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Proportional fair (PF) is well known as the algorithm of choice for scheduling
data flow in a wireless setting. Although considered as having good performance
characteristics with nice fairness properties, PF is far from optimal when it comes
to minimizing the flow-level delays. In this thesis, we study the optimal scheduling
policy in an opportunistic wireless environment. The analysis can be applied to
any setting where some kind of rate region can be constructed. As the main result
we prove that when a fixed number of flows can be served at an average rate
taken from a compact and symmetric rate region, the optimal policy is consistent
with the SRPT-FM scheduling policy used in queueing systems with multiple
servers. Moreover, we see that for some specially crafted rate region we can also
get the explicit analytic expressions of the optimal long term service rates that
minimize the cumulative delay of the flows. Through simulation, we observe that
in a dynamic setting the performance of this static-case optimal policy is no worse
than the PF policy in this kind of rate region. For a case with asymmetric service
requirements, we consider a case with only two flows where we observe that if the
rate region has certain characteristics met in practice, there are only two possible
optimal rate pairs. The choice between them can be made based on the size of
flows at hand. We also study a numerical example where the optimal policy still
follows the spirit of the SRPT-FM policy even in the asymmetric case.
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first putting together and then helping me move my work space, Hanna Ropponen
for taking care of all the official matters and Kimmo Pitkäniemi and Joni Laaksonen
for the all important IT support they provided.

Although they are thousands of miles away, my family back home in Kathmandu,
Nepal deserve my heartfelt gratitude for supporting and guiding me in every phase of
my life. Lastly I would like to thank my friends Rajendra, Gautam, Manoj, Saurav,
Deepak and Ujjwal for the valuable support and suggestions they have provided for
the past one and a half years.

Otaniemi, 29.3.2011
Prajwal Osti



iv

Contents

Abstract ii

Preface iii

Contents iv

Symbols and abbreviations vi

1 Introduction 1
1.1 Research problem formulation . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Technological background 4
2.1 CDMA/EVDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Beyond CDMA/EVDO . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Theoretical background 7
3.1 Flow-level modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Elastic and streaming flows . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Time scale separation . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Opportunistic scheduling and rate region . . . . . . . . . . . . . . . . 8
3.5 M/G/1 queueing model and SRPT . . . . . . . . . . . . . . . . . . . 9
3.6 Proportional fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Model 12
4.1 Static setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.1.1 Asymmetric case . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1.2 Symmetric case . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Dynamic setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Asymmetric case with two jobs 16
5.1 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 More than two jobs in asymmetric case . . . . . . . . . . . . . . . . . 26

6 Symmetric case with any number of jobs 27
6.1 One job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 More than one job . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Alpha-ball rate region 32

8 Simulation for the dynamic setting 34
8.1 Description of the simulator . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



v

9 Conclusions 39
9.1 Summary of work accomplished . . . . . . . . . . . . . . . . . . . . . 39
9.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

References 41

Appendices 43

A Mathematica Source Code 44

B Two-user rate region 46



vi

Symbols and abbreviations

Symbols

∇nA n-dimensional gradient of A.
P{A} Probability of the event A.
E[X] Expected value of the random variable X.
A ◦B Hadamard product of the vectors A and B.

Abbreviations

3GPP Third Generation Partnership Project
AMC Adaptive Modulation and Coding
AP All Pole
ARQ Automatic Repeat Request
CDMA Code Division Multiple Access
CQI Channel Quality Indicator
DRC Data rate request channel
EVDO Evolution Data Optimized
HDR High Data Rate
HSDPA High Speed Downlink Packet Access
HSPA High Speed Packet Access
IR Incremental Redundancy
LTE Long Term Evolution
MIMO Multiple Input Multiple Output
OFDM Orthogonal Frequency Division Multiplexing
PF Proportional Fairness
PS Processor Sharing
PSK Phase Shift Keying
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
SC-FDE Single Carrier- Frequency Domain Equalization
SNR Signal-to-Noise Ratio
SRPT Shortest Remaining Processing Time
SRPT-FM Shortest Remaining Processing Time with the Fastest Machine
TCP Transmission Control Protocol
TDMA Time Division Multiple Access



1 Introduction

Although modern technological innovations have brought about drastic changes in
almost all aspects of modern life, there are few areas where the impact has been as
conspicuous as the field of personal communication. The “wireless revolution” that
has occurred in the last decade or so has greatly impacted how we live our lives.
The “always on” nature of this technology has connected people and devices to an
extent that was previously unfathomable and we are just beginning to understand
its true impact in a wider context.

Historically, the wireless medium was the first to be harnessed for the purpose of
communication. However, for a very long time its use for personal communication
had been very limited, mostly being favored for broadcast communication like the
television and the radio. For personal day-to-day use by the general population the
wired medium had been preferred—mainly because the wireless medium is noisier
than the wired channel and therefore difficult to utilize effectively at a cost suitable
for general use. But over the years the discoveries in different fields such as material
science, information theory, signal processing, queueing theory, etc., coupled with
their implementation in modern digital circuitry have made the modern broadband
wireless communication systems possible.

The wireless medium comes with its own set of challenges. Besides being more
vulnerable to random degradations, its availability also is inherently limited. This
means that arbitrarily increasing the spectrum when the demand is too high is not
a viable option. It is imperative that the spectrum at hand be used in the best way
possible to meet the ever-growing demand for capacity. Moreover, some minimum
service requirement for all the users should always be provided to maintain its
position as the ubiquitous medium. So, efficient management of radio resources at
hand is one of the primary goals of the wireless networks in operation today.

Modern cellular wireless systems extensively reuse the spectrum they have, when
ever they can, to provide service to as many users as possible. In these systems, a
base station serves users in a fixed area with a fixed set of radio resources (frequency
band, codes, etc.). The base stations in the nearby areas use a different set of
resources to avoid interference. Different power control schemes are also used to
further mitigate the effects of interference among the users in a cell.

Furthermore, there are different adaptive modulation and coding (AMC) schemes
that are used to provide the best service to users with different channel conditions.
This implies that the base station should ‘know’ the state of the channel of the
users it is serving to. The base station generally gets this information through the
feedback information (channel quality indicator) it receives from the users being
served. In a fast fading environment, the channel state of a user is changing at a
very high rate. The feedback should be provided at a rate faster than the rate the
channel is changing for this strategy to work.

This gives rise to the very interesting issue of scheduling. If the base station
has the perfect information of the channel states of the users, then it can cater
to the one(s) who can best use it to make the optimal use of spectrum at hand.
This approach is called opportunistic scheduling and it takes the advantage of the
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randomly varying nature of the wireless channel when there are many users trying to
use it. The main drawback of this approach is that it may stifle the users that have
bad channels (e.g., the ones who are far away from the base station). Consequently,
some fairer schemes like the proportionally fair (PF) scheduling are used to maintain
the quality of service.

Moreover, from the classic results of queueing theory, we know that in many
cases, scheduling the user with the smallest service requirement generally minimizes
the average delay of all the users [18]. This approach alone, however, fails to exploit
the opportunism present in the wireless channel. It is possible to combine both
these previous approaches to get a good result [17]. In any case, all these methods
imply that properly scheduling the users that are concurrently using or trying to
use the channel can have a profoundly positive impact in the overall performance of
the system.

1.1 Research problem formulation

Multiuser diversity presents a unique opportunity to harness the capacity of the
wireless spectrum. Borst [4] introduces the opportunistic rate region for a static
population, and for a dynamic population he provides a useful multi-class queue ab-
straction for the PF policy under the time-scale separation assumption. By switching
very fast among the various users, a wireless scheduler can increase the aggregate
rate in which it can provide service. Any consistent rule to allocate the channel,
which is based on the instantaneous service rate supported by the user, gives a long
term service rate to each user. This can be thought of as a point in the opportunistic
capacity region [4]. Such rate regions also arise when there are multiple senders and
receivers using the same channel [1] like a cellular mobile system with different base
stations and mobile terminals.

Thus, we can essentially formulate the problem of most efficiently using a wire-
less channel as finding some rate vector in these rate regions that minimizes the
average delay experienced by the users. Sadiq and de Veciana [17] introduce a new
queueing model to analyze the scheduling in such opportunistic rate regions. They
also give the results for optimal scheduling in the static environment for a size-aware
scheduler when the opportunistic rate region is symmetric and approximated by a
polymatroid. Simulation results when this principle is applied in a dynamic setting
are also provided.

Size-oblivious policies such as the PF give a good performance in practical op-
portunistic environments [7]. However, the strong optimality results of the SRPT
policy in the M/G/1 queues suggest that policies that exploit the size information
of flows can give better results than the ones that ignore the size information. More-
over, when optimality is desired, the actual geometry of the rate region also plays a
crucial role in deciding the best scheduling policy.

With these ideas in our mind we study the optimal scheduling policies in different
kinds of rate regions and attempt to generalize the nature of these policies. Wher-
ever possible, we also try to find the explicit expressions of such optimal policies.
Moreover, since a case with random arrival of flows is different than the case which
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has a fixed number of flows, we also attempt to observe the effect of the application
of the optimal policies in the static case to a setting the flows arrive dynamically.

To this end, we derive results for some cases with a static user population. As
the main result we prove that the optimal scheduling policy in a symmetric rate
region follows the SRPT-FM principle under certain nonrestrictive conditions. We
then illustrate it with a numerical example. Furthermore, the optimal scheduling
policy for an asymmetric rate region for two users is also analytically determined.
For the case with dynamic flow arrivals, which is not mathematically tractable, we
use simulation to study the effect of the application of the scheduling policies that
are optimal in the static case. We see that these static-case optimal policies are no
worse than the PF policy in the dynamic setting.

1.2 Organization of thesis

The thesis is organized in the following way: Section 2 provides some technological
background for the work presented in this thesis. This is followed by Section 3
where we elaborate on the theoretical aspects of the ideas presented here. The
general model we use for further analysis and simulation is described in Section 4. In
Section 5, we prove a result when there are only two jobs present in an asymmetric
setting. We investigate the case of a symmetric rate region and its properties in
Section 6, and then we illustrate the ideas presented in this section with a numerical
example in Section 7. Then, we simulate for the dynamically arriving flows in
Section 8 by using the policy that is optimal for the static case. Finally we present
the conclusions of our work in Section 9.
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2 Technological background

The services like CDMA/EVDO provide very high data rate to its users. The main
feature of this technology is that it tracks the channels of all the users in the system
and based on the rates they can support, the scheduler sends data to them at an
appropriate rate. We will discuss some parts of this technology that are pertinent
to the work presented in this thesis.

2.1 CDMA/EVDO

CDMA/EVDO is based on the HDR system proposed in [2]. It uses a separate RF
carrier of 1.25 MHz bandwidth to deliver data to its users. Coexisting with the
CDMA2000 carrier and occupying a frequency band just beside it, CDMA/EVDO
promises data rate from 38.4 kbps all the way up to 2.45 Mbps. The actual data
rate mainly depends on the channel conditions of the users.

The forward link is a time division multiple access (TDMA) system (that is used
for downlink by the user) which is divided into time slots of 1.67 ms (600 time slots in
1 second). The users are dynamically allocated one or more of these slots depending
on what data rate they request. Although the standard does not specifically mention
any particular scheme for the allocation of these time slots, Jalali et al. [7] suggest
the PF [9] method as a good choice for a scheduling algorithm. PF scheduling gives
acceptable performance and at the same time also has some nice fairness properties.
It also allows the scheduler to take the advantage of the rapid temporal variation of
the data rate supported by any user which has been termed opportunistic scheduling
in the literature [13].

The variation of the supported data rate is the result of the various forms of
degradation, like attenuation, multipath fading, shadowing, etc, suffered by the RF
signal during its journey from the sender to the receiver. These random degradations
affect the signal-to-noise ratio (SNR) of the channel and influence the supported data
rate [20].

The forward link, in addition to the user data, contains the pilot signal and
occasionally some other control information. Its simplified structure is shown in
Figure 1. The pilot bursts (that occur twice every 1.67 ms even when there is no

User 1 User 3User 2

Power

Time

Idle

2 Slots 1 Slot 2 Slots

1.67 ms

Pilot bursts

Pilot

M
A

C

M
A

C

Figure 1: Structure of an EVDO frame. (Adapted from [2])
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1.67 ms

Estimate Data Rate from these pilots
TX at requested rate to user 2 in this time slot

Pilot-DRC Pilot-DRC Pilot-DRC

User 1 User 2 User 3

Figure 2: An illustration of how DRC in reverse channel works. The pilot is tracked by
all the users who estimate the channel data rate based on it. Then they request the data
rate to the base station in the DRC. (Adapted from [2])

data to send) are tracked by all the users of the system. These are sent at full power
and are deterministic in nature. The mobile stations that track these pilot signals
can estimate the SNR of the channel they wish to use by comparing what signal
they actually receive with what they expect to receive. Again, the standard does
not specify any particular method the mobile stations should use for this estimation.
Methods based on All-Pole Autoregressive (AP) model of the channel and Linear
prediction have been suggested [3].

The supported data rate is determined based on the estimated signal-to-noise
ratio. The mobile stations send this information to the base station on the reverse
link using the data rate request channel (DRC) using a 4 bit value (thus a total
of 16 data rates can be supported). The DRC channel is code multiplexed among
all the users in the system so that they can simultaneously update the base station
with the data rate they can support. This is depicted in Figure 2.

If the PF algorithm is used, the user who gets the channel is chosen in the
following way. The n users wishing to use the channel are uniquely indexed by the
elements of the set In = {1, . . . , n} and the user k = arg maxi∈In

Ri(t)

θ̄i(t)
is chosen where

Ri(t) is the data rate requested by user i in the time slot beginning at t and θ̄i(t)
is the average throughput of user i in some time window ending in t. The different
data rates are achieved by using the various modulation and coding schemes that
allocate variable time slots. A list of data rates the different modulation and coding
schemes can achieve is shown in Table 1.

All the foregoing discussion assumes that the base station has the perfect knowl-
edge of the data rate it should use to serve any particular user. Due to the random
nature of channel this is rarely the case and therefore the CDMA/EVDO standard
also uses Incremental Redundancy (IR) hybrid ARQ that ensures the correct data
is received if the channel estimation process fails due to, e.g., high interference from
other base stations, or high speed of the user.

2.2 Beyond CDMA/EVDO

There are other technologies as well that offer high speed data transfer in wire-
less channel some of which are HSDPA, HSPA+, etc. They share some similarities
with the EVDO system. The most noticeable difference, however, is unlike CD-
MA/EVDO they can serve multiple users at a time. The newest addition to these
standards that has been deployed [19] is the Long Term Evolution (LTE) of the 3-rd
Generation Partnership Project (3GPP) which, among other things, boasts data
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DRC Index No. of Slots Data Rate [kbps] Payload Size [bits] Modulation

0x00 - - - -
0x01 16 38.4 1024 QPSK
0x02 8 76.8 1024 QPSK
0x03 4 153.6 1024 QPSK
0x04 2 307.2 1024 QPSK
0x05 4 307.2 2048 QPSK
0x06 1 614.4 1024 QPSK
0x07 2 614.4 2048 QPSK
0x08 2 921.6 3072 8-PSK
0x09 1 1228.8 2048 QPSK
0x0a 2 1228.8 4096 16-QAM
0x0b 1 1843.2 3072 8-PSK
0x0c 1 2457.6 4096 16-QAM

Table 1: Bit rates

rates up to 100 Mbps for downlink and 50 Mbps for uplink. The next standard,
named LTE Advanced promises data rates that are up to ten times greater than
that of LTE for uplink as well as downlink and presents itself as the prime candi-
date of the 4-th generation technology. These new technologies are generally based
on all-IP core (i.e., no circuit switching even for voice) at the network layer and
methods like wide channel OFDM, SC-FDMA, MIMO, etc. at the physical layer [6].
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3 Theoretical background

In this section we will briefly introduce the theoretical aspects of the various concepts
that are discussed in this thesis.

3.1 Flow-level modeling

In modern communication system like the Internet the data from the source terminal
is transmitted to the destination terminal through a series of nodes in a network.
The source data is broken down into a number of packets before being transmitted to
the network. The network then essentially sees a series of independent data packets,
which it delivers from one node to another until they reach the destination where
they are finally reassembled. One way to evaluate the performance of such networks
is to analyze the dynamics of these packets (e.g., their size, arrival rate) at every
node in them. The complexity of such analysis grows as the number of nodes in the
network increases.

An alternative approach of analysis when the end-to-end data transmission is
considered is to employ the flow-level models where only the dynamics of the arriving
flows at the network (as opposed to the packets at nodes) is considered. These flows,
then carry the whole file that has to be downloaded,e.g., to a personal computer
from a server. The network allocates its resources to these flows during the time of
transmission of the files. The flow-level abstraction provides a good workaround for
the complexity that may arise when the packet level models are used with a large
number of nodes. In addition, this approach is also more conducive to analyzing the
end user experience.

A flow-level model is said to be static if there are initially some flows to be
transmitted but no new flows arrive once the transmission has begun. By contrast,
in the dynamic setting new flows can arrive when the transmission has started. The
arrivals are usually modeled by some random processes (e.g., the Poisson process).

A number of flows may exist in a network that take data from the various sources
to some destination. As more than one of them can exist simultaneously, the network
resources (e.g., bandwidth) may have to be shared among them in some way. This
gives rise to the issue of queueing of the flows. Various queueing policies may be
used by the network so that the network is used optimally while providing the best
possible service. The choice of such queueing policies has a profound impact on the
performance of the system and some of them perform better than others if some
particular performance requirement is to be met.

3.2 Elastic and streaming flows

The flows generally encountered during data transmission are generally of two types
— elastic and streaming [14]. The streaming flows carry the data such as voice
and video that have a strict service rate requirement which is at least equal to
the rate at which they are generated. Elastic flows, on the other hand, carry data
that do not have any deadline for the arrival at the destination and therefore can
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be transmitted at any rate supported by the system. Data transfer through the
TCP protocol correspond to such flows. Moreover, TCP also enables the bandwidth
available in the network to be shared among the existing flows.

For elastic flows in the static case with n flows in the beginning, a useful metric
for the measurement of performance is the cumulative delay, T , which is the sum of
the time spent by all the flows in the system, i.e.,

T =
n∑
i=1

ti, (1)

where ti is the time spent by the i-th flow in the system. In a dynamic setting,
where the flows of random sizes arrive at random times for service, the delay of the
i-th user, ti, can be thought of as a realization of a random variable D. At steady
state, assuming D has some stationary distribution, E[D] gives the average time a
flow spends in the system.

3.3 Time scale separation

A scheduler in a time slotted wireless environment has to deal with the various time
scales associated with the different times that are related to the various events (e.g.,
arrival, departure, etc.) tied with the flows [12]. The largest time scale, τ1 is that
of arrivals and departures of flows. Typically a few flows arrive every second and
after a certain delay they leave the system. Then there is the time scale of the rate
process variation which corresponds to the time, τ2, during which the rate process
remains constant at some value. This is typically in some milliseconds in practical
systems. Finally there is the time scale for the allocation of time slot, τ3, which is
the duration the time slot allocation algorithm takes to determine the appropriate
user to serve. Its value is at most equal to the smallest allocable time slot. The time
scale separation assumption means that τ1 � τ2 ≥ τ3. That is, the allocation of the
time slots to any user is done at a very high rate compared to the rate of arrival and
departure of flows in the system. This assumption enables the application of the
very useful processor sharing abstraction in some systems such as the one mentioned
in Subsection 3.4.

3.4 Opportunistic scheduling and rate region

By serving a user1 with the best channel conditions (and the highest supported
data rate) a wireless base station can exploit multiuser diversity to provide more
aggregate throughput. This process is called opportunistic scheduling. For example,
if Ri(t) is the stationary data rate process of the i-th user, the system can work at
an aggregate rate of E[maxi{Ri(t)}] when it caters to the user with the best channel
conditions as opposed to E[Ri(t)] when it serves only the i-th user. Clearly,

E
[
max
i
{Ri(t)}

]
≥ E[Ri(t)].

1the words ‘user’ and ‘flow’ are used interchangeably
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τ1≈τ2

t

R2(t)
t

R1(t)

c21

c22

Average allocated rate for 

user 1

Average 

allocated rate 

for user 2

Allocated 

throughput 

in rate region

Figure 3: Time scale separation and rate region. The shaded portion represents the time
when that particular user is served by the base station.

So the overall throughput of the base station is increased. When there are n users
and the base station serves a flow based on its supported data rate, the long term
throughputs received by each user (represented by a vector) can only come from
some rate region R ⊂ Rn

+ [4]. Moreover, any non dominated rate vector from this
rate region can be achieved by some weight based strategy augmented with a suitable
tie-breaking rule [5]. For example, in Figure 3 we consider a case with two users,
where the one with the highest supported rate is served at every time. This allows
the two to be served at a long-term rate belonging to the opportunistic rate region.
If some other weight based strategy is used (with a tie breaking rule), other non
dominated points in the rate region can be achieved. The interior points of the rate
region are achieved when the base station remains idle in some time slot without
catering to any flow.

When a weight based strategy is implemented, a weight wi is assigned to a user
with rate process Ri(t) and the user i∗(t) = arg maxi∈{1,...,n}wiRi(t) is chosen to
transmit at time t. PF scheduling (see Subsection 3.6) then emerges as a special
case of this weight based strategy that assigns wi = 1

ci(t)
where ci(t) is the throughput

of user i until time t. If we assume that the time scales are separated, it follows
from the law of large numbers that ci(t) quickly converges to the average value c̄i
and a constant weight of wi = 1

c̄i
can be assigned to the user i.

3.5 M/G/1 queueing model and SRPT

The M/G/1 queue has Poisson arrival of flows at the rate λ. The sizes of these
jobs, represented by the random variable X, are independent and distributed with
some distribution function FX(x) = P{X ≤ x}. The jobs are served by one server
at a constant rate. It is a very well understood queueing model with multitude
of applications [10, 11]. Besides the arrival rate and the job size distribution, the
parameters related with the behavior of M/G/1 queue depend on the service policy
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of the server. The service policy determines the order in which the jobs are processed.
The first in first out (FIFO) policy processes the jobs in the order of their arrival.
The processor sharing (PS) policy divides the service rate equally among all the jobs
present, serving all of them simultaneously. With the shortest remaining processing
time (SRPT) policy, the server serves only the job in the queue that needs the least
time to be processed. SRPT policy is optimal in the sense that it minimizes the
average delays of the flows and by Little’s law the mean queue length [18].

The M/G/n queue is a system identical to M/G/1 except that it has more than
one (i.e., n) identical servers. The optimal policy for this case is unknown. However,
SRPT (i.e., the smaller jobs served before the larger ones) is still the optimal policy
for the static case (i.e., there no new arrivals after service begins) in the sense that it
minimizes the cumulative delay. For heterogeneous servers (which serve at different
rates) the policy that assigns the fastest machine to the shortest jobs initially present
(SRPT-FM) achieves the least cumulative delay in the static case [16].

In opportunistic scheduling within some service rate region, some modified form
of the M/G/1 can be used for the analysis of the system. Sadiq and de Veciana
[17] propose such an M/G/Cn queue which allocates the service rate to jobs from
some point on the opportunistic capacity region Cn. Furthermore, when the rate
can be chosen from the tightest polymatroid bounding the opportunistic capacity
region they also prove that a policy that adheres to the SRPT-FM policy in principle
minimizes the cumulative delay of jobs in the static case.

3.6 Proportional fairness

The issue of allocating the available bandwidth to the users in a fair manner is one
of the primary design considerations of any modern wireless communication system.
Fairness can be measured based on the utility of bandwidth to a user. Consider
a system with n users indexed by the elements of In = {1, . . . , n} to whom rates
in form of a vector (cn1, . . . , cnn) ∈ Cn ⊂ Rn

+ can be allocated. The fairest rate
allocation, (c∗n1, . . . , c

∗
nn), will maximize the aggregate utility to the users, i.e.,

(c∗n1, . . . , c
∗
nn) = arg max

(cn1,...,cnn)∈Cn

n∑
i=1

U(cni), (2)

where U(cni) is the utility of cni to user i. Utility functions are generally increasing,
strictly concave and generally differentiable functions of cni ≥ 0. Moreover they can
be added together to get the aggregate utility. One such utility function that is
applicable in a wide range of settings is the α-fair utility function [15] defined by

U(x) =

{
x1−α

1−α if α 6= 1,

log x if α = 1.

The different values of α corresponds to different fairness criteria, e.g., α = 0 max-
imizes the bandwidth used, α = ∞ corresponds to the max-min fairness scheme,
etc. In CDMA/EVDO system the PF criterion is generally used which corresponds
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to α = 1. That is, the proportionally fair rate vector is achieved by maximizing the
objective function

n∑
i=1

log cni.

It favors high throughput without stifling the flows with bad channels and can also
be interpreted as follows [8]: For n flows, the rate vector c = (cni, i ∈ In) ∈ Cn is
proportionally fair if for any other rate vector c′ = (c′ni, i ∈ In) ∈ Cn, the aggregate
proportional change is either zero or negative, i.e.,

n∑
i=1

c′ni − cni
cni

≤ 0.

For the dynamic case, Borst [4] also points out that under the assumption of time
scale separation (Section 3.3), the proportionally fair scheduler can be abstracted
as a multi-class processor sharing system. In a time-slotted system with n flows,
where only one user is served at a time, Stolyar [21] proves that the utility function
described in (2) (the type II utility function) can be maximized (asymptotically) by
using a gradient based rule which, in every time t, chooses the user i∗(t) given by

i∗(t) = arg max
i∈In

[∇nU(ĉ(t))] ◦R(t),

where ◦ denotes the Hadamard product of the vectors, the ‘arg max’ is taken over
the components of this product and ĉ(t) is the estimate of the average service rate
calculated by exponentially smoothing the data rates provided to the users, which
is updated as

ĉi(t) = (1− β)ĉi(t− 1) + βRi(t)1{i∗(t)}(i).

Here 1A(·) is the indicator function of the set A, Ri(t) is the data rate supported
by user i at time t and vector R(t) := (Ri(t)) for all i ∈ In. Stolyar [21] also proves
that the optimal solution is achieved regardless of the choice of initial ĉ(t). For the
proportional fair case, the condition for optimality can be simplified as,

i∗(t) = arg max
i∈In

Ri(t)

ĉi(t)
,

where ci(t) is the i-th element of the vector ĉ(t) which is the exponentially smoothed
service (i.e., average) rate of user i.

This essentially means that in a time slotted system proportional fairness can
be achieved by allocating the time slot to the user with the highest supported rate
compared to the achieved throughput, which, in a symmetric case, translates to
always serving the user with the highest instantaneous rate [4].
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4 Model

We consider the downlink data transmission from a base station to a set of n users
that are uniquely indexed by the elements of the set In = {1, . . . , n}. The data is
in the form of a file whose size is known at the beginning and is carried through
elastic flows to the users. When there are n users, the i-th user is served at a long-
term rate with the i-th component of the vector cn = {cn1, . . . , cnn} ∈ Cn ⊂ Rn

+

where Cn is called the rate region. The term ‘long-term rate’ is used to refer to the
average service rate offered to a flow when the number of flows is fixed. This means
whenever a file transfer ends, the flow departs and the rate region changes (loses
one dimension) and consequently the long-term average service rate also changes
in general from that point onwards. The same principle applies when new flows
arrive in the dynamic case. These rate regions, which are referred to by other names
like ‘capacity region’, ‘opportunistic capacity region’, etc. in the literature arise as
a consequence of opportunistic scheduling, multiuser interference [1], etc. One such
rate region that arises as a result of opportunistic scheduling is elaborated in this
section which is developed by Borst [4].

Consider a system whose users are served one at a time by the base station
in small fixed-length time slots. The data rate supported by user i ∈ In in time
slot beginning at t is given by some stationary and ergodic discrete-time stochastic
process Ri(t) which the base station is aware of by some feedback information.
With this information at hand, the scheduler in the base station2 selects the user it
wants to transmit the data to based on some rule that is a function of the data rate
supported by the users at that time. The transfer is then done at the rate supported
by the selected user. The situation is similar to the CDMA/EVDO system discussed
in Section 2. Additionally, we also assume that when the data transfer for a user is
complete, the base station stops keeping track of the rate associated with that user
and after that does not provide any more time slot to it. We also assume that the
base station always has enough data in its buffer to transmit the amount of bits it
wants to transmit (non-idling system) until the data transfer for a user is completed.

Let the random vector (R1, . . . , Rn) have the same distribution as the joint sta-
tionary distribution of the allocable rates. When (R1, . . . , Rn) takes discrete values
in a finite setRn ⊂ Rn, p(r) is the stationary probability that the value of supported
rate vector is r = (r1, . . . , rn) ∈ Rn. The long-term supported data rate of the user
i is represented by cni when there are n users in the system. The set Cn ∈ Rn, which
is the set of all achievable long term data rate vectors, is given by

Cn = {T ∈ Rn
+ : z(T ) ≥ 1},

2The words ‘scheduler’ and ‘base station’ are used interchangeably from here onwards.
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where z(T ) is the optimal value of the linear program

max z,

sub z ≤ zi =
∑
r∈Rn

p(r)xi(r)ri
Ti

, i ∈ In,

n∑
i=1

xi(r) ≤ 1, r ∈ Rn,

xi(r) ≥ 0, i ∈ In.

Cn is called the opportunistic rate region. The rate region is symmetric when the data
rates supported by all the users have identical marginal distributions. Otherwise,
the rate region is said to be asymmetric.

Furthermore, from the complementary slackness condition of the above linear
program we see that if we assign the weight wi to the flow i ∈ In and allocate the
time slot beginning at t to the user i∗ = arg maxi∈In wiRi(t) (when i∗ is not unique,
the selection is done by some well defined tie-breaking rule among such users), by
appropriately choosing these weights wi, any non-dominated rate vector in the rate
region as the long-term service rate can be achieved. One such rate region for a
simple case of two users is discussed in detail in Appendix B.

4.1 Static setting

In this setting, no new flows arrive once the service has begun. The rate region for
the static setting can either be symmetric or asymmetric.

4.1.1 Asymmetric case

For the asymmetric case, we consider a two-user system that has flows of sizes l1
and l2 and where they are being served by a single base station. It is assumed that
the scheduler knows the sizes of the flows and based on that information, it allocates
the service rates c = (c21, c22) ∈ C2 to them. When one of the flows leaves after its
service requirement is fulfilled, the one that remains is then served at the highest
possible rate that can be allocated to it. Let us assume those rates to be a1 for flow
1 and a2 for flow 2. A service policy ~π is defined as ~π = (c, a), c ∈ C2, a ∈ {a1, a2}.
Let, Π be a set of all such service policies. If t~π1 and t~π2 be the total times spent by
the flows 1 and 2 in the system under policy ~π, then the total delay is defined as,

T ~π = t~π1 + t~π2 .

The optimal policy ~π∗ is then defined as the policy that minimizes the cumulative
delay of the two flows, i.e.,

T ~π
∗

= min
~π∈Π

T ~π. (3)

We want to find the allocation of the service rates to the flows in form of the optimal
policy ~π∗ = (c∗, a∗), which are possibly based on the sizes of the jobs, that would
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minimize the cumulative delay. Moreover, the problem essentially reduces to finding
the rate pair c∗ as the remaining a∗ can be one of two values depending on which job
leaves the system first. Note that in a time slotted system such optimal long term
rates can be assigned to a pair of flows by some weight based strategy augmented
with a tie breaking rule as discussed in Section 4.

4.1.2 Symmetric case

We consider a system with n jobs at the beginning that are indexed by the elements
of the index set, In = {1, . . . , n}, in the decreasing order of their sizes, i.e., sni, i ∈
In, is the size of the i-th largest job when there are n jobs. The sizes are measured
in time units required to process the job at some constant rate. The scheduler can
assign a service rate vector cn = (cn1, . . . , cnn) ∈ Cn to process the i-th job with rate
cni, i ∈ In. Here, Cn ⊂ Rn

+ is the abstract rate region. This rate region can arise as
a result of opportunistic scheduling as discussed in Section 4, although there can be
other causes for its existence [1]. The processing begins at t = 0 and as the system
evolves, at a certain point of time one of the jobs is completed which leaves what
remains of the unfinished n−1 jobs to be processed. A new service rate vector, cn−1

is then chosen from the rate region Cn−1 ⊂ Rn−1
+ to process these remaining jobs. The

remaining jobs are then reindexed according to their sizes, i.e., if sn−1,1, . . . sn−1,n−1

be the sizes of the remaining jobs, sn−1,i ≥ sn−1,j for all i < j, i, j ∈ In−1. This
process continues until all the jobs are completed. It is assumed that while choosing
the rate vector, the scheduler is always aware of the remaining sizes of the jobs and
the rate region.

A service policy ~π = (c1, . . . , cn) is defined as a sequence of service rate vectors
ck ∈ Ck, k ∈ In. Here ck is the rate vector the scheduler assigns from the rate
region when there are k jobs in the system (called phase k from here onwards). Let
Πn be the set of all such policies,

Πn = { ~π = (c1, . . . , cn) : ck ∈ Ck, k ∈ In}.
Let t~πi be the time when the job with original size sni completes under policy ~π.

The cumulative delay is defined as

T ~π =
n∑
i=1

t~πi .

If ~π∗ be a policy that minimizes the cumulative delay then,

T ~π
∗

= min
~π∈Πn

T ~π.

The sequence of service rate vectors that give the optimal policy ~π∗ are denoted by
(c∗1, . . . , c

∗
n). The optimization problem is then to find this optimal policy ~π∗.

4.2 Dynamic setting

Moreover, in the dynamic setting, which we study exclusively through simulation,
we allow for the arrival of new flows. The flows are assumed to arrive according to
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the Poisson process of intensity λ [per second]. The file sizes associated with the
flows are assumed to be independent and have the exponential distribution with a
mean 1/µ [bits]. The scheduler is fully aware of the size of all the arriving flows,
and the remaining size of the ones being processed. Once again the time scales are
assumed to be separated (Subsection 3.3). After a new flow arrives, a new rate
vector is c chosen from the symmetric rate region Cn where n is the total number
of flows in the system after the arrival of the new flow. Let D denote the delay
experienced by a typical flow. When the queue has stabilized D is assumed to have
a stationary distribution and its average value E[D] gives the mean delay of the
flows.
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5 Asymmetric case with two jobs

Asymmetric rate regions may arise when the different flows a base station is serving
have different marginal distributions of the achievable rate process. The develop-
ments of Section 4 are still valid and we get a rate region from where the base station
can assign a long term rate vector. The analysis, however, is more complex than for
a symmetric case which is discussed in Section 6. We demonstrate such an analysis
for a simple case of two jobs that have non-identical distribution of the stationary
rate process. If certain conditions are imposed on the geometry of the rate region
in such a case, we will see that we can get optimal vectors in the rate region that
minimize the cumulative delay. Under these conditions, the optimal rates are easily
characterized and the selection of these rate pairs can be done on the basis of a
simple criterion that is based on the initial sizes of the flows.

We recall the model introduced in Section 4.1.1 that has the flows with non-
identical rate processes. The rates are allocated from a convex region C2 bounded
by the co-ordinate axes and the curve f(x) with the following properties:

• f(x) is decreasing and concave in the interval 0 ≤ x ≤ a1, i.e., f ′(x) ≤ 0 and
f ′′(x) ≤ 0 for all x ∈ [0, a1], if they exist at all,

• f(0) = a2, f(a1) = 0, i.e., one job can be served at the maximum rate of a1

and the other job at a maximum rate of a2.

An example of such rate region is shown in Figure 4.

Figure 4: An example of rate region.

We assume that the server is able to allocate any rate pair from this region.
Once the job of one of the users is complete, the one that remains is served either
at the rate a1 or a2, depending on which job leaves the system first.

Proposition 1. If the bounding curve f(x) of the capacity region has the properties
mentioned above there exists a pair of optimal points at the boundary curve of the
rate region (x∗1, f(x∗1)) and (x∗2, f(x∗2)) 3 which give the minimum cumulative delay
depending on the sizes of l1 and l2 where l1 is the initial size of the job that is

3(As only two dimensions are involved in this case we resort to a simpler notation of (x, f(x))
instead of (c21, c22) which would have been the more consistent choice for the rate pair.)
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served at the rate x ≤ a1 and l2 is the initial size of the job that is served at the

rate f(x) ≤ a2. More specifically, if
f(x∗2)

(
2−x

∗
1
a1
− f(x

∗
1)

a2

)
x∗1

(
2−x

∗
2
a1
− f(x

∗
2)

a2

) ≤ l2
l1

, then (x∗1, f(x∗1)) is the

optimal rate pair, otherwise (x∗2, f(x∗2)) is the optimal rate pair.

Proof. Clearly, to minimize the aggregate delay the server must serve the users at
the highest possible rate which means that the service rate is somewhere in the
border curve of the capacity region. Thus, we limit ourselves to finding a rate pair
{(x, f(x)) : 0 ≤ x ≤ a1} that lies on the border curve and that minimizes the total
delay. To that end, we define the service policy x that allocates the service rates x
and f(x) to users 1 and 2 respectively until one of the jobs departs. The remaining
job is then served at the rate a1 or a2 from that point onwards. Let t1(x) and t2(x)
be the times taken to complete the jobs when they are always served with the rates
x and f(x) respectively, i.e.,

t1(x) =
l1
x

and

t2(x) =
l2
f(x)

We then define two cost functions (that represent the cumulative delay of the jobs)
as

h1(x) =
2l1
x

+

(
l2 −

l1f(x)

x

)
· 1

a2

and

h2(x) =
2l2
f(x)

+

(
l1 −

l2x

f(x)

)
· 1

a1

,

which can be rearranged as

h1(x) =
l1
a2

(
2a2 − f(x)

x

)
+
l2
a2

and (4)

h2(x) =
l2
a1

(
2a1 − x
f(x)

)
+
l1
a1

. (5)

Depending on which job leaves the system first, we use the appropriate cost function,
i.e.,

h(x) =

{
h1(x) if job 1 leaves first, i.e., if t1(x) < t2(x) ⇐⇒ f(x) < l2

l1
x,

h2(x) if job 2 leaves first, i.e., if t1(x) > t2(x) ⇐⇒ f(x) > l2
l1
x.
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For any pair of policies x1, x2 ∈ [0, a1],

h1(x1; l1, l2) ≤ h2(x2; l1, l2)

⇔ l1
a2

(
2a2 − f(x1)

x1

)
+
l2
a2

≤ l2
a1

(
2a1 − x2

f(x2)

)
+
l1
a1

⇔ l1

(
2

x1

− f(x1)

a2x1

− 1

a1

)
≤ l2

(
2

f(x2)
− x2

a1f(x2)
− 1

a2

)

⇔ l2
l1
≥

(
2
x1
− f(x1)

a2x1
− 1

a1

)
(

2
f(x2)

− x2
a1f(x2)

− 1
a2

)
⇔ l2

l1
≥
f(x2)

(
2− x1

a1
− f(x1)

a2

)
x1

(
2− x2

a1
− f(x2)

a2

)
i.e.,

h1(x1; l1, l2) ≤ h2(x2; l1, l2) ⇐⇒ l2
l1
≥
f(x2)

(
2− x1

a1
− f(x1)

a2

)
x1

(
2− x2

a1
− f(x2)

a2

) (6)

Now, we introduce two auxiliary functions g1(x) and g2(x) defined as,

g1(x) =
2a2 − f(x)

x
for x ∈ [0, a1] and

g2(x) =
2a1 − x
f(x)

for x ∈ [0, a1].

The functions g1(x) and g2(x) can be used for further analysis instead of the actual
cost functions h1(x) and h2(x) as these two sets of functions (cost and auxiliary) are
related to each other by simple linear transformations. The important advantage
these auxiliary functions offer is that they are independent of the job sizes. Let x∗1
and x∗2 be the points where the auxiliary functions are minimized, i.e.,

g1(x∗1) = min
x∈[0,a1]

g1(x) and

g2(x∗2) = min
x∈[0,a1]

g2(x).

And consequently,

h1(x∗1) = min
x∈[0,a1]

h1(x) for any l1, l2 and

h2(x∗2) = min
x∈[0,a1]

h2(x) for any l1, l2.

Consider the auxiliary cost function g1(x). If the cost is set to a constant value k,
the set of rate pairs where this cost is achieved, L, is

L = {(x, y) : y = 2a2 − kx}.
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Figure 5: An illustration of how the auxiliary cost function g1(x) is related to the our
rate region. L1 represents the case when the cost is zero. Clearly there are no rate pairs
that give this cost. When the cost is slowly increased, until the cost becomes k∗, there
are no feasible rate pairs that give these value of cost (represented by the blue line in the
figure). When the line drawn from (0, 2a2) is tangent to the curve f(x) (the green line,
L∗, in the figure), the rate pair (x∗1, f(x∗1)) gives the unique minimum possible cost. On
further increasing the cost we get a set of points ( i.e., the red portion of the line L3) in
the rate region which give that particular value of cost

Since all the rate pairs in L do not fall in our rate region, C2, the set of all feasible
rate pairs with a constant cost g1(x) = k is C2 ∩ L. The cost would be minimized
if k is taken as small as possible, provided C2 ∩ L is not an empty set. We can
clearly see that the elements of L are the points of a straight line that has a slope
−k and that passes through the point (0, 2a2). To minimize the cost, we have to
take k as small as possible. However, if we decrease the cost k indefinitely, there
would be no feasible rate pairs. Thus, the minimum cost is achieved when the line4

L is a tangent5 to the curve f(x) and optimal rate pair, (x∗1, f(x∗1)), is the point of
intersection of L and f(x) where the optimal cost is k∗. By further increasing the
cost, we get several feasible points where the cost is constant. By similar reasoning
we get the optimal point (x∗2, f(x∗2)), which is the point of intersection of the tangent
drawn to the curve f(x) from the point (2a1, 0). This is further illustrated in Figure
5.

Now, let d1 and d2 be the intercepts of the tangents drawn to the border curve
f(x) at the points (x1, f(x1)) and (x2, f(x2))) respectively on the x-axis. Since f(x)
is decreasing and concave, d1 ≤ d2 if and only if x1 ≥ x2 (see Figure 6 for further
illustration).

The x-intercept d∗1 of the tangent to the border curve at point (x∗1, f(x∗1)) (i.e.,

4L has been referred to both as a line and as a set from this point onwards.
5Strictly speaking L is a tangent only when f(x) is smooth, i.e., has continuous first derivatives.

In general, the minimum cost is given by that L which has the greatest slope and has at least one
point common with C2. The optimal point(s) then can be found in the set L ∩ C2.
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Figure 6: A graphical proof that for our border curve d1 ≤ d2 if and only if x1 ≥ x2

Figure 7: Sketch to prove that d∗1 =
2a2x∗1

2a2−y∗1

the line L1) on the x-axis is given by (see Figure 7)

d∗1 =
2a2x

∗
1

2a2 − y∗1
≤ 2a2a1

2a2 − y∗1
≤ 2a2a1

2a2 − a2

= 2a1

⇔ d∗1 ≤ 2a1. (7)

Since, 2a1 is the x-intercept of the tangent drawn to the point (x∗2, f(x∗2)), from (7)
we can conclude that, x∗1 ≥ x∗2 and therefore f(x∗1) ≤ f(x∗2). From Figure 8 we

observe that for x ≥ x∗1, −g1(x) = −2a2−f(x)
x

, which is the slope of the line joining
the point (0, 2a2) and the point (x, f(x)), is decreasing with increasing x, implying
that the cost is monotonically increasing. Similarly −g1(x) monotonically decreases
when x is steadily decreased from x∗. So, we can conclude that

• g1(x) and hence h1(x) is decreasing for all x ≤ x∗1 and
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• g1(x) and hence h1(x) is increasing for all x ≥ x∗1

Similarly, by taking auxiliary function g2(x) we can conclude the following.

• g2(x) and hence h2(x) is decreasing for all x ≤ x∗2 and

• g2(x) and hence h2(x) is increasing for all x ≥ x∗2

Figure 8: A demonstration of how the cost function g1(x) is changing. Since the cost
function obtains its minimum value, k∗ at (x∗1, f(x∗1)) when the rate allocation is changed
from this value the cost increases. The figure shows that g1(x) is increasing for x ≥ x∗1
and it is decreasing for x ≤ x∗1.

As (x∗2, f(x∗2)) minimizes g2(x),

g2(x∗2) ≤ g2(x∗1)

⇔ 2a1 − x∗2
f(x∗2)

≤ 2a1 − x∗1
f(x∗1)

⇔
2− x∗2

a1

f(x∗2)
≤

2− x∗1
a1

f(x∗1)

⇔ f(x∗1)

(
2− x∗2

a1

)
≤ f(x∗2)

(
2− x∗1

a1

)
⇔ f(x∗1)

(
2− x∗2

a1

)
− f(x∗1)f(x∗2)

a2

≤ f(x∗2)

(
2− x∗1

a1

)
− f(x∗1)f(x∗2)

a2

⇔ f(x∗1)

f(x∗2)
≤

2− x∗1
a1
− f(x∗1)

a2

2− x∗2
a1
− f(x∗2)

a2

⇔ f(x∗1)

x∗1
≤
f(x∗2)

(
2− x∗1

a1
− f(x∗1)

a2

)
x∗1

(
2− x∗2

a1
− f(x∗2)

a2

) . (8)



22

As (x∗1, f(x∗1)) minimizes g1(x),

g1(x∗2) ≥ g1(x∗1)

⇔ 2a2 − f(x∗2)

x∗2
≥ 2a2 − f(x∗1)

x∗1

⇔
2− f(x∗2)

a2

x∗2
≥

2− f(x∗1)

a2

x∗1

⇔ x∗1

(
2− f(x∗2)

a2

)
≥ x∗2

(
2− f(x∗1)

a2

)
⇔ x∗1

(
2− f(x∗2)

a2

)
− x∗1x

∗
2

a1

≥ x∗2

(
2− f(x∗1)

a2

)
− x∗1x

∗
2

a2

⇔ x∗1
x∗2
≥

2− x∗1
a1
− f(x∗1)

a2

2− x∗2
a1
− f(x∗2)

a2

⇔ f(x∗2)

x∗2
≥
f(x∗2)

(
2− x∗1

a1
− f(x∗1)

a2

)
x∗1

(
2− x∗2

a1
− f(x∗2)

a2

) . (9)

Thus from (8) and (9), we get,

f(x∗1)

x∗1
≤
f(x∗2)

(
2− x∗1

a1
− f(x∗1)

a2

)
x∗1

(
2− x∗2

a1
− f(x∗2)

a2

) ≤ f(x∗2)

x∗2
. (10)

So if,

f(x∗2)
(

2− x∗1
a1
− f(x∗1)

a2

)
x∗1

(
2− x∗2

a1
− f(x∗2)

a2

) ≤ l2
l1
≤ f(x∗2)

x∗2

then policy x∗1 is optimal and

min
x∈[0,a1]

h(x) = h1(x∗1).

Similarly, if

l2
l1
≥ f(x∗2)

x∗2
,

as a consequence of (6) and (10), h1(x∗1) ≤ h2(x∗2), and therefore x∗1 is still optimal
implying

min
x∈[0,a1]

h(x) = h1(x∗1).



23

Figure 9: Figure to demonstrate (10). The three sides of (10) are the slopes of the blue,
the green and the red lines respectively.

Thus we can see that x∗1 is optimal if and only if l2
l1
≥

f(x∗2)

(
2−x

∗
1
a1
− f(x

∗
1)

a2

)
x∗1

(
2−x

∗
2
a1
− f(x

∗
2)

a2

) . On the

other hand, if

l2
l1
≤
f(x∗2)

(
2− x∗1

a1
− f(x∗1)

a2

)
x∗1

(
2− x∗2

a1
− f(x∗2)

a2

) ,

then we can similarly prove that the policy x∗2 is optimal and

min
x∈[0,a1]

h(x) = h2(x∗2).

Remark 2. From Proposition 1 we can see that if there are only two jobs, there can
be only two possible rate pairs that give the minimum cumulative delay, irrespective
of the sizes of the jobs to be processed, when the rate region has aforementioned
properties. The choice of the optimal rate pair between these two pairs for any
two jobs then depends on the relative sizes of the jobs at hand and the quantity
f(x∗2)

(
2−x

∗
1
a1
− f(x

∗
1)

a2

)
x∗1

(
2−x

∗
2
a1
− f(x

∗
2)

a2

) . Once the service has commenced, the service rate remains con-

stant until one of the jobs is completed, after which the remaining job is processed at
the highest rate possible for it. This implies that the job sizes decrease at constant
rate depending on their position in the job-size space (see Figure 10).

Remark 3. The optimal rate pairs not only exist but can also be determined by a
simple procedure as follows. The optimal rate pair (x∗1, f(x∗1)) is given by the point
of intersection of the tangent to the curve f(x) from the point (0, 2a2), where a2 is
the highest possible processing rate for job 2. Similarly, the rate pair (x∗2, f(x∗2)) is
given by the point of intersection of the tangent to the curve f(x) from the point
(0, 2a1), where a1 is the highest possible processing rate for job 1. This is shown in
Figure 9.
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Figure 10: A demonstration of how the job sizes decrease once the optimal service rate

has been allocated. If the job sizes (l1, l2) lie on the half-plane l2
l1
>

f(x∗2)

(
2−x

∗
1
a1
− f(x

∗
1)

a2

)
x∗1

(
2−x

∗
2
a1
− f(x

∗
2)

a2

) then

as the jobs are served at the optimal rate the they follow the trajectories parallel to the ones

indicated by the blue lines. On the other hand, on the half-plane l2
l1
<

f(x∗2)

(
2−x

∗
1
a1
− f(x

∗
1)

a2

)
x∗1

(
2−x

∗
2
a1
− f(x

∗
2)

a2

)
the trajectories parallel to the red lines are followed when the optimal policy is applied.

If the size pair is on the line l2
l1

=
f(x∗2)

(
2−x

∗
1
a1
− f(x

∗
1)

a2

)
x∗1

(
2−x

∗
2
a1
− f(x

∗
2)

a2

) , then both the trajectories gives the

same cumulative delay. We can say that the quantity l2
l1

acts as a test parameter whose

value relative to
f(x∗2)

(
2−x

∗
1
a1
− f(x

∗
1)

a2

)
x∗1

(
2−x

∗
2
a1
− f(x

∗
2)

a2

) determines which one of the two rate pairs should be

used to get the best result.

5.1 Numerical example

Consider a rate region that is bounded by the first quadrant of the curve(
x

a1

)α
+

(
f(x)

a2

)α
= 1 α ≥ 1.

Notice that it satisfies both the conditions mentioned in Proposition 1. The optimal
rate pair for this rate region can therefore be determined by the procedure mentioned
in Remark 3.

The slope of tangent to any point on this border curve is

df(x)

dx
= f ′(x) = −

(
a2

a1

)α(
x

f(x)

)α−1

.

The equation of any line with slope m through (0, 2a2) is

y − 2a2 = mx.
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If this line is a tangent to the curve f(x) at some point (x∗1, f(x∗1)) then,

f(x∗1)− 2a2 = −
(
a2

a1

)α(
x∗1

f(x∗1)

)α−1

x∗1. (11)

Moreover, (x∗1, f(x∗1)) lies on the border curve, so satisfies(
x∗1
a1

)α
+

(
f(x∗1)

a2

)α
= 1. (12)

By solving (11) and (12) we get

x∗1 = a1

(
1− 2−

α
α−1

) 1
α
,

f(x∗1) =
a2

2
1

α−1

.
(13)

Similarly, we can also get the other optimal rate pair (x∗2, f(x∗2))

x∗2 =
a1

2
1

α−1

,

f(x∗2) = a2

(
1− 2−

α
α−1

) 1
α
.

(14)

Finally, the test parameter is given by

f(x∗2)
(

2− x∗1
a1
− f(x∗1)

a2

)
x∗1

(
2− x∗2

a1
− f(x∗2)

a2

) =

a2

(
1− 2−

α
α−1

) 1
α

[
2− a1

(
1−2

− α
α−1

) 1
α

a1
− 1

a2

a2

2
1

α−1

]

a1

(
1− 2−

α
α−1

) 1
α

[
2− 1

a1

a1

2
1

α−1
− a2

(
1−2

− α
α−1

) 1
α

a2

]

=

a2

[
2−

(
1− 2−

α
α−1

) 1
α − 2−

1
α−1

]
a1

[
2− 2−

1
α−1 −

(
1− 2−

α
α−1

) 1
α

]
=
a2

a1

.

Thus, if l1 and l2 be the job sizes, then from Proposition 1 the optimal rate pair,
(x∗1, f(x∗1)), given by (13) should be used if l2

l1
≥ a2

a1
. On the other hand, if l2

l1
< a2

a1
,

(x∗2, f(x∗2)), given by (14) is the optimal rate pair. Moreover, in this particular case,
as x∗1 ≥ x∗2 and f(x∗1) ≤ f(x∗2), if we consider the normalized sizes of the flows
(i.e., the minimum time required to serve them), l1

a1
and l2

a2
, the optimal policies

still adhere to the SRPT-FM principle as when l1
a1
≤ l2

a2
the policy (x∗1, f(x∗1)) is the

optimal policy.
Moreover, it can be easily shown that the PF scheduler always assigns the rate

pair (2−
1
αa1, 2

− 1
αa2) that is nearly optimal for large values of α. Again, some weight

based strategy as discussed in Section 4 can be employed to achieve either the
optimal or the PF rates rates in a time slotted system.
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5.2 More than two jobs in asymmetric case

When there are three jobs in the asymmetric case we have to consider a total of six
cases that depend on the sizes of the jobs and the service rates they are processed
at. Although it is possible to do so, the analysis is complicated and no structure
is uncovered for cases with more than three jobs. Therefore, in Section 6 we shift
our attention to the symmetric case which, we will see, is more amenable to an
analytical treatment and reveals some interesting properties.
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6 Symmetric case with any number of jobs

In Section 5 we saw that the optimal rates can be obtained for a specific case of
only two jobs in asymmetric rate region. When the number of jobs increases, the
complexity of analysis grows in such a setting. Now, in this section we see how, for
the model introduced in Section 4.1.2, the optimal rates and policies behave, i.e.,
when the setting is symmetric and at the same time the rate regions have certain
properties.

We assume, for a model described in Section 4, that the capacity regions Ck have
the following properties for all k ∈ In.

i (Compactness) Ck is a compact region of Rk
+, i.e., Ck is closed and bounded;

ii (Symmetry) Ck is symmetric, i.e., if c ∈ Ck, then any permutation of its
components, c̃, also lies in Ck.

6.1 One job

If there is only one job at the beginning, i.e., n = 1, then the optimal service policy
that minimizes delay is the one that assigns the highest capacity to the only job
present, i.e.,

c∗1 := c∗1 = max{c ∈ C1} = c∗11.

The existence of this policy is guaranteed by the compactness property (i). The
optimal policy is independent of the size of the job.

6.2 More than one job

We now consider the case where there is more than one job present at the beginning,
i.e., n > 1. We recall that a service policy is a sequence of service rate vectors
~π = (c1, . . . , cn). The cumulative delay is then

T ~π =
n∑
k=1

t~πk =
n∑
k=1

kT ~πk , (15)

where Tπk is the length of phase k of the policy ~π.
Let {gk(·)}nk=1 be a sequence of functions such that

gk : Ck −→ R+ ∀k ∈ In
and defined recursively as,

g1(c1) =
1

c1

, G∗1 = min
c1∈C1

g1(c1), g1(c∗1) = G∗1,

gk(ck) =
1

ckk

(
k −

k−1∑
j=1

ckjG
∗
j

)
, G∗k = min

ck∈Ck
gk(ck), gk(c

∗
k) = G∗k,

∀k ∈ In.
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The existence of the minimum values of {gk(·)}nk=1 is guaranteed by the compactness
property. Moreover, for gk(·) and G∗k to be well defined, it is sufficient that the rate
regions Ck be nested.

Lemma 4. Let a = (a1, . . . , an), ai ∈ R+ be an n-dimensional row vector with
a1 < a2 < · · · < an, let B = {b1, . . . , bn} be a set with bi ∈ R+, B′ = {b′1, . . . , b′n!}
be the set of all n-dimensional vectors whose elements are the permutation of the of
the elements of B. Then,

i the components of b∗ = arg maxb′∈B′ a · b′ have the property b∗1 ≤ · · · ≤ b∗n and

ii the components of b∗∗ = arg minb′∈B′ a · b′ have the property b∗∗1 ≥ · · · ≥ b∗∗n ,

where b∗i and b∗∗i represent the i-th component, i ∈ In, of b∗ and b∗∗ respectively.

Proof. We begin step 0 with the vector b = (b1, b2, . . . , bn) ∈ B′ whose elements
are arranged in no particular order. Let o(k) denote the index of the k-th small-
est element of b, i.e., o(1) = arg mini∈In{bi}6. In step 1 consider another vector
b′ = (bo(1), b2, . . . , b1, . . . , bn) which is obtained by switching the positions of b1 and
bo(1) in b. Without the loss of generality we can assume that o(1) = k, i.e., the k-th
element of b is the smallest element. Then,

a · b′ − a · b = a · (b′ − b),

= (a1, . . . , an) · (bo(1) − b1, 0, . . . , b1 − bk, . . . , 0),

= (a1, . . . , an) · (bo(1) − b1, 0, . . . , b1 − bo(1), . . . , 0),

= (b1 − bo(1))(ak − a1),

≥ 0,

⇒ a · b′ ≥ a · b

Next, for step 2 consider another vector b′′ = (bo(1), bo(2), b3, . . . , b2, . . . , b1, . . . , bn)
that is obtained by switching the positions of b2 and bo(2) in vector b′. Here o(2)
denotes the index of the second smallest element of b′ which in this case is assumed
to be its l-th element without the loss of generality. Then,

a · b′′ − a · b′ = a · (b′′ − b′),

= (a1, . . . , an) · (0, bo(2) − b2, . . . , b2 − bo(2), . . . , 0),

= (b2 − bo(2))(al − a2),

≥ 0,

⇒ a · b′′ ≥ a · b′

Continuing in this way, at each step, we successively get non decreasing dot products
by constructing a new vector through switching the positions of the k-th and the
k-th smallest elements of the vector in the (k−1)-th step. Thus, in (a maximum of)

6If there are multiple minimum values, only the one with the smallest index is considered. This
always makes o(1) a singleton set
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n − 1 steps, we get the vector b∗ = (b∗1, . . . , b
∗
n) ∈ B′ that gives the largest possible

dot product a · b∗ and has the property b∗i ≥ b∗j for all i ≥ j.
Similar arguments can be used to prove Part ii of the lemma. In this case we take

any vector b in step 0. After that, in (k−1)-th step where, k ∈ In, we exchange the
positions of the k-th and the k-th largest elements of the vector to get a new vector
for the k-th step. We see that each new vector gives either a smaller or the same dot
product as the previous one. Whichever vector we begin with, after performing this
operation (a maximum of n − 1 times) we always end up with the same vector b∗∗

with the property b∗∗i ≤ b∗∗j for all i ≥ j that gives the smallest possible dot product
with a.

Proposition 5. If the capacity regions are such that

G∗1 < · · · < G∗n,

then c∗k,j+1 ≥ c∗k,j for all k = 2, . . . , n and j = 1, . . . , k − 1.

Proof. 1◦ Let k ∈ {2, . . . , n} and j ∈ {1, . . . , k − 2}. Then, G∗k is defined as,

G∗k = min
ck∈Ck

gk(ck) = min
ck∈Ck

1

ckk

(
k −

k−1∑
j=1

ckjG
∗
j

)
. (16)

We consider a fixed value of k. Obviously, the summation term in (16) has to be
maximized to get the desired minimum value of the auxiliary function gk(ck). Since
Ck is symmetric, when any optimal rate vector c∗k, whose service rates c∗k,j+1 6≥ c∗k,j
for all j = 1, . . . , k − 2 is found, a vector with any permutation of rates offered by
it can also be found in the rate region. From Lemma 4 we can infer that one such
permutation of the optimal rate vector, say c∗k

′, that has the property c∗k,j+1
′ ≥ c∗k,j

′

for all j = 1, . . . , k−2 should maximize the summation term and therefore minimize
the whole expression. This makes c∗k

′ and not c∗k the optimal one. So, if c∗k,j+1 6≥ c∗k,j
is assumed for the optimal rate vector, we always get a more optimal rate vector by
permuting its elements. This is a contradiction and thus, we can conclude c∗k,j+1 ≥
c∗k,j for all k = 2, . . . , n and j = 1, . . . , k − 2.

2◦ Consider the remaining case where k ∈ {2, . . . , n} and j = k−1. The optimal
rate vector c∗k = (c∗k,1, . . . , c

∗
k,k−1), when there are k jobs in the system is defined as,

c∗k = arg min
ck∈Ck

gk(ck)

G∗k = gk(c
∗
k).

Due to the symmetry assumption, an another rate k-tuple, c∗k
′ = (c∗k,1, . . . , c

∗
k,k, c

∗
k,k−1)

is also a feasible rate vector. Notice that c∗k
′ is obtained by exchanging the positions



30

last two elements of c∗k. From the definition of minimum value

g(c∗k) ≤ g(c∗k
′)

⇔ 1

c∗kk

(
k −

k−1∑
j=1

c∗kjG
∗
j

)
≤ 1

c∗k,k−1

(
k −

k−2∑
j=1

c∗kjG
∗
j − c∗kkG∗k−1

)

⇔ c∗k,k−1

(
k −

k−1∑
j=1

c∗kjG
∗
j

)
≤ c∗kk

(
k −

k−2∑
j=1

c∗kjG
∗
j − c∗kkG∗k−1

)

⇔ (c∗k,k−1 − c∗kk)k − (c∗kk−1 − c∗kk)
k−2∑
j=1

c∗kjG
∗
j − (c∗2k,k−1 − c∗2kk)G∗k−1 ≤ 0

⇔ (c∗k,k−1 − c∗kk)
(
k −

k−1∑
j=1

c∗kjG
∗
j − c∗kkG∗k−1

)
≤ 0

⇔ (c∗k,k−1 − c∗kk)(c∗kkG∗k − c∗kkG∗k−1) ≤ 0

⇔ c∗kk(c
∗
k,k−1 − c∗kk)(G∗k −G∗k−1) ≤ 0

Since the quantities c∗kk and (G∗k − G∗k−1) are both positive, the above inequality
holds only if c∗kk ≥ c∗k,k−1 for k ∈ {2, . . . , n}.

This completes the proof.

Theorem 6. If the capacity regions C1, . . . , Cn are such that

G∗1 < · · · < G∗n,

then the optimal operating policy is ~π∗ = (c∗1, . . . , c
∗
n) for all sizes sn1 ≥ · · · ≥ snn.

The cumulative delay T ~π
∗

satisfies

T ~π
∗

=
n∑
k=1

snkG
∗
k.

In addition, c∗k,j+1 ≥ c∗k,j for all k = 2, . . . , n and j = 1, . . . , k−1 so that the optimal
policy applies the SRPT-FM principle.

Proof. The result can be proved by induction. For n = 1, the result is clearly true

T ~π
∗

=
s11

c∗1
= min

c1∈C1

s11

c∗1
= min

~π∈Π1

T ~π.

In addition, G∗1 = 1
c∗1

so that T ~π
∗

= s11G
∗
1 as claimed. Now, assume that the result

is true for n = m. We will prove this assumption implies that the result is true for
n = m+ 1.

Let us first assume that the SRPT-FM principle is followed when there are
m + 1 jobs in the system. This means, the first job to leave the system will
be the smallest job with the index (m + 1) that has the size sm+1,m+1 and gets
the highest possible processing rate c∗m+1,m+1. After its departure at sm+1,m+1

c∗m+1,m+1
time
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units from the beginning, the sizes of the jobs still remaining in the queue will be
sm+1,i − sm+1,m+1

c∗m+1,m+1
c∗m+1,i, i = 1, . . . ,m. The cumulative delay for this policy is thus

given by,

T ~π
∗

= (m+ 1)
sm+1,m+1

c∗m+1,m+1

+
m∑
i=1

(
sm+1,i −

sm+1,m+1

c∗m+1,m+1

c∗m+1,i

)
G∗i , (17)

where ~π∗ = (c∗1, . . . , c
∗
m+1). The second part of (17) comes from the application of

our induction hypothesis—after the departure of one job, only m jobs now remain
in the system and therefore the induction hypothesis can be applied. Proceeding
further,

T ~π
∗

=
m∑
i=1

sm+1,iG
∗
i + sm+1,m+1

1

c∗m+1,m+1

(
(m+ 1)−

m∑
i=1

G∗i c
∗
m+1,i

)
,

=
m∑
i=1

sm+1,iG
∗
i + sm+1,m+1G

∗
m+1,

=
m+1∑
i=1

sm+1,iG
∗
i .

We will now show that if the SRPT-FM principle is not followed when there are
(m + 1) jobs, the cumulative delay is larger than the case when this principle is
followed, making SRPT-FM the optimal policy.

Let ~π = (c∗1, . . . , c
∗
m, cm+1) be the policy that is applied when there are m+1 jobs

in the system. Since it is not necessarily SRPT-FM, any job among the m+1 present
may leave first which is denoted by the index j. Let o(k) denote the index of the
k-th largest job after the first job departs. Then, from the definition of cumulative
delay and our induction hypothesis,

T ~π = (m+ 1)
sm+1,j

cm+1,j

+
m∑
i=1

(
sm+1,o(i) −

sm+1,j

cm+1,j

cm+1,o(i)

)
G∗i ,

=
m∑
i=1

sm+1,o(i)G
∗
i + sm+1,j

1

cm+1,j

(
(m+ 1)−

m∑
i=1

G∗i cm+1,o(i)

)
,

(i)

≥
m∑
i=1

sm+1,o(i)G
∗
i + sm+1,j

1

c∗m+1,m+1

(
(m+ 1)−

m∑
i=1

G∗i c
∗
m+1,i

)
,

=
m∑
i=1

sm+1,o(i)G
∗
i + sm+1,jG

∗
m+1,

(ii)

≥
m+1∑
i=1

sm+1,iG
∗
i .

Inequality (i) comes from the fact that the auxiliary function gm+1(cm+1) is mini-
mized when cm+1 = c∗m+1. Inequality (ii) comes from Lemma 4. We can therefore
conclude that the cumulative delay for any policy other than SRPT-FM is greater
than that of SRPT-FM for any number of jobs. This completes the proof.
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7 Alpha-ball rate region

Consider an α - ball shaped rate region in which when there are n jobs in the system,
the elements of the service rate vector cn = (cn1, . . . , cnn) satisfies the inequality

cαn1 + cαn2 + · · ·+ cαnn ≤ 1 (18)

for all n ∈ Z+. Clearly, the region is compact as well as symmetric. For such rate
region, it is possible to obtain analytical expressions for the optimal value of the
auxiliary function G∗k = gk(c

∗
k) and the optimal service rate vectors (c∗1, c

∗
2, . . . , c

∗
n)

for k ∈ {1, . . . , n}.
For this, we begin by recalling the definitions of the auxiliary function gk(·) and

its optimal value G∗k which are defined as,

gk(ck) :=
1

ckk

(
k −

k−1∑
j=1

ckjG
∗
j

)
,

G∗k := min
ck∈Ck

gk(ck) = min
ck∈Ck

1

ckk

(
k −

k−1∑
j=1

ckjG
∗
j

)
and

c∗k := arg min
ck∈Ck

gk(ck)

for all k ∈ Z+. When there are n jobs, the components of the optimal rate vector
c∗n = (c∗n1, c

∗
n2, . . . , cnn) satisfy the linear equation

n∑
k=1

G∗kc
∗
nk = n. (19)

Moreover, the optimal rate should fall on the border of the α-ball (18), i.e., its
components satisfy the equation

c∗αn1 + c∗αn2 + · · ·+ c∗αnn = 1. (20)

If the optimal rate vector is unique then the hyperplane given by (19) should be a
tangent to the α-ball (20). This means, at the point of intersection of (20) and the
hyperplane (19) the gradients of both the hypercurves must be proportional.

The gradient of the ball is given by

∇n(c∗αn1 + c∗αn2 + · · ·+ c∗αnn) = α(c
∗(α−1)
n1 ĉn1 + c

∗(α−1)
n2 ĉn2 + · · ·+ c∗(α−1)

nn ĉnn), (21)

and the gradient of the hyperplane is given by

∇n(G∗1c
∗
n1 + · · ·+G∗nc

∗
nn) = G∗1ĉn1 + · · ·+G∗nĉnn. (22)
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Here ĉni represents the unit vector in the cni direction of the rate space. As (21)
and (22) point to the same direction,

G∗1ĉn1 + · · ·+G∗nĉnn = λα(c
∗(α−1)
n1 ĉn1 + c

∗(α−1)
n2 ĉn2 + · · ·+ c∗(α−1)

nn ĉnn)

⇒ G∗1

c
∗(α−1)
n1

= · · · = G∗n

c
∗(α−1)
nn

= λα

⇔ c
∗(α−1)
ni =

G∗i
λα

for all i ∈ {1, . . . , n}, (23)

where λ is the constant of proportionality (the Lagrange multiplier). Using (23) in
(19) and (20), we get

G∗1
α
α−1 + · · ·+G∗n

α
α−1 = n(λα)

1
α−1 and

G∗1
α
α−1 + · · ·+G∗n

α
α−1 = (λα)

α
α−1 , (24)

implying that λα = n. Now using this value of λα in (24) we get,

G∗1
α
α−1 + · · ·+G∗n

α
α−1 = n

α
α−1 , (25)

which can be used to recursively calculate the values of G∗k for all k ∈ {1, . . . , n} by
noting that G∗1 = 1, i.e.,

G∗2
α
α−1 = 2

α
α−1 −G∗1 = 2

α
α−1 − 1,

G∗3
α
α−1 = 3

α
α−1 −G∗2

α
α−1 −G∗1

α
α−1 = 3

α
α−1 − 2

α
α−1 ,

...

G∗n
α
α−1 = n

α
α−1 − (n− 1)

α
α−1 .

Finally, the rates c∗kj are given by

c∗kj
α−1 =

G∗j
k

for k ∈ {1, . . . , n} and j ∈ {1, . . . , k}. Clearly, for α ≥ 1, G∗1 < · · · < G∗n and
c∗k,j+1 ≥ c∗k,j for all k = 2, . . . , n and j = 1, . . . , k−1, in accordance with Theorem 6.
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8 Simulation for the dynamic setting

As discussed in Section 4, flow-level simulation is used in this thesis to study the
application of the optimal policy in the static setting for the dynamic flow arrivals.
The rate region is assumed to take the shape of α-ball described in Section 7. This
allows us to use the results of Section 7 and analytically determine the long-term
service rate that should be allocated to each flow in the system, allowing the sim-
ulation to be done at the flow-level. Then, for the same arrivals and service time
requirements (which aids in reducing the variance), we apply the PF policy and
compare it with the result obtained by the application of the optimal policy. As a
symmetric rate region is considered, the long-term service rate in case of PF policy
can also be easily determined. For various arrival rates and different values of α the
simulations are done in the dynamic setting and compared with the PF policy in
the same.

8.1 Description of the simulator

The simulator is implemented in Mathematica. The main body of the simulator is
a function that takes the arrival rate (λ), the number of arrivals (n) and the policy
to be applied (p) as the input arguments. The basic events are the arrival and the
departure of flows which change the various state variables. A simplified structure
of the simulator is summarized below:

Events

• Flow arrival ARR

• Flow departure DEP

State variables

• The ordered set of the flows currently queued in the system sorted by the
amount of bits left to transmit (Q).

• The list of the arrival times of the flows in the system, A, indexed by the
elements of Q.

• The list of the bits remaining to transmit for each flow, R, indexed by
the elements of Q.

• The departure time of the smallest job in the system (Td)

• The time instant when the previous event (arrival or departure) occurred
(tp)

• The current service rate vector (r)

Special event

• The end of the simulation END
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simulategetFlowSize getServiceRate

{{{arr, dep},{arr, dep}, . . . , {arr, dep}},{arr, arr, . . . , arr}}

n, λ, p

E[X]

X m, p

c(m, p)

Figure 11: The structure of the simulator. The simulate module does the main simu-
lation when the relevant parameters are supplied to it. The functions—getFlowSize and
getServiceRate are called when new flows arrive. The simulation ends when ‘n’ flows
have arrived, at which point simulate returns the arrival and the departure times of the
flows that have been served.

The simulator is implemented in Mathematica in the module simulate which is
called with the input arguments parameters n, λ and p. With every new arrival of
a flow this module calls the external functions—getFlowSize and getServiceRate

to get the size of the flow and the service rate vector to process these flows by
supplying the appropriate parameters. It can be summarized as in Figure 11. The
source code of the simulator is given in Appendix A.

8.2 Numerical results

A simulation for 50000 arrivals has been performed and the first 20000 observations
have been ignored in the final analysis to remove the effect of transients and observe
only the steady state behavior. The flows arrive according to the Poisson process
with different arrival rates and have a size with an exponential distribution [with
mean 1 bit].

The results from the simulation are summarized as in Figures 12–16. Clearly
the optimal policy in the static case performs better than the PF policy for a wide
range of arrival rates. We also observe that after some particular value of the arrival
rate, the performance of optimal policy begins to somewhat decline. This is because
the PF policy in this rate region is able to extract the highest possible opportunism
from the system. At lower arrival rates when there are few flows in the queue,
the difference of opportunistic gain between the PF and the optimal policy for the
static case is small. As the arrival rate increases, so does the queue length and thus
the difference between the opportunistic gain of the PF policy and the static-case
optimal policy. This implies that by consistently operating at the optimal policy,
some portion of opportunism is always lost at the higher arrival rates and this loss
cannot be compensated by the SRPT-like behavior of the optimal policy. Since
the PF policy can utilize all the opportunistic gain of the system, its performance
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relative to the optimal policy gets better with increasing arrival rate.
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Figure 12: The performance of the optimal policy against the PF policy when α = 1.001.
The rate region is very close to being non opportunistic. So, the optimal policy, that is
close SRPT is clearly better than the PF policy which is similar to PS in this case.
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Figure 13: The performance of the optimal policy against the PF policy when α = 1.01.
The optimal static-case policy performs better than the PF policy in this almost non-
opportunistic case. The performance of the optimal policy depends on the arrival rate.
Like the case of a non-opportunistic M/G/1 queue, where the SRPT policy performs con-
sistently better than the PS policy, here also we observe that the optimal static-case policy
performs better than the PF policy. In this case, the optimal static-case policy is akin to
the SRPT policy in M/G/1 while the PF policy is equivalent to PS. However, at very high
arrival rates, the gain achieved by the application of the optimal policy begins to decline.
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Figure 14: The performance of the optimal policy against the PF policy when α = 1.1.
The optimal static-case policy is consistently better than the PF policy. At high arrivals
we again see that the performance gain of the optimal policy starts to decline.
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Figure 15: The performance of the optimal policy against the PF policy when α = 2.
The optimal static-case policy seems to be marginally better that the PF policy. The two
policies are almost the same for very low and very high arrival rates.
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Figure 16: The performance of the optimal policy against the PF policy for different
values of α. For values of α ≈ 1 we see that the optimal policy is better than the PF policy
and the gain with the optimal policy is arrival rate dependent. Furthermore, the optimal
policy performs at least as good as the PF policy for a wide range of arrival rates.
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9 Conclusions

In this thesis we have studied the problem of optimally scheduling elastic flows in an
opportunistic environment, mainly inspired by its applications in cellular wireless
networks. More specifically, we have devised policies that minimize the cumulative
delays of flows in various static settings. In a dynamic setting we have studied the
effects of the application of these policies on average delays of the flows. We have
focused our attention mainly in the rate regions that arise due to fast scheduling
in a time scale separated wireless environment. The schedulers here can flexibly
schedule the flows and have complete information about flow sizes while doing so.
The results are valid for a general queueing/scheduling system that involves some
kind of rate region where the scheduler can choose the customer to provide service
based on the information it has about the remaining work of customer.

9.1 Summary of work accomplished

The main work of this thesis has been presented in Sections 5–8. First we have
studied the asymmetric setting involving only two jobs that can arise, e.g., when a
base station tries to schedule flows to two users that have different spatial locations.
We see that if the rate region involved in this case is convex and bounded by a
decreasing curve, there can only be pair of possible policies that can give the optimal
result. The choice between these two policies can be done with the help of the
information about the size of the flows. As an example, we apply this result in
a model rate region for which we are able to get the explicit expressions of the
optimal long-term service rates, which bear a striking resemblance to the SRPT-FM
scheduling policy.

In the asymmetric case, when more than two flows are involved the analysis
becomes too complicated. However, when we analyze the symmetric, compact and
nested rate regions in Section 6 we see that we can, in general, characterize the
optimal policies when G∗1 < · · · < G∗n, where G∗k, k ∈ {1 . . . n} are defined in Section
6.2. Under such conditions, the optimal policy follows the SRPT-FM principle and
the cumulative delay has a simple expression that is based on the values of G∗i and
the initial sizes of the flows. We then determine the optimal rate vector for a simple
rate region, called the α-ball region, that satisfies the above stated properties.

In the dynamic setting we study the application of this static-case optimal policy
for the α-ball rate region. We see that the optimal policy performs no worse than
the baseline PF policy and the performance of this policy is dependent on the arrival
rate. When all opportunism is absent the static-case optimal policy is always better
than the PF policy and its performance gets better as the arrival rate increases.
When the opportunism of the system increases, this kind of strong optimality is not
observed primarily because the static-case optimal policy does not fully exploit the
opportunism of the system and forsakes a part of the opportunistic gain by providing
higher rate to smaller flows.
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9.2 Future works

The work presented in this thesis can be extended in various ways. Some future
directions of work are listed below.

General asymmetric setting
In this thesis we have studied the nature of optimal policies for only two flows in
an asymmetric setting. The analysis for more than two flows is not analytically
tractable by similar methods. Since the generalized asymmetric setting is
more realistic in terms of applications, it will be worthwhile to analyze these
environments either analytically or through simulation and observe the optimal
policies.

Results for more realistic rate regions
The rate region we have considered in the thesis is a highly contrived one.
Although similar rate region may be found in real-life cases, making analogous
analysis for realistic rate regions in actual wireless channels would be a good
direction for future work.

Optimal policy for the dynamic setting
We have devised optimal policy for the static setting. However, the optimal
policy for the dynamic setting in which flows arrive also has not been stud-
ied. We have observed some connection between the SRPT-FM policy and
optimality. The policy considered here seems to do a good job in the dynamic
setting as well, but it is not known if this is the optimal policy. So, future work
may involve studying policies based on SRPT-FM that give optimal results in
the dynamic setting as well.
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A Mathematica Source Code

The code of the main simulator is listed.

1 s imulate [ n Integer , \ [ Lambda ] , p o l i c y S t r i n g ] :=
Module [
{ c o l l e c t e d S t a t i s t i c s = {} , n ex tArr iva l In s tant , queue ,

arr iva lsCoun , nextDepartureInstant , prev iousEventInstant ,
currentRate , ar r iva l sCount , presentTime ,
f l owS ize , \ [Mu] = 1 , \ [ Alpha ] = 1 .001 , s e rv i c eRate = {}} ,

(∗ I n i t i a l i z e the s t a t e v a r i a b l e s ∗)
queue = {} ;
(∗Generate the next a r r i v a l and i t s s i z e ∗)
nex tAr r i va l In s t an t = 0 ;

11 nextDepartureInstant = 0 ;
nex tAr r i va l In s t an t = generateNextArr iva l [ \ [ Lambda ] ] ;
f l o w S i z e = getFlowSize [ \ [Mu ] ] ;
a r r i va l sCount = 1 ;
nextDepartureInstant = nex tAr r i va l In s t an t + 1 ;
prev iousEvent Instant = nex tAr r i va l In s t an t ;
currentRate = {} ;
While [ a r r i va l sCount <= n ,

(∗ i f t h e r e i s an a r r i v a l b e f o r e the next s c h e d u l e d depar ture ∗)
I f [ n ex tAr r i va l In s t an t < nextDepartureInstant ,

21 presentTime = nex tAr r i va l In s t an t ;
(∗ I f t h e r e i s any j o b in the queue update the remaining work ∗)
I f [Length [ queue ] != 0 ,
queue [ [ All , 3 ] ] =

queue [ [ All , 3 ] ] − ( presentTime − prev iousEvent Instant ) ∗
currentRate ;

] ;
(∗ queue={a r r i v a l time , o r i g i n a l s i z e , remaining s i z e }∗)
AppendTo [ queue , {presentTime , f l owS ize , f l o w S i z e } ] ;
(∗ s o r t the queue by remaining s i z e in the ascending order ( the \

31 s m a l l e s t f i r s t ) ∗)
queue = Sort [ queue , # 1 [ [ 3 ] ] < # 2 [ [ 3 ] ] &] ;
(∗ g e t the new s e r v i c e r a t e s f o r the f l o w s ∗)
s e rv i c eRate = getServ i ceRate [Length [ queue ] , \ [ Alpha ] , p o l i c y ] ;
(∗ c a l c u l a t e the next depar ture time i f no new a r r i v a l occurs ∗)
nextDepartureInstant =

presentTime + queue [ [ 1 , 3 ] ] / s e rv i c eRate [ [ 1 ] ] ;
(∗Update the s t a t e v a r i a b l e s ∗)
currentRate = se rv i c eRate ;
prev iousEvent Instant = presentTime ;

41 (∗ genera te the next a r r i v a l ∗)
nex tAr r i va l In s t an t =

presentTime + generateNextArr iva l [ \ [ Lambda ] ] ;
(∗ g e t the s i z e o f the next a r r i v a l ∗)
f l o w S i z e = getFlowSize [ \ [Mu ] ] ;
a r r i va l sCount++;
, (∗ I f t h e r e i s a depar ture b e f o r e the next s c h e d u l e d a r r i v a l ∗)
presentTime = nextDepartureInstant ;
(∗ C o l l e c t e d S t a t i s t i c s ={A r r i v a l time , FlowSize , depar ture time ,
d e l a y }∗)
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51 AppendTo [
c o l l e c t e d S t a t i s t i c s , {queue [ [ 1 , 1 ] ] , queue [ [ 1 , 2 ] ] ,
presentTime , presentTime − queue [ [ 1 , 1 ] ] } ] ;

(∗Update the u n f i n i s h e d work o f the e lements o f the queue ∗)
queue [ [ All , 3 ] ] =

queue [ [ All , 3 ] ] − ( presentTime − prev iousEvent Instant ) ∗
currentRate ;

(∗ remove the f i r s t e lement o f the queue whose work i s f i n i s h e d ∗)
queue = Rest [ queue ] ;
I f [Length [ queue ] != 0 ,

61 s e rv i c eRate = getServ i ceRate [Length [ queue ] , \ [ Alpha ] , p o l i c y ] ;
nextDepartureInstant =

presentTime + queue [ [ 1 , 3 ] ] / s e rv i c eRate [ [ 1 ] ] ;
currentRate = se rv i c eRate ;
prev iousEvent Instant = presentTime ;
, (∗ i f the queue becomes empty go to the next a r r i v a l ∗)
prev iousEvent Instant = nex tAr r i va l In s t an t ;
(∗make sure you go to the a r r i v a l branch ∗)
nextDepartureInstant = nex tAr r i va l In s t an t + 1 ;
currentRate = {} ;

71 ] ;
] ;

] ;
(∗{Sort the c o l l e c t e d s t a t i s t i c s accord ing to the a r r i v a l time}∗)
Sort [ c o l l e c t e d S t a t i s t i c s , # 1 [ [ 1 ] ] < # 2 [ [ 1 ] ] &]
] ;

The codes for flow size generation, service rate vector calculation.

generateNextArr iva l [ x ] := −Log [Random [ ] ] / x

getFlowSize [ x ] := −Log [Random [ ] ] / x
4

getServ i ceRate [ n Integer , \ [ Alpha ] , p o l i c y S t r i n g ] :=
Module [
{} ,
Switch [ po l i cy ,

” pf ” ,
Table [ nˆ(−1/\ [ Alpha ] ) , {n } ] ,
” opt ” ,
G = Table [ ( i ˆ (\ [ Alpha ] / ( \ [ Alpha ] − 1) ) − ( i −

1) ˆ (\ [ Alpha ] / ( \ [ Alpha ] − 1) ) ) ˆ ( ( \ [ Alpha ] −
14 1) /\ [ Alpha ] ) , { i , n } ] ;

c = (G/n) ˆ ( 1 / (\ [ Alpha ] − 1) ) ;
(∗ re turn the r a t e s in the descending order ∗)
Reverse [ c ] ,
”ps” ,
Table [ 1/ n , {n } ] ,

,
g e tServ i ceRate : : nnarg = ”The p o l i c y ‘1 ‘ i s not a v a l i d p o l i c y ” ;
Message [ g e tServ i ceRate : : nnarg , p o l i c y ]
]

24 ]
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B Two-user rate region

Here we consider a time-slotted system where base station is serving one of two
users indexed by I2 = {1, 2} in a time slot. For user i ∈ I2 the rate process is
Ri(t). Moreover, R1(t) and R2(t) are independent and have the same stationary
distribution as R(t), which takes values from the set R = {r1, r2}, r1 > r2 such that,

P{R(t) = r1} = p,

P{R(t) = r2} = 1− p,∀t.

Let γ = r1
r2

be the ratio of the two possible value of rates. In the time slot beginning
at t the base station serves user 1 when R1(t) > wR2(t) with the rate R1(t). If
R1(t) < wR2(t) user 2 is served with the rate R2(t). If R1(t) = wR2(t), the selection
of the user to be served is made based on some well defined rule that is considered
later. It is also assumed that the values of rate process change only at the beginning
of a time slot and remain constant in that time slot. From Section 3 we know that
such weight based strategy allows us to assign long-term throughputs to the users,
which is represented by some extremal point of the rate region. We will see in this
section that this strategy also enables us to determine the whole rate region for the
simple case considered here.

c21

c22

A ≡ (pr1 + (1− p)r2, 0)

B ≡ (pr1 + (1− p)2r2, p(1− p)r1)

C ≡ (p(1− p)r1, pr1 + (1− p)2r2)

D ≡ (0, pr1 + (1− p)r2)

P

π
4

w = r2
r1

w = 1

w = r1
r2

w < r2
r1

r2
r1

< w < 1

1 < w < r1
r2

w > r1
r2

Prop. fair

Figure B1: Illustration of rate region
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Chosen user for case
R1(t) wR2(t) Prob. w < 1

γ
w= 1

γ
1
γ
< w < 1 w = 1 1 < w < γ w=γ w > γ

r1 wr1 p2 1 1 1 1/2 2 2 2
r1 wr2 p(1− p) 1 1 1 1 1 1/2 2
r2 wr1 p(1− p) 1 1/2 2 2 2 2 2
r2 wr2 (1− p)2 1 1 1 1/2 2 2 2

Table B1: Table for various cases that can arise for different values of weight w.

Case I: w < 1
γ

In this case user 1 is always chosen as R1(t) > wR2(t) and served at an average
rate of pr1 + (1− p)r2. No service is provided to user 2. This corresponds to
the point A in Figure B1.

Case II: w= 1
γ

In this case the various permutation of rates that can occur is shown in Table
B1. If the ties are always broken in the favor of user 1, we get similar results
as Case I. On the other hand, if the ties are always broken in favor of user 2,
the average service rates for user 1 and 2 are pr1 + (1 − p)2r2 and p(1 − p)r1

respectively (corresponding to point B in Figure B1). If the tie breaking rule
favors user 1 with a probability p′ and user 2 with a probability 1 − p′, by
adjusting the value of p′ we can get intermediate results (on the red line in
Figure B1) between these two extreme points (A and B in Figure B1).

Case III: 1
γ
< w < 1

Again from Table B1 we can see that ties do not occur and the average service
rates, pr1 + (1 − p)2r2 and p(1 − p)r1, are provided to the two users (corre-
sponding to point B in Figure B1).

Case IV: w = 1
We refer to Table B1 for various permutations of rates that can occur. Ties
are possible in this case and if they are always broken in the favor of user 1,
we get similar results as Case III. On the other hand, if the ties are always
broken in favor of user 2, the average service rates received by users 1 and 2
are p2r1 and pr1 + (1− p)2r2 respectively (corresponding to point C in Figure
B1). If the tie breaking rule favors user 1 with a probability p′ and user 2 with
a probability 1−p′, by adjusting the value of p′ we can get intermediate results
(on the blue line in Figure B1) between these two extreme points (B and C
in Figure B1). The scheduling is proportionally fair when p′ = 0.5 (point P in
Figure B1).

Case V: 1 < w < γ
From Table B1 we see that ties never occur and the two users get rates p(1−p)r1

and pr1 + (1− p)2r2 (corresponding to point C in Figure B1).

Case VI: w=γ
As seen from Table B1 ties can occur in this case. If the tie is always broken
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in the favor of user 1, we get similar results as Case V. On the other hand, if
the ties are always broken in favor of user 2, the average service rates for user
1 and 2 are 0 and pr1 + (1 − p)r2 (corresponding to point D in Figure B1).
If the tie breaking rule favors user 1 with a probability p′ and user 2 with a
probability 1− p′, by adjusting the value of p′ we can get intermediate results
(the green line in Figure B1) between these two extreme points (C and D in
Figure B1).

Case VII: w > γ
In this case the time slots are always awarded to the user 2 as wR2(t) > R1(t).
So, the average throughput of user 1 is 0 while that of user 2 is pr1 + (1− p)r2

(point D in Figure B1).

From Proposition 1 (the ‘tangent interpretation’ of the minimal cost) we see
that when the jobs are ordered such that c21 is provided to the bigger job and c22

is provided to the smaller job, C is the point which minimizes the aggregate flow
delay. Thus we get

G∗1 =
1

pr1 + (1− p)r2

,

G∗2 =
1

pr1 + (1− p)2r2

(2−G∗1(p(1− p)r1)) ,

=
1

pr1 + (1− p)2r2

(
2− p(1− p)r1

pr1 + (1− p)r2

)
,

=
p(1 + p)r1 + 2(1− p)r2

(pr1 + (1− p)2r2)(pr1 + (1− p)r2)
.

As
p(1 + p)r1 + 2(1− p)r2

(pr1 + (1− p)2r2)
> 1, G∗2 > G∗1 in this case.


	Abstract
	Preface
	Contents
	Symbols and abbreviations
	Introduction
	Research problem formulation
	Organization of thesis

	Technological background
	CDMA/EVDO
	Beyond CDMA/EVDO

	Theoretical background
	Flow-level modeling
	Elastic and streaming flows
	Time scale separation
	Opportunistic scheduling and rate region
	M/G/1 queueing model and SRPT
	Proportional fairness

	Model
	Static setting
	Asymmetric case
	Symmetric case

	Dynamic setting

	Asymmetric case with two jobs
	Numerical example
	More than two jobs in asymmetric case

	Symmetric case with any number of jobs
	One job
	More than one job

	Alpha-ball rate region
	Simulation for the dynamic setting
	Description of the simulator
	Numerical results

	Conclusions
	Summary of work accomplished
	Future works

	References
	Appendices
	Mathematica Source Code 
	Two-user rate region 

