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Useat viime vuosina keratyt havaintoaineistot koostuvat mittauksista hyvin pien-
esta maarasta naytteita. Tallaisten aineistojen mallintaminen on haasteellista,
koska mallit helposti ylisovittuvat aineistoon. Ongelmaan on kehitetty useita
lahestymistapoja.

Paaasiallisen mallinnustehtavan rinnalle voidaan ottaa muita mallinnustehtavia,
joissa kaytettavat mallit kytketaan paaasiallisen tehtavan malliin. Nain mallien
yhteisten osien oppimiseen on kaytettavissd enemmén aineistoa, mika paran-
taa tulosten yleistymista uusiin aineistoihin. Tata lahestymistapaa kutsutaan
monitehtavaoppimiseksi.

Kaytettavaa mallia voidaan myos rajoittaa lisaamalla sithen oletuksia, jotka ra-
joittavat mallin sovittumista aineistoon ja siten vahentavat ylisovittumista.
Tyypilliset monitehtavaoppimista hyodyntavat mallit painottavat kaikkia op-
pimistehtavia yhta voimakkaasti, vaikka yksi oppimistehtava on yleensa muita
tarkeampi. Tama diplomityo on esitutkimus uudesta lahestymistavasta, joka
pyrkii monitehtavaoppimisasetelmassa parantamaan yleistyvyytta yhdessa op-
pimistehtavassa eri mallien sovittumiskykya rajoittavien oletusten avulla. Val-
itussa oppimistehtavassa mallin sovittumista aineistoon rajoitetaan muita op-
pimistehtavia enemman mallin harvuutta lisaamalla, jotta tehtavalle opittu malli
yleistyisi paremmin.

Uutta lahestymistapaa tutkitaan rajaamalla tutkimuskysymys suosittuihin LDA-
malleihin, joissa hyodynnetaan bayesilaisia epaparametrisia priorijakaumia.
Epasymmetrisen harvuuden vaikutuksia tutkitaan tamén malliperheen avulla.
Tuloksissa on havaittavissa hienovaraisia parannuksia yleistyvyyteen. Tulokset
uudella mallilla ovat kilpailukykyisia taman hetkisten johtavien menetelmien tu-
losten kanssa.

Avainsanat: bayesilaiset epaparametriset  jakaumat, epasymmetrinen
monitehtavaoppiminen, harvuus, latentti Dirichlet allokaatio,
pienen naytejoukon ongelmat
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Modern data sets often suffer from the problem of having measurements from very
few samples. The small sample size makes modeling such data sets very difficult,
as models easily overfit to the data. Many approaches to alleviate the problem
have been taken.

One such approach is multi-task learning, a subfield of statistical machine learning,
in which multiple data sets are modeled simultaneously. More generally, multiple
learning tasks may be learnt simultaneously to achieve better performance in each.
Another approach to the problem of having too few samples is to to prevent
overfitting by constraining the model by making suitable assumptions.
Traditional multi-task methods treat all learning tasks and data sets equally, even
thought we are usually mostly interested in learning one of them. This thesis
is a case study about promoting predictive performance in a specific data set of
interest in a multi-task setting by constraining the models for the learning tasks
unevenly. The model for the data set of interest more sparse as compared to the
models for the secondary data sets.

To study the new approach, the research question is limited to the very specific
and popular family of so-called topic models using Bayesian nonparametric priors.
A new model is presented which enables us to study the effects of asymmetric
sparsity.

The effects of asymmetric sparsity are studied by using the new model on real
data and toy data. Subtle beneficial effects of asymmetric sparsity are observed
on toy data and the new model performs comparably to existing state-of-the-art
methods on real data.

Keywords: asymmetric multi-task learning, latent Dirichlet allocation, nonpara-
metric Bayesian statistics, small sample size, sparsity
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1 Introduction

Statistical machine learning is a field of computer science in which statistical models
are fitted to data sets. The purpose of modeling is to learn about the phenomena
described by the data sets and to be able to make predictions about future observa-
tions. Methods of statistical machine learning are used in other fields to discover new
knowledge. For example in bioinformatics, data sets with measurements from living
cells are modeled to explore the role of genes under different medical conditions and
treatments. Modeling has proved its value as means of discovering knowledge, but
modeling methods lag behind the challenges related to many modern data sets [1].

One of the central challenges of modern data sets in bioinformatics is that often
they consist of measurements from very few replicates, as producing replicates tends
to be very expensive. Simultaneously the number of different attributes measured
from the few replicates has exploded. For example in the case of gene expression
measurements, the expression of 10000-40000 genes is usually measured simultane-
ously from each replicate, whereas the number of replicates is atmost 100-200. The
setup of having more measured attributes than replicates is known as the small n,
large p problem, where n denotes the number of replicates and p the number of
measured attributes or dimensionality of the data.

Having more measured attributes than replicates renders most methods of tra-
ditional statistics useless due to statistical issues. In statistical machine learning,
models are often constrained with further assumptions that allow tackling problems
such as the small n, large p problem. One such assumption is that of sparsity, in
which observed patterns in the data are assumed to be related to changes in the
activity of relatively few attributes or factors (see e.g. [2]). For example in the case
of bioinformatics, we might assume that a disease is characterized by a dramatic
change in the expression of only a few genes instead of a huge set of small changes
in thousands of genes.

Another solution to the problem of having too few samples in the data set of
interest is to include other, secondary sources of data, which do not match the
primary data set of interest perfectly but which are still representative. Secondary
data can be made use of in multiple ways. In multi-task learning (see e.g. [3]),
secondary data sets are modeled with data-set-specific models, and some parts of
these models are shared with the model for the primary data set. Given that the
data sets share characteristics that can be learnt using shared resources, more data
is available for learning the shared parts. Reducing uncertainty about the shared
parts allows also better modeling of the data-set-specific parts and overall better
predictions.

In most applications we are often interested in making predictions about a par-
ticular distribution described by a data set of interest. In other words, our interest
is asymmetric in the sense that we are not equally interested in all data sets. We
take the multi-task learning approach in order to augment the data set of interest
with secondary data. Even though we are more interested in some parts of our
data than the others, traditional multi-task learning treats all data sets and models
symmetrically. The models can be constrained by making further assumptions to



concentrate their resources on the data set of interest. This is called asymmetric
multi-task learning [4]. This thesis is a case study on using sparsity assumptions for
implementing asymmetric multi-task learning setups.

The aim of this thesis is to study whether predictive performance of the model
for a data set of interest could be increased in a multi-task setting by making it
more sparse compared to models for secondary data sets. The question is naturally
too broad and complex to be addressed completely within the scope of this thesis,
so the research question is limited to the very specific and popular family referred
to as topic models, using Bayesian nonparametric priors.

The general Bayesian framework, under which the proposed model has been for-
mulated, will be presented in section 3. Bayesian nonparametrics and topic models
will be presented in sections 4 and 7 respectively. To empirically study the research
question, an implementation of the model presented in section 8 is used to conduct
experiments, which are described in section 9. Section 10 contains discussion about
the research problem and the results.



2 Modeling and data analysis under the small n,
large p -problem

Modeling is about finding structure in data by fitting models into data sets. Models
can be used to to make predictions about future observations or to summarize data
sets. Modeling is a very broad term and the variety of different models is extensive.
Examples of modeling techniques include regression models, clustering algorithms
for grouping similar observations together and simulation models for physical pro-
cesses. This thesis concentrates on the field of statistical modeling, in which data
sets are described using probability distributions.

As mentioned in Section 1, modern data sets collected, for example, in the fields
of bioinformatics and neuroinformatics often suffer from the problem of having too
few data. The number of measured attributes per sample (biological replicate or
patient) is huge, whereas the number of samples tends to be very small. This
problem is referred to as the small n, large p -problem, where n denotes the number
of samples and p the number of measured attributes. The small n, large p problem
poses great challenges for modeling.

The common inbalance between the number of samples and measured attributes
is due to development in measurement technologies that allow measuring thousands
of attributes simultaneously from each sample. As the economical cost of each
individual sample is high, data sets consist of thousands of measurements from very
few samples.

The severity of the small n, large p problem varies in different fields. For example
gene expression is usually recorded for 10000 — 40000 genes whereas the number of
samples in such experiments is 10 — 100. In neuroinformatics the number of samples
is of the same order, but the number of measured attributes (voxel activities) is
of the order of 1000000. However, the severity of the problem is also affected by
other properties of the learning task in addition to the ratio of measured attributes
and samples. As an example, in neuroinformatics the spatial relationship between
different voxels is known allowing effective treatment of the problem, whereas in
bioinformatics the relationships between the genes are often poorly understood.
Even though the severity of the small n, large p problem varies, it is most definitely
the main challenge for most methods used in the affected fields.

The small n, large p problem renders many traditional methods useless. For
example, the estimation of the parameters for a simple regression model using clas-
sical techniques becomes impossible for statistical reasons as the number of variables
exceeds that of samples. The severity of the effects of the small n, large problem
depend on the state of ill-conditionedness: before rendering estimation of parame-
ters impossible, parameter estimates become more and more unreliable as the ratio
of samples and measured attributes gets worse.

The small n, large p problem is strongly related to the problem of overfitting.
When using a model to make predictions, the model parameters are fitted to some
training data. Overfitting refers to models generalizing poorly to new data sets that
have been generated from the same distribution as the training data. The small n,



large p problem promotes overfitting.

2.1 Small n, large p -problem and overfitting

When modeling, data are assumed to have some structure that the model can cap-
ture. Learning the structure will enable making predictions about future observa-
tions. If a model is flexible enough, it can, however, learn the noise in the training
data in addition to the structure with predictive power. Learning the noise pat-
tern will cause a reduction in predictive performance, as noise does not contain any
predictive power. Overfitting occurs in both supervised and unsupervised learning.

For example in regression analysis, some recorded noise in the finite data set can
be correlated with the target variable more strongly than such attributes that in
reality have predictive power. In these cases the model will learn to make predictions
based on the noise, and the model will disregard the interesting structure in the data.
[ll-posed data sets suffering from the small n, large p problem are especially prone
to overfitting, as the large number of attributes available for making predictions
induces a huge number of model parameters in most traditional models, and the
huge number of model parameters enables fitting extensively to the finite training
data.

The small n, large p problem and the problem of overfitting are easiest to describe
by using a simple example. Assume that we want to learn to predict, whether a
child of five years becomes a Doctor of Technology later in his/her life. Our data
set consists of features about a group of 100 people with information about them at
the age of 5 and their academic status at the time of their death.

First let us assume that the data set contains the following information for each
of the 100 subjects: parents’ academic status, family income level and the subjects’
preference of chocolate ice cream vs. strawberry ice cream at the age of 5 years.
Obviously parents’ academic status predicts the academic status of the subjects, but
not to perfectly. Also family’s income level will have some predictive power, even
though not as much as parents’ academic status. Ice cream preferences, however,
will probably not contain any information about future academic status. With 100
subjects and 3 attributes, we could use a standard logistic regression model to learn
to make predictions about academic status. The learnt model would probably not
explain the training data perfectly, but it would probably generalize well to new
observations.

Now lets assume that in addition to the previous information, we have also
recorded the favorite color at the age of 5 and the first letter of the middle name
for all subjects. These new attributes are unlikely to contain any predictive power
about future academic status, but the parameter estimates will have more noise
than without these new, noninformative variables as the addition of excess, non-
informative parameters causes overlearning. Performance in the training set will
increase, but the model will not generalize as well as without the excess variables to
new observations.

By adding more and more noninformative features the parameter estimates will
become more and more unreliable. Eventually some set values of the noninformative



features will correlate perfectly with the future academic status. For example, all
the 100 people who will become Doctors of Technology might favor chocolate ice
cream, have a middle name starting with T’ and have an uncle with eye glasses.
This set of characteristics will probably tell nothing about future observations, but
in this finite set of 100 samples it is able to distinguish the set of people who will
become Doctors of Science. At this stage learning the parameters will go wrong:
the model will learn this set of features allowing perfect performance in the training
set and probably ignore parents’ academic status, as it is no longer needed with its
partial predictive power. This set of parameters chosen by the learning algorithm
suffers from severe overlearning, as the model has learnt the noise and missed the
true structure with predictive power completely.

The problem can, however, get even worse. If the number of noninformative
features is increased even further, the model will soon have many different ways
of distinguishing the future Doctors of Science. Selecting some unique parameters
without further information becomes impossible. This corresponds to the worst case
scenario of the small n, large p problem, in which learning parameters for a model
without, for example, further regularization becomes impossible. Regurlarization is
discussed in sections 2.2 and 6.

More generally, as the number of features increases, the number of feature combi-
nations allowing good performance in the training set increases. Any single solution
will probably overfit and generalize poorly to the test data. This can be alleviated
by taking the Bayesian approach as will be discussed in section 3.2.

2.2 Previous work on the small n, large p -problem

In statistics, the problem of multiple testing has been studied extensively [5]. The
problem of multiple testing deals with testing multiple statistical hypotheses simul-
taneously and it is closely related to the small n, large p problem.

In traditional statistics, hypotheses about the structure of the data are made.
These hypotheses are then tested and potentially accepted based on test statistics.
Hypotheses are, for example, of the form: ”is the average height of men greater than
that of women?” The null hypothesis refers to a hypothesis that will be accepted
when other hypotheses are rejected. In the case of the previous example, the null
hypothesis is “the average height of men and women is the same.”

Test statistics are computed from the data and they can be used to assess how
much evidence there is for different hypotheses. An example of a test statistic is the
difference of average heights of the men and women in the test sample. Based on the
assumptions about the data, test statistics are random variables with corresponding
distributions.

Evidence for different hypotheses is evaluated by assessing how probable the
value of the test statistic is based on the different hypotheses. As test statistics
are random variables, there is always a risk of accepting a hypothesis even though
some other hypothesis holds true. For example, we might accept a hypothesis about
the differing means of two sets of observations even though the observation sets are
generated from the same distribution.



The threshold of the test statistic for accepting a hypothesis other than the null
hypothesis is usually set by first selecting a risk level, which is the probability of
accepting a hypothesis when the null hypothesis is true. The selected risk level then
defines the value of the test statistic which is used as a threshold for hypothesis
acceptance/rejection. For example, we might choose to accept the hypothesis of
the average heights of men and women differing when the test statistic has a value,
which is produced with a probability of o when the null hypothesis actually holds
true. A p-wvalue is the probability of the value of the test statistic being at least as
extreme as the one computed from the data, assuming that the null hypothesis is
true.

The error of accepting a hypothesis even though the null hypothesis is true is
referred to as a false positive.

Hypotheses can be made about the roles of single variables (univariate methods)
or groups of variables (multivariate methods). In both cases, as the number of
measured attributes increases, the number of hypotheses will increase and also the
number of false positives will increase.

To reduce the number of false positives, we can require more evidence before
accepting hypotheses. If hypotheses are accepted based on their P-values, the re-
quirement for extra evidence can be implemented simply by making the threshold of
the P-values for accepting hypotheses higher. By making some assumptions, thresh-
olds for accepting hypotheses can be computed in a rigorous way. An example of
this is computing the Bonferroni correction. If a false positive rate of a is desired,
it can be shown that by using a p-value threshold of a/n, where n is the number of
hypotheses to be tested, the desired overal false positive rate can be attained. The
assumptions made for the Bonferroni correction do not, however, in practice usually
hold, and due to this the method often gives too strict acceptance thresholds [6].

One of the most studied approaches to alleviating the small n, large p -problem
is reqularization of model parameters. Model parameters are learnt by optimizing
some objective function. Regularization refers to constraining the parameters used
to make predictions or to penalizing the objective function for extreme values of
parameters.

Regularization helps by limiting the set of potential solutions in the optimiza-
tion problem of fitting model parameters. Regularization can be seen as imposing
Occam’s razor on the solution: each regularization method includes some measure
for the complexity of the solution, which is then used to restrict the set of possible
parameter combinations to be used for predictions. For example in the extreme
case of the small n, large p problem, where a unique solution can not be found as
infinitely many sets of parameters can explain the training data, regularization can
constrain the set of possible parameters enough to allow finding one unique solution.

Parameters can be regularized in multiple ways. L2 regularization penalizes
heavily solutions, in which some parameters have large absolute values. L1 regu-
larization suppresses most parameter values to 0, promoting the model to use only
a subset of possible parameters for making predictions. This enforces sparsity in
the parameter space[2]. Differences between L1 and L2 regularization are discussed
more in section 6.



The idea of sparsity can be extended further. Assumptions that suppress weak
effects and instead use a few strong effects to explain the data are commonly used
in machine learning. Section 6 explores sparsity more generally.

Another well-established approach for alleviating the small n, large p problem
is multi-task learning. In multi-task learning other sources of data are used to
provide more evidence. Additional data is not assumed to be generated by the same
distribution that has generated the data set of the interest, and therefore models
must take into account this deviation. Section 5 describes the multi-task learning
approach in more detail.



3 Bayesian framework

The contribution of this thesis has been formulated in the general framework of
Bayesian statistics. In Bayesian statistics it is assumed that model parameters are
random variables with corresponding probability distributions.

In Bayesian statistics the probability of an outcome of an event can be considered
as a measure of belief for different outcomes as opposed to frequentist statistics,
where probability is more strictly considered as the ratio of outcomes of a random
process. Under the Bayesian framework probabilities can, for example, be computed
for deterministic outcomes when information about the outcome is insufficient to
deduce the true deterministic result.

The Bayesian framework is one of the frameworks that enables probabilistic mod-
eling. Probabilistic modeling allows quantifying the amount of uncertainty related
to learnt models. This is crucial in decision making.

The major drawback of Bayesian statistics is that models tend to be computa-
tionally expensive. Due to this, Bayesian methods have only become feasible for
large scale analysis during the last 30 years.

In sections 3.1 - 3.3 the essential concepts and techniques of the Bayesian frame-
work are presented. Section 3.4 introduces the idea of hierarchical modeling which
is largely responsible for the success of Bayesian modeling. Section 3.5 presents
the elementary probability distributions needed for understanding the novel model
presented in Section 8.

3.1 Bayes’ theorem

The process of Bayesian modeling starts with the selection of the model family
M which defines the functional form of p(data|®, M). Usually the model family
is omitted from the equations, when we are only dealing with one model family,
p(datal®, M) = p(data|®). A model family has a set of parameters, together de-
noted with O, whose values define the actual model. Examples of model families
are the Gaussian distribution, data ~ N (©) or a mixture of Gaussians, data ~
> mi - N (©;), with parameter sets © = {0} and © = {6;, m; }; respectively.

Traditional modeling often aims to maximize the data likelihood, that is to look
for such parameters © in the model family that describe the training data as well as
possible given the selected model family. In Bayesian statistics, the information in
the data is augmented by additional information about the distribution of parameter
values. Knowledge concerning the parameters is incorporated into a prior distribu-
tion. For example, the model parameters © of a simple Gaussian model could be
known to be distributed according to a Gaussian distribution with parameters 0, 1,
in other words 6§ ~ A (0,1).

After defining the model family of the data likelihood p(data|®) and the prior
distribution p(©) for the model parameters, the joint probability distribution of the
parameters and the data can be computed:

p(data,©) = p(data|O®) - p(O). (1)



In the observed data we get more information about the distribution of the param-
eters. This information is incorporated in the joint distribution when the prior is
multiplied with the likelihood.

As we are interested in the conditional distribution of the model parameters in-
stead of the joint of model parameters and data, the joint distribution is transformed
into a conditional distribution by dividing it with the marginal distribution of the
data,

p(Data) = /@p(data|®) -p(©) dO. (2)

The conditional distribution of the model parameters that results from combining
the new information from data to the prior knowledge is referred to as the posterior
distribution, and it summarizes current the information about the distribution of
model parameters contained in the prior distribution and the data likelihood. The
posterior can be computed by applying the Bayes formula

p(A|B) - p(B)
p(A)

where p(A) = [ p(A|B) - p(B) dB. This yields the posterior distribution

p(B|A) = (3)

p(data|®) - p(©)

p(Ol|data) = p(data)

(4)

The main challenge in Bayesian modeling is the computation of equation 4 [7],
which is discussed in more detail in section 3.3. Data can be summarized using
quantiles and other statistics of the posterior distribution. The interest is, however,
more often in making predictions by using the posterior predictive distribution.

3.2 Posterior predictive distribution

The most important use of the posterior distribution is through the posterior pre-
dictive distribution

p(dataney|data) = / p(datane,|©) - p(Oldata) dO, (5)
S

which can be used to make predictions about future observations. The posterior
predictive distribution allows taking into account our current uncertainty about the
model parameters when making predictions about future observations data,,e,.

Making predictions based on the whole posterior distribution instead of using
any single model parameters is advantageous when there is uncertainty (see e.g.[8]).
When using the posterior predictive distribution, predictions are made by integrating
over the posterior and weighting different parameters according to their posterior
proabability.
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3.3 Posterior computation

The posterior distribution quantifies the strength of belief over different values of
model parameters. It combines prior information and information in data to sum-
marize current information.

Most often solving the posterior analytically is intractable [7]. Especially solving
the integral required to compute the marginal distribution of the data in equation
2 tends to exceed the integration skills of even the most experienced researchers if
complicated enough models are used.

It is important to note that being able to compute single values of the posterior
density function is not enough. Single values of the posterior will not tell, how well
the current set of values computed from the posterior describes the entire posterior
distribution. A set of values can correspond to very unlikely parameter values, and
the main posterior mass can be completely undiscovered. This problem is ubiquitous
with models with a huge parameter space: studying the parameter space for example
by computing a grid of posterior values quickly becomes computationally impossible
as the parameter space grows exponentially with respect to the number of model
parameters.

Different numerical approaches exist that allow computing an approximation for
the posterior. Numerical methods generate samples from the distribution of interest.
The distribution of the samples corresponds to the distribution of interest. Samples
can then be used to compute quantities of interest.

3.3.1 MAP estimates

The simplest numerical approach is computing the mazimum a posteriori (MAP)
estimate, which is the parameter value that maximizes the posterior probability.

One of the problems with MAP estimates is that a single value does not describe
the level of uncertainty related to a posterior distribution. Using a single value in-
stead of the full posterior distribution can produce very different predictions. This
holds true especially when the posterior distribution is spiky. For example, a pa-
rameter might have a posterior distribution with a very narrow region with high
posterior density, while most of the posterior mass lies outside this area. Making
predictions using a MAP estimate would in this case produce predictions that re-
flect poorly the complete posterior, which contains all current information about
the distribution [7].

3.3.2 MCMC methods

Markov Chain Monte Carlo(MCMC) methods have been used extensively during
the last decades for posterior computation.

The idea of MCMC methods is to construct a first order Markov chain, whose
stationary distribution is the distribution of interest p*(z). A first order Markov
chain is a random variable whose state distribution at time ¢ depends only on the
previous state z; 1 of the chain. A stationary distribution is a state distribution
that is not changed by random transitions defined by the Markov chain.
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The state of the Markov chain is updated by generating random transitions using
transition probabilities T'(z;|z;—1). A sufficient condition for the chain to converge
to the distribution of interest is the detailed balance condition defined by

p(2)-T(z,2)=p"(2) - T(Z,2).

This is referred to as the chain being reversible. The detailed balance condition re-
quires that the chain is unique, which is quaranteed when the transition probabilities
remain unchanged at all times ¢.

After the construction of a Markov chain with the desired stationary distribution,
the state of the chain is updated iteratively. When all the assumptions mentioned
above hold, the chain is known to converge to the distribution of interest [2]. To be
more precise, the distribution of the states z; of the chain is known to converge to
the distribution of interest.

MCMC methods are often referred to as random walk algorithms. The algo-
rithms proceed by taking random steps in the parameter space according to some
probability distribution computed by using the samples from the previous step(s).

Two MCMC methods are used to compute posterior distributions for the novel
method developed in this thesis. The two methods are called the Metropolis-Hastings
algorithm and Gibbs sampling.

Gibbs sampling and the Metropolis-Hastings algorithm are based on being able
to compute the posterior distributions of parameters (or groups of parameters) given
the values of other parameters. In other words, the conditional posterior distribu-
tions of parameters are of a form from which it is possible to generate samples easily.
The algorithms operate by generating samples from the conditional posterior dis-
tributions of different parameters (or groups of parameters) one at a time and then
using the new values of the parameters to generate posterior samples from the dis-
tributions of other parameters. The distribution of the generated sample will then
converge to the posterior distribution, if sampling is continued indefinitely. The
Metropolis-Hastings algorithm and Gibbs sampling are described in more detail in
sections 3.3.3 and 3.3.4.

Construction of Markov chains used by MCMC methods is feasible when it is too
difficult or inefficient to generate samples from the posterior distribution directly.
The problem is that even though convergence is guaranteed when sampling infinitely,
it is difficult to assess whether the chain has converged or not.

Methods for assessing convergence exist[7]. These methods can be used to indi-
cate that the chain has not converged but they can not guarantee convergence.

In practice, the question of convergence is often paid little attention to. Theory of
MCMC methods states that as the number of samples generated from the posterior
increases, their distribution will better approximate the distribution of interest.
The number of posterior samples generated is usually, however, chosen according
to computational resources, and the approximation they yield is taken as the best
possible approximation available. This is approach is also taken in this thesis.

Consecutive samples produced by the MCMC methods are correlated. Due to
this, consecutive samples do not contain much information about the posterior as
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compared to a single sample. To save memory and reduce the computational ex-
pense, MCMC chains are often thinned. Thinning means that every pth

3.3.3 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm involves two components: (1) a proposal distri-
bution used to propose steps for the random walk in the parameter space and (2)
an acceptance/rejection rule used to select whether the proposals are accepted as
samples or not.

The Metroplis-Hastings algorithm proceeds as follows:

1. The algorithm is initialized by randomizing or selecting some set of initial
values ©° for model parameters.

2. Sample a proposal value ©* from the proposal distribution J(0*|©%!) based
on the value of the previous accepted sample ©~!.

3. Compute
. p(©*|data, prior)/J(©*|0 1)
~ p(©t-Ydata, prior)/J(011|0%)

4. Set
o — o* with probability min(r, 1)
| ©71  otherwise

Steps 2-4 are iterated until the desired number of samples has been obtained.

Often the bottleneck in the computation of the posterior distribution p(©*|data, prior)
is the normalization term in the denominator of the Bayes formula (equation (4)).
Computing the integral involved tends to be infeasible. The Metropolis-Hastings
algorithm solves the problem by comparing two samples from the posterior distri-
bution so that the normalization constant (denominator) cancels out.

If the proposal distribution in the Metropolis-Hastings is ill-suited, the accep-
tance rate can become too low. Then the chain will not traverse the parameter space
and the estimate for the posterior distribution will be poor [7].

3.3.4 Gibbs sampling

Often it is possible to compute the exact conditional posterior distribution of a
parameter given the values of all other parameters. In these cases the parameters
can be updated in an iterative fashion without rejecting any part of the samples.
This is referred to as Gibbs sampling.

Gibbs sampling for a model with two parameters with conditional posteriors of
a known form proceeds as follows

1. Initialize some set of initial values {6?,65} for model parameters by random-
ization or selection (e.g. use the MAP estimate).

2. Sample parameter #¢ from the distribution p(6!|data, 057").
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3. Sample parameter 65 from the distribution p(6|data, 6%).

Iterate steps 2 and 3 until the desired number of samples has been generated.

Mathematically Gibbs sampling corresponds to a Metropolis-Hastings algorithm
which uses the true conditional posterior as a proposal distribution resulting in an
acceptance rate of 1 [7].

3.3.5 Rejection sampling

Rejection sampling allows generating samples from a distribution p(f) by using a
(possibly unnormalized) proposal density g(#). Rejection sampling requires that a
positive proposal density g(6) is known for all € for which g(f) > 0 when p(f) > 0
and that g(6) has a finite integral. Also the importance ratio p(0)/g(f) must have a
known bound M: p(0)/g(0) < M V 6.

The algorithm proceeds as follows:

1. Generate a sample from ¢(0)
2. Accept 6 with probability p(8)/(M - g(0)), otherwise return to 1.

Accepted values will follow the correct distribution [7].

3.4 Hierarchical models

The success of Bayesian modeling is strongly based on the possibilities of hierarchical
modeling. In hierarchical modeling parameters are bound together by connecting
them through a shared prior.

Hierarchical modeling allows sharing of statistical strength between parameters.
When little data is available for learning a set of parameters but the parameter values
are known to be similar, by connecting them with a shared prior the parameters will
share the information available for learning each with the other parameters through
the shared prior.

An example about a case in which hierarchical modeling could be useful is the
following: assume that we want to learn the average height of men in Finland and
Germany, but we only have 20 measurements from each of the countries. A set of 20
samples is by far too small and will easily give unrealistic results: a few exceptional
measurements about very short or long people will deviate the mean from the true
population average. The problem can, however, be alleviated by using a hierarchical
model.

A hierarchical model for the problem would assume that the parameters used for
modeling the average height in the different countries have a shared prior distribution
describing the average height of, for example, European men in general. The mean
parameter for this distribution would be learnt based on the region-specific means.
By varying the variance of the prior for region-specific means, the region-specific
means could be forced to resemble each other more or less. This corresponds to as-
suming that the region-specific means are similar, though not identical. In practice,



14

binding the region-specific means together would help reduce the effects of outliers
in the data sets and give more realistic results [7].

Hierarchical modeling is ubiquitous in multi-task learning, which is presented in
section 5. The new model developed in section 8 is a Bayesian hierarchical multi-task
model.

3.5 Elementary probability distributions

The elementary probability distributions used in the novel method developed in this
thesis are presented in this section.

Selection of prior distributions is heavily affected by the requirement of the prop-
erty of conjugacy. Most elementary distributions have a conjugate prior. A conju-
gate prior of probability distribution A is such a distribution, that multiplication of
likelihood terms from distribution A will produce a posterior that has the same form
as the as prior distribution. In other words, the posterior distribution will have the
same form as the prior as long as the prior is the conjugate prior of the likelihood
function [7].

Using conjugate priors often makes computations easier. The use of conjugate
priors allows posterior distributions to have a well-known form, from which it is pos-
sible to generate samples directly. This enables Gibbs sampling and other effective
ways of computation.

3.5.1 Multinomial and Dirichlet distributions

The Dirichlet and multinomial distributions are used in topic models to model counts
of words. The multinomial and Dirichlet distributions are important for this thesis
as the model developed uses the topic models framework. Topic models will be
described in more detail in section 7.

The multinomial distribution can be used to assign a probability for the outcome
of n trials where each of the trials results in exactly one of the k (fixed and finite)
outcomes. By denoting the random variable for the number of successes in each of
the k outcomes with X} and the observed number of successes by x; this probability
can be written as p(X; = x1,..., Xy = o).

The probability density function of the multinomial distribution is

n

M f— xl.-. $k
f(xla"'awkan>pl>"'apk)_<x1'_.xk)p1 pk7 (6)

where Zle x; = n. The parameters of the multinomial distribution (pi,...,px)
correspond to outcome probabilities, and naturally p; € [0, 1] and Zle pi = 1.

The multinomial distribution only models the counts, not the order of their
occurrence. This is crucial in topic models, where documents are treated as bags of
words and word orderings are disregarded.

The conjugate prior of the multinomial distribution is the Dirichlet distribution,
which is a probability distribution that generates probability measures. In other



15

words, the Dirichlet distribution can be used to compute the probability of observ-
ing a set of k elements p;, where p; € [0, 1] and Zle p; = 1, that can be interpreted
as the probabilities of k (fixed and finite) exclusive events. Therefore the Dirich-
let distribution can be used to generate the parameters used by the multinomial
distribution.

The probability density function of the Dirichlet distribution is

K
. _ 1 a;—1 7
f(xl,...,xK,al,...,ozK)——B(a)' T (7)

i=1
where the parameters aq, ..., ax correspond to prior observations about outcomes

and B(«) is the beta function. The beta function can be written as

_ Hfil ['(ev)
F(Zif; O‘i)

using I" to denote the gamma function. [7]

B(«)

3.5.2 Bernoulli and beta distributions

Bernoulli and beta distributions are important components of the Indian Buffet
Process prior (abbreviated IBP) that is presented in section 4.2.3. The IBP is used
in the new method developed in this thesis. The Bernoulli distribution is also used
in the new model to impose asymmetric sparsity.

The Bernoulli distribution is the distribution of the result of a single trial with
two possible outcomes: success and failure.

The probability density function of the Bernoulli distribution is

flkip) =p"(1—p)'™"* for k €{0,1}, (8)

where p denotes the probability of success. The probability of success is obtained
by setting £ = 1 and the probability of failure by k& = 0.

The conjugate prior of the Bernoulli distribution is the beta distribution. The
beta distribution can be used to compute a likelihood for a probability given pa-
rameters o and [ that denote the prior observations of the outcomes of the process
[7].

The probability density function of the beta distribution is

‘,Eafl(]_ . ‘,L,)ﬂfl
fol ue1(1 — u)f-1 du

flz;0,8) =

3.5.3 Negative binomial distribution

The negative binomial distribution is used for modeling the number of words in a
document in the new model developed and in focused topic models that is the most
similar existing approach. This use will be presented in sections 8.3 and 8.5.2.
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The negative binomial distribution is a distribution for the number of successes
in a sequence of Bernoulli trials with parameter p before observing r failures.
The probability density function of the negative binomial distribution is

f(k):<k+£_1>(1—p)rpk for k=0,1,2,.... (10)

[7]

3.5.4 Gamma distribution

The gamma distribution is used in the IBP compound Dirichlet process (abbreviated
IBPCD) prior, which is a part of the novel model presented in this thesis. The IBP
compound Dirichlet process is presented in section 4.2.4.

Gamma distribution is a two parameter distribution (shape k, scale #). When
the shape parameter k is an integer, it corresponds to the distribution of the sum
of k exponentially distributed random variables with mean parameters . When k
is not an integer, the distribution does not have any clear interpretation [7].

The probability density function of the gamma distribution is

—z/0

_1 €

for z > 0 and k,0 > 0, (11)
where I' denotes the gamma function.

3.5.5 Poisson distribution

The Poisson distribution is required for understanding the IBP and IBPCD priors.
The IBPCD is used in the novel method developed, and the IBPCD builds on the
IBP. The IBP and IBPCD are presented in sections 4.2.3 and 4.2.4 respectively.
The Poisson distribution is the distribution for the number of events k occurring
in a fixed period of time if these events occur with a known average rate A\ and
independently of the time since the last event [7].
The probability density function of the Poisson distribution is

Aee=A

f(kjv)\): L

(12)

where e denotes the base of the natural logarithm.
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4 Model selection and nonparametric Bayesian
statistics

Selection of the model family used for modeling data is one of the foremost challenges
of statistical modeling. This is usually referred to as model selection. Examples of
model families are the Poisson distribution, a Gaussian distribution and a mixture
of 2 Gaussian distributions. The model family defines which data sets the model
will be able to describe successfully. When starting to model a new real data set, it
is not known in advance which models will perform well.

The more powerful (complex) a model is, the better it is able to fit to any given
training data. Therefore performance on training data can be increased by adding
model complexity.

If the model used is too complex, overfitting can occur. Given too much re-
sources, a model will learn the recorded random noise in the training data in ad-
dition to structure having predictive power. In other words, the model will learn
to use recorded noise values for predicting quantities of interest. This will harm
performance, as noise in training set does not have any predictive power on future
observations and therefore making predictions based on it will cause error. Overfit-
ting is discussed in more detail in section 2.

As performance on training data will always increase by increasing model com-
plexity, performance of models needs to be studied using some other data than that
used in training model parameters. Using these estimates for performance model
selection can be done.

4.1 Cross validation

One of the most common approaches to model selection and model performance
evaluation is cross validation [2]. Cross validation is used to assess performance of
the new model developed in this thesis.

In cross validation, the data set of interest is divided into distinct subsets. Model
parameters are fitted using all but one of the subsets as the training set and model
performance with the learnt parameters is validated on the remaining subset, which
is referred to as the wvalidation set. This process is repeated until all subsets have
been used as a validation set. To get an estimate on model performance, an average
over the results on the validation sets is taken.

The number of subsets varies according to circumstances: computational expense
related to learning the model parameters and the amount of computational resources
available define a sensible division.

Division is done randomly in order to break potential structure that could affect
cross validation results. For example, the person collecting the data set could have
included measurements into the data set in the order of generation. Conditions such
as fatigue could have resulted in the quality of data decaying towards the end of the
data collection procedure. Random assignment of samples into the different subsets
will help avoid such sources of bias.
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The estimate of the model performance can be used in model selection. The
model family (complexity) that produces the best predictions on validation data is
chosen. Parameters will possibly overfit to the training set but the selection is done
based on the performance on validation set, to which the parameters have not been
able to fit at all. Models that have overfitted severly will have worse performance
on the validation data than models that have not learnt to make predictions based
on recorded noise.

It is, however, possible to overfit to the validation sets in the specific division
of data. Therefore in order to get a better estimate of the model performance
on new data, it is sensible to divide the data set in the beginning of the model
selection process to the training and validation set and to the test set. After model
selection by cross validation, model parameters are learnt again using the combined
data from training and validation sets. Performance of the model is then measured
in the test set. The aim of this is that none of the model parameters (including
model complexity) is fitted to the actual test set. Therefore performance on test set
corresponds to performance on new data, to which model parameters have not been

fitted.

4.2 Nonparametric Bayesian methods

Nonparametric Bayesian methods present an alternative approach to model selec-
tion. They assume such a prior distribution for model complexity that model com-
plexity can be treated as a parameter among others. Often the prior distribution
for complexity emerges as a result of other assumptions and it is not written out ex-
plicitely. In other words, these methods often assume an implicit prior distribution
for model complexity.

The motivation for using nonparametric Bayesian methods is that model com-
plexity becomes a parameter among others which can be sampled instead of, for
example, computationally expensive testing in a validation set.

4.2.1 Dirichlet process

The Dirichlet process (DP) is the best-known nonparametric Bayesian prior. First
publications about using the DP as a prior to avoid model selection are [9] and
[10] and they date 40 years back. The DP was later extended to the Hierarchical
Dirichlet Process that is used as a comparison method for the new model presented
in this thesis.

The DP is a prior for the exhibition of a possibly countably infinite number of
atoms. In addition to the atoms, the DP generates a sequence of exponentially
decreasing probabilities corresponding to the atoms.

The atoms and their associative probabilities can be used as a prior for model
structure. For example, the atoms can be used as cluster centers and the probabil-
ities as a prior for cluster memberships. More specific technical and mathematical
details of the Dirichlet process are omitted here, as understanding them is not crucial
for understanding this thesis.
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4.2.2 Hierarchical Dirichlet Process

One of the best known nonparametric models was presented in [11] in 2007. The
Hierarchical Dirichlet Process (HDP) extends the Dirichlet process to a hierarchical
case, where multiple Dirichlet processes share a common Dirichlet process prior. In
this work, the HDP is used as a comparison method for the new method presented
in section 8.

HDP has become very popular in multi-task learning, where multiple data sets
are modeled simultaneously. The structure assumed by the HDP is such that it
allows modeling multiple data sets with a possibly infinite set of shared components.
The probabilities for using the different components can naturally differ for the
different data sets. The properties of the HDP are described in more detail in
section 8.5.1. Multi-task learning is described in more detail in 5.

4.2.3 Indian Buffet Process

The Indian Buffet Process (IBP) was first presented in [12]. The IBP is a prior for
binary matrices with possibly countably infinite columns.

The IBP has properties fundamentally similar to the Dirichlet process: as the
Dirichlet process, the IBP involves an infinite sequence of probabilities. The proba-
bilities in the sequence are used for defining the probability of elements of the matrix
being 0 or 1.

More formally, the binary IBP matrix B ~ IBP(«) is generated according to

pi ~ Beta(a, 1) (13)
k
Tk = H Fj (14)
=1
B(e, k) ~ Bernoulli(my) (15)

This construction is referred to as the stick-breaking construction for the IBP [13].
The relevance of the IBP to this thesis is through the IBP compound Dirichlet
process, which is built on the IBP.

4.2.4 The IBP compound Dirichlet process

One of the recent nonparametric Bayesian priors is the IBP compound Dirichlet
process (IBPCD) [27]. The new model presented in section 8 uses a modified IBPCD
as a prior for latent structure.

The IBPCD is a prior for a matrix with possibly countably infinite columns
containing zeros and values generated from the gamma distribution. The basis of
the matrix is an IBP, and the elements with a 1 in the binary matrix are multiplied
with a column-specific value from the gamma distribution. The technical details of
the IBPCD are presented in section 8.5.2.

The IBPCD aims to remove an assumption in the HDP that is considered prob-
lematic; this will be explained in section 8.5.2.



20

5 Multi-task learning

Multi-task learning is a branch of machine learning in which multiple data sets are
modeled simultaneously. The motivation for this is the assumption that by learning
the models for the different data sets simultaneously, better performance can be
achieved as compared to modeling the data sets separately. This problem has also
been called ”learning to learn” and ”transfer learning”. The novel method developed
in section 8 is a multi-task model.

An example of a multi-task scenario is a set of data sets comprising of images
of people from different cities around the world. Data set 1 could consist of images
from Helsinki, data set 2 of images from Rio de Janeiro, and data sets 3-5 of images
from Moscow, Stockholm and Bombay correspondingly. Learning the models for
different data sets are referred to as learning tasks. A learning task could be, for
example, to learn to predict the gender of the person in an image from Finland.
By taking the multi-task approach we would model the data sets simultaneously in
order to have better predictors for new images from the locations as compared to
having separate models for each location.

The term multi-task learning was first introduced in [3] in the context of neural
networks. In [3] predictions for multiple output variables were done based on the
same set of input values. The models for making the actual predictions shared
submodels for selecting which of the input variables to use. The models also shared
information about the parameters used for predictions through shared priors. In [3]
the term task referred to discriminative prediction tasks. In the last few years, task
has been used to refer to learning tasks and multi-task learning has been used in
general for situations where there are many models, for example, for different data
sets, rather than restricting the concept to jointly modeling many discriminative
classification tasks.

The multi-task learning approach has been used most often in the supervised
learning scenario, where the aim of modeling is to predict some quantity of interest,
which has been observed in training data. In terms of probability, in supervised
learning we are interested in learning to predict Y given X and learn the distribution
p(Y|X). The model presented in section 8 takes the multi-task approach in an
unsupervised setting, where the aim is to build a model for the observed data X
and learn p(X) instead of learning a discriminative distribution for some quantity
of interest.

The multi-task approach traditionally treats all learning tasks equally: predictive
performance in all tasks is considered equally important. Often, as in the case of
the model developed in section 8, the interest is, however, asymmetric and the aim
of multi-task learning is to improve performance in a particular data set. This is
referred to as asymmetric multi-task learning and it is described in more detail in
section 5.3.

The drawback of multi-task modeling is that modeling many data sets simul-
taneously is computationally more expensive than simply modeling the data set of
interest with a single model (referred to as single-task learning). The advantage is
that given that the data sets share characteristics, more data will be available for
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learning the shared parts, allowing generally better predictions. Models for different
data sets can share information in very many ways, and recognizing this is essential
for increasing predictive performance. If the models for the data sets share parts
that are not actually shared in the true generative process, then the extra sharing
assumed in the model may actually harm performance.

Therefore the main question in building multi-task models is, how to relate
models for different data sets to each other. Quite often the framework of Bayesian
hierarchical models is adopted, in which the information in the data used for learning
parameter values is shared between different tasks through a shared prior. The idea
of hierarchical models is presented in section 3.4.

The optimal way of sharing naturally depends on the structure of the data sets.
Various approaches have been taken.

5.1 Multi-task learning by task clustering

One of the well-established ways of relating learning tasks in multi-task learning is by
clustering learning tasks into groups and modeling all data within the groups using
a shared model. All modeled features withing the clustered data sets are assumed
to be similar. The clustering is not known in advance and it is learnt from the data.
In terms of probability distributions, the clustering approach assumes that many of
the data sets come from the same probability distribution. The clustering approach
is taken for example in [14] and [15].

As for the example with data sets of images of people from different locations
around the world, the clustering approach would correspond to having a shared
model for some combinations of the data sets.

As many gender-related physical characteristics are independent of region (and
race), having a shared model for all the data sets might be useful as compared to
having data-set-specific models. This approach assumes that all modeled features
used in making predictions can be used in the same way for data from different
regions.

On the other hand, due to cultural similarity between, for example, Finland and
Sweden, clothes worn by men and women in the countries might be more similar to
each other than to clothes worn in Rio de Janeiro. Clothes worn in the images might
also be useful in predicting gender, and therefore having a shared model for only
Finland and Sweden might be more beneficial than having a pooled model for all
data, as pooling the data might obscure the cues about gender contained in clothing.

The assumption of many data sets coming from the exactly same distribution
is often too strict. Therefore an assumption of a hierarchy of the distributions is
used for example in [11]. The distributions of the data sets are assumed to come
from shared prior distributions. Therefore they will resemble each other and share
information without the assumption of their distributions being exactly the same.
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5.2 Multi-task learning by modeling shared substructures

Another way of relating learning tasks to each other is to assume that modeled
phenomena (and data sets) have shared substructures. This is modeled by including
shared components to the models for the different data sets. In terms of probability
distributions, this approach assumes that each data set comes from a specific mixture
of component distributions, but the overall set of components to choose from is
shared.

The difference to the clustering approach is that clustering assumes all features
within the clusters to be shared, whereas modeling shared substructures assumes
data sets to share some specific set of features. Shared features need to be included
to the assumed generative process for the data so as to enable learning them.

An example of this approach with the data sets comprising of images of people
from different locations is as follows: many secondary gender-related characteristics
are race independent and could be utilized in predictions. For example, upper arms
of women are approximately 2 cm longer for a given height. As the difference is
subtle, learning to make use of it in predictions might require larger amounts of data
than contained in any single data set. Sharing the model for arm length for each
gender at different locations while otherwise having separate models for different
data sets could help distinguish men and women.

Given that the shared structures exist, by modeling all data sets simultaneously
more data will be available for learning the shared substructures. Learning these
subparts well will allow better predictions for the data sets in general.

5.3 Asymmetric multi-task learning

Most multi-task models treat all the data sets and models symmetrically, even
though often we are only interested in making predictions from one of the mod-
els. The models can be constrained by making further assumptions to concentrate
their resources on the data set of interest. Learning the model needed to make pre-
dictions about the data of interest is referred to as the task-of-interest and learning
the models for the data sets to be used as background data as supplementary tasks.

The task-of-interest is chosen as the distribution of its data is believed to be
closest to the distribution of the test set. Future observations are believed to come
from this distribution.

Many ways of structuring learning problems in an asymmetric way have been
proposed. In [16] increased performance in a task-of-interest is achieved by weighting
likelihoods of different data sets differently in optimization. Parameters are fit to
better match the data from the task-of-interest and worse performance in training
data of supplementary tasks is allowed.

In [17], a sample-specific weighting term is used for samples in a supplementary
data set to give samples weights according to their ability to increase performance
on training set from task-of-interest.

In [18] all samples from the supplementary tasks are pooled together and each of
the background samples is then weighted with a sample specific resampling weight to
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match the distribution of the pooled background data to that of the task-of-interest.

In [4] and [19] supplementary tasks are assumed to be mixtures of samples from
supplementary task-specific distributions and the distribution of the task-of-interest.
In terms of probability distributions, data in task-of-interest are modeled as

dataror ~ p(Oror)

and data in supplementary task ¢ are modeled as

datayp ~ ;- p(Oror) + (1 —m) - p(O%yp),

where m; € [0, 1].

The idea presented [4] and [19] is the motivation for the new method presented
in section 8. The task-of-interest has less resources than supplementary tasks, in
other words the model for the data-set-of-interest is more sparse than the models for
supplementary data. The model presented in section 8 extends this idea by allowing
a probabilistic approach to task-specific sparsity: instead of predefining the number
of components in different tasks, we define a distribution which favors having fewer

active components in the task-of-interest. The topic of sparsity is explored in section
6.
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6 Sparsity

Sparse models refer to models that favor using only few parameters to make pre-
dictions and model data in cases where multiple parameters would be available for
explaining data. This is the case, for example, with linear regression models, where
a linear combination of parameters used to explain quantities of interest could be
selected in infinitely many ways when modeling data sets suffering from the small
n, large p problem. Instead of using a huge set of parameters with possibly small
values, a smaller set of parameters is selected by using some criteria to be used with
more significant values and the other parameters are suppressed to zero. In other
words, parameter vectors and matrices of sparse models have a lot of zeros.

Assumptions about sparsity are also a way of avoiding overfitting. A model that
is allowed an unrestricted set of parameters will have more possibilities of fitting to
data as compared to models for which assumptions about sparsity restrict the set
of possible parameter combinations and prevent overfitting.

Sparsity has been studied intensively during the recent years. Sparsity has proved
itself to be a useful assumption in many applications. Sparse models have been ap-
plied, for example, to magnetic resonance imaging data [22] and cell-signaling data
from proteomics [23]. Often sparse solutions produce good performance. Sparse so-
lutions also have the advantage of being intuitive: a model that uses few parameters
to make predictions is more easy to understand than a model using a huge set of
parameters with a negligible value.

The idea of sparsity can be applied at different levels of the model [2]. Imposing
sparsity on the parameters of a regression model is an example of applying sparsity
at the bottom level of a model. This assumption will suppress most parameters
used for regression to zero. An example of applying sparsity to a set of parameters
higher in the parameter hierarchy is that of assuming sparsity of the parameters
used for controlling clustering in a mixture model. When a mixture model assigns
probabilities of samples belonging to different clusters, a sparsity assumption will
favor samples having a high probability of belonging to a few clusters and suppress
the probability of belonging to the other clusters to zero.

The methods used for promoting sparsity at different levels of model parameters
are often, however, the same regardless of the level in the hierarchy at which sparsity
is imposed. The most well-known method is L1 regularization. Another method
for imposing sparsity is the use of spike-and-slab distributions. The third common
approach is to use sparse matrices as building blocks in models. The model developed
in section 8 takes this last approach.

6.1 Sparsity by L1 regularization

The most traditional method for inducing sparsity is L1 regularization [24], which
enforces most regularized parameters to have value 0.

Model parameters are usually learnt by optimizing them with respect to some
cost function. Regularization refers to adding terms to the cost function used for
optimizing model parameters that penalize the result for the actual values of the
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parameters with respect to some criteria.

A typical cost function consists of an error term E/(training datal|@) that describes
the training error given parameter values 6 and a regularization term R(6), where 6
denotes a vector of all model parameters. In other words, learning model parameters
corresponds to minimizing the cost function with respect to model parameters 6,

Minimizey{ F(training data|f) + R(6)}.

The most common type of regularization is the L2 regularization, in which the
regularization term

A
R(0) = 5 670
is used. By adjusting the scalar value of A\ the level of regularization can be con-
trolled.
In L1 regularization the regularization term is given by

A M
R(O) =5+ 103,
j=1

where M is the dimension of 6.

L1 regularization is easiest to understand by studying the derivatives of the
penalties induced by the norm and by comparison to L2 regularization. In L2
regularization the derivative of the penalties for parameter values approaches 0 as
the values of the parameters approach 0. In the case of L1 penalty, the derivative
does not decrease with parameter values approaching 0. Therefore small parameter
values are penalized equally heavily as larger values with respect to their absolute
value. This causes the often desired effect of most parameter values being suppressed
to 0 and some having a larger value [2].

From the Bayesian view regularization can be seen as a way of incorporating
prior information. Different regularizations correspond to different priors for model
parameters. For example L2 regularization corresponds to a Gaussian prior for
model parameters and L1 corresponds to a Laplace prior.

6.2 Sparsity by spike-and-slab priors

Another way of implementing sparsity is through spike-and-slab priors. Spike-and-
slab priors promote sparsity by using mixture distributions for parameter values.
Spike-and-slab priors allocate a random variable (parameter of a Bayesian model) x
a finite probability of 7 of having value 0 and divide the remaining probability mass
1 — 7 according to some probability distribution. An example of a spike-and-slab
prior is
p() = 7-6(z) + (1= 1) - N0, 0),

where §(z) is the delta function and 6 and o are the parameters of a Gaussian
distribution. Spike-and-slab priors were first introduced in [20], more recently they
have been discussed for example in [21].

In the model presented in section 8 sparsity is imposed by using sparse matrices,
but the solution can be interpreted as a spike-and-slab prior.
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6.3 Sparse matrices

Often the sparsity assumption is imposed on a matrix used to control sharing of
information. For example, in multi-task learning different learning tasks are assumed
to share structure in a sparse manner, which can be interpreted as task-level sparsity.

In practice sparse matrices are used to model the sets of components / variables
used by different tasks and observations. For example, rows (denoted by ) of a
binary matrix B can correspond to observations and columns (denoted by j) to
shared components. B(i,j) = 1 would imply that component j is used in modeling
observation 1.

In [25] a columnwise sparse matrix is used to select variables that are predictive
for all tasks. In [26] predictions are done based on a learnt, sparse set of new features,
that are linear combinations of original variables.

The aim of imposing task-level sparsity is to enforce tasks to either strongly use
some (possibly shared) components for predictions or completely suppress them.
The non-sparse alternative is that tasks use very many of the components with
possibly negligible weights.

In [27] sparsity is imposed by using binary masking to suppress most components
available for explaining the data. This is implemented by multiplying each element of
a real-valued matrix of parameters with the corresponding element of a sparse binary
matrix. This corresponds to having a spike and slab prior for component activities:
components are suppressed with some finite probability and given that they are not
suppressed, their activity is assumed to have a continuous-valued distribution. This
approach is adopted in the model presented in section 8.



27

7 Topic models

Latent Dirichlet Allocation (LDA) [28] is a well-known generative probabilistic
model for collections of count data. LDA models are often referred to as topic
models as LDA was originally introduced in the context of text data. The model
developed in section 8 has a topic model substructure.

Topic models are easiest to describe by their generative process using text data
terminology. Topic models assume that each document (observation) deals with a
finite set of topics with corresponding probabilities. Each observed word in the
document is generated from one of the document specific topics. The vocabulary of
the data set is the set of different word identities observed in the data. The word
identities are referred to as terms. Topics are shared across documents and each
topic has a specific topic-to-word (or more accurately topic-to-term) distribution,
which defines the probabilities for generating different terms.

Actual word counts are observed. Topics are latent variables, and they are learnt
from the data to resemble sets of words that often occur together.

The formal generative process for a topic model, as first presented in [28], is:

1. Draw N ~ Poisson(§).

2. Draw 6 ~ Dirichlet(«), where the dimensionality of ¢ is known to be K,
which corresponds to the number of topics.

3. For each of the N words w,,

(a) Draw topic index z, ~ Multinomial(f)

(b) Draw word identity for word w,, (w, = term;, e.g. w, = “cat”) from p(wy|z,, ),
a multinomial probability conditioned on the topic z,, where 3 contains the
parameters for different topics.

Hyperparameter £, parameter vector a and parameter 3 have the same values for
all documents.

The generative process is repeated for each document in the data. This generative
process assumes that word probabilities are not assigned hierarchical priors but are
estimated as parameters, which leads to simple equations. This generative process
does not use the assumption about the distribution of the number of words in a
document for anything, and it is as such a redundant assumption.

Figure 1 contains the plate diagram for topic models. A plate diagram describes
the relationships between the parameters of a generative model by presenting them
in a Bayesian network. Random variables (parameters of the model) are the nodes
of the network. In a Bayesian network, the distribution of a random variable is
known when the values of all the parameters, from which an arrow is drawn to
the random variable of interest, are known. The values of variables presented by
the grey nodes are known whereas values of parameters corresponding white nodes
are inferred from the data. Plates denote that the random variables within them
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are generated multiple times (usually denoted by the character in the corner of the
plate).

OHO+O—@

N

Figure 1: Plate diagram for latent Dirichlet allocation model (topic model). M
denotes the number of documents and N the number of words in a document.

The difference between topic models and the more traditional family of mixture
models is as follows: mixture models assume all variables of samples to be generated
by one mixture component, even though the exact identity of that component is not
known. Topic models assume that the variables of a sample are explained by a set
of topics that are simultaneously active in the sample.

As an example of the difference between topic and mixture models, a mixture
modeling approach to modeling observed symptoms of a patient would correspond
to assuming that all symptoms are caused by the same disease, but we do not know
which particular disease. A topic modeling approach would correspond to assuming
that a set of diseases cause the (possibly overlapping) symptoms. A mixture model
could be used to compute posterior probabilities for the patient having different
diseases whereas the topic model could be used to compute how strongly different
diseases are present in the patient.

Topic models have been applied widely to gene expression data (for example [29],
[30] and [31]). In these cases the data has been preprocessed in such a way that the
originally real-valued measurements are converted into counts. The motivation for
the model presented in section 8 comes from biology, and as topic models have been
found successful in modeling gene expression data, using topic models is a natural
choice.
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8 A novel approach to small n, large p: Shielded
models

We propose a new multi-task model to alleviate the small n, large p problem. Our
model builds on the model family of topic models and uses a nonparametric Bayesian
prior to avoid the inconvenience of selecting model complexity within our chosen
model family. The novelty of the model is that asymmetric sparsity is used to focus
the optimization of model performance asymmetrically across tasks, more precisely
to promote performance in a task-of-interest.

The motivation for our model stems from biology and more specifically from
modeling simultaneously multiple species. Different species can be assumed to share
biological processes at the cellular level. Even though the phenotypes of the species
differ strongly, even distantly related species share huge portions of their genome.
More specifically, important biological pathways are likely to be relatively conserved,
as their function can’t be jeopardized at any step of the way in the evolutionary
process. Therefore it is rational to assume that for example man and mice share
some biological processes at the cellular level.

Usually our interest is, however, asymmetric. We are not interested in the per-
formance of our model on most of the data sets, their purpose is mainly to augment
the data in a task-of-interest. This thesis studies targeting model performance by
constraining model complexity for different data sets unevenly.

The model developed is sparse. The variation in data is assumed to be explained
by a set of components, which are either relatively active or completely suppressed
in the different tasks. By making this assumption we wish to constrain the results
and make them better interpretable.

The sparsity of the task-of-interest is constrained more than that of supplemen-
tary tasks. There are two important motivations for doing this. First, by con-
straining the resources of the task-of-interest, it will be forced to share components
with the supplementary tasks. The second motivation stems from knowing that
supplementary tasks can contain features that are not present in task-of-interest:
the supplementary tasks need to have resources to explain these away so that they
do not need to use the resources shared with the task-of-interest for modeling the
unshared features. Therefore supplementary tasks are allocated more resources than
the task-of-interest to shield the shared features. Models implementing asymmetric-
ity by allocating extra resources for supplementary tasks are referred to as shielded
models.

8.1 Hypothesis about the effects of asymmetric sparsity

We assume that allocating the task-of-interest less resources than the supplementary
tasks will promote performance in the task-of-interest. If the task-of-interest is allo-
cated too few resources, performance in the task-of-interest will naturally decrease.
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8.2 Technical description of the generative process

We model C data sets indexed by ¢ simultaneously with a model that falls within
the framework of topic models. Each data set has D, documents (observations),
documents are indexed by d. Each document has N;. words that are indexed by
n. Bach document consists of words w, q4,. The term dictionary length refers to the
number of different terms in the corpus, in other words, the dimensionality of the
data. Each word is generated from one of the numerous topics indexed by k. The
topic of word w4, is denoted by 2z 4.,.

Each topic k has a specific topic-to-word distribution, which defines the proba-
bilities of generating different terms, when topic k is observed. The topic-to-word
distributions are multinomial distributions over the finite vocabulary, we g.n|%can =
k ~ Multinomial(8;). The number of terms in the dictionary is referred to as the
dictionary length. Parameters 3 are distributed according to 3, ~ Dirichlet(n).

Within each task (data set), each document has a document-specific topic dis-
tribution, which defines the probability of different topics generating words in that
particular document. The topic distribution is a multinomial distribution with a
document-specific parameter 0, ., which on its behalf is distributed according to the
Dirichlet distribution, p(z.an) ~ multinomial(d,.) and 6,4, ~ Dirichlet(w..).

Documents within each task are assumed to have similar topic distributions.
This is modeled by assuming that document-specific topic distribution parameters
follow a task-specific Dirichlet distribution, in other words 64, ~ Dirichlet(w).

Also the total number of words in each task ng') is modeled as a function of w,:
n$) ~ NB(}", w¥, 3). This assumes that the number of words in a task depends on
the number (and strength) of topics active in that task. Inversely, the number of
active topics in a task with few words (data) is lower as compared to a task with
lots of words.

We assume that the number of topics is in principle countably infinite, but for
modeling any finite data set, only a finite subset is used. This is achieved by gener-
ating the parameters 6, . from a prior which does not specify a limit for the number
of possibly active topics. The prior distribution is a Dirichlet distribution over a set
of infinite topics, but only a finite subset of the topics is given a probability that
differs from 0. The finiteness of the set of active topics is controlled by constructing
the parameter w,. as a product of elements form appropriate distributions.

The parameter w, is a Hadamard product of three different parameters, which
all have a different role in the process, w. = b..¢_.1..

The parameter b, is a row of an IBP matrix, in other words B ~ IBP(«) and
b, = B(c, :) following the Matlab notation; here alpha is the base parameter of the
IBP. This allows having a possibly countably infinite number of topics and learning
the number of topics from the data. The parameter b, is binary, topics k for which
b? = 0 will not be used in task c.

The stick-breaking construction of the IBP is used, and in addition to the binary
matrix B, topic specific stick parameters 7, are generated.

The parameter ¢, is used to model topic strengths within task c. The k'

element of ¢, qbgk), corresponds to the strength of topic £k in task ¢ and a prevailing
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topic will have a larger ¢>§’€) as compared to other, weaker topics. Topic strengths
in different tasks are assumed to be related. This is modeled by assuming that
qbgk) ~ Gamma(y® 1), where 4*) is a topic specific shape parameter, which is
shared for all tasks. The scale formulation of the gamma distribution is used and
1 is the scale of the distribution. The parameter v*) is distributed according to
7 *) ~ Gammal(ay, as), where a; = ay = 1.

The parameter 1, is a task-specific binary vector used to impose excess sparsity.
Elements ¢£’“) of 9, are assumed to be generated from a Bernoulli distribution,
wﬁ’“) ~ Bernoulli(e.), where €, is a task-specific parameter. Multiplication with 1,
(referred to as binary masking) will suppress some of the elements of b..¢,. to zero,
and by varying the parameter ¢, the level of this suppression can be controlled.

Section 8.3 describes the formal generative process of the model.

8.2.1 Multiple uses of the binary masking

The binary masking can be used to impose asymmetric sparsity: when tasks c
have a different value of the parameter €., the penalties for activation of topics in
the different tasks will differ and the tasks will probably use a different number of
topics.

However, the binary masking can also be used to impose a general resource
constraint: by making €. < 1 for all tasks, the number of topics activated in each
task will be reduced.

These two functions of the binary masking are not mutually exclusive: asym-
metric sparsity can be imposed simultaneously with a general resource constraint.

8.3 The formal generative process

This section describes algoritmically how to generate data from the new model.
Tasks are indexed using ¢, documents using d and words using n. The generative
process for shielded multi-task topic model is:

1. Draw a binary matrix B ~ IBP(«) and parameters 7y,

(a) pg ~ P;eta(a, 1)
) m = T 1

7=1
(c) b~ Bernoulli(7,) for each ¢

2. For each component £ = 1,2, ...

(a) Draw v®) ~ Gamma(ay, a,)

(b) Draw the topic distribution 3, ~ Dirichlet(n)
3. For each task c=1,2,...,C

(a) For each component k = 1,2, ...
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(a) Draw topic strengths PP~ Gamma(y*) 1)
(b) Draw WP~ Bernoulli(e,.)

(b) For every document d = 1,2, ...D,. in task ¢

(a) Draw the distribution over topics
0.4 ~ Dirichlet(b, - ¢, - v,)

(b) For each word n = 1,2, ..., Ng. in the document

(a) Draw the topic index z. 4, ~ Multinomial(6. 4)
(b) Draw the term w4, ~ Multinomial(3

Zc,d,n)

4. To specify a full generative model we also model the size of a task:

ne ~ NB(E, b6 e, §)

Figure 2 contains the plate diagram for the model.

8.4 Posterior computation

A mixture of Gibbs sampling and the Metropolis-Hastings algorithm is used to
sample from the posterior distribution of the model parameters.

8.4.1 Sampling 2

Topic assignments z. 4, are sampled using Gibbs sampling described in section 3.3.4.
In order to sample z.4,, we integrate the probability of observing topic k over
the set of possible underlying topic distributions p(z.q,) ~ multinomial(f.4). The

posterior for the topic assignment of the nt word in document d of task c is

p(zc,d,n = k|z\c,d,n7 We,d,n» A) X

k
(n’EUc),d,n,\Qd,n + n) / p(zc,d,n|ec,d)p(ec,d|z\c,d,na A) dec,d (16)

where A = {@}, 7, v, o, e.}. The symbol z\cqn denotes the current topic assign-
ments for all other words in the data (assignments for all other words except for
the word w.q4,). Parameters ¢, and 7. are infinite-dimensional. Their values are
known for the topics k& which have appeared in the data (2.4, = k for some word
Wedn). The known values are denoted by the closed ball superscript ®, whereas the
values of the parameters for the currently unobserved topics are denoted by the open
ball superscript °. When referring to all elements of the parameters, superscript
is used.
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Figure 2: Plate diagram for shielded multi-task topic model. Topic indexes are
omitted for visual clarity. Variables n,; and n, are auxiliary variables to technically
present the flow of information. The number of words in data set ¢ is modeled as a
function of b.-¢.-1, and variables ng and n. 4 deterministically denote the numbers
of words generated from different topics in the documents and tasks, respectively.

Equation 16 involves an integration over the sparse IBP matrix, which is combi-
natorial:

p(ec,dlz\c,d,nu A) X
/ Z Zp(eqd"l:bca b07 ¢cv Z\c,d,n)p(bm ’(pca ¢O‘¢;> 7T., v, &, EC) d¢z (17)
b. 17[)

In order to evaluate 16, it is, however, sufficient to be able to compute the integral for
each topic k one at a time. Therefore it is also sufficient to compute the probabilities
given by equation 17 for each topic at a time.
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The integral

/ p<zc,d,n|00,d)p<00,d|z\c,d,’m A) dgc,d = E[Oc,d|z\c,d,n7 A] (18>

)

can be evaluated for each element of Qﬁkd separately. The corresponding expectation
is approximated in Appendix A.

8.4.2 Sampling the stick parameter

The IBP stick parameters 7" for the active topics are needed for sampling topic
assignments, as shown in Appendix A. Active topics are topics that have generated
words, in other words topics &k for which n’(“.) 0> 0

To sample the stick parameters for the active topics, we follow the semi ordered
stick breaking scheme detailed in [13]. The stick parameters for the active topics
are distributed according to:

c c
p(m|B) ~ Beta (Z VP 14+ C — Z bﬁ’”) (19)
c=1 c=1

where B is the current value of the IBP (the binary matrix). The posterior can be
sampled directly using Gibbs sampling.

A topic is inactive if it does not appear anywhere in the whole corpus, in other
words n’(“.)(') =0evenif ), b > 0, and active otherwise. The inactive topics have
an ordering of decreasing stick lengths:

P(rp|mo_1, Zpgsrt = 0)

exp (Z - wzr‘) mp(1 - m)I(0 < 7 < 7_y). (20)

=1

Stick parameters for the inactive topics are sampled using equation 20 by adap-
tive rejection sampling (ARS) [32]. ARS samples from a distribution p(z) by first
constructing an envelope function for log(p(z)). The envelope function is then used
for rejection sampling. Whenever a sample is rejected, the envelope function is up-
dated to correspond better to the underlying density. The R package ’ars’ [33] is
used to generate samples using ARS.

8.4.3 Reinstantiating the IBP matrix B and Bernoulli masking matrix
v

Even though topic assignments can be sampled while integrating over the binary
IBP matrix, the IBP matrix is still needed for sampling the stick parameters for the
active topics. Therefore after sampling topic assignments z, the current value of the
binary matrix B (actual value of the IBP) needs to be reinstantiated.
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The current value of the IBP matrix is reinstantiated according to

p<b£k) = 1|7Tk7 ¢k7 wgk)a Zc) ==

1, if nl) > 0
T, if nl")) = 0,4" =0 (21)
(k) n((:k o O, wyﬂ) 1

2042087 (1))
where ¢>£ Zgzﬁck) b . ) In the first case, topic k has generated words in

task c. In the second case, topic k has not been observed in task ¢ and arameter

" =0 prevents the topic from being active regardless of the value of b In the

thlrd case, topic k has not been observed in task ¢ but it could be active as ¢c =1
The masking vector 1, can be reinstantiated in a similar way:

p(UE) = 1|ex, ¢y, ¥P, z,) =

—

1: if nclf{) >0
e : if ng)) = 0,60 =0 (22)
() n® Z 0 b0 — 1

(¢}

—

)

)

) 4208 (1 k)

8.4.4 Sampling topic strength parameters ¢£’“> and ~*)

Topic strength parameters qbgk) are sampled using the Metropolis-Hastings algorithm
described in section 3.3.3.

The joint probability of ¢,(;k) and total number of counts assigned to topic k can
be expressed as

P68, n{ ™, b, ) =

G UG § S (G SR
I'(y#®) T (¢) n{P1 20687 +nl)”

We use the Metropolis Hastings algorithm and equation 23 to generate samples from
the posterior of gbgk)

Also samples from the posterior of ¥*) can be generated by using the joint
distribution

(23)
c:bék)wék):l

p(Wlara) T p(@P 7™, 60, 4 (24)

b k) =1

and the Metropolis Hastings -algorithm.

8.5 Comparison to earlier work

The most similar existing methods are the Hierarchical Dirichlet Process multi-task
model [11] and the IBP Compound Dirichlet Process [27] single-task model.
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8.5.1 Hierarchical Dirichlet Process multi-task model

The Hierarchical Dirichlet Process multi-task model (HDP) is a nonparametric
Bayesian model that generates topics from a Hierarchical Dirichlet Process to be
shared in different tasks. The number of topics is not chosen but learnt from data
as with our model. HDP provides a model for similar problem setups as our ap-
proach, whereas some important assumptions made by the HDP are different.

HDP allocates a similar amount of resources for all tasks. The major contribution
of this thesis is the study of the effects related to altering task-specific resources to
improve performance in the task-of-interest.

HDP does not favor sparse solutions, that is, it allows topics with very small
prevalences. Our model is sparse and it favors solutions with a smaller number of
topics with high prevalence.

HDP first generates a possibly infinite set of topics with associated probabilities
for their prevalence in tasks. The probability for using the topics in documents
within tasks is a corrupted version of the task-level probabilities for the topic usage.
Therefore topic prevalence over tasks is positively correlated with topic prevalence
in documents within the tasks. This assumption can naturally be very far from
the true structure of the data; it is easy to imagine a topic that appears often but
generates only few words. For example, in a corpus containing documents describing
cars from different manufacturers, the topic ”brakes” will probably appear in almost
all documents (task prevalence close to 1), but most words in the documents will
probably not deal with the topic (prevalence in documents is substantially lower
than 1).

Figure 8.5.1 contains the plate diagram for the HDP multi-task model. The
generative process for the HDP multi-task model is as folows:

1. Draw Gy ~ DP(H,~)
2. For tasksc=1,.... M
(a) Draw G, ~ DP(Gy, ap)
(b) For every document d =1,..., D, in task ¢
(a) Draw G4 ~ DP(G., 1)
(b) For every word n in document d
(a) Draw topic z. 4, from Dirichlet(G. q)

(b) Draw word we,q, from Multinomial(3,_, )

where M denotes the number of tasks (data sets) indexed with c¢. Each task ¢ has
D, documents. The number of words in a document is N, 4. Parameters 3 for

Ze,d,n
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topic-to-word distributions are generated from B3, ~ Dirichlet(n) as new topics are
generated. H, 7, ap and «a are the hyperparameters of the model.

cdn

Bk c,d,n

cd D

Figure 3: Plate diagram for the hierarchical Dirichlet multi-task model.

8.5.2 Focused topic models

Focused topic model (FTM) [27] is a single-task model that has a structure very
similar to our model. FTM models a set of related documents sharing a possibly
infinite set of topics. FTM uses an Indian Buffet Process to generate a binary
matrix to control sharing of topics. Topic prevalence (the probability of a topic
appearing in documents) is decoupled from topic prevalence within the documents.
This is achieved by modeling topic prevalence with a gamma distribution that is
independent from the IBP controlling topic sharing.

Our model uses a similar structure for decorrelating task-level sharing and document-
level prevalence. This structure also allows a natural way of implementing the novel
asymmetric resource allocation. We extend the model structure used in F'TM by
an additional independent binary masking to shut down topics in tasks with task-
specific probabilities to promote performance in task-of-interest.

FTM models a set of related documents. We model a set of related learning
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tasks, within which all documents are assumed to use the same set of topics. This
extends the single task approach of FTM to a multi-task scenario.

Focused topic models connect the parameters controlling topic prevalence within
documents through a shared prior. In other words, all topics are assumed to occur
equally often. The distribution used for achieving this is, however, relatively loose,
and the assumption is a weak one. Our model assumes that topic strengths are
similar in different tasks, in other words that the strength of topic k is similar in all
tasks.

Figure 8.5.2 presents a plate diagram for the focused topic models. The gener-
ative process for a focused topic model for a data set with M documents (indexed
by m) is as follows

1. For topics k =1, ...

(a) Draw 7 according to equation 9.7

(b) Draw relative weight of topic ¢ ~ Gamma(~y, 1)

(c) Draw parameter of the topic-to-word distribution fj ~ Dirichlet(n, 1)
2. For documents m =1,.... M

(a) Draw a row of and IBP matrix by, according to equation 9.7

(b) Draw the total number of words n™ in document m,
™ ~ NegBin (3, (bm k), ;)

(c) Draw the distribution over topics 6,, ~ Dirichlet(by,.¢),
where ¢ is a vector of weights ¢y.

(d) For each word n =1,...,n™

(a) Draw a topic zp,,, ~ Dirichlet(6,,)

(b) Draw word wp,, ~ Multinomial(3, ).

The most similar existing multi-task method (HDP) is neither sparse nor asym-
metric and it differs technically in most aspects from our approach. Technically
the most similar existing method (IBPCD) is designed for very different learning
scenarios than our model.
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Figure 4: Plate diagram for FTM.
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9 Experiments

A set of experiments was conducted to study the effect of shielding and to compare
the performance of the developed model to the existing state-of-the-art method.
The performance of a model is used as a measure for the goodness of the approach.

The new method was compared to the existing state-of-the-art method on real
data and in addition experiments were conducted with toy data. Data sets used in
the experiments are described in section 9.3.

9.1 Measuring performance

The performance of our model and the comparison method was evaluated by com-
puting predictive likelihoods, f@ p(test data|©)-p(O|data, prior), for test data. Test
data consist of the bag-of-words representations of the test documents, in other
words, how often each term in the vocabulary has been observed in the test docu-
ments.

Computing predictive likelihoods for the new model and the comparison methods
includes integration over the document-specific topic distributions of the documents
in the test set, as they are not known for the previously unobserved documents of
the test set. A numerical approach referred to as empirical likelihoods is taken to
avoid solving the integral analytically and to produce the estimates of the predictive
likelihoods.

For toy data the true distribution of the test set is known, and therefore pre-
dictions given by our model can be directly compared to the optimal predictions
obtained by using the true model. Toy data results are reported as the difference of
logarithmic likelihoods computed using our model and the true model. The differ-
ence is normalized by the word count of the test data to give comprehensible average
word results:

| p(test datallearnt parameters)
p(test data|true parameters)

difference to the true model = (25)

number of words in test set
For example, a reported logarithmic difference of —0.15 means that the geomet-
ric mean of the likelihoods of the words in the test set computed by using learnt
parameters is exp(—0.15) = 0.8607 of the optimal predictive likelihoods.
For real data, predictive likelihoods are converted into perplexities that is the
standard measure of performance in topic models literature. The perplexity of test
data consisting of words wy, ..., w,, is computed according to

1
Perplexity(wy, . .., wy,,) = exp (—— log(p(wy, .. ., wy,,|training data))) (26)
nr

where np is the number of words in the test data. The dictionary (the set of
different terms that appear in documents) is naturally assumed to be the same as
in the training set.
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Perplexity can be interpreted as the “confusedness” of the model. The inter-
pretation of perplexity is easiest to describe by an example. A test data perplexity
of 10 can be interpreted as follows: the model is as confused by each word in the
test data as if it had to choose them uniformly from a set of 10 alternatives. The
simplest of models which assigns an equal probability for all words in the dictionary
would therefore have a perplexity of the number of terms in the dictionary.

9.2 Empirical likelihoods

The method of empirical likelihoods can be used to numerically estimate predictive
likelihoods when the computation of predictive likelihoods includes some intractable
integrals. The method of empirical likelihoods is described, for example, in [34].

A slightly modified version of the method of empirical likelihoods is used to es-
timate the predictive likelihoods in the experiments. The original aim was to use
the standard method, but unfortunately the description of the method was misin-
terpreted. At the time of the discovery of the mistake, there was not enough time to
correct it. The modified version of the method was, however, used consistently for
our model and the comparison method, and it has a sensible interpretation as the
lower bound of the classical method. In addition, the comparison method results
on the NIPS data set obtained by using the modified method do not differ observ-
ably from the results in [11] obtained with the classical method as presented. The
difference between the methods is discussed in more detail in Appendix B.

An approximation for the predictive likelihoods is computed as follows:

1. For each posterior sample s
(a) Generate N, sample topic distribution parameters 6° indexed by v as 63,
v =1,..., Nep, from 6° ~ Dirichlet(b}.¢:.17), where bg, ¢} and v are the
values of the corresponding parameters in posterior sample s

(b) Compute the average log likelihood for different terms 7 in the dictionary:
this average log-likelihood is an approximation to the empirical

log-likelihood given by posterior sample s to a single occurrence of term .
The approximation is

Zf}vjf” log(p(word = term;|0%, 3°))

ELg(term;) = N
emp

where (3% contains the learnt parameters for the topic-to-word distributions in pos-
terior sample s.

For the HDP models, the process is similar. The only difference is that topic
distribution parameters are generated from a different distribution, as defined in
section 8.5.1.

To compute the modified empirical likelihoods for a test data containing doc-
uments d = 1,..., Dye where each document has words w = 1,..., Nyords,a, the
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average over the observed word counts, test documents and posterior samples s is
taken,
S Nwords,d Nterms
EL(test data) — ZS:I Zdocuments Zw:l i=1 I
S ’ Zdindoauments Nwords,d

(wordg., = term;)ELg(term;)

)

(27)
where S is the number of posterior samples and Nyeqms is the number of terms in
the dictionary.

9.3 Data sets

We perform four experiments on toy data and one on real data. All experiments
using toy data generate it as described in section 9.3.1. The experiment with real
data is done using the NIPS data set described in section 9.3.2.

9.3.1 Toy data

Experiments with toy data were used to study the shielding effect and to study
properties of the new model. In these experiments, the new model was not compared
to comparison methods.

Toy data was generated from a distribution that belongs to the model family
of the developed model. Some parts of the distribution were, however, fixed to
facilitate computation and interpretation of results.

The generation of toy data follows the major guidelines of the generative pro-
cess presented in section 8.3. Instead of following the random process defined by
the model to generate latent structure contained in ®, B and 1, we fixed such a
structure (the values of B and ) in which the task-of-interest has 2 topics, and
each supplementary task shares one of them. In addition to the shared topic, each
supplementary task has a task-specific topic, which is not shared with any other
task. The value of parameter ¢ was set to 300 for all tasks and topics. The values
of the hyperparameters for &, B and ¥ do not have any impact on the data after
setting the values of this set of parameters.

Topic-to-word distributions were generated according to the sparse topic models
presented in [35]. The probability of generating words in the corpus comes from a
Dirichlet distribution. Unlike in the assumptions of our model, sparse topic models
allocate a different pseudocount for different words. The pseudocounts were fixed
in such a way that each topic has a set of words, for which it has the highest pseu-
docount (0.5). For other words the pseudocount is lower(0.03). Each topic had
approximately equally many words for which the pseudocount was higher. Sparse
topic models -structure was used instead of the generative process assumed in the
new model to generate data that is easy to learn. This allowed doing experiments
in which the amount of training data is small and sampling is correspondingly com-
putationally inexpensive.

The number of supplementary tasks was fixed to 9 in all experiments with toy
data. The number of terms in the dictionary (dictionary length), the number of
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documents in the task-of-interest and supplementary tasks and the number of words
per document were varied in different experiments.

For toy data, the test set consists of 2000 test documents with dictionary length -
1000 words in each document generated from the model.

An important aspect of the toy data is that the true number of components is the
same in the task-of-interest and the supplementary tasks. The sparsity assumption
does not as such match the toy data.

9.3.2 NIPS data

We used the NIPS data set to compare the performance of the new model with a
state-of-the-art method (the HDP multi-task model).

The NIPS data set! consists of NIPS articles from 1987 to 1999. The articles
deal with a range of topics spanning nine sections. Standard stop words and words
occuring more than 4000 times or fewer than 50 times in the whole corpus have been
removed. We select the five most frequent sections as learning tasks: Neuroscience
(NS), Learning Theory (LT), Algorithms and Architecture (AA), Applications (AP)
& Control, Navigation and Planning (CN). The resulting data set contains 1147
articles, the vocabulary size is 1321 and the average document length is ~ 950
words.

To compare the new model developed in this thesis to existing state-of-the-art
methods on real data, cross validation is used to assess the performances of the
models. The data set is divided into 5 training sets and a validation set. Unlike in
the cross validation process described in section 4.1, the roles of the subsets are not
changed: parameters of different models are always fitted to one of the training set
subsets and performances are always validated on the same test set. The number of
training samples in the task-of-interest was varied (5, 10, 20 and 40) and the number
of documents in supplementary tasks was 10 or 25. The number of documents in
the test set is 16.

9.4 Experiment 1: Fixing hyperparameter «

The aim of the first experiment was to study the shielding effect and the effect of
the hyperparameter . The model was run with o = 3,9 and 15.

The effect of asymmetric sparsity was explored using the binary masking to
adjust the relative sparsity of the task-of-interest (denoted with epsilon): the per-
formance of the model was studied when the task-of-interest was more sparse than
the supplementary tasks (epsilon < 1) and when it was made less sparse, that is
more topics were activated in the task-of-interest than in the supplementary tasks
(epsilon > 1).

The relative sparsities epsilon = 0.1,0.3,0.75,1 and 2 were used. The rela-
tive sparsity is controlled using the task-specific € parameters. Technically, when
epsilon < 1, the parameter epo; controlling the binary masking of the task-of-
interest was set to eror = epsilon and the parameters controlling the binary mask-

Thttp:/ /www.gatsby.ucl.ac.uk/~ywteh
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ing of the supplementary tasks were all set to the same value esyp = 1. When
epsilon > 1, ero; was set to epor = 1 and the masking parameter of all supplemen-
tary tasks was set to esyp = il

The relative sparsity can be interpreted as the ratio of the probabilities of ac-
tivating topics in the task-of-interest and in the supplementary tasks under oth-
erwise similar conditions except for the value of parameter €. For example, when
epstlon = 0.1,

p(topic activation in task-of-interest|data A, parameters B)

=0.1 28
p(topic activation in supplementary tasks|data A, parameters B) (28)

where parameters B denote all parameters except for the parameters € of different
learning tasks.

The values of the other hyperparameters were fixed: hyperparameter n was fixed
to n = 0.00005 and hyperparameters a; and a, were fixed to a; = ay = 1.

Toy data was generated as described in section 9.3.1. Dictionary length was fixed
to 150. The number of documents in the task-of-interest was set to 16, 32 or 50 and
the number of documents in the 9 supplementary tasks was set to be substantially
lower than in the task-of-interest: the number of documents in supplementary tasks
was 0.15 or 0.3 times the number of documents in the task-of-interest. The number
of words in each document was 15.

The sampler was run for 2000 iterations, and samples 1300 to 2000 were used for
predictions after thinning the posterior chain by 6. The experiment was repeated
20 times.

Performance is evaluated as the difference between the predictive likelihoods for
test data with learnt and true parameters as described in section 9.1 and averaged
over the repetitions. Logarithmic differences to the true model (normalized by the
number of words) are reported.

Results are presented in figure 5. As expected, the performance of our model
increases when the number of training samples in the task-of-interest increases.

Performance is always best with a = 3. Therefore we deduced that in future
experiments with this type of toy data the value of a will not be evaluated in a
grid, instead a value as small as possible will be used. In future experiments with
toy data value a = 2 will be used. This specific value is chosen to make « as small
as possible while avoiding possible numerical problems induced by having an even
smaller value.

The performance of the model decreases as the number of samples in supple-
mentary tasks increases. This implies that the model is not able to make use of
information in supplementary tasks efficiently.

According to our hypothesis, the performance should increase when epsilon €
(0,1) but constraining the sparsity of the task-of-interest excessively should not
increase performance. However, performance of our model seems to only increase as
epsilon decreases.

Having performance increase even with epsilon = 0.1 implies that the observed
increase in performance is due to the general resource constraint instead of the
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Figure 5: Experiment 1: Performance of our model on toy data with different values
of parameter . The number of documents in the task-of-interest (docs TOI) and
9 supplementary tasks (docs SUP) are varied. The performance of the model is
evaluated with different values of o (3,9 and 15 and black solid line, red dashed line
and the green dash dot line, correspondingly) and with different relative sparsities
epsilon (0.1,0.3,0.75,1,2). Results are presented as the log difference to the true
model that is the difference between the average test set log likelihood computed
using learnt parameters and true parameters, which has been normalized by the
number of words in the test set.

shielding effect. Based on this observation, a general resource constraint is added in
the next experiment.

9.5 Experiment 2: Effect of shielding with toy data

In experiment 2, the experimental setup of experiment 1 was reproduced with some
changes. The o parameter was not varied in a grid, instead value o = 2 was used
as the previous experiment demonstrated that large values produce worse results.
Now 3000 samples were generated, of which the first 2000 were discarded as burn in
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and the remaining samples were used for predictions after thinning by 5. Sampling
was continued longer because fixing the parameter a reduced the number of MCMC
chains needed and more computational resources could be allocated to each of them.

As a conclusion based on the results of experiment 1 we decided to allocate a
general resource constraint as described in section 8.2.1. The binary masking was
used to increase the penalty for activating topics in all tasks, in other words the €
parameters were made smaller than 1 in all tasks.

First eror and egyp were set as described in section 9.4 to produce the relative
sparsities epsilon = 0.1, 0.3, 0.7, 1, 2 and 4. After this, parameters ero; and esyp
both were multiplied with 0.1 so that the largest value of the € parameters became
0.1. The value 0.1 was selected by an educated guess.

In addition to using means to describe the results, also quantiles were now used
to better describe performance. The experiment was repeated 10 times. Results of
experiment 2 are presented in figure 6.

A weak shielding effect can be observed. When the model for the task-of-interest
is made more sparse as compared to the models for the supplementary tasks, in
other words when epsilon € (0, 1), the performance in the task-of-interest is slightly
better than when the task-of-interest is allocated similar or more resources than the
supplementary tasks (epsilon > 1).According to the hypothesis presented in section
8.1, when resources of the task-of-interest are constrained too much (epsilon = 0.1),
performance decreases as the model does not allocate sufficient resources to explain
the data of the task-of-interest.

Performance in the task-of-interest increases as the number of training docu-
ments in the task-of-interest grows. As in experiment 1, as the number of training
documents in supplementary tasks increases, performance in the task-of-interest de-
creases.

9.6 Experiment 3: Assessment of the chosen general re-
source constraint

The strength of the general resource constraint that was imposed in experiment 2
was chosen based on an educated guess. To further validate this choice, we ran an
experiment with a more severe general resource contraint: now the largest value of
e was normalized to 0.01.

Other settings in experiment 3 correspond to those in experiment 2. Results of
experiment 3 are presented in figure 7.

The shielding effect is not even mildly visible in the results of experiment 3. We
interpret this as the overall resource constraint being so strict that it prevents the
modeling of the training data properly and causes relatively random results.

9.7 Experiment 4: Effect of shielding with real data and
comparison to HDP multi-task and single-task models

Experiment 4 was conducted on real data to study the difference in the performance
between our model and the state-of-the-art methods on a real data set.
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Figure 6: Experiment 2: Performance of our model on toy data with a general
resource constraint. Number of documents in the task-of-interest (Docs TOI) and 9
supplementary tasks (Docs SUP) was varied. The value of parameter a was set to 2.
The sparsity of the task-of-interest is made different from the other tasks by varying
the relative sparsity of the task-of-interest, denoted with epsilon (0.1,0.3,0.7,1,2,4).
In addition to imposing asymmetric sparsity, the binary masking is used to impose
a general resource constraint: task-specific € parameters are set so that the largest
value of the e parameters is 0.1. Log difference to the true model is the difference
between the test data predictive log likelihoods computed using learnt parameters
and true parameters, which is normalized by the number of words in the test set.
Means (green solid line) and 10%, 50% and 90% quantiles of the log difference to
the true model are presented (red dashed line, black solid line and red dashed line,
correspondingly).

Our model was compared to a single task method (HDP single task) and a multi-
task model (HDP multi-task). For the HDP models, instead of fixing the values of
the hyperparameters aq, oy and v, probability distributions were assigned to these
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Figure 7: Experiment 3: Performance of our model on toy data with a more strict
general resource constraint. Number of documents in task-of-interest (Docs TOI)
and 9 supplementary tasks (Docs SUP) was varied. The value of parameter o was
set to 2. The sparsity of the task-of-interest is made different from the other tasks
by varying the relative sparsity epsilon (0.1,0.3,0.7,1,2,4). In addition to impos-
ing asymmetric sparsity, the binary masking is used to impose a general resource
constraint: task-specific € parameters are set so that the largest value of the € pa-
rameters is 0.01. Log difference to the true model is the difference between the test
data predictive log likelihoods computed using learnt parameters and true parame-
ters, which is normalized by the number of words in the test set. Means (green solid
line) and 10%, 50% and 90% quantiles of the log difference to the true model are
presented (red dashed line, black solid line and red dashed line, correspondingly).

hyperparameters and the posterior was integrated over them. The distributions

ap ~ Gamma(5,0.1) (29)
a; ~ Gamma(0.1,0.1) (30)
v ~ Gamma(5,0.1) (31)
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were used as in [11].

The NIPS data set described in section 9.3.2 was used. Different numbers of
training documents in the task-of-interest (5, 10, 20 and 40) and in the supple-
mentary task (10 and 25) were used to compare the methods in differing learning
setups.

The performance of our model was validated when varying the relative sparsity
epstlon and the hyperparameter a.

1500 samples were generated from the posteriors of all models. 1000 were dis-
carded as burnin. The parameter n which controls the probability mass assigned a
priori to the terms in the dictionary was fixed n = 0.5 for all models.

Results of experiment 4 are presented in figure 8. Performance of our model is in
most cases similar to that of the HDP multi-task model. With very few documents
in the task-of-interest (5) and many documents in the supplementary tasks (25),
our model performs worse than the HDP multi-task model. Performance of our
model is slightly better than that of the HDP single-task model when the number of
training documents in the task-of-interest is 10 or less, but as the number of training
documents increases, the performance difference vanishes. To study the sigificance
of the results, also the standard deviations of the test data perplexity for our model
were plotted. The differences between our model and the HDP multi-task model are
not significant except for the case in which our model performs poorly (5 documents
in the task-of-interest and 25 in the supplementary tasks). The shielding effect is
not visible.

The results are good in the sense that having a model perform equally to the
state-of-the art method is a success. However, the aim of the experiment was to
study the shielding effect, which is not present in the results.

Speculations about possible causes for the observed performance will be discussed
further in the following section.

9.7.1 Possible causes for performance differences

The latent structure modeled using the parameters b., ¢. and . controls the
sharing of statistical strength. Limitations of this structure provide a convincing
explanation for the absence of the shielding effect in the results with real data.

The latent structure in our model sets penalties for starting new components
and sharing old ones. The penalties for activating components control sharing of
information and they should enforce sharing of components in a way that improves
performance: if new topics can be activated too easily as compared to sharing old
ones, all tasks can use a tasks-specific set of components to model their data and
no sharing of statistical strength will occur. If sharing is too easy, all tasks will use
all components and also such a solution will easily overfit to the training data.

The posterior is affected by both the prior and the likelihood. As the number of
samples in training data increases, the relative weight of the prior in the posterior
distribution will decrease. This is expectable and rational: the posterior combines
the information in the data and in the prior, and as the amount of information
contained in the likelihood increases, it should dominate the posterior.
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Figure 8: Experiment 4: Comparison of the performance of our model to the HDP
single task and multi-task models on the NIPS data set. The figure presents the
results using test set perplexities. For our model means (green solid line) and means
+ 1 standard deviations are presented (black line and the black dotted lines, corre-
spondingly). For the HDP single-task and multi-task methods, mean test set per-
plexities are presented (green dashed line and red dash dot line, correspondingly).
Number of documents in the task-of-interest (docs TOI) and in the 5 supplementary
tasks (docs SUP) is varied. Performance of our model is evaluated with a = 2,6, 11
and different relative sparsities epsilon (0.1,0.3,0.7,1,2,4). In addition to impos-
ing asymmetric sparsity, the binary masking is used to impose a general resource
constraint: task-specific € parameters are set so that the largest value of the € pa-
rameters is 0.1.

The challenge with non-parametric models is that the training data likelihood
can always be increased by increasing model complexity, in this case by starting
new topics and by sharing old ones. Therefore as the amount of training data
increases, if the likelihood term dominates the posterior too strongly, the learnt
model will become more complex. To prevent overly complex models, the prior for
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latent structure that promotes sharing should somehow scale up as the amount of
data increases.

The most well-established nonparametric models such as the HDP and IBP scale
the penalty for adding new components with respect to the amount of data: for
example for the IBP, the number of columns C' in an IBP matrix (usually used
to control model complexity) is proportional to the logarithm of the number of
samples, C' ~ 10g(Nopservations) When the number of rows increases as the amount of
data increases [36].

The IBP’s automatic scaling of the model complexity to the amount of data
(referred to as an implicit prior for model complexity) requires that the number of
rows grows along with the amount of data. The expected penalties for activating
components are inversely proportional to the number of rows in the IBP matrix,
E(penalty for inverting a 0 into a 1) ~ ﬁ, and therefore when the number of
rows grows as the amount of data increases, the prior penalties will scale up to
compensate for the stronger likelihood term to impose structure.

In [27] the IBP is is used for controlling observation level sharing. The expected
penalties for the activation of components are therefore proportional to the number
of documents, E(penalty) ~ Ndoculments’ whereas the activation allows increasing the
likelihood of only one document.

In contrast, we use the IBP to control task-level sharing and the penalties for
activating new components are associated to the activation of components in mul-
tiple observations simultaenously. As the number of rows in the IBP matrix is now
the number of tasks (which is substantially lower than the number of documents),
the expected penalties for increasing model complexity, E(penalty) ~ m, are
much less significant than when used as in [27]. Simultaneously, the number of ob-
servations whose likelihood will be increased by the activation is higher. Therefore
it is no wonder that the penalties which should control sharing might become rel-
atively insignificant as the number of documents and words in the tasks increases:
the penalties are simultaenously made weaker as the number of observations in the
training data whose training likelihoods are increased is made higher.

The NIPS data set contains much more data than the toy data sets with which the
shielding effect was observed. The general resource constraint applied in experiment
2 alleviated the problem with toy data. However, the general resource constraint
used with the NIPS data was selected on the basis of the results with the toy
data and as the NIPS data set contains much more data than the toy data sets,
it would probably have required a stronger general resource constraint to constrain
overfitting.

Another important aspect of the experimental setup which probably affects the
results is the statistical similarity of the learning tasks with the NIPS data. The HDP
multi-task model makes a stronger assumption about the similarity of the learning
tasks whereas our model is more flexible in this respect. Therefore the HDP probably
performs better on data sets in which different learning tasks resemble each other
to a larger extent.

With toy data, increasing the number of documents (data) in the supplementary
tasks decreased the performance of our model even as approximately 50% of the



52

words in each supplementary task was generated from a topic shared with the task-
of-interest. It seems likely that the learning tasks resembled each other: with the
NIPS data, the performance of our model increases as the number of documents
in supplementary tasks increases. This is evidence for the hypothesis about the
similarity of the tasks in the NIPS data set and this probably has favored the HDP
multi-task model.

Finally, the sampler used for learning the parameters for the HDP models has
been widely used and tested, whereas the sampler for our model has been only used
for the purposes of this thesis. It is possible, that the sampler for our model did not
cover the posterior as well as the HDP sampler.

The most convincing explanation for the bad performance of the new model
seems to be the dominance of the likelihood, which causes severe overfitting. To
study this hypothesis, another experiment (experiment 5) was conducted.

9.8 Experiment 5: Assessment of the effect of the size of
the data set

The aim of experiment 5 was to study the effect of increasing the amount of data.
As the prior of our model controlling information sharing does not scale up as the
amount of data (documents, words) in the learning tasks increases, we suspected
that as the amount of data increases, the likelihood will dominate and the model
will allocate too much resources for modeling the data. When this happens, the
structure controlling information sharing will become too weak, and the shielding
effect will not emerge.

In experiment 5, the number of words in each document was varied, values
Nwords = 8, 15,30,60 and 240 were used. The prior controlling information sharing
was held constant.

Dictionary length was fixed to 150. The number of documents in the task-of-
interest was set to 24 and the number of documents in the 9 supplementary tasks
was set to 8, which corresponds to 0.34 times the number of documents in the
task-of-interest.

Relative sparsities epsilon used were 0.1,0.3,0.7,1 and 2 and a general resource
constraint was enforced by normalizing the € parameters so that the largest value of
€ became 0.1. Value of o was set to 2 and the value of n was set to 0.00005.

Results of experiment 6 are presented in figure 9. With 8 words per docu-
ment, the shielding effect is visible. According to our hypothesis, as the number of
words in the documents (amount of data) increases, the shielding effect disappears.
With higher numbers of words per document, performance increases as epsilon is
decreased. This suggests that imposing a more strict general resource constraint
would be beneficial when the amount of data increases.

An aspect of nonparametric models that we disregarded when formulating the
model is the assumption about the infinite data generating process: the HDP and
the IBP both assume that an infinite number of components/topics actually exists,
and as the number of observations increases, more and more of them will be ob-
served. This means that if we generate data from a parametric distribution with K
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Figure 9: Experiment 5: Effect of the number of words in the training data on
the emergence of the shielding effect. Number of words in each document is var-
ied. Performance of our model is evaluated with o = 2 and different values of €
(0.1,0.3,0.7,1,2,4). In addition to imposing asymmetric sparsity, the binary mask-
ing is used to impose a general resource constraint: task-specific € parameters are set
so that the largest value of the € parameters is 0.1. The number of documents in the
task-of-interest is 24 and 8 in the supplementary tasks. Log difference to the true
model is the difference between the test data predictive log likelihoods computed
using learnt parameters and true parameters, which is normalized by the number of
words in the test set. Means (green solid line) and 10%, 50% and 90% quantiles of
the log difference to the true model are presented (red dashed line, black solid line
and red dashed line, correspondingly).

components and use a nonparametric model to learn parameters, as the amount of
data generated from the parametric distribution increases, the nonparametric model
will increase the number of components used to model the data regardless of the true
underlying parametric distribution. This might be nonintuitive from the traditional
Bayesian point of view, in which the posterior of a (parametric) model becomes
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more peaked around the true data generating parameters when the true data gener-
ating distribution belongs to the model family of the model applied. It is difficult to
evaluate whether a nonparametric model family is optimal for implementing models
that aim to make use of asymmetric sparsity altogether.

To demonstrate this effect, the distribution of the number of components as a
function of the number of words in the training documents is presented in figure 10.
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Figure 10: The posterior distribution of the number of components as a function
of the number of words in the training documents. The number of documents
is held constant. As the number of words in the training documents increases, the
posterior of the number of components changes: the expected number of components
increases. The data is generated from a parametric distribution with a fixed number
of components. The true number of components is 11.
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10 Discussion

Multi-task learning, sparsity and topic modeling are active research topics with re-
cent publications in the most recognized machine learning conferences (for example
[37], [38], [39] and [40]). In this thesis, multi-task learning using different spar-
sity constraints for different learning tasks within the topic models framework was
studied.

A new Bayesian model referred to as a shielded topic model was presented as a
case study of the new approach. The method was designed to utilize the assumed
shielding effect to promote the predictive performance in a particularly interesting
learning task, which is believed to best resemble future observations, or in other
words, the test set.

To be more specific, the new model allows supplementary tasks, which do not
perfectly match the distribution of the test set, to use more resources for modeling
their data. In other words, the task-of-interest is made more sparse. The excess
resources of the supplementary tasks shield the shared models for the shared com-
ponents, and this prevents supplementary-task-specific features from disturbing the
learning of the shared characteristics. This should promote performance.

The aim of this thesis was to study the shielding effect and the new model was
constructed to study it. The shielding effect was observed with experiments done
on toy data. Experiments on real data failed to bring out the shielding effect.
Observations about the structure of the new model were made, and they provide
hypotheses about the probable causes for the observed behaviour of the model.

Performance of the new model on real data is similar as compared to existing
state-of-the-art methods. The new model was compared to single-task and multi-
task Hierarchical Dirichlet Process topic models.

The new model does not take into account certain aspects of the Indian Buffet
Process prior used in controlling sharing of components and statistical strength.
The IBP has been used successfully under circumstances in which also the fixed
dimension of the IBP matrix grows as the amount of data increases [27]. This affects
greatly important properties of the associated distributions. In the new model, the
fixed dimension of the IBP matrix does not necessarily change as the amount of
data increases. This prevents our model from scaling up to larger data sets. The
inability of the model to scale up as the amount of data increases was studied in the
experiments with toy data. In these experiments, the shielding effect disappears as
the amount of data increases which is in line with the experiments done on the real
data.

A mixture of Gibbs sampling and the Metropolis-Hastings algorithm was used
to infer the parameters of the new model. The sampling approach seems to be able
to provide estimates for the parameters that produce results that are comparable to
comparison methods on a small data set. Therefore, for the comparison with other
methods, the sampling approach seems sufficient. However, for experiments using
toy data to study the shielding effect, the resolution of the sampler seems insufficient.
It is seems probable that the impact of the shielding effect on predictive performance
is not drastic. Such delicate effects will easily become unidentifiable when results
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contain other sources of error.

A question left unanswered by this thesis is, whether the increase in the perfor-
mance with toy data now ascribed to the shielding effect and asymmetric sparsity
could be achieved by a symmetric model by optimizing the general resource con-
straint relentlessly. This was not studied, as it was considered unlikely.

To further study asymmetric sparsity by using this model, the problem with the
inability of our model to scale up to the amount of data should be solved. The binary
masking used in our model to impose asymmetric sparsity can be used to alleviate
the problem by imposing a general resource constraint, as done in the experiments,
but this solution is very inelegant, and more importantly, requires manual work,
which is poorly in line with the original motivation for using nonparametric models.
A possible solution would be to model the connection between the total number of
words in the data and the strength of the general resource constraint. This might
allow reducing the amount of manual work. Such solutions would still, however, be
very inelegant.

In retrospective, the choice of a slightly modified IBPCD prior as the basis for
our model was not a wise one. The prior was used very differently from the setup
where it had been shown to be successful. The approach was taken mainly as the
prospect of avoiding the assumption in the HDP about the correlation between
topic prevalence within the corpus and the topic distribution within each document
seemed worthwile (in HDP topics that are active in many documents also are very
active within the documents).

For example, the HDP could have been chosen as the basis for studying asym-
metric sparsity, which would also have made comparison of performance easier: if
all other assumptions (and technical aspects such as implementations) in the mod-
els used in the experiments were the same, the effect of asymmetric sparsity would
have been the only cause for different performance. A similar binary structure could
have been implemented to inactivate some of the topics in the task-of-interest (or
supplementary tasks). This would have been justified as the main aim of this thesis
was to study the effects of asymmetric sparsity and shielding, not other aspects of
the models.

Asymmetric learning has been studied in other publications, for example in [18]
and [19]. At the time of the writing of this thesis, the people involved in the research
team were not aware of any other approaches directly studying the aspect of using
asymmetric sparsity to achieve asymmetric learning.

On real data, evidence for the advantages of asymmetric sparsity were not ob-
served. The model developed was still able to perform equally to the state-of-the-art
multi-task model, which must be considered a success. This was not, however, the
main objective of this thesis.

The aim of this thesis was to study asymmetric sparsity and the shielding effect
by implementing a multi-task model that is able to exploit the assumed advan-
tages of asymmetric sparsity. Shielding effect was produced with toy data, but the
model failed to produce effective multi-task performance: even though supplemen-
tary tasks contained lots of data from a distribution shared with the task of interest,
increasing the amount of overall data in the supplementary tasks caused a decrease
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in performance. The prior for the latent structure assumed in the model failed to
control sharing in an effective manner. If this line of work is continued, some of the
modeling assumptions need to be changed.



58

References

[1]

[10]

[11]

[12]

[13]

Brusic, V. and Ranganathan, S. Critical technologies for bioinformatics. Brief-
ings in Bioinformatics, 2008. Vol. 9, no. 4, pp. 261-262.

Bishop, C. Pattern Recognition and Machine Learning. 1. painos, New York,
Springer, 2006.

Caruana, R. Multitask Learning. Machine Learning, 1997. Vol. 28, pp. 41-75.

Kaski, S. and Peltonen, J. Learning from Relevant Tasks Only. In Proceedings
of European Conference for Machine Learning (ECML), 2007. Kok, J. N., Ko-
ronacki, J., Mantaras, R. L., Matwin, S., Mladeni, D. and Skowron, A. (eds.),
Springer, Berlin Heidelberg, 2007, pp. 608-615.

Miller, R. G. Simultaneous Statistical Inference. 2nd edition, New York,
Springer Verlag, 1981.

Storey, J. D. and Tibshirani, R. Statistical significance for genomewide stud-
ies. Proceedings of the National Academy of Sciences of the United States of
America (PNAS), 2003. Vol. 100, no. 16, pp. 9440-9445.

Gelman, A., Carlin, J. B., Stern, H. S., Rubin D. B. Bayesian Data Analysis.
2. painos, Lontoo, Chapman & Hall, 2004.

Krzysztofowicz, R. Why should a forecaster and a decision maker use Bayes
theorem?. Water Resources Research, 1983. Vol. 19, no. 2, pp. 327-336.

Antoniak, C. E. Mixtures of Dirichlet Processes With Applications to Bayesian
Nonparametrics Problems. The Annals of Statistics, 1974. Vol. 2, pp. 1152-1174.

Ferguson, T. S. Bayesian Density FEstimation by Mixtures of Normal Distri-
butions. In Proceedings of Recent Advances in Statistics, 1983. Rizvi, H. and
Rustagi, J. (eds.), Academic Press, New York, 1983, pp. 287-303.

Teh, Y., Jordan, M., Beal, M. and Blei, D. Hierarchical Dirichlet processes.
Journal of the American Statistical Association, 2007. Vol. 101 pp. 1566-1581.

Griffiths, T. L., and Ghahramani, Z. (2005). Infinite latent feature models and
the Indian buffet process. Technical report no. GCNU TR 2005-001, Gatsby
Institute for Computational Neuroscience, University College London.

Teh, Y. W., Gorur, D., and Ghahramani Z. Stick-breaking construction for the
Indian buffet process. Proceedings of the Eleventh International Conference on
Artificial Intelligence and Statistics (AISTATS), 2007. Meila, M. and Shen, X.
(eds.). Microtome, Brookline, MA, USA, 2007, pp. 556-563.

Xue, Y., Liao, X., Carin, L., and Krishnapuram, B. Multi-Task Learning for
Classification with Dirichlet Process Priors. Journal of Machine Learning Re-
search, 2007. Vol. 8, pp. 35-63.



[15]

[16]

[18]

[19]

[20]

[21]

[23]

[24]

[25]

[26]

[27]

59

Bakker, B. and Heskes, T. Task Clustering and Gating for Bayesian Multitask
Learning. Journal of Machine Learning Research, 2003. Vol. 4, pp. 83-99.

Wu, P. and Dietterich, T. G. Improving SVM Accuracy by Training on Auziliary
Data Sources. In Proceedings of the 21st International Conference on Machine
Learning (ICML), 2004. Greiner, R. and Schuurmans, D. (eds.). Omnipress,
Madison, WI, 2004, pp. 871-878.

Liao, X., Xue, Y. and Carin, L. Logistic Regression with an Auxiliary Data
Source. In Proceedings of the 22nd international conference on Machine learning
(ICML), 2005. De Raedt, L., Wrobel, S. (eds.). ACM Press, New York, USA,
2005, pp-505-512.

Bickel, S., Bogojeska, J., Lengauer, T. and Scheffer, T. Multi- Task Learning for
HIV Therapy Screening. In Proceedings of the 25th international conference
on Machine Learning (ICML), 2008. McCallum, A and Roweis, S (eds.), ACM
New York, NY, USA. 2008, pp. 56-63.

Peltonen, J., Yaslan, Y. and Kaski, S. Relevant subtask learning by constrained
mizture models. Journal Intelligent Data Analysis, 2010. Vol. 14, pp. 641-662.

Mitchell, J. and Beauchamp, J. Bayesian variable selection in linear regression.
Journal of the American Statistical Association, 1988. Vol 83, pp. 1023-1036.

Ishwaran, H. and Sunil Rao, J. Spike and Slab Variable Selection: Frequentist
and Bayesian Strategies. The Annals of Statistics, 2005. Vol. 33, no. 2, pp.
730-773.

Lustig, M., Donoho, D. and Pauly, J. M. Sparse MRI: The Application of
Compressed Sensing for Rapid MR Imaging. Magnetic Resonance in Medicine,
2007. Vol. 58, pp. 1182-1195.

Friedman, J., Hastie, T. and Tibshirani, R. Sparse inverse covariance estima-
tion with the graphical lasso. Biostatistics, 2008. Vol 9, pp. 432-441.

Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society, Series B, 1996. Vol. 5, paper 8, pp. 267-288.

Obozinski G., Taskar B. and Jordan M. 1. Joint covariate selection and joint
subspace selection for multiple classification problems. Statistics and Comput-
ing, 2009. Vol. 20, no. 2, pp. 231-252.

Pontil, M., Argyriou, A. and Evgeniou, T. Multi-task feature learning. In Ad-
vances in Neural Information Processing Systems (NIPS), 2006. Scholkopf, B.,
Platt, J. and Hoffman, T.(eds.), MIT Press, Cambridge, MA, 2007, pp. 41-48.

Williamson S., Wang C., Heller K. and Blei D. M. The IBP Compound Dirichlet
Process and its Application to Focused Topic Modeling. In Proceedings of the
27th International Conference on Machine Learning (ICML), 2010. Fiirnkranz,
J. and Joachims, T. (eds.), Omnipress, Haifa, Israel, 2010. pp. 1151-1158



28]

[29]

[35]

[36]

[37]

60

Blei, D., Ng, A., and Jordan, M. Latent Dirichlet allocation. Journal of Machine
Learning Research, 2003. Vol 3, pp. 993-1022.

Caldas J., Gehlenborg, N., Faisal ,A., Brazma A. and Kaski, S. Probabilistic
retrieval and visualization of biologically relevant microarray experiments. BMC
Bioinformatics, 2009. Vol. 25, iss. 12.

Gerber, G. K., Dowell, R. D., Jaakkola, T. S. and Gifford, D. K. Hierarchi-
cal Dirichlet Process-Based Models For Discovery of Cross-species Mammalian
Gene Ezxpression Programs. MIT-CSAIL Technical Report, 2007.

Perina, A., Lovato, P., Murino, V. and Bicego, M. Biologically-aware latent
dirichlet allocation (BaLDA) for the classification of expression microarray. In
Proceedings of the 5th IAPR international conference on Pattern recognition
in bioinformatics (PRIB’10), 2010. Tjeerd M. H. Dijkstra, Evgeni Tsivtsivadze,
Elena Marchiori, and Tom Heskes (eds.), Springer-Verlag, Berlin, Heidelberg,
pp. 230-241.

Gilks, W. R. and Wild, P. Adaptive rejection sampling for Gibbs sampling.
Applied Statistics, 1992. Vol. 41, pp. 337-348.

Rodriguez, P. P. and Komarek, A. Package ’ars’. Updated 17.4.2009. Referred
to 25.3.2011. Available from: http://cran.r-project.org/web/packages/ars/.

Li, W. and McCallum, A. Pachinko allocation: DAG-structured mixture models
of topic correlations. In Proceedings of the 23rd International Conference on
Machine Learning (ICML), 2006. Cohen, W., W. and Moore, A. (eds.), ACM,
New York, NY, USA, 2006, pp. 577-584.

Wang, C. and Blei, D. M. Decoupling sparsity and smoothness in the discrete
hierarchical Dirichlet process. In Advances in Neural Information Processing
Systems (NIPS), 2009. Bengio, Y., Schuurmans, D., Lafferty, J., Williams C.,
K., I. and Culotta, A.(eds.), MIT Press, Cambridge, MA, 2009, pp. 1982-1989.

Doshi-Velez, F. The Indian Buffet Process: Scalable Inference and Extensions.
Master’s Thesis, University of Cambridge, Department of Engineering, Cam-
bridge, England, 2009.

Lee, S., Zhu, J. and Xing, E. Adaptive Multi-Task Lasso: with Application
to eQTL Detection. In Advances in Neural Information Processing Systems
(NIPS), 2010. Lafferty, J., Williams, C., K. I., Shawe-Taylor, J.(eds.), MIT
Press, Cambridge, MA, USA, 2010, pp. 1306-1314.

Zhou, H. and Cheng, Q. Sufficient Conditions for Generating Group Level Spar-
sity in a Robust Minimax Framework. In Advances in Neural Information Pro-
cessing Systems (NIPS), 2010. Lafferty, J., Williams, C., K. I., Shawe-Taylor,
J.(eds.), MIT Press, Cambridge, MA, USA, 2010. Lafferty, J., Williams, C., K.
I., Shawe-Taylor, J.(eds.), MIT Press, Cambridge, MA, USA, 2010, pp. 2577-
2585.



[39]

[40]

61

Jia, Y., Salzmann, M. and Darrell, T. Factorized Latent Spaces with Structured
Sparsity. In Advances in Neural Information Processing Systems (NIPS), 2010.
Lafferty, J., Williams, C., K. I., Shawe-Taylor, J.(eds.), MIT Press, Cambridge,
MA, USA, 2010, pp. 982-990.

Hoffman, M., Blei, D. and Bach, F. Online Learning for Latent Dirichlet Al-
location. In Advances in Neural Information Processing Systems (NIPS), 2010.
Lafferty, J., Williams, C., K. I., Shawe-Taylor, J.(eds.), MIT Press, Cambridge,
MA, USA, 2010, pp. 856-864.



62

A Sampling topic assignments

Sampling topic assignments includes an integration that can be seen as the evalua-
tion of the expectation
El0.4|2\c.an; A

The expectation is evaluated for each element k£ one at a time. Using the notation
presented in section 8.4.1
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which is a Dirichlet distribution. The vector z¢ q\n denotes the topic assignments in
document d in task ¢ except for word n. Thus by evaluating the first integral over
0" we get
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where ngg \n denotes the number of words assigned in document d in task ¢ to topic

k without current word n. The integration is only over the unknown elements. In
addition to this, only the elements which are nonzero contribute to the expectation.
Therefore we get

B0z ¢ g0, A

/o o(k) Z Z (k)) ’ bgk) ' ‘I’ci%

bo O(k) I‘I’O O(k) -1

(e} (e} k o]
p(bc7¢c7 c’(ﬁcaﬂ' 77705767 n£7(31,\n) d¢c

>

~
independent of each other given 6. 4

— ) . k).
_/0 o(k)>0 Z Z ( cd\n+¢ ) bc \I/C7d

262" =1 wo w2 =1

p(be|m*, ) - p(oelv) - P(Pele) doe (32)



63

which is proportional to
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The denominator follows from modeling the number of total words using the
negative binomial distribution. Equation (33) is evaluated in the following cases:
1. When nC d = 0 and n' () > (), we are evaluating the probability of assigning

the Word n to one of the toplcs that are currently active in task c. This implies
that ¢ = b = 1, and Equation (33) becomes:
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2. When nik().) \n = 0 and ngk)) Ohmde > 0, topic k has not appeared in the current
task but it is active in the corpus, so the expectation in Equation (33) becomes

(YO e,)

(35

g)d\n_{' Z gj) -+ Z ﬂ(j)'y(j)ec +’Y(k) +e.-ay-asy- Z o i (k)
) >0 Gt >0 &£k U000

3. When ng_k))(_) \n = 0, topic k£ has not appeared anywhere in corpus. The topic
can therefore be assigned to any of the currently inactive topics. Therefore in
this case we evaluate the probability of assigning any of the infinite number of

components:
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The stick lengths of the inactive topics with ngk)) )= 0 are distributed according

to Equation (20) and their sum >, )

0 7*) is evaluated using ARS (adaptive
T

rejection sampling).
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B Approximation of the method of empirical like-
lihoods

Equation 27 differs from standard way of estimating predictive likelihoods with em-
pirical likelihoods. The traditional method approximates the predictive likelihoods
as

S Nemp n
Zdocuments log |:% Zs:l (% Zv:l jil p(w‘ev))}

test data predictive likelihoods ~
Zdocuments Nwords,d

(37)
where S is the number of posterior samples, I(word,, = term;) is an indicator
function used to denote whether word,, in the test set corresponds to term; of
the dictionary and N, is the number of sample topic distribution parameters. If
wordg,, = term,, the indicator function has value 1 and 0 otherwise.

The modification presented in section 9.2 makes the approximation

mean(log(x)) ~ log(mean(x)) (38)
which corresponds to a lower bound of the performance as
mean(log(x)) < log(mean(x)). (39)

The performance estimate is strongly affected by the posterior samples producing
the worst performance: therefore this approximation penalizes such posteriors in
which some posterior samples give a very low probability to some words in the test
data.

This approximation also disregards the differences between the test documents:
the approximation pools all the words in the test documents into one test document
and computes model performance on the single pooled document.
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