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Symbols and abbreviations

Symbols

Λ a diagonal matrix containing the eigenvalues of G̃−1C̃ as its
diagonal elements

A moment generation matrix
BMNA MNA selector matrix consisting of ones, minus ones, and zeros
B VNA selector matrix consisting of ones, minus ones, and zeros

B̃ reduced port matrix
Bmain main block port matrix
Bsub sub block port matrix
bi one circuit branch
CMNA MNA capacitance matrix
C VNA capacitance matrix

C̃ reduced capacitance matrix
Cmain main block capacitance matrix
Csub sub block capacitance matrix
C1 matrix containing the stamps for capacitances
C the number of capacitances
cx capacitor
c0 self-capacitor

Cond. condition number of G̃+ s0C̃
El additional incidence stamps for branch currents generated for

the MNA equations
Ei additional incidence stamps for nodal voltages generated for the

MNA equations

Eyii average error of total y paramerters ( 1n
∑n

i=0△yi)
GMNA MNA conductance matrix
G VNA conductance matrix

G̃ reduced conductance matrix
Gmain main partitioned block
Gsub sub block
G1 matrix containing the stamps for inductances
Gi,i + sCi,i diagonal block
G the number of resistances
gx conductor
g0 self-conductor
H(s) transfer function

H̃(s) reduced system
i port currents
il inductive-branch current
ii branch current for voltage sources
I0 identity matrix
k0 self susceptor
kx mutual susceptor
L inductance matrix
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L−1 susceptance matrix
L the number of inductances
Lm the number of mutual inductances
M diagonal matrix in BBD-structured state matrix
Mi the block moments of H(s)
Mi partitioning block
ni number of internal nodes
ne number of external nodes
nl number of inductances
np number of partitions

Nnz number of non-zero elements in G̃+ s0C̃
Npp positive poles
N number of ports
Nq the number of iterations of Block Arnoldi method

Nred size of the reduced matrix G̃+ s0C̃
n the number of all nodes
Q projection matrix
Qi projection block matrix
Qcol order of reduction
q refers to the number of iterations of Block Arnoldi method, the

number equals to ⌊q/ne⌋
R moment generation matrix
S transformation matrix
s0 expansion point
t computational time of calculating certain y parameter
u port voltages
vn nodal voltages
vi nodal voltage
X off-diagonal matrix in BBD-structured state matrix
Xi,0 connection matrix
xMNA MNA variables (nodal voltages, branch currents of inductances

and voltage sources)
x VNA variables (nodal voltages, magnetic fluxes and voltage sources)
y11 element of y-parameter matrix
Φ magnetic flux
φi branch flux
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Abbreviations

APLAC an object-oriented analog circuit simulator and design tool
(originally Analysis Program for Linear Active Circuits)

AC Alternating Current
BBD Bordered Block-Diagonal form
BVOR Bordered Block-Diagonal Preserved Model-Order Reduction
DC Direct Current
hMETIS a software package for partitioning hypergraphs
MATLAB a programmable mathematics toolbox (MATrix LABoratory)
METIS a software package for partitioning graphs
MNA Modified Nodal Analysis
MOR Model-Order Reduction
PRIMA Passive Reduced-Order Interconnect Macromodeling Algorithm
SPICE a circuit simulator software
VNA vector-potential based nodal analysis
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1 Introduction

1.1 Model-Order Reduction in general

The rapidly-increasing size and complexity of industrial circuits results in the sub-
stantial need for faster simulation methods. One way to speed up transistor-level
simulations is to apply model-order reduction (MOR). As a discipline, MOR uti-
lizes the properties of the dynamical systems, reduces the complexity of the systems,
while preserves the original functionality of the systems within an acceptable margin
of error.

There exists numerous MOR tools for reducing the large-scale circuits, for exam-
ple: Reduced-Order Interconnect Macromodeling Algorithm (PRIMA) [7], SPRIM
[3], PACT [2], Liao-Dai [20], Time constant Equilibration Reduction (TICER) [21]
[22], PartMOR [12], BVOR [6], HiPRIME [16], and hiePrimor [17]. Liao-Dai and
TICER are used for circuit containing only RC elements, PRIMA, SPRIM, and
PACT can be used for RLC circuit. PartMOR, BVOR, HiPRIME, and hiePrimor
are partitioning-based MOR method and they can also be used for RLC circuits.

1.2 Partitioning a circuit

Circuit partitioning plays an important role in partitioning-based MOR method.
In order to analyze large circuit more easily, the large circuit is partitioned into
smaller subcircuits. Different partitioning algorithms are available, such as METIS
and hMETIS [8]. These two methods operate on graphs and hypergraphs in general.

As introduced previously, the existing partitioning-based MOR methods are:
BVOR, PartMOR, HiPRIME, hiePrimor etc. The first two methods are utilized
to deal with the mutual inductance feature in/between the partitioned subcircuits.
BVOR reduces mutual inductances by decoupling the inductive branch, while Part-
MOR in Ref. [19] and its extension in Ref. [12] utilizes the physical characteristics
of a transmission line to add the mutual inductance information. HiPRIME is used
to analyze RLCK power delivery systems. The last method performs the projection-
based reduction on partitioned subcircuits. BVOR, PartMOR and hiePrimor use
hMETIS partitioning algorithm.

1.3 Bordered Block-Diagonal Preserved Model-Order Re-
duction (BVOR)

Bordered Block-Diagonal Preserved Model-Order Reduction (BVOR) is a partitioning-
based MOR method.

Large-scale interconnect dominant RLC circuits are usually analyzed using mod-
ified nodal analysis (MNA) [4]. The MNA formulation uses nodal voltage variables
and currents of inductance. The inductance part of MNA matrix may become dense
with a large number of elements. An efficient MOR needs to first sparsify the dense
inductance matrix. Since matrix L is not diagonal-dominant, sparsifying L directly
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thereby leads to an instable state matrix. L−1 matrix is however more diagonal-
dominant than L, and hence, L−1 can be more effectively sparsified while preserving
stability. The new circuit stamping for such RLC circuits is introduced and the
corresponding new analysis method is called vector-potential based nodal analysis
(VNA) [5]. In addition, a bordered block-diagonal form (BBD) is presented for the
flat VNA matrix in order to preserve the strucutre of the state matrices such as
sparsity and hierarchy as well as efficiently build and simulate the circuit. Cor-
responding model-order reduction is called BBD-structure preserving model order
reduction (BVOR).

Another remarkable advantage of BVOR method is the possibility to apply par-
allel processing on the BBD-based matrix.

1.4 Background

The thesis is description, implementation, testing and evaluation of paper ”Fast
Analysis of a Large-Scale Inductive Interconnect by Block-Structure-Preserved Macro-
modeling ” of IEEE transactions on very large scale integration (VLSI) systems [5].

In the course of the project, circuit theory reserch group of Aalto University
developed and implemented the circuit partition tool, MNA matrix formulation
tool and linear MOR tool prototype using MATLAB and C programming language.
My implementation started from the formulation of the MNA matrix.

1.5 Overview of the thesis

Section 2 describes the circuit formulation using MNA method. Based on the state
matrices, Krylov subspace model-order reduction and one specific method PRIMA
are introduced in detail in Section 3. Section 4 discusses BVOR method. Specif-
ically it presents the VNA method and BBD structure with several examples and
comparisons. After this, BBD solver, Block Arnoldi method, the combination of the
two methods are studied separately.

Section 5 discusses macromodel realization applied on the reduced blocks. Sec-
tion 6 describes the total BVOR flow and the implementation of the BVOR algo-
rithms. Section 7 documents the extensive simulations and bench mark tests per-
formed and compares the different BVOR algorithms in the light of these results.
Finally, conclusions of the work are given in Section 8.

1.6 Author’s contribution

The author’s main contribution to this project was the implementation of VNA
matrix formulation, implementation of BBD solver, implementation of Block Arnoldi
Algorithm, utilization of existing macromodel realization and test simulations in the
final phase of the project.

The performance of BVOR is also compared with PRIMA method. Projection
matrices produced from individual diagonal block is discussed briefly and corre-
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sponding simulation results are compared with the projection matrices generated
from original BBD system. Macromodel realization is also studied.
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2 Formulation of circuit equation with MNA

Figure 1: Construction of the MNA matrices for y-parameters from a two-port RLC
circuit example [10]

One way to describe N-port circuit is to utilize the y-parameter matrix. Here,
voltage sources are used at the input and output ports to excite the circuit, as shown
in Fig. 1. The time-domain modified nodal analysis (MNA) circuit equations for a
linear N-port RLC circuit can be expressed as

{
CMNA

dxMNA(t)
dt

= −GMNAxMNA(t) + BMNAu(t),

y(t) = BT
MNAxMNA(t),

(1)

the corresponding first-order state equation in frequency domain is

{
sCMNAxMNA(s) = −GMNAxMNA(s) + BMNAu(s),

y(s) = BT
MNAxMNA(s),

(2)

where CMNA and GMNA are susceptance and conductance matrices, respectively, and
y, xMNA, u and i denote the port current, the MNA variables (nodal voltages and
branch currents of inductances and voltage sources), port voltages, and port cur-
rents, respectively. Here, BMNA is a selector matrix consisting of ones, minus ones,
and zeros. The matrices CMNA and GMNA are defined as

CMNA ≡




C1 0 0
0 L 0
0 0 0


 , GMNA ≡




G1 El Ei

−ET
l 0 0

−ET
i 0 0


 , xMNA ≡




vn

il
ii
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where C1, L and G1 are the matrices containing the stamps for capacitances, in-
ductances, and resistances respectively; El and Ei consist of ones, minus ones and
zeros, which represent the additional incidence stamps for branch currents and nodal
voltages generated for the MNA equations; and the vector xMNA contains the nodal
voltages vn and branch currents il, ii for inductances and voltage sources. For
RLC circuits, the dimension of the CMNA and GMNA matrix is thus n × n, with
n = ni + nl +N , where ni, nl and N are the number of internal nodes, inductances
and ports respectively. One important property of the MNA formulation is that the
transposed summations of state matrices are symmetric and semipositive-definite,
i.e., GMNA + GT

MNA > 0 and CMNA + CT
MNA > 0.This is one of the sufficient conditions

for a system to be passive. [5]
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3 Krylov subspace Model-Order Reduction

There are other types of MOR methods than Krylov subspace method, but the
thesis focused on Krylov subspace method.

Solving Eq. (2) following transfer function is obtained:

y(s)

u(s)
= H(s) = BT

MNA(GMNA + sCMNA)
−1BMNA (3)

Expanding H(s) at some frequency point s0, state variable is contained in a block
Krylov subspace

span{R,AR, ...,ANq−1R, ...} (4)

with two moment generation matrices

A = (GMNA + s0CMNA)
−1CMNA, R = (GMNA + s0CMNA)

−1BMNA (5)

First lemma [5] related to Krylov subspace and MOR is: if a small-dimensioned
matrix Q that spans the Nqth-order (Nq = ⌊q/N⌋) block Krylov subspace is

K(A,R, q) = span{R,AR, ...,ANq−1R} ⊆ span{Q} (6)

then applying Q to project the original system

G̃MNA = QTGMNAQ, C̃MNA = QTCMNAQ, B̃MNA = QTBMNA (7)

the first q block moments of the reduced system H̃(s)

H̃(s) = B̃T
MNA(G̃MNA + sC̃MNA)

−1B̃MNA (8)

expanded at s0 are identical to the original one H(s).
The projection-based model-order reduction is essentially to construct an invari-

ant subspace that can approximate the dominant system response in terms of the
first few moments expanded at s0. The Nq determines the accuracy of the reduced
model and depends on both the number of ports (N) and the order of reduction
(q). A detailed analysis on how to select q can be found in [13]. Note that PRIMA
applies a block Arnoldi method to construct an orthonormalized projection matrix
Q. Section 3.1 introduces PRIMA in brief.

Second lemma [5] is: when the input and the output are symmetric, the reduced

model H̃(s) is passive when projected by an orthonormalized Q in a fashion similar
to that of the congruence transformation Eq. (7).

Let us consider the special case s0 = 0, Eq. (5) becomes:

A = G−1
MNACMNA, R = G−1

MNABMNA (9)

the corresponding transfer function at s0 = 0 is written as

H(s) = BT
MNA(I+ sA)−1R, (10)
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where I is the n×n identity matrix. The block moments of H(s) are defined as the
coefficients of the Taylor expansion of H around s0 = 0:

H(s) = M0 +M1s+M2s
2 + · · · . (11)

Here, (I + sA)−1 is expanded into a Neumann series. For analysis purposes, the
zeroth block moment may be perceived as the DC properties of the circuit, with the
higher moments corresponding to the frequency behavior of the circuit. The block
moments can be computed using the relation

Mi = BT
MNAA

iR. (12)

Note that the dimension of the block moments Mi is the same as the number of
ports in the circuit.

3.1 Passive reduced-order macromodeling algorithm (PRIMA)

Based on the block Arnoldi algorithm, a passive reduced-order macromodeling al-
gorithm (PRIMA) is presented below. This algorithm is a general method for the
passive reduction of the RLC circuits.

Algorithm 1
Connect voltage sources to the multi-port & obtain the MNA matrices GMNA, CMNA,
BMNA from Eq. (2).

Solve GMNAR = BMNA for R

(Q0,T) = qr(R); qr factorization of R

If q/N is not an integer, set Nq = ⌊q/N⌋+ 1, else set Nq = q/N

For k = 1, 2, ..., Nq

Set V = CMNAQk−1

Solve GMNAQ
(0)
k = V for Q

(0)
k

For j = 1, ..., k

H = QT

k−jQ
(j−1)
k

Q
(j)
k = Q

(j−1)
k −Qk−jH

(Qk,T) = qr(Q
(k)
k ); qr factorization of Q

(k)
k

Set Q = [Q0,Q1, ...,Qk] and truncate Q so that it has Nq columns only.
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4 BVOR method

BBD-structure (bordered block-diagonal form) preserving model order reduction,
shortly BVOR, is a partitioning-based MOR method which is utilized to reduce
large-scale RLC circuit containing mutual inductances.

BVOR method uses hMETIS algorithm to partition the circuit into subcircuit.
Then form VNA (vector-potential based nodal analysis) matrices for each subcircuit.
Afterwards, BVOR method applies node splitting and branch tearing procedures to
the couplings and connections between subcircuits such that state matrix (VNA)
in BBD structure is generated for the large-scale RLC network. The state matrix
is further reduced using a set of orthonormalized projection vectors Q by BVOR
method. The projection is performed by the block Arnoldi procedure.

Summary of BVOR method:

1. Use hMETIS algorithm to partition the circuit

2. Form VNA matrices for each subcircuit

3. Apply node splitting and branch tearing on VNA matrices to produce VNA
matrices in BBD structure

4. Perform BBD-based block Arnoldi method that utilizes BBD matrix solver to
reduce the BBD matrices

5. Generated structured projection matrixQ is further used to reduce the original
BBD matrices

This section discusses BVOR method in detail. Firstly VNA formation and BBD
structure are introduced, then corresponding matrix-based model-order reduction
(BVOR) is studied. At last alternative way to construct orthonormalized projection
vectors Q using individual diagonal block is discussed briefly.

The reduced matrices are realized by macromodel realization which will be dis-
cussed in next section.

4.1 Vector-potential based nodal analysis (VNA)

The relation between a magnetic flux Φ, a branch inductance L, and an inductive-
branch current il is:

Φ = Lil (13)

Note that the branch voltage drop at an inductor can be calculated as vl = sLil,
or can be selected from the nodal voltage vn by vl = ET

l vn. Thus the following
relation between the magnetic flux Φ (branch variable) and the nodal voltage vn

can be derived by

sΦ = ET
l vn (14)

Furthermore, first equation of Eq. (2) leads to
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G1 El Ei

−ET
l 0 0

−ET
i 0 0


+ s




C1 0 0
0 L 0
0 0 0








vn

il
ii


 =




0
0

−B


 u(s)

then the following two independent equations can be led to:

sil = L−1ET
l vn (15)

and
(G1 + sC1)vn + Elil + Eiii = 0 (16)

According to Eq. (13), Eq. (15) becomes

il = L−1Φ (17)

and Eq. (16) becomes

(G1 + sC1)vn + El(L
−1Φ) + Eiii = 0 (18)

As a result, based on Eq. (14) and Eq. (18), a new MNA equation with a first-order
admittance can be obtained

{
sCx(s) = −Gx(s) + Bu(s),

y(s) = BTx(s),
(19)

where

x =




vn

Φ
ii


 (20)

is a new vector of state variables composed by the nodal voltage, flux, and branch
current for the external voltage source. The new state matrices G, C and B become

G =




G1 (ElL
−1) Ei

−(L−1ET
l ) 0 0

−ET
i 0 0




C =




C1 0 0
0 L−1 0
0 0 0




B =




0
0

−B




We call such a new MNA the VNA.
Since the aforementioned derivation is just to replace the state variable of il by

Φ, the resulting MNA has the same structure as the original MNA. The new VNA
stamping results in a passive formulation of L−1 because both
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G + GT =




2G1 0 0
0 0 0
0 0 0


 , C + CT =




2C1 0 0
0 2L−1 0
0 0 0


 (21)

are symmetric and semipositive-definite [5].

4.2 BBD structure

One efficient solution for a large-scale network is to apply hMETIS to partition
the network into sub-networks and then utilize network decomposition to further
decompose the couplings of node and mutual inductances between sub-networks.
Network decomposition is achieved by node splitting and branch tearing for nodal
voltage and branch current variables, respectively. In order to save memory, one
large matrix is divided into several smaller blocks, each smaller block is solved at a
time: the BBD solver is designed to efficiently solve divided blocks, which can be
solved in parallel.

In addition, the network decomposition usually results in a state matrix with
a bordered block diagonal (BBD) structure. The BBD matrix stretching basically
introduces new columns/rows for decoupled nodes or branches. It provides a way
to tear the state matrix with sparse inverse inductance in the frame work of VNA.

Figure 2: Two-level BBD representation of a flat VNA circuit. There is no coupling
in bottom blocks, but each bottom block is connected to a centric interconnection
block. (From [5])
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4.2.1 Stretching of nodal voltages

A matrix stretching of nodal voltages can be described by the following rule.

Rule 1: Assume that two resistive (or capacitive) branches bi and bj are coupled
at a common node v2 with a conductor gx (or a capacitor cx). Branch bi has nodal
voltages (v1,v2)and bj has nodal voltages (v2,v3). They can be decoupled by in-
troducing: 1) a duplicated state variable v′2 with v2=v′2 and 2) an auxiliary state
variable i2,2′ for a new branch current between nodes v2 and v′2

gx

g0 g0 g0

gx

bjbi

v1 v2 v3

Figure 3: circuit before node splitting

gx

g0 g0 g0

gx

v1 v2 v2’ v3

g0

i’2,2

Figure 4: circuit after node splitting

The corresponding transformations from the old G and C to new G and C are

G :




v1 v2 v3
v1 g0 + gx −gx
v2 −gx g0 + 2gx −gx
v3 −gx g0 + gx


 −→

G :




v1 v2 v′2 v3 i′2,2
v1 g0 + gx −gx
v2 −gx 2g0 + gx +1
v′2 2g0 + gx −gx −1
v3 −gx g0 + gx
i′2,2 −1 +1




and
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C :




v1 v2 v3
v1 c0 + cx −cx
v2 −cx c0 + 2cx −cx
v3 −cx c0 + cx


 −→

C :




v1 v2 v′2 v3 i′2,2
v1 c0 + cx −cx
v2 −cx 2c0 + cx +1
v′2 2c0 + cx −cx −1
v3 −cx c0 + cx
i′2,2 −1 +1




respectively, where g0 and c0 are the self-conductance and self-capacitance respec-
tively at each node. Since the resistor and the capacitor are represented by nodal
voltage, such a node splitting can be efficiently applied to decouple the RC net-
work. The node splitting, however, cannot handle inductance or its inverse element
because inductance is described by branch current. It is quite possible that two
branch currents at two partitioned blocks are still coupled by mutual inductance.

4.2.2 Stretching of branch currents

We call the entries of L−1 the susceptor, which includes the self-susceptor k0 and
the mutual susceptor kx. To cleanly decouple the inductive couplings between two
partitioned blocks, a matrix stretching of inductive-branch currents can be described
by the following rule.

Rule 2: Assume that two inductive branches bi and bj are coupled by a mutual
susceptor kx. Branch bi has nodal voltages (v1,v2) and bj has nodal voltages (v3,v4).
Moreover, bi has a branch flux φi and bj has a branch flux φj. These can be decou-
pled by introducing an auxiliary state variable φij that describes the flux difference
by φij = φi − φj .

v1

Li Lj

v2 v3

v4

G1

G2 G3

M

G4

Figure 5: circuit with one mutual inductance

The following transformations from the old G and C to the new G and C illus-
trates how to separate two blocks which are coupled with mutual inductance:
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G :




v1 v2 φi v3 v4 φj

v1 G1 0 k0 kx
v2 0 G2 −k0 −kx
φi −k0 k0 0 −kx kx 0
v3 kx G3 0 k0
v4 −kx 0 G4 −k0
φj −kx kx 0 −k0 k0 0




−→

G :




v1 v2 φi v3 v4 φj φij

v1 G1 0 k′

0 −kx
v2 0 G2 −k′

0 kx
φi −k′

0 k′

0 0 0
v3 G3 0 k′

0 kx
v4 0 G4 −k′

0 −kx
φj −k′

0 k′

0 0 0
φij kx −kx 0 −kx kx 0 0




and

C :




v1 v2 φi v3 v4 φj

v1 0 0 0 0
v2 0 0 0 0
φi 0 0 k0 0 0 kx
v3 0 0 0 0
v4 0 0 0 0
φj 0 0 kx 0 0 k0




−→

C :




v1 v2 φi v3 v4 φj φij

v1 0 0 0 0
v2 0 0 0 0
φi 0 0 k′

0 0
v3 0 0 0 0
v4 0 0 0 0
φj 0 0 k′

0 0
φij 0 0 0 0 0 0 −kx




respectively, where k′

0 = k0 + kx . Note that Rule 2 obtains an equivalent solution
by finding a summed equivalent state matrix

G + sC → G+ sC. (22)

This is due to the following node-branch relations in Eq. (14):

v1
i − v2

i = sΦi, v1
j − v2

j = sΦj . (23)
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4.3 VNA matrix with BBD structure

The node splitting is applied to split the connected resistive or capacitive branches
between two coupled blocks, while the branch tearing is applied to tear the coupled
inductive branches between two coupled blocks. The resulting m blocks with no
coupling in between are at the bottom level of the BBD, and are represented by
Mi(i = 1, ..., m). The top level is the global interconnection block represented by
M0, which is connected with one diagonal block Mi(i 6= 0) by the corresponding
connection matrix Xi,0. The interconnection block has size n0 and contains all
coupling branches between any pair of blocks at the bottom level.

Precisely, the resulting system equation is

(G+ sC)x(s) = Bu(s) (24)

where

G :




G1,1 0 · · · 0 Xg
1,0

0 G2,2 · · · 0 Xg
2,0

...
...

. . .
...

...
0 0 · · · Gm,m Xg

m,0

−(Xg
1,0)

T −(Xg
2,0)

T · · · −(Xg
m,0)

T G0,0




C :




C1,1 0 · · · 0 Xc
1,0

0 C2,2 · · · 0 Xc
2,0

...
...

. . .
...

...
0 0 · · · Cm,m Xc

m,0

−(Xc
1,0)

T −(Xc
2,0)

T · · · −(Xc
m,0)

T C0,0




B :




0
0
...
0
B0




and x = [x1, x2, ..., xm, x0]
T , u = [u1, u2, ..., um, 0]

T , where G,C ∈ RN×N , and
B ∈ RN×np. For each block Mi, the state variable xi includes the nodal voltage vn
for the block conductance and capacitance, and the magnetic flux Φ. Its first-order
VNA admittance is Gii + sCii(∈ Rni×ni), and Bi is 0.

The diagonal blocks Mi are interconnected with M0 by the torn branches Xg,c
i0

(∈ Rni×n0) in the border. For the global interconnection block M0 at the bottom,
the state variable includes the interfacing current variables for resistive or capacitive
node splitting and the new state variable describing the flux difference for inductive
branch tearing. Its first-order VNA admittance is (G)0,0 + s(C)0,0 (∈ Rn0×n0). In
addition, all external sources are counted by B0 for M0.

Note that Bi in original method presented in Ref. [5] is different than the one
described here. In original method, Bi (i 6= 0) are not 0, but contains port infor-
mation of corresponding sub-circuit i and B0 is 0 because all external sources are
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counted by Bi for block Mi (i=1,...,m) and there are no external sources in M0.
The B in original form is

B :




B1 0 · · · 0 0
0 B2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Bm 0
0 0 · · · 0 0




Let us take the circuit of Fig. 1 as an example. In the beginning, partition
the circuit at dc into user-specified m blocks (here, for simplicity, m=2) using hy-
pergraph and hmetis algorithm (See Section 5.2). State matrices of two blocks are
generated. The node-split procedure is applied to the two blocks. Node v1 is splitted
into node v1 and duplicate node v′1, node v3 is splitted into node v3 and duplicate
node v′3. The main block contains nodes and external ports, denoted by Gmain,Cmain

and Bmain; sub block contains duplicate nodes, original nodes in the sub block and
external ports, denoted by Gsub,Csub and Bsub. The main block is shown below.
State matrix before arrow is the block after partition at dc, state matrix after arrow
is the block applied by node split. Circuit after node splitting is illustrated in Fig.
6.

v1 v1’ v3’ v3

+

-

+

-

u1 u2

i1,1’ i3,3’

Figure 6: Two-port RLC circuit after node splitting

Gmain :




v1 v3 ext1 ext2
v1 0 0 1 0
v3 0 0 0 1
ext1 −1 0 0 0
ext2 0 −1 0 0



−→

G0,0 :




v1 v3 ext1 ext2 i1,1′ i3,3′

v1 0 0 1 0 −1 0
v3 0 0 0 1 0 −1
ext1 −1 0 0 0 0 0
ext2 0 −1 0 0 0 0
i1,1′ 1 0 0 0 0 0
i3,3′ 0 1 0 0 0 0






16

Cmain :




v1 v3 ext1 ext2
v1 0 0 0 0
v3 0 0 0 0
ext1 0 0 0 0
ext2 0 0 0 0



−→

C0,0 :




v1 v3 ext1 ext2 i1,1′ i3,3′

v1 0 0 0 0 −1 0
v3 0 0 0 0 0 −1
ext1 0 0 0 0 0 0
ext2 0 0 0 0 0 0
i1,1′ 1 0 0 0 0 0
i3,3′ 0 1 0 0 0 0




Bmain :




v1 v3
0 0
0 0
−1 0
0 −1



−→ B0 :




v1 v3
0 0
0 0
−1 0
0 −1
0 0
0 0




The block matrix of the subcircuit is:

Gsub :




v′1 v2 v′3 il ext1 ext2
v′1 G1 −G1 0 0 1 0
v2 −G1 G1 0 L−1 0 0
v′3 0 0 G2 −L−1 0 1
il 0 −L−1 L−1 0 0 0

ext1 −1 0 0 0 0 0
ext1 0 0 −1 0 0 0




−→

G1,1 :




v′1 v2 v′3 il
v′1 G1 −G1 0 0
v2 −G1 G1 0 L−1

v′3 0 0 G2 −L−1

il 0 −L−1 L−1 0




Xg
1,0 :




i1,1′ i3,3′

0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0




Csub :




v′1 v2 v′3 il ext1 ext2
v′1 C1 −C1 0 0 0 0
v2 −C1 C1 + C2 0 0 0 0
v′3 0 0 0 0 0 0
il 0 0 0 L−1 0 0

ext1 0 0 0 0 0 0
ext2 0 0 0 0 0 0




−→
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C1,1 :




v′1 v2 v′3 il
v′1 C1 −C1 0 0
v2 −C1 C1 + C2 0 0
v′3 0 0 0 0
il 0 0 0 L−1




Xc
1,0 :




i1,1′ i3,3′

0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0




Bsub :




v′1 v′3
0 0
0 0
0 0
0 0
−1 0
0 −1




−→ B1 :




v′1 v′3
0 0
0 0
0 0
0 0




Then arrange the main and sub block matrices in diagonal form:

G =

[
G1,1 Xg

1,0

−(Xg
1,0)

T G0,0

]

=




G1 −G1 0 0 0 0 0 0 1 0
−G1 G1 0 L−1 0 0 0 0 0 0
0 0 G2 −L−1 0 0 0 0 0 1
0 −L−1 L−1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 1 0 −1
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0
−1 0 0 0 1 0 0 0 0 0
0 0 −1 0 0 1 0 0 0 0




C =

[
C1,1 Xc

1,0

−(Xc
1,0)

T C0,0

]

=




C1 −C1 0 0 0 0 0 0 0 0
−C1 C1 + C2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 L−1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0




B =

[
B1

B0

]
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=




0 0
0 0
0 0
0 0
0 0
0 0
−1 0
0 −1
0 0
0 0




4.4 BBD Solver

The size of the state matrix can be reduced by the model-order reduction by finding
a set of orthonormalized projection vectors Q. The projection is usually performed
by the block Arnoldi procedure.

Directly using the block Arnoldi algorithm consumes a heavy computation to
factorize the state matrix. BBD solver described below can be applied to reduce the
computational cost during the block Arnoldi procedure.

Before using BBD solver, the BBD-structured state matrix G + sC should be
decomposed into the diagonal M and off-diagonal X parts, where the diagonal part
M is

M =




M1 0 · · · 0

0
. . .

. . .
...

...
. . . Mm 0

0 · · · 0 M0




Mi = Gi,i + sCi,i (i = 1, ..., m)

and the off-diagnonal part X is

X =




0 0 · · · −X1

0
. . .

. . .
...

...
. . . 0 −Xm

−X1 · · · −Xm 0




Xi = Xg
i,0 + sXc

i,0 (i = 1, ..., m)

Algorithm 2

1. Block LU -factorization to calculate xk

for every k in m (k ++) do

(1.1) input: Mk,Xk,Bk;
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(1.2) factor: Mk = LkUk;

(1.3) solve: LkΦk = Xk for Φk,ΨkUk = (Xk)
T for Ψk, and Lkξk = Bk for

ξk;

(1.4) form: Fk = ΨkΦk, and Gk = Ψkξk

(1.5) output: Fk,Gk.

end for

2. Update interconnection x0

(2.1) input: M0,Fk,Gk;

(2.2) form: F = M0 +
∑m

k=1Fk,G =
∑m

k=1Gk

(2.3) solve: Fx0 = G for x0;

(2.4) output: x0.

3. Block-backward substitution of xk

for every k in m(k −−) do

(3.1) input: x0,Φk, ξk,Uk;

(3.2) form: ξk = ξk − Φkx0

(3.3) solve: Ukxk = ξk for xk

(3.4) output: xk

end for

The overall procedure is outlined above. Each block matrix Mi(i = 1, ..., m)
is first solved individually with LU factorization and substitution (1.1-1.5). The
results xi(i = 1, ..., m) from each reduced block are then further used to solve the
coupling block M0 for x0 (2.1-2.4). The final xi of each reduced block is updated
(3.1-3.4) with the result from the coupling current.

4.5 Block Arnoldi procedure

The new block-Arnoldi orthonormalization enhanced by the BBD solver is presented
below, this is also considered as another way to implement Block Arnoldi procedure
comparing with PRIMA shown in Section 3.1 :

Algorithm 3

(1.1) input: G, C, B;
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(1.2) BBD-solve: (G+ s0C)Q(0) = B for Q(0)

(1.3) orthonormalize: each column in Q(0);

for every i in Nq − 1 do

(1.4) BBD-solve: (G + s0C)Q(i) = CQ(i−1) for Q(i);

(1.5) orthogonalize: Q(i) to all Q(j) (j = 0, ..., i− 1);

(1.6) orthonormalize: each column in Q(i);

end for

(1.7) compose: Q = [Q(0),Q(1), ...,Q(Nq−1)];

(2.1) partition: Q :−→ Q0n0×np0
, ...,Qmnm×npm

for every j in m do

(2.2) merge: Qi and Qi+1 till a new Q′

i is nonsingular;

(2.2) orthonormalize: each column in Qi;

end for

(2.3) compose: Q = diag[Q1, ...,Qm,Q0];

The order-reduced state matrices by Q become

G̃ = QTGQ, C̃ = QTCQ, B̃ = QTB (25)

where

G̃i,j = QT
i Gi,jQj, C̃i,j = QT

i Ci,jQj , B̃i = QT
i Bi

As a result, the transfer function is

H̃(s) = B̃T [G̃+ sC̃]−1B̃.

We call this reduction the BVOR (BBD-based VOR) method.
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4.6 Q constructed with individual diagonal block

The structured projection matrix Q discussed in previous section is constructed
with full BBD matrix as input. This section will, however, discuss another way to
generate this projection matrix Q, presented in Ref [9].

The structure of the Q is

Q = diag[Q1,Q2, ...,Q0] (26)

where Qi ∈ Rnbi
×Nq (1≤ i≤ m).

Each projection block Qi is constructed from each diagonal block in Gi,i + sCi,i
independently, i.e. Gi,i+sCi,i = Bi. Note that Q0 is replaced with an identity matrix
I0 (∈ Rn0×n0) to avoid the zero diagonal entries in original Q0; and Bi (i 6= 0) is
different as the one in full BBD structure. In full BBD matrix, Bi(i 6= 0) is empty,
corresponding port information is deleted; here Bi(i 6= 0) contains original port
information of the corresponding sub-circuit i.

The main benefit of using this type of Q is that only the diagonal blocks of the
original BBD matrix are utilized, thus computational time is saved.

Algorithm to generate the Q with individual diagonal block is presented below
algorithm

Algorithm 4

for every i in m do

(1.1) input: Gi,i, Ci,i, Bi (i 6= 0);

(1.2) solve: (Gi,i + s0Ci,i)Q
(0) = Bi for Q

(0)

(1.3) orthonormalize: each column in Q(i);

for every k in Nq − 1 do

(1.4) solve: (Gi,i + s0Ci,i)Q
(k) = Ci,iQ

(k−1) for Q(k);

(1.5) orthogonalize: Q(k) to all Q(j) (j = 0, ..., k − 1);

(1.6) orthonormalize: each column in Q(k);

end for

end for

(1.7) compose: Qi = [Q(0),Q(1), ...,Q(Nq−1)](i 6= 0);

(2.1) compose: Q = diag[Q1, ...,Qm,Q0]
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5 Macromodel realization

The reduced state matrices are used to describe the linear RLC network in frequency
domain. For the purpose of transient analysis of the whole nonlinear circuit, the
reduced linear part should be linked to the whole circuit. The linkage can be done
by using the macromodels realization for the reduced state matrices.

There are several macromodel realization methods: Matsumoto [6], direct stamp-
ing I [7] & II [14], transfer-function realization [1], differential-equation macromodel
[1] etc. In Ref. [1] it was also found out that Matsumoto’s method was the fastest
equivalent circuit realization of these reduced-order interconnect macromodels stud-
ied for time-domain simulation.

At first, let us replace G, C and B with reduced G̃, C̃ and B̃ in Eq. (1). Thus
new equation is: {

C̃
dx̃(t)
dt

= −G̃x̃(t) + B̃u(t),

i(t) = B̃Tx̃(t),
(27)

Before performing the actual macromodel realization, some preprocessing is needed,
namely eigenvalue decomposition.

Next, the first equation of Eq. (27) is premultiplied with G̃−1. Assuming that

a basis of eigenvectors exists for the matrix G̃−1C̃, it can be written as G̃−1C̃ =
SΛS−1, where Λ is a diagonal matrix containing the eigenvalues of G̃−1C̃ as its
diagonal elements and S has the corresponding q eigenvectors as its columns. After
premultiplying with S−1, Eq. (27) can be written as

{
S−1SΛS−1dx̃(t)

dt
= −S−1x̃(t) +−S−1G̃−1B̃u(t),

i(t) = B̃TSS−1x̃(t),
(28)

or, if a change of variables S−1x̃ −→ x̃ (using x̃ again for ease of notation) is
assumeed, as {

Λ
dx̃(t)
dt

= −Ix̃(t) +Hu(t),

i(t) = ETx̃(t),
(29)

where H = S−1G̃−1B̃, E = STB̃, and I is the q × q unity matrix. Note that Eq.
(29) has the same dimensions as Eq. (27), but the coefficient matrices Λ and I are
now diagonal. For the forthcoming treatment of complex eigenvalues, the m:th row
in the first equation of Eq. (29) is written as

Λm

dx̃m(t)

dt
= −x̃m(t) +

N∑

j=1

Hmjuj(t), (30)

Some of the eigenvalues of the real matrix G−1C̃ may be complex numbers,
in which case they appear in complex-conjugate pairs. Assuming that qr of the
eigenvalues are real and the rest appear in qc conjugate pairs such that q = qr +2qc.

Consider one such pair, Λr
m ± jΛi

m. The corresponding eigenvectors, and there-
fore, also the corresponding rows of matrices H and E in Eq. (29) are complex
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conjugate. Let the corresponding elements of vector x̃ be x̃r
m± jx̃r

m. Inserting these
into Eq. (30), and requiring the real and imaginary parts of the equation to hold
independently, yields (the same pair of equations is obtained twice).






Λr
m

dx̃r
m(t)
dt

= −x̃r
m(t) + Λi

m

dx̃i
m(t)
dt

+

N∑

j=1

Hr
mjuj(t),

Λr
m

dx̃i
m(t)
dt

= −x̃i
m(t)− Λi

m

dx̃r
m(t)
dt

+

N∑

j=1

H i
mjuj(t),

(31)

As discussed before, the fastest equivalent circuit realization is Matsumoto’s
method. Thus, it was the implementation choice for the BVOR macromodel. Mat-
sumoto’s method is a realization of Eq. (30) and (31), the realization is presented in
Fig. 8. The other equivalent circuit is presented in Fig. 7, but it utilizes controlled
charge sources not availabe in SPICE. The nodal equations, e.g. for the circuit in
Fig. 7 can be expressed as

N∑

j=1

HmjUj = (sΛm + 1)X̃m (32)

which is the same as Eq. (30) when sX̃m is replaced with dx̃m/dt. [10]
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Figure 7: The Matsumoto’s equivalent-circuit realization (From [1]). (a) A port
VCCS, (b) realization of a real eigenvalue, and (c) realization of a complex eigenvalue
pair.

Figure 8: equivalent π circuit of Eq. (31) (From [6])
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6 BVOR Implementation

This section describes the implementation of forming BBD structured VNA matrices
and algorithms related BVOR method detailed in the previous sections as a netlist-
in-netlist-out tool. Formation of BBD matrix and BVOR method are implemented
in MATLAB code. The tool is written for SPICE netlists, which will possibly consist
of non-linear elements, subcircuits and mutual inductances.

6.1 Total BVOR flow

The implemented RLC BVOR flow can be divided into the five steps listed below.

1. Circuit partitioning and netlist parsing : partition.run implemented by C par-
titions the linear part of the netlist into user-defined m subcircuits. Then
C-tool matrix.run generates supplement files based on the partitioned subcir-
cuits for constructing BBD-structured VNA matrices.

2. Matrix construction: MATLAB-tool constructs BBD-structured VNA matri-
ces based on the supplement files describing the node and RLC component
information of the linear part of the original netlist.

3. BVOR method: using full BBD matrix G+ s0C to generate projection struc-
tured matrix Q; or using diagonal blocks of the BBD matrix Gi,i + s0Ci,i

(i = 1, ..., m) to generate corresponding Qi,construct Qi and I0 to Q in diag-

onal form. Generate transformed G̃, C̃ and B̃.

4. Macromodel realization: synthesize each reduced subcircuit as a VCCS and
RC macromodel.

5. Netlist reconstruction: include each macromodel in the proper position in the
total netlist to achieve the original structure.

6.2 Netlist parsing and circuit partitioning

The netlist is parsed to construct graphs. The graphs and matrices are constructed
for each subciruit. Circuit partitioning is based on ”Using METIS and hMETIS in
circuit partitioning” [8]. The partitioning algorithm constructs hypergraphs from
the linear circuit netlist, partitions the graph into the specified number of partitions,
maps the partitions back to netlists. The original netlist should follow a required
structure, such that file structure of the mapped-back netlists can be easily realized
by following program and generated supplement files can be easily utilized for further
processing.

6.3 Matrix construction

Supplement files contain information of all the partitioned subcircuit. Note that
individual subcircuit has common node with the main circuit only, there is no inter-
connection between two or more subcircuits; the main circuit has external ports with
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non-linear components and sources, main circuit and individual subcircuit contain
only resistor, capacitor and inductor with or without mutual inductances.

MNA matrices are generated using MATLAB code based on the information of
the supplement files. Supplement files also provide information of common ports
between main circuit and individual subcircuits, external ports between main cir-
cuit and non-linear components and sources, mutual inductances (if exist) between
elements of subcircuits.

Then MNA matrices are converted to VNA matrices. With the information
of common ports, external ports and mutual inductances (if exist), BBD-structure
VNA matrices are formed.

The whole process of forming BBD-structured VNA matrix is described below:

1. After circuit partition is done, start

2. convert MNA to VNA

3. find common ports (node) between main circuit and every subcircuit

4. find external ports between main circuit and non-linear components and sources

5. find the number of mutual inductances and corresponding values in/between
subcircuits, if the existence of mutual inductances is detected

6. form M0, B0

7. form Mi, Xi with the feature of mutual inductances

8. form BBD-structure VNA matrix

9. end

6.4 BVOR method

Implementation follows the BVOR method enhanced with BBD solver described in
previous section. Algorithms for calculating two types of Q (one is generated by
inputing full BBD matrix and another by individual diagonal block) are implemented
separately. The simulation results are illustrated in next section.

6.5 Macromodel realization and netlist reconstruction

Matsumoto’s method is used for the RLC macromodel realization. The partitions of
the original netlist have been reduced and a separate macromodel has been gener-
ated for each partition. The final part of the BVOR flow reconstructs a single netlist
with the same hierarchical structure as in the original netlist, i.e. the macromodels
generated for each subcircuit are combined together. Finally, multiple parallel re-
sistances and capacitances to the ground are added together to further reduce the
number of elements in the final BVOR netlist.
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7 Simulation examples

In this section, the operation of the BVOR methods implemented and discussed
in the previous sections is studied. Section 7.1 describes the test netlists used and
the simulations performed. Section 7.2, 7.3, 7.4 present the results utilizing Q
generated with full BBD matrix as input, Q generated with individual diagonal
block as input, Q generated by PRIMA with MNA matrix as input and without
partition, respectively.

7.1 Simulation setup

The netlists used in the simulations are shown in Table 1, where n, ne, G, C, L
and Lm mean the number of all nodes, external nodes, resistances, capacitances,
inductances and mutual inductances respectively.

Table 1: Netlists used in the simulations

Name n ne G C L Lm

lt.cir 1083 3 369 363 360 -
RL chain.net 2002 3 1998 - 999 -
RCchain2.net 1002 2 1000 999 - -

RCLKbuses3.net 4511 2 1507 1507 1502 400
sub large tran.net 1083 3 363 369 360 1

The netlist lt.cir is RLC netlist, RL chain.net is RL-only netlist and RCchain2.net
is RC-only netlist. The inductances in lt.cir and RL chain.net do not contain mutual
inductances. On the other hand, both RCLKbuses3.net [1] and sub large tran.net
are RLC netlist with mutual inductance feature.

It should be noticed that BVOR tool performs the reduction only on the RLC
blocks of the netlist. The non-linear components of the netlist should be removed
before the actual reduction procedure starts.

The simulations were performed in a way that the circuit was firstly partitioned
and then reduced with the user-defined BVOR method. All the simulations were
done on a RAM1.5G/2.01GHz computer.

Some of the simulations are compared with those obtained with existing MOR
tool, specifically, PRIMA method. The algorithm of PRIMA has been already in-
troduced in previous sections.

In order to test the partitioning with Algorithm 3 by utilizing Q generated with
full BBD matrix as input, the target netlist was divided with several partitionings
and several orders of reduction. The original/reduced circuit was run using AC
analysis with specified frequency sweeps. In addition, y parameters are calculated
using following equation:

Y = BT (G+ j2πfC)−1B; (33)
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Simulation results in this section are obtained using Eq. (33) implemented by
Matlab inv() function. If LU factorization is used, the simulation results are more
realistic and faster; however speed up of the reduction is worse.

7.2 Q generated with full BBD matrix as input

In this section, circuits are reduced by using Q generated with full BBD matrix.
This alternative is efficient since BBD solver (Algorithm 2) is designed especially for
BBD-structured state matrix to reduce the computational cost. In the following,
RLC, RC and RL netlists are reduced with BVOR method.

7.2.1 RC netlist

The obtained results are listed in Table 2 and 3, where np, Qcol, s0, Nred, Cond., Nnz,
Npp, Eyii and t mean number of partitions, order of reduction, expansion point, size

of G̃+s0C̃, condition number of G̃, number of non-zero elements in G̃+s0C̃, positive

poles, average error of total y paramerters ( 1n
∑n

i=0△yi, △yi is the subtraction
between original y parameter and reduced y parameter), and computational time of
calculating a certain y parameter respectively. q here refers to the order of reduction.
q and port number N determines the number of iterations of Block Arnoldi method:
Nq = ⌊q/N⌋.

The reduced system should be eigenvalue decomposed before the Matsumoto
macromodel realization procedure and decomposition may generate positive poles
which lead to unstable system, therefore the number of positive poles is recorded in
the testing phase.

Table 2: Testing result of RCchain2.net, frequency range: 100k∼1G, number of
sampling points: 100

np q Qcol s0 Nred Cond. Npp Nnz Eyii t/s
4 ori. - - 1018 - - 3042 - 56.83

6 40 100e6 40 4.9669e14 2 831 2.6028e-4 0.03
16 87 100e6 87 1.4338e5 3 3679 3.1255e-16 1.39

Table 3: Testing result of RCchain2.net, frequency range: 10∼1000G, number of
sampling points: 100

np q Qcol s0 Nred Cond. Npp Nnz Eyii t/s
4 ori. - - 1018 - - 3042 - 56.14

6 40 100e6 40 4.9669e14 2 831 1.4254e-6 0.03
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Figure 9 a, b and c indicate the y11 parameter as a function of frequency. Plain
curves represent the reduced circuits and diamond curves represent original circuits.
According to the figure, even with small value of q which results in small reduction
order, reduced and original systems can be overlapped well, therefore it is not nec-
essary to continue the test with larger q and we could conclude that BVOR tool
succeeded in RC-only circuit.

Figure 9: y11 parameter as a function of frequency of netlist RCchain2.net. a, b are
at np=3 and q=6, q=16 with frequency range 0-40G. c is at np=3 and q=6 with
frequency range 10-1000G

Table 4 shows that when expansion point s0 is 100e6, system error dereases
dramatically. Therefore expansion point at 100e6 is suitable for the circuit RC-
chain2.net.

Table 4: Expansion point: s0 at np=4 and q=16, testing result of RCchain2.net,
frequency range: 100k∼1G, number of sampling points: 100

s0 Cond. Eyii

0 1.6181e5 0.2637
1000 3.8327e5 0.2151
100e6 1.4338e5 5.1293e-15
100e8 2.6619e5 5.1439e-15

7.2.2 RL netlist

Further tests with RL-only netlist RL chain.net is illustrated in Table 5.
With original un-reduced BBD matrix, the computational time for a certain y

parameter is relatively large as we can see from Table 5. Note that the conditional
number and positive poles are also large even we tried to fix the problem by adding
very small conductances to the diagonal. This mechanism should help with the
numerical instablilty in most cases, but based on the result, it is not as we expected
for RL-netlist.
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Table 5: Testing result of RL chain.net, frequency range: 100∼40G, number of
sampling points: 100

np q Qcol s0 Nred Cond. Npp Nnz Eyii t/s
9 ori. - - 2040 - - 8094 - 170.96

6 90 1000 90 2.4866e20 36 2268 0.0232 1.51
15 180 1000 180 1.1272e27 59 9072 0.0191 5.78
25 300 1000 300 6.2391e28 67 25199 0.0238 18.07
30 328 1000 328 2.4866e20 85 29175 0.0178 21.81
40 436 1000 436 2.4866e20 93 44295 0.0177 43.02

4 ori. - - 2018 - - 8039 - 161.9
6 45 1000 45 5.2651e30 18 1052 0.0116 0.37
16 100 1000 100 6.5050e27 28 4705 0.0111 1.81
26 136 1000 136 1.5114e27 35 7693 0.013 3.48
36 172 1000 172 4.2716e27 47 11329 0.0133 5.56
46 220 1000 220 1.5406e27 62 17185 0.0133 10.98
96 412 1000 412 1.9748e27 98 52129 0.0136 47.88

7 ori. - - 2032 - - 8074 - 164.14
6 72 1000 72 2.4019e20 27 1781 1.5046 0.95
15 144 1000 144 2.4296e28 43 7127 0.9797 3.76
25 237 1000 237 2.4019e20 61 18368 1.0151 11.09
35 300 1000 300 2.4019e20 85 26117 1.0027 18.340
40 342 1000 342 2.4019e20 80 31913 0.9928 24.73

The results also indicate that errors and computational time of certain y pa-
rameters of reduced system are not significantly relevant with partitioning number,
contrarily computational time of original system decreases when partitioning num-
ber becomes larger. It is apparent to find out that the suitable order of reduction for
the system is about 140. For instance, when circuit is partitioned into 4 subcircuits
and the order reduction is 136, the average error of total y parameters is at minimum
and simultaneously computational time for a certain y parameter is relatively small.

Table 6 indicates that when expansion point s0 is 1e8, system error is at minimum
level. Therefore expansion point 1e8 is suitable for the circuit RL chain.net.

7.2.3 RLC netlist

This section presents two sets of testing results. First set (Table 7) is obtained by
performing BVOR method on RLC netlist which does not contain mutual induc-
tances. Second set (Table 9 and 10) is achieved from RLC netlists with mutual
inductance feature.

Results in Table 7 show that BVOR tool works fine on lt.cir with different parti-
tioning numbers. The increasing value of order reduction results in decreasing error.
It is clear that suitable order reduction is around 180. Relative small error and
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Table 6: Expansion point: s0 at np=4 and q=36, testing result of RL chain.net,
frequency range: 100∼40G, number of sampling points: 100

s0 Cond. Eyii

0 4.3040e27 151.9560
10 1.4012e20 46.5541

1000 4.2716e27 0.0133
1e5 1.4011e20 3.4036e-04
1e8 1.0592e21 2.2570e-08

computational time are achieved when order reduction is near this value. It should
be noted that large order reduction (546 in Table 7 when np = 5 and q = 100) causes
even more complicated reduced system, the computational time is heavier than the
original system, hence it is not necessary to use large order reduction.

Table 8 shows that different expansion point s0 does not affect system errors
significantly. Since smaller expansion points lead to smaller conditional number,
smaller expansion points are suitable for the circuit lt.cir.

Figure 10 shows the entire reduction time when np=3 (q=40), np=4 (q=30),
np=5 (q=20) respectively. The result depicts that the increase of partition size
results in the decrease of the reduction time.

Figure 10: the entire reduction time when np=3 (q=40), np=4 (q=30), np=5 (q=20)
respectively

Example circuit lt.cir does not contain mutual inductance feature. In reality,
complicated situation such as large conditional number and instablility are resulted
from mutual inductance(s). Following two RLC netlists contain mutual induc-
tance(s).

After performing BVOR method on RLCKbuses3.net, results are in Table 9. The
increasing of order reduction results in the increasing of computational time. The
original computational time is relatively large probably because the circuit contains
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Table 7: Testing result of lt.cir, frequency range: 0∼40G, number of sampling points:
100

np q Qcol s0 Nred Cond. Npp Nnz Eyii t/s tredu/s
3 ori. - - 1097 - - 3279 - 79.76 -

10 60 1000 60 9.0714e6 4 2250 0.0486 0.34 2.927
20 87 1000 87 1.8046e7 3 4113 0.0333 2.86 2.727
30 114 1000 114 7.5574e6 2 6462 0.0342 2.15 3.607
40 150 1000 150 9.3906e6 2 10350 0.0222 3.89 4.147
50 177 1000 177 6.4004e7 3 13833 0.0157 7.21 5.347
80 267 1000 267 4.0658e7 1 28953 0.0134 16.18 6.657
100 330 1000 330 8.9743e7 3 42750 0.0088 26.52 9.727

4 ori. - - 1101 - - 3289 - 80.44 -
10 75 1000 75 9.1309e18 1 2925 0.0462 1.09 2.745
20 114 1000 114 3.6465e6 1 6084 0.0274 2.22 2.935
30 150 1000 150 4.0343e6 3 9432 0.0207 3.96 3.015
40 198 1000 198 2.1165e7 1 14904 0.0150 7.28 2.915
50 234 1000 234 3.0136e7 3 19764 0.0134 10.27 4.305
80 354 1000 354 7.3517e7 4 40644 0.0065 26.2 5.655
100 438 1000 438 1.3887e8 5 59544 0.0034 42.83 6.415

5 ori. - - 1105 - - 3299 - 80.94 -
10 90 1000 90 1.1737e15 5 3600 0.0415 1.56 2.839
20 141 1000 141 8.1578e6 5 8361 0.0266 3.76 2.179
30 186 1000 186 2.5754e7 3 12816 0.021 8.65 2.729
40 246 1000 246 8.2467e6 2 20016 0.0147 13.46 5.039
50 291 1000 291 3.9266e7 5 26361 0.0125 19.41 6.249
80 441 1000 441 7.2477e9 2 53361 0.0066 64.130 7.859
100 546 1000 546 8.9266e13 18 77616 0.0038 95.98 9.529

Table 8: Expansion point: s0 at np=5 and q=50, testing result of lt.cir, frequency
range: 0∼40G, number of sampling points: 100

s0 Cond. Eyii

0 3.8941e7 0.0128
10 9.1629e7 0.0121

1000 3.9266e7 0.0125
1e5 1.5647e8 0.0135
1e8 9.5237e11 0.0122

large set of mutual inductances. BVOR method significantly reduces the time as we
can see from the results of the table. Therefore BVOR method is suitable for circuit
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containing large set of mutual inductances.

Table 9: Testing result of RLCKbuses3.net, frequency range: 0∼40G, number of
sampling points: 100

np q Qcol s0 Nred Cond. Npp Nnz Eyii t/s
5 ori. - - 4927 - - 17165 - 2325.83

10 72 1000 72 2.9955e18 21 2304 0.0246 1.67
40 252 1000 252 5.0433e19 84 28224 0.0096 15.23
80 492 1000 492 8.2582e19 190 107584 0.011 66.84

RLC circuit sub large tran.net is a simpler case since it has only one mutual
inductance. Table 10 shows the result after performing BVOR tool on this circuit,
the computational time of original system is much less than the one in previous case.

Table 10: Testing result of sub large tran.net, frequency range: 0∼40G, number of
sampling points: 100

np q Qcol s0 Nred Cond. Npp Nnz Eyii t/s
3 ori. - - 1098 - - 3288 - 83.48

10 60 1000 60 3.2146e24 20 2250 0.0482 0.08
40 151 1000 151 4.5835e16 37 10651 0.0381 4.31
80 268 1000 268 1.1998e17 68 29488 0.034 14.82

Figure 11 depicts the the curves of parameter y11 as a function of frequency
when q = 80 and frequency range is from 0 to 10G Hz. Note that diamond curve
represents the original system, and plain curver represents the reduced system.

With relatively narrow frequency ragne, from 0 to 2GHz, as shown in Fig. 12,
better results can be achieved.

Table 11 shows when expansion point s0 increases to 1e8, system error decreases
dramatically. Therefore s0=1e8 is suitable expansion point for circuit sub large tran.net.

Table 11: Expansion point: s0 at np=5 and q=80, testing result of sub large.net,
frequency range: 0∼10G, number of sampling points: 100

s0 Cond. Eyii

0 2.3242e20 0.0362
10 1.3990e15 0.0461

1000 1.5234e17 0.0254
1e5 3.9727e19 0.1391
1e8 5.9358e21 2.8929e-04
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Figure 11: y11 parameter as a function of frequency of netlist sub large tran.net with
frequency range 0-10G at np=3 and q=80

Figure 12: y11 parameter as a function of frequency of netlist sub large tran.net with
frequency range 0-2G at np=3 and q=80

7.3 Q generated with individual diagonal block as input

In this section, RC netlist RCchain2.net, RL netlist RL chain.net, and RLC netlist
lt.cir are used for testing. Instead of using full BBD system to generateQ, individual
diagonal block is used.

Testing result of RLC netlist lt.cir is presented in this section. Table 12 indicates
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that since conditional number of G̃ is infinite when q is 20, it is not possible to get
negative poles, additionally, it is meaningless to continue the testing with larger
q. Other types of circuits indicate similar simulation results but not shown here.
Therefore it is concluded that Q generated with individual diagonal block is worse
than from full BBD system.

Table 12: Q generated with individual diagonal block, testing result of lt.cir, fre-
quency range: 0∼40G, number of sampling points: 100

np q Qcol s0 Nred Cond. Npp Nnz Eyii t/s
3 ori. - - 1097 - - 3279 - 79.76

10 40 1000 40 8.9492e18 2 355 3.0352 0.33
20 80 1000 87 Inf error 1505 NaN 0.68

4 ori. - - 1101 - - 3289 - 80.44
10 50 1000 50 1.0684e19 1 434 7.9884 0.46
20 100 1000 100 Inf error 1990 NaN 1.04

7.4 Q generated by PRIMA with MNA matrix as input and

without partition

It should be noted that tables in this section does not include np and q because
PRIMA tool uses full MNA matrix as input, i.e. partitioning was not carried out .

By comparing Table 13, 14 with Table 2, 3 of Section 7.2, it is convinceable
that for RC-only circuit PRIMA method with full MNA matrix produces more
reliable result than BVOR method and the computing time of both methods is
approximately the same.

Table 13: PRIMA Testing result of RCchain2.net, frequency range: 100k∼1G, num-
ber of sampling points: 100

Qcol s0 Nred Cond. Npp Nnz Eyii t/s
ori. - 1002 - - - - 47.68
40 100e6 40 8.8104e4 3 1600 1.8690e-14 0.03
87 100e6 87 9.9975e4 1 7569 2.2262e-14 3.66

Base on the outcome in Table 15 of this section and Table 5 of Section 7.2, we
can see that PRIMA with full MNA produces smaller conditional number and less
positive poles resulting in much smaller errors than BVOR method; at the same
time, it consumes almost the same amount of time as BVOR does. Therefore it is
apparent that PRIMA with full MNA is more suitale for RL circuit.

According to the result of Table 16 of this section and Table 7 of Section 7.2,
PRIMA with full MNA is better choice than BVOR method for RLC circuit since
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Table 14: PRIMA testing result of RCchain2.net, frequency range: 10∼1000G,
number of sampling points: 100

Qcol s0 Nred Cond. Npp Nnz Eyii t/s
ori. - 1002 - - - - 46.91
40 100e6 40 8.8104e4 3 1600 5.3847e-12 0.03

Table 15: PRIMA testing result of RL chain.net, frequency range: 100∼40G, num-
ber of sampling points: 100

Qcol s0 Nred Cond. Npp Nnz Eyii t/s
ori. - 2002 - - - - 218.16
72 1000 72 5.4557e8 7 5184 1.6212e-10 0.92
144 1000 144 1.0251e9 20 20736 1.0970e-10 3.16
237 1000 237 1.9330e9 25 56169 4.6570e-11 12.73
300 1000 300 2.3367e9 38 90000 5.0901e-11 28.03
342 1000 342 2.5263e9 48 116964 1.2559e-10 24.62

the former causes less errors and comsumes less time than latter at the same level
of order reduction.

Table 16: PRIMA testing result of lt.cir, frequency range: 0∼40G, number of sam-
pling points: 100

Qcol s0 Nred Cond. Npp Nnz Eyii t/s
ori. - 1083 - - - - 60.76
60 1000 60 7.3392e4 0 3600 0.0227 0.07
87 1000 87 8.1696e8 0 7569 0.0219 1.29
114 1000 114 6.9434e7 0 12996 0.0164 2.2
150 1000 150 8.2439e9 0 22500 0.0133 4.22
177 1000 177 6.9278e14 58 31329 0.0088 5.93
267 1000 267 2.3777e18 1 71289 0.001 15.43
330 1000 330 6.014e10 4 108900 5.9925e-4 23.95

Based on previous comparisons, it is concluded that PRIMA method with full
MNA provides more reliable model-order reduction and faster speed than BVOR
method for RL(C) circuits. However, it is still necessary to use BVOR method
for large-scale circuits, and it is BVOR method that can decompose circuits into
sub-circuits which contains mutual inductances.
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7.5 Discussion of simulation results

The main results are listed below:

- BVOR was successful; BVOR tool is applied on RC, RL, and RLC circuit,
the simulation results indicate that with the appropriate selection of order
reduction, computing time of reduced system is faster;

- PRIMA shows better results than BVOR if partitioning is not needed;

- Q generated with individual diagonal block is worse than from full BBD sys-
tem;

- macromodel realization using ”Matsumoto” on BBDmatrix was not successful.
The reason is: branch tearing method results in new line which is linearly
dependent due to Eq. (23) and the auxiliary state variable φij , hence the BBD-
structured VNA matrix G is singular; QTGQ does not change the conditional
property of G, therefore the transformed G̃ is also singular.
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8 Summary

A stand-alone netlist-in-netlist-out MATLAB/C tool was implemented for BVOR
method. The performance of the BVOR method was evaluated with extensive sim-
ulations. It was found that BBD-based Arnoldi method with full BBD matrix as
input is the better choice for most of the circuits than the corresponding method
with individual diagonal blocks as input since the latter method causes errors and
interruption to order reduction process.

Benefit of BBD structure is obvious. Each of the divided small block is solved at
a time, which saves memory. In addition, solving these blocks in parallel is efficient.

The algorithm of BBD solver further improves the reduction results in many
cases and in general speeds up the process.

Macromodel realization ”Matsumoto” on the system reduced by BVOR method
failed, the final reconstructed netlist does not have the same functionality as the orig-
inal netlist. In further investigation, another method RLCSYN [23] (RLC Equiva-
lent Circuit Synthesis for Structure-Preserved Reduced-order Model of Interconnect)
may present convincible outcome.

In a word, the implemented BVOR tool provides the user with BVOR algorithm
enhanced by BBD solver suitable for most types of circuits. The BVOR achieved
excellent results with reduction of over 80% in the number of elements and simulation
error well below 3%. With the appropriate selection of order reduction, computing
time of reduced system is 10 to 100 times faster; on the other hand, inappropriate
order reduction could cause even lower computing time.
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