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Lehtimäki, P. (2008): Data-analysis methods for cellular network perfor-

mance optimization. Doctoral thesis, Helsinki University of Technology, Dis-
sertations in Computer and Information Science, TKK-ICS-D1, Espoo, Finland.

Keywords: cellular network, radio network, radio resource optimization, infor-
mation visualization, regression, clustering, segmentation, optimization

ABSTRACT

Modern cellular networks including GSM/GPRS and UMTS networks offer faster
and more versatile communication services for the network subscribers. As a result,
it becomes more and more challenging for the cellular network operators to enhance
the usage of available radio resources in order to meet the expectations of the
customers.

Cellular networks collect vast amounts of measurement information that can be
used to monitor and analyze the network performance as well as the quality of
service. In this thesis, the application of various data-analysis methods for the
processing of the available measurement information is studied in order to provide
more efficient methods for performance optimization.

In this thesis, expert-based methods have been presented for the monitoring and
analysis of multivariate cellular network performance data. These methods allow
the analysis of performance bottlenecks having an effect in multiple performance
indicators.

In addition, methods for more advanced failure diagnosis have been presented
aiming in identification of the causes of the performance bottlenecks. This is im-
portant in the analysis of failures having effect on multiple performance indicators
in several network elements.

Finally, the use of measurement information in selection of most useful optimiza-
tion action have been studied. In order to obtain good network performance
efficiently, the expected performance of the alternative optimization actions must
be possible to evaluate. In this thesis, methods to combine measurement infor-
mation and application domain models are presented in order to build predictive
regression models that can be used to select the optimization actions providing
the best network performance.
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TIIVISTELMÄ

Nykyaikaiset matkapuhelinverkot kuten GSM/GPRS ja UMTS tarjoavat yhä no-
peampia ja monipuolisempia palveluita käyttäjilleen. Tämän seurauksena verkko-
operaattorit joutuvat yhä haasteellisempien tehtävien eteen pyrkiessään tehosta-
maan rajallisten radioresurssiensa käyttöä asiakastyytyväisyyden takaamiseksi.

Matkapuhelinverkot keräävät jatkuvasti runsaasti mittausinformaatiota, jota voi-
daan käyttää verkon suorituskyvyn ja palvelun laadun analysointiin ja paranta-
miseen. Tässä väitöskirjassa tutkitaan erilaisten data-analyysimentelmien sovelta-
mista tämän mittausinformaation käsittelyyn siten, että matkapuhelinverkon suo-
rituskyvyn analysointi ja palvelun laadun parantaminen tehostuu.

Tässä väitöskirjassa on kehitetty käyttäjäkeskeisiä menetelmiä, jotka mahdollista-
vat usean matkapuhelinverkon suorituskykyä kuvaavan indikaattorin yhtäaikaisen
seurannan ja analysoinnin. Tämä mahdollistaa sellaisten suorituskyvyn pullonkau-
lojen tunnistamisen, joilla on vaikutuksia useaan suorituskykyindikaattoriin.

Tässä väitöskirjassa on kehitty menetelmiä myös suorituskykyongelmien aiheutta-
jien tarkempaan selvittämiseen. Tämä on ensisijaisen tärkeää sellaisten vikatilan-
teiden tutkimisessa, joissa suorituskykyongelman aiheuttajalla on suora vaikutus
useisiin eri indikaattoreihin ja verkkoelementteihin.

Väitöskirjan loppuosassa on tutkittu mittausinformaation tehokasta hyödyntämistä
varsinaisten optimointitoimenpiteiden valitsemisessa. Jotta parhaaseen suoritus-
kykyyn päästäisiin, on vaihtoehtoisten toimenpiteiden vaikutukset suorituskykyyn
oltava ennakoitavissa. Tässä väitöskirjassa on esitetty menetelmiä, joiden avulla
aiemmin kerättyä mittausinformaatiota ja sovellusalan teoreettisia malleja voidaan
käyttää ennustavien regressiomallien muodostamiseen ja optimaalisten optimoin-
titoimenpiteiden valitsemiseen.
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Chapter 1

Introduction

1.1 Motivation and overview

The number of mobile network subscribers increases constantly. At the same time,
more efficient network technologies are developed in order to provide faster and
more advanced data communication services for the subscribers. As a result, the
current and new network technologies operate in parallel, making cost-effective
network management more and more challenging. The network operator should
be able to manage the radio resources to meet the current as well as the future
demand without expensive investments to infrastructure.

This thesis presents approaches in which data-analysis methods, cellular network
measurement data and application domain knowledge are combined in order to
solve practical radio resource management problems. In practice, this involves the
development of methods suitable for the detection of abnormal failures and per-
formance bottlenecks from multivariate measurement data. In addition to finding
bottlenecks in network performance, it is necessary to identify the cause or the
limiting factor for the performance, and to select a management action in order to
remove the causes of the failures and performance degradations. The first portion
of methods focus on visualization of performance data for human optimizers. Also,
methods to predict network performance under different conditions are presented.
Finally, an automated method to select the optimal configuration adjustment for
the network is presented.

1.2 Contributions of the thesis

The main contributions of this thesis are:

• the development of data visualization methods for expert-based optimization
of UMTS network plans.
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• the development of data visualization methods for expert-based optimization
of operative GSM networks,

• the development of knowledge-based predictive models for optimization of
operative GSM networks.

1.3 Outline of the thesis

The outline of this thesis is as follows. In chapter 2, the problem domain is
introduced in more detail. That is, the GSM and UMTS network architectures
as well as the management of the networks are shortly outlined. The focus of
chapter 2 is on the wide range of methods developed for the optimization of radio
resource usage. In chapter 3, the process monitoring problem is discussed, and
the variety of research fields providing tools for process management is shortly
reviewed. The emphasis is on various types of data-analysis methods and their
usage in process monitoring. In chapter 4, the results of applying advanced data
analysis methods to improve mobile network performance are presented. Finally,
in chapter 5, the conclusions are made.
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Chapter 2

Radio Resource

Management in Cellular

Networks

In this chapter of the thesis, the domain of application, that is, the cellular net-
works and their management are discussed. Firstly, the cellular network architec-
tures including GSM and UMTS are described. In the following section, a four-
layer model for the management of telecommunications networks is described, the
focus being on network management layer of the model.

Then, the focus is turned on the network management functions associated with
the radio network part of the system, and especially, the management of the radio
resources. The radio resource management techniques are discussed in several
sections. Firstly, different definitions for radio resource management are given.
Then, a framework for using various radio resource management techniques in a
systematic performance optimization process is presented.

In the remaining part of this chapter, the non-real time (offline) optimization
loops are discussed. Especially, the focus is on data-driven approaches in which
the network performance is defined by the BTS level measurements over relatively
long time periods and the optimization is strongly based on intelligent processing of
available measurement data collected from the network elements. A comprehensive
literature study of most widely used approaches for data-driven non-real time
optimization in both operative GSM networks and UMTS network simulations is
conducted.
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Figure 2.1: GSM network architecture.

2.1 Cellular Network Architectures

2.1.1 GSM Network

A Global System for Mobile communications (GSM) network consists of Network
and Switching Subsystem (NSS), Base Station Subsystem (BSS) and Operations
SubSystem (OSS). In Figure 2.1, the architecture of GSM network is depicted.

The BSS contains all the radio-related capabilities of the GSM network, being
responsible for establishing connections between the NSS and the mobile stations
(MSs) over the air interface. For this purpose, the BSS consist of several Base Sta-
tion Controllers (BSCs) that can manage the operation of several Base Transceiver
Stations (BTSs) through the Abis interface. Up to three BTSs can be installed on
the same site, and usually, the BTSs are placed to cover separate sectors around
the site. Each BTS is responsible for serving the users in its own coverage area,
also called the cell, over the air interface. Depending on the user density in the
cell served by a BTS, one or more Transceiver/Receiver pairs (TRXs) operating
on separate radio frequencies can be installed to a BTS in order to obtain the
required number of communication channels. In (Kyriazakos and Karetsos, 2004),
the architecture of GSM network is described in more detail.

In GSM, the available radio frequency band is divided between different subscribers
using Frequency Division Multiple Access (FDMA) and Time Division Multiple
Access (TDMA) techniques. In practice, this means that up to 8 subscribers may
operate on a single physical frequency, and the 8 users using the same physical
frequency are separated by allocating different time slots for each of the users.

On a single physical channel, several logical channels operate in parallel in or-
der to establish connections over the air interface. The most important logical
channels used to implement the basic services such as voice calls, short message
service (SMS) messages and location updates (LUs) include Standalone Dedicated
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Figure 2.2: UMTS network architecture.

Control CHannel (SDCCH) and Traffic CHannel (TCH). For example, in voice
call establishment the SDCCH is occupied during the negotiation phase in which
the actual TCH channel carrying the voice data is allocated. The SMS messages
and the LUs are usually transmitted in SDCCH, but TCH may be used for that
purpose during congestion situations.

The role of the NSS is to operate as a gateway between the fixed network and
the radio network. It consists of Mobile Switching Centre (MSC), Home Loca-
tion Register (HLR), Visitor Location Register (VLR) and Authentication Centre
(AuC). The MSC acts as a switching node, being responsible for performing all
the required signaling for establishing, maintaining and releasing the connections
between the fixed network and a mobile user. The Home Location Register (HLR)
is a database that includes permanent information of the subscribers. This infor-
mation includes International Mobile Subscriber Identity (IMSI) and for example,
the identity of the currently serving VLR needed in routing the mobile-terminated
calls. The VLR contains temporary information concerning the mobile subscribers
that are currently located in the serving area of the MSC, but whose HLR is else-
where. The AuC is responsible for authenticating the mobile users that try to
connect to the GSM network. Also, a mechanism used to encrypt all the data
transmitted between the mobile user and the GSM network are provided by the
AuC.

The OSS consist of Operation and Maintenance Center (OMC) that is responsible
for monitoring and controlling the other network elements in order to provide
adequate quality of service for the mobile users. In other words, it measures the
performance of the network and manages the network configuration parameters
and their adjustments. Therefore, most of the methods and techniques discussed
in this thesis are mostly implemented in the OSS.
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2.1.2 UMTS Network

The Universal Mobile Telecommunications System (UMTS) consist of Universal
Terrestrial Radio Access Network (UTRAN) and the Core Network (CN) con-
nected via the Iu interface. In Figure 2.2, the UMTS network architecture is
depicted.

The UTRAN consist of several Radio Network Subsystems (RNSs) that are respon-
sible for connecting the User Equipment (UE) to the network. The RNS consist of
Radio Network Controllers (RNCs) and Base Stations (BSs). RNC is the switching
and controlling element of the UTRAN, located between the Iub and Iu interface.
The RNC controls the logical resources of its BSs and is responsible, for example,
to make handover decisions. The RNC and the BSs are connected through the
Iub interface, while the RNCs within the same UTRAN are connected via the Iur
interface. For more information about UMTS architecture, see (Kaaranen et al.,
2005).

The main tasks of BS include radio signal receiving and transmitting over the
Uu interface (air interface), signal filtering and amplifying, modulation/spreading
aspects as well as channel coding and functionalities for soft handover. The BS
includes transceiver/receiver equipment to establish radio connections between
UEs and the network.

In UMTS, the available frequency band is divided between the users on the basis of
Wideband Code Division Multiple Access (WCDMA) technique. In (W)CDMA,
the data for each user is transmitted in the whole frequency band, and no separa-
tion in frequencies nor time is present. Instead, the user data is multiplied by a
code sequence unique for each user (code chip-rate is higher than the bit-rate of
the data). After multiplying the user data with the corresponding codes, a single
spread spectrum signal is obtained and transmitted through the air interface. At
the receiver, the spread spectrum signal is multiplied by the same, user specific
codes which decodes the original data for each user.

The use of (W)CDMA technique causes the capacity of the UMTS network to be
a more difficult issue to handle, and no clear separation between network capacity
and coverage can be made. Also, the UMTS radio network becomes interference
limited rather than frequency limited as is the case with GSM networks.

2.1.3 Telecommunications Management Network

The TeleManagement Forum (TMF) is an international organization consisting
of service providers and suppliers from the communications industry. In order
to improve and accelerate the availability of network management products and
compatibility between products from different vendors, the TMF provides highly
authoritative standards and frameworks for the management of telecommunication
business operations.

The Telecommunications Management Network (TMN) model, as proposed by the
TMF, gives a general framework for the processes involved in telecommunication
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business management. The same framework is adopted by 3rd Generation Part-
nership Project (3GPP) in order to create a globally applicable 3G generation
cellular system known as the UMTS. According to Laiho et al. (2002c), the layers
of TMN (see Figure 2.3) consist of

• business management layer,

• service management layer,

• network management layer, and

• element management layer.

The business management layer can be seen as goal setting rather than goal achiev-
ing layer, in which high-level planning, budgeting, goal setting, executive decisions
and business-level agreements take place. For this reason, the business manage-
ment layer can be seen as strategical and tactical management unit, instead of
operational management like the other layers of the TMN model. The service
management layer is concerned with tasks including subscriber data management,
service and subscriber provisioning, accounting and billing of services as well as
development and monitoring of services. The network management layer manages
individual network elements and coordinates all network activities and supports
the demands of the service management layer. Network planning, data collection
and data analysis, as well as optimization of network capacity and quality are the
main tasks of this layer. The element management layer monitors the functioning
of the equipment and collects the raw data.

In addition to the TMN, the TMF has defined a Telecom Operations Map (TOM)
in which the processes of the TMN layers are defined in more detail. The TOM
links each of the high-level processes into a set of component functions and iden-
tifies the relationships and information flows between the component functions.
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The above mentioned frameworks and guidelines help the service providers to de-
fine the organization of the human resources and the tasks related to different
parts of the organization. In practice, the tasks adopted from the TOM require
the use of software tools, which are implemented by the Network Management
Systems (NMS). The NMS consist of all the necessary tools, applications and de-
vices that assist the human network managers to maintain operational networks.
The NMS tools are based on open interfaces in order to establish long-term sup-
portability for the tools, compatibility between tools from different vendors, but
also to enable rapid development of high quality tools and technologies. For this
reason, the 3GPP has defined a Network Resource Model (NRM). The NRM de-
fines object classes, their associations, attributes and operations as well as defines
the object structure which is used in, for example, management of configuration
and performance data.

In this thesis, the focus is on the network management layer of the TMN model,
and especially, the activities focusing on radio network part of the GSM and UMTS
networks. This is discussed in the next section.

2.2 Radio Resource Management

2.2.1 Control Loop Hierarchy

The objective of the radio resource management (RRM) is to utilize the limited ra-
dio spectrum and radio network infrastructure as efficiently as possible. The RRM
involves strategies and algorithms for controlling parameters related to transmis-
sion power, channel allocation, handover criteria, modulation scheme, error coding
scheme, etc. Most of the RRM algorithms operate in a loop, constantly monitoring
the current state of the system, and if necessary, control actions are triggered in
order order to improve radio resource usage.

In (Laiho et al., 2002c), a general hierarchy for different RRM techniques is pre-
sented in which the RRM loops are classified into three layers according to the
response time of the algorithm (length of a single iteration) as well as the amount
of information needed by the algorithm (see Figure 2.4). In the bottom layer,
the fast real-time RRM loops ensure the adequate quality of the currently active
radio links. These techniques are also called as the resource allocation algorithms
(RAA) and examples include serving cell selection and transmission power control.
In (Zander, 2001), a wide range of RRM techniques that belong to the fast real-
time loops are presented. The fast real-time RRM algorithms for power control,
channel allocation and handover control focus on maximizing operators revenue,
that is, the incomes of the operator. The maximization of the incomes is closely
connected with the concept of service quality, since only the services that meet
the quality of service requirements contribute to the income of the operator. The
quality of service are defined for each service, user and link separately, and there-
fore the fast real-time RRM loops are designed to meet these quality requirements
for each link separately. Therefore, the maximization of the incomes implies that
the number and duration of the communication links filling the quality require-
ments must be maximized. The quality of each link is optimized or controlled
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Figure 2.4: The hierarchy for RRM control loops.

separately, based on short number of measurements, typically averaged over short
time intervals. These RRM loops are implemented in the MSs and BTSs.

The middle layer of RRM algorithms consist of slow real-time RRM loops im-
plemented in the BSS or RNC of the network. Admission control and handover
control algorithms are typically implemented at this layer. The slow real-time
control loops perform RRM actions that are needed to maintain link-level perfor-
mance, such as triggering a BSC initiated handovers in order to support seamless
mobility. In (Kyriazakos and Karetsos, 2004), a wide range of adaptive dynamic
RRM techniques are presented that belong to the second layer of the control layer
hierarchy. These are fully automated control methods, but they are more closely
related to improving the average performance of the network, that is, their opera-
tion affects on all links currently active in the cell. The emphasis in these dynamic
reconfiguration methods is in congestion control, that is, making dynamic reconfig-
urations to the system when the system becomes highly loaded for relatively short
time periods. These techniques are usually triggered several times during one day,
and the length of congestion period typically lasts no longer than minutes. Exam-
ples of such methods for GSM networks include halfrate/fullrate tradeoff, forced
handovers, dynamic cell resizing and RX-level adjustment.

The top layer of the hierarchy consist of statistical non-real time control loops
implemented in the NMS. These loops are initiated and iterated offline and they
are used to improve radio resource usage in both operative networks but also in
network simulations taking place in the network planning phase. In this the-
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sis, the non-real time (offline) control loops based on statistical measurements
are called performance optimization techniques rather than control loops. These
performance optimization techniques have the longest response time but more in-
formation sources (variables, network elements) than the control loops at the two
bottom layers. The aim of these algorithms is to find the optimal configurations
(in the long run) without adapting to the natural, daily (short-term) variations in
the traffic patterns. The performance is measured in terms of Key Performance
Indicators (KPIs) that describe, for example, various failure rates over long time
periods, and are averaged or summed over all active users. The number of essential
KPIs that need to be analyzed is typically between 10 and 30, and the number
of raw network measurements related to the most important KPIs is hundreds
or thousands. For more information about RRM techniques for wireless network
planning and optimization, see (Laiho et al., 2002c; Kyriazakos and Karetsos, 2004;
Lempiäinen and Manninen, 2003).

2.2.2 A Framework for RRM Control Loop

In (Halonen et al., 2002), a control engineering framework for RRM control loops
aiming in enhancements in radio system is presented. The aim of the control loops
is to adapt the wireless network configuration parameters so that the performance
of the network is repeatedly improved. In other words, it is a process in which the
radio resource management algorithms and techniques are systematically applied
in a loop in order to improve system performance.

In Figure 2.5, a block diagram illustrating the control loop framework is depicted.
The control engineering approach regards the

• configuration parameters as system input,

• the user generated traffic is interpreted as unpredictable disturbance for the
system under control,

• the performance of the network in terms of statistical counters or KPIs is
the output of the system under optimization, and

• the control system is responsible for generating the improved configuration
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parameters given the deviation between the current performance of the sys-
tem and the target performance.

The performance optimization proceeds by measuring the performance of the sys-
tem with the current traffic load, and comparing it to the target performance. The
error or deviation between the current and target performance is fed to the control
module, which is responsible for producing a new system configuration in which
the gap between measured and target performance is decreased. This loop can be
iterated until the target performance is met.

Separate optimization loops can be developed for different subsystems of the mo-
bile network so that the optimization of the performance of one subsystem has a
minimal impact on other subsystems.

In this thesis, the focus is on the top level of RRM methods, that is, on the statisti-
cal non-real time performance optimization. Especially, the focus is on data-driven
approaches for optimization and planning. The control engineering framework is
used to distinguish the major functional blocks of the performance optimization
approaches and to analyze the implementation of the individual blocks and the
relationships between the functional blocks. This is important in order to fully
understand the benefits of data-driven approaches when implementing RRM con-
trol loops based on information extracted from massive data records.

2.2.3 Non-Real Time Performance Optimization

The performance optimization approaches, that is, the statistical non-real time
control loops, can be divided into:

• expert-based,

• adaptive autotuning,

• measurement-based, and

• predictive methods.

The most straightforward approach presented in the literature is based on perfor-
mance data visualization and active role of human expert in analyzing the data. In
this expert-based approach, the user is responsible for detecting the performance
degradations from the presented graphical figures. Then, the user should be able
to analyze the cause of the performance degradations. Finally, the user is responsi-
ble for deciding the optimal configuration among the alternatives based on his/her
understanding of the performance bottleneck. In other words, the mapping from
the alternative configurations to their expected performances takes advantage of
reasoning that need not be represented explicitly as a software algorithm. There-
fore, the tasks of the control system are actually performed by human resources.
The expert based approach is focused on fault detection and diagnosis and rep-
resenting related information in graphical form. The user is then responsible for
analyzing the figures and making the control action decisions.
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In the adaptive autotuning approach, the performance of the network under the
current configuration is measured by collecting data from the output of the sys-
tem under control. Then, the control system is responsible for intelligent decision-
making in order to update the configuration (parameters) towards better ones.
Finally, the new configuration is installed and new performance data is gathered.
This loop is repeated until convergence of configuration parameters is obtained.
The system under control must be a real operating network or a simulator and
the performance of the current configuration should be possible to measure effi-
ciently. The control system is usually equipped with expert-defined control rules
that aim in selecting improved configuration by exploiting prior knowledge about
the performance bottlenecks. The difference between adaptive autotuning and
slow real-time control loops like congestion relief algorithms is that the slow real-
time control loops are continuously active, and they can be triggered at any time.
The adaptive autotuning methods have a clear starting point and duration, and
the configurations achieved during the adaptation are fixed after the adaptation
process.

The third approach is based on the use of network measurements. The mea-
surement data allows the determination of the mapping between the alternative
configuration parameters and the system performance explicitly. In this approach,
there is no clear feedback from output variables to the updated configuration, but
instead, the improved (optimal) configuration is directly computed from the target
variables.

The fourth approach is based on developing predictive regression models using past
measurements extracted from the network. The estimated models allow the pre-
diction of network performance under unseen configurations and therefore, such
models are useful in automated performance optimization. In this approach, a
model for the system under control is obtained from past measurement data. The
system model enables the computation of the performance with different configu-
ration adjustments directly and the system model remains unchanged during the
optimization process. No feedback loop is needed to test configurations during the
decision making about the new configuration.

It should be mentioned here, that some of the autotuning methods developed for
performance optimization can be implemented as fully automated slow real-time
loops. Also, some of the autotuning methods developed for planning purposes
may be directly applied in optimization of operational networks as a non-real time
control loop or a slow real-time loop.

In the following sections, examples of above mentioned approaches for parameter
optimization in operative GSM networks and UMTS network simulations per-
formed during network planning are presented. In particular, the focus is on
data-driven techniques in which real or simulated network data is used as a source
of information in decision making regarding the optimal control action.
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2.3 Cellular Network Performance

In cellular network planning phase, for example, no performance measurements
like KPIs from live network are available and therefore, predictions of perfor-
mance must be used in decision making. Also, early testing of new optimization
algorithms in operative cellular networks may not be desirable in order to avoid
unnecessary risks of confusing the current network configuration. For these rea-
sons, most of the algorithms and methods developed for optimization of GSM and
UMTS network performance are developed and tested with network simulators.
From the optimization algorithm point of view, there is no significant difference
in whether the performance of live network or simulated network is optimized.
Therefore, it is possible to use most of the presented methods in both optimiza-
tion of live network, but also in final phases of the network planning process which
is strongly based on simulators. Firstly in this section, some basic theoretical mod-
els used for network performance predictions are reviewed. Then, the performance
measurements of a real mobile network are introduced. Finally in Section 2.4, the
performance optimization approaches presented in the literature are outlined.

2.3.1 Performance Prediction

Path Loss Models

The most frequently used models associated with network planning and simulation
include various path loss models. The purpose of the path loss models is to compute
the amount of attenuation in the radio signal on the propagation path. A model
based on pure theoretical derivations is the ideal path loss model where link gain
G(R) at distance R is defined by

G(R) =
C

Rα
(2.1)

where C is an antenna parameter and α is a parameter describing the propagation
environment (Zander, 2001). In decibel scale, the amount of path loss at distance
R is

L(R) = 10 log G(R) = 10 log C − 10α log R. (2.2)

The value α = 2 is used for free space and values from 3 to 4 are used in urban
environments.

Another widely used path loss model for the urban environments is the Okumura-
Hata model

L(R) = 26.16 log f + (44.9− 6.55 log hBTS) log R

−13.85 log hBTS − a(hMS) + 69.55, (2.3)

where f is the carrier frequency, R is the distance between BTS and MS antennas,
hBTS is the height of the BTS antenna and hMS is the height of the MS an-
tenna (Hata, 1980). The function a(hMS) can be selected from three alternatives
depending on the carrier frequency and the type of the operating environment
(large, medium or small city).
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The above mentioned path loss models are used, for example, in initial network
planning phase (dimensioning) in order to compute the maximum operating range
of 3G network base stations for given maximum transmission powers (Holma and
Toskala, 2004). In addition, path loss models are used to predict the relationship
between the original signal and interference, having direct impact on signal quality
in the radio links.

Capacity of GSM network

One of the most important performance criteria in mobile networks is the avail-
ability of resources (communication channels) with variating traffic load. In order
to predict the amount of traffic that can be supported, the blocking probability is
calculated. Traditionally, the Erlang-B formula is used as a model when computing
the amount of blocking with different number of channels and demand (Cooper,
1981). For example, consider the case when the incoming transactions follow the
Poisson arrival process with arrival rate λ, transaction length is exponentially dis-
tributed with mean 1/µ and the number of channels Nc is finite. The probability
that n channels are busy at random point of time can be computed using the
Erlang-distribution

p(n|λ, µ,Nc) =
(λ/µ)n/n!

∑Nc

k=0(λ/µ)k/k!
. (2.4)

Using this formula, it is possible to calculate the amount of traffic that is supported
with given blocking probability. If the Erlang-B formula is applied in network
planning (dimensioning), the number of communication channels that are needed
is computed in order to meet the traffic and blocking probability requirements.

Capacity of UMTS network

Since the UMTS network supports several bit-rates and the capacity in networks
using WCDMA multiplexing is interference limited, the estimation of the capacity
is based on calculations in which the transmission powers and path losses for each
active radio link must be known. The capacity of a WCDMA base station is
measured, for example, in terms of uplink loading

ηul = (1 + i)

N
∑

j=1

1

1 + W/ [(Eb/N0)jRjvj ]
(2.5)

where (Eb/N0)j is the signal to interference ratio of radio signal for user j, W is
the chip-rate, Rj is the bit-rate of user j and vj is the activity of the user j. It
should be noted here, that the consumption of wireless network resources caused
by a single user depends on the bit-rate of the service used, the speed of the user,
and the path loss (distance) influencing the radio signal. Also, the number of users
in the adjacent cells affect on cell capacity due to the interference originating from
the surrounding cells. The higher the bit-rate of the used service, the greater the
load factor for single user becomes. The larger the load factors of individual active
users are, the less new users can be allocated to the system.
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This load factor can be directly used to estimate the amount of interference (noise
rise) in addition to the basic noise floor caused by thermal noise.

In networks based on WCDMA , the estimation of the blocking probability must
take the occurrences of soft handover into account. The so-called soft capacity
indicates the amount of traffic that can be supported by a WCDMA cell with
prespecified blocking probability. A computational procedure for evaluating the
soft capacity based on Erlang-B formula is described in (Holma and Toskala, 2004).

2.3.2 Performance Measurements

The operation of the cellular network can be interpreted to consist of a sequence
of events. From the network operation point of view, certain events are closely
associated with bad performance, lack of resources or failures. The number of
undesired events during a measurement period (typically one hour) are stored
by a set of corresponding counters. In this thesis, the performance of operative
cellular networks is determined by the number of undesired events, such as blocked
channel requests and dropped calls. The optimization of operative networks aims
in minimizing the number of occurrences of such events.

Since the raw data consisting of the values of the counters at different time periods
is impractical to analyze as such, a wide range of KPIs are defined that aim in more
intuitive performance analysis (Halonen et al., 2002; Kyriazakos and Karetsos,
2004). The most important KPIs include the SDCCH and TCH Blocking Rates
(SDCCH/TCH BR), Dropped Call Rate (DCR), Call Setup Success Rate (CSSR)
and Handover Success Rate (HOSR). These KPIs can be computed in different
ways depending on the network vendor and the operator, but in general, they are
computed by dividing the number of undesired events with the total number of
attempts. For example, the DCR can be computed by dividing the number of
dropped calls due to inadequate radio link quality and other similar reasons in a
measurement period with the total number of calls in the measurement period.

However, the KPIs are mostly useful in fault detection rather than studying the
actual cause of undesired events. For example, the dropped calls can be caused
by failures in the A, Abis or air interfaces or any other related network element.
Observing a certain value of DCR does not indicate which of the network element
of interface caused the calls to be dropped. In order to isolate the cause, the
counter data must be studied. However, the use of counter data not always gives
the actual cause for the undesired events. For example, the cause for bad radio link
quality can be shadow fading or multipath fading, but also, interference originating
from other cells operating on the same frequency has an effect on signal quality.
There are no measurements available that could be used to distinguish between
these different causes for bad signal quality.

Another difficulty with the use of KPIs in performance analysis is caused by strong
interactions between close-by BTSs. For example, the HOSR can be on unaccept-
able level, but further analysis might reveal that the problem occurs mostly during
the outgoing handovers into a certain close-by BTS. A possible explanation for
failed incoming HOs may rely in lack of TCHs in the target cell. Therefore, the
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capacity problems in a close-by BTS may be visible in HOSR of a BTS, and it
is necessary to simultaneously analyze several KPIs from close-by BTSs in order
to fully recognize the location of the bottleneck in network performance. Similar
dependencies between KPIs may exist between BTSs on the same physical carrier,
or between the BTSs sharing some other physical resources.

2.4 Data-Driven Performance Optimization

2.4.1 Expert-Based Approach

In the literature, a wide range of radio network optimization methods exploiting
visualization and expert decision making are proposed. The expert-based ap-
proach has been studied using performance data from network simulators and live
networks.

In (Zhu et al., 2002), a set of indicators are proposed for the detection of over-
loaded cells. The method is used to optimize pilot power settings in an UMTS
network in order to obtain better network performance. A dynamic network sim-
ulator is used to demonstrate the benefits of the proposed indicators. The above
method is based on designing good indicators that can be visualized in very simple
form, such as time-series data or histogram. However, the visualization of perfor-
mance data of a wireless network has been tackled also with advanced data analysis
methods such as neural networks. For example, the works by Raivio et al. (2001)
and Raivio et al. (2003) demonstrate the use of clustering and neural networks
in the visualization of operational states computed from multivariate uplink per-
formance data of a WCDMA network. Also, the problem of finding similar base
stations according to uplink performance is tackled, enabling the simplification of
autotuning of key configuration parameters.

The work presented in Publication 1 is a modification to the above mentioned
method. In Publication 1, the downlink performance degradations in WCDMA
network simulation are detected during continuous monitoring of the state of the
network. The current states of the BSs are classified according to the shape of the
distribution of the related performance variables over short time periods. The end-
user is provided a simplified description of the possible states of the BSs. Then, the
user is able to find out which of the obtained states are inappropriate for the BSs.
By using a digital map roughly describing the radio signal propagation conditions
in the network area, the end-user is responsible for deciding what is the limiting
factor for the network performance. Also, the end-user is responsible for deciding
how the configuration should be adjusted in order obtain better performance for
the planned network.

In Publication 2, the same methodology has been applied for the analysis of up-
link performance of a microcellular network scenario and comparisons to perfor-
mance analysis based on WCDMA loading equations are presented. The presented
method can also be used in cell grouping, aiming in more efficient optimization
of large amount of BSs since similar BSs may share the same configuration pa-
rameters. In (Laiho et al., 2002b), the same methodology has been applied for
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the analysis of uplink performance in a microcellular network scenario, but also,
the flexibility of the presented methodology is demonstrated by using the same
method in the analysis of uplink and downlink performance simultaneously both
in micro- and macrocellular network scenarios. The general use of cell grouping in
the network optimization process is discussed in (Laiho et al., 2002a) and (Laiho
et al., 2002b).

In Publication 3, the problem of continuously monitoring the states of the cells
is approached from a new perspective. The definition of the BS state used in
performance monitoring and state classification is based on dynamics of the link
performance. A linguistic description of the dynamics of the alternative BS states
is provided. Using them, the user is responsible for deciding which states are
inappropriate and how the BSs in such states should be adjusted.

Vehviläinen (2004) and Vehviläinen et al. (2003) give a comprehensive study for
exploiting data mining and knowledge discovery methods in performance analysis
of operative GSM networks. The use of soft computing techniques like rough sets,
classification trees and Self-Organizing Maps for the easy analysis of important
features of the performance data is discussed. In addition, methods to use a priori
knowledge, that is, the application domain experience in the analysis process is
greatly emphasized.

In (Multanen et al., 2006), a method to use KPI data from live GSM network
to find city-sized low performing subnetworks from a very large network areas
is presented. This method applies well for determining locations of performance
degradations in which optimization should take place.

In Publications 4-5, the analysis of performance degradations in city-sized GSM
networks is studied. In Publication 4, a method to analyze the real KPI data
of an operating GSM network with neural network based visualization process is
described. Several different kinds of visualizations are provided in order to help
user’s task to analyze alternative causes for the performance degradations. The
user is responsible for deciding how the configuration should be adjusted in order
to prevent the same performance degradations to appear in the future. The main
benefit of this approach is that the same methods can be applied in optimization
of many different configuration parameters and network subsystems with low costs
as long as required expertise is at hand. For example, in Publication 4, the same
method is used to analyze TCH and SDCCH capacity problems without any major
modifications to the method. Also, the same methods are available for the analysis
of operative networks as well as for the analysis of simulated data being the output
of, for example, network planning activities.

However, the use of the expert-based methods requires extensive knowledge about
the problem domain and the optimization actions proposed by different experts
may not be consistent. Also, the main disadvantages of these methods include
the inability to observe how close-by cells interact during faulty situations. Fur-
thermore, the visual analysis of KPI data may be misleading, since the averaging
performed during KPI computation lose essential information about the true source
of the performance degradation.

In order to cope with these difficulties, a data-driven approache using the counter
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data instead of KPI data may be used. In Publication 5, an explicit description
of the network performance development is presented in order to study the cause-
effect chains in which the bad performance is developing. Possible cause-effect
relationships between the most important counters are searched from the data
and presented for the end user in a tree-structured cause-effect chains. Also, the
main objective was to study the bad performance situations in which the cause is
in fact located in close-by BTSs.

Ricciato et al. (2005) have presented methods to discover bottlenecks in perfor-
mance of live UMTS network. Several indicators of bottlenecks in TCP (Transmis-
sion Control Protocol) packet data transmissions are proposed. The visualization
used in this work is based on plotting the proposed indicators in the form of time-
series in which the presence of the bottlenecks are easily captured.

2.4.2 Adaptive Autotuning Approach

One of the most widely adopted approaches for performance optimization is the
adaptive autotuning approach in which the initial configuration parameter values
are repeatedly updated with better ones until convergence is obtained. The meth-
ods following this approach repeatedly change the configuration and measure the
improvement in real network or apply a network simulator.

In (Olofsson et al., 1996) and (Magnusson and Olofsson, 1997), the design of
optimal neighbor lists used by handover algorithms in GSM networks is discussed.
The aim was to design an automatic procedure in order to avoid manual adjustment
of neighbor lists for each cell. The presented method was based on simulations
in which the potential new neighborhood relations were tested, and if the new
relation proved out to be useful in the long run, it was finally included in the
updated cell list.

Barco et al. (2001) have studied the optimization of frequency plans based on
interference matrices. The interference matrices are derived from the measurement
reports sent by the mobiles. The presented technique is tested under GSM/GPRS
simulator, but it is mentioned, that field trials have provided good results also
under live network environments.

For the performance optimization of UMTS networks, very similar approaches have
been presented. Especially, the use of heuristic rules for deriving the improved con-
figuration has been proposed frequently. Nearly all of the optimization techniques
are developed under simulator based experiments. For example, Valkealahti et al.
(2002b) suggest a rule-based control strategy in order to optimize common pilot
power settings in an UMTS network. The work by Love et al. (1999) also proposes
a rule-based approach for the optimization of pilot powers in a CDMA cellular
system. In (Höglund and Valkealahti, 2002), a similar method has been presented
for the optimization of downlink load level target and downlink power maxima. In
(Höglund et al., 2003), the uplink load level target has been optimized with simi-
lar, rule-based approach. In (Valkealahti and Höglund, 2003), several parameters
are optimized simultaneously with similar approach.

Another strategy in the autotuning approach is based on minimization of formally
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defined cost functions rather than the use of heuristic control rules. The optimiza-
tion of common pilot power by minimization of the formal cost function with a
gradient method has been proposed in (Valkealahti et al., 2002a). In (Flanagan
and Novosad, 2002a) and (Flanagan and Novosad, 2002b), a technique for finding
soft handover parameters that provide minimal blocking in the network have been
presented. Flanagan and Novosad (2003) suggest a cost function based approach
for optimization of multiple parameters simultaneously, including soft handover
parameters, uplink and downlink power maxima, as well as uplink and downlink
load targets. Hämäläinen et al. (2002) have presented a cost function based au-
totuning method for the determination of planned, service specific Eb/No targets.
Zhu and Buot (2004) discuss the dependencies between different KPIs and their
sensitivities with respect to the optimized parameters. A sensitivity matrix is com-
puted and the autotuning approach is based on the computed sensitivity matrix.
Even tough the above mentioned approaches for UMTS network optimization are
all tested with radio network simulators, they can be used also to optimize oper-
ating WCDMA networks without any major modifications to the control action
decision making.

The adaptive autotuning approach has been applied in optimization of live GSM
network by Magnusson and Oom (2002). The signal strength thresholds used in
cell selection strongly affects the size of the cells, and therefore, they are tuned in
order to obtain an optimal traffic balancing between cell layers. Simple intuitive
rules are used to decide how the current configuration should be adjusted based
on the performance measurements.

Toril et al. (2003) have proposed an algorithm for automatic offline optimization
of handover margins in a live GSM network. The presented method is based
on updating the current handover margin with a simple heuristic update rule
depending on current amount of traffic and blocking.

The main characteristic of the above mentioned methods is that the mapping from
the alternative configuration settings to the performance of the different configu-
rations is determined by testing each of the configurations for certain amount of
time in the live network or simulator. Human-defined heuristics or gradients of
the objective function are used to select the direction and magnitude of the search
in an intelligent manner in order to obtain faster convergence. Still, testing a large
number of feasible configurations is a very time-consuming task and therefore,
optimization of large number of network elements and parameters simultaneously
may not be practical. For this purpose, the base stations could share the same
optimized value of the parameters or they could be assigned into groups of similar
BSs, and the BSs in the same group could use the same parameter values, thus
decreasing the dimension of the parameter space. In Publications 1-3, possible
methods to obtain this cell grouping have been presented.

2.4.3 Measurement-Based Approach

The third approach for the non-real time performance optimization is based on the
use of network measurements directly in decision making. That is, the available
data can be directly used to construct the configuration to performance mapping
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without the need of advanced data-driven inference. In (Toril et al., 2002), level-
quality data generated by a GSM/GPRS network simulator was gathered, and a
mapping between the received signal strength and the network performance was
obtained. Then, the selection of the updated signal level threshold was based on
operator requirements for the signal quality with certain confidence level.

In (Chandra et al., 1997), handover related parameters were selected based on
similar data records. During the operation, the network produced a data set that
allowed the construction of mapping between the handover parameters and the
amount of traffic carried by the cell. Nonlinear optimization was used to find the
optimal parameter value given the previously mentioned mapping.

In both of these studies, the used measurement data allowed the determination of
the mapping between the alternative configuration parameters and the system per-
formance explicitly. The drawback of this approach is that reliable measurement
data allowing the determination of the mapping between the configuration and the
system performance is not available for most of the essential network parameters.

2.4.4 Predictive Approach

Once the bottlenecks of the performance are found, it is necessary to adjust the
configuration in order to maximize the performance according to the operators
needs. In the previous section, different approaches to decide the optimal control
action were discussed. However, the decision about the new configuration may be
very difficult to make without knowledge of how the network will behave in the
new, unseen configuration. Predictive models can be applied in order to help and
to automate the decision-making procedure.

In the study by Steuer and Jobmann (2002), traffic balancing through optimiza-
tion of cell sizes is discussed. The cell sizes were modified by adjusting the signal
strength thresholds, handover hysteresis settings and sector shapes of the smart
antennas in order to avoid blocking. The presented approach is based on measure-
ments including the locations of the mobiles. The method makes predictions about
the performance of the system with the new, unseen configurations that are used
to select the optimum setting, therefore being based on predictive modeling. The
available data including the mobile locations were the driving force for deciding
the optimal traffic balancing. The benefits of this study were demonstrated with
GSM simulations.

The use of predictive modeling approach requires the use of common application
domain models in order to make the necessary predictions about the performance
of the adjusted configuration. However, the theoretical predictions and observa-
tions made from a real network are not always directly similar or comparable. In
Publication 6, the significant differences between theoretical predictions and true
measurements are highlighted. Also, a method to combine the use of common the-
ories and measurement data in order to provide more accurate predictions about
blocking in GSM networks is presented.

In Publication 7, a predictive modeling based approach is proposed for the op-
timization of signal strength thresholds in operative GSM networks. The model
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includes a data-driven component exploiting the past measurements for the deter-
mination of the mapping between current configuration parameters and network
performance and a knowledge-based component based on common theoretical mod-
els allowing the prediction of network performance under unseen configurations.
These results are strongly based on the results provided in Publication 6.
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Chapter 3

Data Analysis Methods

In this chapter, the data analysis methods used in this thesis are described. Firstly,
the process monitoring tasks in data-rich production or manufacturing processes
are discussed. Then, a wide range of methods and their usage to solve process
monitoring tasks are described.

3.1 Tasks of Process Monitoring

In the process and manufacturing industries, there is a strong tendency to produce
end-products of higher quality, to satisfy environmental and safety regulations and
to reduce manufacturing costs. In mobile communication industry, there is a push
to provide mobile communication services meeting the quality of service agree-
ments for constantly increasing number of subscribers. However, the improvement
of the product manufacturing or service provision is complicated by faults occur-
ring in the processes. According to Chiang et al. (2001), “a fault is defined as
an unpermitted deviation of at least one characteristic property or variable of the
system” and in order to satisfy the performance requirements, the faults need to
be

• detected,

• identified,

• diagnosed, and

• removed.

These tasks can be tackled by process monitoring methods. Fault detection is
defined as determination of whether a fault has occurred or not. Fault identification
involves selection of variables most relevant for the diagnosis of the fault. In fault
diagnosis, the actual cause of the fault, but also, the type, location, magnitude, and
time of the fault are determined. Process recovery involves removing the effects of
the fault.
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3.2 Survey of Research Fields

In engineering literature, a wide range of computational, data-driven methods that
can be efficiently used in different process monitoring tasks have been presented. It
turns out that methods useful for various process monitoring tasks are developed
under very different research fields.

In traditional statistics, data analysis focuses on careful experiment design, hy-
pothesis definition, data gathering and hypothesis testing. The emphasis is on
confirmatory data analysis, that is, hypotheses about phenomena are made, and
statistical tests are used to reject or confirm the hypotheses. For more information
about statistical hypothesis testing, see (Meyer, 1975) and (Milton and Arnold,
1995). The tests usually involve estimation of models, for example, linear regres-
sion models and testing the significance of the dependency. Also, a wide range of
mathematical tools like sample mean, variance and median are available to sum-
marize the information of experimental data. In addition, horizontal bar charts,
pie charts, line charts and scatter plots are often used to depict information about
one variable, to hunt for correlations between variables and to graph multivariate
data. The traditional statistical techniques are frequently used in quality con-
trol of industrial systems. For more information about traditional quality control,
see (Mitra, 1998) and (Chiang et al., 2001).

Due to the rapid development of computer aided systems, the amount of available
data has truly exploded and traditional hypothesis testing is no longer an efficient
approach for many cases. One of the most recent and rapidly growing research
fields related to inference in data-rich environments is data mining. According to
Hand et al. (2001), “data mining is the analysis of (often large) observational data
sets to find unsuspected relationships and to summarize the data in novel ways
that are both understandable and useful for the data owner”. In other words,
data mining focuses on methods that can be used to rapidly increase the amount
of knowledge of a system from which data is available. The emphasis is on hy-
pothesis generation rather than testing well defined hypothesis. The main tasks
of data mining include exploratory data analysis, descriptive modeling, predictive
modeling, pattern and rule discovery and retrieval by content. For the analysis
of unknown systems, the explorative data analysis task is the most important one
in order to find out the basic structure of the data, see Hoaglin et al. (2000).
Another useful set of methods developed under data mining discipline focus on de-
scriptive modeling, in which structure in (multivariate) data is typically searched.
Descriptive modeling consists of clustering and segmentation methods that apply
well for fault detection problems in many industrial applications. The data mining
methods for predictive modeling typically consists of classification and regression
techniques. They are most useful in fault detection, identification and diagnosis
of faults.

The science of graphical representation of data sets is also studied by an own
research field, data visualization, that is strongly rooted in the exploratory data
analysis. However, it has similar aims as statistics and basic scientific visualiza-
tions. According to Spence (2007), visualization means “forming a mental model
or mental image of something”. Another frequently quoted justification for data
visualization states that “solving a problem simply means representing it so as
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to make the solution transparent”. Advanced visualization techniques have been
developed due to the rapid increase in amount of data to be represented. Mod-
ern visualization techniques often rely on projection methods, in which the data
is first projected into lower dimension, and the projected data is visualized with
basic graphs. Therefore, the method for summarizing or data reduction differ
from more traditional statistics. Visualization can be effectively used in different
process monitoring tasks.

In artificial intelligence, the aim is to create machines to automate tasks requir-
ing intelligent behavior. Machine learning is a subfield of artificial intelligence
that concerns algorithms and methods that allow computers to learn from ex-
amples. For this reason, machine learning techniques are frequently applied in
tasks in which process data are used to learn useful relationships in the process.
The learning problems are typically very closely related to clustering, regression
and classification methods (Cherkassky and Mulier, 1998). However, the focus
of machine learning is on the computational properties of the methods such as
computational complexity.

A sub-field of machine learning more focused on practical applications of learning
methods is pattern recognition. It includes a wide range of information processing
problems of great practical importance. For example, speech recognition, classifica-
tion of handwritten characters, fault detection in machinery and medical diagnosis
are important topics in pattern recognition (Bishop, 1995). Most of the recogni-
tion problems take the form of clustering, regression or classification, preceeded
by careful data preprocessing and feature extraction.

System control is a field of engineering in which the aim is the control the operation
of a system so that it would function as intended, for example, in a production
process (see Åström and Wittenmark (1997)). The focus is not in management of
unsuspected faults, but instead, the maintenance and optimization of the normal
operational modes. An important part of system control is the system identifica-
tion step, in which a mathematical model for system behavior is estimated from
measurement data. System identification techniques are outlined in (Ljung and
Glad, 1994). The system identification consists of similar methods and procedures
as the predictive modeling techniques studied in the data mining, pattern recog-
nition and machine learning communities. However, the identification of systems
aiming in system control typically involves estimation of dynamical models from
the data.

Next, the basics of above approaches and how they can be used in different process
monitoring procedures are discussed. Then, different techniques such as neural
networks, fuzzy systems etc. are described and how they can be used in above
mentioned process monitoring problems.

3.2.1 Exploring and Visualizing Data

In (Hoaglin et al., 2000), a wide range of tools for explorative data analysis are
described. The most simple examples of such tools include stem-and-leaf plots,
letter-value displays and N-number summaries. In these techniques, the experi-

24



mental data or a batch is presented by a set of numbers describing the location
and spread of the observations.

Hand et al. (2001), Fayyad et al. (2002) and Spence (2007) give a good summary
of basic tools to visualize univariate and bivariate data. Univariate data is often
displayed as histogram or box plots, and bivariate data is typically displayed as
scatterplots. If the second variable is time, a time-series plot is often used.

The visualization of multivariate data can be done in at least two ways. The
multivariate data can be visualized with, for example, Chernoff’s faces (Chernoff,
1973) or parallel coordinate techniques (Inselberg and Dimsdale, 1990). Also,
projecting the data into two dimensions and the use of basic bivariate data plots
is of common practice. The projection is typically based on Principal Component
Analysis (PCA) (Hotelling, 1933), Multidimensional Scaling (MDS) (Torgerson,
1952; Young, 1985) or Self-Organizing Maps (SOM) (Kohonen, 2001).

By using exploratory data analysis and data visualization techniques, a human an-
alyst can efficiently study the information content of the data, and then, important
conclusions and problem refinement emerge. For example, the analyst may be able
to find out what are the most typical failure types of the processes, and it helps
the researchers to focus on certain subproblems more closely related to the fault
of interest. These methods are useful especially in fault detection applications in
which all the possible fault types are not known in advance, but instead, new types
of faults may occur. In this kind of applications, previously defined fault types and
detection based on them do not necessarily provide adequate solutions. This is
the case in mobile communication networks in particular, since new hardware and
radio resource algorithms may be installed and integrated to the existing system,
and the compatibility between different algorithms and equipment and possible
side effects are not necessarily known.

3.2.2 Clustering and Segmentation

Another useful data analysis problem type is clustering. In clustering, the data
is separated into groups or clusters so that the similarity between samples in the
same cluster is maximized and the similarity between samples in different clusters
is minimized.

According to Hand et al. (2001), clustering algorithms can be divided into three
classes: those based on finding the optimal partitioning of the data into a speci-
fied number of clusters, those aiming in finding the hierarchical structure of the
data, and those based on probabilistic models searching for the underlying cluster
structure. The clustering algorithms aiming in dividing the data into specified
number of clusters are referred as partitive algorithms. The hierarchical clustering
algorithms that search for the structure of the data can be divided into top-down
(divisive) and bottom-up (agglomerative) algorithms. For more information about
algorithms, see Everitt (1993).

As the definition of clustering implies, the characterization of distances between
samples and clusters is of great importance in clustering of data. For example,
the selection of the measure for the within-cluster and between-clusters distances
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greatly influences the solution returned by the algorithm. The within-cluster and
between-clusters distances can be measured in several ways. For example, the
within-cluster distance can be evaluated with average distance between each sam-
ple pair in the same cluster, or with the average distance of each sample from
the centroid of the cluster. The between-clusters distances can be based on for
example, the distances between the cluster centroids.

One of the main problems in data clustering is the availability of wide range
of algorithms that tend to search for very different types of clusters from the
data. Even the use of same clustering method with different number of target
clusters raises the question of which clustering serves the problem solving process
adequately. In the literature, several clustering validity indices have been proposed
in order to select the optimal clustering, for more information, see Bezdek and Pal
(1998).

A data analysis problem closely related to clustering is the segmentation of time-
series data. In time-series segmentation, a sequence of N consecutive (multivariate)
data samples is partitioned into groups so that each segment is as homogenous
as possible (Bellman, 1961; Terzi, 2006). The homogeneity can be defined in
several ways. Typically, each segment is represented by a model, for example, a
distribution or a time-series model. Similarly to the clustering algorithms, top-
down and bottom-up approaches for time-series segmentation have been proposed.
A good review of segmentation approaches have been presented in (Terzi, 2006).

Clustering and segmentation techniques are useful in fault identification and di-
agnosis. For example, clustering can be used to divide the process data into a
discrete set of states, and some of the states may represent undesired process con-
ditions. By studying the properties of such clusters, the causes of the faults may
be analyzed. In addition, the properties of the found fault clusters can be stored
and used later in fault detection. The segmentation algorithms can be used in
similar fashion. Especially, when the changes of the states occur more slowly than
the sampling rate of the measurements, it is more natural to apply segmentation
algorithms than clustering of rapidly changing data samples. In addition, seg-
mentation can be used for separating between different operational modes of the
process.

3.2.3 Classification and Regression

Classification and regression belong to the so-called supervised learning tasks. In
classification, each sample x is assigned to one of the several classes C. The goal
is to find a classification function C = f(x) that is able to predict the classes of
unseen samples x with minimal classification error. The classification function is
estimated from labeled data, that is, using a data set consisting of N examples
of (xi, Ci) pairs, i = 1, 2, . . . , N . In regression, the model output is continuous
and may consist of several variables. In other words, the learning task consist of
estimating a regression function y = f(x) using examples of xi and yi in order to
predict new samples with minimal prediction error.

For classification and regression, a wide range of methods is available. In (Milton
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and Arnold, 1995) and (Jørgensen, 1993), the basic linear regression for single
and multivariate cases are described. The principles of linear regression models
can also be extended to fit to many nonlinear modeling problems. In (McCullagh
and Nelder, 1983), a wide range of such extensions are described. One of the
most interesting approach is based on estimating black-box models using neural
networks. The neural network based classification and regression methods are
discussed in detail, for example, in (Haykin, 1999), (Cherkassky and Mulier,
1998) and (Bishop, 1995). The estimation of dynamical regression models from
process data is explained in (Ljung and Glad, 1994). Practical advises for building
models in the presence of missing data, redundancy in data and colinearity between
variables are given in (Hyötyniemi, 2001).

Classification and regression techniques can be used efficiently in many tasks re-
lated to process monitoring. For example, fault detection can be based on classi-
fying measurement data into previously specified classes of normal and abnormal
behavior. Fault identification and diagnosis can be based on regression models es-
timated between variables, and statistical tests can be used to find out the possible
causes of the faults. Also, regression techniques can be used to build a model for
the process under different operating regimes. The regression models can later be
used to predict system behavior after certain adjustments to the process.

3.2.4 Control and Optimization

In system control, the behavior of the system under different situations is very well
known and the system behavior can be affected through control signals. Especially,
the system model is able to predict the outcome of the process to different control
signals. Then, the problem is to decide how the system is supposed to function
and how to select the control signals continuously so that the system operates as
desired. In other words, control and optimization are most frequently used in fault
recovery procedures.

Traditional approaches for system control are based on single variable control
loops. The systems are described by linear, time-invariant differential or difference
equations that are usually solved in frequency domain using Laplace, Fourier or
Z-transforms (Lewis and Chang, 1997; Åström and Wittenmark, 1997).

Modern control theory is based on state-space representations of systems and they
are solved in time-domain (Hakkala and Ylinen, 1978). These methods are avail-
able also for nonlinear and time-variant systems. Modern system theory exploits
mainly the matrix algebra techniques.

The theory of optimal control is discussed in (Kirk, 1970) and (Åström and Wit-
tenmark, 1997). The optimal control problem has a clearly defined cost function
that is used to select the optimal controller from the alternative ones. In addition,
some physical constraints can be included to the controller design. Examples of
cost functions are the minimum resource and the minimum time problems.

The above approaches for system control are based on differential equation repre-
sentation of the system and its use to design the controller. The neural networks
can be used to model system behavior, but also to learn suitable controllers from
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experimental data without explicit knowledge about the system equations. The use
of neural networks in system control is discussed in (Nørgaard et al., 2000). The
use of other multivariate regression techniques in system control are also discussed
in (Hyötyniemi et al., 1997).

In some cases, the system can be influenced with static (constant) control sig-
nals rather than time-variable control signals. In these cases, various optimization
approaches can be used to design adjustments to the system or process behav-
ior. In (Bazaraa et al., 1993), several nonlinear optimization algorithms useful for
designing optimal process adjustments are described.

3.3 Traditional Methods for Regression

As stated in the previous section, regression techniques can be used in different
parts of process monitoring. Next, the basics of linear regression are described.

3.3.1 Linear Regression

Let us assume that we have observations of single output variable y(k) and N
predictor variables xi(k), i = 1, 2, ..., N from time instants k = 1, 2, ...,K. The
parameters θi, i = 0, 1, 2, ..., N of the linear regression model

y(k) = θ0 + θ1x1(k) + θ2x2(k) + . . . + θnxN (k) + e(k) (3.1)

can be estimated by minimizing the error e(k) = y(k) − ŷ(k) between the true

observations y(k) and predictions ŷ(k) = θ0 +
∑N

i θixi(k). Also, let us denote
Y = [y(1) y(2) . . . y(K)]T , E = [e(1) e(2) . . . e(K)]T and

X =











1 x1(1) x2(1) . . . xN (1)
1 x1(2) x2(2) . . . xN (2)
...

...
...

...
...

1 x1(K) x2(K) . . . xN (K)











. (3.2)

Now, the multiple linear regression model can be written in form Y = Xθ+E. An
unbiased estimate θ̂ for the parameter vector θ = [θ1 θ2 . . . θN ]T can be obtained
by minimizing the sum of squared error ET E between the true observation of the
output variable and the prediction given by the model, leading to

θ̂ = (XT X)−1XT Y. (3.3)

The ability of the model to explain the output data given the input data can
be analyzed in several ways. One of the most frequently adopted practices is to
compute the so-called coefficient of determination

R2 = 1−

∑K
k=1 [y(k)− ŷ(k)]

2

∑K
k=1 [y(k)− ȳ]

2
(3.4)
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where ȳ denotes the mean value of the observations y(k), k = 1, 2, . . . ,K. If R2

takes values close to 1, the data contains evidence about a strong linear trend
between the input and the output variables and R2 values close to zero indicate
that no linear trend between input and the output variables is present in the
observed data set.

3.3.2 Linear and Quadratic Programming

In many cases, the estimation of models of form Y = Xθ+E is based on minimizing
the sum of squared error ET E, but there are additional constraints that restrict the
set of possible parameter vector θ values. The error measure 1

2E
T E = 1

2Y
T Y −

YT Xθ + 1
2θ

T XT Xθ can be rewritten in form 1
2θ

T Hθ + fT
θ by omitting the

constant term not depending on θ and setting H = XT X and f = −XT Y. A
typical case where the sum of squared errors must be minimized and the values of
parameter vector θ are restricted is the so-called quadratic programming problem

minθ

{

1

2
θ

T Hθ + fT
θ

}

(3.5)

w.r.t Aθ ≤ b,

Aeqθ = beq,

θmin ≤ θ ≤ θmax,

where the matrix A and vector b define the inequality constraints of the problem,
matrix Aeq and vector beq define the equality constraints and vectors θmin and
θmax define the box constraints for the parameter vector θ.

Since the rows of Y may consist of samples with varying importance or variables
measured in very different scales, it may be necessary to add a weighting scheme
to the above model. The use of weighted error measure

Ew =











w1 0 . . . 0
0 w2 . . . 0
...

...
. . .

...
0 0 . . . wn











[

Y − Ŷ
]

= WE (3.6)

leads to the quadratic programming problem with H = XT WT WX and f =
−XT WT WY.

Another example of constrained optimization is the linear programming problem
taking the form

minθ

{

fT
θ
}

(3.7)

w.r.t Aθ ≤ b,

Aeqθ = beq,

θmin ≤ θ ≤ θmax.

In other words, we are looking for the parameter vector θ for which the value of
fT

θ is as small as possible, but it is also required that the solution vector θ must
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Figure 3.1: The basic elements of a neuron.

satisfy the inequality constraint Aθ ≤ b, the equality constraint Aeqθ = beq and
the box constraint θmin ≤ θ ≤ θmax. There are several methods that can be used
to find the solution vector θ for the problems stated above. For more information,
see Bazaraa et al. (1993).

3.4 Neural Networks

Artificial neural networks are efficient computational systems in which the learn-
ing is inspired by neuro-biological systems. Due to the good learning properties,
neural networks have found many applications in industry. Especially, neural net-
works are highly useful in many problems faced during process monitoring. These
include visual data mining for systems not very well known, but also, they pro-
vide simple methods for nonlinear regression and classification as well as control
of nonlinear systems. Next, the neural network structures used in this thesis are
shortly reviewed.

3.4.1 Neuron Models

Neural networks aim to solve engineering problems by following the signal pro-
cessing principles of neuro-biological systems. In general, neural networks are
constructions of simple units, called neurons, and they are adaptively combined
in order to solve various practical problems. In the literature, a variety of differ-
ent models for a neuron have been proposed (Haykin, 1999), (Demuth and Beale,
1998). In Figure 3.1, a typical neuron model is depicted. The basic elements of a
neuron are a set of synapses, a summing junction and an activation function. The
synapses receive the input signal xi for the neuron. In each synapse, a weight wi

is associated describing a strength of the corresponding synaptic connection. A
summing junction or a linear combiner adds the weighted input signals and a bias
b to form an activation potential v

v =
M
∑

i=1

wixi + b. (3.8)
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Finally, the activation potential is fed through an activation function ϕ limiting
the output y of the neuron into an appropriate range

y = ϕ(v). (3.9)

The most common choices for activation functions for regression problems are the
logistic sigmoidal function

ϕ(v) =
1

1 + exp(−av)
(3.10)

and the hyperbolic tangent function

ϕ(v) = tanh(v). (3.11)

In a linear model of a neuron, the output signal y is exactly the same as the
activation potential

y = v =
M
∑

i=1

wixi. (3.12)

A neuron model in which a short-term memory is used to save the previous input
samples in order to represent dynamical dependencies between the neuron input
and output is called a spatio-temporal model of neuron.

3.4.2 Adaptive Filters

Most of the neural network algorithms focus on nonlinear regression tasks. By
combining a high number of simple computational units (neurons), complex non-
linear dependencies can be modelled. In other words, the goal is to find a model
that is able to approximate the behavior of a system given the input data x(n)
and the output of the system y(n) from the time instants 1 ≤ n ≤ N . When
the dependencies between input and output variables of the unknown dynamical
multi-input single-output system are assumed to be linear, the model reduces to
the linear spatio-temporal model of a neuron, or to the so-called adaptive filter.
The mapping carried out by the adaptive filter is of the form

y(n) =

M
∑

i=1

wixi(n), (3.13)

where xi(n) denotes the ith input signal and wi is the corresponding weight of the
neuron. Note, that the multivariate input signal x(n) may consist of measurements
from many different variables but also to contain past measurements of the same
variables. The adaptive filter structure is depicted in Figure 3.2.

The learning problem, that is, the determination of values for the weights of the
adaptive filters can be solved by minimizing the sum of squared prediction errors
of the model over the whole observation session 1 ≤ n ≤ N , thus obtaining the so-
called linear (multi-variable) least-squares filter (Haykin, 1999). However, it also
possible to obtain an adaptive method for the solution of the same problem by
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Figure 3.2: Adaptive filter model used in linear system modeling. For each input
variable, two delay units are used to save the past observations.

minimizing the instantaneous squared prediction errors. In the literature, such a
method to produce an instantaneous estimate for the model parameters of a linear
model is called as the LMS (Least Meas Square) algorithm (Haykin, 1999). In the
LMS algorithm, the parameters of the network, that is, the weights of the neuron
are updated iteratively using

wi(n + 1) = wi(n) + ηxi(n)e(n), (3.14)

where e(n) = y(n)− ŷ(n) is the error signal obtained using the output ŷ(n) of the
model and the true output y(n) and η < 1 is a learning factor.

3.4.3 Multilayer Perceptrons

One of the most popular neural network architectures suitable for solving nu-
merous nonlinear function approximation problems is the multilayer perceptron
(MLP) (Haykin, 1999). It consists of multiple layers of nonlinear neurons. The
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output of the neuron i in layer l of an MLP network is defined as

y
(l)
i (n) = ϕ





Ml−1
∑

j=0

w
(l)
ij (n)y

(l−1)
j (n)



 (3.15)

= ϕ
(

v
(l)
i (n)

)

(3.16)

where w
(l)
ij and v

(l)
i (n) are the jth synaptic weight and the induced local field of

the neuron i at layer l respectively and ϕ is the nonlinear activation function. It

should be noted that the synaptic weight w
(l)
i0 of neuron i in layer l is also called

the bias, that is, the synaptic weight corresponding to the additional fixed input
signal x0(n) = 1,∀n.

The synaptic weights and the bias terms of the network are obtained by training
the network using the back-propagation algorithm

w
(l)
ij (n + 1) = w

(l)
ij (n) + ηδ

(l)
i (n)y

(l−1)
j (n) (3.17)

where δ
(l)
i (n) is the local gradient

δ
(l)
i (n) =

{

ϕ′i(vi(n))ei(n) , neuron i in output layer
ϕ′i(vi(n))

∑

k δk(n)wki(n) , neuron i in hidden layer
(3.18)

and the summation over k is performed over neurons in layer l + 1 in which the
neuron i at layer l is connected and η < 1 is the learning factor.

In order to process temporal patterns with MLP, a short-term memory can be
included in the static MLP model. In Figure 3.3, a single-output MLP with 5
neurons in the first layer and a single neuron in the output layer of the network is
depicted.

The most interesting property of an MLP is that it is able to approximate any
nonlinear function with arbitrary accuracy given enough hidden layer neurons,
making it very useful for the nonlinear system identification.

3.4.4 Self-Organizing Map

One of the most famous neural network algorithms is the Self-Organizing Map
(SOM) (Kohonen, 2001). It consists of neurons or map units, each having a loca-
tion in both a continuous multi-dimensional measurement space and in a discrete
low-dimensional grid. Within this architecture, the SOM is able to produce a
mapping from high-dimensional measurement space into low-dimensional grid of
map units making it especially suitable for data visualization. In Figure 3.4, a
SOM with 16 neurons arranged in a [4 × 4] regular grid for the processing of
3-dimensional input vectors x = [x1 x2 x3]

T is depicted.

During the training phase of the SOM, the map unit locations in the measurement
space are repeatedly adjusted, while the locations of the map units in the discrete
grid remain unchanged. The training of SOM consist of two phases: the winner
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Figure 3.3: A single-output MLP with 5 neurons in the hidden layer. A tapped
delay line with two delay units for each input variable Xi(n) is used to model the
short-term dependencies between the consecutive data samples.

map unit search and application of an update rule used to adjust the locations of
the map units in the measurement space. The winner search is defined by:

c = arg min
i
||x−m(i)||, (3.19)

in which m(i) is the location of the ith map unit in the measurement space and c
is the index of the winner map unit in the SOM grid. In winner search, an input
sample x is picked randomly from the multidimensional measurement space and
the map unit c closest to the input sample is declared as the winner map unit or
the best-matching map unit (BMU). Then, the locations of all the map units in
the measurement space are updated according to the rule:

m(i)(t + 1) = m(i)(t) + α(t)hci(t)[x(t)−m(i)(t)], (3.20)

in which the hci(t) is, for example, the Gaussian neighborhood function

hci(t) = exp

(

−
||rc − ri||

2σ2(t)

)

(3.21)

and 0 < α(t) < 1 is the learning rate factor. In hci(t), rc is the location of the
winner unit and ri is location of the ith map unit in the discrete output lattice of
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Figure 3.4: A [4× 4] SOM in a 3-dimensional measurement space.

SOM. The learning rate factor α(t) and σ(t) are monotonically decreasing functions
of time t.

The SOM is an efficient visualization tool and it has been widely used in ex-
ploratory data analysis tasks involving multivariate data. The SOM can be in-
terpreted to perform a nonlinear dimensionality reduction from the multivariate
measurement space to the low-dimensional grid. For this reason, the SOM can be
used in visualization of multivariate data.

3.5 Fuzzy Systems

In this section, the basics of fuzzy logic are presented. Fuzzy systems can be used
in knowledge-based process monitoring in systems for which mathematical models
are not available, but qualitative information is present. Also, fuzzy systems can
be used to estimate nonlinear regression models whose behavior can be analyzed
in terms of qualitative rules.

First, the concept of fuzzy sets is shortly introduced and the logical operations
to form statements with the fuzzy sets are described. Then, the concept of fuzzy
if-then rules for making logical reasoning using the fuzzy logic is presented.
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3.5.1 Fuzzy Sets, Logical Operations and Inference

In traditional set theory, an object can either belong or not to belong to a set. In
the fuzzy set theory, an object may also have partial memberships (Zadeh, 1965).
The membership of an object x to a fuzzy set A is defined by the membership
function µA(x) of a fuzzy set A. It maps all the values of x between 0 and 1
describing how well x fulfills the property specified by the set A.

As in the case of the Boolean logic, a set of logical operations can be used to
form statements of multiple fuzzy sets. A fuzzy intersection (or T-norm) operator
corresponds to the AND operation in Boolean logic. A simple example of a T-
norm filling the so-called boundary, monotonicity, commutativity and associativity
requirements is the multiplication of µA(x) and µB(x).

A fuzzy union (or S-norm) operator corresponds to the Boolean OR operation,
and an example of a S-norm operator filling the same requirements as the multi-
plication T-norm is the probabilistic or is Sprobor[µA(x), µB(x)] = µA(x)+µB(x)−
µA(x)µB(x).

The fuzzy sets can be used to construct fuzzy rules describing the dependencies
between quantities. A fuzzy rule or if-then rule is a statement of the form: if
x is A then y is B, in which A and B are linguistic labels of fuzzy sets defined
by the corresponding membership functions. The if-part of the rule is called the
antecedent (premise) and the then-part is called the consequence of the fuzzy rule.
The interpretation of a fuzzy rule consists of two parts: evaluation of antecedent
part value by applying the desired fuzzy operators for the membership function
values of the given input x and the application of an implication method. For
example, the evaluation of the antecedent part of a fuzzy rule “if x is low AND y is
high, then z is medium” consists of application of the T-norm operator for µlow(x)
and µhigh(y) in order to obtain µlow∩high(x, y).

A fuzzy implication is a mapping that associates the values of the antecedent part
to the value of the consequence part of the fuzzy rules. That is, the greater is the
value of the membership function of the antecedent part, the closer the output of
the implication is to the consequent part of the fuzzy rule. In fuzzy aggregation the
result of implication of several fuzzy rules are combined into a single fuzzy output.
Thus, it is needed when fuzzy logic is applied in reasoning with more than one
fuzzy rule.

3.5.2 Fuzzy Inference Systems

Fuzzy inference systems are parametric models in which the output of the system
as a response to system input is computed using fuzzy logic. The functional blocks
of a typical fuzzy inference system are:

• knowledge base consisting of the fuzzy rules and the membership function
parameters in the model;

• decision making unit performing the inference operations to the system input
using the fuzzy rules in the knowledge base;
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• fuzzification interface converting the numerical input signal into different de-
grees of matching of linguistic labels according to the membership functions
stored in the knowledge base;

• defuzzification interface converts the fuzzy output of the decision making
unit back to numerical in order to produce the system output.

In the literature, several types of fuzzy inference models have been proposed. A
good review is presented in (Lee, 1990a) and (Lee, 1990b). The main differences
in fuzzy inference systems are in the type of defuzzification method and the form of
fuzzy rules used in the system. In this thesis, a fuzzy model called the zeroth-order
Sugeno fuzzy model is used in system modeling. In this model, the fuzzy rules are
of the form “if x is A and y is B, then z is r” where A and B are linguistic labels
for two fuzzy sets defined by the corresponding membership functions µA(x) and
µB(y) respectively and r is a crisply defined constant. The main differences in
Sugeno fuzzy model with respect to other fuzzy models is that the membership
functions of the consequent part of the fuzzy rules are singleton spikes and the
implication and aggregation methods are fixed.

3.5.3 Adaptive Neuro-Fuzzy Inference System

As with the learning tasks associated with MLP networks, learning was used to
find the model parameters in order to find good representation of the training data.
Similarly in the case of fuzzy inference systems, the parameters of such a model,
that is, the antecedent and consequent parts of the fuzzy rules may be estimated
using a set of training data. This corresponds to learning rules from the data,
instead of producing the output of the fuzzy inference system given the fuzzy rules
and the input for the system.

Adaptive neuro-fuzzy inference system (ANFIS) is a multilayer network architec-
ture similar to multilayer perceptrons (Jang, 1993). The only distinction is that
the node functions perform fuzzy logic operations based on the Sugeno fuzzy in-
ference model for the input data. ANFIS model structure consists of the following
layers:

Fuzzification of system input: In this layer, the values of the input variables in the
membership functions defined by the fuzzy rules are computed. Thus, the output
of this layer is:

y
(1)
i = µAi

(xi), (3.22)

where Ai is the linguistic label for ith fuzzy set. For each input variable component
xi, multiple fuzzy sets may be associated.

Application of the fuzzy AND-operation: In this layer, the strengths of the fuzzy
rules are computed. The output of this layer is:

y
(2)
i = wi =

∏

j∈Ri

µj(x), (3.23)

where wi denotes the strength of the ith rule and µj(x) denotes the fuzzy sets
that belong to the premise part of the ith rule. The set Ri of rules is obtained
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Figure 3.5: ANFIS model structure.

by forming all the possible fuzzy set combinations in which a single fuzzy set is
included for each input sample component.

Normalization of the firing strengths of the rules: In this layer, the strengths of
the rules of the inference system are normalized:

y
(3)
i = wi =

wi
∑

j wj
. (3.24)

Application of implication method: The application of the implication method
corresponds to weighting the consequent part of the fuzzy rules according to their
firing strengths. Thus, the fuzzy rule with high firing strength will have more
contribution to the system output than a fuzzy rule with small firing strength.
Thus, the output of this layer is:

y
(4)
i = wiri =

wiri
∑

j wj
, (3.25)
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where the term wiri corresponds to the implication method.

Application of aggregation method: In this layer, the total output of the system
y(n) = y(5)(n) is computed as the average of the fuzzy rule outputs weighted by
the firing strengths of the rules. First, the consequent parts of the fuzzy rules are
aggregated to form a single fuzzy set by summing the singleton spikes. Then, the
result of aggregation is defuzzified to form the numerical system output by dividing
the sum of weighted rule outputs by the sum of the firing strengths computed in
the normalization layer:

y(5) =
∑

i

wiri =
∑

i

wiri
∑

j wj
(3.26)

Thus, the concurrent application of firing strength normalization, fuzzy implication
and aggregation corresponds to the weighted average defuzzification method.

3.6 Clustering

Clustering of data means partitioning the data set into a set of clusters. Next, the
k-means clustering algorithm and a validity index to choose the optimal clustering
is discussed. In addition, methods to allow easy analysis of cluster properties are
outlined.

3.6.1 k-means

One of the most widely used clustering method is the k-means algorithm (Everitt,
1993; Hand et al., 2001; Bezdek and Pal, 1998). It belongs to the partitive clus-
tering algorithms, that is, it divides the data into specified number of clusters (k)
by minimizing

E =
k

∑

i=1

∑

x∈Qi

||x− ci||
2, (3.27)

where Qi denotes the ith cluster and ci denotes the center of the ith cluster. The
definition of distances used in clustering makes implicit assumptions about the
shape of the clusters. The k-means searches for spherical clusters.

The basic version of k-means operates as follows: first, k cluster centers are picked
up in random fashion. Then, each sample in the data are assigned to the cluster
whose center is closest to the sample (typically, in the Euclidean sense). Then,
the mean vector of the samples in the same cluster is computed and defined as the
new cluster centroid. These steps are iterated until memberships of the samples
in the clusters remain unchanged.

3.6.2 Davies-Bouldin Index

When using partitive clustering methods such as the k-means, it becomes necessary
to select the optimal number of clusters in which the data is divided. Several va-
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lidity indices have been proposed. In this thesis, the Davies-Bouldin index (Davies
and Bouldin, 1979) minimizing

1

C

C
∑

k=1

max
l 6=k

{

Sc(Qk) + Sc(Ql)

dce(Qk, Ql)

}

(3.28)

is used. In above, Sc denotes within cluster distance and dce denotes between
cluster distance. In the literature, other validity indices have been proposed. For
more information, see Bezdek and Pal (1998).

3.6.3 Cluster Description

In data analysis associated with clustering, it becomes useful to know what prop-
erties are common in certain cluster and how the samples in a cluster differ from
the samples in the other clusters. In this thesis, a cluster description algorithm
presented in (Siponen et al., 2001) is used.

Each rule produced by the algorithm describe clusters in terms of value ranges for
each measured variable. Single descriptive rules and their combinations for each
cluster can be computed by maximizing the significance measure Sr(i, r) of a rule
r for cluster i:

Sr(i, r) = P (i|r)P (r|i) =
n2

r&i

nrni
, (3.29)

where nr is the number of data samples in the data set for which the rule r is
true, ni is the number of data samples in cluster i, and nr&i is the number of data
samples in the cluster i for which the rule r is true.

3.6.4 Clustering of SOM

In (Vesanto and Alhoniemi, 2000), a two-phase method for clustering is proposed.
Firstly, a SOM is trained for a given (multivariate) data set. Then, a clustering
algorithm is applied for the reference vectors (map unit locations in the measure-
ment space) of SOM, instead of the original data set. In this approach, benefits of
SOM in multivariate data visualization are combined with the clustering method,
providing an easy way to analyze the properties of the clusters. In addition, this
approach provides computational efficiency for very large data sets, for which the
direct clustering would be very time consuming.

Several clusterings are performed, for example, with k-means algorithm and dif-
ferent values for k and the best is selected according to the Davies-Bouldin index.

3.7 Segmentation

For the process monitoring purposes it is important to detect changes in the statis-
tics of the measured data. In order to track such variations, a segmentation for the
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time-series data can be obtained, and the properties of the segments can be stud-
ied, for example, using different kind of visualizations. Next, the use of histogram
maps and operator maps in time-series segmentation is described.

3.7.1 Histogram maps

In (Raivio et al., 2001, 2003), a method for segmentation of time-series data was
proposed. In this method, the model for the segments is characterized by a distri-
bution of the samples in a multivariate data space. In other words, the samples
of the sequences in the same segment are well described by the same distribution.
For simplicity, the distributions are approximated by a histogram describing the
number of samples in different clusters obtained with basic clustering algorithms.

In this method, the SOM is used to visualize the variety of histograms observed
in the data. This is established by obtaining the initial clustering and then, per-
forming histogram computation for each sequence of time-series data. Then, the
histogram data is visualized with the basic SOM algorithm.

Typically, the histogram data tends to form clusters of similar histograms. The
k-means algorithm can be used to link similar histograms and therefore, clusters of
histograms can be obtained. The sequences of time-series data whose histograms
belong the same cluster are declared to belong to the same segment.

Raivio et al. (2001, 2003) applied the segmentation method for the classification
of mobile cells into similarly behaving groups in order to obtain more efficient
network configuration optimization. In Publications 1 and 2, the histogram maps
are applied in mobile network performance monitoring problem.

3.7.2 Operator Maps

The basic SOM algorithm has been applied in many real-world data analysis prob-
lems (Kohonen, 2001). However, the basic SOM algorithm is mostly useful in
cases where the data samples in the data set are statistically independent. In
many process monitoring problems, the systems may be dynamical, that is, the
past measurements made from the system do have an influence on current system
output.

There are several generalizations of the basic SOM algorithm in which the map
units of the SOM are considered as parametric models instead of static data points
in the measurement space, resulting in so-called operator maps (Kohonen, 2001).
The operators may be, for example, parametric probabilistic models (Hollmen
et al., 1999) or dynamical models (Barreto and Araujo, 2000; Hyötyniemi et al.,
1997; Lampinen and Oja, 1989). Such extensions of SOM are more useful in the
analysis of dynamical process data, and especially, in segmentation of process data
in the form of time-series.
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Usually, the SOM algorithms are based on gradient algorithms of the form

θ(t + 1) = θ(t)− α(t)
∂E(t)

∂θ(t)
, (3.30)

where E(t) is the cost to be minimized (Kohonen, 1993). At each iteration t
(epoch), the whole measurement data 1 ≤ n ≤ N is used to compute the updated
model parameter values, therefore, the learning occurs in batch mode. When the
map units are considered to represent parameters of dynamical models, the error
measure E(t) can be defined as the average prediction error of the model given the
system input and true output y(n) for the system weighted over the neighborhood
hc(n),i(n, t) of the lattice of map units

E(t) =
1

2N

∑

m∈L

N
∑

n=1

hc(n),m(t, n)[y(n)− ŷ(m)(t, n)]2, (3.31)

where ŷ(m)(t, n) is the prediction of operator m for time point t for sequence n.

Note, that the winner search procedure in which the sequence c(n) for the neigh-
borhood function is computed can be used to adjust the length of the subprocess
segments that are assumed stationary. For example, the map unit with smallest
mean squared error over a process segment of length L and starting from time
step n0 can be declared as the winner unit for observations {xi(n), y(n)}, n =
n0, n0 + 1, ..., n0 + L− 1.

In this thesis, several kind of parameterizations for the operators are used. The
adaptive filters are used as operators in order to obtain a segmentation based
on differences in linear dynamics in the process. The MLP networks are used
as operators in order to model nonlinear dynamics within the segments. Finally,
ANFIS models are used for the same purpose as MLP operators. However, the
ANFIS operators enable the analysis of the nonlinear dynamical models in terms
of fuzzy rules, being more useful for process monitoring purposes.

For operators consisting of adaptive filters, the output of the operator m is defined
by:

y(m)(n) =

M
∑

i=1

w
(m)
i xi(n), (3.32)

where M is the dimension of the input space, w
(m)
i is the ith weight of the mth

adaptive filter corresponding to the ith input variable xi(n). The advantages of
this map unit parameterization are the easy interpretation of the model parameters
as correlation between variables and the efficient optimization of the parameters.
Since the model is linear in parameters, a solution corresponding to the global
minima can be obtained (for a single operational mode of the process).

In order to model any temporally local nonlinear dependence between the past and
current observations, the parameterization of the map units can be generalized
according to the MLP. In such a case, the output of the ith neuron in layer l of a
single operator m is

y(m,l)(n) = ϕ





Ml−1
∑

j=0

w
(m,l)
ij y

(m,l−1)
j (n)



 , (3.33)
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where y
(m,l−1)
j (n) is the jth input component for the neurons at layer l, w

(l)
ij is

the jth synaptic weight of the neuron i at layer l, Ml−1 is the number of inputs
for layer l and ϕ is a nonlinear activation function. The main disadvantage of the
MLP operators is the lack of interpretation for the estimated mapping.

In the analysis of spatio-temporal data, a human-comprehensible description about
the process is needed. An adaptive model suitable for this purpose is the ANFIS
model based on the zeroth-order Sugeno fuzzy inference system. In ANFIS, the
dependence between the model input and output can be represented by a set of
human-friendly fuzzy rules of the form: if x1 is A and x2 is B then y is r, where A
and B are linguistic labels and r is a crisp consequent part parameter of the fuzzy
rule. The output of an operator m in this case is:

y(m)(n) =

∑

k

∏

∀i,j∈Rm
k

µ
(m)
ij (xi(n)) r

(m)
k

∑

l

∏

∀i,j∈Rm
l

µ
(m)
ij (xi(n))

, (3.34)

where µ
(m)
ij (xi(n)) is the value of the jth premise part membership function for

the ith input component, r
(m)
k is the crisp consequent part parameter of kth rule

of the map unit m and Rm
k is the set of premise part membership functions that

belong to the kth rule of the operator m.

Due to use of above mentioned nonlinear operators of different complexity, it would
be appropriate to include a mechanism to prevent the over-fitting of the map units
into the data in order to achieve better generalization capability. Thus, according
to the regularization framework, an additional penalty term is added to the error
measure to be minimized by the SOM

Er(t) =
1

2N

∑

m∈L

N
∑

n=1

[

hc(n),m(t, n)
[

y(n)− ŷ(m)(t, n)
]2

+ λη[θ(m)]

]

(3.35)

where η(θ(m)) is the value of the parametric penalty function for the parameters
of the mth map unit in the SOM and λ is the regularization parameter. Regular-
ization can also be defined implicitly by using double resampling. In Publication
3, the operator maps were used in mobile network performance analysis.

3.8 Knowledge Engineering

According to Ljung and Glad (1994), there are two sources of knowledge for sys-
tem properties. Firstly, the collected experiences of application domain experts
and literature contain basic laws for the system operation. Secondly, the system it-
self, and especially, the observations made from the system is an important source
of information. The methods explained in the previous sections are heavily based
on using the measurement data from the system of interest. In this section, ap-
proaches are presented in which prior knowledge outside the data records play an
important role in addition to the measurement data. In (Ljung and Glad, 1994),
this is called knowledge engineering and it refers to tasks in which application
domain knowledge and mathematical model construction techniques are combined
in order to obtain knowledge-based models.
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Examples of how prior knowledge can be used to focus on phenomena of interest
include:

• selecting the most important variables from large amount of measurement
data depending on the problem at hand,

• selecting a subset of time points (samples) in which the variables meet certain
static requirements,

• including constraints for dependencies between measured variables in order
to prune the amount of possible solutions, and

• deriving new mappings based on mathematical models in order to fill gaps
between quantities of interest.

The use of application domain knowledge with the data-driven methods is strongly
dependent on the problem at hand. In this chapter, only the principles of using
prior knowledge are outlined. The more detailed description of using prior knowl-
edge is given in the next chapter of this thesis, in which the results of applying
data driven methods to radio resource optimization problems are described.

3.8.1 Variable and Sample Selection

In modeling tasks, it is essentially important to use only the relevant variables
in modeling. In many cases, the variable selection problem can be attacked with
methods not requiring prior knowledge about the data (Guyon and Elisseeff, 2003).
In many applications such as telecommunications, the variables tend to be very
colinear and correlate with the total amount of traffic in the system. In such
applications, it is essentially important to know the meaning of the variables and
to select the most relevant ones based on prior knowledge.

The simplest form of applying a priori information about the system in model
construction is the selection of the important variables for the problem at hand.
This step is nearly always executed when data analysis methods such as neural
networks are used to process measurement data. In the analysis of data produced
by networked systems, the topology and dependencies between individual data
generating systems may be important to include in the system modeling. In the
networked systems like wireless networks, this is especially important since geo-
graphically close-by BTSs are usually connected into same controllers and also,
many of the cellular network performance problems tend to be local in nature.
For these reasons, many modeling problems require that variables from close-by
cells are included in the same model. Similarly, it may be necessary to include
variables from other cells operating on the same frequency when building a model
for a single BTS (see Publication 5).

In addition to the selection of important variables for the analysis, it is often useful
to focus on certain value ranges of the selected variables. Especially in telecom-
munications, the KPIs have generally accepted thresholds that define the region
of acceptable performance. When analyzing process faults, it is natural to focus

44



on measurements in which acceptable performance is not met. In (Vehviläinen,
2004), an example of data analysis method is given in which certain thresholds for
important variables have been set and the data samples in which variables have
values on the range of interest are taken into more careful analysis. In Publica-
tion 4, a similar approach to select a subset of data for more careful analysis is
presented.

3.8.2 Constraining Dependencies between Variables

Sometimes, the prior information enables the simplification of the model estima-
tion process by restricting the number of possible solutions. When building models
with the counter data of the mobile networks, for example, it may become clear
that the regression model must not have any parameters having negative values
nor values greater to one. In addition, it is very common that the sum of regres-
sion model parameters must be equal to one. In Publication 5, such cases arise.
In regression problems with such restrictions, the solution can be obtained with
quadratic programming presented earlier in this thesis.

3.8.3 Importing Mathematical Models

In some cases, it is necessary to derive mappings between existing variables. The
derivation of the mappings is typically based on mathematical models describing
application domain phenomena.

In (Oussar and Dreyfus, 2001), a semi-physical approach is presented in which
the prior knowledge is in the form of continuous differential equations. Firstly,
the continuous differential equations are discretized and then, the selected com-
ponents of the discrete model are implemented by a neural network. The results
of increasing the number and complexity of the neural network based components
indicate that a model of increasing accuracy for the analyzed process is obtained.

Another approach of including prior knowledge is the case in which human expert is
able to give simple, linguistic rules about how the system operates/should operate
in some important operating regimes. These rules can be converted to fuzzy rules
and a fuzzy system can be obtained to perform the modeling or control task.
In this case, the prior knowledge takes the form of rules, and no mathematical
characterization of the knowledge is needed.

In telecommunications, the use of mathematical models in combination with mea-
surement data is a common practice. The most typical examples of mathematical
models in the telecommunication applications are path loss models and the Erlang-
B formula describing the capacity of mobile networks. In Publication 6, a method
for blocking prediction in GSM networks based on Erlang-B formula is presented.
In Publication 7, the path loss models are used in prediction of signal quality and
call dropping in the context of cell size optimization. The use of path loss models
allows the calculation of cell radius with different signal strength requirements.
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Chapter 4

Data-Driven Radio Resource

Management

In this chapter, the results of applying data analysis methods and knowledge en-
gineering techniques for the optimization of wireless network performance are pre-
sented. Firstly, the results of visualization of multivariate performance data of
a 3G network simulations are discussed. Then, the results of performance anal-
ysis using visualization are presented for operating GSM networks. Finally, the
predictive modeling approach for optimization of configuration parameters of an
operating GSM network is discussed.

4.1 Expert-Based UMTS Network Optimization

In this section, the results of applying data visualization to cellular network data
are presented. The purpose of the methods is to visualize useful information for
human expert responsible for optimizing network performance. Since the task
is usually associated with multiple performance measures and reasonable overall
performance is of interest, this step reduces to visualization of multivariate data.

4.1.1 Network Scenarios

The UMTS network analysis is performed for two network plans. Firstly, a mi-
crocellular network scenario consisting of 46 base stations with omnidirectional
antennas was analyzed. The network scenario is depicted in Figure 4.1. The data
from this network scenario was analyzed in Publication 1 with the histogram map,
the focus being on the analysis of downlink (BS to MS) performance of this net-
work. In Publication 2, the analysis of this network scenario focused on the uplink
(MS to BS) performance monitoring.

The second network plan consisted of 31 base stations with sector antennas and one
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Figure 4.1: Microcellular network scenario with 46 base stations with omnidirec-
tional antennas.

Figure 4.2: Macrocellular network scenario with 31 base stations with sector an-
tennas and one omnidirectional antenna.

base station with omnidirectional antenna. This macrocellular network scenario is
depicted in Figure 4.2. This network scenario was analyzed in Publication 3 with
the operator maps. In these analysis, the focus was on the downlink performance.

4.1.2 Cell Monitoring

When a large data record describing the operation of wireless network is at hand,
it is natural to question how it should be used in order to analyze how the network
is operating. For this purpose, a some kind of description about process states
and their variations should be obtained, for example, in graphical form in order
to provide this information for human expert. Next, three approaches to define
a process state and to estimate the process states in different time segments are
presented (see Section 3.7).
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(a) (b)

Figure 4.3: (a) Visualization of data clusters and (b) their properties using SOM.

Histogram Map

In Publication 1, the problem of monitoring the state of the cells in a microcellular
UMTS network scenario was studied with the use of histogram map. The focus
on downlink performance of the network. Firstly, the most important variables
from all the 46 cells were used to train a SOM. These include the number of
users (nUsr), downlink transmission power (dlTxp) and downlink frame error rate
(dlFER). Then, the codebook of the SOM was clustered into five clusters using
k-means clustering algorithm. Figure 4.3(a) shows the trained SOM and how the
SOM grid is separated into clusters obtained with the k-means algorithm. The
rules describing the clusters in the measurement space are shown in Fig. 4.3(b).
From the rules it easy for application domain expert to assess the properties of each
data cluster. For example, cluster 4 represents data samples with unacceptable
high downlink frame error rate (dlFER > 0.05).

In order analyze slow variations in the behavior of the mobile cells, segmentation for
the time-series data was performed. The histogram map was used in segmentation
by first dividing the data into sequences of equal length, and computing the number
of samples in previously computed clusters for each of the data sequence. The
histograms of the sequences were used to train the histogram map.

Similarly to the SOM trained with the mobile network data, the histogram map
can be clustered in order to obtain the segmentation of the time-series data. The
trained histogram map was clustered into seven clusters using the k-means clus-
tering algorithm in order to separate dissimilar areas on the map. Figure 4.4(a)
shows the clustered histogram map.
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(a) (b) (c)

(d) (e) (f)

Figure 4.4: (a) Clusters on the histogram map and (b) their properties visualized
by histograms. (c) Properties of clusters are manually labeled on top of SOM.
Trajectories of mobile cells (d) 8, (e) 14 and (f) 44 of the mobile network on the
histogram map.

In Figure 4.4(b) the properties of each cluster on the histogram map are shown.
Each cluster represents differently distributed data samples in the measurement
space. These distributions are visualized as a data histogram in which each bar
represents the density (occurrence probability) of the corresponding data cluster in
the measurement space. For example, cluster 6 on the histogram map represents
density structures in which most of the data samples are located in data cluster
4 as indicated by the height of the 4th bar of the histograms. As mentioned
earlier, the data cluster 4 represents data samples with unacceptable high downlink
FER, indicating that cluster 6 on the histogram map describes undesired data
distribution and thus it should be avoided by making corrections to the process
configuration parameters. In Figure 4.4(c), the histogram map in which the cluster
properties are manually labeled on the map is shown.

In order to monitor the behavior of the mobile cells, the trajectory of the map units
on the histogram map that best describe the state of the consecutive sequences
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of the cell data can be visualized. By following the trajectory, the changes in cell
behavior are easily detected. Figures 4.4(d)-(f) illustrates this monitoring process
for mobile cells 8, 14 and 44. For example, cell 8 starts from low load state, visiting
medium load and high load areas before settling back to medium load area. Mobile
cell 14 operates on low load, except a small peak in dlFER in the beginning of the
data set. Cell 44 operates exclusively on high load and dlFER area.

In Publication 2, similar analysis was performed for the uplink data of the same
network scenario. In addition, the presented results were compared with tradi-
tional network analysis based on uplink loading equations.

Linear Operators

A second approach to cell monitoring is based on tracking the changes in linear
dynamics in the cells. This was based on the use of operator maps in which the
operators were adaptive linear filters (see Publication 3). In Figure 4.5(a) the
parameters of the adaptive filters of the [4× 4] operator map are shown. Each bar
of the histogram indicates the value of a single parameter of the corresponding
model. The first bar corresponds to the coefficient of the non-delayed sample
of the number of users and the second bar corresponds to the coefficient of the
first delayed sample of the number of users. The third bar corresponds to the
non-delayed sample of downlink average transmission power, and the fourth bar
corresponds to the delayed sample of the downlink average transmission power.
The last bar indicates the bias term of the model, that is, the mean of the output
process (downlink frame error rate).

From the figure it can be seen that the parameters of the map are topologically
ordered since the neighboring map units do have similar values for the parameters.
Three clearly different areas can be found on this map: the map units in the
upper left corner have the highest values for the coefficients corresponding to the
current and past values of the number of users in the network. That is, the more
users the mobile cell has, the worse is the quality of the service provided by the
cell since there is a strong positive correlation between the number of users and
the downlink frame error rate. In contrast, the coefficients corresponding to the
downlink average transmission power tend to have small negative values. In other
words, high values of the downlink average transmission power tend to have a weak
lowering effect on the downlink frame error rate.

The upper right corner of the map represents similar behavior, except that the
frame error rate is not well explained by the changes in the downlink average
transmission power. This is due to the fact that the values of the corresponding
parameters are nearly zero. Thus, the only conclusion that can be made is that
the higher the number of users in the cell is, the higher is the frame error rate.

The lower half of the map consists of models with small positive values for all
parameters, stating that both the number of users and the downlink average trans-
mission power correlate positively with the frame error rate. Thus, the bad quality
can up to some level be explained by the number of users, but an increase in trans-
mission power does not seem to produce better performance.
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(a)

Cell 1

(b)

Cell 4

(c)

Cell 9

(d)

Figure 4.5: (a) Parameters of the adaptive filters of the operator map. The tra-
jectories of the cells (b) 1, (c), 4 and (d) 9 of the mobile network.

The visualization of the parameters of the adaptive filters as shown in Figure 4.5(a)
can be used to examine the spectrum of the data generating models in a piecewise
stationary process. Similarly to the histogram map based visualization, the tra-
jectories of the mobile cells on the operator map can be used to analyze long-term
variations in the cells. In Figures 4.5(b)-(d), examples of such trajectories have
been shown. In cell 1, the variation in performance can be explained only in terms
of the high number of users, since they visit the upper right corner of the map.
Cell 4 is an example of base station in which the bad performance occurs when the
number of users is high, but the increase of the downlink transmission power does
not seem to help in reaching the network users. Cell 9 suffers from a decrease in
performance when the number of users is high and the average transmission power
too low since they visit the upper left corner of the operator map.

Non-Linear Operators

The third approach for cell monitoring is based on operator maps in which the
operators are simple ANFIS models (see Publication 3). For purposes of network
planning, it is of interest to know when the cells generate high values for the frame
error rate. Thus, the analysis of the rule plane shown in Figure 4.6(a) can be used
to track the conditions for various quality problems. For example, the map units
{6, 7, 11} tend to produce high FER values when the number of users in the cell is
low. At the same time, the number of users in the past were high, indicating that
the bad performance occurs when the number of users drops. In map units {7, 11},
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if nUsr(n) is very high
   nUsr(n−1) is very high
   dlTxp(n) is very med

   dlTxp(n−1) is very med
   

then dlFer is 0.70

1
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   nUsr(n−1) is very high
   dlTxp(n) is very med

   dlTxp(n−1) is very med
   

then dlFer is 0.70

2

if nUsr(n) is very high
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2
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   dlTxp(n) is very med
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then dlFer is 0.72

3
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then dlFer is 0.72

4

if nUsr(n) is very med
   nUsr(n−1) is very high
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   dlTxp(n−1) is very med
   

then dlFer is 0.72

5

if nUsr(n) is very low
   nUsr(n−1) is very high
   dlTxp(n) is very high

   dlTxp(n−1) is very med
   

then dlFer is 0.76

6

if nUsr(n) is very low
   nUsr(n−1) is very High
   dlTxp(n) is very med

   dlTxp(n−1) is very High
   

then dlFer is 0.70

7

if nUsr(n) is very med
   nUsr(n−1) is very high
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   dlTxp(n−1) is very med
   

then dlFer is 0.71

8

if nUsr(n) is very high
   nUsr(n−1) is very high

   dlTxp(n) is very low
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then dlFer is 0.74

9
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2
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then dlFer is 0.72

10

if nUsr(n) is very low
   nUsr(n−1) is very high
   dlTxp(n) is very med

   dlTxp(n−1) is very High
   

then dlFer is 0.74

11

if nUsr(n) is very high
   nUsr(n−1) is very low
   dlTxp(n) is very med

   dlTxp(n−1) is very med
   

then dlFer is 0.72
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if nUsr(n) is very high
   nUsr(n−1) is very high
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   dlTxp(n−1) is very med
   

then dlFer is 0.73

13

if nUsr(n) is very med
   nUsr(n−1) is very high

   dlTxp(n) is very
2
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   dlTxp(n−1) is very high
   

then dlFer is 0.73

14

if nUsr(n) is very high
   nUsr(n−1) is very med
   dlTxp(n) is very high

   dlTxp(n−1) is very low
   

then dlFer is 0.77

15

if nUsr(n) is very med
   nUsr(n−1) is very high
   dlTxp(n) is very med

   dlTxp(n−1) is very med
   

then dlFer is 0.73
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(a)

Cell 2

(b)

Cell 10

(c)

Cell 31

(d)

Figure 4.6: (a) Rule plane 3 of the best ANFIS operator map. The centers of the
Gaussian premise part membership functions are described by the user-selected
label set {LOW, Low, low, med, high, High, HIGH}. The shape of the membership
functions are described by µverynA(x) = µA(x)n+1. The trajectories of the mobile
cells (b) 2, (c), 10 and (d) 31 of the mobile network on the map of ANFIS models.

the transmission power drops from high to medium, in contrast with map unit {6}
in which the increase in transmission power from medium to high produces the
bad quality. The map unit {12} seems to generate bad performance when there
is a rapid growth in number of users with transmission power being constantly
medium.

According to the figure, cells 10 and 31 visit the map units representing undesirable
behavior and the cell 2 represents normal operation.

4.1.3 Cell Grouping

In cell monitoring, the interest was in the analysis of variations in the cell per-
formance during the network operation. This was accomplished by dividing the
measurement period into sequences, and performing a segmentation among the
sequences and monitoring the changes in the currently active segment.

Such a segmentation can be performed for long data sequences also, thus establish-
ing a grouping of cell behavior according to long-term characteristics of operation.
Such a grouping is especially useful when the static configuration parameters of
the base stations need to optimized. In such cases, the variations in short term
behavior is not as useful information as the long-term behavior. Since the opti-
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(a) (b)

Figure 4.7: (a) Clusters, (b) classification of mobile cells.

mization of the mobile network parameters cell by cell can be very time consuming,
the cell grouping can be efficiently used to simplify the optimization task. In other
words, the mobile network parameter optimization reduces to optimization of the
parameters of the clusters of cells instead of cell by cell (Laiho et al., 2002c) so
that the cells in the same cluster have the same configuration parameters. The
histogram map and the operator maps described in the previous section can be
used to obtain this cell classification.

In Publication 2, the histogram map was used to obtain the cell grouping. In
Figure 4.7(a), the clustered histogram map used for cell grouping is depicted.
This classification is based on uplink data of the microcellular network scenario.
The histogram map consists of 8 behavioral clusters, each indicated by a different
gray-level. In Figure 4.7(b), the map units best describing the data from different
mobile cells are shown.

4.2 Expert-Based GSM Network Optimization

4.2.1 A SOM Based Visualization Process

In Publication 4, a SOM based analysis process to track performance bottlenecks
in operating GSM network was presented. The proposed SOM based analysis
process is illustrated in Figure 4.8. In this study, the KPI data from the GSM
network was studied. The network consisted of 41 base stations from which the
most important KPIs over 10-week time period were measured.

When projection methods such as the SOM are used in data visualization, all
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Data selection SOM Clustering Visualization

Figure 4.8: A block diagram illustrating the phases of the proposed analysis pro-
cess.

samples usually have equal priority when determining the projection (dimension-
ality reduction) function. In order to focus on certain network problem types, the
samples representing normal operation can be removed before the more detailed
analysis. When analyzing the performance degradations of a GSM network, the
most important samples can be selected by choosing the KPIs of interest and re-
taining only the samples for which the operator defined objective values are not
met. For example, if an accurate visualization of traffic channel problems are
desired, it would be justified to use only the samples in which traffic channel or
signaling channel blocking occurs, or traffic channel drop rate exceeds 2%.

After the subset of data of interest is selected, the data is normalized in order
to make all variables equally important independently on the measurement unit.
Then, the normalized data is used as the input data in SOM training. The trained
SOM is used to visualize the multi-dimensional input data using the component
plane representation of SOM.

As mentioned earlier in the thesis, clustering can be used to divide performance
data into different clusters representing different types of failures. In this study,
the approach presented in Section 3.6.4 was adopted in which the clustering is
performed for trained SOM in order to provide simple visualization of cluster
properties. After the SOM training and clustering, a visualization of the selected
multi-dimensional input data is obtained. This information helps the application
domain expert to make inferences about the possible problem scenarios present in
the data. The cluster analysis based on SOM component planes reveals the variety
of failures faced by the network. It is relatively easy task for an expert to select the
most important variables (KPIs) for each failure type. By analyzing the amount of
samples in different fault clusters originating from each cell of the GSM network,
the locations of the different failure types are efficiently obtained. Finally, the
visualization of the times of occurrence of different fault types reveals additional
temporal information about the faults. These three types of simple visualizations
allows the selection of variables, cells and time periods that are taken into further
analysis using conventional methods.

In the analysis of SDCCH problems in the network, the samples meeting the
requirement SDCCH Blocking > 0 % was used in order to filter the uninformative
(normal operation) samples from the analysis. Then, histogram equalization based
normalization method were applied for the selected data set in order to obtain
invariance w.r.t the scales of the variables. Then, a SOM was trained in which the
map units were organized in a [15× 10] hexagonal grid by applying 500 epochs of
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Figure 4.9: SOM of data samples representing possible signaling channel capacity
problems. Clusters 1, 4, 6 and 7 represent possible signaling channel capacity
problems.

batch training and 500 epochs of sequential training.

In Figure 4.9, the so-called component planes of the SOM are shown (Vesanto,
1999). In addition to reveal the cluster structure, the cluster indices of the map
units obtained with the k-means are shown along with the visual U-matrix repre-
sentation of SOM (Ultsch and Siemon, 1990).

By analyzing the properties of each cluster using the component planes, four clus-
ters that represent possible signaling channel capacity problems can be identified:
cluster 4 contains high values for signaling channel blocking, with moderate amount
of traffic. Clusters 1 and 6 represent behavior in which a drop in channel avail-
ability is likely to cause the high blocking values. Cluster 7 represents channel
blockings that are likely to be a result of bad signal quality, i.e. the connection
is refused because the required channel quality could not be provided. The U-
matrix reveals that the clusters 1, 6 and 7 are located further apart from the other
clusters.

The locations of the various fault types can be analyzed by computing the number
of hits into different fault clusters (see Figure 4.10(a)). From the figure, it becomes
evident that nearly all of the samples in the fault clusters were generated by
only three cells of the network. Hits from other cells can be viewed short-term
failure situations that do not give reasons to major configuration adjustments and
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Figure 4.10: (a) Cells 12, 15 and 16 contribute the most to the fault clusters. (b)
In cell 12, the failures appear mostly during a 4-day period.

therefore can be ignored.

When plotting the times of occurrences of the hits to the fault clusters from these
three cells, it was found that the cell 12 had a 4-day period when most of the
samples into fault cluster 1 were generated (see Figure 4.10(b)). This suggests
that the signaling channel availability were temporarily reduced (i.e. the amount
of available channels dropped) and therefore, some of the channel requests were
blocked. In order to verify this assumption, it was easy to plot the variable de-
scribing the number of available SDCCH channels against the number of blocked
SDCCH requests during that 4-day time period. After this simple plotting, it was
even more clear that it is the drops in availability that causes the requests to be
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blocked. This procedure is a good demonstration that failures related to multiple
variables can be easily found, the base stations and the time periods in which they
occur is easy to obtain and verifying plots are straightforward to accomplish with
this kind of analysis procedure.

In Publication 4, the same analysis procedure was followed for the analysis of
TCH capacity problems in the same network. Several interesting failure situations
were found from the data. Firstly, the drop in channel availability in close-by
cells was detected. In addition, blocking problems in two cells due to the lack of
resources were detected. In addition, interesting relationships between cell size and
call dropping were found, stating that high call dropping rate is often observed in
small cells and during time periods with low amount of traffic.

4.2.2 A Knowledge-Based Visualization Process

In previous section, the analysis of GSM network performance was based on KPI
data. Also, the main objective have been in detecting the type and geographical
location of the performance bottlenecks. The network analyzer have been respon-
sible for analyzing the cause of the performance problems. In this section, the
performance is analyzed using the raw counter data. By using the counter data,
the possible causes for the performance problems can be tackled more automati-
cally based on observations, which is not possible on the basis of KPI data.

In Publication 5, a multi-layer hierarchical structure of cause-effect pairings were
developed. The set of available measurements were assigned into variable groups
based on a priori knowledge about the semantics of the variables. Within a variable
group, the variables are clearly connected while the variables from different groups
are independent on each other. Therefore, the modeling problem is more easily
solved by identifying a separate subsystem for each variable group separately.

In Figure 4.11(a), the memberships of the variables in different groups (subsystems)
are shown. This plot shows the set of input variables (gray) and output variables
(black) that belong to each of the subsystems (y-axis). The subsystems tend to
form a hierarchical structure (see Figure 4.11(b)), i.e. the outputs of a subsystem
describing some low-level phenomena can be an input to a higher-level subsystem.
In the figure, the solid lines indicate that the input of the upper level system
contains outputs of the lower level system from the same BTS only. The dashed
line indicates, that the input of the upper level system contains input signals from
lower level systems of the other BTSs also.

For each variable group, a simple constrained optimization problem with suitable
constraints were defined. In Table 4.1, the different types of models and the
corresponding constrained optimization problem for the subsystems are shown.
For different model types, a priori knowledge about the associated variables was
used to determine the constraint equations and, for example, the presence of bias
in the model.

Once the model parameters were estimated from the data, the cause-effect chains
related to performance degradations in the network can be analyzed using the
model parameters. In order to visualize the most interesting and useful cause-
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Figure 4.11: (a) Input and output variables (x-axis) of different subsystems (y-
axis). (b) The subsystem hierarchy.

effect chains, a list of strong dependencies was obtained. An item to a dependency
list is generated per each input-output variable pair, including the strength of the
dependency between the input and output variable (the value of the parameter
a), a measure of model accuracy (root mean square prediction error (RMSE) of
the model), and a measure of models importance in overall network performance
analysis (the average number of failures stored in the output variable of the input-
output variable pair).

After all the models have been estimated and the properties of each input-output
variable pairs are stored in the dependency list, a tree-shaped graph is constructed
in order to analyze the cause-effect chains generating the major performance degra-
dations of the network. Since the number of theoretically possible dependencies is
extremely large, only the most important dependencies are included to the depen-
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Table 4.1: The different types of models for the subsystems.

Type Systems Model Parameter estimation

S1,1, S2,1,
S2,2, S2,3,

I S2,4, S3,1, y(t) =
P

i
xi(t) ai =

P

t
xi(t)/

P

t
y(t)

S3,2, S3,3

S5,7, y(t) = ax(t) + b minã
1
2 ãT X̃T X̃ã− yT X̃ã

II S5,8, = [ a b ]

»

x(t)
1

–

ã1 ∈ [0, 1]

S5,9 = ãT x̃(t) ã2 ≥ 0

S5,10, S5,11, y(t) = aT x(t) + b minã
1
2 ãT X̃T X̃ã− yT X̃ã

III S5,12, S6,9, = [ a b ]

»

x(t)
1

–

P

i6=N
ãi = 1,

S6,10, = ãT x̃(t), ãi6=N ∈ [0, 1]
S7,1 ãN ≥ 0

S4,1, S4,2

S4,3, S5,2,

S5,3, S6,1, minA

P

i
1
2AT

i XT XAi − yT
i XAi

IV S6,2, S6,3, y(t) = x(t)A,
P

i
aij = 1,

S6,4, S6,5, aij ∈ [0, 1]
S6,6

S5,4, y(t) = a1(c1(t) + c2(t) + c3(t))x1(t) mina
1
2aT XT Xa− yT Xa

V S5,5, +a2(c1(t) + c2(t) + c3(t))x2(t)
P

i
ai = 1,

S6,8 +a3(c1(t) + c2(t) + c3(t))x3(t), ai ∈ [0, 1]

dency tree.

Three criteria are used to prune uninteresting dependencies from the tree. Firstly,
the model accuracy from which the dependency originates must be at a reasonable
level. Otherwise, the analysis might be misled by very inaccurate models having
large values for parameter a (which is forced in several models due to the equality
constraints for the parameter vector). Secondly, the output variable of the de-
pendency must be interesting enough (i.e relatively large number of failures must
be observed in the output variable). Finally, only the dependencies that belong
to the cause-effect chains contributing most to the overall network performance
degradations are included into the dependency tree. For each subsystem, different
minimum and maximum values for strength of dependency, model accuracy and
model interestingness are defined.

Figures 4.12(a)-(d) show the pruned dependency trees in four separate cases. In
Figure 4.12(a), the cause-effect chains of the most significant blocking problems are
shown. Clearly, there are 4 BTSs (6,11,18,85) that suffer from lack of resources.
BTSs (6,11,18) suffer from lack of half rate traffic channels and BTS 85 suffers
from lack of full rate traffic channels. Only BTS 6, the causes for blocking can be
said to result regularly from congestion.

In Figure 4.12(b), the results of the corresponding analysis for the call setup failures
are shown. Here, four BTSs (17,52,66,74) seem to suffer from call setup failures
regularly. In all these four BTSs, the failures tend to originate during SDCCH
signaling and fail due to radio link problems. In BTSs 17 and 74 the radio link
failures can be said to result from bad downlink signal quality and in BTSs 52 and
66 they are due to bad uplink signal quality.

Figure 4.12(c) shows the corresponding results for call dropping problems. Again,
the cause-effect chains for describing the reasons for dropped calls in four BTSs
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Figure 4.12: The analysis of the four main components of the user perceived
quality. (a) Cause-effect chains for blocking of services, (b) call setup failures, (c)
call dropping and (d) handover failures.

(6,7,69,74) are shown. The reasons for call dropping seem to be radio link failures.
In BTSs 6, 7 and 69 the radio failures are likely due to bad signal quality in uplink.
In two TRXs of BTS 6 and in one TRX of BTS 69 the number of bit errors seem to
correlate with the amount of traffic in both the own BTS as well as in interfering
TRXs on the same radio frequency.

Finally, in Figure 4.12(d) the analysis of the handover problem sources are shown.
The results for three BTSs (7,9,90) having the worst handover performance are
shown, indicating that the problems are in BSC controlled outgoing handovers. In
BTSs 7 and 9, the problems seem to be in lack of resources in the target BTSs
(6,11,85). In target BTS 6 suffering from lack of resources, there seems to be high
amount of incoming TCH-TCH handover attempts from BTS 7. This same BTS
tend to cause problems also for target BTS 11 suffering from lack of resources
during handover attempts. For target BTS 11, two other BTSs (12,18) are found
that can be said to generate high number of handover attempts. The handover
attempts of these two BTSs are due to very similar reasons: the quality of the
uplink and downlink radio connection and the uplink and downlink signal strength
are not reasonable in these two BTSs, and some of the users are switched into more
appropriate BTSs. Also, significant number of users are switched to another BTS
in order to minimize the energy consumption of the MSs (power budget).
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This study is a good indication of how a priori knowledge can be used to ease the
model estimation by pruning variables. Only the theoretically sound dependencies
need to be estimated. Then, regression techniques can be used to estimate the
strength of the theoretically possible dependencies, and only the strongest ones
are taken into more careful analysis. The possible dependencies between cells can
be analyzed by including variables from other cells to the models. The presented
method allows efficient fault detection, identification of strongest input variables,
and diagnosis of the causes of the faults.

4.3 Predictive GSM Network Optimization

In previous sections, methods for fault detection, identification and fault diagnosis
have been discussed. In this section, the focus is on the final step of the process
monitoring procedure, that is, on the process recovery. In the context of mobile
network performance monitoring, the process recovery is associated with mak-
ing adjustments to configuration parameters so that the amount of predictable,
regularly occurring performance degradations or faults is minimized. In order to
automate the configuration parameter optimization, a computational method to
evaluate the performance of alternative configurations must be available. In data-
rich environments like cellular networks, such predictive models are most efficiently
obtained with the use of past data records. Next, the data analysis methods and
suitable knowledge engineering approaches are used to build predictive models that
can be used in automated configuration parameter optimization.

4.3.1 Prediction of Blocking

In blocking prediction, the interest is to compute the number of blocked requests
at different conditions. This can be based on the use of well known Erlang-B
formula. The expected value for the number of blocked requests is obtained by
multiplying the number of arriving requests with the blocking probability given
by Equation 2.4, leading to B = λp(Nc|λ, µ,Nc). The expected value for the
congestion time is C = p(Nc|λ, µ,Nc) and the expected value for the number of

channels in use is M =
∑Nc

n=0 np(n| λ, µ,Nc).

In Publication 6, it was shown that the Erlang-B formula does not provide accurate
predictions for blocking in GSM networks if low sampling rate measurements of
arrival process are used in the model. More traditional regression methods can be
used for the same purpose with the assist of knowledge engineering approach in
which Erlang-B formula and regression methods are combined. With the use of
Erlang-B formula, the dependencies between B,C and M that remain the same
in each base station system need not be estimated from data alone. The data can
be used to estimate other relevant and additional parameters that are required
in prediction. In Publications 6 and 7, a method to use Erlang-B formula and
measurement data to predict blocking is presented. The regression techniques
are used to estimate the arrival rate distribution describing the arrival process
during short time periods. The Erlang-B formula is used to compute the amount
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of blocking during the short time periods.

Suppose that the time period is divided into Ns segments of equal length. Also,
assume that we have a vector λ = [0 1∆λ 2∆λ . . . (Nλ − 1)∆λ] of Nλ possible
arrival rates per segment with discretization step ∆λ. Let us denote the number of
blocked requests during a segment with arrival rate λi with Bi = λip(Nc|λi, µ,Nc),
where p(Nc|λi, µ,Nc) is the blocking probability given by the Erlang distribu-
tion. Also, the congestion time and the average number of busy channels dur-
ing a segment with arrival rate λi are denoted with Ci = p(Nc|λi, µ,Nc) and

Mi =
∑Nc

n=0 np(n|λi, µ,Nc). In other words, the segment-wise values for blocked
requests, congestion time and average number of busy channels are based on the
Erlang-B formula.

Now, assume that the number of segments with arrival rate λi is θi and
∑

i θi = Ns.
Then, the cumulative values over one hour for the number of requests T , blocked
requests B, congestion time C and average number of busy channels M can be
computed with











λ1 λ2 . . . λNλ

B1 B2 . . . BNλ
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. . .

CNλ

Ns

M1

Ns

M2

Ns
. . .

MNλ

Ns








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






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




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




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





(4.1)

or in matrix notation Xθ = Y.

Now, the problem is that the vector θ is unknown and it must be estimated from
the data using the observations of Y and matrix X which are known a priori.
Since the output vector Y includes variables that are measured in different scales,
it is necessary to include weighting of variables into the cost function. By selecting
variable weights according to their variances estimated from the data, the quadratic
programming problem

minθ

{

1

2
θ

T Hθ + fT
θ

}

(4.2)

w.r.t 0 ≤ θi ≤ Ns, i = 1, 2, ..., Nλ, (4.3)
Nλ
∑

i=1

θi = Ns (4.4)

is obtained where f = −XT WT WY and H = XT WT WX include the weighting
matrix W. In other words, the goal is to find the vector θ that provides the smallest
prediction errors for variables T,B,C and M . For many BTSs, the number of
blocked requests B and the congestion time C are regularly zero and the use of
the corresponding rows in X and Y is not possible due to the numerical problems
occurring in the optimization. In such cases, the solution vector θ can be solved
using only the two remaining rows of X and Y.

Now, suppose that we have Nd observations for variables T,B,C and M , all mea-
sured at hour h during different days. The above optimization problem could be
solved for each of the Nd observation vectors separately, leading to Nd solution
vectors θ for hour h. Since we are interested in long-term prediction of blocking,
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we should somehow combine the solution vectors so that behavior common to all
solution vectors are retained and non-regular properties of the demand are given
less attention.

Let us denote the ith solution vector for hour h with θ
(i)
h and the jth element of

the corresponding solution vector with θ
(i)
jh . Since θ

(i)
jh described the number of

segments with arrival rate λ = λj during ith observation vector at hour h, the
probability for a random segment during ith observation period to have an arrival

rate λ = λj can be computed from θ
(i)
jh with p

(i)
jh = θ

(i)
jh /Ns, where Ns is the number

of segments in a period.

Now, if we are interested in occurrences of λj at hour h in the long run, it would
be straightforward to sum the occurrences of the λj during the Nd observations.
In other words, the probability for observing a segment with arrival rate λ = λj

at hour h would become

pjh =
1

NdNs

Nd
∑

i=1

θ
(i)
jh . (4.5)

Now, the arrival rates λj and their probabilities pjh for hour h form a probabilistic
model. Let us define a column vector

θh
seg 7→hour

= phNs (4.6)

that maps the segment-wise candidate arrival rates λj to the total number of
arrived requests T in a single one hour time period with

T = λ θh
seg 7→hour

. (4.7)

Note that the parameter vector θh,seg 7→hour can also be used to map the vector
B = [B1 B2 . . . BNλ

] of segment-wise blocking candidates to the total number
of occurrences of blocked requests during one period. Similarly, the cumulative
values for the average number of busy channels and the congestion time can be
computed.

4.3.2 Prediction of Signal Quality and Dropped Calls

In the previous section, a method to predict the amount of input traffic and block-
ing was established. Next, the focus is turned on the prediction of call dropping
and bad voice quality caused by low signal quality observed at the receiver. The
signal quality and the number of bit errors are mostly TRX level rather than BTS
level measurements and therefore, it is necessary to extend the BTS-wise model
to contain also TRX level details. The signal quality observed in a TRX is mostly
dependent on the distance between BTS and MS, but the amount of traffic clearly
has an influence on signal quality. This is most likely caused by interference that
is more severe during high load time periods.

In order to predict the signal quality in a TRX, a measure of amount of traffic
per TRX is needed. Since the loads in the TRXs of a BTS are strongly correlated
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with the total amount of traffic in the BTS, a linear model

ci(k) = θ0
T 7→ci

+ θ1
T 7→ci

T (k) + e(k) (4.8)

predicting the number of calls ci(k) in TRX i of a BTS is estimated. In the model,
T (k) is the number of TCH requests in the BTS during period k that is used as
a measure of amount of traffic or load in the BTS. The parameters are estimated
with the simple linear regression method described earlier in this thesis.

As stated in the previous section, the TRX level signal quality is mostly affected
by the amount of load in the TRX as well as the distance between the MSs and
the BTS. In addition, the signal quality is measured separately on the uplink (MS
to BTS) and downlink (BTS to MS). Therefore, the prediction of signal quality is
based on linear regression model

ui(k) = θ0
r̄,ci 7→ui

+ θ1
r̄,ci 7→ui

r̄(k) + θ2
r̄,ci 7→ui

ci(k) + e(k) (4.9)

where ui(k) is a measure for number of bit errors in uplink of TRX i of a BTS
during time period k, ci(k) is the measure for the amount of traffic in TRX i at
time period k and r̄(k) is the average distance between the users and the BTS
during the corresponding time period. The same model structure can be used for
the prediction of downlink signal quality di(k). The parameters for the models
are estimated in the same way as in the model for predicting the TRX-wise traffic
load. Note that BTSs having more than one TRX need separate models for each
TRX. Now, the signal or voice quality in a BTS can be measured by combining
the TRX-wise measures from the uplink and downlink with

Q(k) =

NT RX
∑

i=1

ui(k) +

NT RX
∑

i=1

di(k). (4.10)

Intuitively, call dropping is mostly caused by bad signal quality between the MS
and the BTS. Let D(k) be the sum of dropped calls due to the radio failures in
SDCCH and TCH channels during the kth measurement period. A linear model

D(k) = θ0
Q7→D

+ θ1
Q7→D

Q(k) + e(k) (4.11)

between the number of dropped calls and the signal quality measure Q(k) can be
estimated from the data using basic linear regression techniques.

In these regression models, knowledge engineering is implemented in careful selec-
tion of input and output variables of the models.

4.3.3 Optimization of Signal Strength Thresholds

In Publication 7, the aim was to determine the influence of minimum signal
strength threshold adjustment ∆P to the most important performance measures,
that is, the signal quality Q, number of dropped calls D, blocked SDCCH requests
Bs and blocked TCH requests Bt. In order derive this dependency, several param-
eters had to be derived from well known theories in addition to the large number
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i = 1, 2, . . . , Nλ
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ParametersAold
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∆Q

∆Bs

∆Bt

Figure 4.13: A block diagram describing the information flow from the input ∆P
to the performance of the network.

of parameters that was estimated from the data. In Figure 4.13, a block diagram
describing the use of analytically derived parameters, current state variables of the
BTSs and the parameters that are estimated from the data is shown.

The input variable, ∆P , indicates the change in minimum signal strength that
is required from a MS in order to allow access to the cell. This variable can be
mapped to the change in operating radius of the cell by the use of path loss model.
That is, the change in minimum signal strength is directly mapped to the change
in maximum allowed path loss, which in turn can be used to compute the change
in operating radius of the cell in meters. In other words, it is possible to derive
the value of the parameter θP 7→R by the use of simple path loss modeling. Since
the operating radius prior to adjustment can be estimated from the data, the new
operating radius of a cell can be computed given the adjustment ∆P .

Now, the operating radius adjustment ∆R and the old operating radius Rold can
be used to compute the new operating radius Rnew. For the prediction of the
signal quality and the number of dropped calls with the new configuration, the
new operating radius is in very important role. However, it is also necessary to
derive a measure of amount of traffic in the cell after the configuration adjustment.
Assuming the cell coverage area is approximated by a round disk, the area change
∆A of the disk can be easily computed. Assuming the users are homogeneously
distributed in the cell, the change in number of incoming transactions ∆λ can be
computed given the ∆A and the measure of incoming transactions λold prior to
adjustment.

In Publication 6, a method to estimate a discrete arrival rate distribution was
presented. The presented method can be applied in prediction of SDCCH blocking
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Table 4.2: The results of the experiments.

Number of optimized Performance improvement Performance improvement
cells in optimized cells in whole network

5 13.1 % 1.3 %
10 11.2 % 2.0 %
15 12.1 % 2.8 %
20 13.6 % 3.3 %
25 12.1 % 3.7 %
30 9.8 % 3.7 %
40 8.7 % 3.8 %
50 7.4 % 4.0 %
60 6.9 % 4.2 %
80 5.8 % 4.2 %
100 5.5 % 4.3 %
120 4.3 % 4.3 %

Bs and TCH blocking Bt, but also, to predict the amount of traffic T after the
configuration change required in prediction of Q and D.

Clearly, the performance of a single cell in terms of signal quality, blocking and
dropping is improved if the size of the cell is dramatically decreased. Therefore,
cell shrinking can not be performed without increasing the sizes of some other cells
if introduction of coverage gaps must be avoided. Therefore, the cell shrinking and
expanding must be in balance.

Now, the optimization problem including the balance requirement can be repre-
sented in form

min∆P

{

fT ∆P
}

(4.12)

w.r.t −A∆P ≤ 0, (4.13)

∆Pmin ≤ ∆P ≤ ∆Pmax, (4.14)

where ∆Pmin and ∆Pmax denote the maximum allowed change, A is a matrix
implementing the coverage balance equation, and f is a vector combining the effects
of ∆P adjustment to call dropping, blocking and signal quality. Solving the above
problem yields to the optimal configuration change minimizing the occurrences
of SDCCH and TCH blocking, dropped calls and voice quality problems, while
maintaining the current coverage.

This linear programming problem can be solved to find the cell size adjustments
leading to the optimal overall performance. However, it may not be necessary to
optimize all the cells in the network simultaneously, but instead, the focus may
be in a small set of low performance cells. For these cells, the performance is
optimized while causing minimal performance degradations to the other parts of
the network.

The low performing cells to be optimized should have a relatively high number of
failures, but also, their performance should be possible to influence through ∆P
adjustments.

In Table 4.2, the obtained performance gains in the experiments in which different
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number of cells were selected for optimization are presented. Clearly, the results
indicate that selecting only a subset of low performance cells and maximizing their
performance leads to improvement percentage of 10 % in these cells. Naturally,
the boundary cells of the optimized cells suffer from performance degradation and
therefore, the overall network performance improves only about 3 %. The more
cells are taken into optimization, the less improvement in the optimized cells is
obtained. On the other hand, the overall network performance gradually improves
if more cells are taken under performance optimization.
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Chapter 5

Conclusions

In this thesis, a wide range of data analysis methods were applied in order to ana-
lyze and optimize the usage of radio resources of a cellular network. It was demon-
strated that a large collection network performance data is an important source
of information and with the use of suitable data analysis methods, measurement
data can be used to enhance performance optimization process. Especially, the
potential of multivariate data analysis methods in detection and diagnosis of fail-
ures and performance degradations associated to multiple KPIs and mobile cells
were emphasized.

The use of multivariate data visualization methods has several advantages in the
analysis of cellular network data. Firstly, the methods are fairly simple to im-
plement. In addition, the same methods can be used to analyze very different
problem types without major changes to the used technique. Also, such approach
is not sensitive with respect to algorithm and software updates made to the ana-
lyzed system and therefore they need not be updated simultaneusly with the other
system.

In this thesis, approaches to include prior knowledge to the data analysis process
was presented. The use of such techniques is useful in mobile communication net-
works in particular, since lots of useful models are available, and the measurement
data is typically averaged in order to save disk space. Therefore, it may be nec-
essary to combine these two sources of information when advanced decisions must
be made.

It was also shown in this thesis, that the adjustment process can also be formalized
and efficiently solved with data-driven methods. This enables the making of very
difficult optimization decisions in which consequences of actions are very difficult
to predict without quantitative methods. Especially, the use of past measurement
data in model construction allows the possible performance gains to be evaluated
prior to configuration adjustment. As a result, the operator has the opportunity
to ignore the configuration adjustment if too moderate performance gains would
be obtained.

It is also common that the cellular network data contains different types of anoma-
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lies, making certain measurements uninformative. In the presented approach, sep-
arate preprocessing step can be easily performed prior to model estimation and
performance prediction. Many of the autotuning approaches developed for per-
formance optimization tend to require that no anomalies occur during parameter
adaptation, making it more difficult to apply them in operative systems.

Implementation of such methods in a true environment is tractable, since the
performance data can be analyzed offline and the predictions for the consequences
of the selected actions can be based on models also estimated offline. In this case,
real-time communication with the existing network elements is not necessarily
needed during the optimization process.
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Hyötyniemi, H. (2001). Multivariate regression: Techniques and tools. Techni-
cal Report Report 125, Helsinki University of Technology, Control Engineering
Laboratory.
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