
Juho Pohjala

Tool for network level configuration and
auditing in mobile backbone network

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of

Science in Technology.

Espoo 16.5.2011

Thesis supervisor:

Docent Kalevi Kilkki

Thesis instructor:

M.A. Jukka Malinen

A! Aalto University
School of Electrical
Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university

school of electrical engineering

abstract of the

master’s thesis

Author: Juho Pohjala

Title: Tool for network level configuration and auditing in mobile backbone
network

Date: 16.5.2011 Language: English Number of pages: 8+55

Department of Communications and Networking

Professorship: Network Economics Code: S-38

Supervisor: Docent Kalevi Kilkki

Instructor: M.A. Jukka Malinen

The purpose of this thesis is to implement a prototype for the configuration
and auditing of network elements in the mobile core network. The focus of the
prototype is on the IP level. The prototype is needed in order to evaluate the
feasibility of this new type of tool. The feedback from the prototype evaluation
provides input for the full-scale implementation of the network level configuration
and auditing tool.

The Waterfall model was used to steer the prototype development, because the
model was considered suitable for small-scale software development projects. The
user interface of the prototype is based on the spreadsheet design, which was
considered suitable for displaying network structures. Finally, Java was chosen as
the programming language because of its platform independence.

The prototype development was a success, because the prototype is capable
of performing network level auditing and relatively simple configurations. The
prototype was considered as a possible choice for a network level configuration
and auditing tool. In addition, it was thought that the full-scale version of the
tool could simplify and speed up network management tasks.

From a technical perspective, no problems were found during the prototype de-
velopment that would prevent the full-scale implementation of the tool. This
thesis provides some suggestions for the full-scale development. For example, it is
recommended to analyse whether the user interface of the tool should be renewed.

Keywords: network management, core network, Waterfall model, user interface,
IP

aalto-yliopisto

sähkötekniikan korkeakoulu

diplomityön

tiivistelmä

Tekijä: Juho Pohjala

Työn nimi: Työkalu verkkotason konfigurointiin ja auditointiin
matkapuhelinrunkoverkoissa

Päivämäärä: 16.5.2011 Kieli: Englanti Sivumäärä: 8+55

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoverkkotalous Koodi: S-38

Valvoja: Dos. Kalevi Kilkki

Ohjaaja: FM Jukka Malinen

Tämän työn tarkoituksena on toteuttaa prototyyppi, jolla voi hallita ja valvoa run-
koverkon verkkoelementtejä IP-tasolla. Prototyyppiä tarvitaan uudentyyppisen
ohjelmiston soveltuvuuden arviointiin, josta saatua tietoa voidaan myöhemmin
hyödyntää kokoversion toteutuksen yhteydessä.

Prototyyppi kehitettiin vesiputousmallin avulla, joka todettiin sopivaksi pienimuo-
toisen ohjelmiston kehitykseen. Prototyyppi perustuu taulukkolaskentaohjelmista
tuttuun käyttöliittymään, jonka arvioitiin sopivan hyvin verkon struktuurin
kuvaamiseen. Ohjelmointikieleksi valittiin Java, koska sen avulla voitiin taata
alustariippumattomuus.

Prototyypin kehitys onnistui hyvin, sillä prototyypillä on mahdollista auditoida
verkkoja sekä tehdä suhteellisen yksinkertaisia konfigurointeja. Prototyyppi to-
dettiin yhdeksi vaihtoehdoksi toteuttaa työkalu verkkotason hallinnointiin ja
valvontaan. Lisäksi työkalun kokoversiolla arvioitiin olevan mahdollista yksinker-
taistaa ja nopeuttaa verkkojen hallintaa.

Työkalun kehityksen aikana ei löydetty teknisiä esteitä sen jatkokehitykselle. Ko-
koversion toteutuksen yhteydessä kannattaa hyödyntää tässä työssä esitettyjä suo-
situksia. On esimerkiksi suositeltavaa tutkia, pitääkö työkalun käyttöliittymään
tehdä muutoksia.

Avainsanat: verkonhallinta, runkoverkko, vesiputousmalli, käyttöliittymä, IP

iv

Preface

This thesis was written at Oy LM Ericsson Ab in Finland. I am grateful for the
opportunity to write my final thesis here.

First, I want to thank Tomas Nordman and Christer Hamberg for your guidance
regarding the tool development and also for your technical insight that you shared
with me. Thanks to Tomas for making the tool development project and this thesis
possible. Second, I want to thank my supervisor Kalevi Kilkki and instructor Jukka
Malinen for your comments, advice and efforts during the thesis work. Thanks also
to William Martin for proofreading the final version of this thesis.

Last, but not the least, I want to thank my wife Nannan for your continuous
support and patience while I’ve been working on this thesis.

Jorvas, Kirkkonummi, 16.5.2011

Juho Pohjala

v

Contents

Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1
1.1 Motivation . 1
1.2 Research problem and goals of the thesis 1
1.3 Scope of the thesis . 2
1.4 Structure of the thesis . 3

2 MSS core network architecture 4
2.1 Overview of the Mobile Softswitch Solution (MSS) 4

2.1.1 The control layer . 5
2.1.2 The connectivity layer . 5

2.2 Migration towards pure IP transit architecture 6
2.3 Media Gateway for Mobile Networks (M-MGw) 8

2.3.1 Hardware generations and software releases 9
2.3.2 Managed Object Model (MOM) 10

2.4 Mobile Switching Center Server (MSC-S) 11
2.4.1 MSC-S Blade Cluster . 12

2.5 Other MSS-related network components 13

3 Network configuration and supervision tools 15
3.1 Node Manager . 15
3.2 MoShell . 16
3.3 WinFIOL . 16
3.4 OSS-RC . 17
3.5 Nemo tool . 18
3.6 CCR-tool . 18

4 Theory and methodology 20
4.1 Prototyping . 20
4.2 Software requirements specification (SRS) 21
4.3 The Waterfall model . 23
4.4 Programming languages relevant to the prototype 25

4.4.1 Java . 25
4.4.2 C . 26

vi

5 Tool for network configuration and auditing 28
5.1 Current situation . 28
5.2 Solution to the current challenges . 29
5.3 Purpose for the prototype . 29
5.4 Use cases and target audience . 30
5.5 Scope of the prototype . 31
5.6 Operational principle and technical challenges 32
5.7 Requirements for the prototype . 33

5.7.1 Must-have features . 34
5.7.2 Nice-to-have features . 36

5.8 Design alternatives based on the requirements 36
5.8.1 Spreadsheet as user interface 37
5.8.2 Development of a new user interface 38

5.9 Prototype evaluation . 39

6 Results 41
6.1 Tool development lifecycle . 41

6.1.1 Development phases . 41
6.2 Chosen user interface design . 42
6.3 Chosen programming language and API 43

6.3.1 Spreadsheet handling with Apache POI 44
6.3.2 Java and spreadsheet requirements for end-users 44

6.4 Proposed solution . 44
6.4.1 Functional design . 45
6.4.2 Feature descriptions . 45
6.4.3 Strengths and weaknesses . 48

6.5 Outcome of the tool evaluation . 48
6.6 Analysis of the results . 49

7 Discussion 51
7.1 Summary . 51
7.2 Conclusions . 51
7.3 Suggestions for future development 52

References 53

Appendix A: Functional design of the prototype 55

vii

Abbreviations

2G Second Generation
3G Third Generation
3GPP 3rd Generation Partnership Project
API Application Programming Interface
ATM Asynchronous Transfer Mode
AuC Authentication Center
AWT Abstract Window Toolkit
BSC Base Station Controller
BTS Base Transceiver Station
CAPEX CAPital EXpenditure
CCR Customer Configuration Requirement
CN Core Network
CPU Central Processing Unit
CS Circuit Switched
DoS Denial of Service
EIR Equipment Identity Register
GCP Gateway Control Protocol
GMP Generic M-MGw Package
GSM Global System for Mobile communications
GUI Graphical User Interface
HLR Home Location Register
HW Hardware
IEEE Institute of Electrical and Electronics Engineers
IMEI International Mobile Equipment Identity
IP Internet Protocol
ITU International Telecommunication Union
ITU-T ITU’s Telecommunication Standardization Sector
JRE Java Runtime Environment
JVM Java Virtual Machine
LTE Long Term Evolution
M-MGw Mobile Media Gateway
MML Man-Machine Language
MO Managed Object
MOM Managed Object Model
MSC Mobile Switching Center
MSC-S Mobile Switching Center Server
MSS Ericsson Mobile Softswitch Solution
O&M Operation and Maintenance
OPEX OPerational EXpenditure
OS Operating System
OSS-RC Operations Support System, Radio and Core network
PLMN Public Land Mobile Network
PS Packet Switched

viii

PSTN Public Switched Telephone Network
QoS Quality of Service
RAN Radio Access Network
RBS Radio Base Station
RNC Radio Network Controller
SAE System Architecture Evolution
SRS Software Requirements Specification
SSH Secure SHell
SW Software
TCP Transmission Control Protocol
TDM Time Division Multiplexing
UE User Equipment
UI User Interface
UMTS Universal Mobile Telecommunications System
VBA Visual Basic for Applications
VLAN Virtual Local Area Network
VLR Visitor Location Register
VMGw Virtual Media Gateway
WCDMA Wideband Code Division Multiple Access
XML eXtensible Markup Language

1 Introduction

This chapter gives a brief overview of the topic related to this thesis. At first, the
background of the thesis will be introduced, describing why the topic is important.
Then, the research problem and the goals are specified, followed by the scope for
this thesis. Finally, the structure of the thesis will be described at the end of this
chapter.

1.1 Motivation

Network configuration can be a challenging task in the present day’s communication
networks. Reconfiguration is needed, for instance when a network node is migrated
from one network to another, or when an IP address is changed. Getting the node
back up and running after reconfiguration is a top priority for both network operators
and network vendors that provide support.

As modern communication networks are highly complicated, node configuration
is a time-consuming task, and misconfigurations are quite common, too. Getting
a good overview of the network structure is a challenging task, and that is why
problems are typically on a network level rather than on a node level. Moreover,
finding some small configuration error from the network might require a lot of work
and effort, which, in turn, could cause delays in different node deployment projects.
Nevertheless, the configuration work must be done with great precision in order to
take full advantage of the network resources and to avoid misconfigurations that
could potentially have a negative impact on the network performance. In addition,
fast recovery from misconfigurations is essential, since it could possibly avoid a
problem escalating to a larger scale.

Network auditing, or supervision, is also of high importance, since it contributes
to service reliability and is essential for overall network performance. The goal is to
make sure that everything works as planned, and in case that some disturbances are
experienced, corrective measures can be initiated as soon as possible. In an optimal
case, any problems are discovered proactively, i.e. before any major disturbances are
experienced. Some examples of network level issues are a misconfigured interface and
a hardware failure, which may, for instance, reduce the available network capacity.
In practice, auditing a single network component might be easy, but when it comes
to auditing the whole network, the task often turns out to be more difficult.

All in all, figuring out the root cause for some network level issue as well as
efficient auditing of the network might be challenging tasks that could require lots
of time and effort. This is the starting point for this thesis, since there is some
space for improvements in terms of network configuration and auditing. Next, the
research problem and the goals of this thesis are introduced in the following section.

1.2 Research problem and goals of the thesis

As of today, almost every single network element has its own configuration tool.
Thus, getting an understanding and a clear network level overview is rather slow,

2

since configuration data must be fetched from the network using multiple tools.
For this reason, configuring and auditing a network has its challenges. There is a
need for a tool that could handle configuration and supervision on a network level,
supporting several node types, and thus, minimising the number of required tools
as well as the manual work that is currently required.

To overcome the current issues regarding network level configuration and audit-
ing, a tool is designed as a part of this thesis. The goal is to develop a prototype for
network level auditing and configuration, enabling faster, easier and more efficient
task handling than previously has been possible. Such a tool should be able to read
and modify network parameters as well as audit the network configuration faster
than before. With proper implementation, the tool could give a quick overview of
the network status and configuration, which is useful in many ways. For exam-
ple, the tool could help solving customer service requests, because analysis of the
network structure would be faster.

However, before fully implementing the tool, it must be ensured that the auditing
and configuration functionalities can be combined together efficiently. This is the
research problem for this thesis. After all, there is very little need for a tool that
is not able to make task-handling any easier or faster than previously. Getting this
kind of information, as early in the development phase as possible, is valuable as
such.

In the end, the proposed solution is evaluated. The idea is that the tool could be
used at Ericsson’s test environment, in order to analyse its strengths and weaknesses.
Based on the findings, the tool development could either be continued after the
thesis, or discarded.

To conclude, this thesis tries to answer the following set of questions:

– Is it feasible to combine network level configuration and auditing functionalities
in the same tool?

– Could the tool be used to simplify or speed up the tasks that involve network
configuration and auditing?

– Can the tool provide a quick overview of the network configuration and status?

The goals of this thesis include finding answers to the questions above as well as
developing a working prototype. Next, in the following section the scope of the
thesis is explained in more detail.

1.3 Scope of the thesis

As stated in the previous section, one of the main goals of this thesis is to find
out whether network configuration and auditing functionalities could be combined
together efficiently. To answer this question, it is not necessary to include all network
components in the tool implementation. In fact, it should be enough to support
only a few key elements from the core network. However, the chosen elements must
not be unique, i.e. a network should contain multiple instances of each node type,

3

otherwise configuring and auditing on the network level would not be feasible. For
these reasons, and due to Ericsson Finland’s involvement in Mobile Media Gateway
(M-MGw) development, the tool for this thesis focuses primarily on Mobile Media
Gateways. In addition, network level auditing of Mobile Switching Centers (MSCs)
is included in the tool.

Furthermore, this thesis focuses only on IP level, meaning that other bearers such
as Asynchronous Transfer Mode (ATM) and Time Division Multiplexing (TDM) are
excluded from this thesis work. There are three main reasons for the tool to operate
only on an IP level. First, at Ericsson there is a need for an IP level configuration
and auditing tool. Second, the usefulness of the tool can be evaluated using just the
IP level. Third, operator networks are evolving towards an all-IP architecture [1],
[2]. Because of this transition, the selection of IP seems natural.

Extra attention must also be paid to tool design, since it should allow the addition
of other bearers and nodes that could be introduced later on. It should be possible
to extend the support without the need for total redesign. For instance, support
could be added for the Radio Network Controller (RNC), Base Station Controller
(BSC) as well as routers and switches. In future, the network configuration and
auditing tool could also support not only IP, but also ATM and TDM.

Finally, the tool for network configuration and auditing is designed for networks
that are equipped with Ericsson’s network elements. Support for other network
vendors is not considered in the scope of this thesis.

1.4 Structure of the thesis

This thesis is divided into seven chapters. Chapters 2–4 cover the background
and theory. In Chapter 5, the tool for network level configuration and auditing
is discussed. The results of the tool implementation are presented in Chapter 6,
followed by discussion and conclusions in Chapter 7. The last chapter also includes
suggestions for future development.

4

2 MSS core network architecture

In this chapter, the background of the thesis is discussed. The tool that is developed
as a part of this thesis, operates in the Ericsson mobile packet backbone network,
thus understanding its basic concepts is essential. First, an overview of the Ericsson
Mobile Softswitch Solution (MSS) is given. The second section introduces the tran-
sition towards all-IP architecture that has been ongoing in the operator networks.
Then, the key network elements of the MSS architecture are presented. These key
nodes are the Mobile Media Gateway (M-MGw) and the Mobile Switching Center
Server (MSC-S). At the end of this chapter, the other MSS-related network elements
are discussed.

2.1 Overview of the Mobile Softswitch Solution (MSS)

The Ericsson Mobile Softswitch Solution is comprised of two main network elements,
the Mobile Media Gateway (M-MGw) and Mobile Switching Center Server (MSC-S).
In contrast to the classical MSC architecture, in which the MSC handles both control
and switching traffic, the MSS architecture implements a layered architecture by
separating control and switching into separate nodes. In the MSS, the M-MGw
handles switching, while the MSC-S handles call control.

Figure 1 visualises the layered architecture of the Ericsson Mobile Softswitch
Solution. As shown in the figure, the MSC-S is located in the control layer, thus
being responsible for the signalling traffic in the network. The M-MGw, on the other
hand, handles the actual network payload in the connectivity layer. [3]

Figure 1: The layered architecture of the MSS. [3]

5

The physical distance between the M-MGw and MSC-S is not limited. Hence, the
MSC-S can be located at a central site, taking care of the signalling and managing
the connected M-MGw nodes. The M-MGw nodes, on the other hand, can be
deployed at remote sites where the majority of traffic can be connected locally. In
other words, a given payload does not always need to travel through the entire
network, but instead, it may travel via the shortest path using the most efficient
coding. This type of transmission that renders less traffic through the core of the
network increases network efficiency and may decrease the operational expenditure
(OPEX) of teleoperators. This is due to the fact that the majority of calls in most
networks are locally terminated. [3]

In addition to the geographical flexibility, the layered architecture has another
benefit. It makes it possible for the teleoperators to achieve convergence between
the circuit-switched and packet-switched components of the network. This is vital
for a smooth evolution towards all-IP networks. Section 2.2 (p. 6) presents more
information about the ongoing transition towards all-IP network architecture.

On the other hand, the layered architecture adds more complexity to the network.
Instead of only one node type, there are two node types to be managed. Hence, the
importance of network planning is emphasised, and also network management might
be more challenging. Next, the control and connectivity layers are briefly discussed
in the following subsections.

2.1.1 The control layer

The control layer provides all the functionality needed for high-quality and seamless
services across various types of networks. In general, the network elements on the
control layer are responsible for the signalling traffic in the network. In other words,
they handle, for instance, mobility management, set-up and release of calls, security
and certain circuit-mode supplementary services. [4]

The key network element on the control layer is the Mobile Switching Center
Server. This node is responsible for e.g. call control, including bearer services, charg-
ing and security. The MSC-S also controls different transport networks. Section 2.4
(p. 11) introduces the MSC-S in more detail.

An important protocol on the control layer is the GCP (Gateway Control Pro-
tocol). The MSC-S uses the GCP to control the connected M-MGw nodes. The
Gateway Control Protocol is based on the ITU-T H.248.1 standard, and it is used
for both transmitting and receiving information between the MSC-S and M-MGw.
The GCP may use either IP or ATM as the signalling transport. Furthermore, the
GCP provides various procedures for call-related functions, such as tone sending and
bearer establishment, as well as call-independent functions, such as M-MGw load
control. These procedures conform to the 3GPP TS 29.232 specification. [5]

2.1.2 The connectivity layer

The connectivity layer provides interfaces to different networks such as the 2G and
3G radio access networks and the public switched telephone network (PSTN). The
connectivity layer provides a pure transport mechanism capable of transmitting the

6

actual service traffic. In other words, the connectivity layer transports voice and
data services as well as various multimedia-related streams.

The backbone architecture of the connectivity layer consists of core and edge
network components. The core components typically consist of routers, while the
edge components consist of M-MGw nodes. The M-MGw, which is the key net-
work element on the connectivity layer, is controlled by the MSC-S. In general, the
M-MGw provides call switching by connecting calls within the same or between
different networks. In addition, the M-MGw provides e.g. coding and decoding of
speech streams, transport protocol conversion and echo cancelling [4]. In Section
2.3 (p. 8), the M-MGw is discussed in more detail.

As shown in Figure 1 (p. 4), the connectivity layer is based on ATM (Asyn-
chronous Transfer Mode) or IP (Internet Protocol), i.e. it operates in the packet-
switched domain [6]. This is quite different from the classical MSC architecture,
which is a TDM-based (Time Division Multiplexing) monolithic core network util-
ising thousands of point-to-point links [3]. The packet-switched domain enables
efficient speech coding, thus reducing the bandwidth needed for voice transmission.

As the connectivity layer is based on ATM or IP, it allows the teleoperators to
provide various QoS (Quality of Service) mechanisms. With QoS it is possible to
provide agreed service and a certain level of performance to end-users by, for exam-
ple, prioritising different applications or users. For instance, QoS may be used to
guarantee the minimum bit rate or the maximum delay. Without a well-designed
QoS policy, there is a risk that the network functions less efficiently, causing de-
lays in time-sensitive services. This, in turn, may have a negative impact on the
customer satisfaction. QoS can also be used for generating extra revenues, because
some customers may be willing to pay for a premium service with, for instance, a
guaranteed bit rate [7]. In general, QoS plays a central role in modern communi-
cation networks, thus the ability to guarantee appropriate Quality of Service is an
essential feature provided by the connectivity layer.

2.2 Migration towards pure IP transit architecture

During the past decade, teleoperators have been replacing their existing core net-
works from TDM or ATM transport technologies to pure IP transport [8]. In gen-
eral, there is a clear trend in which CS (Circuit Switched) technologies are replaced
by PS (Packet Switched) technologies, but the transition from ATM towards IP is
also clearly visible. It could be said that the support for IP guarantees a future-
proof solution for modern communication networks. Hence, IP-related competence
and network management tools that operate on an IP level are getting increasingly
important.

The evolution towards all-IP networks will result in better speech quality due to
less transcoding, more efficient bandwidth usage as well as reduced costs [8]. It will
also reduce the complexity of dimensioning the point-to-point TDM links in today’s
communication networks [3]. In general, the benefits of an all-IP architecture are
evident. These main benefits are presented in Table 1.

7

Table 1: The benefits of an all-IP network. [7]

Reduced costs
Using IP in both the core network (CN) and radio access network (RAN)
nodes minimises capital expenditure (CAPEX) as well as operational expen-
diture (OPEX). First of all, IP-based transport is cheap on a bit-per-second
basis. Second, IP traffic scales well and adapts dynamically to various bit
rate and bandwidth requirements. In other words, the continuously grow-
ing demand for higher bandwidth can be accommodated by the operator
more easily. Third, the IP-based solution is relatively simple, which leads
to reduced management and deployment costs.

Efficient use of existing infrastructure
The transition towards an all-IP architecture does not, however, take place
overnight. Thus, for the operators it is crucial to maintain their ongoing
operations and revenues throughout the network transition. This transition,
however, can be done by utilising the existing network, at least to some
extent. In practice, the migration towards all-IP could be started from the
legacy infrastructure. The transport networks, previously used for TDM,
could be upgraded for IP packet handling. All of this could be done when
the capacity requires it, without halting the ongoing business operations.
Finally, as the IP network is based on standards, the interoperability of the
network infrastructure can be guaranteed.

Increased network security
IP has its own vulnerabilities that are due to e.g. increased connectivity and
increased adoption of IP devices. One of these problems is the vulnerability
to various denial-of-service (DoS) attacks. Nevertheless, the IP networks
can be built on a set of security features that can provide the adequate
level of network security. This has the additional benefit of lowering costs,
because less dedicated security nodes are required, and also the need for
administrative processes is reduced.

Guaranteed Quality of Service
With IP it is possible to provide telecom-grade Quality of Service (QoS).
For example, traffic differentiation is possible. QoS allows grouping of dif-
ferent traffic types depending on the delay sensitivity. Also various queuing
and scheduling algorithms are possible, as well as admission control. The
goal of admission control is to ensure that the network capacity is not over-
loaded, and if needed, there are methods to limit the traffic that is causing
congestion.

High availability
High availability can be integrated into an all-IP network with careful net-
work design. The network must be built in a way that if an individual link

8

or node fails, traffic can still be routed to its destination. IP offers cer-
tain built-in mechanisms that can provide availability and redundancy. For
example, link or node failures can be detected with standard routing pro-
tocols. It is also possible to move the traffic onto alternative paths, if the
primary path is down. In order to ensure high availability, it is essential
that the network elements are resilient. Resiliency can be achieved through
e.g. hardware redundancy.

Assured migration path
The next-generation networks, like LTE (Long Term Evolution), are IP-
based. An important part of the LTE is the System Architecture Evolution
(SAE), which is an IP-based core network architecture of the LTE standard.
As it is known that the next-generation networks operate on the IP level,
it is already possible to start investing in the future. An all-IP network is
the solution for preparing the way for the LTE.

Efficient network management
Basically, a simple network architecture is also simple to manage. Thus, an
all-IP network allows cost-effective and integrated management.

2.3 Media Gateway for Mobile Networks (M-MGw)

The Mobile Media Gateway is a key component in the Mobile Softswitch Solution.
As shown in Figure 1 (p. 4), it is located in the connectivity layer of the layered archi-
tecture. The M-MGw nodes handle the service traffic in the network, thus they are
normally deployed at remote sites and at interconnection points with other mobile
and fixed networks [3]. In this way it is possible to cut transmission costs, because
the majority of the calls are locally terminated [3]. The M-MGw traffic handling is
controlled by the MSC Server using the Gateway Control Protocol (GCP).

Figure 2 shows the interconnections and interfaces of the M-MGw. As shown
in the figure, the M-MGw connects the mobile core network with the 2G and 3G
networks, the public switched telephone network (PSTN) as well as other external
networks. These interconnections can be based on TDM, ATM or IP [6]. In addition,
the M-MGw bridges various transmission technologies and adds certain services to
end-user connections. Examples of such services are echo cancellation and voice-
quality enhancements [6].

Because an M-MGw node can be connected simultaneously to 2G and 3G net-
works, it increases network efficiency, since less intersystem signalling is generated.
As a result, teleoperators may achieve cost-savings. In addition, the capacity allo-
cation between 2G and 3G is automatic and dynamic [6].

As discussed in the previous section, support for IP is the key for a future-proof
network architecture. As M-MGw supports TDM, ATM and IP interfaces, M-MGw
should also support the transition towards next-generation networks. However, sup-
port for many interfaces alone is not enough, as also increasing capacity requirements

9

Figure 2: The interconnections and interfaces of the M-MGw. [5]

need to be satisfied.
The M-MGw supports MSC pooling through a feature known as the virtual

media gateway (VMGw) [6]. The VMGw functionality allows several MSC Servers
to use the resources in one physical M-MGw [5]. Furthermore, an MSC-S can choose
an M-MGw close to the call’s termination point in order to optimise network load
[5]. The MSC pooling also provides additional network level redundancy.

2.3.1 Hardware generations and software releases

The M-MGw has seen numerous hardware generations and software releases after
it was first released to market. The currently supported hardware generations are
GMPv2 (Generic M-MGw Package version 2), GMPv3 and GMPv4. The latest
major software release is R6 (release 6), which together with GMPv4 can offer more
capacity and better performance than any earlier release.

Figure 3 presents the hardware generations that are currently supported together
with the M-MGw software releases. As shown in the figure, it is possible to upgrade
any hardware configuration to the latest software release. This possibility offers
cost-effectiveness, since the mobile operators can get the new features that have
been introduced to new releases simply with a software upgrade. In addition, new
software releases may offer better performance as well as fixes to some software-
related faults.

The tool that is developed as a part of this thesis, is intended for R5 and R6

10

Figure 3: The relationship between M-MGw SW releases and HW generations. [5]

software releases. Thus, GMPv2, GMPv3 and GMPv4 hardware generations are
supported. Next, the following subsection introduces the Managed Object Model,
which is an important concept in terms of this thesis.

2.3.2 Managed Object Model (MOM)

The Managed Object Model describes the configuration of an M-MGw node. It is
an important concept, because it provides all the necessary information and means
for node management and configuration. The tool that is developed as a part of
this thesis, is based on reading and manipulating the MOM, thus understanding the
basics is essential.

The MOM consists of several Managed Objects (MOs). A Managed Object is
an abstract view of a resource that is subject to management. An MO can be a
representation of both physical and virtual objects. For example, a certain MO
could represent some program that runs in the node, or a physical link between two
interfaces. Managed Objects have a certain number of attributes, depending on the
MO type. The attributes contain a value, which can be an integer, character string,
or e.g. a reference to some other MO. In other words, an MO can be defined in
terms of the attributes it has, operations it can perform, notifications it can issue
and interactions it can have with other Managed Objects.

All Managed Objects and their attributes as well as MO classes and their rela-
tionships between other classes are defined in the Managed Object Model. MOM
also contains information regarding default values, mandatory fields and value ranges
of MO attributes. Recommended MO attribute values are defined in the M-MGw
user guide. For clarification, the structure of MOM is shown in Figure 4.

11

Figure 4: The simplified structure of Managed Object Model.

2.4 Mobile Switching Center Server (MSC-S)

The Mobile Switching Center Server is another key network element in the Mobile
Softswitch Solution. The MSC-S is located in the control layer of the layered archi-
tecture. In general, the MSC Servers are responsible for the signalling traffic and call
control, i.e. they control the traffic handling in the network [9]. This is achieved by
using the Gateway Control Protocol (GCP) for the data exchange between the MSC
Server and the Mobile Media Gateway. In addition, the MSC Server is responsible
for e.g. bearer services, teleservices, charging and security as well as some additional
supplementary services [9].

The MSC-S provides the possibility to control different types of networks, includ-
ing TDM, ATM and IP-based transport networks [9]. As the MSC-S is capable of
TDM, ATM and IP transport, it supports the evolution of the circuit-switched core
network towards pure IP transit architecture. In addition, both GSM and WCDMA
traffic can be controlled simultaneously in the same node.

The MSC-S supports various standards and a wide range of standardised proto-
cols. For example, 3GPP standards are supported. It is also possible to introduce
the MSC-S to mixed-vendor networks. [9]

The MSC Servers can be integrated into a pool in which several MSC Servers
operate together in order to handle the traffic load in the network. The pool func-
tionality may be used to balance the peak load in the network during the peak traffic
hours. In addition, the MSC pool can be deployed at a central site, allowing cen-
tralised and simplified network management. This may decrease costs in operation
and maintenance (O&M). The MSC pool functionality is visualised in Figure 5. [9]

In case that e.g. one of the MSC Servers in a pool needs maintenance, it can
be safely disconnected from the live network during low traffic hours, because the

12

Figure 5: The MSC pool functionality.

traffic load can be distributed to the other MSC Servers within the same pool [9].
Thus, the MSC pool functionality also increases the network redundancy.

The MSC Server is scalable [9], meaning that its capacity can be increased simply
by adding more hardware to the cabinet. In this way it is possible to improve
the performance and efficiency. The capability for such adjustments is vital in
order to meet teleoperator needs and dimensioning requirements [9]. Moreover, the
next-generation MSC Server, the MSC-S Blade Cluster, offers even more capacity
and improved performance. The MSC-S Blade Cluster is discussed in the next
subsection.

2.4.1 MSC-S Blade Cluster

The M-MGw GMPv4 and the second generation MSC Server, the MSC-S Blade
Cluster, are the latest improvements to the Ericsson Mobile Softswitch Solution. It
is essential that the tool, which is developed in this thesis, is capable of handling
also the latest node generations. Hence, understanding the MSC-S Blade Cluster
concept is useful.

The MSC-S Blade Cluster consists of multiple advanced generic processor boards,
or blades, which work together in a group or cluster. The blades run the MSC
Server application, which is responsible for controlling calls and M-MGw nodes.
The subscriber traffic is distributed between the available blades. [10]

The main advantages of the MSC-S Blade Cluster are improved capacity and
scalability [10]. The MSC-S Blade Cluster capacity can be expanded as the traffic
grows by adding new blades to the cabinet [10]. The node also has high availability,
allowing O&M without causing disturbance to the network [9].

High capacity and scalability allow a simplified network topology with fewer

13

nodes, since it is not always needed to introduce a new MSC Server to the network, if
the capacity requires an upgrade. This naturally means savings for the teleoperators.
Furthermore, the MSC-S Blade Cluster can also be integrated into an MSC pool for
additional network redundancy and cost-savings [9].

2.5 Other MSS-related network components

In this section, a few other MSS-related network components are discussed. These
nodes are not included in the prototype, which is developed as a part of this the-
sis. However, support for the RNC (Radio Network Controller), BSC (Base Station
Controller) and the Redback router could be integrated into the tool later on.

RNC and BSC
The Radio Network Controller (RNC) is a network element located in the Public
Land Mobile Network (PLMN) [11]. Its function is to control one or more Node Bs
[11]. In Ericsson’s networks, the M-MGw is connected to the RNC using either
ATM or IP. The RNC then controls the connected Radio Base Stations (RBSs) in
the UMTS radio access network.

The Base Station Controller (BSC) is another network element in the PLMN,
being responsible for controlling one or more Base Transceiver Stations (BTSs) [11].
In Ericsson’s networks, the M-MGw is connected to the BSC using TDM. The RNC
and BSC and their interconnections are shown in Figure 6.

Figure 6: The M-MGw interconnections to the RNC and BSC.

HLR and VLR
The Home Location Register (HLR) is the primary database that contains the in-
formation about all subscribers in order to support session or call handling [11]. In
addition, the current location of each user equipment (UE) is stored in the HLR.

14

The Visitor Location Register (VLR) is an entity that contains the information
needed for setting up calls. Moreover, the VLR contains the information of all UEs,
which are registered to the location area served by the VLR. [11]

AuC and EIR
The Authentication Center (AuC) is needed in order to authenticate mobile sub-
scribers to the network. The AuC is associated with the HLR [11].

The Equipment Identity Register (EIR) is the entity that stores International
Mobile Equipment Identities (IMEIs) [11]. The EIR may, for example, contain a list
of IMEIs, which have been banned from the network.

Redback router
The Redback routers are capable of handling data, voice and video services. These
routers can be found in the operator networks provided by Ericsson. If the prototype
development is continued after this thesis, it is likely that these routers are included
in the tool. This is because the routers are needed in order to provide a full overview
of the network configuration.

15

3 Network configuration and supervision tools

This chapter gives an overview of the most important network configuration and
supervision tools that are used today. Not all tools are covered, however, as the
emphasis is on tools related to the M-MGw and MSC-S. First, certain node man-
agement tools are introduced, after which the focus is more on network level tools.

As will be shown in this chapter, no common tool exists capable of handling the
major tasks regarding configuration and auditing on a network level. Thus, the tool
that is developed as a part of this thesis has the potential to give extra value in
terms of network level auditing and configuration.

3.1 Node Manager

Node Manager is a tool that provides a graphical user interface (GUI) for the O&M
(Operation and Maintenance) functions in the M-MGw nodes. Node Manager is
delivered as a part of M-MGw software releases. In general, it contains all the
functionality that is needed for operating an M-MGw node. The node management
is performed by reading and manipulating the Managed Objects (MOs). [12]

The main tasks that Node Manager can handle are configuration management,
software and hardware management as well as fault management [12]. Node Man-
ager can therefore help troubleshooting and node performance evaluation. Configu-
ration management makes it possible to create, delete and modify Managed Objects
either manually or with automated MO scripts. Software versions can be managed
with node upgrades. In addition, the executing software version can be changed
easily with Node Manager. Hardware management is possible with a graphical pre-
sentation of the installed hardware. The GUI is also capable of showing the current
statuses of the hardware. Finally, the alarm view and the event log are useful in
terms of fault management.

Node Manager is written in Java, thus it can be run on almost any computer
provided that the Java virtual machine (JVM) has been installed. Node Manager
makes it possible to manage a node both locally and remotely, thus enabling efficient
and centralised node management.

The main advantages of Node Manager are the ability to hide the inner com-
plexity of the node database and the ability to show the structure of the Managed
Object Model (MOM) in a user-friendly format. Hence, Node Manager is suitable
also for less experienced end-users.

Perhaps the main disadvantage of Node Manager is a certain lack of efficiency.
Several actions might be required in order to get work done, i.e. the tool can be slow
and inefficient in some cases. However, M-MGw nodes can also be managed with
a text-based node management tool called MoShell, which can be more efficient,
depending on the task. The next section introduces MoShell in more detail.

16

3.2 MoShell

MoShell is a text-based network element manager for nodes that operate on the
so-called Cello platform. These nodes include the M-MGw and RNC, for example.
In general, MoShell is capable of reading and editing Managed Objects, therefore it
provides similar O&M services as the M-MGw Node Manager.

The main functionalities of MoShell include MO configuration, alarm service,
performance management and logging service. All of these functionalities are ac-
cessed via the command-line interface. MO configuration allows performing various
MO operations, including reading MO contents, setting attribute values, creating
and deleting Managed Objects as well as executing different MO actions. The alarm
service provides access to the active alarm list, whereas the performance manage-
ment makes it possible to scan the performance counters in the node. The logging
service provides alarm, event, system and availability logs. Such logs can be useful
in many different tasks, like in troubleshooting.

MoShell can be used on multiple platforms, i.e. Solaris, Linux and Windows are
all supported. It is also possible to run Unix commands from within MoShell, thus
this feature makes MoShell more versatile.

MoShell provides certain powerful features that help in node configurations, trou-
bleshooting and in node management in general. For example, it is possible to per-
form operations on many Managed Objects at the same time, which is a tremendous
advantage over Node Manager. MoShell also supports scripting, which gives new
opportunities for node management, because many processes can be automated. It
is also possible to read the whole node configuration data and save the output to a
log file.

As a downside, MoShell is not really suitable for inexperienced users. The syntax
is challenging at first, and learning it takes time. In other words, MoShell requires
lots of competence and experience from end-users before one can take full advantage
of all features. Fortunately, there is a help functionality that can solve the most
common problems. Next, the following section introduces WinFIOL, which can be
used for managing MSC Servers.

3.3 WinFIOL

WinFIOL is a program designed for O&M, installation and testing of the AXE
communication platform [13]. WinFIOL can therefore be used for managing MSC
Servers, including the latest MSC-S Blade Clusters. The program provides a stan-
dard command-line interface for end-users and supports several communication pro-
tocols, including TCP/IP.

With WinFIOL’s features and functionalities it is possible to manage nodes
efficiently. First of all, WinFIOL uses MML language for sending commands and
receiving MML printouts. For instance, the MSC-S IP configuration can be accessed
with specific MML commands. Second, the command printouts can be stored in
a log file for further analysis. Third, command files are supported, which make it
possible to automate data collection and to send multiple commands simultaneously.

17

Fourth, WinFIOL features a scripting language for enhanced and automated MML
handling. Finally, WinFIOL’s functionalities can be extended with optional plug-in
modules. [13]

In spite of all the useful features, there are some drawbacks as well. The MML
language might be difficult to cope with, even for experienced users. The commands
are not always logical and can be difficult to remember. Hence, end-users might
need to refer to the user guide relatively often. Finally, WinFIOL is not able to
handle M-MGw nodes. This complicates the MSS (Mobile Softswitch Solution)
level network management, because multiple tools are needed.

3.4 OSS-RC

The operations support system for radio and core network (OSS-RC) is a common
network management system for GSM, WCDMA and next-generation LTE net-
works. The OSS-RC can be used for managing radio access networks (RANs) and
core networks (CNs) in both circuit-switched and packet-switched domains, thus en-
suring the management of complete networks. With built-in network management
functionalities, the OSS-RC makes it possible to manage and optimise both nodes
and network resources. [14]

The OSS-RC is a high-level program that consists of several separate tools with a
common look and feel. These separate tools operate on the node level, and together
they cover the management of the complete network. The OSS-RC provides a
platform for launching the node-specific tools, an example of which is Node Manager.
In the radio access networks, the OSS-RC enables for example the auto-provisioning
of radio base stations and methods for improving the coverage [14].

The OSS-RC also provides statistics from the network, including information
about alarms, faults and performance. In addition, the OSS-RC is an optional tool
for M-MGw operation and maintenance (O&M). It is fully capable of performing
node upgrades, like Node Manager. The OSS-RC extends, however, the Node Man-
ager functionalities with additional performance monitoring.

As a network level tool, the OSS-RC has the potential to simplify network and
node management. The statistics it can provide from the network may be useful,
thus allowing the utilisation of network resources more efficiently. In addition, the
integrated network management may lead to cost-savings [14].

As a downside, the OSS-RC is heavily dependent on the node level tools. It can
be somewhat confusing to launch a tool from the OSS-RC that could also be used
as a standalone version. Furthermore, the additional value provided by the OSS-RC
may not be that significant, even though it certainly helps managing all the required
network level tools. Finally, although the OSS-RC operates on the network level, it
is not able to perform full-scale network auditing nor supervision. In the following
section, the Nemo tool is discussed, which is a tool for M-MGw configuration.

18

3.5 Nemo tool

Nemo (Network MO) tool is a program that is used for generating the M-MGw
traffic configuration. The Nemo tool creates MO scripts, which contain the entire
network data needed for traffic handling. The MO scripts are executable by Node
Manager and MoShell. [15]

In practice, the Nemo tool is an XML file to MO script converter. The XML
file, which can be handled by standard spreadsheet applications, has a predefined
column/row structure. The end-user makes the desired changes to the file, i.e. defines
the relevant Managed Objects and sets the corresponding attribute values. The file
is then parsed by the Nemo tool, which keeps track of the Managed Objects and
the MO types. As an output, the traffic configuration is generated for an M-MGw
node.

Perhaps the main advantage of the Nemo tool is that it can significantly simplify
network configuration. The user interface is relatively easy to use, yet it is capable of
creating all the necessary network data. Hence, the Nemo tool reduces the end-users’
competence requirements.

As a disadvantage, the end-user must know exactly what to do, because the
input given by the end-user is not validated by the tool. Thus, an incorrect input
may cause the scripts to fail when they are executed. In addition, the Nemo tool
only creates entire network configurations. Hence, it is mandatory to regenerate and
re-execute the complete network data, even if just a small reconfiguration is needed.
This may take lots of time. Finally, the Nemo tool has a fixed XML structure,
thus the tool must be updated manually when new features are introduced to the
M-MGw.

3.6 CCR-tool

The CCR-tool (Customer Configuration Requirement tool) supports production of
node-specific configuration files in order to speed up network configuration and in-
tegration of nodes. The configuration files, produced by the CCR-tool, are syntax-
checked and can be used to configure all high-volume network elements, including
the M-MGw and MSC-S. [16]

Ericsson’s customers and internal users work with Excel-based CCR-forms, which
are used to gather the node-specific configuration data. The forms are then imported
into the CCR-tool system, which is a web-based application. The system creates a
project, from which configuration files can be generated. A CCR-tool project can
also be created by importing configuration data from live nodes. [16]

Before performing any node configurations, it is essential to ensure that the con-
figuration files are loadable into a physical node. This verification is done by the
CCR-tool. The CCR-tool also provides network pictures, which are visual represen-
tations of the CCR-tool projects. These network pictures can be particularly useful,
when node configurations are imported from a live network. [16]

The CCR-tool provides certain advantages for end-users. First, it enables fast
production of node-specific configuration files. Second, it reduces competence re-

19

quirements in terms of configuration knowledge. Third, it improves the quality of
configuration activities by providing correct syntax in the configuration files. Finally,
the CCR-tool is web-based, i.e. there is no need to make any local installations prior
to using the tool.

Although the CCR-tool visualises the network configuration, it is not capable
of providing live status information from the nodes. Thus, the CCR-tool is not a
network auditing tool.

20

4 Theory and methodology

This chapter presents the general theory and the methodology that are needed in the
prototype development. First, an overview of prototyping is given. Understanding
what prototypes are for and how to benefit from them is vital information from the
thesis point of view. Second, the theory behind software requirements specification
and its importance is described. Then, the software development model that is used
in the prototype development is explained. At the end of this chapter, a review of
two popular programming languages is presented. This information is needed when
the programming language for the prototype is chosen.

4.1 Prototyping

In software development, the term prototype refers to a working model of some
product or application. Typically, prototypes are used in the early phases of the
development lifecycle. The idea is that the prototype should implement a subset of
the given software requirements, i.e. prototype as such is not a full-scale application
[17], [18]. Hence, prototypes are suitable for experimenting something new in order
to gain practical experience [17]. In general, the possibility to try out different design
alternatives, test theories and confirm performance issues prior to productisation is
a vital component for successful software development.

An additional benefit of prototypes is their low production cost. That is why
prototyping can be used frequently when needed. For example, a prototype could be
created in order to show it to the customer and to get quick feedback. If it turns out
that there is not enough reason to fully implement the application, the development
can be easily stopped, since the used effort and resources spent are relatively small.
Moreover, if some problems are found from the prototype, it is easier and cheaper
to fix them early in the development phase than after productisation.

Prototypes offer a valuable learning experience, because the development of a
prototype often leads to getting more insight from the actual requirements and
alternative designs that were not considered beforehand [18]. In addition, the de-
velopment team alone is unlikely to come up with the best possible design solution.
Therefore, new ideas can be formed when the prototype is introduced to a wider
public, and any feedback from it may be useful later on. These new thoughts can
be used to refine the initial requirements and to shape the expectations of the whole
application. As a consequence, the feedback from a prototype can transform the
final product into something totally different than was initially intended.

In fact, there is a slight risk in a software development project, if no prototypes
are developed [19]. Without prototyping, the application under development might
not meet the users’ needs [17], and an incorrect set of requirements could be satisfied
[18]. This uncertainty as to whether the new design can do what is desired, is present
in projects that do not rely on prototyping. In addition, it is often those unforeseen
problems that may, in the worst case, lead to cancellation of the whole project.
Prototyping can, however, relieve the uncertainty. Thus, prototyping can be seen
as a development method that reduces risk and increases software quality [19].

21

One fundamental aspect that prototypes can provide, is a concrete basis for
further discussions between software developers, product management and also end-
users [17]. Thus, a prototype can help decision-making regarding the possible future
development [17]. Moreover, prototypes can be used to prove that the product has
the potential to succeed in a full-scale implementation. Getting this kind of in-depth
information is, for sure, very valuable.

4.2 Software requirements specification (SRS)

It could be said that a software requirements specification (SRS) represents an or-
ganisation’s opinion or understanding of a software system. An SRS is a written
document that describes the system requirements, functions, capabilities and depen-
dencies, which are usually needed before any system-level design or development can
be started. A software requirements specification is an important part of software
development, because it can be used as a tool for conveying information between
e.g. the organisation and a client to ensure that both sides have a common under-
standing of the system. In case that there’s no customer involved, the SRS can also
be used within the same organisation, for example, between developers and product
management.

The IEEE 830 standard defines the contents of a software requirements specifica-
tion (SRS). In general, the standard provides recommended practices and approaches
that help creating the software requirements for any type of software. It is useful
to note, however, that an SRS offers no ready solutions or design suggestions. In-
stead, the SRS contains merely the understanding of the requirements of a specific
system. [20]

A desirable SRS is written using precise expressions, so that there is no possibility
for misunderstandings. Vague and too general description of the system might fail
at providing the common understanding between the intended parties. Instead, a
well-designed SRS describes accurately what a customer wishes to obtain, both to
the software suppliers and also to the customers themselves for future reference. In
addition, the SRS can assist potential users to judge whether the software meets
their needs or how it should be modified in order to meet them. [20]

Moreover, an SRS decomposes the system under development into component
parts, allowing easier problem solving by organising information and solidifying
ideas. This, in turn, can help reducing the development effort, since the SRS
forces the developers to think of the requirements before the actual design and
coding phases, thus reducing the risk of redesign and recoding. Careful review of
the requirements can reveal unforeseen problems from the intended design, and also
provide an estimate of the required amount of work. It is useful to reveal any incon-
sistencies early in the development lifecycle when such problems are still relatively
easy to fix. [20]

Finally, the IEEE 830 standard describes the common characteristics of a well-
written SRS. These characteristics are presented in Table 2.

22

Table 2: The characteristics of a well-written SRS. [20]

Correct
A good SRS must be correct, because any incorrect information might blur
the understanding of the application. Being correct also means that the
specification must be kept up-to-date.

Unambiguous
Being unambiguous means that there is only one interpretation. This is
important in order to ensure a common understanding between e.g. the
developer and product management.

Complete
The software requirements specification should include all necessary infor-
mation that is required by the developers in order to create the specific
application.

Consistent
The SRS document should be consistent with its terms at all times. Oth-
erwise there is a risk of causing confusion. For example, if a certain term is
used to refer to a specific part of the system, the same term should be used
every time when referring to the same system component.

Ranked for importance
The requirements should be sorted so that the most important require-
ments are introduced first. In case that some high-level requirement is not
necessarily achievable, it should not be on the list at all.

Verifiable
The requirements should be formulated so that they can be verified. Thus,
quantitative requirements are recommended, because such requirements can
be measured relatively easily.

Modifiable
It should not be necessary to repeat the same information in more than one
place. It only makes the document harder to maintain.

Traceable
Connecting the SRS to a higher level document is not always, but quite
often needed. The higher level document might be e.g. a business plan that
explains the purpose and the vision of the system that is under development.

In this thesis, the IEEE 830 standard is used to ensure that the most important
aspects of the SRS are included in the prototype requirements. However, the stan-
dard is intended for large-scale software development projects, thus not all aspects

23

are necessary for the prototype development. As explained in the next section, col-
lection of the requirements is an important phase in software development, thus
the general guidelines provided by the IEEE 830 standard are needed during the
prototype implementation.

4.3 The Waterfall model

In this thesis, the development of the prototype for network level configuration and
auditing follows, to some extent, the so-called Waterfall model. This model is a se-
quential software design process that got its descriptive name from the progress that
flows from the top all the way to the bottom, just like a waterfall. The Waterfall
concept is illustrated in Figure 7.

Figure 7: The Waterfall model (modified from W. W. Royce’s original model [21]).

As indicated by the arrows in Figure 7, the Waterfall approach focuses on a sys-
tematic progression between different phases. Each of the phases consists of a set of
activities that must be accomplished before the next phase. After completing one
phase, the next one may begin, and so on. The output of the previous phase serves
as an input for the following phase. [22]

The first step in the Waterfall model is to gather the requirements. In this
phase it is critical to collect all requirements, because system design is based on
the requirements specification. Thus, the system might not be able to satisfy the
requirements that are added at later stages, which might lead to an unusable system.

24

After this phase is completed, the requirements specification is passed onwards to
the next phase.

The second and third phases consist of analysis and design phases, respectively.
The analysis phase consists of investigating the requirements that were collected in
the previous phase. The results of the analysis are then passed to the actual design
phase. In the design phase, the system is designed so that all requirements are taken
into account. Naturally, the design can only be based on the current understanding
of the requirements. If any new requirements are introduced, a step backwards in
the model might be necessary. Before the actual coding can be started, it is crucial
to understand what exactly will be created and what will it look like. Hence, in the
design phase all the initial ideas and plans are solidified.

The fourth step in the Waterfall model consists of the actual coding. If the
model has been followed successfully, the implementation phase should be relatively
straightforward. This is due to the fact that all requirements and selected design
principles should be known at this stage. Problems may occur, if more requirements
are introduced. This, however, is against the principles of the Waterfall model.
Finally, the coding phase passes the code onwards to the next phase.

The fifth and sixth phases consist of testing and operations, respectively. When
the testing phase is reached, the major parts of the code have been finished. However,
there might still be some minor enhancements or bug fixes that must be coded. The
main goal for the testing phase is to ensure high software quality and to discover
critical faults from the system. After extensive testing, the product is ready for
delivery, or whatever operations it has been intended for.

In large-scale software development projects that involve several people, the Wa-
terfall model might not be an optimal choice, because the method itself is more
process-oriented rather than people-oriented. Perhaps the main drawback of the
Waterfall model is its certain inflexibility. Accurate collection of the requirements at
the beginning of the project is a real challenge, since they tend to change, especially
during large-scale projects. In practice, customers are unable to tell everything they
need in advance, which might cause problems at later phases in the development
lifecycle. [22]

In the worst case, the problems encountered lead to redesign, recoding and retest-
ing. This could happen, if a critical fault was found from the system during the
testing phase, and if there was no other way to solve it other than with a completely
new design. However, these kinds of problems tend to hamper large-scale rather
than small-scale projects. In general, the Waterfall model is considered to adapt
reasonably well to small software projects [22].

The Waterfall model might be getting a little obsolete in terms of today’s software
development, but for this thesis, it is not worth using any other than the basic
approach provided by the Waterfall model. The reason is that the development
of the prototype is a very small-scale project, and as stated earlier, the Waterfall
model should be suitable for a small project like the one in this thesis. In addition,
an iterative approach that some other software development models offer, is not
considered necessary.

25

4.4 Programming languages relevant to the prototype

Before the coding phase of the prototype can be started, a decision must be made on
the programming language for the prototype. Each programming language has its
own characteristics, pros and cons. Thus, it is important to select a programming
language that offers the best benefits for the ongoing project.

The strategic decision on the programming language could be based on the pop-
ularity of programming languages. As of today, Java and C are the most popular
[23]. Thus, adoption of either of those programming languages could be considered
as a safe choice for most projects. Popular programming languages often have the
advantage that they are widely supported, i.e. they have support for multiple plat-
forms and operating systems, and there is a lot of documentation available for the
developers. In addition, popular programming languages are likely to have a wide
range of APIs (Application Programming Interfaces) for various purposes, including
graphical user interfaces, security, networking etc.

In this thesis, only Java and C are considered as possible programming languages
for the prototype. The first reason for this is their popularity, which ensures long-
term support for the tool under various environments. Second, selection of either
Java or C guarantees more time for the prototype development, because it is not
required to learn a new programming language. Finally, both Java and C offer good
enough performance and support for a wide range of APIs, which can be useful
during the prototype implementation.

Next, the following subsections give a brief introduction to Java and C, respec-
tively. The selection of a suitable API for the prototype depends on the chosen
user interface, thus no APIs are introduced in the following subsections. However,
Section 5.8 (p. 36) presents the possible user interfaces with a brief description of
suitable APIs.

4.4.1 Java

Currently, Java is the most popular programming language [23], possibly due to its
simplicity and the fact that it can be run on multiple platforms. Java is used in all
kinds of applications, ranging from small web applets to large commercial tools.

Java is a programming language that can be written on one platform, after which
it can be run on many platforms without recompiling. This is possible, because the
Java compiler compiles the source code into bytecode, which is executed by the Java
Virtual Machine (JVM). Thus, the same bytecode can be run, for example, in Unix
and Windows environments. [24]

The platform independence is one of Java’s greatest advantages. However, the
portability has its drawbacks. First of all, Java software might not run as expected
on different platforms. Thus, the software might require extensive testing on each
individual platform [25]. Second, the bytecode that Java uses does not offer as good
performance as binary code. Many other programming languages are compiled into
binary code, which can be run directly on the CPU (Central Processing Unit). In
Java, the bytecode is executed by the JVM, which, in turn, runs on the CPU. This

26

tends to deteriorate the performance of Java, at least to some extent. Hence, Java
might not be the best choice for applications that require high performance.

By definition, Java is an object-oriented language [24]. Java objects have certain
specified state information and certain behaviour, thus they are similar and anal-
ogous to real-world objects. Objects are used to describe some logical part of the
software, and if two objects are of the same kind, it is said that they are instances
of the same class.

Java has built-in garbage collection, i.e. the programmer does not need to worry
about allocating and de-allocating memory. Instead, the Java runtime environment
takes care of the memory management. This feature is convenient for programmers,
but the drawback of garbage collection is greater memory consumption and slower
runtime speed. [24]

Another strength of Java is its API (Application Programming Interface) that
promotes reusing code. After all, there is not much point to rewrite code that some-
one has already written and tested. In addition, Java’s built-in capabilities include
lots of useful functions, such as support for graphical user interfaces (GUIs). [24]

All in all, Java is a relatively high-level language, because the programmer need
not consider memory allocations. This makes Java suitable for e.g. quick prototyp-
ing. In addition, Java’s simplicity and portability are highly useful features, which
can partially explain Java’s popularity.

4.4.2 C

In contrast to Java, C is a relatively low-level language. This means that C handles
similar types of objects to those that most computers do, with no possibility to deal
directly with advanced data types, such as character strings, arrays or lists. This
also means that there is no garbage collection, like in Java. However, C supports a
comprehensive amount of operators and data structures, and features modern flow
control, thus allowing C to adapt to all kinds of needs. [26, p. 5–7]

C features a block structure that encourages well-structured programs. The
software structure also includes functions that are the containers for executable code.
Function calls are used to provide higher-level capabilities. For example, functions
can be used to derive new data types from the built-in low-level data types. Due to
the popularity and evolution of C language, a standard set of functions have been
developed. This so-called standard library provides a reasonable amount of features,
allowing more advanced techniques to be used. [27]

Although C is a relatively simple and minimalistic language, it is not tied to
any particular computer architecture. On the contrary, C was developed for cross-
platform programming in spite of its low-level capabilities. Thus, C makes it possible
to create programming applications that are portable across a wide range of plat-
forms. [26, p. 5–7]

In terms of performance, C is an effective language that offers superior execution
speed [26, p. 5–7]. This is due to C’s straightforward architecture that allows the
programmers to operate close to the underlying computer [27]. Another reason
explaining C’s good performance is the use of simple compilers, which compile the

27

source code directly into binary code.
To conclude, it could be said that good performance combined with cross-

platform capabilities are the key factors explaining the success of C. In general,
C is perhaps more efficient and faster than Java. However, from the thesis point
of view, there should be no significant difference in the performance, because the
prototype for network level configuration and auditing is a relatively small-scale ap-
plication. In other words, both Java and C are suitable for the prototype in terms of
performance. Hence, one of the key factors in the programming language selection
is the support for suitable APIs.

28

5 Tool for network configuration and auditing

This chapter focuses on introducing the prototype for network level configuration
and auditing. First, the current challenges regarding network configuration and
auditing are presented, followed by a solution proposal that could make it somewhat
easier. The third section introduces the purpose for the prototype. In the fourth
section, some possible use cases for the tool are identified, including the target
audience. Then, the focus area of the prototype is described, followed by a section
that explains the operational principle and challenges of the prototype. After that,
the requirements for the tool are presented. The requirements specification is divided
into must-have and nice-to-have features. Section 5.8 (p. 36) describes the solution
alternatives that are examined before implementing the prototype. Finally, the
process explaining the prototype evaluation is presented at the end of the chapter.

5.1 Current situation

Configuring and auditing networks can be challenging tasks in modern communica-
tion networks. Network configuration is necessary when e.g. new nodes are intro-
duced to the network. Reconfigurations, on the other hand, are needed when some
network parameters need to be modified, for example due to some problem in the
network. In both cases, it is essential to get the network fully operational in a timely
manner, without causing downtime that could decrease revenues for the operator.

Network auditing, on the other hand, is important in order to provide reliable
service with as little disturbances as possible. The ultimate goal of network auditing
is that all problems or issues are discovered and solved well before they escalate to
a larger scale. For example, with proper network supervision, a hardware fault
would be detected and fixed much earlier than without any supervision at all. In
general, proactive network auditing would help in minimising network downtime
and congestion, and at the same time, end-user satisfaction could also be improved.

As of today, no common tool exists which is capable of handling the major tasks
regarding configuration and auditing on a network level. Hence, engineers analysing
and configuring operator core networks need to rely on several different tools, be-
cause almost every different network node requires its own tool. This makes network
configuration a time-consuming task, since configuration data must be collected from
several locations using multiple tools. Also network auditing is rather challenging,
mostly due to the same reason. Because of these challenges, getting an overview of
the network structure might be difficult. This, in turn, can potentially lead to mis-
configurations that may have a negative impact on the network. In addition, finding
some small error in the configuration might take lots of time without a clear view of
the network. The following section offers a possible solution to the challenges that
are faced today.

29

5.2 Solution to the current challenges

As stated in the previous section, several tools are currently needed for network
level auditing. Thus, network auditing is anything but easy and user-friendly. It
is clear that network auditing should be made somewhat easier, since there is no
possibility to gather all network data together for a clear overview of the network.
The same applies to network configuration, since mastering several tools requires a
lot of unnecessary competence, which should not be the case.

In this thesis, development of a network management tool is offered as a solution
to the current challenges. This is because there is an identified need for a tool capable
of configuring and supervising networks. A network level tool should, obviously,
support several node types, minimising the number of tools that are currently needed
in network level configuration and auditing. Having all the necessary network level
functions in one clever tool would also mean less manual work in terms of network
management.

The possibility to make configurations to the network elements combined with
network level auditing capabilities form the basic requirements for the tool. These
high-level requirements could be satisfied with a proper tool that is intended just
for those specific purposes. The vision is that such a tool would solve the challenges
that are faced today in network level configuration and auditing, at least to some
extent.

In the scope of this thesis, however, is only to implement a prototype. After
the thesis, the development of the tool might continue, if decided so by the product
management. The idea is that the prototype should be capable of network level
configuration and auditing, but only to some extent. As it is a prototype, it will
have limited features. For example, only a few key nodes are to be supported, instead
of all UMTS core network elements. More exact requirements for the prototype are
introduced in Section 5.7 (p. 33).

It would be highly beneficial if the development process of the prototype could
give information about the feasibility of the tool. This is one particularly important
goal for the prototype and its development. Later on, this kind of information could
be used when making decisions on a possible full-scale implementation. In the next
section, the purpose for the prototype is presented in more detail.

5.3 Purpose for the prototype

Perhaps the main purpose for the network level configuration and auditing prototype
is basically to show that it can be done, since new designs may have problems that
were totally unexpected. Without any further knowledge on this matter, future
plans cannot be even considered. A successful prototype might also convince product
management of the necessity and opportunities of the tool. In general, prototyping
may offer a great learning experience and a good impression of what can be achieved.
This, in turn, can help getting the required funding and resources that are often
needed for a full-scale implementation.

Another fundamental purpose for the prototype and its development is finding

30

answer to the research problem of the thesis as well as reaching the rest of the
thesis goals. The research problem is to evaluate the feasibility of the prototype, i.e.
find out how well it adapts to combining network level configuration and auditing
functionalities. Such an evaluation must be done before any decisions on a full-scale
implementation can be made. The other goals that the prototype can hopefully
answer include e.g. whether the tool is capable of simplifying or speeding up the
tasks that involve network configuration and auditing. Section 1.2 (p. 1) presents a
more detailed description regarding the research problem and thesis goals.

As stated in Section 4.1 (p. 20), the building of a prototype is an essential
part of practically any tool development. Therefore, a prototype for network level
configuration and auditing is considered necessary. In this thesis, an additional
purpose for the prototype is to get information about any issues that must be tackled
prior to a possible full-scale implementation. Also the practical experience from the
tool development may turn out to be valuable later on. It is vital to get that kind of
information during the prototyping phase of the project, because in case that there
are major changes that need making, they can be implemented in the later versions
at a reasonable cost.

5.4 Use cases and target audience

In general, the tool for network level configuration and auditing could be used in
various situations related to network management. The tool could be used, for ex-
ample, to locate misconfigurations or other problems in the network, to supervise the
network to make sure everything works as planned and to perform reconfigurations
due to node migration or malfunctioning hardware. The aim is that the tool could
provide a quick overview of the network, enabling fast and efficient task handling.

The prototype is targeted only towards Ericsson’s internal use. Thus, the end-
users are engineers who work with various tasks at Ericsson. The prototype could be
used to help configuring and auditing test networks that often need to be updated
to satisfy new needs. The prototype could also be used to help solving customer
service requests, hopefully faster than before. With the prototype, a customer’s
network could be audited remotely without compromising network security, because
only node configuration data from the network is needed, i.e. physical access to
the network is not necessary. In this case, the configuration data must be fetched
and provided by the operator. Moreover, performing reconfigurations is not pos-
sible without access to the network, but the configuration scripts could be easily
distributed to the customer.

Good customer service in terms of quick problem resolution is something that
is worth trying to achieve, and its importance must not be underestimated. Thus,
another use case for the tool could be creating extra value to the customers with
improved problem resolution. In general, over the past few years new business
models have emerged that are focusing more and more on services, rather than on
product sales [28]. The shift from products to services has been due to declining
revenues from product sales and due to increasing revenues generated by services
[28]. The ongoing trend has caused also the telecommunications equipment vendors

31

to seek for new sources of income by emphasising services more than before. Thus,
there is a chance that the tool for network level configuration and auditing could
contribute positively to Ericsson’s service portfolio.

The prototype as such is not to be released for users outside of Ericsson. However,
the productisation of the tool is a future vision. Before the vision can become reality,
the tool must be implemented on full-scale. After that, the tool could be distributed
also to the customers and end-users who work for various operators. Then, each
operator could audit and configure their own networks using the tool. In the next
section, the focus area of the network level configuration and auditing prototype is
introduced.

5.5 Scope of the prototype

As of today, at Ericsson there is an identified need for a network level configuration
and auditing tool. However, before a full-scale implementation can be taken into
consideration, the usefulness of the tool must be evaluated. For this purpose, a
prototype is an ideal choice, and this is also the reason why a prototype is developed
as a part of this thesis. Furthermore, prototyping can provide a lot of additional
information that can be useful later on. As explained in Section 4.1 (p. 20), one of
the benefits is the opportunity of discovering new requirements. However, in order
to take full advantage of the prototype, its scope must be carefully considered.

The prototype that is developed in this thesis is limited to supporting Mobile
Media Gateways (M-MGws) and Mobile Switching Centers (MSCs). There are
three main reasons for supporting only M-MGw and MSC nodes. First, both node
types are key elements in the Ericsson Mobile Softswitch Solution. Second, it was
thought that the usefulness of the network level configuration and auditing tool can
be evaluated using only the M-MGw and MSC. Finally, the third reason is Ericsson
Finland’s involvement in M-MGw development.

The prototype should be capable of M-MGw configuration and auditing as well
as MSC auditing on an IP level. As explained in Section 2.2 (p. 6), support for IP
(Internet Protocol) guarantees a future-proof solution. This makes up the first rea-
son for choosing IP-level support for the prototype. The second reason is Ericsson’s
need for an IP-level configuration and auditing tool. And finally, it was considered
that no other bearers are needed in order to evaluate the usefulness of the tool.

In future, the tool might be extended to support all Ericsson node types as well
as routers and switches. For instance, support could be added for the Radio Network
Controller (RNC) and Base Station Controller (BSC). Also, other bearers, such as
ATM (Asynchronous Transfer Mode) and TDM (Time Division Multiplexing) could
be introduced into the tool, since they are still widely used in operator networks.
From a prototype design perspective, attention must be paid to future-proof and
modular design, allowing the addition of new bearers and node types.

32

5.6 Operational principle and technical challenges

The high-level operational principle of the prototype is shown in Figure 8. The
idea is to combine the configuration data from various nodes and to provide an
overview of the network and its status in a user-friendly format. In addition, the
prototype should be capable of performing reconfigurations. When reconfigurations
are performed, the tool provides configuration scripts. Each script is then executed
in order to modify the network level parameters of the corresponding node. After
that, the new configuration can be used as an input for another round of network
level auditing and configuration.

Figure 8: The high-level operational principle of the prototype.

In step 1, the node configuration data is fetched from the network elements. In
the case of the M-MGw, MoShell is used to fetch all Managed Objects. When the
data is fetched from the MSC, either WinFIOL or a remote connection using SSH
or Telnet can be used. It is a simple procedure to get all necessary configuration
data from the nodes, because a few commands merely need to be executed. In
the end, all network configuration data is stored in files, each of which contains
the configuration from one node. These files are then handled by the prototype.
To keep it simple, automatic data fetching is not considered during the prototype
development. However, automatic data fetching would make network level auditing
far more convenient, thus it should be considered as a possible future improvement.

In step 2, the tool is used to parse the configuration data. In this step, the
configuration data is manipulated so that the IP configuration of the network can
be shown in a user-friendly format. Then, the user interface of the tool allows
end-users to audit the network and its status, and to make reconfigurations.

33

In step 3, the tool creates the configuration scripts based on the end-users actions.
The scripts are just standard text files that include commands for each network
element. After the scripts have been created, they must be executed in the node in
order to make any actual changes to the node configuration. The reconfigurations of
the M-MGw can be done with MoShell or Node Manager. Again, the scripts must
be executed manually, but automatic configuration can be seen as a possible future
improvement.

The operational principle of the prototype has its technical challenges. First,
the prototype is dependent on other tools. There is no guarantee that the output of
e.g. MoShell will remain as it is. In its future releases, even a slight change in the
output format could cause incorrect behaviour of the data parser. Thus, the need
for irregular updates is a possibility. Second, the prototype is neither automatic
nor real-time. This means that the end-user must fetch the data from the nodes
manually, after which the network can be audited. Hence, the network overview and
status are not based on the present time instant. In fact, the network overview and
status are shown as they were when the node configurations were fetched. Thus,
the prototype has limited capability to show the current network status that might
have changed after the configuration data was last fetched. Third, after performing
configurations, the data from the network must be fetched again in order to audit
the new network configuration. This can take a significant amount of time, which
should not be the case. The success of the reconfiguration should be confirmed by
the tool immediately.

It should be noted that there are several alternatives to create a prototype for
network level configuration and auditing. The prototype that is developed in this
thesis, represents just one of them. Before implementing the tool fully, a feasibility
study is recommended in order to analyse the strengths and weaknesses of the given
operational principle, because it is possible that even better alternatives are found.
Next, the following section describes the requirements for the prototype.

5.7 Requirements for the prototype

In this thesis, the prototype development follows the Waterfall software development
model. As suggested in Section 4.3 (p. 23), collection of the requirements is the
first and a highly important step in the development process. Thus, the IEEE 830
standard is used as a guidance for formulating the requirements for the prototype.
It is expected that the IEEE 830 standard could help providing a solid basis for the
rest of the tool implementation project.

However, the IEEE 830 standard is not followed entirely, since the standard is
meant for much larger software projects than the project in this thesis. In addition,
as the prototype for network level configuration and auditing concentrates only on
its core functionalities, there is not enough reason to follow the standard entirely at
all times, but rather to take advantage of its major guidelines.

As a prototype is developed in this thesis, it will have limited features. Thus,
the requirements for the prototype may focus entirely on the main functionalities
of the network level configuration and auditing tool. For example, the prototype

34

supports only Mobile Media Gateways (M-MGws) and Mobile Switching Centers
(MSCs), both of which are key nodes in the mobile core network. In fact, for the
prototype it is enough to be capable of M-MGw configuration and auditing as well
as MSC auditing. The detailed explanation for choosing only the M-MGw and MSC
for the prototype is given in Section 5.5 (p. 31).

Another important aspect of the requirements specification is its focus on the
possible full-scale implementation. For example, the prototype design must take
into account that new node types could be introduced to the tool. Support for all
network elements is mandatory for any future releases, because all nodes are needed
for the complete network level view. There is also a requirement for OS (Operating
System) independence, which is essential, because the end-users would most likely
use the tool on multiple platforms.

In this thesis, the identified requirements are collected into two separate lists,
which together form the requirements specification for the prototype. The first
list includes the mandatory requirements for the prototype, whereas the second
list contains optional requirements. Optional requirements consist of features that
would give extra value for the prototype. However, those features are not considered
mandatory as such. It should be noted that the requirements specification is based
on the requirements that are gathered before the actual design and coding phases.
Hence, some changes are possible.

It is worth pointing out that the requirements that are presented in this section
do not offer any ready solutions or design suggestions. Instead, the specification
serves as an input for requirements analysis. After the analysis phase, the actual
design of the tool may begin. In the following subsections, the must-have and nice-
to-have requirements are presented.

5.7.1 Must-have features

The requirements that must be included in the prototype are presented in Table 3.
These requirements can be divided into three categories. The first category describes
the requirements for network overview and auditing, whereas the second category
identifies the requirements for network configuration. The third category includes
the requirements for the general tool design.

Requirement 1.0 states that the prototype must be able to provide an overview
of the network configuration. This requirement defines the whole starting point for
the tool that is developed in this thesis. In requirement 1.1 the usability aspect of
the tool is considered, as the prototype must be able to convert the node configu-
ration data to a readable and user-friendly interpretation of the network structure.
Providing a logical view of the network is the key factor that determines the success
for the tool.

Requirement 1.2 states that network level auditing must be possible for both
the M-MGw and MSC, and as requirement 1.3 explains, the prototype must also
show the interconnections between the nodes. Finally, requirement 1.4 tells that
the prototype must show the link and interface statuses, which are important in
terms of problem resolution. In general, requirement 1.4 is absolutely necessary for

35

Table 3: The must-have requirements for the prototype.

No. Requirement
1.0 The prototype must be able to provide an overview of the network

configuration on an IP level.
1.1 The overview of the network must be in a user-friendly format.
1.2 There must be a possibility for M-MGw and MSC auditing.
1.3 The prototype must be able to show the interconnections between

network elements.
1.4 There must be a possibility to view the link and interface statuses

(with e.g. colour coding).
2.0 The prototype must support reconfigurations of M-MGw on an IP

level.
2.1 There must be a possibility to create configuration scripts for the

M-MGw (add, delete and modify scripts).
2.2 The prototype must be able to show the default and recommended

values for the chosen MO attributes.
3.0 The design must be OS independent, i.e. the prototype must work

on all major operating systems.
3.1 The design must be future-proof, i.e. the addition of new bearers

and node types must be possible.
3.2 The design of the prototype must be done on MO level to ensure

understanding of the node structure.
3.3 The prototype must support the latest M-MGw and MSC software

releases.

network level supervision.
Requirement 2.0 states that the prototype must support reconfigurations of the

M-MGw on an IP level. This ability to make configurations, combined with auditing
capabilities, makes the tool suitable for several different situations. The reconfig-
urations are done using configuration scripts. According to requirement 2.1, the
prototype must support configuration scripts for creating, deleting and modifying
Managed Objects (MOs).

Requirement 2.2 is about showing the default and recommended values for the
M-MGw MO attributes. This feature is primarily needed in reconfigurations, be-
cause when network parameters are modified, it is useful to know the default as
well as recommended values for each MO attribute. The values are useful also in
problem resolution, because network level issues may occur if some attribute value
has been set incorrectly. Thus, knowing the default or recommended value for each
MO attribute might help solving the problem. Requirement 2.2 states also that the
MO attribute view must be adjustable based on the user’s selections, thus allowing
the user to see only what is relevant. As there are different end-users each with their
own context of use, it is important that they have the chance to configure the tool
for their own needs.

36

Requirement 3.0 says that the prototype must work on all major operating sys-
tems. Furthermore, it would beneficial if the prototype worked out of the box, i.e.
without need for any installations. Requirement 3.1 states that the prototype must
be designed so that addition of new node types or bearers is a relatively simple task.
Requirement 3.2 tells that the prototype must have the complete MOM (Managed
Object Model) view of each M-MGw node, because understanding the node struc-
ture without it is practically impossible. Finally, requirement 3.3 states that the
latest software releases of the M-MGw and MSC must be supported.

5.7.2 Nice-to-have features

The nice-to-have requirements are given in Table 4. Even though these requirements
are not mandatory for the prototype, they are still considered highly beneficial.
Besides, these requirements are mandatory in the possible full-scale implementation
of the network level configuration and auditing tool.

Table 4: The nice-to-have requirements for the prototype.

No. Requirement
4.0 The prototype should support all M-MGw and MSC software re-

leases.
4.1 The prototype should be designed so that there would little or no

maintenance work needed when new M-MGw and MSC software
versions are released.

4.2 The prototype should support open file formats.

According to requirement 4.0 the prototype should work on all current and future
M-MGw and MSC releases. Requirement 4.1 states that only little or no main-
tenance work should be needed when new software versions are released. These
requirements are essential for full-scale implementation because of a large number
of different software releases that are being used. There should be only one version of
the network level configuration and auditing tool, and it should work in all networks,
no matter what software releases are used. This would make tool maintenance a
much easier task. It is also important that the maintenance work due to new node
releases is relatively simple.

Requirement 4.2 states that open file formats should be supported. This is partic-
ularly important for full-scale implementation in order to avoid becoming dependent
on a commercial platform or application. In future, the tool might be released to
customers, and it is possible that the end-users are using other than proprietary
applications and platforms. Thus, an open file format is the key to success.

5.8 Design alternatives based on the requirements

Before the implementation of the prototype can be started, it must be decided what
is the way forward. As a new type of a tool is under development in this thesis,

37

there should be more than just one alternative for the user interface (UI) design.
The importance of the UI selection must not be underestimated, because choosing
an alternative that does not satisfy all requirements may cause delays and waste a
lot of time.

The thing that makes the decision slightly more challenging, is the fact that the
requirements might change during the implementation phase. Obviously, a lot of
attention must be paid to getting all the requirements before any major decisions
are made. The changing requirements may still bring some uncertainty into the
project. From the prototype point of view, however, discovering such unforeseen
requirements would be really useful. In the end, the selection from the alternatives
can only be based on current understanding and on the set of requirements that are
available at that moment.

Before starting to work on this thesis, there was quite a clear vision of what
the network level configuration and auditing tool should look like. This vision was
shared by Tomas Nordman and Christer Hamberg, both of whom are engineers at
Ericsson Finland. The vision was to use a spreadsheet application as the primary
user interface. Thus, the selection of spreadsheet as the basis for the prototype was
recommended. Considering other options was, however, possible and also highly
recommended. [29]

It should be noted that an exhaustive search for all possible design alternatives
is neither feasible nor possible because of time constraints. The design alternatives
that are presented in the following subsections, are also the ones that are considered
when selecting the final design. Thus, the alternatives are described on a more
general level, leaving some room for further enhancements or adjustments that may
affect the final design during the implementation phase.

The following subsections introduce the UI alternatives for the prototype. A brief
description of suitable APIs (Application Programming Interfaces) is also given.
This is important, because an appropriate API could substantially ease the imple-
mentation of the prototype.

5.8.1 Spreadsheet as user interface

The primary alternative for the tool design is to use spreadsheet as the user interface.
This alternative is recommended by engineers at Ericsson. With this design, it
should be relatively easy to provide the network overview in a user-friendly format.
Moreover, spreadsheets are widely used worldwide. Hence, the majority of end-users
should be already quite familiar with the user interface, which is a great advantage.

The spreadsheet, with its two-dimensional grid, offers a rather intuitive user
interface for displaying complicated IP-level information. The built-in grid makes
it possible to take advantage of cells’ relative positions and other spatial concepts,
thus making it easier to understand the IP-level structure of each node. In addition,
each network element could be placed on separate sheets, allowing the end-user to
concentrate on one node at a time.

The spreadsheet design makes it possible to use different colours, lines and other
styles to provide visual hints about the meaning of different elements, i.e. enhancing

38

the user experience is relatively simple. For example, the operational state of cer-
tain links or interfaces could be indicated with green and red colours, and different
elements could be separated with lines, indicating that the elements do not belong
together.

Another advantage of the spreadsheet is the fact that the network configuration
could be saved simply to a single file. Hence, sharing the file and information about
the network would be really convenient. In addition, if the file was saved in a
standard file format, the spreadsheet could be opened and modified on all major
operating systems as well as with several office software suites, both open-source
and proprietary. In other words, there would be no limitations when it comes to
working with multiple platforms.

As a downside, the user interface of the spreadsheet might be a limiting factor
in some cases. Unless advanced features are used, there is a practical limit for what
can be expressed using the spreadsheet UI. However, the capability of spreadsheets
can be extended with macros. For example, VBA (Visual Basic for Applications) for
Microsoft Office enables developers to automate processes and to create functions
for various purposes [30, p. 11–15]. It must be noted that including built-in macros
to a spreadsheet, which is generated automatically from node configuration data,
can be a real challenge.

There are a few APIs for both Java and C that are capable of spreadsheet
handling. For Java, there is at least JExcel (http://jexcelapi.sourceforge.net)
and Apache POI (http://poi.apache.org), both of which enable reading, writing
and modifying spreadsheets dynamically. Both APIs support the Microsoft Excel’s
XLS file format, a common spreadsheet file format that can be handled by multiple
spreadsheet applications, both open-source and proprietary. JExcel and Apache
POI use a free software license.

For the C programming language, there is at least a multi-platform library called
xlsLib (http://xlslib.sourceforge.net), which is capable of spreadsheet han-
dling in XLS format. The xlsLib library is free software.

5.8.2 Development of a new user interface

Development of a totally new type of UI (User Interface) is considered as a sec-
ondary choice. For this reason, no detailed design proposals are introduced in this
subsection. Development of a new UI is considered only if severe drawbacks are
found from the spreadsheet design. This would require that some of the must-have
requirements could not be satisfied. Re-evaluation could also be necessary if some
other major issues were found from the spreadsheet design. In short, the main draw-
back of developing a new UI is the amount of time that would be required. Due to
the time constraints, this alternative is considered as a secondary choice.

As stated above, development of a new UI would require lots of time, in fact,
much more than the spreadsheet design alternative. A new user interface would
also require extensive pre-analysis and some usability testing. Furthermore, it is not
always practical to spend too much time on designing a new UI for a prototype,
especially if the goals of the prototype could also be reached with a simple yet

http://jexcelapi.sourceforge.net
http://poi.apache.org
http://xlslib.sourceforge.net

39

effective design. After all, the main purpose for the prototype is not to offer top-
notch design and usability, but rather to experiment its usefulness and to show
that such an application can be created. Later on, when the tool for network level
configuration and auditing is implemented properly, it is a good idea to spend more
time polishing the user interface for an improved user experience.

As an advantage, the new type of UI could offer practically unlimited number of
design alternatives that would certainly satisfy almost any requirement. Thus, the
new type of UI could overcome the limitations that the spreadsheet has. Similarly
to the spreadsheet, the new type of UI could also be used on multiple platforms, if
properly implemented.

If a new graphical user interface was developed, Java would be preferable to C.
Java has powerful widget toolkits for GUI handling, such as Swing or the earlier
AWT (Abstract Window Toolkit). Swing alone should provide all that is needed for
the prototype. However, there is a feature rich toolkit also for the C programming
language that could be used. It is called GTK+ (http://www.gtk.org). GTK+ is
licensed under a free software license.

Finally, if the prototype for network level configuration and auditing was devel-
oped with a new type of user interface, it would be unlikely that all tool requirements
could be satisfied in the scope of this thesis. Next, the tool evaluation process is
described in the following section.

5.9 Prototype evaluation

As stated in Section 4.3 (p. 23), the Waterfall model is used during the prototype
development. However, the testing phase of the prototype is not as extensive as
recommended by the Waterfall model. The reason for this is that a prototype is
merely under development, i.e. the prototype will not be released as a ready product
as such. The prototype will instead go through tool evaluation.

First, the prototype is tested against the requirements to ensure that all the
requirements have been included in the tool. Then, the prototype can be used
to see how well it performs in different test networks. At first, it is possible that
some problems are encountered, thus some time must be reserved for fine-tuning the
prototype.

The prototype itself will be available for Ericsson’s internal use without any
restrictions, i.e. everyone willing to try may participate in the tool evaluation. In
order to get started, some learning or demonstration sessions might be arranged in
order to go through the basic functionalities and limitations of the prototype. It
is also essential to show how the configuration data is fetched from the network
elements. The sessions are arranged based on the general interest and act as the
main media for sharing knowledge related to the prototype. It is unlikely that a
user guide of any kind will be written just for the prototype.

After the tool has gone through evaluation at Ericsson’s test environment, there
should be a clear view of the strengths and weaknesses of the tool. Finding weak-
nesses from the prototype is positive, because it will lead to iterating the chosen
design in possible future versions. Discovering new requirements would also be use-

http://www.gtk.org

40

ful. It would mean that those new requirements could be taken into account in
future releases.

Finally, the next phase after tool evaluation is the decision on the full-scale
implementation of the tool. This key decision is made by the product management,
and the results of the tool evaluation play a key role in the decision process. Based on
the decision, the tool development is either continued after the thesis, or discarded.

41

6 Results

This chapter presents the results regarding the tool implementation. First, the tool
development lifecycle is discussed. Second, the decisions on the user interface design,
programming language and API are explained. Section 6.4 (p. 44) presents the final
design of the prototype, including brief descriptions of the main features. Also the
strengths and weaknesses of the prototype are identified in the same section. Then,
the results of the tool evaluation are discussed. Finally, the analysis of the results
is presented at the end of the chapter.

6.1 Tool development lifecycle

The prototype for network level configuration and auditing was developed with the
help of the Waterfall model, as described in Section 4.3 (p. 23). The model offered
an organised way to steer the development process all the way from the requirements
to a complete prototype, although the model was not strictly followed at all times.
For example, the testing phase was not done as extensively as the model suggests,
but this was intentional. Since the prototype is not released as a ready product,
there was not enough reason to test it systematically on all node releases or to write
comprehensive test descriptions.

In general, the Waterfall model turned out to be useful during the tool implemen-
tation, because it indicated clearly what the way forward should be. In addition, the
Waterfall model enabled a practical way to keep track of the development progress,
which, in turn, allowed more exact estimation of the remaining workload. This was
considered highly beneficial during the tool development.

Furthermore, the Waterfall model made it easy to recognise the most important
focus areas of each development phase. This helped minimising the risk of time-
consuming mistakes. For example, it was essential to have all requirements prior to
starting the actual design and coding phases. The tool requirements were discussed
in Section 5.7 (p. 33).

If only a part of the requirements had been available and some code was written
based on them, there would have been a risk that the system would be unable
to satisfy the requirements that are introduced later on. This would have led to
redesigning the whole system, thus making the current design and the code obsolete,
at least to some extent. With the Waterfall model, however, these kinds of issues
were successfully avoided during the prototype development, since there was no need
to do any major changes to the carefully chosen design.

6.1.1 Development phases

The first step in the tool development was to gather the requirements before moving
on to the analysis phase. The requirements were discussed in a meeting, and a
written document was created afterwards. The requirement list itself did not change
during the tool development, which was a significant advantage. As stated earlier,
introduction of new requirements could have led to rethinking the tool design, thus
lengthening the development time.

42

After the requirements were collected, it was time to analyse them and to make
design proposals. As a result, two design alternatives were considered before the
actual coding was started. The first and primary alternative was to use a spreadsheet
as the user interface, while the second option was to create a totally new type of
design. In the end, the spreadsheet turned out to be the most rational option.
Hence, it was decided that the prototype must be based on the spreadsheet design.
The next section presents more reasons explaining why the spreadsheet design was
chosen.

After the design had been chosen, it was time to choose the programming lan-
guage. Java and C were considered, and Java was selected for this project. Java
offered several advantages, including portability from one environment to another.
In addition, Java is supported in all major operating systems, thus it satisfies the
requirement for OS independence. In order to create and read spreadsheets with
Java, one option was to use some ready-made API (Application Programming Inter-
face). Although other options were also considered, a Java API called Apache POI
(http://poi.apache.org) was chosen to provide support for spreadsheet handling.
The chosen programming language and API are described in more detail in Section
6.3 (p. 43).

During the coding phase, weekly meetings were organised in order to discuss how
the programming phase is proceeding. The idea was to show what had happened
since the previous week’s meeting and also to highlight any problems that need
to be solved. In the end, the meetings were arranged roughly every two weeks.
Nevertheless, the meetings provided a lot of useful input, suggestions and fresh
ideas about the implementation in general.

The tool was tested continuously on many different nodes during the coding
phase. At least to some extent, this procedure ensured a good support for various
network elements, including different configurations and software releases. However,
this type of testing was not carried out on all possible configurations. In addition,
the testing was done only in the local test environment, because configuration data
from live networks was not available.

After the coding phase was finished, the tool was evaluated as explained in
Section 5.9 (p. 39). In the tool evaluation, the tool was used at Ericsson’s test
networks in order to see how it performs. The results indicate that the prototype is
able to audit the networks successfully, and also network level configuration seems to
work relatively well. Section 6.5 (p. 48) presents the outcome of the tool evaluation
in more detail.

6.2 Chosen user interface design

Based on the design alternatives that were proposed in Section 5.8 (p. 36), it was
decided to use spreadsheet as the UI (User Interface) of the prototype. Prior to
starting the prototype development, the spreadsheet design was considered as the
best choice, and the analysis of the alternatives confirmed this.

Designing and developing a totally new type of GUI (Graphical User Interface)
would have been somewhat risky, considering the limited amount of time for the

http://poi.apache.org

43

thesis. Creation of the new GUI would also have required an extensive pre-analysis
and possibly some usability testing. Thus, the new type of GUI was not the best
alternative for quick prototyping.

The most rational choice was therefore to select the spreadsheet as the UI of
the prototype. Unlike the other choice that required a new design, the spreadsheet
did not have such time constraints that would have limited its suitability for quick
prototyping. The most important reason for this selection was, however, that it was
able to satisfy all the requirements that were set in Section 5.7 (p. 33).

There are four additional reasons that are in favour of the spreadsheet alternative.
First, the UI of spreadsheets is familiar to the majority of targeted end-users. This is
due to the popularity of e.g. OpenOffice.org Calc, Microsoft Excel and Google Docs.
Hence, it should not take too long to learn the basics of the tool. Furthermore, the
spreadsheet design does not restrict the end-users to any specific platform. They
may stick to the office software suite and operating system of their liking, no matter
whether the platforms are open-source or proprietary.

Second, the spreadsheet is a good alternative from a usability point of view.
The UI fits well to providing an overview of the network, i.e. using spreadsheets for
network management is rather intuitive. Each sheet may be used to represent a
different logical node and hyperlinks can be used to link different sheets in a simple
but effective way. For instance, M-MGw IP configuration includes a number of
remote IP addresses that are used for both signalling and payload. Linking of remote
IP addresses to the corresponding local IP addresses enables easy navigation between
nodes. The links also make it easier to understand the network configuration. More
features of the prototype are presented in Section 6.4 (p. 44).

Third, there are quite a few APIs that have been developed for spreadsheet
applications, some of which, are well maintained and under constant development.
An adequate level of API support is one advantage of the spreadsheet design.

Finally, spreadsheet functionalities can be extended with macros. Macros con-
sist of commands that could be used to enrich the user interface by making it more
interactive. In general, macros offer a relatively easy way to enhance the user expe-
rience.

6.3 Chosen programming language and API

Java and C were the candidates in the programming language selection. Both of
them meet the requirement for the OS independence, and both programming lan-
guages can be used for spreadsheet handling. In the end, Java was chosen as the
programming language for the prototype because of its better portability between
different platforms.

Java is widely adopted in the majority of workstations. Thus, Java often works
out of the box, or at least with the minimum number of required installations.
Moreover, as the targeted end-users of the tool are not tied to any specific platform,
Java’s platform independence and portability are useful features. For these reasons,
it was logical to select Java for the prototype development. The following subsections
discuss the chosen Java API and certain software requirements for the prototype.

44

6.3.1 Spreadsheet handling with Apache POI

The prototype for network level configuration and auditing uses a Java API called
Apache POI (http://poi.apache.org) version 3.7 for spreadsheet handling. Apache
POI supports several file formats used in office software suites, including the XLS
file format which is used in the prototype.

Apache POI was chosen, because it is free software, well maintained and seems
to be getting updates on a regular basis. In addition, Apache POI provides a good
developer’s guide, thus making it easy to get started. Currently, Apache POI does
not support macros, but the support for them could, hopefully, be added in future
releases.

Alternatively, the prototype could have been based on XML handling, similarly
as the Nemo tool. However, the XML interface was considered more complicated
than Apache POI, and there was no reason not to take advantage of a ready-made
toolkit that is freely available.

6.3.2 Java and spreadsheet requirements for end-users

The prototype for network level configuration and auditing can be run on any plat-
form provided that Java Virtual Machine (JVM) has been installed. JVM is needed
for generating spreadsheets and configuration scripts. The actual source code of the
prototype has been compiled with Java version 6. Hence, Java Runtime Environ-
ment (JRE) version 6 or later is required.

The prototype uses Apache POI for handling the spreadsheets in XLS file format.
Hence, a spreadsheet application that can handle (read and write) the XLS file
format is required in order to manage the files generated by the tool. For example,
Microsoft Excel and OpenOffice.org Calc are supported by the prototype.

6.4 Proposed solution

The prototype for network level configuration and auditing follows the high-level
operational principle shown in Figure 8 (p. 32). The prototype supports the config-
uration and auditing of Mobile Media Gateways and the auditing of MSC Servers,
including the MSC-S Blade Clusters. The configuration and auditing is possible on
an IP level.

The user interface of the prototype aims at being easy to understand, enabling
easy network auditing and configuration. This requires certain built-in logic in order
to organise the configuration data to a spreadsheet. In the case of the M-MGw, the
prototype utilises the familiar structure of the Managed Object Model (MOM). The
Managed Objects (MOs) are grouped based on their MO types, so that similar
MOs with similar attributes and functions are always shown together. In addition,
the prototype takes advantage of the hierarchical structure of the MOM by using
parent-child and reserved by -relations of Managed Objects.

The user interface of the prototype resembles the UI of the Nemo tool, although
Nemo is used for quite different purposes. Hence, the users of the Nemo tool can
find certain similarities in the UI design, which probably makes it easy to start using

http://poi.apache.org

45

the prototype. Those end-users, who are not familiar with Nemo, might need a little
more time to learn the basics.

It is worth noticing that the proposed solution is just one alternative for a network
level configuration and auditing tool. By all means, it does not mean that the
proposed solution is the optimal one at all. In fact, it is most likely even better
alternatives exist only waiting to be discovered.

6.4.1 Functional design

The functional design of the prototype is illustrated in Appendix A (p. 55). At
first, node configuration files are fetched from the network with e.g. MoShell and
WinFIOL. The network data must be fetched and saved to a file manually, although
scripts can be used to speed up the process. Finally, the node configuration files
are added to a specific input folder, from which the prototype can find the network
data. After this, the prototype is ready for network auditing.

In network auditing mode, the prototype parses each file in the input folder and
creates a spreadsheet in a specific output folder. The spreadsheet, which holds the
network’s IP configuration, contains two or three sheets per node, as explained in the
next subsection. The spreadsheet also provides the status information of different
links and interfaces. The IP configuration from all network elements, together with
status information, enables network level auditing.

After the IP configuration file has been created, the end-user may perform recon-
figurations. In M-MGw configuration mode, the XLS-based spreadsheet is parsed
in order to detect the changes that the end-user has requested. As an output,
node-specific MO scripts are created to the output folder. Each script must then
be executed in order to modify the network level parameters. This can be done
with MoShell or Node Manager. In the next subsection, the main features of the
prototype are presented.

6.4.2 Feature descriptions

In this subsection, the most important features of the prototype are presented. The
following subsection explains the strengths and weaknesses of the prototype.

Nodes on separate sheets
In the prototype, each network element reserves two or three sheets, depending on
the node type. M-MGw nodes have two sheets, one for the IP signalling table and
the other one for default MO values. Also MSC Servers have two sheets, one for the
IP data table, and the other one for the IP routing table. MSC-S Blade Clusters
have one additional sheet, which is for the VLAN (Virtual Local Area Network)
table.

Each node is placed on separate sheets, since this practise allows the end-users
to concentrate on one node at a time. This makes it easier to get an overview of the
node’s configuration.

46

Node configuration view and status information
The IP configuration of each node is shown on the IP signalling or IP data sheet,
depending on the node type. The sheets present the nodes’ IP configuration as well
as the status information of various links and interfaces. The prototype presents
the status information with colour coding: green means enabled status, red means
disabled status and orange means unstable status.

The configuration from all network elements, together with the status informa-
tion, enables network level auditing. Figure 9 shows an example from the prototype,
presenting a few Managed Objects and their statuses. The figure also shows the
grouping of Managed Objects based on their MO type as well as some MO attributes.

Figure 9: MO statuses are indicated with colour coding.

Hyperlinks for easier navigation
The IP configuration of each network element includes remote IP addresses, which
are used for data exchange between nodes. A remote IP address in one node corre-
sponds to a local IP address in some other node. The prototype shows the intercon-
nections between different nodes by providing a hyperlink from remote IP addresses
to the corresponding local IP addresses. Hyperlinks are also used to connect Man-
aged Objects between the IP signalling table and default values table.

In general, hyperlinks make it easier to understand the network configuration,
because they allow easy navigation between nodes and sheets. Figure 10 shows an
example of linked remote IP addresses on an MSC Server. The figure also shows the
status information of certain MSC-S interfaces.

Node reconfigurations
The prototype makes it possible to create configuration scripts for M-MGw nodes. It
is possible to generate add, delete and modify scripts by inputting text to the status
fields shown in Figure 9. The letter ’D’ creates a delete script for the corresponding
MO as well as for the other impacted MOs. Any other input creates a new MO with
the given identity or modifies the pre-existing MO. All changes to the MO attribute
values are read directly from the spreadsheet.

With macros it would be possible to illustrate which MOs are affected, if a change
was applied to a certain MO. For example, if a ’D’ was typed into the status field
of some MO, ’D’ could also be shown in the status fields of all affected MOs. This
type of feature can be seen as a possible future improvement.

47

Figure 10: Hyperlinks are used to connect remote and local IP addresses.

Default and recommended MO attribute values
Default and recommended MO attribute values are needed mostly in reconfigura-
tions and in troubleshooting. The prototype is capable of showing these values for
all MO types and MO attributes. It is also possible to configure which MO types
and MO attributes are to be shown in the default values table. This can be done
by editing a configuration file that is automatically generated by the prototype.

As the end-users may choose what information is shown, the prototype can adapt
better to different needs. In Figure 11, the default and recommended MO attribute
values are shown for an MO type called IpInterface.

Figure 11: IpInterface MOs and some of their attributes.

48

6.4.3 Strengths and weaknesses

One strength of the prototype is that instead of processing only IP-related data,
it processes all data that is fetched from M-MGw nodes. Currently, the irrelevant
data is just left unused, but since the internal logic is done, the support for ATM
and TDM could be added without too much work. In the case of the MSC Server,
the support for new bearers requires changes to the data parser, but otherwise the
built-in logic can be reused.

Throughout the tool development, the prototype worked relatively well on vari-
ous M-MGw nodes with different configurations, hardware generations and software
releases. Hence, the prototype supports all current M-MGw hardware generations,
i.e. GMPv2, GMPv3 and GMPv4, but also R5 and R6 software releases. From an
MSC Server point of view, the latest hardware and software releases are supported.
The support also includes the MSC-S Blade Clusters. However, it is possible that
the prototype works on older MSC-S software releases as well, but the tool has not
been tested well enough to be sure.

Another strength of the prototype is that it can be used on multiple platforms
with open-source software. This can be ensured as the prototype is written in Java,
and the XLS file format can be handled by many office software suites.

The prototype has the advantage of showing the IP configuration with a glance.
In addition, the prototype is capable of showing the interconnections between the
nodes. Hence, getting an overview of the network configuration should be relatively
easy. In the end, the prototype is primarily a network auditing tool, because it can
provide the IP configuration together with relevant status information.

Although network level auditing is perhaps the greatest strength of the proto-
type, it also has its limitations. A weakness of the prototype is that it cannot provide
real-time status information from the network.

Network level configuration can be seen as a secondary feature of the prototype,
because the reconfiguration capabilities of the tool are limited. For instance, an
obvious weakness of the prototype is that it is only capable of simple configurations.
More complicated configurations must be done with some other tool, because the
prototype fails to support the configuration of all MO types. However, the support
for all MO types could be added to the tool, if it is considered necessary.

Finally, the prototype is designed to collect the entire network configuration in a
single file. As a weakness, the file might pose a threat to network security, if the file
ends up in wrong hands. If this issue is considered critical, e.g. password protection
could be added to the spreadsheet. Next, the following section presents the results
of the tool evaluation.

6.5 Outcome of the tool evaluation

The prototype was evaluated as described in Section 5.9 (p. 39). At first, the
prototype was tested against the must-have requirements, which were presented
in Table 3 (p. 35). As a result, it was confirmed that the prototype satisfies the
mandatory requirements, although it was not possible to verify requirement 1.1

49

because of its qualitative nature.
As a part of the tool evaluation, the prototype was tested at Ericsson’s test net-

works. As explained in the previous section, the prototype performed relatively well,
as it was capable of performing network level auditing and simple reconfigurations.
It would have been useful to test the tool also on live networks, but there were no
opportunities to do this.

One demonstration session was arranged in order to introduce the prototype
to Ericsson’s engineers. The session focused on the basic features of the tool. In
general, the discussion during the session provided interesting opinions about the
tool and its opportunities. First of all, the tool was seen as an improvement, as
it decreases manual work. The spreadsheet format was also seen as a good and
familiar user interface. It was noted that spreadsheet is a relatively common format
for displaying different network configurations. [31]

Some useful criticism was also given during the demonstration session. It was
noted that the prototype focuses on node level, which makes it challenging to un-
derstand the entire network configuration. It was also thought that if some MO
attribute values do not match to the recommended values, the tool should indicate
the network level impact. Currently, the prototype only shows the plain values,
without any indication of the practical impact on the network. [31]

In the demonstration session it was agreed that the main challenge of the tool is
discovering the optimal way to show the network configuration. Thus, more atten-
tion should be paid to the user interface in future releases. Finally, it was discussed
that the developed tool has a chance to succeed only if it can be demonstrated to
actual end-users, i.e. engineers who manage operator networks. [31]

The strengths and weaknesses that were presented in the previous section, to-
gether with the feedback from the demonstration session, offer lots of useful infor-
mation about the prototype. This information should be taken into account, when
the tool for network level configuration and auditing is developed full-scale. Any
plans or decisions regarding the tool development, however, have not been made.

6.6 Analysis of the results

In this thesis, one of the goals was to develop a functional prototype for network
level configuration and auditing. This goal was reached.

The research problem of this thesis was to analyse whether it is feasible to com-
bine network level configuration and auditing functionalities in the same tool. It
was shown that it is possible to discover and solve network level problems, such
as misconfigurations, using just one tool. Thus, the integration of configuration
and auditing functionalities is relatively efficient. Moreover, the efficiency of these
functionalities can be further improved in the full-scale implementation of the tool.

Another goal for this thesis was to find out whether the tool could simplify or
speed up the tasks that involve network configuration and auditing. The prototype
itself is suitable only for very limited use cases, as it supports only two node types
on an IP level. The full-scale implementation of the tool, however, has potential for
many more use cases, provided that its support is extended with new bearers and

50

node types. This could also mean that only one tool would be needed for managing
the entire network. Hence, the tool for network level configuration and auditing has
the potential to simplify and speed up network management.

Finally, the last goal for the thesis was to find out whether the tool is capable
of providing an overview of the network configuration and status. It was shown
that this is possible, because the prototype provides the configuration of each node
and also shows the interconnections between the network elements. In addition, the
prototype provides the status information of various links and interfaces.

All in all, it was worth developing a prototype, because a lot of information was
gathered about the feasibility of the tool. The collected information may provide
useful input for the full-scale implementation of the network level configuration and
auditing tool.

51

7 Discussion

This chapter is divided into three sections. The first section gives a brief summary
of this thesis. In the second section, conclusions are presented. At the end of the
chapter, some suggestions for the future development are given.

7.1 Summary

In Chapter 2, Ericsson’s Mobile Softswitch Solution (MSS) and its key network
elements were discussed. Chapter 2 also presented the ongoing transition towards
all-IP network architecture. It was concluded that IP-related competence and IP-
based tools are getting increasingly important in modern communication networks.

Chapter 3 presented various network and node management tools that are cur-
rently used. It was realised that no common tool exists capable of handling the
major tasks regarding configuration and auditing on a network level.

General theory and methodology were covered in Chapter 4. For instance, the
Waterfall model was presented, which provided an organised way to steer the tool
development process. In addition, the theory behind software requirements specifi-
cation and the importance of prototyping were discussed.

In Chapter 5, the prototype for network level configuration and auditing was
introduced. The prototype was designed based on the given requirements. For
instance, the requirements stated that the prototype must support the Mobile Media
Gateways (M-MGws) and MSC Servers on an IP level. Finally, the performance of
the prototype was evaluated at the local test environment.

Chapter 6 presented the results regarding the tool implementation. It was re-
alised that the network level configuration and auditing functionalities can be com-
bined efficiently in the same tool. It was also noticed that the prototype may perform
relatively simple tasks that involve network level auditing and configuration.

7.2 Conclusions

In this thesis, it was shown that it is possible to realise a new type of tool for network
level configuration and auditing. The tool development was a success, since the goals
of the prototype implementation were reached. The analysis and evaluation of the
prototype provided valuable information, which may be utilised in the case that the
tool development is continued after the thesis.

Only a limited number of persons participated in the tool demonstration session,
in which feedback from the tool was collected. Also, the prototype was not analysed
by targeted end-users, who could have validated the findings from the prototype
evaluation. Hence, the reliability of the findings could be questioned, as there might
be some inaccuracy when it comes to identifying the strengths and weaknesses of
the tool.

Nevertheless, it was shown that the prototype for network level configuration
and auditing is able to perform the tasks that were expected prior to the imple-
mentation phase. No unforeseen problems were discovered during the prototype

52

implementation. In addition, the prototype was designed so that its functionalities
could be extended with reasonable effort.

All in all, the tool that was designed in this thesis is considered suitable for
network level configuration and auditing. From a technical perspective, the full-
scale version of the tool has therefore potential to succeed. The evaluation of the
tool confirms these findings, since the tool was seen as an improvement to the current
situation. In the next section, some suggestions for future development are given.

7.3 Suggestions for future development

First of all, a feasibility study of the prototype is recommended prior to the full-scale
implementation of the tool. The study should examine whether the user interface
needs to be renewed when new bearers and node types are introduced to the tool.
At the same time, the usability of the proposed design could be studied. If the study
was carried out with actual end-users, there would be a great opportunity to collect
feedback and to promote the tool.

Another interesting topic that could be studied is automatic data fetching from
network elements and perhaps automated node configuration. Automated data
fetching at regular intervals would enable efficient and nearly real-time network
auditing.

It is recommended to add support for macros, because macros provide a relatively
easy way to improve the user interface. It is also worth analysing whether the infor-
mation security of the tool should be improved. For example, including password
protection to the generated spreadsheets would improve information security.

The prototype that was developed in this thesis was tested only on local test
networks. It is recommended that the full-scale version of the tool is tested on live
networks. Moreover, systematic testing on different network and node configurations
is recommended.

53

References

[1] Bos, L. and Leroy, S. Toward an all-IP-based UMTS system architecture. IEEE
Network, 2001, vol. 15, iss. 1, p. 36–45.

[2] Yang, J. and Kriaras, I. Migration to all-IP based UMTS networks. 3G Mobile
Communication Technologies, 2000, conference publication no. 471, p. 19–23.

[3] Ericsson. Efficient softswitching. Online document, 2009. Referred 14.3.2011.
Available at: http://www.ericsson.com/res/docs/whitepapers/
efficient_softswitching.pdf.

[4] Laurikainen, A. Quality of Service in Media Gateway. Master’s thesis, Tampere
University of Technology, Department of Electrical Engineering, Tampere, 2003.

[5] Perttula, K. M-MGw technical overview. Ericsson internal, 2008.

[6] Ericsson. Media Gateway for Mobile Networks (M-MGw). Online document.
Referred 14.3.2011. Available at: http://www.ericsson.com/ourportfolio/
products/media-gateway-for-mobile-networks-m-mgw.

[7] Ericsson. Seven reasons to use end-to-end thinking when building all-
IP networks. Online document, 2009. Referred 14.3.2011. Available at:
http://www.ericsson.com/res/docs/whitepapers/end-to-end-IP-

infrastructure.pdf.

[8] Baldwin, J., Ewert, J. and Yamen, S. Evolution of the voice interconnect.
Ericsson Review, 2010, no. 2, p. 10–15.

[9] Ericsson. MSS/MSC Server. Online document. Referred 14.3.2011. Available
at: http://www.ericsson.com/ourportfolio/products/mss-msc-server.

[10] Mäkiniemi, P. and Scheurich, J. Ericsson MSC Server Blade Cluster. Ericsson
Review, 2008, no. 3, p. 10–13.

[11] 3GPP TS 23.002 V10.1.1. Technical Specification Group Services and Sys-
tem Aspects; Network architecture (Release 10). 3rd Generation Partnership
Project, 2011.

[12] Ericsson. M-MGw Node Manager user guide. Ericsson internal, 2008.

[13] Andersson, P. WinFIOL 7.1 user’s guide. 2009.

[14] Ericsson. Mobile OSS. Online document. Referred 28.3.2011. Available at:
http://www.ericsson.com/ourportfolio/products/mobile-oss.

[15] Nordman, T. Network MO (Nemo) user guide. 2008.

[16] Szakos, P. CCR-tool user guide. 2010.

http://www.ericsson.com/res/docs/whitepapers/
efficient_softswitching.pdf
http://www.ericsson.com/ourportfolio/
products/media-gateway-for-mobile-networks-m-mgw
http://www.ericsson.com/res/docs/whitepapers/end-to-end-IP-
infrastructure.pdf
http://www.ericsson.com/ourportfolio/products/mss-msc-server
http://www.ericsson.com/ourportfolio/products/mobile-oss

54

[17] Budde, R. and Zullighoven, H. Prototyping revisited. CompEuro ’90. Proceed-
ings of the 1990 IEEE International Conference on Computer Systems and
Software Engineering, 1990, p. 418–427.

[18] Davis, A. M. Operational prototyping: a new development approach. IEEE
Software, 1992, vol. 9, iss. 5, p. 70–78.

[19] Luqi. Computer aided system prototyping. 1992 International Workshop on
Rapid System Prototyping. Shortening the Path from Specification to Prototype,
1992, p. 50–57.

[20] IEEE 830-1998. IEEE recommended practice for software requirements specifi-
cations. IEEE Computer Society, 1998.

[21] Royce, W. W. Managing the development of large software systems. Proceed-
ings, IEEE Wescon, 1970, p. 1–9.

[22] Suganya, G. and Mary, S. A. S. A. Progression towards agility: a comprehen-
sive survey. 2010 International Conference on Computing Communication and
Networking Technologies (ICCCNT), 2010, p. 1–5.

[23] TIOBE Software BV. TIOBE programming community index for February
2011. Online document, 2011. Referred 25.2.2011. Available at:
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.

[24] Sabharwal, C. L. Java, Java, Java. IEEE Potentials, 1998, vol. 17, iss. 3,
p. 33–37.

[25] Lewis, T. Bringing up Java. IEEE Internet Computing, 1997, vol. 1, iss. 4,
p. 110–112.

[26] Kernighan, B. W. and Ritchie, D. M. The C programming language. 2nd edi-
tion. Prentice Hall, 1988.

[27] Ryan, R. R. and Spiller, H. The C programming language and a C compiler.
IBM Systems Journal, 1985, vol. 24, iss. 1, p. 37–48.

[28] Cusumano, M. A. The changing software business: moving from products to
services. Computer, 2008, vol. 41, iss. 1, p. 20–27.

[29] Nordman, T. and Hamberg, C. Master’s thesis kick-off meeting, 3.1.2011.

[30] Birnbaum, D. and Vine, M. Microsoft Excel VBA programming for the absolute
beginner. 3rd edition. Boston, Thomson Course Technology, 2007.

[31] Nordman, T., Kauppi, J. et al. Prototype demonstration session, 25.3.2011.

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

55

Appendix A: Functional design of the prototype

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Research problem and goals of the thesis
	1.3 Scope of the thesis
	1.4 Structure of the thesis

	2 MSS core network architecture
	2.1 Overview of the Mobile Softswitch Solution (MSS)
	2.1.1 The control layer
	2.1.2 The connectivity layer

	2.2 Migration towards pure IP transit architecture
	2.3 Media Gateway for Mobile Networks (M-MGw)
	2.3.1 Hardware generations and software releases
	2.3.2 Managed Object Model (MOM)

	2.4 Mobile Switching Center Server (MSC-S)
	2.4.1 MSC-S Blade Cluster

	2.5 Other MSS-related network components

	3 Network configuration and supervision tools
	3.1 Node Manager
	3.2 MoShell
	3.3 WinFIOL
	3.4 OSS-RC
	3.5 Nemo tool
	3.6 CCR-tool

	4 Theory and methodology
	4.1 Prototyping
	4.2 Software requirements specification (SRS)
	4.3 The Waterfall model
	4.4 Programming languages relevant to the prototype
	4.4.1 Java
	4.4.2 C

	5 Tool for network configuration and auditing
	5.1 Current situation
	5.2 Solution to the current challenges
	5.3 Purpose for the prototype
	5.4 Use cases and target audience
	5.5 Scope of the prototype
	5.6 Operational principle and technical challenges
	5.7 Requirements for the prototype
	5.7.1 Must-have features
	5.7.2 Nice-to-have features

	5.8 Design alternatives based on the requirements
	5.8.1 Spreadsheet as user interface
	5.8.2 Development of a new user interface

	5.9 Prototype evaluation

	6 Results
	6.1 Tool development lifecycle
	6.1.1 Development phases

	6.2 Chosen user interface design
	6.3 Chosen programming language and API
	6.3.1 Spreadsheet handling with Apache POI
	6.3.2 Java and spreadsheet requirements for end-users

	6.4 Proposed solution
	6.4.1 Functional design
	6.4.2 Feature descriptions
	6.4.3 Strengths and weaknesses

	6.5 Outcome of the tool evaluation
	6.6 Analysis of the results

	7 Discussion
	7.1 Summary
	7.2 Conclusions
	7.3 Suggestions for future development

	References
	Appendix A: Functional design of the prototype

