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Control and management of wild animals, especially large carnivores, is an im-

portant task for game and wildlife management authorities all over the world.

Central to the scheme of wild animal conservation is the population size esti-

mation methodology which depends on the used data sampling technique. The

index based data sampling method has been found suitable in the case of large

carnivores. On the other hand, telemetry data has been used to learn the indi-

vidual movement of animals. Subsequently, mathematical modeling is utilized in

order to learn both animal population dynamics and animal movement behavior.

In that context, stochastic state-space models have proved to be appropriate for

handling uncertainty that occurs in the process and observation models.

This thesis provides a novel approach for the estimation of wild animal popula-

tion. We utilize the state-space modeling framework as well as animal movement

models on an unconventional observation and index based dataset. We formulate

the problem as a conditionally linear Gaussian state-space model and recursively

estimate the state of the animals. More specifically, we reformulate the prob-

lem as a special case of multiple target tracking, which can be solved by using

Bayesian optimal filtering methodology. The solution to the problem of tracking

an unknown number of targets is exactly applicable to our animal observation

datasets.
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support and guidance throughout the development of this project and thesis. I also

wish to extend my deepest appreciation to Dr. Aki Vehtari for his continuous advice

and encouragement. My sincere appreciation is extended to Prof. Jouko Lampinen

for his support.

I would also like to extend my sincere appreciation to Mr. Samuli Heikkinen and

Mr. Mika Kurkilahti from the Finnish Game and Fisheries Research Institute for

their contributions to the project.

Special thanks to Mr. Ville Väänänen for his insightful feedback on the thesis

and contributions to the project. I also wish to thank M.Sc. Marianne Hanhela

for her contributions to the project. I am also thankful to all the colleagues at

the Biomedical Engineering and Computational Science department for providing

a special working environment. I wish to extend my appreciation to M.Sc. Jouni

Hartikainen for his help and support.

I am immensely grateful to my parents for providing me the opportunities to

follow my dreams. I am also especially grateful to all my friends and family for their

love and support.

Espoo, December 9, 2011

Mudassar Abbas

3



Abbreviations and Acronyms

MCMC Markov Chain Monte Carlo

SIS Sequential Importance Sampling

SIR Sequential Importance Resampling

SDE Stochastic Differential Equation

CRW Correlated Random Walk

O-U Ornstein-Uhlenbeck

GPS Global Positioning System

EKF Extended Kalman Filter

UKF Unscented Kalman Filter

RBPF Rao-Blackwellized Particle Filter

MHT Multiple Hypothesis Tracking

GNN Global Nearest Neighbor

SNF Strongest-neighbor Filter

PDAF Probabilistic Data Association Filter

JPDA Joint Probabilistic Data Association

RBMCDA Rao-Blackwellized Monte Carlo Data Association

YKJ Yhtenäiskoordinaatisto (Uniform Coordinate System)
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Chapter 1

Introduction

For more than half a century now it has been appreciated that wild animals enact

an essential role in maintaining the biological diversity of the ecosystem. Therefore,

considerable effort has been taking place all over the world for the conservation of

wild animals especially in the case where some species face extinction. However,

at times a species can be given the ’pest’ status when it exceeds a certain limit of

abundance and it can cause considerable damage to human life and property (De-

lahay and Wilson, 2001). Then a reasonable balance would have to be insured with

appropriate control programs. These are the fundamental reasons for the control

and management of wild animal populations. Central to the scheme of wild animal

population monitoring and management is the estimation of the population size. A

large number of methods have been developed and deployed by biologists, ecologists

and wildlife managers to attain this goal (Southwood and Henderson, 2000; Schwarz

and Seber, 1999).

Methods used in estimating the size of wild animal population can be classified

to two main groups: true abundance methods and index based methods (Delahay

and Wilson, 2001). True abundance can further produce two types of count: a

complete count (census) and an incomplete count (survey). A complete count can

be obtained when the assumption that all the animals would be counted is true while

an incomplete count only samples from a proportion of the total animal population.

Surveys can be conducted by using vehicles, airplanes and imagery technologies.

A more favored statistical approach of surveying is the capture-recapture method

which is mainly used in fisheries. This approach implies that the species is in some

way caught and marked by the field researchers. The methods of marking include

tagging, banding and painting. This method of sample collection is also known as

mark-recapture in animal ecology.

9



CHAPTER 1. INTRODUCTION 10

On the other hand an index based methodology requires that the field personnel

avoid direct interaction with the animal. In this case observation of field-signs

(remains) of the animals is a crucial methodology, for example, observation of habitat

structure and carcasses of dead prey, identifying tracks (foot-prints) and marks

left on plants, and finding feces and animal hair. More recent advances in index

based techniques consist of methods like DNA analysis of hair, feather, feces, dung,

saliva and shed skin (Mills et al., 2000). Moreover, DNA analysis can also be

used in capture-recapture where the sample is taken directly from the body of the

animal (Madon et al., 2011). However, capture-recapture methods involve significant

human effort and expenditure especially in the case of large carnivores because of

their secretive and nocturnal nature. At the same time predicting the exact home

range of large carnivores is very difficult. Therefore, incomplete counts and index

based approaches appear more practical and often preferred especially by wild life

managers for monitoring of large areas (Witmer, 2005; Pollock et al., 2002).

More often, surveys can be conducted sequentially year after year to learn the

dynamics of animal population. Consequently, prediction and management decisions

have to be based on dynamic population models. These models can be formulated as

population-growth models which consist of parameters indicating population-growth

rate. A population can grow because of birth and immigration but simultaneously

reduce due to death and emigration. Similarly, dynamic population models can be

based on an age-structure formulation. The age-structure based models divide the

total animals surveyed into age groups. In these models parameters like survival

and reproduction rate replace the birth and death count parameters. Furthermore,

population models can be density dependent or density independent with the former

being more complex kind of models.

Realistic population dynamics models must incorporate the stochasticity inher-

ent in the actual underlying processes. Process variation and the variation due

to sampling necessitates statistical approaches that incorporate these uncertainties

into the models. Therefore, a statistical modeling approach known as state-space

modeling has been widely acknowledged as a flexible and appropriate approach to

population dynamics models (Buckland et al., 2004b, 2007). Although population

dynamic models can include animal movement (immigration, emigration) in the form

of probability distributions (probability of moving from one location to the other),

more dense positional data available with the advancement in radio telemetry and

GPS telemetry has allowed scientists to study animal movement and habitat behav-

ior on an individual scale (Börger et al., 2008). The classical models of individual
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animal movement comprises of stochastic differential equations (SDE) (Brillinger

et al., 2002; Preisler et al., 2004). Since observational data from telemetric devices

is also prone to error (noise), use of statistical approaches, specifically state-space

modeling, has been favored in order to link the dynamic models of animal movement

to the observational data (Patterson et al., 2008).

Modeling of individual animal movement based on telemetry data has increased

the knowledge about many social and habitual behaviors of species. However, it

has been less beneficial for the management and conservation of animals on a large

scale (Morales et al., 2010). This is mainly due to the high expenses of acquiring

telemetry data and low feasibility of tagging a large number of animals. Therefore,

methods of estimating animal populations based on surveys and index data have

to be developed and improved with a focus on utilizing the current computational

power of modern computers. In this thesis, we propose a novel approach based on

an unconventional observation and index based survey data. We utilize both state-

space modeling framework and animal movement models in order to estimate the

animal population.

1.1 Overview of Problem

We focus on the analysis of sampling data, which is based on both field-signs and

direct sightings of the animals. A single record in the dataset can consist of informa-

tion about a single individual or group of animals (family or pack). The information

can be either from direct sightings or field-signs of the animals. Field signs consist

of foot print measurements, feces observation, carcass of dead animal or prey and

in some cases habitat structure or animal marks. The data collection process is

based on observations obtained on a regular basis throughout the year from almost

every part of Finland. The accumulated datasets consist of a far greater number of

observations than the actual number of animals. On the contrary, in the index-data

based population estimation methods, the population survey is usually conducted in

smaller regions and shorter time frames and the result of estimation is extrapolated

to larger regions.

The data collection method in our case is unconventional and the standard

methodology of animal abundance estimation becomes inapplicable. The present

method used to estimate population size from this data requires a significant amount

of manual work which involves sorting the information and finding duplicate obser-

vations of the same individual or group of animals that have been observed by
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multiple observers. Therefore, we propose a state of the art technique which solves

the current problem of population estimation from the unusual data source com-

putationally, without the need for manual work. We formulate the problem as a

conditionally linear Gaussian state-space model and recursively estimate the state

of the animals. More specifically, from the engineering perspective this strategy is

known as optimal filtering.

The problem of estimating the state of multiple targets from noisy measure-

ments generated by multiple sources is referred to as multiple target tracking and

data association problem. This is an application area of optimal filtering. Further-

more, the methodology of data association for an unknown number of targets is ex-

actly applicable to our animal observation datasets. In this thesis, we demonstrate

the applicability of Rao-Blackwellized Monte Carlo data association (RBMCDA)

(Särkkä et al., 2007) algorithm which solves the problem of multiple target tracking

and data association in the case of ‘an unknown number of targets’.

1.2 Structure of Thesis

The organization of this thesis is as follows: the general methods of estimating pop-

ulation size and the background of multiple target tracking methodology is covered

with detail in Chapter 2, Chapter 3 presents the materials, methods and models uti-

lized in the thesis, Chapter 4 shows the results of the study, and Chapter 5 presents

the conclusion and discussions.



Chapter 2

Background

2.1 Finnish Politics and Animal Conservation

Concern has prevailed regarding the extinction of some very rare wild animals among

naturalists, scientists, politicians and common people of Finland for the past fifty

years. Nature reserves and wilderness areas of Finland have been home to four large

carnivores; brown bear (Ursus arctos), wolf (Canis lupus), wolverine (Gulo gulo)

and lynx (Lynx lynx). Since the beginning of the twentieth century the populations

of all four of these fascinating animals has been in decline.

Brown Bear (Ursus arctos)

The brown bear is the national animal of Finland. The estimate of bear population

before the hunting season in 2009 was 1850 to 1950 and at the end of 2009 was 1150

to 1200 (Wikman, 2010). The population density is higher in eastern Finland close

to the Russian border. The brown bear was nearly extinct in Finland around the

beginning of the twentieth century but population has steadily increased since 1970

(Katajisto, 2006), mainly due to migration of bears from Russia.

Wolf (Canis lupus)

Wolf is the most controversial large carnivore in Finland since it causes the highest

threat to livestock, reindeer husbandry and humans. It is for this reason that it has

the smallest population size among the large carnivores of Finland. The estimate of

wolf population in Finland at the end of 2009 was 150 to 160 (Wikman, 2010). The

population density is higher in the eastern regions. Wolves became extinct in the

early twentieth century due to major hunting expeditions. Wolves have also been

13
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subject to severe illegal poaching activities.

Lynx (Lynx lynx)

Lynx has the highest population among the large carnivores of Finland with about

2200 to 2300 individuals reported at the end of 2009 (Wikman, 2010). People have

a more benign attitude towards the lynx or wild cat although it is a very active

predator (Liukkonen et al., 2009). Lynx has an even population density throughout

Finland and the numbers have been increasing since it was protected.

Wolverine (Gulo gulo)

Wolverine is the most elusive animal among the large carnivores of Finland due to

its less dense population structure and large dispersal ability. Population statistics

claim that about 150 to 170 individuals were present at the end of 2009 (Wikman,

2010). It is also one of the most hunted and endangered animal populations of

Finland. The wolverine was nearly extinct until it was protected in 1982.

Organization

The Ministry of Agriculture and Forestry is responsible for the population con-

servation of wild animals in Finland. Legislation concerning hunting licenses and

management plans are approved by the ministry while these plans are based on

research conducted by the Finnish Game and Fisheries Research Institute in par-

ticular. Other organizations which aid the research include, The Hunters Central

Organization which provides sighting data and the Game Management district au-

thorities. The Game Management district authorities license the hunting of animals

under the supervision of the Ministry of Agriculture and Forestry based on the pop-

ulation statistics provided by the Finnish Game and Fisheries Research Institute.

The debate over large carnivore population management largely exists because of

the threat posed by large carnivores to livestock and reindeer husbandry. While the

wild life conservation legislations impose strict laws over the hunting of endangered

species, the farmers and herders have valid reasons for employing safety measures

against the threat caused by wild animals to their property and livestock. However,

the large carnivore population in Finland has suffered not merely because of hunting

and poaching but also due to other environmental and ecological changes in the

natural habitat of the animals.
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2.2 Animal Abundance

Methods for estimating animal abundance (How many are there?) depend on many

factors: landscape of the area where the study or monitoring is taking place, type

of specie which is being studied or monitored and the resources available to con-

duct the study or monitoring. Therefore, careful design of the estimation methods

and procedures is of fundamental importance before initiating the actual field and

analysis work (Witmer, 2005; Pollock et al., 2002).

2.2.1 Estimation Methods

Below, we briefly explain some of the well-known and standard approaches used in

estimating animal abundance. These approaches apply to data obtained through

specific sampling methods or surveys conducted in smaller regions in a fixed time

frame. The individual count obtained through these surveys is often used to estimate

the population density for a small region and the density is extrapolated for larger

areas. However, we need to analyze our data in a more unconventional way because

it is based on unrestricted random observations obtained from a very large area and

over a longer time frame. Further details about the collection of data can be found

in Chapter 3.

Strip and Quadrat Plots

This is a simple method based on counting the animals or field-signs, for example,

feces or foot-prints, over a random set of plots known as sample units. Basically,

the whole region or area, where the animal population estimation has to be accom-

plished, is divided in to smaller regions which can be square or rectangular in shape.

The method of selecting the regions for sampling can vary, more specifications on

sampling procedures can be found in (Anderson, 2001; Thompson et al., 1998). If

random sampling is used and the animals can be directly observed then the method

of estimation consists of the following steps:

• Dividing the whole region into a total of S number of sample units and choosing

s number of sample units randomly where the census would be conducted.

• Counting the total number of animals n in each of the randomly chosen sample

units s:

n̄ =
1

s

s∑
i=1

ni . (2.1)
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• The abundance estimate can be obtained by multiplying total sampling units

S with n̄ as

n̂ = S n̄ . (2.2)

The abundance estimator can also be divided by the total area of the sampling units

to calculate the population density estimate. Furthermore, a population indices

estimate can also be obtained in case of observation of the field-signs. A single

index must be a constant ratio for the whole population, that is, if the count of

indices doubles then it can be proposed that the whole population has doubled

(Schwarz and Seber, 1999).

Distance Sampling

This method mainly consists of two types; line transects and point counts. Line

transects usually involves an observer moving by foot or in a vehicle along a random

path and sighting the animals. The abundance is then calculated as number of

animals sighted divided by the detection probability which is based on the distance

between the observer and the animal. The detection probability also depends on

the terrain detail, for example, it is higher for plain regions and lower for hilly areas.

If an aerial survey is conducted using this method then the detection probability

is not merely dependent on the distance between the animal and the observer but

many other factors would be involved as well (Buckland et al., 2004a).

Capture-recapture

This method involves marking or tagging of animals during the initial sampling

and then releasing them for the second sampling phase. The next sampling phase

consists of marked and unmarked animals and estimation based on this data includes

different methods and assumptions (Pollock, 2000; Buckland et al., 2000). One of

the more well known methods to estimate the abundance with capture-recapture

data is the Lincoln-Petersen model (Seber, 1986). This method comprises of a few

assumptions; 1- only single recapture event, 2- closed population (excluding births,

deaths or movement outside the region of study), 3- both recapture events have

equal capture probabilities and 4- the marks or tags remain intact. If n1 is the

number of individuals captured and marked during the initial sampling, n2 is the

number of unmarked individuals during the second sampling and m2 the number of

recaptured individuals then the estimator is given by

n̂ =
n1 n2

m2

. (2.3)
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Removal Methods

Removal methods include two well-known models; the catch-effort model and the

change-in-ratio model. Catch-effort models have primarily been used in fisheries

with the assumptions that the population is closed and the probability of each indi-

vidual being caught is equal. The catch per effort decreases with more individuals

being caught (removed from the population) because there would be less individu-

als remaining to be caught. Change-in-ratio methods require the population to be

closed and the population to be divided in to two groups, for example, male and

female, adult and infant or two different species. The idea is to remove more individ-

uals from one of the groups and observe the change-in-ratio during the resampling

phase. Estimating the change-in-ratio before and after the sampling reveals other

population parameters as well (Seber, 1986).

Index Scores

This method is used when only the field-signs of the animals can be observed. The

assumption is that the frequency of observations is related to the actual number

of animals. This method provides a relative estimate of abundance or “Index” of

population density (Schwarz and Seber, 1999). Estimate of animal abundance can

be deduced from “index scores” if they can be adjusted with estimates from another

formal estimation method used in parallel (Delahay and Wilson, 2001).

2.2.2 Population Dynamics Modeling

Next, we shall briefly discuss some of the well-known population dynamics mod-

els. These models require sampling of specific parameters during the surveys, for

example, birth date/time, death, movement in and out of sampling region and age-

structure of the population. This information is obtained usually by capturing and

tagging animals. However, this information is unavailable in our data because it is

sighting and index based which restricts the use of these models. Nevertheless, the

estimation method we have used can incorporate population dynamics models as

well.

Detecting each animal with the same certainty is hardly possible, observations

can be biased due to insufficient field related experience of the observer, tags and

marks can be misplaced or lost, and most importantly surveys on a large geographi-

cal area and a longer time scale must be able to address an open population (births,

deaths and movement) (Schwarz and Seber, 1999; Durban and Elston, 2005). Math-
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ematical models can incorporate the dynamics of an open population. This is called

population dynamics modeling and the goal is to predict the future estimate of

animal abundance which aids the decision making process.

Population Growth Models

Population growth model is usually concerned with four important parameters:

birth, death, immigration and emigration (White, 2000). A population-growth

model which is independent of the population density can be represented by a simple

difference equation of the form

nt+1 = nt (1 + r), (2.4)

where nt can be the number of animals in a day,month or year and

r =
(birth− death) + (immigration− emigration)

time
.

Thus, population growth rate can be given by

λ =
nt+1

nt
= 1 + r . (2.5)

In case that the time scale unit is years then the Equation (2.5) gives the annual

growth rate and λ < 1 would indicate a decreasing population. Furthermore, the

model in Equation (2.4) can be made more realistic by making it density dependent

because it exhibits exponential population growth. Furthermore, animal populations

depend on the resources (food, water) available in their shared habitat and only a

sufficient amount of resources promise a steady growth in the population size. This

implies that the population growth is a function of the population size

r(nt) = r0(1−
nt
k

), (2.6)

where k is known as the carrying capacity and r0 is the maximum growth rate for

an extremely small population size. The carrying capacity is a property of the envi-

ronment; it is the maximum limit in terms of population size that an environment

can support without constant degradation of the resources. Substituting expression

in Equation (2.6) to the model Equation (2.4) gives

nt+1 = nt[1 + r0(1−
nt
k

)] . (2.7)

The models in Equation (2.4) and Equation (2.7) can also be represented with

differential equations for the continuous time case but animal populations exhibit

discrete birth pulses. Therefore, we restrict our discussion to only discrete time

cases.
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Age Based Models

Another form of population models known as age-structured models tend to be

more complex but at the same time they can be more realistic. In age-structured

population models the parameters of birth and death can be replaced by survival

(mortality) and reproduction (fertility) parameters. Again age-structured popula-

tion models can be formulated both as density independent age-structure models

or density dependent age-structure models with the lateral being more realistic and

more complex. A famous formulation of age-structured models in the form of ma-

trices was given by (Leslie, 1945). The Leslie Matrix population model is used to

determine the growth of a population, as well as the age distribution with in the

population over time. The Leslie Matrix population model is given as

nt+1 = Ant, (2.8)

where nt is a vector with components representing the number of individuals in each

age group at time t and A is the Leslie matrix. The model in matrix formulation is

given as 

n1

n2

n3

...

na−1


t+1

=



b1 b2 b3 . . . ba−1 ba

s1 0 0 . . . 0 0

0 s2 0 . . . 0 0

0 0 s3 .
...

...
...

... .
. . . .

...

0 0 0 . . . sa−1 0





n1

n2

n3

...

na−1


t

, (2.9)

where bi : i = 1, 2, . . . , a is the fertility(number of offspring) of a female of age i,

si : i = 1, 2, . . . , a− 1 is the survival probability that an individual of age i at time

t will survive to time t+ 1 and a is the maximum age limit of the particular animal.

Process Variation

Animal population dynamics models need to be stochastic rather deterministic be-

cause animal population growth and reduction involves uncertainty due to latent

natural processes. This phenomenon is termed as process variation (Thompson

et al., 1998; White, 2000) and there can be many reasons for process variation:

• Demographic variation which is the uncertainty in the expectation of the sur-

vival and reproduction of an animal. Demographic variation can lead to ex-

tinction in very small populations but has less effect on large populations.
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• Temporal variation, for example, change in the weather intensity from year to

year can lead to variation in survival and reproduction.

• Spatial variation refers to geological changes in the habitat of animals which

may cause changes in resources, for example, different areas having different

amount of rainfall. This again leads to variation in survival and reproduction.

• Process variations on an individual level, for example, different animals can

survive and reproduce differently because of different genes. This can also be

called genetic variation.

On the other hand the uncertainty in the measurements of the estimation methods

is termed as sampling variation. It has been widely acknowledged in literature that

the state-space modeling framework provides a suitable method for incorporating

both stochastic processes and observation uncertainty in to population dynamics

models (Buckland et al., 2004b, 2007).

2.2.3 State-space Models of Animal Population

State-space models of animal population constitute discrete-time models usually

with finite number of states. The models can be deterministic or stochastic depend-

ing on the state process model and observation model. For population dynamics

state-space models can be given in a probabilistic notation as

n0 ∼ p(n0|θ)

nt ∼ p(nt|nt−1, θ)

yt ∼ p(yt|nt, θ),

(2.10)

where

• p(nt|nt−1, θ) is the population dynamics model or state process distribution.

• p(yt|nt, θ) is the observation model or observation process distribution.

• nt is known as the state vector at time t.

• yt is the observation vector at time t.

• p(n0|θ) is the prior state distribution

The state vector can include components such as individual counts, age groups,

stages of a life-cycle, genotypes and some other demographics. The observation or
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measurement vector consist of the counts from any sampling method, for example,

census or survey.

Bayesian inference methods such as Markov chain Monte Carlo (MCMC) and Se-

quential Importance Sampling (SIS) have been used to estimate the state of the pop-

ulation where the models have a state-space framework (Newman et al., 2009; Buck-

land et al., 2004b, 2007). A well known software application for applying Bayesian

inference to population dynamics models is the WinBUGS package (Gimenez et al.,

2009). Other recursive filtering methods such as the Kalman filter has also been

used for estimation of state-space models in animal ecology (Newman, 1998).

2.2.4 State-space Models of Animal Movement

Animal spatial distribution is usually a fundamental part of animal abundance stud-

ies. Population dynamics models have been embedded with movement information

described by distributions of movement rates and directions. An example of a state-

space model describing the mortality and movement of Pacific coho salmon is given

in (Newman, 1998)

nt = MtStnt−1 +wt wt ∼ N(0,Σwt) (2.11a)

ct = Htnt + vt vt ∼ N(0,Σvt), (2.11b)

where nt is the unobserved state process vector which consists of animal counts by

area, ct is the observed measurement vector which consists of salmon catches at time

(t) and Mt,St,Ht are movement, survival and harvest matrices respectively.The

components of Mt consist of the individual area to area movement probabilities. St

is a diagonal matrix with elements giving the expected survival probabilities and

Ht is also a diagonal matrix of harvest(observation) rates. vt and wt are zero mean

Gaussian noise vectors with covariance matrices Σwt and Σvt .

Constructing animal movement models in order to predict the spacial pattern

that an animal or group of animals can produce is known as Eulerian method

(Smouse et al., 2010). Eulerian approaches rely on diffusion models and place-based

information. On the other hand the classic individual-based approach to model-

ing animal movement is by using stochastic differential equations (SDE) (Brillinger

et al., 2002; Preisler et al., 2004). This method of modeling is known as the La-

grangian approach (Smouse et al., 2010). An example SDE model of animal move-

ment at time t and location r(t) is given as[
dx(t)

dy(t)

]
=

[
µx{r(t), t}
µy{r(t), t}

]
dt+D{r(t), t}

[
dΨx(t)

dΨy(t)

]
, (2.12)
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where

• dx(t) and dy(t) are incremental step sizes in the (x, y) co-ordinates.

• µ = (µx, µy)
T consists of the drift parameters.

• D is the diffusion matrix which gives correlation between x and y directions

over time.

• Ψx and Ψy are zero mean random processes.

The drift parameters control the direction, where as the diffusion parameters are

responsible for the speed of motion. There are a few special cases that arise from

the model in Equation (2.12) (Preisler et al., 2004).

1. The drift term is zero

• and the diffusion terms are independent along (x, y) co-ordinates. This

motion is an uncorrelated random walk.

• and the diffusion terms are not independent. This motion is a correlated

random walk (CRW).

2. The drift term is non-zero

• and the diffusion terms are independent along (x, y) co-ordinates. This

motion is a biased random walk in the direction of the drift parameters.

• and it is directed towards a single point, and the diffusion terms are

independent. This motion is a special case known as the mean-reverting

Ornstein-Uhlenbeck (O-U) process.

An important feature in modeling animal population dynamics is learning about

the home range behavior and individual habitat. Although some aspects of animal

movement, for example, relocation can be observed from survey data (e.g; Mark-

recapture) and then statistically modeled as probability distributions by embedding

the distributions into state-space models, survey type sampling data is unable to

provide dense positional data.

Radio tagging and GPS telemetry data have enabled researchers to observe ani-

mal movements at a finer scale and adequately understand phenomena such as forag-

ing and home range behavior (Börger et al., 2008). Radio tagging and GPS telemetry

data can be distorted by observational errors. Therefore, state-space models have
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been used as an effective method of finding the relationship between stochastic dy-

namics models of movement and uncertain observations (Patterson et al., 2008). A

state-space model of individual animal movement can be written as

xt = g(xt−1, ηt−1)

yt = h(xt, εt),
(2.13)

where

• xt is the state vector with components such as position, direction or turn angle

and speed of the animal at time t.

• yt is the observation vector at time t (e.g. position).

• g() is the population dynamics model.

• h() is the observation model.

• ηt−1 is the process noise.

• εt is the observation noise.

A few example applications of these models can be found in (Anderson-Sprecher

and Ledolter, 1991; Nielsen et al., 2006; Royer et al., 2005).

2.3 Bayesian Optimal Filtering

The approach used in this thesis for estimating the population of large carnivores

is called multiple target tracking. Multiple target tracking is an application area of

Bayesian optimal filtering methods. It must be noted that the standard approaches

discussed earlier in this chapter were more focused on sampling techniques and

mathematical models while this section presents the dynamic estimation methods

which have been widely used especially in the case of state-space models. We present

the general equations of Bayesian optimal filtering in this section and the more

specialized algorithms in the remaining sections of this chapter.

The methodology for recursively estimating the states of a dynamic system from

the Bayesian inference point of view is known as Bayesian optimal filtering. Consider

the following state-space model in probabilistic notation (Doucet et al., 2001; Ristic

et al., 2004)

xk ∼ p(xk|xk−1)

yk ∼ p(yk|xk),
(2.14)
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where xk is the hidden state vector of the dynamics model and yk is the observed

measurement vector.

The goal of Bayesian optimal filtering is to construct the posterior distribution

p(xk|y1:k) of the state xk given all the measurements y1:k observed up to time step

k. The recursive estimation starts with defining the prior distribution x0 ∼ p(x0)

for initializing the filtering process and the subsequent optimal filtering equations

also known as Bayesian filtering equations are given as

p(xk|y1:k−1) =

∫
p(xk|xk−1) p(xk−1|y1:k−1) dxk−1 (2.15a)

p(xk|y1:k) =
1

Zk

p(yk|xk) p(xk|y1:k−1) (2.15b)

where the normalization constant is given as

Zk = p(yk|y1:k−1)

=

∫
p(yk|xk) p(xk|y1:k−1) dxk

Equation (2.15a) is known as the Chapman-Kolmogorov equation which de-

fines the prediction step that propagates the posterior distribution of the state

from time step k − 1 to k. The recursion is started from the prior distribu-

tion p(x0|y1:0) , p(x0). Subsequently at time step k > 0 the prior distributions

p(xk|y1:k−1) can be obtained by numerical integration over the dynamics model

p(xk|xk−1) and the posterior of the previous step p(xk−1|y1:k−1). Equation (2.15b)

is obtained by applying the Bayes rule that gives the marginal posterior distribution

p(xk|y1:k) of the state vector xk at k > 0. This is the update step and the poste-

rior distribution is updated with the current observation yk. Zk is the normalizing

denominator and p(yk|xk) is the measurement likelihood.

2.3.1 Kalman Filter

A closed form solution to the Bayesian optimal filtering problem with the assumption

that the model is discrete-time linear Gaussian is known as the Kalman Filter.

Approximations of the target state distributions are dispensable because the result

of Kalman filtering is exactly Gaussian due to the linear Gaussian model assumption

(Särkkä, 2006). However, non-linear models and Gaussian noise can be estimated

using the extended Kalman filter (EKF) or the unscented Kalman filter (UKF).

The idea in EKF is that the non-linearity is dealt with by using linearization and

the model is formulated again as a linear Gaussian model. The UKF solves the

same problem by approximating the mean and covariance of non-linear functions of
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the Gaussian random variables in the model by propagating a set of sigma-points

through the non-linear functions (Julier and Uhlmann, 2004). A linear Gaussian

state-space model can be written in probabilistic notation as

p(xk|xk−1) ∼ N(xk|Ak−1xk−1,Qk)

p(yk|xk) ∼ N(yk|Hkxk,Rk).
(2.17)

A more common notation used to represent linear Gaussian models in dynamic

estimation literature is

xk = Ak−1xk−1 + qk−1

yk = Hkxk + rk,
(2.18)

where xk is the state, yk is the measurement, qk−1 ∼ N(0,Qk−1) is the process noise

and rk ∼ N(0,Rk) is the measurement noise. Ak−1 is the transition matrix and Hk

is the measurement model matrix.

The recursive algorithmic steps required to estimate the states at each time step

k are given in Algorithm 2.3.1. The Kalman filter is first initialized and the initial

state is given by a Gaussian prior distribution of the form

x0 ∼ N(m0,P0) , (2.19)

where m0 is the initial mean and P0 is the initial covariance.

Algorithm 2.3.1 : Kalman filter

Prediction step:

m−k = Ak−1mk−1

P−k = Ak−1Pk−1A
T
k−1 +Qk−1

Update step:

vk = yk −Hkm
−
k

Sk = HkP
−
k H

T
k +Rk

Kk = P−k H
T
k S
−1
k

mk = m−k +Kkvk

Pk = P−k −KkSkK
T
k

2.3.2 Particle Filtering

Particle filtering uses sequential Monte Carlo methods to solve the Bayesian optimal

filtering problem. Particle filters can be used to solve a wide range of non-linear and
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non-Gaussian noise filtering problems since the method is based on approximating

the posterior distribution of the state variables via Monte Carlo. The posterior

distribution p(xk|y1:k) of the state xk at time step k is approximated as a set of

weighted Monte Carlo samples {(wk,x(i)
k ) : i = 1, . . . , N}. The samples are drawn

from an importance distribution which approximates the target posterior distribu-

tion at each step.

Earlier algorithms of particle filtering known as sequential importance sampling

(SIS) suffered from the problem of degeneracy. This means that in certain conditions

almost all the particles have zero weights and only a few are non-zero. This problem

can be solved by introducing an additional resampling step to the SIS and in this

case the algorithm is known as sequential importance resampling (SIR) (Ristic et al.,

2004). The idea is to draw N new samples from a discrete distribution defined by

the weights and replace the old samples. Usually resampling is performed when it is

actually needed. One way of achieving this is by computing the effective number of

particles (samples) at each step and resampling if the effective number of particles

are less then a predefined threshold. This is termed as adaptive resampling which

actually consists of other methods as well like resampling after a predefined interval.

The effective number of particles can be calculated as

nEFF =
1∑N

i=1(w
(i)
k )2

, (2.20)

where w
(i)
k is the normalized weight of particle i at time step k. Resampling can

be performed, for example, when nEFF < N/10 where N is the total number of

particles.

The performance of the SIR is highly dependent on the method of construct-

ing the importance distribution. The optimal importance distribution in terms of

variance is (Doucet et al., 2001; Ristic et al., 2004).

π(xk|xk−1,y1:k) = p(xk|xk−1,yk). (2.21)

In case the optimal distribution has a form that sampling from it directly is unfea-

sible then methods of linearisation can be used, for example, EKF, UKF or other

non-linear forms of the Kalman filter. The simplest form of SIR is the bootstrap fil-

ter which uses the dynamic model p(xk|xk−1) as the importance distribution. The

algorithm for the bootstrap filter is given in Algorithm 2.3.2. Due to an inefficient

importance distribution the bootstrap filter normally requires a large number of

Monte Carlo samples for accurate estimation. The resampling is usually performed

at each step. Another pitfall in SIR is the sample impoverishment problem which

means that only a few samples that have large weights get replicated.
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Algorithm 2.3.2 : Bootstrap filter

1: For each sample {x(i)
k−1, i = 1, . . . , N}, draw new x

(i)
k from

the dynamics model:

x
(i)
k ∼ p(xk|x(i)

k−1), i = 1, . . . , N .

2: Calculate the weights

w
(i)
k = p(yk|x(i)

k ), i = 1, . . . , N .

3: Normalize weights to sum to unity.

4: Perform resampling.

2.3.3 Rao-Blackwellized Particle Filtering

Sometimes it is possible to disintegrate the Bayesian filtering problem in to subprob-

lems, for example, estimation of a linear Gaussian part and approximation of a non-

linear part. The linear Gaussian part can be solved analytically, for example by using

the Kalman filter and the non-linear part can be solved by particle filtering. The

extended Kalman filter can also be used in case of slight non-linearities. This idea

of marginalizing the states of the dynamic system is known as Rao-Blackwellization.

The Rao-Blackellization improves the efficiency of the normal SIR by reducing the

number of Monte-Carlo samples required to approximate the target distribution.

This generates estimators with less variance as compared to standard Monte Carlo

sampling (Doucet et al., 2001; Ristic et al., 2004).

Rao-Blackwellized filtering can be used for state estimation of conditionally

Gaussian Markov models,

p(xk|xk−1, λk−1) = N(xk|Ak−1(λk−1)xk−1,Qk−1(λk−1))

p(yk|xk, λk) = N(yk|Hk(λk)xk,Rk(λk))

p(λk|λk−1) = (any given form),

(2.22)

where xk is the state, yk the measurement, and λk an arbitrary latent variable. If the

prior distribution of xk is also Gaussian the state variables xk can be integrated out

in closed form and only the latent variables λk need to be sampled. The Algorithm

2.3.3 shows the recursive steps required for marginalized filtering of the model in

Equation (2.22). The result of the Rao-Blackwellized particle filter (RBPF) can be

represented with an approximation density of the form

p(xk, λk|y1:k) ≈
N∑
i=1

w
(i)
k δ(λk − λ(i)k ) N(xk|m(i)

k ,P
(i)
k ).
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Algorithm 2.3.3 : Conditionally Gaussian Rao-Blackwellized particle filter

1: Kalman filter prediction:

Compute all means and covariances based on the previous drawn latent variable

λ
(i)
k−1 for each particle i = 1, . . . , N

m
−(i)
k = Ak−1(λ

(i)
k−1)m

(i)
k−1

P
−(i)
k = Ak−1(λ

(i)
k−1)P

(i)
k−1A

T
k−1(λ

(i)
k−1) +Qk−1(λ

(i)
k−1)

2: Draw new variables λ
(i)
k for each particle in i = 1, . . . , N from the corresponding

importance distributions

λ(i)k ∼ π(λk|λ(i)1:k−1,y1:k)

3: Calculate new (unnormalized) weights as follows:

w
(i)
k ∝ w

(i)
k−1

p(yk|λ(i)1:k,y1:k−1)p(λ
(i)
k |λ

(i)
k−1)

π(λk|λ(i)1:k−1,y1:k)

where the likelihood term is the marginal measurement likelihood of the Kalman

filter such that the model parameters in the Kalman filter are conditioned on

the drawn variable value λ
(i)
k

p(yk|λ(i)1:k,y1:k−1) = N
(
yk|Hk(λ

(i)
k )m

−(i)
k ,Hk(λ

(i)
k )P

−(i)
k HT

k (λ
(i)
k ) +Rk(λ

(i)
k )
)
.

Then normalize the weights to sum to unity.

4: Kalman filter update:

Perform update based on the drawn latent variables λ
(i)
k

v
(i)
k = yk −Hk(λ

(i)
k )m−k

S
(i)
k = Hk(λ

(i)
k )P

−(i)
k HT

k (λ
(i)
k ) +Rk(λ

(i)
k )

K
(i)
k = P

−(i)
k HT

k (λ
(i)
k )S−1k

m
(i)
k = m

−(i)
k +K

(i)
k v

(i)
k

P
(i)
k = P

−(i)
k −K(i)

k S
(i)
k [K

(i)
k ]T

5: If the effective number of particles is too low, perform resampling
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2.4 Target Tracking and Data Association

Target tracking is an application area of Bayesian optimal filtering. Target tracking

in abstract form has its origin in estimation theory (Bar-Shalom et al., 2001). The

definition of target tracking is case-dependent and it is based upon the type of so-

lution required to solve the underlying problem. Target tracking, in general, can be

defined as estimation of the state of a moving object (target) from noisy measure-

ments. Measurements are obtained from a single sensor or multiple sensors which

can be at fixed locations or moving platforms (Bar-Shalom and Li, 1995). Target

tracking is further classified to single target tracking and multiple target tracking.

The Figure 2.1 shows single target tracking with a single sensor and the Figure 2.2

shows single target tracking with multiple sensors. In case of both multiple targets

and multiple sensors as shown in Figure 2.3, the measurements need to be combined

and this is generally known as sensor fusion.

Usually, the state of a target consists of the position and velocity of the ob-

ject, and sometimes acceleration of the target. The state is observed through mea-

surements obtained from different sources depending on the application of interest.

Measurements can have different types of sources such as acoustic, radar, video or

signals obtained from some sensor, furthermore, the measurements can be noisy.

Once these measurements are obtained, they are either used in raw form or prepro-

cessed before the application of any estimation method. Classical applications of

target tracking consist of flight control systems, remote surveillance, moving vehicle

tracking and navigation.

RADAR

TARGET

DIRECTION SPEED

Figure 2.1: Single target tracking with a single sensor
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RADAR 1

TARGET

DIRECTION SPEED

RADAR 2

Figure 2.2: Single target tracking with multiple sensors

A more complex problem occurs when there are multiple targets moving in the

same geographical area. This requires a solution that, in addition to tracking targets,

can also determine which measurement originated from which target, commonly

known as data association. The basic difference in methodologies for multiple target

tracking is the implementation of the data association process. There are many

data association approaches used in multiple target tracking; these include very

simple nearest neighbor approaches to the very complex multiple hypothesis tracking

(MHT).

RADAR 1

TARGET

DIRECTION SPEED

RADAR 2

TARGET

DIRECTION SPEED

Figure 2.3: Multiple target tracking with multiple sensors
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A well-known approach to data association is the global nearest neighbor (GNN)

method also known as single most probable hypothesis tracking (Blackman and

Popoli, 1999). GNN consists of two important steps referred to as gating and associ-

ation. Gating is the process of eliminating the most unlikely target-to-measurement

pairings (associations). The association process is simple when there is a single mea-

surement gated to each target. However, conflicts arise when multiple measurements

arise in a single gate or same measurement duplicates in different gates. These cases

are generally resolved using an assignment matrix. The GNN algorithm uses the

measurements closest to a predicted target for updating the state parameters of

that target and remaining measurements are discarded. Another nearest neighbor

approach is the strongest-neighbor filter (SNF). The SNF algorithm keeps the sig-

nal with the highest intensity among the validated measurements in the gate while

others are discarded.

The above mentioned approaches are similar in the sense that they use a single

measurement for target updates while all the other measurements are discarded. An

alternative to this approach is that all of the measurements are used with different

weights (probabilities) for target updates, this is known as probabilistic data as-

sociation. Probabilistic data association filter (PDAF) is a method which consists

of the probabilities for all validated measurements corresponding to the targets of

interest(Kirubarajan and Bar-Shalom, 2005). Joint PDA is another extension of the

PDA approach where the measurement-to-track association probabilities are evalu-

ated and combined to find the state estimate (Bar-Shalom and Li, 1995). Usually

in all multiple target tracking problems the ‘number of targets’ is unknown, there-

fore, the data association approach used must determine the number of targets in

addition to data association of the targets. A number of approaches have also been

proposed for such kind of problems (Blackman and Popoli, 1999; Bar-Shalom et al.,

2001).

Another important component of the state of a moving target especially in case

of multiple targets can be the attribute measurements (Bar-Shalom, 1987). It is

often very difficult to determine which measurement is generated by which target if

the identities of the individual targets are unknown and the measurements obtained

have only kinematic components. Attributes or features of the targets that can

be obtained are highly dependent on the capabilities of the source of measurement.

Sensors that can obtain imagery information of the targets at a certain resolution are

able to distinguish between targets based on their shape, size or color, for example,

a vehicle tracking system using satellite imagery technology can classify vehicles in
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to different categories (e.g., car, truck, tractor). However, more restricted sources

that can only obtain kinematic measurements can use prior information about the

targets, for example, the maximum speed a target can attain or the maximum

turning angle possible. This is known as coarse kinematic information (Blackman

and Popoli, 1999). In case the coarse kinematic information is also similar among

all the targets then the data association process becomes even more difficult.



Chapter 3

Materials, Models and Methods

3.1 Data Sources

We have used an unconventional method of estimating animal abundance in compar-

ison to the standard methodology. This is mainly due to an unusual data collection

process. The data collection process is based on a reporting procedure that involves

multiple observers. The observations can be registered through websites, phones or

district game management offices. This is a voluntary task which can be performed

by anybody in Finland, for example, it is possible that somebody traveling via car

observes a carcass of a dead animal and reports to the district game management

office. The whole dataset consists of observations collected from almost every dis-

trict of Finland. This data collection is a continuous process which is supervised by

the Finnish Game and Fisheries Research Institute.

The dataset comprises mainly of four large carnivores: brown bear, wolf, lynx

and wolverine. The dataset also consists of index based data which is considered

to be more reliable information. The field work required to collect index based

samples is also a voluntary effort of around 1500 hunters all around Finland. These

volunteers have exceptional skill in finding and identifying marks left behind by

the animals. The observations are based on both direct sighting of the animal and

its remains (field-signs). Field-signs mainly consist of foot-prints, carcasses of dead

animal or prey, feces and habitual structures. One of the more important descriptors

in the data set is the number of cubs and one year olds which are assumed to be

following their mother. The foot print observations are also used to determine the

litter size and age of the animals. We briefly present the biological information and

animal tracks description that aid in the estimation of animal population.

33
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Brown Bear

A litter of 1− 3 and at times 4 cubs is born between January to March during the

hibernation period of a female bear. The cubs tend to follow the mother before

hibernating again the following winter and usually leave their mother in late spring

or summer of the next year. Males tend to disperse from their natal areas whereas

females usually establish home ranges nearby or overlapping their natal areas. Brown

bears are solitary animals and usually live their whole life in a single but large

habitual region. The home ranges of male bears are larger than those of female

bears. The annual home range of a female can be 60− 300 square kilometers while

that of a male can be over 1000 square kilometers (Katajisto, 2006).

Brown bears hibernate for 4 − 5 months which restricts the reliable sampling

period to merely 5− 6 months. Due to the long winter sleep a bear has to consume

sufficient food during spring and summer. This makes bears very active and they

tend to move around 10−30 kilometers a day in search of food. Bear foot prints can

be found quite apparently on sand and moss due to the huge weight of the animal.

Foot prints also assist in identifying other field signs for the presence of a bear such

as broken tree branches, droppings and excavated anthills. Figure 3.1 shows a brown

bear1 and the foot print; the front foot or paw is 12−15cm in length and 10−18cm

in width while the rear foot is 18− 25cm in length and 10− 18cm in width.

Figure 3.1: Brown bear and foot sizes

Wolf

More often a pack of wolves is formed around a breeding alpha pair or the dominant

pair. Other members of the pack are usually 1 − 2 year olds of the same family.

1By Hillebrand, Steve [Public domain], via Wikimedia Commons.

http://creativecommons.org/licenses/by-sa/3.0/
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The female usually gives birth to a litter of 3− 6 cubs per year. The cubs are blind

and deaf when born and are nursed by the mother in a den for the first three weeks.

Wolves are highly social animals. All members of the pack hunt together and help

looking after the cubs . At the age of 1 − 2 years the young might leave the pack

and travel far from their birth place in search of their own territory and partner.

Wolf territories vary between 100− 1000 square kilometers. The territories are well

marked and strongly defended against other packs (Salvatori and Linnell, 2005).

Wolves travel 30− 50 kilometers a day but can also travel 160 kilometers if food

is scarce. Reliable descriptors for sampling are observations and field signs of wolf

packs rather than single observations since a single wolf is very hard to track unless

radio or GPS telemetry is used. Wolves move along roads, paths and tracks made

by humans and other animals. Their foot prints resemble to that of dogs but can

easily be distinguished by size and the tracks often tend to be in a straight path.

Figure 3.2 shows a wolf2 and the foot print; the length of the foot is 9− 10cm while

the width is 6.5− 10cm.

Figure 3.2: Wolf and foot size

Lynx

A female lynx usually gives birth to a litter of 2 − 3 kittens and more rarely 1 or

4 kittens are born. The lair is usually a hallow place with constant temperature

since the kittens are unable to regulate their body temperatures. The young begin

eating solid food only when they are at least three months old while they keep

suckling their mother for up to six months. Then the kittens leave the lair and start

following the mother. Initially unable to hunt they practice at prey captured by the

mother but learn rapidly and soon join the actual hunting. Lynx are solitary animals

2By Gary Kramer [Public domain], via Wikimedia Commons.

http://creativecommons.org/licenses/by-sa/3.0/
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except during the mating season which usually starts at the end of February to the

early April. Females usually give birth in May-June. The young might stay with

the mother at most for one year before dispersing. The home range and behavior

of lynx varies from region to region and primarily depends on the landscape and

density of prey (Breitenmoser, 2000). Generally, males travel more than females and

have larger home ranges that can vary from 120 to 1600 square kilometers. Females

with kittens can have a home range as small as 10 square kilometers but usually it

varies between 80− 500 square kilometers.

Lynx are mainly active after sunset and rest during the day time. It is observed

that distances covered during night time vary from 1 − 45 kilometers while males

travel more during the mating season. On the other hand females with kittens move

very short distances and stay in the proximity of a kill for several days. Lynx walk

at a steady pace but during hunting they can leap as long as 6− 8 meters. A Lynx

foot print resembles with that of a cat but it is usually larger. The thick fur around

the toes of a lynx makes rounded circles in snow. Figure 3.3 shows a lynx3 and the

foot print; the foot size is 7− 9cm in length and 6− 12cm in width.

Figure 3.3: Lynx and foot size

Wolverine

A female wolverine can usually have a litter of 2 − 3 cubs and occasionally 1 or

5 can be born. The cubs start walking with the mother at 9 − 10 weeks. The

mating season is from June to August while birth is in January to March. The

wolverine is generally a solitary animal but the social behavior and dispersal is

inadequately recorded. Usually the home range of a male can vary from 100− 500

square kilometers while that of a female can be 100− 200 square kilometers (Landa

et al., 2000).

3http://creativecommons.org/licenses/by-sa/2.0/de/deed.en
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Wolverines are generally scavengers that feed on remains left by other predators

but can also hunt domestic sheep and semi domestic reindeer. Wolverines usually

run or leap and leave tracks in pairs of two and three. The foot size of a wolverine is

unexpectedly large and enables them to move around easily and rapidly in snow. The

foot print is easily distinguished from other animals. Figure 3.4 shows a wolverine4

and the foot print; the length is 8− 10cm while the width is 6− 14cm.

Figure 3.4: Wolverine and foot size

3.2 Data Format

The procedure used for the collection of data involves multiple observers spread over

a random space in time. This results in a dataset that contains multiple observations

or measurements from a single animal received during various times of the year. A

single observation in the dataset mainly includes the geographical position of an

animal in the standard YKJ co-ordinate system, the time and date of observation,

the foot print width and length which is measured in centimeters, and the number of

animals in the family or a pack(in case of wolves). Furthermore, additional fields of

the data comprise of the game management district information, the type of species

observed and some notes for individual special cases as reported by the volunteer.

The dataset can be represented as a structure as shown in table 3.1. If the total

number of observations are T then each feature of the data is stored as an array

of size 1 × T . The data set is a N × T structure where N is the total number of

observations. The analysis on this data is performed separately for each animal type

for example, a single analysis performed using the algorithm would only compute

the total number of bears. This is because associating observations from different

4By Jeffrey C. Lewis [Public domain], via Wikimedia Commons.

http://creativecommons.org/licenses/by-sa/3.0/
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animals is incorrect. The large carnivores have the Finnish names: karhu(bear),

susi(wolf), ilves(lynx) and ahma(wolverine).

No. Field Type Array Size

1. Observation-ID 1× T of T

2. Communication source 1× T of T

3. Game management district 1× T of T

4. Observation period 1× T of T

5. Observation date 1× T of T

6. Species type 1× T of T

7. Observation time 1× T of T

8. Number of adults 1× T of T

9. Number of cubs 1× T of T

10. Number of 1-year old 1× T of T

11. Observation type 1× T of T

12. 1st foot print width 1× T of T

13. 1st foot print length 1× T of T

14. 2nd foot print width 1× T of T

15. 2nd foot print length 1× T of T

16. 3rd foot print width 1× T of T

17. 3rd foot print length 1× T of T

18. Distance of nearest house 1× T of T

19. Target contact person 1× T of T

20. Case based notes 1× T of T

21. YKJ Co-ordinate - X 1× T of T

22. YKJ Co-ordinate - Y 1× T of T

Table 3.1: Data Attributes

The tables 3.2 to 3.5 show some statistics about the observations where the

columns represent the following information.

• A - Total observations.

• B - Total foot measurements.

• C - Observations with at least 1 adult and 1 cub.

• D - Observations with at least 1 adult, 1 cub and 1 foot measurement.

Table 3.2 shows bear sampling statistics; the number of observations have become

two fold in the year 2009 as compared to 2001. In the year 2009 a total of 8020
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observations were recorded. However, it was observed that from the start of April

to the end of September 6918 samples were collected while only 1102 were collected

from October to March. This can be explained by the fact that bears hibernate

during the winter time. The number of samples with at least a single adult and a

single cub are very low as compared to the total number of observations. Similar

pattern is observed when at least a single foot measurement is included in to the

conditions.

Tables 3.3, 3.4 and 3.5 show that the sampling effort in case of wolf, lynx and

wolverine has gradually increased during the 9 years. Analysis of 2009 data of these

three animals showed that a very high number of observations were collected during

autumn and winter (October to March) while fewer observations were made during

spring and summer (April to September). The number of foot size measurements

recorded is very low in the data as compared to the total number of observations.

Year A B C D

2001 4808 3494 317 210

2002 4808 3250 270 184

2003 4228 2930 268 149

2004 4625 3432 348 223

2005 5631 3314 393 220

2006 5247 3872 403 221

2007 6147 4468 457 276

2008 7023 5347 542 326

2009 8020 6181 731 433

Table 3.2: Bear Observations

Year A B C D

2001 2015 821 66 54

2002 2497 1018 74 59

2003 2526 1240 122 82

2004 4304 2021 194 151

2005 4780 1745 288 199

2006 4790 1993 239 193

2007 5725 2546 187 140

2008 5358 2845 188 130

2009 4742 2266 135 72

Table 3.3: Wolf Observations

Year A B C D

2001 4490 1978 457 378

2002 5691 2586 640 519

2003 6934 3364 936 735

2004 9484 4774 1195 923

2005 11805 4891 1480 833

2006 13613 7418 1875 1365

2007 12064 5872 1803 1376

2008 19030 9571 2945 2132

2009 22682 12727 3577 2274

Table 3.4: Lynx Observations

Year A B C D

2001 540 219 5 4

2002 804 265 8 6

2003 815 270 5 5

2004 882 320 5 3

2005 1024 295 12 7

2006 915 301 16 15

2007 859 243 9 3

2008 1530 557 9 8

2009 1053 410 9 8

Table 3.5: Wolverine Observations
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3.3 Model

We have used the state-space model framework as the basis for representing the

dynamic and measurement models. The dynamic animal movement models given as

linear stochastic differential equations (SDE) can be discretized in order to solve the

filtering problem. The discretization of linear SDE results in a discrete-time linear

Gaussian model, which is suitable for the Kalman filter. We can write a linear

(time-invariant) SDE in white noise notation as (Øksendal, 2003; Grewal et al.,

2001; Särkkä, 2006)
dx(t)

dt
= F x(t) +Lw(t) , (3.1)

where x(t) is a n−dimensional state vector at time t, F is a n×n constant coefficient

matrix, w(t) is a Gaussian white noise process with a spectral density matrix Qc

and L is a constant matrix.

Solution of linear SDE

We solve the linear stochastic differential equation given in Equation (3.1) by pre-

multiplying the integrating factor eF t in matrix exponential form as

e−F t
(dx(t)

dt
− F x(t)

)
= e−F t

(
Lw(t)

)
=⇒ d

dt

(
e−F t x(t)

)
= e−F t

(
Lw(t)

)
,

integrating the above expression between t0 and t∫ t

t0

d

dt

(
e−F τ x(τ)

)
=

∫ t

t0

e−F τ Lw(τ) dτ

=⇒ x(t) = eF (t−t0) x(t0) +

∫ t

t0

eF (t−τ)Lw(τ) dτ . (3.2)

The mean and covariance can be computed from Equation (3.2). The solution to

the linear SDE is a Gaussian process with mean and covariance (Grewal et al., 2001)

m(t) = exp(F (t− t0))x(t0) (3.3)

P (t) = exp(F (t− t0))P (t0) exp(F (t− t0))T

+

∫ t

t0

exp(F (t− t0))LQcL
T exp(F (t− t0))T dt0 , (3.4)

where x(t0) ∼ N(m(t0),P (t0)) and exp(.) is the matrix exponential function.
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Discretization

Because t0 in Equations (3.3) and (3.4) is arbitrary, we can also express the solution

in recursive form as follows:

m(tk) = exp(F (tk − tk−1))︸ ︷︷ ︸
Ak−1

m(tk−1) (3.5)

P (tk) = exp(F (tk − tk−1))︸ ︷︷ ︸
Ak−1

P (tk−1) exp(F (tk − tk−1))T︸ ︷︷ ︸
AT

k−1

+

∫ tk

tk−1

exp(F (tk − tk−1))LQcL
T exp(F (tk − tk−1))T dtk−1︸ ︷︷ ︸

Qk−1

, (3.6)

where x(tk−1) ∼ N(m(tk−1),P (tk−1)) and exp(.) is the matrix exponential function.

Thus the mean and covariance of the solution in Equations (3.3) and (3.4) at discrete

instances t1, t2, . . . are given by the recursive equations;

mk = Ak−1mk−1 (3.7)

Pk = Ak−1Pk−1A
T
k−1 + Qk−1 , (3.8)

where mk = m(tk) and Pk = P (tk). By comparing to Algorithm 2.3.1, we can see

that this is exactly the Kalman filter prediction step.

3.4 Method

We have used the Rao-Blackwellized Monte Carlo data association (RBMCDA) al-

gorithm, designed to solve the problem of data association in case of both ‘a known

number of targets’ and ‘an unknown number of targets’, presented in (Särkkä et al.,

2007). The idea of Rao-Blackwellization is implemented in such a way that the

individual states of the targets is estimated analytically, for example, Kalman filter

is used when the dynamic and measurement models are linear Gaussian. State esti-

mation is conditional on the data associations, which are sampled using sequential

importance resampling (SIR).

RBMCDA with Known Number of Targets

Consider the state-space model given as

xj,k = Aj,k−1xj,k−1 + qj,k−1

yk = Hj,kxj,k + rj,k
(3.9)
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where number of targets j = 1, . . . , T and the process noise qj,k−1 and measurement

noise rj,k terms are zero mean with covariance matricesQj,k−1 andRj,k, respectively.

qj,k−1 ∼ N(0,Qj,k−1)

rj,k ∼ N(0,Rj,k) .
(3.10)

The problem is to estimate the states of T targets from noisy and cluttered mea-

surements y1:k. This is possible only if the sources of the measurements can be

distinguished, that is, which measurement has originated from which target. The

measurements can also be ‘clutter measurements’. Clutter or false alarm refers to

the measurements that originate from some other source than from the targets that

we are tracking. Therefore, a single measurement at time step k can originate from

one of two different sources; one of the known targets j = 1, . . . , T or clutter j = 0.

The RBMCDA algorithm basically involves the same steps as already described

in the Algorithm 2.3.3. Because the latent variable is discrete, we can use the

optimal importance distribution in the Rao-Blackwellized particle filter for solving

the data association problem. The clutter is assumed to be uniformly distributed on

the observation area with volume V and thus the probability density of a cluttered

measurement yk is given as

p(yk|ck = 0) = 1/V, (3.11)

where ck is the data association indicator or latent variable as in the case of the

conditionally Gaussian Markov models. The data association indicator has the value

ck = j for targets j = 1, . . . , T and the probability of the measurement originated

from a target is same as the Kalman filter likelihood given by

p(yk|xj,k, ck = j) = N(yk|Hj,kxj,k,Rj,k) , (3.12)

where the measurement model matrices Hj,k and Rj,k can be different for each

target. The target and clutter association priors are assumed to be known and

given by p(ck|c1:k−1), for example, when there are only 2 targets and the clutter

density is 50% the prior probabilities would be

p(ck = 0) = 0.5

p(ck = 1) = 0.25

p(ck = 2) = 0.25 .

(3.13)

The optimal distribution required for the SIR can now be written as p(ck|y1:k, c1:k−1).
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For the implementation of RBMCDA algorithm with N number of particles, the

algorithm state stores and updates

particle 1 : {c(1)1,k,m
(1)
1,k,P

(1)
1,k , c

(1)
2,k,m

(1)
2,k,P

(1)
2,k , . . . , c

(1)
T,k,m

(1)
T,k,P

(1)
T,k, w

(1)
k }

particle 2 : {c(2)1,k,m
(2)
1,k,P

(2)
1,k , c

(2)
2,k,m

(2)
2,k,P

(2)
2,k , . . . , c

(2)
T,k,m

(2)
T,k,P

(2)
T,k, w

(2)
k }

...

particle N : {c(N)
1,k ,m

(N)
1,k ,P

(N)
1,k , c

(N)
2,k ,m

(N)
2,k ,P

(N)
2,k , . . . , c

(N)
T,k ,m

(N)
T,k ,P

(N)
T,k , w

(N)
k } ,

where c
(i)
1:T,k are the data association indicators for the targets which can have integer

values 0, . . . , T , and m
(i)
1:T,k,P

(i)
1:T,k are the means and covariances of the targets and

w
(i)
k is the importance weight of each particle i = 1, . . . , N .

The optimal importance distributions for N particles are p(ck|y1:k, c(i)1:k−1), where

i = 1, . . . , N . The following steps have to be performed in order to sample from the

optimal distribution at each step k,

1. Compute the clutter association probability as

π̂
(i)
0 = p(yk|c(i)k = 0,y1:k−1, c

(i)
1:k−1)p(c

(i)
k = 0)

2. Compute the target association probability for each target j = 1, . . . , T as

π̂
(i)
j = p(yk|c(i)k = j,y1:k−1, c

(i)
1:k−1)p(c

(i)
k = j)

3. Normalize the importance distribution as

π
(i)
j =

π̂
(i)
j∑T

t=0 π̂
(i)
t

, j = 0, . . . , T

4. Sample new associations to targets and clutter as

• Draw c
(i)
k = 0 with probability π

(i)
0

• Draw c
(i)
k = 1 with probability π

(i)
1

• . . .

• Draw c
(i)
k = T with probability π

(i)
T .

RBMCDA with Unknown Number of Targets

Again the aim is to estimate the state of the targets and the same model can be

considered as given in Equation (3.9). However, it is assumed that a very large

and constant number of targets T∞ are always available to be detected but only a

varying number of them are visible or alive. Therefore, a single measurement at

time step k can be assumed to be originated from one of three different sources;
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• one of the existing targets j = 1, . . . , T .

• a new target j = T + 1.

• clutter j = 0.

The probability density of a cluttered measurement is the same as in Equation (3.11)

and the the probability of a measurement originated from an existing target is the

same as in Equation (3.12). However, the probability of a measurement originated

from a new target would be the Kalman filter likelihood which can be computed given

the initial mean m0 and initial process noise covariance P0, using the measurement

likelihood

p(yk|x0, ck = j) = N(yk|Hj=T+1,kx0,Rj=T+1,k) , (3.14)

where ck is the data association indicator which has a value j = T + 1 and the

measurement model matrices Hj=T+1,k and Rj=T+1,k can be different for the new

target. The association of a measurement to a new target is called a birth. The

target and clutter associations probabilities can be modeled as

p(bk, ck|c1:k−1) =
pb , event(1)

(1− pb)p(ck|c1:k−1) , event(2)

0 , event(3)

(3.15)

where event(1) indicates the birth of a new target which has a probability pb, event(2)

indicates the probabilities of association to an existing target or clutter and all other

events have zero probability. Each target has a life time td after getting associated

to a measurement. The time to death probability density is given by

td ∼ p(td), (3.16)

which can be, for example, an exponential or gamma distribution.

Similar steps can be followed for the implementation of RBMCDA with ‘an

unknown number of targets’ as in the case of ‘a known number of targets’. The

algorithm state stores and updates

particle 1 : {e(1)k , c
(1)
1,k,m

(1)
1,k,P

(1)
1,k , c

(1)
2,k,m

(1)
2,k,P

(1)
2,k , . . . , c

(1)
T∞,k

,m
(1)
T∞,k

,P
(1)
T∞,k

, w
(1)
k }

particle 2 : {e(2)k , c
(2)
1,k,m

(2)
1,k,P

(2)
1,k , c

(2)
2,k,m

(2)
2,k,P

(2)
2,k , . . . , c

(2)
T∞,k

,m
(2)
T∞,k

,P
(2)
T∞,k

, w
(2)
k }

...

particle N : {e(N)
k , c

(N)
1,k ,m

(N)
1,k ,P

(N)
1,k , c

(N)
2,k ,m

(N)
2,k ,P

(N)
2,k , . . . , c

(N)
T∞,k

,m
(N)
T∞,k

P
(N)
T∞,k

, w
(N)
k } ,
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where e
(i)
k is the life indicator vector of length T

(i)
k , c

(i)
1:T,k are the data association

indicators for the targets which can have integer values 0, . . . , T
(i)
k , and m

(i)
1:T,k,P

(i)
1:T,k

are the means and covariances of the targets and w
(i)
k is the importance weight of

each particle i = 1, . . . , N . The number of targets T̂
(i)
k in each particle i = 1, . . . , N

at time step k can be different and the expected number of targets at time step k

can be computed by a weighted sum over the particles as

Tk =
N∑
i=1

w
(i)
k T̂

(i)
k . (3.17)
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Results

In this chapter, we present the results of applying RBMCDA to the animal obser-

vation datasets. We mainly present application of a static model and a dynamic

model for the estimation of bear population in the year 2010. We also numerically

show the estimated population size of bear, wolf, lynx and wolverine for the year

2009. The results section provides with an adequate explanation of the models used

in the analysis of the 2010 dataset. Therefore, similar procedures could be applied

to any other dataset from the year 2001 to 2008.

In the manual counting method, the Finnish Game and Fisheries Research In-

stitute considers observations with at least one adult and one cub as being the most

reliable for population estimation of the animals. Therefore, we have also used sim-

ilar observations from the datasets in order to obtain comparable final results. We

use the YKJ coordinates as measurements of the kinematic part of the state and the

foot widths are the attribute measurements in the analysis. For the analysis of bear

datasets a single foot width indicates the age of a bear hence adult bears and cubs

can be distinguished based on this information. However, some foot measurements

have to be categorized depending on the time of observation. The Table1 4.1 shows

the foot width sizes for adults and cubs during different seasons of the year. The

one year olds (cubs from previous year) are also treated as cubs in our analysis.

Season Cub 1 year old Adult

Spring 3.5− 5 (cm) 4− 7 (cm) 6− 9 (cm)

Summer 6− 9 (cm) 7− 10 (cm) 8− 11 (cm)

Autumn > 9 (cm) > 10 (cm) > 11 (cm)

Table 4.1: Bear foot widths for different seasons

1courtesy Finnish Game and Fisheries Research Institute.
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Process Model

The process model is basically a zero drift random walk model that can be written

in continuous form as

dx

dt
= w1

dy

dt
= w2

df 1

dt
= w3

df 2

dt
= w4

... =
...

dfM

dt
= wM ,

(4.1)

where x and y are the coordinates, and f 1, . . . , fM are foot widths, and w1 . . . , wM

are Gaussian white noise processes with a diagonal spectral density matrix Qc. The

discretized model can be written as

xj,k

yj,k

f 1
j,k

f 2
j,k
...

fMj,k


︸ ︷︷ ︸

xj,k

=



1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 1 0 . . . 0

0 0 0 1 . 0
...

...
... .

. . . .

0 0 0 0 0 1


︸ ︷︷ ︸

Aj,k−1



xj,k−1

yj,k−1

f 1
j,k−1

f 2
j,k−1
...

fMj,k−1


︸ ︷︷ ︸

xj,k−1

+qk−1 , (4.2)

where the state vector xj,k consists of the position (xj,k, yj,k) of the target j and the

foot width measurements fmj,k : m = 1, . . . ,M . Aj,k−1 is the transition matrix of

size (M + 2×M + 2) and qk−1 ∼ N(0,Q) is the zero mean Gaussian process noise

with covariance matrix

Q =



qx∆t 0 0 . . . 0

0 qy∆t 0 . . . 0

0 0 q1f∆t . 0
...

... .
. . . .

0 0 0 0 qMf ∆t


. (4.3)

Measurement Model

The number of foot measurements obtained can vary in different observations be-

cause a single observation can include different number of animals. On the other
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hand, there can be observations without any foot width measurements due to sight-

ing based data. Assuming there can be m = 0, . . . ,M number of foot width mea-

surements fmj,k in a single observation then the measurement model matrix is a

(m + 2 × 2M + 2) size matrix. The measurement model in general is of the form

given in the Equation (3.9). Furthermore, we have used four different types of

measurement model and noise matrices given in a generic form as

• Case 1: Only positional information is available then

Hj,k =

(
1 0 0 . . . 0

0 1 0 . . . 0

)
m+2×2M+2

and

Rj,k =

(
σ2
x 0

0 σ2
y

)
m+2×m+2

,

(4.4)

where m = 0, σ2
x and σ2

y are observation noise variances.

• Case 2: Only adult foot width measurements are available along with posi-

tional information then

Hj,k =



1 0 0 0 . . . 0 . . . 0

0 1 0 0 . . . 0 . . . 0

0 0 1 0 . . . 0 . . . 0
...

... .
. . . .

... .
...

0 0 0 0 1 0 . . . 0


m+2×2M+2

and

Rj,k =



σ2
x 0 0 . . . 0

0 σ2
y 0 . . . 0

0 0 σ2
fa

. 0
...

... .
. . . 0

0 0 0 0 σ2
fa


m+2×m+2

,

(4.5)

where m = 1, . . . ,M , σ2
x, σ

2
y and σ2

fa
are observation noise variances.

• Case 3: Only cub foot width measurements are available along with positional
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information then

Hj,k =



1 0 0 . . . 0 0 . . . 0

0 1 0 . . . 0 0 . . . 0

0 0 0 . . . 0 1 . 0
...

... .
. . . . .

. . . .

0 0 0 0 0 0 0 1


m+2×2M+2

and (4.6)

Rj,k =



σ2
x 0 0 . . . 0

0 σ2
y 0 . . . 0

0 0 σ2
fc

. 0
...

... .
. . . 0

0 0 0 0 σ2
fc


m+2×m+2

,

where m = 1, . . . ,M , σ2
x, σ

2
y and σ2

fa
are observation noise variances.

• Case 4: Both adult and cub foot widths are available along with positional

information

Hj,k =



1 0 0 0 . . . 0 0 . . . 0

0 1 0 0 . . . 0 0 . . . 0

0 0 1 0 . . . 0 0 . . . 0
...

... .
. . . .

...
... .

...

0 0 0 0 1 0 0 . . . 0

0 0 0 0 0 0 1 . 0
...

...
...

...
...

... .
. . . .

0 0 0 0 0 0 0 0 1


m+2×2M+2

and

Rj,k =



σ2
x 0 0 . . . 0 0 . . . 0

0 σ2
y 0 . . . 0 0 . . . 0

0 0 σ2
fa

. 0 0 . . . 0
...

... .
. . . 0 0 . . . 0

0 0 0 0 σ2
fa

0 . . . 0

0 0 0 0 0 σ2
fc

.
...

...
...

...
...

... .
. . . 0

0 0 0 0 0 0 0 σ2
fc


m+2×m+2

,

(4.7)

where m = 1, . . . ,M , σ2
x, σ

2
y , σ

2
fa

and σ2
fc

are observation noise variances.
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A single measurement model matrix and observation noise matrix is selected

before the update step of the Rao-Blackwellized Monte Carlo Data Association al-

gorithm. The information in Table 4.1 is used to check whether the foot width

measurements belong to adult bears or cubs for the analysis of the bear observa-

tions.

Bears 2010

The main reason of illustrating results of bear observations in 2010 with detail is

that each observation in this dataset has been labeled with a group number by the

researchers at Finnish Game and Fisheries Research Institute. Group number refers

to an integer value that indicates which observations have originated from the same

individuals or family of bears. The highest value of the total group numbers is the

the actual number of individuals or families. Subsequently, this value multiplied by

a factor of 10 is the total bear population of Finland for a single year. Hence, the

results generated by the RBMCDA can also be compared with those of the Finnish

Game and Fisheries Research Institute.

The dataset consists of a total of 1000 observations where each observation can

consist of a single individual or family of bears. The total number of observations

with at least a single adult and a single cub is 918. The Figure 4.1 shows two types

of observations over the map of Finland: first, observations with at least a single

adult and a single cub information and second, all the remaining observations in

the dataset. Although, more than 50% of the observations in this dataset consist

of foot width measurements only 5% of them have more than 3 foot measurements.

Therefore, we choose M = 3 foot measurements, hence the state vector is of the

form xj,k = (xj,k yj,k f
1
j,k f

2
j,k f

3
j,k f

4
j,k f

5
j,k f

6
j,k)

T .

The number of Monte Carlo samples was 10 in this analysis. This value achieves

a reasonable data association approximation and the analysis remains time efficient.

We can also use more number of samples but the Kalman filter estimates remain the

same due to marginalization and instead of improving the data association approxi-

mation, we eventually have more duplicate particles due to sample impoverishment.

Hence, the ‘total number of targets’ remains almost the same but the analysis be-

comes more time consuming. We use a biased resampling approach and resampling

is performed after every 10 steps. This is again a reasonable value in order to avoid

degeneracy in the particles.
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Figure 4.1: Bear observations in Finland for the year 2010. A single observation can

consist of a single individual or a family of bears. In this dataset, a large number of

observations consist of at least a single adult and a single cub information.
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Static Model

For the first case, we assume that the targets are static, that is, the process noise

variance in the coordinates is qx = 0 and qy = 0. The process noise variance in

the adult foot width size is qmf = 0. This is because the adult foot width should

not change during the year. The process noise variance in cub foot width size is

qmf = 1 × 10−6, which means that the cub foot width can slightly grow during the

year. The time step ∆t is irregular depending upon the observation dates and the

time unit is days. The clutter density and clutter prior values were 1× 10−9, small

values were chosen because the measurements did not contain any natural clutter.

The prior birth probability was constant pb = 1/100 and deaths do not occur since

the targets are always assumed to remain visible after detection.

Each new target has initial mean m0 = (0 0 12 12 12 7 7 7)T where the first

two components represent the mean values of the coordinates, components 3 to

5 represent the mean values of the adult foot widths and the components 6 to 8

represent the mean values of the cub foot widths. The initial covariance matrix is

P0 =



4× 1012 0 0 0 0 0 0 0

0 4× 1012 0 0 0 0 0 0

0 0 25 0 0 0 0 0

0 0 0 25 0 0 0 0

0 0 0 0 25 0 0 0

0 0 0 0 0 25 0 0

0 0 0 0 0 0 25 0

0 0 0 0 0 0 0 25


, (4.8)

where the first two components of the diagonal represent variances in the coordinates

and the components 3 to 8 represent the variances in the foot widths.

The observation noise covariance matrix values were σfa = 1 cm, σfc = 1 cm.

These values correspond to the error in measuring the foot widths during surveys.

The estimation was performed multiple times with different values of σx and σy, that

is, values between 100 meters to 5000 meters. These values originally correspond

to the radial distances of 1 km to 5 km from the observation. The radial distance

considered in the manual analysis performed by the Finnish Game and Fisheries

Institute is 2 km. We have performed the analysis around this value in order to find

the best estimate of the total number of targets.

The Figure 4.2(a) shows that the number of targets increase with increase in

observations for all the values of σx and σy. The best estimate of the total number
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Figure 4.2: (a) Different estimated number of targets in time, (b) Best estimate of

the total number of targets, (c) True Group distribution, (d) Group distribution for

the best estimate of the total number of targets.

of targets was found with σx = 2400 meters and σy = 2400 meters shown in Figure

4.2(b). The Figure 4.2(c) shows the true distribution of groups while Figure 4.2(d)

shows the estimated group distribution of the best estimate. The groups in the esti-

mated group distribution have slightly higher number of observations as compared

to the true groups because many observations in the dataset were unlabeled. The

results of the data association can also be visualized on the map of Finland as shown

in Figure 4.3. It is observed that the true groups are more overlapping as compared

to the estimated groups which have more discrete boundaries. Three different ex-

amples are illustrated in the Figure 4.4, where (a), (c) and (e) show the true groups

at three different locations in Finland, and (b), (d), (f) show the corresponding data

associations obtained by RBMCDA.
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Figure 4.3: The results of the RBMCDA are visualized over the map of Finland.

The square box represents a single location close to the southeastern border of

Finland. The integer values are group numbers where each group can consist of a

single observation or multiple observations.
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Figure 4.4: Left column: true bear observation groups in three different locations.

Right column: corresponding data association results
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Dynamic Model

For the second case, we assume that each target exhibits a random walk. The

estimation was performed multiple times with different values of qx and qy, that is,

process noise variance of 1002 to 25002. The observation noise covariance values

were σx = 0.1 and σy = 0.1 which corresponds to the observation error in the

coordinates. The other parameters in the model were same as given for the static

model. The best estimate of the total number of targets was found with qx =

10502 and qy = 10502 as shown in Figure 4.5(b). The Figure 4.5(c) shows the true

distribution of groups while Figure 4.5(d) shows the estimated group distribution

of the best estimate. The groups in the estimated group distribution mostly have

similar number of observations as compared to the true groups, however, some larger

groups have less observations. The comparison of the groups is shown in Figure 4.6,

it is observed that the overlapping structure in the true groups is captured in the

estimated groups to some extent but there are some incorrect associations as well.
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Figure 4.5: (a) Different estimated number of targets in time, (b) Best estimate of

the total number of targets, (c) True Group distribution, (d) Group distribution for

the best estimate of the total number of targets.
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Figure 4.6: Left column: true bear observation groups in three different locations.

Right column: corresponding data association results
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Dataset 2009

The observation group labels are unassigned in this dataset. Hence, the comparison

between the estimated number of targets and the true number of targets in time

is impossible. We present the results of the total number of targets for each specie

and provide the estimates of the actual animal populations. Both the static model

and the random walk model could be applied for the analysis of this dataset and

similar estimates for the ’total number of targets’ can be generated. Therefore,

we demonstrate the results with a single model and present the parameters which

generated the best estimates of the animal populations.

We use the random walk model with mainly the same settings as used for the

results in the previous section. However, the parameters that were changed for this

analysis are presented again for bear, wolf, lynx and wolverine observations. The

statistics of the dataset are shown in Tables 3.2 to 3.5. The Figure 4.8(a) shows the

bear observations, Figure 4.8(b) shows the wolf observations, Figure 4.8(c) shows

the lynx observations and Figure 4.8(d) shows the wolverine observations.

For the bear observations we set qx = qy = 10002 and all the remaining param-

eters were unchanged. The total number of targets obtained was 139. This value

multiplied by a factor of 10 gives the estimate of the bear population in Finland for

the year 2009. The group distribution is shown in Figure 4.7.
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Figure 4.7: Estimated group distribution of bear observations (2009)
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(a) Bear Observations (2009)
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(c) Lynx Observations (2009)

 

 

Without Cubs

With Cubs

(d) Wolverine Observations (2009)

 

 

Without Cubs

With Cubs

Figure 4.8: Large carnivore observations in Finland for the year 2009. A single

observation can consist of a single individual or a family/pack of animals.
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For wolf observations we chose qx = qy = 30002, m0 = (0 0 8 8 8 4 4 4)T

and all the remaining parameters were unchanged. The total number of targets

obtained was 15. This value multiplied by a factor of 10 gives the estimate of the

wolf population in Finland for the year 2009. The group distribution is shown in

Figure 4.9.
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Figure 4.9: Estimated group distribution of wolf observations (2009)

For lynx observations we chose qx = qy = 10002, m0 = (0 0 10 10 10 4 4 4)T

and all the remaining parameters were unchanged. The total number of targets

obtained was 402. This value multiplied by a factor of 6 gives the estimate of the

lynx population in Finland for the year 2009. The group distribution is shown in

Figure 4.10.
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Figure 4.10: Estimated group distribution of lynx observations (2009)
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For the wolverine case the number of observations with at least a single adult and

a single cub is very low as shown in Table 3.5. Therefore, we use all the observations

in the estimation. We chose qx = qy = 15002, m0 = (0 0 11 11 11 4 4 4)T and all the

remaining parameters were unchanged. The total number of targets obtained was

152. In this case, we are unaware of the factor multiplication. Hence, the estimated

wolverine population is not projected. The group distribution is shown in Figure

4.11.
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Figure 4.11: Estimated group distribution of wolverine observations (2009)
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Conclusion and Discussion

In this thesis, we have presented a novel approach for the problem of estimating

wild animal population from an unconventional dataset. We incorporated animal

movement models with the state-space modeling framework for estimating the size

of animal populations. We showed the method of formulating the problem as a

conditionally linear Gaussian state-space model and recursively estimating the state

of the animals. We applied the multiple target tracking methodology for tracking

an ‘unknown number of targets’ to the animal observation datasets.

We developed a computational method to solve the problem of estimating large

carnivores in Finland and showed that both static and dynamic models with ap-

propriate parameters generate population estimates that are very close to the ones

generated with the manual analysis on the datasets by the Finnish Game and Fish-

eries Research Institute. The estimation with the static model in particular can be

considered close to the standard animal abundance estimation methodology in the

sense that we assume the animals to be stagnant. On the other hand, the estimation

with the random walk model can be considered more realistic because the animals

move during the time between the observations. However, accurate parameterization

of this model is difficult due to the large area and time frame of the observations.

The models used in this work were mainly parameterized by intuition and such

that the results remain similar to the ones produced by the Finnish Game and

Fisheries Research Institute. However, the parameterization of the models needs to

be automated. More specifically, a statistical parameter estimation method could

be utilized before the application of the Rao-Blackwellized Monte Carlo data as-

sociation algorithm to the animal datasets. The parameters could be estimated

by utilizing individual animal movement datasets, for example, GPS data could be

used. Although, RBMCDA comprises both births and deaths of targets, the as-

62
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sumption of an open population including immigration and emigration could also

be modeled using the population dynamics models. The models used in this work

could be enhanced by incorporating parameters of the habitual and social behav-

ior of the animals. Furthermore, landscape information about the habitats of the

animals could also be utilized.

The group labels that were considered to be true for the results in this thesis are

not exactly correct. Therefore, further improvement in the original manual analysis

is also required. The data based only on sighting information is very unreliable,

hence the method of data collection requires improvement. The foot size width

was the only attribute measurement useful for the data association process in the

RBMCDA, adding more attributes to the state could enhance the accuracy of the

associations. We classified the animals into adult and cubs based on foot size and

seasonal information. This could be improved by including only a single individual

in each observation and providing the exact age of the individual in addition to the

foot size.

Another on going phase in this project is the development of a software tool that

will aid scientists and researchers in computing the size of wild animal populations

automatically. This thesis provides a basis for many new research directions. This

work can be extended for other species datasets as well. The computational method

provides wildlife managers and researchers with a method of efficiently computing

the estimate of an animal population when there are multiple sources of information

in the animal datasets and the number of observations are greater than the actual

number of animals.
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Särkkä, S., Vehtari, A., and Lampinen, J. (2007). Rao-Blackwellized particle filter

for multiple target tracking. Information Fusion, 8(1):2–15.

Schwarz, C. and Seber, G. (1999). Estimating animal abundance: review iii. Statis-

tical Science, pages 427–456.

Seber, G. (1986). A review of estimating animal abundance. Biometrics, pages

267–292.

Smouse, P., Focardi, S., Moorcroft, P., Kie, J., Forester, J., and Morales, J. (2010).

Stochastic modelling of animal movement. Philosophical Transactions of the Royal

Society B: Biological Sciences, 365(1550):2201.

Southwood, R. and Henderson, P. (2000). Ecological methods. Wiley-Blackwell.

Thompson, W., White, G., and Gowan, C. (1998). Monitoring vertebrate popula-

tions. Academic Press San Diego, California, USA.

White, G. (2000). Modeling population dynamics. Ecology and management of mam-

mals in North America. Prentice-Hall, Upper Saddle River, New Jersey, pages

84–107.

Wikman, M. (2010). Monitoring game abundance in Finland in 2010. Riista- ja
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