capacity denotes the capacity achieved over a certain amount of

channel uses, e.g., 90% or 95% [23, 4].

It is an important issue to determine the impact of correlation between the signals at

any (or both) ends of the MIMO system to capacity. For a given SNR, maximum capacity

is achieved when the channel matrix is full-rank with equal singular values [4]. Channel

correlation increase the singular value spread, thus reducing system capacity, even if the

channel matrix is still full-rank. Even though this result is taken as a rule of thumb for

MIMO systems, it should be noted that the high capacity gains of i.i.d. channels are

observed for relatively high SNR values, and it is possible that correlated channels have

higher capacity at low SNR [24].
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2.3 MIMO Processing and Beamforming

This section describes techniques that exploit the diversity gain of the MIMO channel, as

well as interference rejection obtained by steering the array response in favor of the desired

signals. We denote by beamforming those techniques that use directional beams aligned

to the angles of the multipath components. The term array processing will be used to

denote techniques that exploit the MIMO channel without explicit knowledge of angular

information.

2.3.1 Beamforming

The concept of beamforming is to concentrate transmission or reception on relevant direc-

tions that maximize the signal at the receiver, or rather to receive energy from preferred

directions only. The basic principle behind this idea is that most of the energy that reaches

the receiver propagates in limited directions, e.g., in a line-of-sight (LoS) situation, as il-

lustrated in Figure 2.2 [25, 26, 27, 28, 29, 4]. The main goal of beamforming techniques is

to provide SINR gain, usually denoted as beamforming gain or array gain.

Beamforming requires partial channel state information in order to be applied. In case

of transmit beamforming, usually this information can be obtained by means of feedback

from the receiver. In time-division duplex (TDD) systems utilizing beamforming at the
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base station, CSI can also be estimated from previous transmission from the terminal,

assuming the channel is reciprocal.

Beamforming benefits from highly-correlated signals at the antennas, thus favoring

system setups with closely-spaced antenna elements and locations with low angular spread.

In principle, beamforming can also be applied for uncorrelated signals, but in this case

the main directions are dependent on current channel realization and fast adaptation is

required in order to achieve the beamforming gain. A review of beamforming techniques

can be found in [29, 30].

2.3.2 Receive Diversity

If the receiver is equipped with multiple antennas, the signals arriving at each antenna

element can be combined in order to obtain array or diversity gain. The combiner can be

designed for minimization of some metric based on the instantaneous channel realization,

without explicitly taking angular information into account, e.g., using maximum-ratio

combining (MRC) or zero-forcing (ZF) criteria [31, 8]. Another important design method is

the minimum mean squared error (MMSE) receiver [32], which is based on the (estimated)

covariance matrix of the received signal, thus taking the statistics of noise component into

account.

Receive diversity techniques are often derived for the uplink direction, given that it is

more common that the base station will employ multiple antennas. However, in advanced

wireless systems like 3GPP LTE and WiMAX, most mobile terminals are assumed to be

equipped with at least two antennas, making it possible to apply the receive diversity

techniques in the downlink direction as well.

2.3.3 Transmit Diversity

Transmit diversity schemes frequently involve the design of multiple correlated signals

without CSI information at the transmitter side. This can be achieved by jointly encoding

the individual streams at each transmit antenna, which in turn reduce the data rate and

increase the correlation between the signals, introducing robustness against channel fading

and noise. Such schemes are commonly denoted by space-time coding (STC) [33, 5].

Initial developments of STC are in the form of space-time trellis codes (STTC), which

require a multidimensional algorithm at the receiver for decoding. However, the true

popularity of STC came with the development of space-time block codes (STBC), which
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Figure 2.3: Transmit diversity with STBC (Alamouti). The symbol transmitted by an-
tennas 0 and 1 are denoted by s0 and s1, respectively.

require only linear processing at the receiver. It has been shown that STBC can achieve the

same spatial diversity order as STTC, but the former cannot obtain the coding gain that

is possible with STTC [5]. Nevertheless, most of the research on STC is currently done

on STBC, since its simple design rules and receiver processing allows for implementation

in practical wireless communications systems. In fact, STBC can be found in standards

of modern wireless communications systems, as in 3GPP HSDPA and LTE [1].

A very popular STBC for a two transmit antennas setup was developed by Alamouti

[31], which is illustrated in Figure 2.3. In this scheme orthogonal signals are transmitted

from each antenna, which greatly simplifies receiver design. Even tough originally de-

veloped for systems with two transmit antennas and one receive antenna, the Alamouti

scheme can be extended for Mr receive antennas, obtaining a diversity order of 2Mr [31, 5].

The resulting scheme can be seen as a combination of the 2 × 1 Alamouti scheme with

maximum ratio combining, and hence the diversity order is the same as that of a 2 ×Mr

MRC scheme [31, 5].

While Alamouti scheme is widely used due to its simple construction and design, a

better detection performance can be obtained if the STBC is concatenated with outer

channel coding (e.g. convolutional), in which case, however, transmission rate is lower

than one. The interested reader can find general STBC design techniques and analysis in

[5, 33, 6].

2.4 Spatial Multiplexing

The previous section was concerned about the utilization of the multiple antennas at

transmitter or receiver side (or both) with the goal of increasing diversity and consequently

obtaining higher SINR at the receiver. If such schemes are combined with link adaptation

mechanisms, higher throughput can be obtained indirectly, since data can be transmitted
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with higher coding rates and higher-order modulations. In this section we will present

techniques whose primary goal is to increase throughput directly, by utilizing the MIMO

channel to create data pipes through which different data streams can be transmitted.

The transmitter and receiver can be designed such that interference from one data stream

to the other is small or non-existent.

Joint encoding of the streams combined with maximum likelihood detection at the

receiver can provide a near-capacity performance [4]. However, the complexity of such

scheme is prohibitive for a large number of antennas. The so-called layered structures

have been proposed to overcome this problem by decomposing the receiving procedure in

several steps with small complexity. These techniques are usually called BLAST (Bell

Labs layered space time) [34, 35].

If full CSI is available at the transmitter and receiver, then it is possible to create

orthogonal data pipes, thus simplifying the decoding process at the receiver. The orthog-

onal data pipes can be created, e.g., by designing the transmitter to be orthogonal to the

matrix with the right singular vectors of H. In this case the receiver can be designed as a

matrix orthogonal to the left singular vectors of H (see Section 2.4.3). Even though this

information is not necessarily available, modern wireless communications standards such

as 3GPP LTE define feed back channels that contain partial CSI and CQI information.

The partial CSI is defined such that the transmitter can create approximately orthogonal

data pipes. This technique is called here eigenbeamforming [8].

Incremental gain from additional receive antennas may diminish if the number of re-

ceive antennas is much larger than the number of transmit antennas, since the extra

antennas cannot be used to create parallel data streams, but only provide diversity gain.

If the receiver is combined with an antenna selection mechanism that selects a subset of the

“best” antennas, it is possible to achieve full multiplexing gain with a reduced complexity,

since only a limited number of RF receiving chains are needed [36, 37, 8].

In this section we briefly describe the Horizontal BLAST, Diagonal BLAST, and Eigen-

beamforming schemes. The interested reader can find more details in [4, 8].

2.4.1 Horizontal BLAST

In Horizontal BLAST (H-BLAST)1, the data streams that are to be input to different

antennas are encoded independently, as shown in Figure 2.4. The receiver separates the

1Initially, Horizontal BLAST was called Vertical BLAST, but this definition was changed in [35].
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Figure 2.4: Block diagram of the H-BLAST transceiver.

streams by successively applying an MMSE receiver and interference cancellation [4]. H-

BLAST scheme is simple, in particular from the transmitter point of view. It suffers,

however, from error propagation, since if one stream is not decoded correctly, then the

interference is not properly subtracted from the received signal, reducing the probability

that the next stream will be decoded correctly. Moreover, H-BLAST does not achieve full

diversity [4].

2.4.2 Diagonal BLAST

The Diagonal BLAST (D-BLAST) scheme cycles the data streams through all possible

transmit antennas. Each data stream is divided in sub-blocks, which are transmitted from

one antenna at a time. This is illustrated in Figure 2.5. The receiver is similar to the

one in H-BLAST, where each decoded block is subtracted from the received signal. The

difference here is that the decoding order for each data stream is alternating for every

sub-block, so that all data streams experience all diversity orders. This scheme can be

shown to provide higher capacity than H-BLAST scheme, due to the increased diversity

of all streams [4].

2.4.3 Eigenbeamforming

If both transmitter and receiver are equipped with multiple antennas, and assuming the

channel is known in both sides, beamforming can also be applied to generate an orthogonal
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Figure 2.5: Schematic representation of the mapping of data streams to transmit antennas
in D-BLAST.

set of spatial filters. By properly designing the transmitter, it is possible to direct the

signals into orthogonal eigenmodes of the channel, which can be extract by the receiver

without interference. The gain at each orthogonal eigenmode is given by the singular

values of the channel matrix H [8].

The singular value decomposition of H is given by

H = UΣVH , (2.5)

where the columns of the Mr × Mr matrix U and the Mt × Mt matrix V contain the

left and right singular vectors of H, respectively, and the diagonal elements of Σ are the

singular values. With the channel known at the transmitter and receiver, it is possible to

design the linear combiners at transmitter and receiver in order to create a virtual MIMO

channel where the different streams are orthogonal to each other. The estimated symbols

at the receiver are given by

ŝ = WHHPs + WHn, (2.6)

where P is the linear combiner at the transmitter.

From equations (2.5) and (2.6), the parallel data streams are created if the linear

combiners are selected as P = V and W = U. With this choice of P and W, the

estimated symbol vector at the receiver is given by

y = Σs + UHn. (2.7)

From equation (2.7) it is clear that the linear combiner at the transmitter directs the

signals into orthogonal eigenmodes of the channel, which can be extract by the receiver

without interference. The gain at each orthogonal eigenmode is given by the singular
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Figure 2.6: Illustration of a spatial division multiple access system.

values of H.

If the data streams belong to different users, this scheme can be used for spatial divi-

sion multiple access (SDMA), where several users share the same physical resources, and

separated only by the different spatial channels. While such scheme can be implemented

both in spatially uncorrelated and spatially correlated scenarios, performance is supposed

to be better in correlated scenarios. This is due to the fact that in correlated scenarios

the eigenbeams correspond to propagation directions, which change relatively slowly over

time (and frequency), depending on movement of the mobile terminal and of the scattering

environment. This principle is illustrated in Figure 2.6, where the transmitter directs one

beam toward each user, simultaneously minimizing the interference from one user to the

other. On the other hand, in uncorrelated scenarios the eigenbeams vary much more often

for every channel realization, and hence it is more difficult to keep both transmitter and

receiver directed at the same eigenbeams.

Even though full-CSI at the transmitter is not practical, wireless standards like 3GPP

LTE define feed back channels that can transmit partial CSI and CQI. The partial CSI

usually contains an indication of the (quantized) right singular vectors that should be

used for transmission. The CQI information can be used to perform link adaptation for

each stream. Such a scheme approximates the eigenbeamforming method described in this

section, and the quality of the approximation depends basically on the vector quantization

of the singular vectors and the delays associated with the feed back channel.
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Chapter 3

MIMO Channel models

Accurate multidimensional spatial channel models play a key role in the characterization of

the propagation environment. Different models have been developed for MIMO channels

in the literature with the goal of characterizing the wireless propagation mechanisms when

multiple antennas are used in the transmitter and the receiver. As a rule of thumb, the

more aspects and detail the model tries to capture, the more complex it gets. Complexity

might become so high that the model is not suitable for practical use. Hence, the trade-off

between model accuracy and complexity has to be taken into account when developing a

model.

Models can be designed to capture specific characteristics of the MIMO channel, for

example beamforming, multiplexing, or diversity gains. The level of application of the

model is also important, since system-level models have different requirements than link-

level models. Regardless of the application, good models must be supported by actual

channel measurements and validated by objective metrics. Different metrics emphasize

the various aspects of the MIMO channel [8]. The number of parameters required by the

model is also relevant, since a large parameter set often leads to complex estimators and

relatively high variance of the estimates.

In this chapter several channel models presented in literature are described. Section 3.1

describes the basic principles of propagation modeling based on electromagnetic theory and

introduces the concept of propagation scenarios. Ray tracing methods and the introduction

of a stochastic component to represent the diffuse scattering are discussed as well.

Section 3.2 describes a basic MIMO channel model as the superposition of specular

(concentrated) and diffuse scattering components. This model serves as a basis for most
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of the models described in Section 3.4. An extensive review of MIMO channel models can

be found in [38, 8, 39]. Antenna array configurations are discussed in Section 3.3.

Finally, Section 3.7 gives an overview on the MIMO channel model derived during

COST273 action [8], which encompasses both link- and system-level aspects of MIMO

systems, and have been throughly investigated based on actual channel measurements.

3.1 Propagation modeling

Electromagnetic theory describes how electromagnetic waves propagate in different media

and interact with objects. Hence, it is essential in propagation modeling. In case of

wireless communications systems, three types of objects are especially relevant: terrain,

buildings, and moving objects. Scenarios can be defined taking into account the presence or

absence of these objects, and depending on the relative position and motion of the objects

with respect to the transmitter and receiver. For example, outdoor scenarios usually

consider that the transmitter is situated well above a roof top and not surrounded by local

scatterers. On the other hand, indoor scenarios assume the transmitter and receiver are on

same height, and both can be surrounded by nearby objects. Figure 3.1 shows an example

of propagation environment where the receiver is surrounded by local scatterers, and a few

remote scatterers are present. The characterization of these scenarios depend also on other

factors, such as interference, spatial correlation, correlation of multiuser MIMO channels,

etc. A detailed description of MIMO scenarios can be found in [8]. In this section we

introduce a few methods and models utilized in propagation studies, in special for next

generation MIMO systems.

Deterministic propagation modeling aims at studying and reproducing the propagation

of electromagnetic waves and their interactions with the environment [40, 41]. This type

of technique is specially suited for environments dominated by man-made objects, such

as buildings, hallways, rooms, due to their simpler geometrical description. The informa-

tion about the objects can be stored in databases and used for the reconstruction of the

propagating fields by analytical formulas and/or computer programs.

Statistical models, on the other hand, employ probability distributions with a few pa-

rameters, such as moments, and characterize the output of the propagation mechanisms.

Due to the inherent many-to-one mapping, statistical models do not allow for investiga-

tion of the exact propagation mechanisms and object interactions that generate a certain
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Figure 3.1: Example of propagation environment where the receiver is surrounded by local
scatterers, and a few remote scatterers are present.

output. However, such models are in general simpler and faster than deterministic models.

Combinations of deterministic and statistical models are also employed in order to reduce

complexity and decrease computation time [42].

Electromagnetic models that (approximately) solve Maxwell’s equations are used for

deterministic field prediction. Several models have been proposed to simplify computation

while retaining good modeling accuracy, such as finite element method, finite difference

time domain (FDTD), and method of moments (MoM) [8]. If the wavelength is small

compared to the interacting objects, then the ray approximation from geometrical optics

can be employed. With the ray approximation, the electromagnetic field is described

as a collection of rays or beams. Beams have a finite (non-zero) transverse dimension

while rays have zero transverse dimension. Due to their inherent lower resolution, beam-

based methods are more suitable for coverage prediction over large areas, while ray-based

methods are used to describe the propagation environment with higher level of detail.

Ray-based models have high complexity which is directly related to the database size and

accuracy of the underlying electromagnetic models. Such models are very specific and

applicable to the defined propagation environment.
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Conventional ray models only accounts for waves that are reflected by flat surfaces

(specular or concentrated reflections) or diffracted in rectangular edges. Diffuse scattering,

meaning signals that are scattered in directions other than the specular direction due to

imperfections on object surfaces, are neglected in the models. Scattering also appears

in urban environments due to objects near to wall surfaces, such as street signs, trees,

etc. It has been observed in measurement campaigns such as [43, 44, 45, 8] that diffuse

scattering can be significant, and even dominant, especially in non line-of-sight (NLoS)

situations. Hence, inclusion of diffuse scattering in traditional ray-based models is needed

to improve multidimensional and wideband prediction performance. Recent developments

in this field include the approach in [40], which is similar to Kirchoff formulations and

models a stochastic component resulting in instantaneous realizations of the scattering

processes. In [41], the diffuse scattering is added in a mean, statistical way, according to

the effect roughness model, which assumes the scattering to be originated from surface

roughness. A detailed survey of recent propagation models can be found in [8].

3.2 MIMO Channel Modeling

Based on the discussion in Section 3.1, we describe the basic MIMO channel model as the

superposition of specular and diffuse scattering components. The specular components

account for the concentrated portion of the signal that can be modeled as the result of

specular reflections, while the diffuse scattering component (DSC) accounts for part of

the signal that is the result of scattering. Typically, a deterministic model is used for the

specular component, while the DSC is better described by a stochastic model.

3.2.1 Specular Component

The following assumptions will be considered:

1. Waves impinging at the receiver array are planar (far-field assumption).

2. Narrowband assumption: relative bandwidth with respect to center frequency is

small such that the time delay between the antenna elements are represented as

phase shifts.

3. Array aperture is small enough such that there is no significant magnitude variation

between the signal received by each antenna element.
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4. Parameters for each wavefront are time invariant.

5. Signal bandwidth is smaller than antenna bandwidth at the carrier frequency.

Given the assumptions above, the response of a SISO link between the transmitter and

receiver in frequency domain is given by [10]

H(f, t) = γk BT (f)BR(f)e−j2πfτke−j2πνkt, (3.1)

where γk is the complex gain for the k-th specular reflection, BT (f) and BR(f) are the

system responses of the transmitter and receiver, respectively, νk is the Doppler spread,

and τk is the delay. Since the channel is linear the superposition principle applies. Hence,

we can write for K specular reflections

H(f, t) = BT (f)BR(f)
K−1∑

k=0

γk e
−j2πfτke−j2πνkt. (3.2)

In order to describe the response of the whole MIMO system, we define the steering

vector of the receive antenna array as the Mr×1 complex vector aR(θR, ϕR), where θR and

ϕR are the azimuth and elevation angles, respectively. Similarly, we define the steering

vector of the transmit antenna array as the Mt × 1 complex vector aT (θT , ϕT ). The

definition of the elements of the steering vectors aR(θR, ϕR) and aT (θT , ϕT ) depend on

the array geometry (c.f. Section 3.3 and [10]). With these definitions, the MIMO radio

channel response for the specular components can be written as

H(f, t) = BT (f)BR(f)
K−1∑

k=0

γk aR(θR,k, ϕR,k)a
T
T (θT,k, ϕT,k) e

−j2πfτk e−j2πνkt. (3.3)

3.2.2 Diffuse Scattering

Most of the MIMO gains achieved by techniques described in Chapter 2 require propaga-

tion environments with rich scattering. In such environments, diffuse scattering mecha-

nisms are likely to be relevant. In [10] the author presents a MIMO model that combines

multipath components resulting from specular reflections and diffuse scattering. Based

on physical arguments, it is assumed that the diffuse scattering can be modeled as a

stochastic process with zero-mean complex circular Gaussian distribution. Since very lim-

ited information is available in the literature about the spatial properties of the diffuse

scattering, the phases are assumed to be distributed uniformly in the interval (−π, π) [8].
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Due to the assumption of Gaussian distribution, the diffuse scattering may be completely

characterized by its mean and covariance matrix.

In channel measurements, the correlation of components of the diffuse scattering at

different delays is frequently observed as an exponential decay over time and a base delay

which is related to the distance between the transmitter and receiver. Hence, we can model

correlation for different delays as

ψ(τ) =





0, τ < τ ′d

γ/2, τ = τ ′d

γe−Bd(τ−τ ′

d
), τ > τ ′d

, (3.4)

where Bd is the coherence bandwidth, γ denotes the maximum power, and τ ′d is the base

delay. Note that equation (3.4) assumes infinite bandwidth.

The Fourier transform of (3.4), the correlation function of the channel in the frequency

domain, is given by

ψ(∆f) =
γ

βd + j2π∆f
e−j2π∆fτ ′

d , (3.5)

where βd = Bd/Bm is the normalized coherence bandwidth, and Bm is the measurement

bandwidth. Let us define the sampled version of the correlation function v(Θw), Θw =

{γ, βd, τd}, in frequency-domain as

v(Θw) =
γ

Mf


 1

βd

e−j2πτd

βd + j 2π
Mf

· · ·
e−j2π(Mf−1)τd

βd + j2π
Mf−1

Mf


 , (3.6)

where τd is the normalized base delay.

The covariance matrix of the diffuse scattering (assuming the received signal is

spatially-white) may be modeled as a Toeplitz matrix

Rw = toep
(
v(Θw),v(Θw)H

)
, (3.7)

where toep(a,bH) denotes a Toeplitz matrix with a as its first column and bH as its first

row, with a1 = b∗1.

The specular components are considered as deterministic waves with unknown param-

eters, and thus incorporated to the model as local mean values of the distribution of the

scattered energy. High-resolution parameter estimation like ESPRIT [46], SAGE [9], and
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RIMAX [10] (c.f. Chapter 4) can be used for joint estimation of the diffuse scattering and

specular components.

3.3 Antenna Arrays

The configuration of the antenna arrays at the transmitter and/or receiver side influence

the performance of different MIMO techniques. Moreover, several methods for MIMO

channel estimation have been developed that rely on properties of the array structure,

e.g., Root-MUSIC and ESPRIT.

Figure 3.2 shows the representation of one element of an antenna array in a 2-D co-

ordinate system, where the position of the m-th element is represented by the vector

rm = [xm ym]T . Assuming far-field conditions, and that the array aperture is much less

than the inverse relative bandwidth (narrowband assumption), the output in baseband as

a function of the angle in azimuth direction can be modeled as [47]

um(t) = gm(θ)e−j 2π
υ

(xm cos θ+ym sin θ)s(t), (3.8)

where gm(θ) is the response of m-th element, assumed to be constant over the signal

bandwidth, and υ is the signal wavelength. Let us define the array output vector as

u(t) = [u0(t) · · · uM−1(t)]
T , where M is the number of antenna elements in the array.

Hence, for an M element array with arbitrary geometry, we can write the array response

as

u(t) = a(θ)s(t), (3.9)

where the M × 1 steering vector a(θ) is given by

a(θ) =




g0(θ)e
−j 2π

υ
(x0 cos θ+y0 sin θ)

...

gM−1(θ)e
−j 2π

υ
(xM−1 cos θ+yM−1 sin θ)


 . (3.10)

Figure 3.3 shows some commonly used antenna arrays.

Antenna arrays consisting of cross-polarized antenna elements have been considered

lately in the literature. The benefits of such array constructions include robustness of the

rank of the channel matrix due to polarization diversity, which in turn improves perfor-

mance of spatial multiplexing techniques [48, 49].
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Figure 3.3: Common array structures: (a) uniform linear array, (b) uniform circular array.

Assuming the system to be linear, the superposition principle can be applied in case

there are K impinging waves, i.e., the system output in case of K impinging waves can be

written as

y(t) =
K−1∑

k=0

a(θk)sk(t). (3.11)

A review of other antenna array configurations and antenna calibration techniques can

be found in [10, 8].

3.4 Spatial models

The double-directional channel models presented in this section describe the MIMO chan-

nel matrix directly, which combines the spatial channel and array geometry. Following the
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Figure 3.4: Categorization of models described in Section 3.

approach in [8], the MIMO channel models will be categorized in correlation-based models

and coupling-based models.

The basic assumption behind correlation-based models is that the channel obeys a

circularly symmetric Gaussian distribution, and hence it is fully described by its first-

and second-order statistics. Coupling-based models represent the coupling of DoA and

DoD directly, most of them assuming a limited number of specular paths connect the

transmitter and the receiver.

Further categorization is possible, and one possible example is shown in Figure 3.4.

The different categories in Figure 3.4 will be described in this Section together with the

description of each model. The categorization is not unique, and different variations of

the channel models would allow different classification of the models. For example, the

SVA model is separable if only one cluster is present. Detailed review of spatial channel

models can be found in [38, 8].
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3.4.1 Correlation-based models

The covariance matrix of the MIMO channel may be written as

Rfull = E[vec(H)vec(H)H ], (3.12)

where the vec(·) operator stacks the columns of the argument into a larger vector. Equiva-

lently, channel realizations following a zero-mean, circularly symmetric complex Gaussian

process with the correlation matrix given in equation (3.12) can be obtained as

vec(H) = Rfull
1/2 Hw, (3.13)

where Hw is a Mr ×Mt matrix whose elements are i.i.d. following a zero-mean, circularly

symmetric complex Gaussian distribution with unit variance.

Direct characterization of Rfull is a very complex task. In this section we describe

different approaches in the literature that decompose this problem into smaller ones, thus

simplifying this task.

3.4.1.1 Kronecker model

Assuming that fading at each antenna element is independent, it has been proposed in

[50, 51, 52] to decompose the channel covariance matrix as

Rfull =
1

tr(RR)
RT ⊗ RR, (3.14)

where ⊗ denotes the Kronecker product, tr(·) denotes the trace, RT and RR are the

covariance matrices at the transmitter and receiver side, respectively, defined as [8]

RT = E[(HHH)T ] (3.15)

RR = E[HHH ]. (3.16)

From equations (3.14) and (3.13), the channel matrix for the Kronecker model can be

written as

H =
1√

tr(RR)
RR

1/2 Hw(RT
1/2)T . (3.17)

This model has been widely used, e.g., in EU IST SATURN (Smart Antenna Technology
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Figure 3.5: Parameters for a single cluster in the SVA model.

in Universal bRoadband wireless Networks) project [53], since it allows for simplified ana-

lytical treatment and simulations. However, it should be noted that such a model assumes

statistical independence of DoD and DoA, and hence cannot be applied if the joint angular

power spectrum is not separable.

3.4.1.2 SVA model

In [54, 11], the authors propose an extension of the Saleh-Valenzuela SISO channel model

[55] to incorporate DoD and DoA statistics. The extended Saleh-Valenzuela model will be

denoted as the SVA model in the remainder of this document.

Based on channel measurements, it has been observed that the multipath components

arrive in clusters in both space and time. The SVA model characterizes the channel by a

weighted sum of clusters, each cluster characterized by the amplitude, arrival time, and

DoA/DoD of its multipath components. Figure 3.5 shows the parameters for a single

cluster in the SVA model.

Assuming there are L clusters and K multipath components, the directional channel

impulse response between one transmit antenna element and one receive antenna element

is given by

h(θR, θT ) =
1√
LK

L−1∑

l=0

K−1∑

k=0

γkl δ(θT − µT,l − θ̃T,kl) δ(θR − µR,l − θ̃R,kl), (3.18)

where θT and θR are the transmit and receive angles, γkl is the complex gain of the k-th

multipath component in the l-th cluster, µT,l and µR,l are the transmit and receive mean

angles for the l-th cluster, and θ̃T,kl and θ̃R,kl are the transmit and receive angles of the

k-th multipath component in the l-th cluster relative to the cluster’s mean angle.
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Average ray power in each cluster is assumed constant so that γkl follows a zero-

mean circular complex Gaussian distribution with variance |γl|2. The cluster amplitude is

assumed to be Rayleigh distributed and the cluster arrival time distribution is conditionally

exponential with a normalized unit arrival rate [55, 11].

From equation (3.18), the channel response from transmit antenna element p to receive

antenna element m is given by

hm,p =

∫ 2π

0

∫ 2π

0
WR

m(θR)h(θR, θT )W T
p (θT )dθTdθR, (3.19)

where WB
a (θ) = gB

a (θ) exp[jψB
a (θ)], gB

a (θ) is the antenna gain pattern, ψB
a (θ) =

2π[xB
a cos(θ)+yB

a sin(θ)], a ∈ {m, p}, B ∈ {T,R}. In [11] it is suggested that the DoD/DoA

follows a Laplacian distribution.

Given the assumptions above, the channel response in equation (3.19) is a weighted sum

of zero-mean complex Gaussian random variables, and hence hm,p is zero-mean complex

Gaussian distributed. Assuming independent ray gains and that ray DoA/DoD are i.i.d.,

the average covariance matrix can be written as [11]

E[hm,ph
∗
n,q] =

1

L

L−1∑

l=0

|γl|2LR
m,n(µR,l)L

T
p,q(µT,l), (3.20)

where

LB
a1,a2

(µB,l) =

∫
fB(θ̃)gB

a1
(µB,l + θ̃)gB

a2
(µB,l + θ̃) exp[jψB

a1,a2
(µB,l + θ̃)] dθ̃, (3.21)

with {a1, a2} ∈ {m, p}, B ∈ {T,R}, fB(θ̃) is the PDF for the ray DoD/DoA,

ψB
a1,a2

(θ) = 2πdB
a1→a2

cos(θ − φB
a1,a2

) (3.22)

dB
a1→a2

is the distance between elements a1 and a2, and

φB
a1,a2

= tan−1[(yB
a1

− yB
a2

)/(xB
a1

− xB
a2

)]. (3.23)

3.4.1.3 One-ring model

The one-ring model was first proposed by [56] and further extended by [50] in order to

study the capacity distribution under spatial correlation. The one-ring model is derived
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for an application of fixed wireless communications, where the transmitter is elevated and

unobstructed by local scatterers, and the receiver is surrounded by scatterers.

Figure 3.6 illustrates the one-ring model, whereD is the distance between the transmit-

ter and receiver arrays, R is the radius of the ring of scatterers around the receiver, and ∆

is the angle spread at the transmitter as seen by a particular antenna element. Assuming

D >> R, the angle spread at the transmitter can be approximated as ∆ ≈ arcsin(R/D).

Denote by S(θ) a scatterer located in the ring around the receiver at angle θ. The

one-ring model is basically a ray-tracing model that computes the propagation from the

transmitter to each receiver on the ring of scatterers. It is assumed that the scatterers are

distributed uniformly in θ, and the radius R is determined by the root mean square (RMS)

delay spread of the channel. Each scatterer is associated with a phase shift φ assumed to

be uniformly distributed in (−π, π) and i.i.d. on θ. Only rays that are reflected by the

effective scatterers once are considered for computation of the channel response, and it is

assumed that all rays reach the receiver with equal power (one-bounce model).

Assuming there are K effective scatterers S(θk), k = 0, . . . ,K−1, the complex channel

coefficient between the p-th transmit antenna element to the l-th receive antenna element

is given by

hl,p =
1

2π

∫ 2π

0

1√
K

K−1∑

k=0

δ(θ − θk) exp

{−2πj

υ

(
dp→S(θk) + dS(θk)→l

)
+ jφ(θk)

}
dθ, (3.24)

where dX→Y denotes the distance from object X to object Y , and υ is the wavelength.

In the limit when the number of scatterers is infinite, we can conclude from the Central

Limit Theorem that hl,p is Gaussian distributed. The covariance between channels hl,p
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and hm,q is given by [50]

E[hl,p, hm,q] =
1

2π

∫ 2π

0
exp

{−2πj

υ

[
dp→S(θ) − dq→S(θ) + dS(θk)→l − dS(θk)→m

]}
dθ

(3.25)

In general, equation (3.25) has to be evaluated numerically, but for small angle spread

at the transmitter some approximations are possible. The interested reader may refer to

[50] for more detailed formulas and results.

3.4.1.4 Two-ring model

The two-ring model proposed in [57] assumes both transmitter and receiver are surrounded

by scatterers. Since in this model each ray is reflected twice, once in each ring of scatterers

(two-bounce model), the rays impinging the receiver are not independent in general. More-

over, even if the number of scatterers in both rings go to infinity, the channel coefficients

do not follow a Gaussian distribution. Hence, mean and covariance matrix are not enough

to characterize the process. It was suggested in [57] to generate the channel coefficients

by ray-tracing.

3.4.1.5 Von Mises Distribution

Similarly to the one-ring model, a narrowband model was proposed in [12] that uses the von

Mises distribution as the angular PDF at the receiver side. The von Mises PDF is a widely

used distribution for directional data, and plays a similar role as Gaussian distribution for

angular data, and is characterized by its mean and dispersion [22]. This model also takes

the Doppler spread into account. This channel model assumes a ring of scatterers around

the receiver, as depicted in Figure 3.7 for any 2 antennas at the transmitter and receiver1.

Assuming that D ≫ R ≫ max(dp→q, dl→m), the angle spread at the transmitter can

be approximated as ∆ ≈ arcsin(R/D).

It can be shown that the cross-correlation between any two sub-channels lp and mq is

given by [12]

E[hl,ph
∗
m,q] = Ω exp(cpq cosα)

∫ π

−π
exp(cpq∆ sin(α) sin(θ) + blm cos(θ − β))f(θ)dθ, (3.26)

where Ω is the path loss, f(θ) is any angular PDF of θ, cpq = j2πdp→q/υ, blm = j2πdl→m/υ,

1Note that some variable definitions are modified in Figure 3.7 with respect to the one-ring model in
Figure 3.6.
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Figure 3.7: Illustration of the geometrical configuration of a 2x2 channel with local scatter-
ers at the receiver, where D is the distance between the transmitter and receiver arrays, R
is the radius of the ring of scatterers around the receiver, and dl→m is the distance between
elements l and m in the receive array.

υ is the transmitted signal wavelength. Parameter α denote the angle of the transmit array

relative to the line connecting the transmit and receive arrays, respectively. In [12] the

correlation is derived including the Doppler spread considering the terminal is moving.

The interested reader can find more details in [12].

An angular PDF must satisfy f(θ) = f(θ+ 2πk) for any integer k. Hence, a Gaussian

PDF can not be used. A suitable angular PDF is the von Mises [22], defined as

f(θ) =
1

2πI0(κ)
exp(κ cos(θ − µ)), (3.27)

where µ is the symmetry center (“mean direction”), κ can be chosen between 0 (isotropic

scattering) and ∞ (extremely concentrated), and I0(·) is the modified Bessel function of

the first kind of order zero. Figure 3.8 illustrates the von Mises PDF for different values

of κ. Using the von Mises PDF the cross correlation in (3.26) may be written as [12]

E[hl,ph
∗
m,q] = Ω

exp(cpq cos(α))

I0(κ)
I0({c2pq∆

2 sin2(α) + 2cpq∆ sin(α)(blm sin(β) + κ sin(µ))+

+ 2κblm cos(µ− β) + κ2+b2lm} 1

2 ).

(3.28)

An extension of this model to multiple scatterer clusters is found in Publication III,

where the angular distribution is a mixture of von Mises PDFs. A mixture model is used

with Laplace and Gaussian PDFs in [58].
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Figure 3.8: Von Mises PDF for different values of κ, with µ = 0.

3.4.2 Coupling-based models

Spatial channel models relying on separability assumption, such as the Kronecker model

in Section 3.4.1.1, do not provide an accurate representation of the MIMO channel when

there is strong coupling between DoAs and DoDs. This is especially true for large arrays

with high angular resolution, as reported in [59]. The coupling-based models presented

in this Section attempt to solve this problem by explicitly modeling the coupling between

DoDs and DoAs.

3.4.2.1 Finite scatterer model

Assuming there are K scatterers between the transmitter and receiver, the MIMO channel

matrix can be written as [60]

H =

K−1∑

k=0

γk aR(θR,k)a
T
T (θT,k), (3.29)

where γk is the complex gain for the k-th scatterer, θT,k and θR,k are the DoD and DoA,

respectively, and aT (θT,k) and aR(θR,k) are the array responses at the transmitter and

receiver, respectively. For an uniform linear array the array response vectors at both sides
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are given by (see Section 3.3)

aT (θT,k) =




1

e−j 2π
υ

dT cos(θT,k)

...

e−j 2π
υ

(Mt−1)dT cos(θT,k)




(3.30)

aR(θR,k) =




1

e−j 2π
υ

dR cos(θR,k)

...

e−j 2π
υ

(Mr−1)dR cos(θR,k)



, (3.31)

where dT and dR are the element spacing at the transmitter and receiver arrays, respec-

tively.

This model can be written in a more general form as [8]

H = AR (Ω ⊙ Hw)AH
T , (3.32)

where ⊙ denotes the element-wise Schur-Hadamard product. The columns of the Mr ×K

matrix AR and of the Mt×K matrix AT are the steering vectors related to each individual

scatterer at the receiver and transmitter side, respectively, and the K ×K matrix Ω is a

coupling matrix that contains the complex path gains.

Equation (3.29) is obtained from equation (3.32) by proper ordering of the steering

vectors and defining Ω as a diagonal matrix. However, equation (3.32) is more general,

since Ω can be designed as to represent multiple coupling between DoD and DoA.

3.4.2.2 Virtual channel representation

The channel representation in Section 3.4.2.1 is linear in Ω, but it is non-linear in the

steering vectors. One alternative representation that is linear is obtained by modeling the

MIMO channel in the beamspace with predefined steering vectors [61, 8],

H = ÃR (Ω ⊙ Hw) ÃH
T , (3.33)

where the Mr ×Mr matrix ÃR and the Mt ×Mt matrix ÃT are the steering matrices

corresponding to the receiver and transmitter, respectively. Both ÃR and ÃT are unitary
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and correspond to fixed angles. In fact, ÃR and ÃT can be defined as discrete Fourier

transform (DFT) matrices [61]. However, in contrast to Section 3.4.2.1, the coupling

matrix Ω is not diagonal in general. The accuracy of the virtual channel representation

depends on the number of virtual angles, which cannot be chosen arbitrarily, but is related

to the array construction [8].

3.4.2.3 Weichselberger model

The Weichselberger model represents the MIMO channel in the eigenspace instead of

the beamspace [8], allowing for an arbitrary coupling between the transmit and receive

eigenbeams. The main idea is to relax the separability constraint of the Kronecker model

described in Section 3.4.1.1, which is responsible for mismatches of predicted performance

when comparing to measured channels [59].

The eigenvalue decomposition of the receive and transmit covariance matrices is given

by

RR = VRΛRVH
R , (3.34)

RT = VTΛTVH
T . (3.35)

Assuming all transmit and receive eigenmodes are mutually uncorrelated, the channel

matrix can be written as

H = VR (Ω ⊙ Hw)VT
T . (3.36)

This model includes the Kronecker model as a special case [8], but in general there is

coupling between the transmit and receive eigenmodes, given by Ω.

3.4.2.4 Keyhole channels

MIMO models with complex Gaussian statistics are not able to reproduce a situation

where there is rich scattering at both sides of the link, but the channel matrix is still rank

deficient. This could happen if the signals from the scatterers around the transmitter reach

the scatterers around the receiver through a very narrow pipe. In [62] a generalization of

the Kronecker model is presented

H =
1√
S

RR
1/2 HR,w (Ω ⊙ Hw)HT,w (RT

1/2)T , (3.37)
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where the elements of HR,w and HT,w are i.i.d. complex Gaussian distributed, and S is

a normalization factor. The keyhole effect is observed if the coupling matrix Ω is not full

rank. In an extreme case of a rank one Ω, the channel transfer matrix H is rank one as

well, even though the channel correlation matrices at both rank may have full rank. Note

that the channel matrix in equation (3.37) is not Gaussian distributed, and hence cannot

be described only by first- and second-order statistics.

This channel model has been verified by experimental results where one antenna array

was located inside a shielded chamber, which was connected to the an adjacent room where

the other antenna array was located by a wave guide [63]. It is shown that the keyhole

channel shows a double-Rayleigh distribution, as expected from equation (3.37). However,

keyhole channels have not been observed in natural environments.

3.5 3GPP Spatial Channel Model

In 3GPP, the Spatial Channel Model (SCM) has been proposed for link- and system-

level MIMO simulations [64], which is among the first full MIMO channel models. The

3GPP SCM channel model is widely used outside 3GPP context as well, due to its simpler

implementation compared to the more sophisticated channel models that will be described

in the next sections.

In 3GPP SCM, a simple procedure is defined to generate the channel matrices:

1. Select a propagation environment, which can be either suburban macro, urban

macro, and urban micro cell.

2. Determine user parameters, associated with the propagation environment: angular

spread, shadowing, delay spread, pathloss, antenna orientation, speed, and antenna

gains. Based on these parameters, generate angles of arrival and departure, path

delays, and path power.

3. Generate channel coefficients

In addition to the propagation environments mentioned above, four cases are specified

for link-level simulations, usually designated as Case A, B, C, and D. The differences among

the cases are in existence of line-of-sight component or not, PDP, and angular spreads.

Case A corresponds to a single-path channel. Polarized arrays, far scatter clusters, and

urban canyons can also be added as optional system simulation features.

36



In 3GPP SCM there are always 6 paths (except for Case A), each composed of a

combination of 20 subpaths. The angular distance between the subpaths is constant and

defined as a parameter dependent on the environment, such that the corresponding angular

spread is generated. The DoAs and DoDs of the paths are generated randomly from a

Gaussian distribution. The phases of the subpaths are i.i.d. and uniformly distributed.

After all user parameters are generated, the channel matrix coefficients are generated by

a mapping function [64].

3.6 COST259 model

A detailed channel model for macro- micro- and pico-cell environments was developed

in COST259 action [65]. A layered approach is used in order to characterize different

propagation environments, due to the complexity of the propagation mechanisms under

consideration. The COST259 channel model was one of the first to consider directional

information, and it served as a basis for more advanced channel models, as the one devel-

oped in COST273 action (cf. Section 3.7). In this section we summarize the main aspects

of COST259 channel model, especially those regarding directional information. Further

details and parameters can be found in [66, 67].

The double directional impulse response (DDIR) of the radio channel is given by the

sum of multipath components (MPC) [68, 66]. Each MPC is described by its elevation

and azimuth angles of incidence at the BS, the elevation and azimuth angles of departure

at the MS, the delay, and a complex polarimetric 2 × 2 matrix. The MPCs result from

the specular reflections in interacting objects (IO) which are scattered in the environment.

The position of the IOs is such that they correspond to a pre-defined PDP/PAS [66],

assuming only single interactions.

it is observed from channel measurements that MPCs usually arrive in clusters [66].

The expected number of clusters in COST259 channel model is close to one for most

scenarios, except for “Bad Urban” scenario, where the expected number of cluster is

approximately equal to two [66].

The COST259 channel model defines the concept of the visibility region, which model

the appearance and disappearance of clusters [67]. Each cluster is associated with one

visibility region. Each visibility region is a physical region in a coverage area which is

defined such that if the MT is in that region, the cluster is considered as active and
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Figure 3.9: Example of visibility regions for a given MS trajectory. The white circles
represent the visibility areas and the shaded circles denote the associated clusters.

contribute to the final DDIR. Figure 3.9 illustrates the concept of visibility region. For

the exemplified MS trajectory, visibility region A will not be activated at any time. The

visibility regions are circular and defined by their radii. A transition region around the

visibility region provides a smooth transition between cluster activity/inactivity states.

The concepts laid out in COST259 channel model have been extended and enhanced

during COST273 action, that will be described in next section.

3.7 COST273 model

During the course of COST273 action, a generic channel model for next generation wire-

less systems was developed [8]. The goal was to develop one channel model that would fit

all evaluated scenarios. In this section we summarize the main aspects of the COST273

MIMO model, in particular those topics related to the generation of the double direc-

tional impulse responses (DDIR) [68]. Detailed information on the evaluated scenarios

and related parameters can be found in [8].

Following the concept of the COST259 channel model [66, 67], the signal is assumed to

arrive in clusters. The total DDIR can then be written as a sum of each cluster DDIR. This

model assumes that, within one cluster, azimuth spread, elevation spread, and delay spread

are independent at the transmitter and receiver. The resulting model, however, does not

correspond to the Kronecker model if more than one cluster is present, since different
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clusters have different statistics, implying that the overall covariance matrix cannot be

decomposed into a Kronecker structure.

In the COST273 channel model, the mean angles and delays of the clusters are modeled

by a geometric approach [66, 69], while the intracluster spreads and small scaled fading are

generated either by a geometric approach or by a tapped delay line representation. One

of the main differences between COST259 and COST273 channel models is the inclusion

of multiple interaction mechanisms. Three kinds of clusters are defined to model different

types of interaction mechanisms: local clusters around the transmitter and/or receiver,

clusters with single interaction, and twin clusters. Not all kinds of clusters are supposed

to be present in all environments. For example, in macrocells the single-interaction cluster

is the dominant propagation mechanism, while in microcell multiple interaction processes

concentrate most of the energy [8].

Local clusters are assumed to be always present at the mobile terminal (MT) side,

resulting in large angular spread. The local cluster is generated from a single-scattering

assumption. The size of the local cluster is given by their delay spreads and the distribution

of multipath components inside the cluster.

Similarly to COST259 channel model, COST273 channel model employs the concept

of visibility regions. Each cluster is associated with one visibility region. Each visibility

region is a physical region in a coverage area which is defined such that if the MT is in

that region, the cluster is considered as active and contribute to the final DDIR.

The positions for single-interaction clusters are determined in a geometric way. Ini-

tially the visibility regions are distributed throughout the cell, and each visibility region

is associated with one specific cluster. The radial position from the base station (BS) is

defined from an exponential distribution, and the angle of the cluster center is drawn at

random from a Gaussian distribution. The minimum delay, azimuth spread as seen from

transmitter and receiver are then obtained by simple geometrical relationships.

For the multiple-interaction clusters, the mean DoA, DoD, and minimum delay are

derived from random realizations of the marginal distributions, which implies that delay

and angles are independent. Another approach for generation of multiple-interaction case

is to have each cluster divided into a cluster corresponding to the transmitter side and

one corresponding to the receiver side. The angular dispersions at both sides are modeled

independently, but in order to limit complexity the clusters behave like twins, having the

same distributions of scatterers and long-term behaviors. This concept is illustrated in
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Figure 3.10: Illustration of the twin cluster concept.

Figure 3.10.

The line of sight (LoS) component is modeled stochastically for some environments

using an approach very similar to that of visibility regions for clusters.

The double-directional delay power spectrum (DDDPS) is defined as the squared mag-

nitude of the DDIR and can be characterized for each cluster by its dispersion in the

following domains: delay, azimuth at BS, elevation at BS, azimuth at MT, and elevation

at MT. In the delay domain an exponentially-decaying power profile is used. The angular

spectra at both BS and MT are defined by Laplacian power spectra, which can be shown

to provide a good fit to experimental data [70, 71].

Diffuse scattering is defined as the part of the measured signal which cannot be resolved

in the temporal domain. The PDP of the diffuse component is modeled uniformly in

azimuth and exponentially in decay.

3.8 WINNER Model

The Wireless World Initiative New Radio (WINNER) project aims to develop an ubiqui-

tous radio system to provide wireless access in a wide range of environments and support

different applications [72]. The WINNER channel model is a system-level and link-level

model, and hence the model parameters include both large-scale (e.g. shadow fading,

delay and angular spreads) and small-scale parameters (e.g. delays, power, direction of

arrival/departure). In this section only those parameters related to generation of DDIR

are described. Detailed information on the evaluated scenarios and related parameters can
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be found in [73] 2

During the first phase of the WINNER project, the 3GPP SCM channel model [64] was

extended from 5 MHz to 100 MHz bandwidth for initial evaluation of the system concept

[74]. For the second phase of the WINNER project, however, more advanced channel model

has been derived, in order to fully support the considered scenarios and applications. The

current version of the WINNER channel model utilizes a generic channel model which

is antenna independent, and hence it can be applied to different antenna configurations.

Channel realizations are obtained by summing contributions of rays (specular reflections).

Similarly to COST259 [66] and COST273 [8] model described in Section 3.7, it is assumed

that the signals arrive in clusters. In the context of WINNER channel model, a cluster

is defined as a “propagation path diffused in space, either or both in delay and angle

domains.” [73] Angles of arrival and departure are generated randomly from a truncated

Gaussian distribution, and the relative angles of rays within one cluster are fixed.

The concept of channel segment is defined similarly to the concept of drops in static

channel models [75]. During a channel segment it is assumed that the probability distribu-

tions of the parameters are unchanged, and some large-scale parameters are kept constant

during this time. Small-scale parameters are generated independently between channel

segments. This creates discontinuity of parameters such as delays, DoA/DoD, which do

not correspond to behavior observed from measurements. Several approaches exist for

modeling the time evolution of small-scale parameters. Current approach in WINNER

is to provide a smooth transition between two segments by replacing clusters from one

segment to the other sequentially. The power of each cluster is ramped up and down

linearly, and the clusters are substituted one at a time, until only clusters from the new

channel segment remain. This process is illustrated in Figure 3.11. Alternative approaches

for smooth transition of channel segments are currently under investigation in WINNER

project.

Reduced complexity models are proposed as well, which can be used for faster studies.

These models employ cluster delay lines (CDL), similarly to widely used tapped-delay-line

models. In the context of these simplified models, a cluster is defined as a tap spread over

angle domain, but all rays are equally powered with the same delay. Relative angles of

rays within one cluster are fixed.

2It should be noted that the WINNER project will continue until the end of year 2007, and hence the
proposed channel model and system concept may still evolve.
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Figure 3.11: Illustration of the transition between channel segments.

3.9 Summary and discussion

In this chapter several MIMO channel models were presented. Section 3.4 describes link-

level models, which are suitable to describe the spatial characteristics of the channel be-

tween a transmitter and receiver. Sections 3.5, 3.6, 3.7, and 3.8 describe the main aspects

of 3GPP SCM, COST259, COST273, and WINNER channel models, respectively, which

are complex system-level models, and hence combine propagation and link-level models

for a large variety of scenarios.

The models are derived from different sets of assumptions and targeting characteri-

zation of different aspects of the MIMO channel. Covariance-based channel models are

in general useful for generation of channel responses for simulation purposes, which can

be easily obtained from, e.g., the Cholesky decomposition of the correlation matrix. On

the other hand, coupling-based models are better suited for the characterization of angu-

lar properties of the double-directional channel, since coupling between DoAs and DoDs is

modeled explicitly. In particular, the finite scatterer model in Section 3.4.2.1 is widely used

in the literature, for example for the derivation of estimators for the parameters of the un-

derlying waves and for assessment of beamforming applications. While this model is very

powerful to characterize propagation environments that are dominated by specular-like

reflections, it is not suitable to describe diffuse scattering. It is also common to model the

cluster behavior observed from measurement campaigns using the finite scatterer model

where there is a superposition of scatterers which are concentrated around the mean an-

gle/delay of the respective clusters, as in the COST273 and WINNER models described
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in Sections 3.7 and 3.8, respectively. However, if the clusters are not clearly separated

in angle and/or delay domains, it is a non-trivial task to identify which waves belong to

the clusters when estimating the parameters of the model from channel measurements.

The same is not true for an estimator derived from cluster-based models, like the SVA

model described in Section 3.4.1.2, where the spread and mean angles of the clusters are

identified explicitly.

The categorization of spatial models utilized in Section 3.4 and further detailed in

Figure 3.4 is not unique, since models share some properties that would allow them to be

classified in more than one category. For example, the SIMO version of the von Mises model

in Section 3.4.1.5 corresponds to the receive correlation in the SVA model in Section 3.4.1.2,

and hence the SIMO correlation matrix from the von Mises model can be used as a building

block for the SVA model, allowing for a closed form solution to the corresponding MIMO

correlation matrix. Moreover, the separability principle used in the Kronecker model is

employed cluster-wise in the SVA model, and also on COST273 and WINNER models.

Finally, the Weichselberger model in Section 3.4.2.3 is based on eigenvectors obtained

from channel covariance matrix, and hence could also be considered as a correlation-based

model.

The system-level models described in Sections 3.7 and 3.8 are intended for simulation

of large systems with several terminals and base stations, and also for the evaluation of

the transmission techniques in realistic deployment scenarios. Hence, such models are

commonly simplified in order to keep complexity as low as possible. Traditionally, look-up

tables are used to make the mapping between link-level and system-level simulations, in

order to avoid computation of receiver and transmitter procedures in system-level sim-

ulations [75]. However, both COST273 and WINNER projects came to the conclusion

that for the characterization of the MIMO channel it is not possible to draw a clear divi-

sion between link-level and system-level issues, and hence part of receiver and transmitter

procedures have to be implemented in system-level as well, increasing the need for simpli-

fication of the MIMO channel model. The WINNER project approaches this problem by

proposing two channel models, with different levels of complexity, and, naturally, different

levels of accuracy.

The COST273 channel model describes features of the MIMO channel, like time evolu-

tion of spatial parameters and birth and death of clusters in a more natural and intuitive

form than WINNER model by explicitly placing clusters in the propagation environment
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and by the concept of visibility regions. The WINNER model may have lower complex-

ity, however, due to the concept of channel segments, and simplified schemes for smooth

transition between channel segments. Since both models are very recent and work on

WINNER project is still ongoing, no direct objective comparison between the models can

be found in literature so far.

The dynamic behavior of the MIMO channel is perhaps one of the major challenges

for future development of channel models, especially taking into account that the channel

model must remain simple to be of practical use in link-level and system-level simulators.

Since tracking the evolution of a large number of parameters is likely to be highly complex,

channel models that capture the main features of the MIMO channel with few parameters

are desirable. Channel models that describe the diffuse scattering component explicitly

might be one step toward this objective, since they are able to describe the MIMO channel

with smaller number of specular-like components. Hence, a better characterization of the

diffuse scattering mechanisms is required. While COST273 addresses the diffuse scattering

already, no measurement campaigns have measured the diffuse scattering component in

spatial domain.
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Chapter 4

Propagation parameter estimation

Advanced estimation algorithms are needed in order to obtain the parameters for the mod-

els described in Chapter 3. Estimators vary in their design criteria, statistical properties,

resolution, computational complexity, dimensionality of parameter space, etc. Estimators

based on maximum likelihood (ML) criterion are optimal in the sense that the variance of

the estimates asymptotically converge to the theoretical bound given by the CRLB [76].

However, the complexity of such estimators can become prohibitively high. Numerical

methods for finding ML estimates with reduced complexity have received a lot of atten-

tion recently. Some of the most relevant methods are discussed in Section 4.4. These

estimators are designed for obtaining several parameters regarding each individual specu-

lar reflection reaching the receiver array, including DoA/DoD, delay, Doppler spread, and

complex gain.

Simpler estimators dedicated to a few parameters are still required, for example for

initialization of complex iterative ML algorithms, or for shorter studies where only spatial

characteristics of the channel are needed. Such estimators include well-known techniques

like beamforming, MUSIC, and ESPRIT, which are briefly described in Section 4.3.

Finally, the estimators shown in Section 4.6 are designed taking into account that the

signals that reach that receiver array arrives in clusters, as observed in recent measurement

campaigns and in COST273 and WINNER channel models described in Chapter 3. Such

estimators estimate mean angle and angular spread of each clusters assuming the angular

spread is small.
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4.1 Principles of channel sounding

The operation of a channel sounder consists of transmitting a known signal from one

antenna at a given location and receiving this signal from another antenna which is in a

different location. The signals is received after being distorted by the channel, and since it

is known to the receiver, it is possible to model the channel from the received signal with

high precision. A channel sounder can be built as dedicated hardware or by utilizing a

vector network analyzer (VNA), the latter being adequate for short-range measurements

only. There is a large similarity between the MIMO channel sounding and MIMO radars

[19, 20], where the goal is to use antenna arrays at the transmitter and receiver to detect

moving targets.

For directional measurements, the transmitter and/or receiver must be equipped with

multiple antennas. For single-directional measurements, an antenna array must exist at

the receiver side at least. It is possible to employ parallel receivers for each antenna

element, but a commonly used approach is time-domain multiplexing the signal received

from each antenna element to a single RF front-end. An alternative approach is the use of

a synthetic array, where a single antenna element is moved to the position of each antenna

element in a virtual array [77, 78]. The advantage of the latter method is that existing

SISO hardware can be used for the measurement, and there is no need for calibration of the

antenna elements. However, measurement is limited to static environments due to the time

consuming operation of positioning the antenna, and very accurate positioning devices

are needed. For double-directional measurements, antenna arrays must exist at both

transmitter and receiver. Time domain multiplexing of signals at both transmitter and

receiver ends is the most commonly used technique [79, 80]. This technique is illustrated

in Figure 4.1.

Array geometries play an important role in the performance and resolution of angu-

lar estimation methods. In order to avoid aliasing in the angular spectrum, the antenna

spacing must be smaller than or equal to half a wavelength. Azimuth-only measurements

can use, e.g., a uniform linear array (ULA) or a uniform circular array (UCA) (c.f. Sec-

tion 3.3). The ULA has the advantage of higher resolution in the broadside for the same

number of elements, while the UCA has the advantage of uniform resolution for all angles

[8].

For joint azimuth and elevation angle estimation, a two-dimensional array structure is
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Figure 4.1: Time-domain multiplexing of a channel sounding system, where Tt denotes
the period that the sounding signal is applied at the input of each element of the transmit
array, Tr is the period that each antenna element of the receive array is active, Tcy is the
total time it takes to cycle through all transmit and receive antennas, and Tg is a guard
time to account for the switching time at the transmitter.

Figure 4.2: Spherical array from Radio Laboratory, TKK.

needed. A UCA may also be used for this purpose, or, alternatively, a uniform rectangular

array (URA). In order to avoid ambiguity between angles below or above the horizontal

plane, three-dimensional array structures must be employed, such as a spherical array, a

circular cylindrical array, or a rectangular solid array [8, 10]. Figure 4.2 shows an example

of spherical array from Radio Laboratory, TKK.
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4.2 Assumptions

The channel is assumed to be narrowband except when explicitly mentioned otherwise.

For most of the estimation methods described in this chapter it will be assumed that the

channel is described by the finite scatterer model in Section 3.4.2.1. For the techniques

described in Section 4.6, the channel model is a simplified version of the COST273 model

in Section 3.7.

The number of specular components (scatterers) will be assumed as known. An

overview on techniques for the estimation of number of sources is given in Section 4.5.

The estimation procedures described here assume that noise is zero-mean circular com-

plex white Gaussian distributed. For colored noise, pre-whitening of the observation is

required [76, 81].

From (2.1) and Section 3.4.2.1, the covariance matrix of the received signal y is given

by

Ry = ARsA
H + σ2

nI. (4.1)

In practice, the covariance matrix of the received signal, Ry, has to be estimated from the

received data. An estimate of Ry is given by the sample covariance matrix

R̂y =
1

Ms

Ms−1∑

t=0

y(t)yH(t), (4.2)

where Ms is the number of observations.

4.3 Estimation of Directional Parameters

4.3.1 Spectral-Based Estimation

The techniques presented in this section construct a spectrum from which the channel

directional parameters are estimated. The algorithms are designed such that the DoAs

correspond to peaks on the spectrum.

Conventional Beamformer

The conventional (Bartlett) beamformer is defined as the weight vector that maximizes

the output power assuming that the received signal has only one component, which arrives
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from direction θ [47]. The spatial spectrum is obtained as

PBF(θ) =
aH(θ)R̂ya(θ)

aH(θ)a(θ)
. (4.3)

The DoAs can then be identified as the values of θ corresponding to peaks in the spectrum

defined in (4.3).

Capon’s Beamformer

Several modifications have been proposed to the conventional beamformer in order to

overcome its limitations, especially with respect to the angular resolution of the spatial

spectrum and the ability of the beamformer to separate closely spaced sources. One ap-

proach to increase resolution of the spatial spectrum is given by the Capon’s beamformer,

which minimizes the output power in all directions except for the direction of interest.

The spatial spectrum is obtained as

PCAP(θ) =
1

aH(θ)R̂−1
y a(θ)

. (4.4)

The Capon’s beamformer utilizes all degrees of freedom for nulling directions other than

the direction of interest [82]. This results in a better capability to separate closely spaced

sources than the conventional beamformer [47]. Figure 4.3 shows an example output of

the Capon and Bartlett beamformers, for two sources at 80◦ and 110◦, where the higher

resolution of Capon’s beamformer is clearly observed.

MUSIC

Subspace-based methods, which rely on the separation of signal and noise subspaces, pro-

vide even higher resolution for closely-spaced sources. The multiple signal classification

(MUSIC) technique [83, 84] was derived specifically for the problem of estimating direc-

tional information in MIMO systems, and is based on the structure of the signal covariance

matrix. Similarly to beamforming methods, the directional estimates correspond to the

peaks of the MUSIC pseudo-spectrum, given by

PMUSIC(θ) =
aH(θ)a(θ)

aH(θ)V̂nV̂H
n a(θ)

, (4.5)

where the columns of matrix V̂n are the eigenvectors of the noise subspace [83, 84].
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Figure 4.3: Example of spatial spectrum obtained with Bartlett and Capon’s beamformers
for two sources at 80◦ and 110◦.

Equation (4.5) does not actually define a spectrum, but only a measure of the distance

between signal and noise subspaces. It exhibits peaks corresponding to those directions

of the actual directions, due to the orthogonality between signal and noise subspaces.

The resolution of the MUSIC spectrum is much higher than that obtained with Capon’s

beamformer, as shown in Figure 4.4 for two sources at 80◦ and 90◦. In fact, the resolution

of MUSIC estimates is not dependent on array construction, but on SNR, sample size,

and accuracy of the signal model. However, there is performance degradation if signals

are highly-correlated, as a result of multipath propagation, for example. In the extreme

case of coherent signals the method fails to yield consistent estimates. Several extensions

of MUSIC have been derived in the literature to overcome these limitations and improve

estimation performance in general.

4.3.2 Estimators for Specific Antenna Configurations

The estimators in this section are not based on an angular spectrum, but they utilize the

array structure in order to directly compute the estimates.

Root-MUSIC

The Root-MUSIC method is a polynomial version of MUSIC applied to the ULA case,

that exploits the Vandermonde structure of the steering matrix [47]. The roots of the

Root-MUSIC polynomial that are close to the unit circle correspond to the DoAs/DoDs.

While the root music method does not require maximization of non-linear functions its
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Figure 4.4: Example of spatial spectrum obtained with Bartlett and Capon’s beamformers
and the MUSIC spectrum for two sources at 80◦ and 90◦.

application is limited to ULA only. Extensions of the Root-MUSIC method to non-ULA

configurations exist, e.g., using manifold separation approach [85].

ESPRIT

The ESPRIT method [46, 86, 47] exploits the array structure in a different way than

the Root-MUSIC method. The basic assumption in ESPRIT is that the array can be

divided in two subarrays that are identical except for a fixed displacement vector. It

is straightforward to verify that this principle can be applied to the ULA configuration,

but in fact it is useful for other configurations as well, as exemplified in Figure 4.5. The

ESPRIT solution is given in closed form, and hence application of ESPRIT does not require

numerical optimization of a cost function.

4.4 Estimation of Complete Set of Model Parameters

In contrast with the methods described in Section 4.3, the methods presented in this section

are not constrained to directional estimates, and application to estimation of complete

set of model parameters is straightforward. Complexity is usually higher than that of

spectral-based methods but high-precision estimates are obtained. Most methods assume

either a correlation-based model (c.f. Section 3.4.1) or the finite scattering model (c.f.

Section 3.4.2.1). An exception is the RIMAX method described in Section 4.4.3, which is

based on a combination of both correlation-based and finite-scatter models.
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Figure 4.5: Example of array division for application of ESPRIT method.

Most commonly used parameter estimation methods for channel sounding application

rely on the maximum likelihood (ML) principle, and the estimates correspond to those

parameter values that maximize the likelihood function, or an approximation of it. The

methods described in Sections 4.4.1, 4.4.2, 4.4.1.1, and 4.4.3 all fall into this category.

4.4.1 Deterministic Maximum-Likelihood

The basic assumption for the deterministic maximum likelihood (DML) techniques is that

the impinging signals are deterministic signals with unknown parameters [84, 87, 47].

Hence, these techniques are well suited to estimate parameters of the finite scatterer model.

From the assumption that the noise is zero-mean circularly complex Gaussian, the received

signals are also circularly complex Gaussian distributed. Hence, we can write the log-

likelihood function for Ms observations of the measurement vector y(t) as

L(y(0), . . . ,y(Ms−1))=−MrMs log π−MrMs log σ2
n−

1

σ2
n

Ms−1∑

t=0

∥∥∥∥∥y(t)−
K−1∑

k=0

u(t,Θk)

∥∥∥∥∥

2

, (4.6)

where u(t,Θk) is the array output vector corresponding to one observation of k-th, k =

0, . . . ,K−1, specular path, and Θk is the corresponding parameter vector, which includes

DoD/DoA, delay, Doppler frequency, and amplitude. Noise variance can also included

in the parameter set. In case of dual-polarized arrays, polarization parameters can be

included as well [88, 89]. The maximum-likelihood estimates are those parameter values

that maximize the log-likelihood function in equation (4.6) [76].

In general, a multidimensional search has to be performed in order to find the maximum
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of (4.6). Given a good initial guess, a Gauss-Newton search usually converges quickly [47].

Spectral-based methods like those described in Section 4.3.1 are natural candidates for

initial parameter estimates.

4.4.1.1 SAGE-Based Method

The expectation-maximization (EM) method has been formulated as an iterative method

for solving ML problems where part of the observations are missing or censored [90, 91].

The EM algorithm can be applied also to the problem of estimating superimposed sig-

nals in noise, which is the problem being considered in this section. An extension of the

EM algorithm has been proposed in [92], the space-alternating generalized expectation-

maximization (SAGE) algorithm. The SAGE algorithm is particularly suitable to prob-

lems where it is possible to sequentially update small groups of elements of the parameter

vector. A parameter estimation technique for channel sounding applications has been pro-

posed based on the SAGE algorithm [9]. This method is typically called SAGE in the

literature, but here we call it SAGE-based method to differentiate from the original tech-

nique developed in [92]. The SAGE-based method is essentially a DML technique derived

for estimation of parameters of the finite scatterer model.

The EM algorithm rely on the notions of complete and incomplete data. The complete

data cannot be observed directly, but only by a many-to-one mapping to the incomplete

data. The choice of the sets of complete and incomplete is not unique, and it influences the

convergence rate of the algorithm. In the problem of estimating superimposed signals in

noise, the individual signals corrupted by a part of the additive noise constitute a natural

choice for the complete data. The received signal, y(t), is identified as the incomplete

data.

Once the complete and incomplete data have been identified, the EM algorithm consists

of two steps: expectation and maximization. During the expectation step, the incomplete

data and the current knowledge of the parameters are used to compute an estimate of the

log-likelihood function of the complete data, denoted by Q(Θ), where Θ is the parameter

vector. The maximization step consists of refining the current estimate of the parameter

vector by maximizing Q(Θ) with respect to Θ.

The advantage of this method stems from the fact that from the definition of com-

plete data given above it is possible to estimate the parameters of each impinging wave

independently. Hence, the number of parameters involved in the multidimensional search

53



for finding the maximum of Q(Θ) is reduced by a factor of K, where K is the number

of waves. The algorithm proceeds by iterating the E- and M-steps until convergence is

obtained or a maximum number of iterations is reached.

The SAGE algorithm is an extension of the EM algorithm where the concept of com-

plete data is generalized to that of hidden-data, which allows the mapping to the incomplete

data space to be random. Moreover, each iteration of the SAGE algorithm is an EM itera-

tion to re-estimate only a subset of the parameters while keeping the estimates of the other

parameters fixed [92]. For the estimation problem at hand, the incomplete data is defined

as in the EM algorithm, and the hidden-data sets are defined as subsets of the parameter

set. Hence, the maximization step can be substituted by several one-dimensional searches,

one for each parameter in Θ. A detailed description of this procedure can be found in

[9, 80].

Both EM and SAGE algorithms have the important feature that the sequence of like-

lihood values is monotonically nondecreasing. Moreover, given some mild regularity con-

ditions, the likelihood values always converge to a local maximum. Good initial values

are necessary for early convergence of the algorithm and also to ensure that the algorithm

converges to a value close to the optimum, which can be obtained by a successive interfer-

ence cancellation method or by using spectral-based algorithms, such as MUSIC [9, 93].

For global convergence, multiple initial estimates are needed.

4.4.2 Stochastic Maximum-Likelihood

An alternative to the DML approach is obtained by using a stochastic model for the

received signal waveforms. Typically, a zero-mean circularly complex Gaussian random

processes is used as a model. The observation vector y is also zero-mean circularly Gaus-

sian, with covariance matrix given by equation (4.1). This approach is known as stochastic

maximum likelihood (SML) [94, 95]. The log-likelihood function is now given by

L(y(0), . . . ,y(Ms − 1)) = −MrMs log π −Ms log |Ry| −
Ms−1∑

t=0

yH(t)R−1
y y(t)

= −MrMs log π −Ms

[
log |Ry| + tr{R−1

y R̂y}
]
.

(4.7)

The ML estimate is the covariance matrix Ry that maximizes the log-likelihood function

in (4.7). The elements of Ry can be estimated explicitly, but smaller parameter space,

with corresponding lower complexity and higher precision of estimates is obtained if Ry
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is parameterized as in Section 3.4.1.

As in case of DML methods, the estimates are obtained by a multidimensional search

to find the maximum of (4.7). Once more the methods described in 4.3 are a natural

choice to provide initial estimates for cluster mean angles.

4.4.3 RIMAX

Parameter estimation methods typically rely on models based on the finite scatterer model

described in Chapter 3, which assumes that only waves resulting from specular reflections

contribute to the received signal. However, if the power of the diffuse scattering component

(DSC) is significant, these methods will attempt to estimate the diffuse scattering as a

sum of several discrete waves, substantially increasing the number of parameters.

The RIMAX algorithm proposed in [10] addresses this problem by jointly estimating

both specular components and diffuse scattering. The method performs multidimensional

ML estimation, using the SAGE method in [92]. The application of the SAGE method in

RIMAX is different from the SAGE-based method described in Section 4.4.1.1, since the

latter alternates between parameters of the specular components themselves, while RIMAX

is based on the observation that the specular components and the DSC are described by

independent parameter sets. The parameters of specular components and diffuse scattering

are estimated in an alternative manner using conjugate gradient based algorithms. Due

to this separation, the RIMAX method can be seen as a combination of DML and SML

techniques for the specular components and diffuse scattering, respectively. Since the DSC

is estimated explicitly, computational complexity of RIMAX is reduced in comparison to

DML methods, like the SAGE-based method described in Section 4.4.1.1, due to the

reduced parameter space.

Direct optimization of the likelihood function is not feasible in this case, due to the

high non-linearity of the problem and the large number of parameters. Since parameters of

the specular components and DSC are independent, the SAGE algorithm can be applied

to alternately estimate the two parameter sets. Hence, for the estimation of the DSC

the current estimates of the specular components are removed from the received signal,

and the likelihood function is similar to that of SML method given in equation (4.7), and

denoted by LDSC(Y), where Y is the received signal. In [10] a Gauss-Newton algorithm

is applied for the maximization of LDSC(Y), which exploits the Toeplitz structure of the

covariance matrix Ry, obtaining its spectral decomposition in an efficient manner.
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Once refined estimates of the DSC are available, the maximization of the complete

likelihood function with respect to the parameters of the specular components is equiva-

lent to a non-linear weighted least squares problem [10], which is solved by using conjugate

gradient algorithms. These algorithms require the computation of the gradient, Jacobian,

and approximate Hessian. The approximate Hessian is an estimate of the Fisher Informa-

tion Matrix, and since its computation is already required by optimization procedure, it

can be used for the estimation of the variance of the estimates, and assist the model order

selection [10].

Figure 4.6 shows an outline of the RIMAX parameter estimation algorithm. The search

for new paths is based on SAGE-type algorithm, the optimization of DSC parameters is

based on Gauss-Newton algorithm, and the nonlinear least-squares estimation of param-

eters of specular components is based on Levenberg-Marquadt algorithm. The reliability

test that decides whether or not to keep an estimated path is based on the approximate

Hessian. Since the parameters usually change little from one observation to the other, the

parameters from the previous observation are used to provide initial estimates for the new

observation.

4.5 Estimation of Number of Sources

A natural method for estimation of the number of sources is obtained from the eigen-

decomposition of the covariance matrix of the received signal. Subspace-based methods,

e.g. MUSIC, use the fact that for K sources, the smallest Mr − K eigenvalues of the

covariance matrx Ry are equal to the noise variance, σ2
n. Hence, the number of sources

could be estimated from the multiplicity of the smallest eigenvalue of Ry. However, only

an estimate of Ry is usually available, which implies that more sophisticated techniques

would be required for an accurate estimation of K.

Objective criteria can be obtained from an information theoretic point of view, as

the AIC measure introduced in [96] and the MDL measure introduced by Schwartz and

Rissanen [97, 98, 99]. Both criteria involve minimizing a cost function that evaluates the
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Figure 4.6: Outline of RIMAX parameter estimation algorithm.

model that best fits the data. The AIC criterion is given by

AIC(k) = −2 log




Mr−1∏

m=k

λ̂1/(Mr−k)
m

1

Mr − k

Mr−1∑

m=k

λ̂m




(Mr−k)Ms

+ 2k(2Mr − k), (4.8)

where Ms is the number of observations of the received signal vector, and λ̂m are the

eigenvectors of the sample covariance matrix, with λ̂0 > λ̂1 > . . . > λ̂Mr−1. The term

in the brackets is the ratio between the geometric mean to the arithmetic mean of the

smallest eigenvalues, which can be seen as a symmetry test for the noise subspace, and
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the term after the plus sign accounts for bias reduction due to the number of degrees of

freedom. The MDL criterion is given by

MDL(k) = −2 log




Mr−1∏

m=k

λ̂1/(Mr−k)
m

1

Mr − k

Mr−1∑

m=k

λ̂m




(Mr−k)Ms

+
1

2
k(2Mr − k) logMs. (4.9)

The MDL criterion is very similar to AIC, expect for the bias compensation term. It

can be shown that the MDL estimates are consistent, i.e., they converge to the true

model order if the number of observations grows to infinity, while the AIC criterion tends

to, asymptotically, overestimate the number of sources [99]. A review of model order

estimation techniques based on information criterion is given in [100].

An alternative to techniques based on information criterion is given by the generalized

likelihood ratio test (GLRT) [101]. Even tough these two approaches are usually considered

as completely different in the literature, in [101] it is shown that the GRLT is equivalent

to the generalized information criteria (GIC). Hence, information criteria methods can be

seen as a direct implementation of the sequence of likelihood test performed in GRLT, or

GIC methods can be seen as a way to provide the thresholds for the likelihood tests.

For the SAGE-based method in Section 4.4.1.1, one approach commonly used is to

start the iterations algorithm assuming a very large number of waves, and reject those

whose power is below a pre-determined threshold. While this method is simple and intu-

itive, it can overestimate the number of waves, since a single wave can be estimated as a

superposition of two or more waves. The RIMAX method estimates the number of sources

using an estimate of the Fisher information matrix, as described in Section 4.4.3.

4.6 Estimation of Scattered Sources

In channel sounding measurements, the signal is commonly observed as arriving in clusters

in space and delay domains. This behavior is included in recent advanced channels models,

as the COST273 and WINNER models, described in Sections 3.7 and 3.8, respectively. The

estimators presented in this section assume scattered sources with small angular spreads,

and estimate the mean angle and angular spread of the clusters directly.

An ML estimator for scattered sources is proposed in [102], where the angular distri-
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bution is assumed to be Gaussian. The angular spread is assumed to be small, so that the

correlation between the antenna elements can be approximated by a Taylor series expan-

sion. In [15], for small angular spreads, the authors propose a first order Taylor expansion

of the spatial signature of each source. This leads to the generalized array manifold (GAM)

model, which can be used in conjunction with well-known subspace-based methods, such

as MUSIC. This method provides a parametric model for an instantaneous realization of

the fading channel, as shown in [103]. Again, by assuming small angular spreads, the

authors in [16] show that it is possible to approximate a scattered source as a combina-

tion of two rays symmetrically located around the nominal direction. This approximation

allows the use of computationally efficient algorithms such as ESPRIT and root-MUSIC.

The resulting algorithms are called Spread ESPRIT, Spread root-MUSIC, and so on [16].

Other methods stemming from these can be found, e.g., in [17, 18].

For notational simplicity, the methods in this Section will be presented assuming only

one source is present, but they can be easily extended for the case of multiple independent

sources. See the references corresponding to each method for details.

ML Estimation of Scattered Sources

It is assumed that there is a large number of independent reflections impinging at an ULA.

It is also assumed that the distribution of angles of the rays around the mean direction is

Gaussian with standard deviation σθ. For small σθ, it can be shown that the covariance

matrix of the received signal is approximated by [102]

Ry = σ2
sa(µ)a(µ)H ⊙ B(µ, σθ) + σ2

nI, (4.10)

where µ is the mean angle, a(µ) is the steering vector, d is the element displacement, ⊙
denotes the Schur-Hadamard (element-wise) product, and the {i, j}-th element of matrix

B(µ, σθ) is defined as

B(µ, σθ)i,j = e−2[πd(i−j)]2σ2

θ
cos2 µ. (4.11)

It is assumed that the received signal is zero-mean circularly symmetric complex Gaus-

sian distributed, and the estimation problem is similar to the SML estimator in Sec-

tion 4.4.2. The estimates of the mean angle µ and angular deviation σθ are those values

that maximize the likelihood function.

In [102] it is also proposed an alternative method that estimates the covariance matrix
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by a least-squares fit, which results in an estimator with lower complexity since analytical

expressions are found for the signal and noise power, and hence optimization has to be

performed only for directional parameters.

Generalized Array Manifold

Assuming there is a large number of signals impinging at the receiver array concentrated

around a mean direction, we can define the concept of spatial signature as

v =
K∑

k=1

γka(µ+ θ̃k), (4.12)

where γk is the complex gain, µ+ θ̃k is the angle of arrival of the k-th scattered wave, and

K is the number of scattered waves. The first order Taylor series expansion of (4.12) can

be written as [15]

v ≈ a(µ) + d(µ)φ, (4.13)

where d(µ) is the gradient d(µ) = ∂a(µ)/∂µ, and φ =
∑K

k=1 γkθ̃k. The structure in (4.13)

is denoted by generalized array manifold.

In [104] a SAGE-based technique is derived for the estimation of slightly distributed

sources using the GAM model, and a MUSIC-based approach is proposed in [15] for the

estimation of µ and φ. For the model in (4.13), the MUSIC cost function becomes

P (µ, φ) =
φ

H
A

H
(µ)A(µ)φ

φ
H
A

H
(µ)V̂nV̂H

n A(µ)φ
, (4.14)

where V̂n contains the noise eigenvectors, A(µ) = [a(µ) d(µ)], and φ = [1 φ]T . It

can be shown [15] that the maximum of (4.14) can be computed for µ without explicitly

estimating φ.

Spread-F Techniques

It is assumed that the number of impinging rays at the antenna array is large, so that

based on the Central Limit Theorem the received signal can be considered to be zero-mean

circularly symmetric complex Gaussian distributed. The covariance matrix of the received
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signal can be written as

Ry = σ2
s

∫ 2π

0
f(θ̃, σθ)a(µ+ θ̃)aH(µ+ θ̃) dθ̃ + σ2

nI, (4.15)

where θ̃ is the angle deviation around the mean angle µ, σθ is the standard deviation of

the angle distribution, and f(θ̃, σθ) is an angular PDF. Also assume that σθ is small and

that the angular PDF is symmetric around µ. Then, from a Taylor expansion of aω(ω+ ω̃)

it can be shown that the covariance matrix of the received signal can be approximated as

[16]

Ry ≈ 1

2
σ2

sAω(ω + σω, ω − σω)AH
ω (ω + σω, ω − σω) + σ2

nI, (4.16)

where Aω(ω + σω, ω − σω) = [aω(ω + σω) aω(ω − σω)], and σω ≈ σθ2πd cosµ.

Equation (4.16) indicates that the rank of the signal subspace is approximately equal

to 2. In [16] the authors present an algorithm for the estimation of µ and σθ that exploits

the structure of Ry in (4.16). The algorithm is based on the existence of an estimation

function F (R̂y,KF ) that gives consistent estimates of the spatial frequencies, where KF

is the number of sources. Function F (R̂y,KF ) must also satisfy some conditions specified

in [16], which are in fact satisfied by most common DoA estimation algorithms. The

estimation algorithm is called Spread-F, where F stands for the underling DoA estimation

algorithm in use, e.g., Spread-ESPRIT or Spread root-MUSIC.

Given the observation that the signal subspace is approximately equal to 2 for a source

with small angle spread, the Spread-F algorithm obtain estimates for the spatial frequency

of the two virtual sources around the mean direction by means of the function F (R̂y, 2).

The mean angle and standard deviation are obtained by mapping the estimates using

(4.16). See [16] for a detailed description of the algorithm.

The Spread-F algorithm allows for a straightforward utilization of well-known methods

for the estimation of the mean angle and angular spread, without knowing the exact

angular distribution. However, the algorithm can be difficult to apply if the number of

sources is larger than one, due to its nature of exploiting the symmetry around the mean

angle of each source. Unless the sources are well separated in angular domain with small

angular spreads, it may be difficult to identify which pair of DoAs correspond to each

individual source.
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4.7 Summary and Discussion

In this chapter several estimators for MIMO channels were presented, with emphasis on

their main features, the assumed channel model, and the criterion used in their derivation.

A brief introduction to channel sounding principles and methodology was presented as

well.

Since MIMO channel estimation is the main topic of this thesis, especial attention was

paid to methods that estimate spatial parameters from measurements. A variety of estima-

tors for the directional parameters were presented, starting with non-parametric estimators

based on the beamforming principle (conventional beamformer and Capon’s beamformer),

and the MUSIC method, where the estimates are obtained from a pseudo-spectrum that

represents the distance between signal and noise subspaces. The conventional beamformer

is simple and useful for obtaining coarse estimates from data, but its limited resolution

prevents the identification of closely-spaced sources. Capon’s beamformer provides higher

resolution by using all degrees of freedom for nulling directions other than the direction of

interest. While these methods are based on standard estimation techniques, the MUSIC

method is among the first methods derived with the purpose of estimating directional

data. It uses the structure of the finite scatterer model for the identification of signal and

noise subspaces, and uses the orthogonality between these subspaces to build a pseudo-

spectrum that presents peaks corresponding to the actual directions. Resolution of MUSIC

method is higher than that obtained with beamforming techniques. In fact, the resolution

of MUSIC estimates is not dependent on array construction, but on SNR, sample size, and

accuracy of the signal model.

Some estimators are derived for specific antenna configurations, exploiting the structure

of the steering vectors to obtain estimates without a spatial spectrum. The root-MUSIC

method is derived for ULA only, but there are extensions that allow application of the

method to other array configurations. The ESPRIT method is more flexible, since it only

requires that the array can be split in two parts that are related by a fixed displacement

vector. The ESPRIT method is commonly derived considering either least squares (LS)

or total least squares (TLS) criterion, and closed-form solution is obtained in both cases.

Both root-MUSIC and ESPRIT methods obtain high-resolution directional estimates.

Commonly-used estimators for channel sounding applications are based on maximum

likelihood (ML) principle, as SAGE and RIMAX estimators described in Section 4.4.
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Estimators based on ML criterion are optimal in the sense that they attain the CRLB

asymptotically, and hence high-precision estimates are obtained. However, such estimators

usually require the maximization of the likelihood function using numerical methods. Since

such functions are typically highly non-linear, good initial estimates are required in order

to avoid convergence to local optima. The EM and SAGE principles to ML estimation

result in a simplification of the numerical optimization procedures. In these methods the

estimates are obtained by maximizing several simpler functions, which require optimization

only for a subset of the parameters of interest. EM and SAGE can be shown to converge

to the ML estimates, and hence they have the same optimality properties as the ML

estimator.

A procedure for obtaining ML estimates based on the SAGE method in MIMO chan-

nel sounding applications is described in Section 4.4.1.1. This SAGE-based method is an

interactive procedure that searches for each parameter of each specular reflection inde-

pendently. While his procedure greatly reduces computational complexity, the number of

iterations can be relatively high, especially for a larger number of waves and closely-spaced

reflections. The reason for the slow convergence stems from the definition of parameter

sets in the application of the SAGE method. In the method described in Section 4.4.1.1,

the criterion used for the division of parameter sets is the simplification of the estimation

procedure alone. It is not taken into account that the number of iterations can be high if

there are correlated parameters belonging to different data sets. This can be particularly

relevant for estimation of waves that belong to the same cluster, which are closely-spaced

and correlated.

The RIMAX method presented in Section 4.4.3 proposes direct estimation of the pa-

rameters of specular reflections by using a non-linear least squares algorithm. This ap-

proach has the benefit that an estimate of the Fisher information matrix is computed,

which allows for dynamic estimation of the number of sources based on the variances of

the estimates. Moreover, the RIMAX algorithm models the diffuse scattering in delay do-

main, and the SAGE methodology is employed for interactive estimation of parameters of

specular component and diffuse scattering component. Since these parameter sets are in-

dependent, convergence is achieved with few interactions. The explicit modeling of diffuse

scattering in RIMAX has the benefit of reducing the parameter set, since parameters from

a smaller number of waves are estimated. However, the diffuse scattering is assumed to be

spatially white, and it is not straightforward to extend the RIMAX method for estimation
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of parameters of spatially-correlated scattering.

The estimators presented in Section 4.6 assume that the MIMO channel can be mod-

eled as a set of clusters with small angular spread, and the estimated parameters include

the mean angle and angular spread of each cluster. Given the assumption of small angular

spreads, these methods derive approximate solutions that are based on ML estimation or

on the directional estimation methods described in Section 4.3. These methods estimate

parameters of stochastic signals that are spatially correlated, which is a different approach

compared to the methods discussed until this moment, which either assume only determin-

istic sources are present, or else it is assumed that the stochastic component of the channel

is spatially white. However, the assumption of small angular spreads and well separated

sources prevents the application of such methods for estimation of spatially-correlated

diffuse scattering component, for example.
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Chapter 5

Maximum Likelihood methods for

propagation parameter estimation

Deterministic and Stochastic Maximum Likelihood techniques for parameter estimation

were described in Chapter 4. In this chapter these methods are applied for parameter

estimation in a channel sounding application, where the diffuse scattering component is

not assumed to be spatially white.

5.1 Signal Model

Assuming a channel sounding arrangement with Mr antennas at the receiver and Mt

antennas at the transmitter, the received signal in frequency-domain is given by

y(f) = u(f) + nd(f) + n(f), (5.1)

where u(f) represents the specular components of the propagation paths, nd(f) represents

the diffuse scattering component, and n(f) represents the zero-mean complex Gaussian

measurement noise. The specular components are modeled as in Section 3.2.1, i.e.,

u(f) =
K−1∑

k=0

uk(f) =
K−1∑

k=0

γka(θR,k, θT,k) exp(−j2πfτk)s(f), (5.2)

where s(f) is the transmitted signal, γk is the complex gain, a(θR,k, θT,k) is the array

response to receive azimuth angle θR,k and transmit azimuth angle θT,k, and τk is the

normalized delay for the k-th specular path k = 0, . . . ,K − 1. The array response is given
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as a function of the receive and transmit array responses, a(θR,k) and a(θT,k), respectively,

as a(θR,k, θT,k) = a(θR,k) ⊗ a(θT,k), where ⊗ denotes the Kronecker product.

The excitation signal s(f) is assumed to be a multi-carrier spread spectrum signal

(MCSSS) [10], which is designed such that |s(f)| is constant over the bandwidth of interest.

Pseudo-noise sequences are also commonly used as excitation signal in channel sounding

applications, and an estimation procedure for separate estimation in angular- and delay-

domain is presented in Publications I and IV. For the MCSS excitation signal, a raw

estimate of the channel observation can be determined without changing the statistics of

the noise n(f), simply by dividing the received samples by the known excitation function

s(f). Hence, equation (5.2) can be rewritten as

u(f) =
K−1∑

k=0

uk(f) =
K−1∑

k=0

γka(θR,k, θT,k) exp(−j2πfτk). (5.3)

Let Mf be the number of observed frequency samples. Similarly to the Section 4.4.3, we

define the Mo × 1 vector Y as

Y =




y(0)

...

y(Mf − 1)


 = u + nd + n, (5.4)

where Mo = MrMtMf , and

u =
[
uT (0) . . . uT (Mf − 1)

]T
(5.5)

nd =
[
nT

d (0) . . . nT
d (Mf − 1)

]T
(5.6)

n =
[
nT (0) . . . nT (Mf − 1)

]T
. (5.7)

In the formulation above, it is implicitly assumed that the channel sounding technique

is such that the received signal in each MIMO subchannel is available. As described in

Section 4.1, this can be obtained, e.g., by time division multiplexing.

Deterministic maximum likelihood estimation techniques such as the SAGE-based

method in [80] represent the received signal as a combination of a large number of discrete

waves. Consequently, parameters from each wave must be estimated. This leads to very

high-dimensional parameter space. Hence, the algorithms often have convergence prob-
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lems and the estimates contain artifacts due to local maxima in the likelihood function

and high dimensionality of the parameter space.

The following assumptions are employed throughout this thesis:

(a) the process nd is zero-mean complex temporally white circular Gaussian;

(b) the channel can be treated as constant during the time it takes to measure one

realization of the channel;

(c) the additive noise n is an i.i.d. zero-mean circular complex Gaussian process with

known covariance matrix, Rn = E[nnH ] = σ2
nI, and independent of nd and u.

Assumption (a) comes from the observation that a very large number of waves, having

independent weights, reach the receiver from scattered sources. Therefore, the Central

Limit Theorem can be used in this case to show that the received data are Gaussian

distributed. The covariance matrix of nd is obtained by writing the DSC as a sum of

a very large number of specular-like components, each one modeled similarly to (5.2).

Hence, as shown in Publications V and VII, the covariance matrix of nd is given by

E[nd nH
d ] = E[wwH ] ⊗ E[hhH ], (5.8)

where vector h of dimension MrMt × 1 represents the spatial content of the DSC and is

a function of the array response, and the vector w of dimension Mf × 1 represents the

frequency-dependent content of the DSC.

Based on the assumptions above, the PDF of the received signal Y is completely

characterized by its mean, E[Y] = u, and its Mo ×Mo covariance matrix (see Publication

VII)

Ry = E[(Y − u)(Y − u)H ] = Rw ⊗ Rh + σ2
nI, (5.9)

where Rw = E[wwH ], and Rh = E[hhH ].

Observe that this model is based on the assumption that the covariance matrix of the

DSC can be factorized into a Kronecker-product (5.9). However, it is not assumed that

the covariance matrix of the complete MIMO channel observation can be factorized into

a Kronecker-product.
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5.1.1 Delay and Frequency Domain Characterization

For the delay domain, we use the model in Section 3.2.2, which is based on the observation

that the power delay profile (PDP) has an exponential decay over time and a base delay

which is related to the distance between the transmitter and receiver. Hence, w is given

by

Rw = toep
(
v(Θw),v(Θw)H

)
, (5.10)

where Θw = {γ, βd, τd}, and

v(Θw) =
γ

Mf


 1

βd

e−j2πτd

βd + j 2π
Mf

· · ·
e−j2π(Mf−1)τd

βd + j2π
Mf−1

Mf


 . (5.11)

5.1.2 Angular Domain Characterization

The diffuse scattering is characterized by its covariance matrix, and hence we will apply

the modeling strategy described in Section 3.4.1 for its angular domain characterization.

Assuming that for the diffuse scattering there is statistical independence between DoAs

and DoDs, we can use the modeling strategy for the SVA model in Section 3.4.1.2 to

characterize the covariance matrix of the channel in angular domain as

Rh = RR
h ⊗ RT

h , (5.12)

where RR
h and RT

h denote the covariance matrix at the receiver and transmitter side,

respectively.

From a parameter estimation point of view, the extension from the spatially uncorre-

lated to the correlated case is more complicated than the extension from SIMO to MIMO,

as long as the Kronecker structure in equation (5.12) holds. Hence, we will limit the

discussion to uni-directional estimation, but the results can be naturally extended to the

double-directional case. We also assume for simplicity that an uniform linear array (ULA)

is used at the receiver. Given these assumptions, the correlation at the receiver side is

equivalently given by the SVA model in Section 3.4.1.2 and the von Mises distribution

model in Section 3.4.1.5. Hence, we can write

Rh,m1m2
(Θh) =

∫ π

−π
exp(bm1m2

cos(θ))f(θ,Θh) dθ, (5.13)
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where f(θ,Θh) is any angular PDF of θ, characterized by parameters Θh, bm1m2
=

j2πdm1→m2
, and dm1→m2

is the distance between elements m1 and m2 in the receive

array. An angular PDF must at least satisfy f(θ,Θh) = f(θ + 2πk,Θh) ∀ k ∈ Z, with

φ ∈ [φ0, φ0 + 2π), φ0 ∈ R. Hence, a Gaussian PDF which has an infinite support is not

suitable. The von Mises distribution [22] defined in angular domain is more appropriate.

Moreover, it allows for an analytical solution to equation (5.13), as shown in Section 3.4.1.5.

In channel measurements, multimodal angular PDFs are often found as a result of

signals arriving from a number of different clusters. This can be modeled using a mixture

of angular PDFs,

f(θ,Θh) =
L∑

p=1

ǫpfp(θ,Θh,p), (5.14)

where L is the number of mixture components,
∑L

p=1 ǫp = 1, ǫp are unknown mixture

proportions, and fp(θ,Θh,p) is any valid angular PDF. With this definition of the angular

PDF, the angular domain parameters are defined as Θh = {Θh,1, . . . ,Θh,P }, with Θh,p =

{µp, κp, ǫp}, p = 1, . . . , L. The flexibility of representation given by the mixture model is

illustrated in Figure 5.1, where the power angular spectrum estimated based on a mixture

of two von Mises PDFs is compared to the power angular spectrum estimated from a single

von Mises PDF.

The cross correlation in equation (5.13) is shown in [12] and Publication III to be given

by

Rh,m1m2
(Θh) =

L∑

p=1

ǫp
I0({κ2

p + b2m1m2
+ 2κp bm1m2

cos(µp)}
1

2 )

I0(κp)
. (5.15)

Alternatively, it is possible to model the bi-directional distribution directly based on the

generalized von Mises-Fisher distribution [105, 22], which accounts for dispersion in DoA

and DoD simultaneously. In [105] the authors present a maximum likelihood estimator

based on this distribution, but no closed-form solution to the cross correlation is presented.

5.2 Parameter Estimation

Let us denote by Ym the m-th observation of Y, m = 1, . . . ,Ms. Assuming Y is circular

complex Gaussian and that the realizations Ym are i.i.d., we can write the log-likelihood
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Figure 5.1: Comparison between the power angular spectrum estimated based on a mixture
of two von Mises PDFs and the power angular spectrum estimated from a single von Mises
PDF.

function as

L(Y1, . . . ,YMs) = −MoMs log π −Ms log |Ry| −
Ms∑

m=1

(Ym − u)HR−1
y (Ym − u), (5.16)

where Ms is the number of observations. It is also assumed that the noise is circular com-

plex white Gaussian with variance σ2
n. The formulation of the problem is similar to the

one used in the RIMAX estimator (see Section 4.4.3), except that the diffuse scattering

is not assumed to be spatially white. Hence, the structure of the covariance matrix Ry

is changed, and the procedure described in [10] cannot be applied directly. Also, direct

optimization of the likelihood function using (5.9) is not feasible due to the high dimen-

sionality of the matrices involved. In current sounding systems, typical values for Mf and

Mr,Mt are in the range Mf = [100, 2000], and Mr,Mt = [4 · · · 64]. But with the rapid

development of the channel sounders these values may grow. This leads to a dimension of

Ry ranging from 400 × 400 to 128000 × 128000, or even higher. Hence, it is not feasible

to compute the determinant and matrix inverse in (5.16) directly.

In Publications V and VII, we propose an estimation method that reduces the compu-
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Figure 5.2: Two-step procedure for joint optimization of specular components and diffuse
scattering parameters.

tational complexity by using the following iterative procedure:

(1) Optimize for the parameters of the specular components such as azimuth and eleva-

tion angle of arrival/departure, time delay, Doppler spread etc., using the previously

estimated covariance matrix.

(2) Remove the contribution of the specular components from data and optimize for the

covariance matrix of the diffuse scattering components plus noise variance.

(3) Repeat the procedure until convergence or a maximum number of iterations is

reached.

Step 2 can be further decomposed into two steps:

(2.a) Optimize for the frequency-domain parameters and noise variance.

(2.b) Optimize for the angular-domain parameters, with Rw as calculated in the previous

step.

This iterative procedure is illustrated in Figure 5.2.

A key benefit of the proposed method is the separate optimization of specular and

diffuse scattering components. This reduces the number of variables for each local opti-

mization. This approach is similar to the RIMAX algorithm in Section 4.4.3, where the

DSC was assumed to be spatially white.

The further decomposition of step (2) into steps (2.a) and (2.b) is important due to the

high dimensionality of the matrices involved. With this two step procedure it is possible

to exploit the Toeplitz structure of Rw for the computation of the ML estimates. Also, the
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covariance matrix manipulated in step (2.b) is only Rh, which is typically much smaller

in dimension than Rw.

5.2.1 Specular Component

Most algorithms for parameter estimation of specular components described in Chapter 4

assume that any additive noise-like components are white. Hence, they cannot be directly

applied to the model used in this paper, unless the covariance matrix of nd + n is the

identity matrix. In order to avoid this problem and allow the use of well-known low

complexity algorithms for parameter estimation of specular components, a prewhitening

transform is applied to the data such that its covariance matrix becomes a constant times

the identity matrix [76]. We define the prewhitening matrix E, such that

E[(E−HY − E−Hu)(E−HY − E−Hu)H ] = E−H(Rw ⊗ Rh + σ2
nI)E

−1 = I. (5.17)

Therefore, E−HY can be used to estimate the parameters of the specular-alike propagation

paths using any well-known algorithm, such as the SAGE-based procedure in [9, 80] (c.f.

Section 4.4.1.1).

Matrix E is any square-root matrix of Ry such that Ry = EHE. It can be obtained,

e.g., by the Cholesky decomposition of Ry, since the presence of additive noise guarantees

that Ry is positive definite. Another possibility to calculate E is through the eigenvalue

decomposition of Ry. The benefits of this implementation over the Cholesky decomposition

is that the eigenvalues and eigenvectors of Rw and Rh can be used later on to simplify

the estimator of the diffuse scattering component. Moreover, it will be shown in the next

section that the computation of VH
w and its multiplication by a vector can be done in a

very efficient way. In Publications V and VII it is shown that E−H can be defined as

E−H = (Λw ⊗ Λh + σ2
nI)

−1/2(VH
w ⊗ VH

h ), (5.18)

where Λw and Vw contain the eigenvalues and eigenvectors of Rw, respectively, and Λh

and Vh contain the eigenvalues and eigenvectors of Rh, respectively. A computationally

efficient computation of the product E−HY is given in Publications V and VII.
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5.2.2 Frequency-Domain Parameters

In the sequel we will assume that the specular components have been estimated and

removed from the observation. Hence, the likelihood function is given by

L(Y1, . . . ,YMs) = −MoMs log π −Ms log |Ry| −
Ms∑

m=1

YH
mR−1

y Ym. (5.19)

An estimator for the frequency-domain parameters is derived in [10]. It is assumed that

the channel covariance matrix has the structure Ry = (Rw + σ2
nI) ⊗ I, i.e., the channel is

assumed to be spatially white. This is a special case of the situation expressed in equation

(5.15), with L = 1 and κ = 0. Since we do not assume whiteness in the spatial domain,

the method in [10] is not directly applicable here.

Using the decomposition of the estimation procedure outlined in Section 5.2 already

allows some simplification in the optimization. This is due to lower dimensional searches.

However, we still have not solved the problem of calculating the determinant and inverse

of Ry at every iteration. These computations can be simplified by writing Ry as a function

of its eigenvalues and eigenvectors, as in Section 5.2.1.

We can exploit the Kronecker structure of the eigenvalues and eigenvectors of Ry in

order to simplify the optimization procedure. The logarithm of the determinant of Ry can

be calculated as

log |Ry| =

Mo∑

j=1

log
(
(λw ⊗ λh + σ2

n1Mo){j}
)
,

where λw and λh are vectors containing the eigenvalues of Rw and Rh, respectively,

1Mo is a Mo × 1 vector whose entries are equal to 1, and (·){j} denotes the j-th element

of (·). It is clear that the computational complexity of calculating the determinant is

reduced. Another important observation is that the exchange of the order in which the

log is computed allows for easier implementation with finite precision. This is due to the

fact that the eigenvalues λw can have a large spread, since they are an approximation to

the PDP in (3.4). The computation of R−1
y can also be simplified using the Kronecker

structure of the eigenvalues and eigenvectors of Ry (see Publication V).

Further simplifications are possible if we take into account that Rh is fixed while

optimizing for Rw. In this case, the estimate of Rw is obtained from the likelihood

73



function of the transformed signal

Ym = (IMf
⊗ Λ

−1/2
h VH

h )Ym, (5.20)

where it is assumed that Rh is nonsingular. A computationally efficient form for the

likelihood function of Ym is given in Publication VII).

Even further reduction of complexity is possible in the calculation of the eigenvalues and

eigenvectors of Cw since it is a large Toeplitz matrix. Consequently, it can be approximated

by a circulant matrix [106, 107]. A circulant matrix can be diagonalized as

R = FDFH , (5.21)

where F is the unitary DFT matrix and D is a diagonal matrix with the eigenvalues of

R. Hence, the eigenvectors and eigenvalues of R are given by Vw = F, and Λw = FHRF,

respectively. In case Mo is a power of 2, the computational complexity of Λw and Ym in

(5.20) can be reduced even further by using FFT. For other values of Mo, other algorithms

that optimize the computation of the DFT can be used, like the Goertzel algorithm. There

is no need to compute the off-diagonal elements of FHRwF, and we use the following

computationally efficient mapping from v(Θw) to λw [10]:

λw = T (v(Θw)) =
1√
Mf

FH(W1v(Θw) + W2v
∗(Θw)), (5.22)

where

W1 = diag(
[
Mf Mf − 1 · · · 1

]
) (5.23)

and

W2 =




0 · · · 0

. .
.

1

... 0 2 0

. .
.

. .
.
. .
. ...

0 Mf − 1 0 · · · 0




. (5.24)

5.2.3 Angular-Domain Parameters

In Section 5.1.2, the covariance matrix in angular domain, Rh, was modeled as a function

of a mixture of von Mises distributions. Assuming the number of mixture components
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in angular domain, L, is known or reliably estimated, the angular parameters are the

parameters of the mixture of von Mises distributions: Θh = {µ1, κ1, ǫ1, . . . , µL, κL, ǫL},
p = 1, . . . , L, with

∑L
p=1 ǫp = 1. Due to the model in (5.9), the path loss is already

estimated as part of the delay-domain parameters.

For the estimation of the angular domain parameters, we assume that the frequency-

domain parameters are fixed. The computational complexity can be simplified as in Sec-

tion 5.2.2, by maximizing the likelihood function of the transformed signal

Ỹm = (Λ−1/2
w FH ⊗ IMrMt)Ym, (5.25)

where it is assumed that Rw is nonsingular. A computationally efficient form for the

likelihood function of Ỹm is given in Publication VII).

The optimization of the nonlinear likelihood functions of (5.20) and (5.25)´can be

performed using the Levenberg-Marquardt algorithm [108]. It requires the computation of

the gradient and an approximation of the Hessian, which can be found in Publication VII.

Moreover, the derivatives presented in Publication VII are used for the derivation of the

performance bounds in Section 5.3. Efficient implementations of the gradient and the

approximate Hessian can be found in Publication VII.

5.2.4 Initialization

In this section we describe one approach for the initialization of the algorithm. The

specular paths are initialized assuming Ry = I. Well-known estimators available in the

literature, like those described in Chapter 4, can be used to get initial estimates for the

parameters of the specular paths.

For the diffuse scattering, the frequency-domain parameters are initialized as in the

RIMAX algorithm [10], and assuming Rh = I.

The angular-domain parameters can be initialized using the following procedure:

(1) Get initial estimate for µp, p = 0, . . . , L− 1, using ESPRIT assuming L sources.

(2) Choose initial values for κp, p = 0, . . . , L − 1, uniformly drawn from the interval

[0, 50], and ǫp, p = 0, . . . , L− 1, randomly in the range [0, 1].

(3) Refine the initial estimates using the method in Publications III and IV, with Y
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normalized by

Py =
γ

βd
eβdτd .

If an arbitrary 2-D or 3-D antenna element arrangement is used, beamforming or ES-

root MUSIC [85] can be applied in step (1).

5.2.5 Computational Complexity

The computational complexity of the algorithm is evaluated in terms of real multiplica-

tions. We assume the multiplication of two complex numbers corresponds to four real

multiplications, and the multiplication of a complex and a real number corresponds to two

real multiplications. Figure 5.3 shows the computational complexity as a function of the

number of frequency samples, Mf , assuming 20 evaluations of the cost function during the

optimization, and that 3 cycles of the estimation procedure are used. We assume that only

the diffuse components are estimated. The complexity of calculating the eigendecompo-

sition of Rh is of order O((MtMr)
3) [109]. The exact number of multiplications depends

on the matrix structure, but the order O((MtMr)
3) remains. Conditioning of the matrix

plays a role as well.

Figure 5.3 illustrates the complexities of different solutions. It is clear that the op-

timized method reduces the complexity by several orders of magnitude compared to the

maximum likelihood estimation, especially if FFTs are used when multiplying by Vw.

The effectiveness of this reduction depends on the number of cycles. A reasonable

criterion for convergence is to stop the algorithm if after any two iterations the relative

change for all parameters is less than a pre-defined threshold, e.g., 10−2. For this threshold

value, the parameters usually converge in less than 5 iterations for all versions of the

algorithm.

5.3 Performance Bounds

The {i, k}-th element of the Fisher Information Matrix (FIM) for a circular complex white

Gaussian variable are given by [76]

I ik = Ms2ℜ
{(

∂uH

∂Θi

)
R−1

y

(
∂u

∂Θk

)}
+Mstr

{
R−1

y

(
∂Ry

∂Θi

)
R−1

y

(
∂Ry

∂Θk

)}
. (5.26)
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Figure 5.3: Comparison of computational complexity of direct optimization of likelihood
function and the optimized algorithm as a function of the number of frequency samples,
Mf . The optimized method reduces the complexity by several orders of magnitude com-
pared to the maximum likelihood estimation, especially if FFT is used when multiplying
by Vw.

Hence, the FIM is block diagonal if Θsp and Θdn contain uncorrelated parameters, i.e.,

I =


I(Θsp) 0

0 I(Θdn)


 , (5.27)

where I(Θsp) is the FIM for the specular components, Θdn = {Θwn,Θh}, and I(Θdn)

is the FIM for the diffuse scattering parameters plus noise variance. As a consequence,

its inverse is also block diagonal [109]. This means that the parameters of the specular

and diffuse components are asymptotically decoupled, and the respective CRLBs can be

derived independently. The CRLB for the parameters of the specular components can be

found in [9, 10]. The CRLB for the parameters of the diffuse scattering components is

given by (5.26) as

I ik(Θdn) = Mf tr

{
R−1

y

(
∂Ry

∂Θi

)
R−1

y

(
∂Ry

∂Θk

)}
. (5.28)

Let us define the matrices containing the partial derivatives with respect to all Np
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elements of the parameter vector Θdn, as

D1 =

[
vec

{(
R−1

y

(
∂Ry

∂(Θdn)1

))T
}

· · · vec

{(
R−1

y

(
∂Ry

∂(Θdn)Np

))T
}]

(5.29)

D2 =
[
vec

{
R−1

y

(
∂Ry

∂(Θdn)1

)}
· · · vec

{
R−1

y

(
∂Ry

∂(Θdn)Np

)}]
. (5.30)

Using (5.29) and (5.30), the FIM can be expressed in a compact form as

I = MsD
T
1 D2 (5.31)

The partial derivatives of Ry with respect to the diffuse scattering component param-

eters is given by

∂Ry

∂Θi
=
∂Rw

∂Θi
⊗ Rh, Θi ∈ Θw (5.32)

∂Ry

∂θi
= Rw ⊗ ∂Rh

∂Θi
, Θi ∈ Θh (5.33)

∂Ry

∂σ2
n

= I. (5.34)

The partial derivatives of Rw and Rh with respect to the propagation parameters can be

found in Publication VII.

5.4 Simulation Results

In this Section simulation examples are presented in order to illustrate the performance

of the described parameter estimation procedure. The receiver is equipped with an ULA

having Mr = 8 antennas and the transmitter uses Mt = 1 antenna. The number of fre-

quency points is Mf = 128, and the number of channel realizations is Ms = 5. For the

frequency-domain parameters, typical values often observed in channel sounding experi-

ments are used: σ2
n = 0.1, γ = 1, βd = 0.07, and τd = 0.1. The angular-domain parameters

are defined as µ = {60◦, 120◦}, κ = {10, 50}, ǫ = {0.4, 0.6}, corresponding to two clusters

in the angular domain.

One specular component is assumed to be present, and it is modeled as

u(k) = γa(θR) exp(−j2πkτ), (5.35)

where γ is the complex gain, a(θR) is the steering vector for receive azimuth angle θR,
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and τ is the normalized delay. For the simulation, the values are set as γ = 0.8ej∗π/5,

θR = 80◦, and τ = 0.12.

The received signal is generated as

y(k) = u(k) + R1/2n2(k) + n(k), (5.36)

where n2(k) is a circular complex white Gaussian process and R1/2 is obtained by the

Cholesky decomposition of Rw⊗Rh. This implies that the covariance matrix of R1/2n2(k)

is given by Rw ⊗ Rh. The vector n(k) is a circular complex white Gaussian process

representing the measurement noise.

The iterative procedure described in Section 5.2 is repeated 5 times, starting with

the estimation of the specular component and proceeding as illustrated in Figure 5.2.

The model order, i.e., number of clusters and specular paths, is assumed known. The

frequency-domain parameters are computed using the approximation of a Toeplitz matrix

as a circulant matrix described in Section 5.2.2. The parameters are initialized as described

in Section 5.2.4. In Figures 5.4 and 5.5, we compare the power delay profile (PDP) and

power angular profile (PAP) obtained using the estimation procedure described in this

article with the actual PDP and PAP, respectively. The curves overlap almost perfectly.

In the example, Ms ≪ Mo, i.e., the full sample covariance matrix is rank deficient. Still,

the estimator is able to provide high-precision estimates for the time-delay distribution,

angular distribution, and specular component. The PAP is compared to the output of

the Bartlett beamformer, showing the gain in using the combined procedure to estimate

both signal components iteratively. The beamformer is only able to estimate the angle of

the specular component, but it does not provide any useful information about the diffuse

scattering component.

The algorithms that approximate the mean angle and angular variance using two sep-

arate paths around the mean are called Spread F [16], where F denotes the underlying

algorithm to estimate the paths. Table 5.1 shows the estimates obtained using the pro-

posed method and Spread ESPRIT [16]. The results are an average over 300 runs. The

parameters of the DSC and specular components are the same as in the previous simula-

tion. The angular spread is shown in degrees using the mapping σµ ≈ κ−1/2 [22]. Hence,

for the simulated values of κ = {10, 50} we obtain σµ = {18.12◦, 8.10◦}.

The estimator proposed in this paper overperforms Spread ESPRIT for all parameters
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Figure 5.4: Comparison of estimated power delay profile and actual power delay profile.
The curves overlap almost perfectly. The specular component is identified as a sharp peak
at τd = 0.12, while the diffuse component corresponds to the exponential curve.
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Figure 5.5: Comparison of estimated power angular profile and actual power angular
profile. The curves overlap almost perfectly. Also shown is the output of the Bartlett
beamformer. The specular component is identified as a sharp peak at θ = 80◦, while the
diffuse component corresponds to the mixture of von Mises distributions.

of the diffuse component, while presenting similar performance for the specular component.

One problem for the application of the Spread F techniques is that it is very difficult in

a real-world environment to identify which of the identified waves belong to a distributed

scatterer in particular and which one is a specular component. This issue limits the

application of Spread F techniques to well separated sources with small angular spread,

as already noted in [16].

In Figures 5.6–5.10, we compare the MSE of the estimates after two cycles with the

CRLB as a function of the number of channel realizations, Ms. The angular-domain

parameters are set to θ = {50◦, 100◦}, κ = {5, 150}, ǫ = {0.4, 0.6}, corresponding to two

clusters in the angular domain. The frequency-domain parameters remain unchanged. No

specular components are present. It can be observed that all parameters converge close to
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Table 5.1: Comparison between the proposed method and Spread ESPRIT

Correct values Proposed method Spread ESPRIT

µ1 60◦ 59.98◦ 56.66◦

σµ,1 18.12◦ 18.14◦ 9.20◦

µ2 120◦ 119.99◦ 119.15◦

σµ,2 8.10◦ 8.07◦ 3.09◦

θ 80◦ 79.99◦ 79.97◦
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Figure 5.6: CRLB of frequency-domain parameters {γ, βd} and noise variance as a function
of the number of channel realizations, Ms. The MSE after two iterations of the estimation
procedure is shown for comparison.

the CRLB for relatively small sample size. The exception is the relative delay, τd, which

presents a noticeable gap with respect to its CRLB. However, no bias is observed, since

the curve is parallel to the CRLB.

In order to verify the robustness of the algorithm, we apply the estimator to data that

do not follow exactly the assumptions used for its derivation. We generate the data as a
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Figure 5.7: CRLB of base delay as a function of the number of channel realizations, Ms.
The MSE after two iterations of the estimation procedure is shown for comparison.
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The MSE after two iterations of the estimation procedure is shown for comparison.
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Figure 5.9: CRLB of dispersion parameter as a function of the number of channel re-
alizations, Ms. The MSE after two iterations of the estimation procedure is shown for
comparison.
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Figure 5.10: CRLB of mixture proportion of the first angular cluster as a function of
the number of channel realizations, Ms. The MSE after two iterations of the estimation
procedure is shown for comparison. The maximum number of mixture components is
assumed to be known.
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Figure 5.11: Estimated joint angle-delay distribution and the actual individual paths used
to generate the data, denoted by the dots. The estimated distributions provide a good fit
for the data.

sum of individual propagation paths,

y(k) =

L1∑

l=1

ul(k) + n(k), (5.37)

where L1 is the number of individual paths, and ul(k) are defined as in (5.2). For this

simulation, we use L1 = 24, the noise variance is 0.01, and Ms = 4. Convergence is

achieved after 4 iterations, assuming the parameters converge after changing by less than

5 × 10−3. The specular paths are not estimated individually, but rather the joint angle-

delay distribution of diffuse scattering is used to characterize the data, assuming L = 1.

Figure 5.11 shows the estimated joint angle-delay distribution and the individual paths

used for generating the data. It can be observed that the estimated distributions provide

a good fit for the data.

5.5 Search for New Specular Paths

In this section, we propose a procedure for detection and estimation of parameters of spec-

ular paths that is based on the estimator described in Section 5.2. The proposed method is

particularly useful for the estimation of specular paths with low power, which may not be

easily distinguished from distributed scattering by techniques based on deterministic mod-
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Figure 5.12: Iterative procedure for joint optimization of specular component and diffuse
scattering parameters, including the search for new specular paths.

els. Typically, such techniques require a large number of discrete waves to be estimated

in order to characterize the channel, and it is not straightforward to identify which of the

estimated waves are actual specular paths and which are an attempt to describe the diffuse

component. The estimator described in Section 5.2 assumes a stochastic model, where the

DSC is modeled by a random process. Hence, the specular paths can be easily identified

as the deterministic part of the model, while the DSC corresponds to the stochastic part.

Moreover, this model requires a reduced set of parameters to be estimated, which usually

results in estimates with lower variance. Figure 5.12 shows how the procedure for searching

new paths is inserted into the estimator described in Section 4.3.2.

It is assumed that at least one iteration of the estimator described in Section 5.2

has been executed. Hence, an estimate of the strongest specular paths is assumed to be

available, as well as an estimate of the diffuse scattering component. We estimate the new

specular paths following the approach in Section 5.2.1, where the data is multiplied by a

pre-whitening transformation.

Vector u can be written as (see Publication VI)

u =
K−1∑

k=0

γkc(τk) ⊗ a(θR,k, θT,k), (5.38)

where the Mf × 1 vector c(τ) is defined as

c(τ) =
[
1 e−j2πτ · · · e−j2π(Mf−1)τ

]T
. (5.39)
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Let us also define

B(τ, θR, θT ) = (Λw ⊗ Λh + σ2
nI)

− 1

2 (VH
w c(τ) ⊗ VH

h a(θR, θT )). (5.40)

The ML estimates for a single wave are then given by

{τ̂ , θ̂R, θ̂T } = arg max
τ,θR,θT

|∑Ms

m=1 BH(τ, θR, θT )Y ′
m|2

|B(τ, θR, θT )|2 , (5.41)

and

γ̂ =

∑Ms

m=1 BH(τ̂ , θ̂R, θ̂T )Y ′
m

Ms|B(τ̂ , θ̂R, θ̂T )|2
. (5.42)

Based on the initialization procedure proposed in [9, 80], the search in equation (5.41)

can be further simplified. First, the base delay is estimated as

τ̂ = arg max
τ

|∑Ms

m=1 B
H

(τ)Y ′
m|2

|B(τ)|2
, (5.43)

where B(τ) = (cH
τ Vw ⊗1HVh)(Λw ⊗1+σ2

nI)
−1/2, and 1 = [1 · · · 1]T . With the estimated

τ̂ , the angular parameters are estimated as

θ̂R = arg max
θR

|∑Ms

m=1 BH(τ̂ , θR, θT )Y ′
m|2

|B(τ̂ , θR, θT )|2 , (5.44)

and

θ̂T = arg max
θT

|∑Ms

m=1 BH(τ̂ , θR, θT )Y ′
m|2

|B(τ̂ , θ̂R, θT )|2
. (5.45)

The main advantage of this approach is that only 1-D searches are performed, hence

reducing the computational complexity. However, the 1-D searches are suboptimal, and

the detection performance is reduced compared to the full search in (5.41).

5.5.1 Application to Detection of Weak Specular Paths

An example application of the procedure above is the detection of weak specular paths

that would otherwise be neglected. In a MIMO radar, this would imply the detection of a

target that would otherwise be neglected. The application is illustrated by the following

simulation results. Parameters for DSC and noise are the same ones used in Section 5.4.
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Figure 5.13: Output of the 1-D correlation for the estimate of τ . The strongest specular
path can be identified.

Two specular paths are present, and modeled as

u(f) =
1∑

k=0

γka(θR,k) exp(−j2πfτk), (5.46)

where γk is the complex gain, a(θR,k) is the steering vector for receive azimuth angle

θR,k, and τk is the normalized delay. For the simulation, the values are set as γk =

{0.2ej∗π/5, 0.02ej∗π/3}, θR,k = {80◦, 150◦}, and τk = {0.12, 0.42}. The received signal is

generated as in Section 5.4.

Figures 5.13 and 5.14 show the output of the 1-D correlations in (5.43) and (5.44). The

second specular path can be clearly identified and its parameters can be estimated. Finally,

Figures 5.15 and 5.16 show the power delay profile (PDP) and power angular profile (PAP)

obtained using the estimation procedure described in this article, and compares them to

the actual PDP and PAP, respectively. The curves overlap almost perfectly.
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Figure 5.14: Output of the 1-D correlation for the estimate of θR,1, using previously
estimated τ̂ .
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Figure 5.15: Comparison of estimated power delay profile and actual power delay profile.
The curves overlap almost perfectly.
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Figure 5.16: Comparison of estimated power angular profile and actual power angular
profile. The curves overlap almost perfectly. Also shown is the output of the Bartlett
beamformer.
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Chapter 6

Summary

Multiple antenna techniques are a key enabling technology in modern and next-generation

wireless communications systems. Such techniques are considered for the high link capacity

gains that are achievable from spatial multiplexing, but also for the system capacity bene-

fits, improved link reliability, and extended range that are possible from spatial diversity,

beamforming, spatial division multiple access, and interference cancellation techniques.

In fact, the very demanding performance targets set for next-generation systems are vir-

tually impossible to achieve without an efficient utilization of multiple antennas both at

transmitter and receiver side.

Accurate channel models are important tools for the development of techniques that

exploit the MIMO channel efficiently, and are fundamental tools in network planning, link-

and system-level studies, MIMO radar, and transceiver development. Realistic models are

developed with the aid of MIMO channel measurements, which require high-precision pa-

rameter estimation techniques to extract the information on the propagation environment.

In particular, the spatial information is of interest in MIMO measurement campaigns.

Most estimation algorithms are based on the assumption that the channel can be

modeled as a combination of rays that travel from the transmitter to the receiver reflecting

on objects scattered around the environment. Such models usually require a large number

of rays to characterize the environment, leading to very high-dimensional models. As

a consequence, estimation algorithms based on such models become highly complex as

well. Hence, it is important to condense the relevant information to a few parameters. A

powerful way to solve this problem and obtain models with only a few parameters is to

utilize a stochastic model instead of a deterministic model.

Such a model is suitable to describe diffuse scattering, which is the part of the received
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signal that cannot be resolved into distinct specular paths. It should be noted that diffuse

scattering is a significant part of the rich scattering that gives diversity and multiplexing

gains in MIMO systems.

In this thesis, estimation methods are derived that jointly estimate the parameters of

the concentrated propagation paths and the distributed scattering component that are

frequently observed in MIMO channels. In particular, the parameters of the scattering

component is estimated in both spatial and temporal domains. A stochastic channel

model is assumed. The power-delay profile of the scattering component is modeled using

an exponential distribution, which is typically observed in measurement campaigns. The

power angular profile is modeled using a mixture of angular von Mises distributions. The

simulation results show that this procedure converges to the estimates of both specular and

diffuse components with high fidelity. Convergence is achieved with only few iterations.

Computationally efficient methods were derived for finding the approximate ML es-

timates. The structure of the covariance matrices is fully exploited. Complexity studies

show that the reduction in the number of real multiplications is approximately three to

five orders of magnitude. Computationally efficient methods to compute the gradients and

Hessians are presented as well, which are useful for the implementation of the optimization

routines.

Furthermore, the Cramér-Rao lower bound (CRLB) for the problem was established

and the simulations show that the variance of the estimates converges close to the bound

for a relatively small number of cycles of the estimation procedure and small number of

channel realizations (small sample size). For some parameters the CRLB is not attained,

but no error floor indicating bias is observed.

Possible topics of future research include the extension of the derived techniques for

multiple clusters in angle- and delay-domain. This extension requires new computation-

ally efficient methods, since the Kronecker structure of the DSC covariance matrix is lost.

Also of interest is the application of the estimation method to measured data from chan-

nel sounding campaigns. Extensions of the proposed estimators to dynamic, time-varying

propagation environments is also of great interest. Such estimators should be able to

capture the dynamic behavior of the channel with few parameters with relatively low

computational complexity. Due to the close relationship between MIMO channel sound-

ing and MIMO radars, potential future research topics include extending the proposed

methods to target detection, discrimination and tracking in MIMO radars. In addition,

90



waveform diversity, i.e. designing waveforms in order to improve the overall performance

such as propagation path tracking or detection and identification of targets in interference

and noise is of interest.
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[40] D. Didascalou, M. Döttling, N. Geng, and W. Wiesbeck, “An approach to include

stochastic rough surface scattering into deterministic ray-optical wave propagation

modeling,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 7, pp.

1508–1515, Jul. 2003.

[41] V. Degli-Esposti, D. Guiducci, A. de’ Marsi, P. Azzi, and F. Fuschini, “An advanced

field prediction model including diffuse scattering,” IEEE Transactions on Antennas

and Propagation, vol. 52, no. 7, pp. 1717–1728, Jul. 2004.

[42] M. Barbiroli, C. Carciofi, G. Falciasecca, M. Frullone, P. Grazioso, and A. Varini,

“A new statistical approach for urban environment propagation modeling,” IEEE

Transactions on Vehicular Technology, vol. 51, no. 5, pp. 1234–1241, Sep. 2002.

95



[43] Q. H. Spencer, B. D. Jeffs, M. A. Jensen, and A. L. Swindlehurst, “Modeling the

statistical time and angle of arrival characteristics of an indoor multipath channel,”

IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 347–360,

Mar. 2000.

[44] W. Newhall, R. Mostafa, K. Dietze, J. Reed, and W. Stutzmad, “Measurement

of multipath signal component amplitude correlation coefficients versus propagation

delay,” in IEEE Radio and Wireless Conference, 2002, Aug. 2002, pp. 133–136.

[45] T. Rappaport, S. Seidel, and R. Singh, “900-mhz multipath propagation measure-

ments for us digital cellular radiotelephone,” IEEE Transactions on Vehicular Tech-

nology, vol. 39, no. 2, pp. 132–139, May 1990.

[46] R. Roy and T. Kailath, “ESPRIT – estimation of signal parameters via rotational

invariance techniques,” IEEE Transactions on Acoustics, Speech, and Signal Pro-

cessing, vol. 37, no. 7, pp. 984–995, Jul. 1989.

[47] H. Krim and M. Viberg, “Two decades of array signal processing research,” IEEE

Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, Jul. 1996.

[48] R. U. Nabar, H. Bölcskei, V. Erceg, D. Gesbert, and A. J. Paulraj, “Performance of

multiantenna signaling techniques in the presence of polarization diversity,” IEEE

Transactions on Signal Processing, vol. 50, no. 10, pp. 2553–2562, Oct. 2002.

[49] S. Sirianunpiboon, S. D. Howard, and A. R. Calderbank, “Diversity gains across line

of sight and rich scattering environments from space-polarization-time codes,” in

IEEE Information Theory Workshop on Information Theory for Wireless Networks,

Jul. 2007, pp. 1 – 5.

[50] D.-S. Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, “Fading correlation and

its effect on the capacity of multielement antenna systems,” IEEE Transactions on

Communications, vol. 48, no. 3, pp. 502–513, Mar. 2000.

[51] J. P. Kermoal, L. Schumacher, K. I. Pedersen, P. E. Mogensen, and F. Frederiksen,

“A stochastic MIMO radio channel model with experimental validation,” IEEE

Journal on Selected Areas in Communications, vol. 20, no. 6, pp. 1211–1226, Aug.

2002.

96



[52] K. Yu, M. Bengtsson, B. Ottersten, D. McNamara, P. Karlsson, and M. Beach,

“Modeling of wide-band MIMO radio channels based on NLoS indoor measure-

ments,” IEEE Transactions on Vehicular Technology, vol. 53, no. 3, pp. 655–665,

May 2004.

[53] D. P. McNamara, M. A. Beach, P. N. Fletcher, and P. Karlsson, “Initial investi-

gation of multiple-input multiple-output (mimo) channels in indoor environments,”

in Symposium on Communications and Vehicular Technology, Oct. 2000, pp. 139 –

143.

[54] J. Wallace and M. Jensen, “Statistical characteristics of measured MIMO wireless

channel data and comparison to conventional models,” in Proc. of IEEE Vehicular

Technology Conference, VTC 2001 Fall, 2001, vol. 2, pp. 1078–1082.

[55] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,”

IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp. 128–137, Feb.

1987.

[56] W. C. Jakes, Microwave Mobile Communications, Wiley, New York, 1974, 656

pages.

[57] D.-S. Shiu, Ed., Wireless Communication Using Dual Antenna Arrays, Kluwer

Academic, Boston, USA, 2000, 144 pages.
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