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In-packet Bloom filters allow one to forward source-routed packets with minimal forwarding 

tables, the Bloom filter encoding the identities of the links the packet needs to be forwarded 

over. If the link identities are made content dependent, e.g. by computing the next-hop 

candidate link identifiers by applying a cryptographic function over some information carried 

in the packet header, the Bloom filters differ pseudo-randomly from packet-to-packet, making 

the forwarding fabric resistant towards unauthorized traffic. 

The implementation and testing of in-packet bloom filter forwarding node that uses 

cryptographically computed link identifiers are discussed in this thesis. Two different 

cryptographic techniques are tested for the link-identity computation and thereby for making 

the forwarding decision. The algorithms have been implemented and tested on the Stanford 

NetFPGA. The performance and efficiency of the algorithms is also briefly discussed. 
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1  
INTRODUCTION 

 

While Bloom filters [19] are commonly used in several roles in networking 

applications [20], in-packet Bloom filters have only recently gained more 

attention [1][22]. The basic idea in these works is to encode the packet path (or a 

multicast tree) into a small Bloom filter, carried in the packet header. In the 

approach by Jokela et al. [1], each network link was expected to have been 

assigned a statistically unique, unidirectional link identifier. A set of these link 

identifiers, forming the path or the tree, was then encoded into the in-packet 

Bloom filter. This basic method was implemented on the NetFPGA by Keinanen 

et al. [18] 

In a follow up paper, Esteve, Jokela, et al. [21] introduced an idea where the link 

identifiers computed dynamically. That is, instead of storing the names (or Bloom 

masks) of the outgoing links at a forwarding table, the forwarding node would 

dynamically compute the outgoing link identifiers. If the computation uses some 

information from the packet, the link identifiers, and thereby the in-packet Bloom 

filters, may be made flow or packet contents dependent. As a consequence, only 

authorized users, which have the required input parameters for sending packets 

along a specific path, are able to compute the appropriate in-packet Bloom filters 

for any given path. Hence, the method very effectively blocks unauthorized 

traffic, at the cost of parameter distribution. Gathering the input parameters for a 

source route and fast rerouting are out of scope for this thesis. 

From the security point of view, the in-packet Bloom filters act simultaneously as 

forwarding identifiers and forwarding capabilities [21]; introducing a DoS 

resistant forwarding service. Capabilities enable secure statements attached to 

packets, allowing forwarding nodes to easily check if a packet has been approved 
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by the receiver. Any sender that has the appropriate input parameters is able to 

compute the in-packet Bloom filter, encoding a number of dynamically computed 

link identifiers. When such a packet then arrives at a forwarding node, the node 

computes a number of candidate Bloom masks (i.e. link identifiers), using a 

loosely synchronized time-based shared secret and additional in-packet per-flow 

or per-packet information. The forwarding capabilities are thus expiable and 

packet or flow dependent. They do not require any per-flow network state or 

memory look-ups, at the cost the additional per-packet computation. 

While expected to be secure, the performance of the dynamic-link-identifiers-

based forwarding method needs to be checked in real hardware. The delay and 

the resource usage in the forwarding node need to be examined. In this thesis, we 

present our results from implementing the dynamic-link-identifiers-based 

forwarding method on the NetFPGA, and report our early results on its 

applicability and performance.  

The rest of the thesis is organized as follows: 

Chapter 2, background, where publisher/subscriber based internetworking is 

discussed. Its types, architecture, forwarding mechanism on the basis of bloom 

filters are covered here. It is followed by introduction to Stanford NetFPGA, its 

specifications and reference pipeline. 

Chapter 3 discusses the encryption techniques that include Advanced Encryption 

Standard, Hash based Message Authentication Code and self-synchronizing 

stream ciphers. In particular “Moustique” is discussed for self-synchronizing 

stream ciphers. 

Chapter 4 covers the design part. Secure in-packet bloom filter’s architecture and 

construction is discussed. It is explained using the network example and flow 

diagrams. 

In Chapter 5, the implementation details of the design are discussed. NetFGPA’s 

reference model’s implementation and its modification for our design are 

discussed. It also includes forwarding node’s implementation details. 



3 

 

Chapter 6 discusses the testing, evaluation and performance results. Different 

testing and verification cases are presented. Their result evaluation and 

performance comparison is also part of this chapter.  

Chapter 7 concludes the thesis.  

The idea is also presented in a paper “Secure in-packet bloom filter forwarding 

on a NetFPGA” authored by myself, Adnan Hassan Ghani and Pekka Nikander in 

the proceedings of 1st European NetFPGA Developers Workshop, University of 

Cambridge, Computer Laboratory, Cambridge, UK, Sep. 9–10th, 2010. [27] 

Chapter 4, 5 and 6 are based on our paper. 

zFormation’s NetFPGA wikipage is also written by me and can be found at [26]. 

The tests presented in Chapter 6 are also discussed at [26]. 
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2  
BACKGROUND 

 

This chapter covers the basic concepts of Publish/Subscribe based 

internetworking. Its types, architecture and forwarding mechanism are discussed 

in details. Later comes description of Stanford NetFPGA platform. Its 

specifications and reference pipelines are also mentioned. 

2.1 Publish/Subscribe Internetworking 

Publish/Subscribe communication paradigm has got a lot of attention in the last 

few years for distributing information in the wide area networks. The two main 

components in this system are publishers and subscribers. Publishers submit 

information to the system and subscribers express interest in specific types of 

information [1]. The characteristics of this paradigm are that the communication 

is decoupled in space, time and flow. Decoupled in space, time and flow means 

Publisher and Subscriber do not need to know each other, do not to be up at the 

same time and sending/receiving does not block the participants.  

The main schemes in which publish/subscribe systems can be divided are as 

follows: 

1. Topic-based Publish/Subscribe 

2. Content-based Publish/Subscribe 

2.1.1 Topic-based Publish/Subscribe 

In a topic-based system, the subscriber expresses interest to specific topics and 

receives the events related to those particular topics. These topics correspond to a 

separate logical channel that connects each publisher to all interested subscribers. 
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Some systems that come in this model are COBRA Notification Service [2], 

Bayeux [3] , SCRIBE [4] and iBus [5].  

2.1.2 Content-based Publish/Subscribe 

In a content-based system, messages are only delivered to a subscriber if the 

attributes or contents of those messages match constraints defined by the 

subscriber. It can be defined also as, a filter is defined over the attributes of the 

notification. The subscriber is responsible for classifying the messages. Some of 

the systems that come in this model are SIENA [6], LeSubscribe [7], Ready [8] 

and Gryphon [9]. 

2.1.3 Architecture 

The architecture presented in “LIPSIN: Line Speed Publish/Subscribe 

internetworking” [1]  is defined here as my work is based on the same 

architecture.  

The Publish/Subscribe architecture can be defined in a layered and recursive 

approach. The higher layers are utilizing the lower layers’ rendezvous, topology 

and forwarding functions. At the bottom of the whole architecture lies the 

“Forwarding or more” shown in Figure 1.  

There are two parts of the structure. One is data and the other is control plane. In 

the control plane, the information about the whole network structure is with the 

topology system. It creates and spreads this information within the network. Next 

to topology system is Rendezvous system. It lies on top of the topology system. It 

deals with the matching between the publishers and subscribers. When there is a 

publication and it has some subscribers, a request from rendezvous system is sent 

to the topology system to build a logical forwarding tree. This forwarding tree is 

basically the path from the current location to the subscriber. It also shares the 

information about the forwarding with the publisher. [1] 

The data plane is responsible for forwarding functionality. It also deals with the 

transport functions including error detection and traffic scheduling. [1] Some 
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other functions are also involved i.e. opportunistic caching and lateral error 

correction but these are out of scope. Our main focus will be on forwarding layer. 

 

Figure 1. Rendezvous, Topology and Forwarding [1] 

2.1.4 Recursive bootstrapping 

Bootstrapping is done to invoke the initial connectivity in the network. For this, 

the rendezvous and topology systems are bootstrapped. It takes place from the 

lower layer towards the upper layers. At the lower layer, the connectivity takes 

place from any node towards the rendezvous system in the pub/sub network. The 

lower layer provides the information to the topology management functions. 

They exchange information about the connectivity similar to the other routing 

protocols. Hence, a network graph is mapped. Similar procedure occurs for the 

rendezvous system to advertise themselves. [1] 

2.1.5 Forwarding on Bloom link identifiers 

According to LIPSIN [1], the links are identified instead of nodes. This means 

instead of giving names to the nodes, the links are given names. Forwarding takes 

place on the basis of Bloom-filter-based approach. The forwarding identifiers are 

created by encoding the link identifiers by the topology system. It also creates 

new states at the forwarding nodes if required.  

As a simple case, consider a point to point case, where two nodes are connected 

with a single bi-directional link. This link will have two separate identifiers, each 
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identifying the specific direction of packet flow. When the same case is mapped 

to multi-point scenario, statistically unique identifiers are assigned to all of the 

links. 

When the link identifiers are encoded into a Bloom filters, they first need to be 

converted into a Bloom mask. The standard way for that is to compute k distinct 

hash functions over the identifier, defining k bit positions that are then set to 1 in 

the Bloom mask. However, for the simplicity of handling, for the most part we 

ignore this step and consider the link identifiers to be in the Bloom mask form 

already from the beginning. 

Hence, for a (k,m) Bloom filter scheme, the length of each link identifier (Bloom 

mask) is m-bit, in which k bits are set to 1, with k << m. For example, if m = 256 

and k = 5, the number of unique link identifiers ≈ m!/(m − k)!k! ≈ 10
10

.  

 

Figure 2. Example of Link IDs assigned for links, as well as publication with a zFilter, built for 

forwarding the packet from the Publisher to the Subscriber [1]. 
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As in [9], we further assume a topology system which keeps track of forwarding 

nodes in the network and the identifiers of the links interconnecting the nodes. 

The system also keeps track of the potential senders and receivers in the network. 

Using this information, the topology system may create a graph representation of 

the network, with the edges annotated with the link identifiers. This can then be 

used when packets need to be forwarded from a sender to a receiver (or group of 

receivers). 

In [1], the topology system encodes the link identifiers along a path (or a tree) 

into a Bloom filter, and then gives the Bloom filter to the source node, which then 

places it into the packets; see Figure 2. In their work, Jokela et al. denote the in-

packet Bloom filter as a zFilter.  

When a packet reaches a forwarding node along the path, each candidate 

outgoing link identifier (Bloom mask) is ANDed with the zFilter carried in the 

packet, and the result is compared with the link identifier. If there is a match, the 

packet is forwarded along the path; conversely, if there is no match, the packet is 

not forwarded along the link associated with that particular candidate outgoing 

link identifier. Furthermore, if there are matches with multiple candidate 

identifiers, the packet is by default forwarded along all of the matching links, 

thereby providing support for multicast; see Algorithm 1. 

Input: Link IDs of the outgoing links; 

 zFilter in the packet header 

foreach  Link ID of outgoing interface do 

  if  zFilter & Link ID == Link ID then 

   Forward packet on the link 

  end 

end 
 

Algorithm 1. Forwarding method of LIPSIN [1]. 

As usually with Bloom filters, with the increase in the number of links encoded 

into a zFilter, there arises a possibility of false positives. While the Link ID Tag 

mechanism, introduced in [1], may be used to squeeze in some more link 

identifiers without causing too many or too bad false positives, the number of 
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links within a zFilter has always a practical upper bound that depends on m, the 

length of the zFilter.  

2.1.6 Forwarding in TCP/IP based networks 

In case of IP, LIPSIN can be considered as another underlying forwarding fabric 

like Ethernet and MPLS. Upon the arrival of the IP packet into the LIPSIN fabric, 

a header with a zFilter is appended in the start at the entering node. It is then 

removed at the leaving node. In case of unicast traffic, a pre-computed zFilter 

specifies the specific leaving node and packet is forwarded on that path. For 

multicast, the entering router of the source needs to keep track of the joins 

received on multicast group through the edge routers. Hence, it also knows the 

leaving edges where the packet should be forwarded. Having this information a 

zFilter can be constructed for suitable links. [1] 

2.1.7  Link IDs and LITs 

To reduce the false positives, Link ID Tags (LITs) are introduced in addition to 

Link IDs. A signle Link ID is replaced with  d distinct LITs that is shown in 

Figure 3. Hence, different candidate zFilters can be constructed and one best can 

be selected among them in terms of optimized for false positive rate, compliance 

with network policies and false positive rate. [18] 

It gives birth to d forwarding tables. Each table contains LIT entries for active 

Link IDs. An index in the packet header determines which forwarding table 

should be used to perform matching as shown in Figure 4. Its construction is 

similar to single Link ID. The only difference is d distinct candidate filters are 

calculated. They have equivalent representation of delivery tree. By this way the 

false forwarding number is minimized. [18] 

 

 

Figure 3. One Link ID to d distint LITs [1] 
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From security point of view, this basic mechanism is susceptible to a number of 

attacks. For example, an attacker may try to collect zFilters and guess a 

forwarding identifier based upon such collected information. That is, by analysis 

of zFilter bit patterns, an attacker may determine the probabilities of what bits are 

set to one on which partial graph. With having a large number of zFilters, source 

and sinks’ information, an attacker may have success in constructing a valid 

zFilter. 

In this thesis we explore some solutions to this security problem and evaluate 

their performance penalty. The design is discussed in Chapter 4. 

2.2 The Stanford NetFPGA Platform 

The NetFPGA is an open source hardware platform through which students and 

researchers are able to build networking systems. They run on line-rate. It enables 

to build reusable designs [12]. 

The NetFPGA’s existence came at Stanford University where the first version 

with 10Mb/s Ethernet was designed in 2001. In 2005-2006, the second version 

Figure 4. Outgoing interfaces equipped with d forwarding tables, indexed by value in 

pakcet header [1] 
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with 1Gb/s was developed. Its working version came into existence in 2007 that 

was tested by the users of ten universities. With the support of industry like 

Cisco, Google, Huawei, Juniper, Agilent, Micron, Cypress and Broadcom the 

beta program started in the start of 2008. The cards were built and launched 

through Digilent Inc. The open-source gateware, software and hardware were 

made available on the website.  At the moment around 1000 NetFPGA boards are 

available at around 150 universities and research institutions in different parts of 

the world.  

2.2.1 Specifications 

The NetFPGA platform contains one Xilinx Virtex-II Pro 50 FPGA alongwith a 

Xilinx Spartan FPGA. Former is programmed with user-defined logic while the 

latter is used to program the former and takes care of PCI interface as well. It 

contains two Static RAMs (SRAMs) and two Double Data Rate (DDR2) SDRAM 

Devices. SRAM operates synchronously and SDRAM operates asynchronously 

with the NetFPGA. It also contains a quad-port physical layer transceiver (PHY). 

Using these, NetFPGA can send and receive packets as it provides interface to 

four twisted-pair Ethernet cables. Two Serial ATA (SATA) enable multiple 

NetFPGAs to to exchange data at high speed in the platform. Figure 5 shows the 

NetFPGA.  [12] 

The NetFPGA library includes a verilog design that instantiates four Gigabit 

Ethernet Media Access Controllers (GMACs). It also interfaces the logic to 

SRAM and DDR2 memory. The modules inside use First-in-First-Out (FIFO) 

protocol. The circuit is implemented into the FPGA using standard Computer 

Aided Design tools. The simulation is run using Mentor Graphics ModelSim tool. 

It is synthesized using Xilinx ISE tools. The PCI interface enables to program the 

Virtex NetFPGA. [11] 
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Figure 5. Photo of a NetFPGA [11] 

The NetFPGA release can be divided into three main components. The first one 

is the kernel module. It is used to communicate with the NetFPGA hardware. The 

bitfiles to program FPGA through PCI interface, communicating with the register 

interface from software is all done through kernel module. Second is the utility 

software that includes read and write programs. The third one is the reference 

pipeline. These all can be seen in the Figure 6. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Detailed specifications of NetFPGA [13] 

2.2.2 Reference Pipeline 

Different sources of packet arrival into the NetFPGA are: i) four network 

interfaces through Gigabit Ethernet, ii) the host CPU through PCI interface and 
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iii) other NetFPGAs those are connected by Multi-Gigabit Transceivers (MGT) 

via SATA connectors. On arrival into the module, the required operations are 

performed according to user logic. Then an output port lookup module places the 

packet into the required output queue on which it is meant to be forwarded.   

Two buses interconnect the Modules in the pipeline. Those are the packet bus and 

the register bus.  

The 64-bit packet bus sends data from one module to the other. The packet is 

divided into 64-bit words and sent in series between the modules. The part or 

whole of a packet can be stored into the FIFOs in each module if required to do 

some processing. The sum of clocks to process and stream the packet in each 

module gives us total latency. The register bus can be used by the software to 

change the hardware registers. ioctl calls can be used to access the registers from 

software and they appear to I/O registers to software. The registers are connected 

in a chain style and accessible from each module.   Figure 7 shows the pipeline 

structure. 

Figure 7. Reference pipeline [12] 
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3  
ENCRYPTION TECHNIQUES 

_________________________________________________________________ 

In this chapter the encryption techniques are discussed. The chapter starts with 

detailed description of block cipher Advanced Encryption Standard (AES). Next 

comes Hash-based Message authentication using secure Hash Algorithm 

(HMAC-SHA). Finally, Self-synchronizing stream ciphers are discussed. In 

particular a single bit stream cipher Moustique is described with its architecture 

and construction. 

3.1 Advanced Encryption standard 

Advanced Encryption Standard (AES) also known as Rijndael (named after its 

Belgian co-inventors Joan Daemen and Vincent Rijmen) is symmetric-key 

encryption standard. It was announced by National institute of Standards and 

Technology (NIST). 

It is based upon the properties of finite field of 256 elements. Each byte can be 

associated with a unique element of this field. As the field elements can be 

multiplied and added, this association makes it possible to add and multiply 

bytes. Similarly, each byte has a multiplicative inverse in a field. Due to all these 

properties, it’s possible to encode entire bytes using nonlinear matrix operations 

at a time [14]. 

AES uses a fixed block size of 128 bits and a key size of 128, 196 or 256 bits. 

Here we will discuss only the case where key size is 128 bits. It comprises of 

several transformation rounds to perform diffusion of the bits. Particularly for our 

case it’s ten rounds. Hence, a 16 bytes plaintext is converted into 16 bytes 

ciphertext by going through ten rounds of transformations where each round has 
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its own derived key from the original key. It operates on 4x4 array of bytes that is 

known as state. 

3.1.1 Overview of the algorithm 

1. Key expansion The W-matrix is computed from the key. The first four 

columns of the original keyword matrix is added to the input data 

consisting of 16 bytes arranged in a 4x4 matrix. 

2. Nine Rounds of transformations 

i. ByteSub (BS) According to a lookup table each byte is replaced 

with another byte. 

ii. ShiftRows (SR) Each row is shifted cyclically a certain number of 

steps.  

iii. MixColumns (MC) Columns of the state are mixed in a special 

order.  

iv. AddRoundKey (ARK) 

3. Final round (MC is not applied in this round) 

i. ByteSub 

ii. ShiftRows 

iii. AddRoundKey 

Now we'll explain the above steps in detail Using S-Box for the code The S-Box 

for the AES code is given by the 16x16 matrix. 

The S-box is used to replace a byte with a coded byte. It is done as if the input 

byte is (C7C6…C0), then the number in row     
    

    and in column      
  

    

of S-box is the integer representation of the new byte. For example, input byte is 

10101100, then the row is first four bits 1010 = 10 (in integer) and column is last 

four bits 1100 = 12. So the corresponding number from the above matrix is 145 = 

10010001. [14] 
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S-Box 

Representing input data 

As input is 16 bytes (128 bits) then they can be arranged into 4x4 matrix in 

following order 

 

ByteSub Transformation 

The ByteSub Transformation is non-linear and hence, resistant to both linear and 

differential attacks. In this step each byte in A is replaced using the S-Box 

according to the procedure stated above and the new Matrix can be represented as 

follows 
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The ShiftRow Transformation 

This linear transformation causes diffusion of the bits. Row j of the matrix is 

shifted cyclically to the left by j offsets so the new matrix is of the form 

 

The MixColumn Transformation 

 
This transformation causes strong diffusion where each byte in matrix C is 

represented as elements of F256 and multiplied by matrix M 

 

 

For example the first column of the matrix C is of the form 

 

Then the first in the left uppermost position of MC will be computed as:      

                                                

                 

RoundKey Addition  

Round key addition is the modulo2 addition (XOR) of MC with the Round Key at 

the end of j
th

 round. Round Key is obtained by means of key schedule. Key 

schedule can be explained by considering a W-Matrix. The initial key of 16 bytes 
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are placed in first four columns of W-Matrix which is 4 x 44. The other columns 

of W-matrix are generated from first four columns in following manner. As we 

will start computing from the fifth column then say     and column     is   . 

If j is not a multiple of 4, then  

                   

where addition is modulo 2. If j is multiple of 4 then following steps should be 

followed 

1) Replace every byte in column       with a byte from S-Box using 

ByteSub Transformation. 

2) A vector      is created by moving the top byte to the bottom and every 

other byte one place up in the matrix obtained in step 1. 

3) The new column matrix    is computed as 

                     

Where    can be given as 

 

3.2 HMAC-SHA-256 

Hash-based Message authentication code (HMAC) is used for the calculation of 

a message authentication code (MAC) on the basis of a cryptographic hash 

function with a secret key. MAC has the capability to check both the data 

integrity and authenticity of the message. Different hash functions like MD5, 

SHA-1, SHA-2, etc. can be used to compute HMAC and hence the resulting 

algorithm is known as HMAC-MD5, HMAC-SHA-1, HMAC-SHA-2, etc. Its 

strength depends upon the hash function used, hash output length and the secret 

key. HMAC can be mathematically defined as  
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where H() is the hashing function that we will discuss later on. K is the secret 

key, m is the message,   is concatenation. opad is the outer padding constant and 

its value is 0x5c times blocksize while ipad is inner padding with value 0x36 

times block size. [15] 

Secure Hash Algorithm (SHA) 

SHA-0, SHA-1 and SHA-2 are the set of cryptographic hash functions. They are 

designed by National Secuity Agency (NSA) and published by NIST. SHA-1 

avoids some weaknesses from SHA-0 by correcting an error otherwise they are 

quite similar. SHA-2 is quite different and stronger than the both. SHA-2 consists 

of four hash functions on the basis of different digest sizes i.e. 224, 256, 384 and 

512. Table 1 below gives the comparison between the different SHA functions. 

These were calculated on a Intel Core 2.18 GHz under 32-bit Vista. [15] The 

pseudo code for SHA-256 can be found in Appendix A.  

Algorithm 

And Variant 

Output 

size 

(bits) 

Internal 

state 

size 

(bits) 

Block 

size 

(bits) 

Max 

message 

size 

(bits) 

Word 

size 

(bits) 

Rounds Operations 
Collisions 

found 

SHA-0 160 160 512 264-1 32 80 +,and,or,xor,rot Yes 

SHA-1 160 160 512 264-1 32 80 +,and,or,xor,rot 
Theoratical 

attack (251) 

SHA-

2 

SHA-

256/224 
256/224 256 512 264-1 32 80 +,and,or,xor,shr,rot None 

SHA-

512/384 
512/384 512 1024 2128-1 64 80 +,and,or,xor,shr,rot None 

 

Table 1. Performance Comparison of SHA functions [15] 

 

SHA-256 and SHA-512 are novel hash functions. SHA-256 is computed with 32 

bit words while SHA-512 is computed with 64 bits words. The number of rounds, 

shift amounts and additive constants for the computation differ but still the 
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structure is similar. SHA-224 and SHA-384 use different initial values from the 

first two and can be simply seen as their truncated versions.  

3.3 Self-synchronizing stream cipher 

A stream cipher or a state cipher performs encryption on a plaintext bits with a 

pseudorandom cipher bit stream by an exclusive-or (XOR) operation. The 

plaintext bits are encrypted one at a time. During the encryption process, the 

successive bits get transformed. In self-synchronizing stream cipher, to compute 

the pseudorandom bits i.e. keystream, it uses several of previous N ciphertext 

bits. The idea behind using a self-synchronizing stream cipher is that if the 

synchronization is lost, the state will eventually recover as it is filled up again by 

received bits cipher bits. 

In stream cipher, if m
t 
is the plaintext and z

t
 is the keystream, then the resulting 

ciphertext c
t
 can be given as  [16] 

         

Where   is the exclusive-or. Similarly the decryption can be performed as  

          

The keystream z
t 
is determined by  

          
            

Where last nm ciphertext bits and cipher key K of nk  bits take part in the 

computation of cipher function Fc and determine z
t
. When computing for the first 

time, we don’t have any previous nm ciphertext bits so we need an initialization 

vector that can be given as  

                               

The encryptor and decryptor both should have initialization vector. Figure 8 

shows the block diagram of the encryptor and  decryptor of a self synchronizing 

stream cipher.  
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Figure 8. The self synchronizing stream cipher [16] 

The cipher function architecture can be built using the idea of pipelining and 

conditional complementing shift registers (CCSR). Figure 9 shows different 

stages from bs to Gi with shift registers. The encryption speed has limitation of 

the stages, so the stages should be simple with small propagation delay. [16] 

 

Figure 9. Self synchronizing stream cipher with cipher function consisting of stages [16] 

By replacing the shift register with finite state machine will improve the 

propagation property. If q is the internal state and G the state updating 

transformation then  
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3.3.1 Moustique cipher function 

Now we will explain a single bit self-synchronizing stream cipher and its 

specifications. So we have symbol size ns = 1, key size nk = 96, input memory nm 

= 105. Cipher function delay bs = 9.  

CCSR’s 128 bits are partitioned in 96 cells and denoted by qj where j ranges from 

1 to 96. The number of bits allocated to the cells is dependent upon the value of j 

and denoted by nj given in Table 2 and shown in Figure 10. The bits within the 

cell are denoted by   
 
 with        . Moustique has 8 internal stages denoted 

by a
i
. The first stage is the CCSR and is denoted by a

o 
with length 128. a

1
to

 
a

5 

have length 53. a
6
 has length of 12 and a

7
 has length 3. [17] The encryption and 

decryption using moustique is given is Figure 12. 

Range of j nj 

1 – 88  1 

89 – 92  2 

93 – 94 4 

95 8 

96 16 

Table 2. Number of bits per cell 

 

 

 

 

 

 

 

Figure 10. CCSR Expansion [17] 
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There are three state updating functions which consist of basic addition and 

multiplication. Those functions are given below and there circuits are shown in 

Figure 11. 

                    

                         

                          

 

Figure 11. State updating functions [17] 

The CCSR bits are calculated using following  

  
                 

   
               

           

   

with v   , w       The values for x, v and w for all combinations are 

specified in Table 3 except for    , j = 96 and        For     the q
v 

and q
w
 

are taken to be 0. The 15 bits   
   with      is given by 

  
               

     
             

               

      

 

Table 3. Function, v and w values [17] 
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Table 4. Bit updating functions for the stages [17] 

 

Table 4 has the bit updating functions for the stages. In the equations if the index 

is out of bound then 0 should be taken for those values.  

The keystream bit can be given as  

    
    

    
  

So 

         
    

    
   

and  

         
    

    
   

 

Figure 12. Encryption and decryption using moustique [17] 
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4  
DESIGN 

 

In this chapter, we present the detailed architecture of the secure and dynamic 

link-identity-based forwarding approach. In particular, we briefly describe the 

two different cryptographic functions that we have used, one based on a self-

synchronizing stream cipher and the other on the standard AES block cipher. Our 

initial assumption was that using a self-synchronizing stream cipher could allow 

us to perform more parallelized and thereby faster forwarding decisions. That 

assumption turned out to be false, for a number of reasons. Those reasons are 

explained in the coming sections. [27] 

4.1 Secure in-packet Bloom filters 

As described in section 2.1, “the basic mechanism is susceptible to a number of 

attacks. For example, an attacker may try to collect zFilters and guess a 

forwarding identifier based upon such collected information. That is, by analysis 

of zFilter bit patterns, an attacker may determine the probabilities of what bits are 

set to one on which partial graph. With having a large number of zFilters, source 

and sinks’ information, an attacker may have success in constructing a valid 

zFilter”. [27] 

Here we will discuss the solution to this problem with our basic concept of the 

secure in-packet bloom filters and their construction based on [27]. 

Our design dynamically computes the link identifiers on the basis of packet 

contents, the path the packet takes, and the node keys. In the following, we will 

use the term zFormation to designate our design, i.e. basically the dynamic 
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computation of the link identifiers on per- packet basis. The idea is that there is a 

function Z, essentially evaluated for each packet and for each potential outgoing 

interface, which gives out the indices of the k bits set to one in the m-bits long 

link identifier (Bloom mask). 

The function Z can be defined as 

O = Z(K, M,  I) 

where the input parameters of Z are defined as follows: 

1. K is a semi static secret key that is changed periodically, e.g. once every 

few minutes, hours or days. 

2. M is a medium dynamic term that includes the incoming and outgoing 

interface indices. 

3. I denotes some in-packet information that varies per packet, e.g. a counter 

that increases per packet basis. 

As far as the security requirements are concerned, semi static part K needs to be 

very strong i.e. it should be impracticable to predict Bloom Filter by reusing the 

older K values if they get changed.  I can be weak, i.e. the attackers are allowed 

to infer partial information with some controllable probability as long as attacks 

are not trivial. 

For performance purposes, the key K is divided into three cryptographically 

separated parts, K1, K2 and K3 which are created using a standard key derivation 

function (KDF): 

Ki = KDF(K, Li) 

where the term Li is a literal identifying the particular key. 

The Key Derivation Function (KDF) is used to compute the three keys. These 

keys are used in the construction of zFormation in the following manner: 

O1 = F1(K1 , S) 
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where S denotes any (semi-)static inputs to the function. 

O2 = F2(K2 , O1 || M) 

where || denotes concatenation. Furthermore, if there are multiple potential 

actively valid values for M, it may be necessary to pre-compute and cache a set of 

corresponding O2 values. We call such a set of O2 values as O2 value set. 

O = O3 = F3(K3  , O2    I) 

where   denotes exclusive OR. 

4.2 Reasons for choosing Encryption techniques 

The functions F1 and F2 can be computed off-line, before packet processing, using 

a strong algorithm, e.g. HMAC-SHA-256. The function F3   needs to be performed 

on per-packet bases, and thereby represents a compromise between security and 

performance. We use per-packet information, as an input value to the hash 

function, to make it infeasible to send other packets using an eavesdropped 

Bloom filter. That is, an active attacker may capture some packet and replay them 

a number of times, until one of the node keys is changed, but the attacker cannot 

send modified packets. When combined with per- packet caching or fingerprints, 

this prevents replay-based DoS attacks. [27]  

We consider two constructions, using a self-synchronizing stream cipher and a 

block cipher function. The in-packet information I can be formed, for example, 

by using a packet a counter that is incremented once per-packet, and then taking a 

cryptographic hash over counter, using HMAC-SHA-256. [27] 

The idea behind using a self-synchronizing stream cipher is that if the 

synchronization is lost, the state will eventually recover as it is filled up again by 

received bits. However, in our case we don’t really need this property. [27] 

For us, the important property is to get fast and securely the number of bits that 

we need to determine the k bits needed for forming the outgoing link identifier. 

Self-synchronizing stream ciphers have the nice property that they output bits on 
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just a couple clock cycles after having been fed in the input. Since they usually 

work on single-bit bases, they are fine for line-speed processing. [27] 

Unfortunately, the NetFPGA reference router pipeline processes bits in 64-bits 

words, thereby foiling at the NetFPGA some of the nice properties. To alleviate 

this, we plan to unroll the stream cipher in the future, aiming towards getting 

more than one bits out in a cycle. However, in this work we only report the 

implementation, using the Moustique (see section 3.3.1). The other block cipher 

technique that we have considered is Advanced Encryption Standard AES: see 

section 3.1.  

4.3 Functionality using example 

 

Figure 13. Bloom filter based routing 

 

A concrete example is given to explain the functionality. In relation to Figure 13, 

assume the user A wants to send a packet to the server B through the network. As 

a consequence of this factorization of F, the calculation of O3 can be performed 

by the user A. To facilitate this, the "name server" would provide user A, not with 

the final bloom filter BF, but rather with a set of O2 values which describes the 

path in the network for the particular "session" or "publication" and the key K3. 

The user A would then compute the BF for each packet according to the 

following principle: 

For each O2-value in the set received from "name server" do: 
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Generate information I (could be a random value) 

Compute O = F3(K3, O2-value || I) 

Insert O in BF 

 

User A next inserts the constructed BF and the generated information I in the 

packet and sends it to router R1.  

The router R1 has pre-computed O2 values for each of its outgoing links for each 

of the flows it is aware of. 

Upon receipt of the packet, router R1 computes O3 for each of its links 

(represented by the O2 values in this computation) based on the information I 

received in the packet and checks if O3 is a member of the BF also received in the 

packet. If the O3 value is present in the BF, the router R1 forwards the packet on 

the corresponding link. It is here assumed that R1 can obtain the O2 value from 

the context information C, e.g. the link names as exemplified in Figure 13, and K2 

and K3 from the master key K, shared with the “name server”, by applying the 

KDF function. As an alternative to sharing the master key K with the “name 

server”, the “name server” may distribute the derived keys K1, K2 and K3 to the 

router R1 (and similarly to other routers). 

4.4 Flow of the design 

The example discussed in section 4.3 uses a “name server”. As our main focus is 

on forwarding so we have adopted the design in such a form that the name server 

part is also done by the sender.  

The overall flow of the design is depicted in figures 14 and 15. Figure 14 shows 

the flow at the sender side and Figure 15 shows the flow at the forwarding node 

side. 

At the sender side when sender has data to send, it generates keys K1, K2 and K3. 

The route between sender and the receiver is find out and represented in a form of 

in/out pairs. O1 and O2 are computed using the corresponding keys K1 and K2, 

respectively. K3 and the O2 value set are distributed among the forwarding nodes 

on the path. For each O2 value in the set, sender generates a nonce I and computes 
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Yes 

No 

Yes 

Starts receiving packet 

 

For each value in O2-set compute  
F3(K3,O2-value XOR Nonce)  

Do this in parallel for all  
outgoing links 

 

Is the result of F3 present in zFilter in 
the packet? 

 

Forward packet on that link 

 

Receive set of O2-values and K3 for 
 the session 

 

 

F3. Inserts the result O, in the form of a Bloom mask into the Bloom filter carried 

in the packet. [27] 

At the forwarding node side, it already receives O2 value set and K3. When it 

receives packet, it retrieves the nonce I from the packet and performs F3 for each 

outgoing interface in parallel, giving out the candidate outgoing Bloom mask for 

each outgoing link. Using these Bloom masks as link identifiers, the node then 

implements the “usual” in-packet Bloom filters based forwarding (as described in 

section 2.1.5), to check whether the Bloom mask is present in the Bloom filter or 

not. If present, the packet is forwarded along the path; otherwise it is 

dropped.[27] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Flow diagram of a forwarding node operation 
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No 

Yes 

Generate Key K and derive keys 

 K1, K2 and K3 from K 

 

Find route between sender and 

destination and represent it by a set of 

in/out pairs 

 

Compute O1 = F1(K1,< some semi  

Static data>) 

 

For each link, compute  

O2 = (K2, O1 || link) 

 

For each O2 value in the O2-set, the 

sender 

1. Generates a nonce I 

2. Computes O = F3(K3, O2   

Nonce) 
3. Inserts O into zFilter 

 

Distribute the set of computed 

O2 values and the key K3 to the 

routers along the path 

 

Insert zFilter and nonce into the packet 

 

Send Packet 

 

Sender has data to send 

 
Stop 

Figure 15. Flow diagram of a sender’s operation 
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4.5 Packet Header Format 

The header of the forwarding packet is depicted in Figure 16 in 32 bit format. 

First 14 bytes are MAC layer header followed by forwarding header. The 

forwarding header can be divided into two parts. The first header carries nonce 

and the second one carries bloom filter. The important fields for the header are 

header length, nonce, d, time-to-live (TTL) and BF.  

The length of the header for each part is defined in header length field that is one 

byte long.  

Nonce I, changes per-packet and 256-bits are reserved for this. A counter that is 

encrypted using HMAC-SHA-256 is 256 bits long. 

d defines which of the link ID tags should be used. This was required for the 

previous implementation and is of no use for the current design. 

TTL takes one byte and 3 bytes are reserved for future use. 

BF, can also be referred as forwarding Identifier (FID) takes 256-bits. Payload 

follows the header.  

 

Source Address (6 bytes) 

   

Destination Address (6 bytes)  

Ether Type (2 bytes) NextHeader (1byte) HeaderLength (1byte) 

Nonce (32 bytes) 

NextHeader (1byte) HeaderLength(1byte) d (2 bytes) 

TTL (1 btyes) Reserved (3 bytes) 

BF (32 bytes) 

Figure 16. Forwarding header format 

23 31 15 7 0 
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5  
IMPLEMENTATION 

 

This chapter covers the implementation of the design described in chapter 4. It 

describes how reference implementation of NetFPGA is taken and modified for 

our own design. The detailed implementation description of forwarding node in 

hardware is given. It also briefly covers the software management part. This 

chapter is also discussed in our paper [27]. 

In this work, we have taken the previous implementation of zFilter based 

forwarding node on a NetFPGA [18] and optimized it to our needs of 

implementing zFormation, as explained below. 

The basic forwarding method remains unmodified. The difference here is instead 

of having fixed Link IDs (or link ID Tags (LITs)) we have dynamically computed 

identifiers of the links, on a per-packet basis. The dynamic Link IDs are 

computed using zFormation: see section 4.1. 

 We have two implementations for the computation. One is using the Moustique 

stream cipher and the other one is using AES block cipher. In each case, the Link 

IDs are computed using i) In-packet information (I), ii) a periodically changing 

key (K3) and iii) the outgoing interface index (O2). 

The forwarding decision is simple binary AND and comparison operations, for 

the in-packet Bloom filter and the computed Link ID. The implementation of 

Name Server is out-of-scope for the thesis. Our main and initial emphasis was to 

get a forwarding node working. Its implementation details are as follows. 
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5.1 Forwarding Node 

The adopted implementation utilizes only a limited set of modules from the 

Stanford reference switch, without modifying the rest as shown in Figure 17.   

 

5.1.1 Modified datapath 

The modules that we have used in our implementation from the reference 

implementation and our own designed are only discussed here. In Figure 17 we 

have several queues named as Rx_queues followed by input_arbiter. Module 

output_queues follows input_arbiter and has a sub-module 

output_port_selector. This output_port_selector contains our main 

implementation of zFormation. Finally we have Tx_queues.  

Rx Queues 

These are the queues which receive packets from the IO ports. Those 

ports include Ethernet and PCI over DMA. As can be seen in Figure 17, 

there are total eight receiver queues, four for MAC and four for CPU 

DMA. These queues are interleaved in such a fashion that port 0 is MAC, 

port 1 is CPU, port two is again MAC and port 3 is CPU and so on. These 

 

Output Queues 

Output Port Selector 

Figure 17 Reference datapath [13] on left and modified datapath on right 
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ports are connected to user_data_path which contain rest of the 

modules. [13] 

Input arbiter 

The functionality of input_arbiter is to select the Rx queue from which 

the packets should be taken and then forwarding them to the next module 

in the flow. [13] In the reference design output_port_lookup was the 

next coming module. But in our design, input_arbiter is directly 

connected to output_queues.  

Output_Queues  

Module output_queues has a sub-module output_port_selector. The 

packets come in  output_queues and stored in a RAM until the decision 

to forward on which Tx queue is taken in module 

output_port_selector. The forwarding decision is based on 

zFormation. For computing the dynamic Link IDs, a separate module 

moustique is implemented for the stream cipher, and aes_cipher_top 

for the block cipher. For each link these modules are instantiated in 

parallel from the output_port_selector module. Further details on 

output_port_selector are discussed in section 5.2. 

Tx Queues 

Tx queues send packets out on the IO port received from the 

output_queues.  They have the same alignment as Rx queues i.e. they 

are interleaved in the same fashion. 

5.1.2 Packet bus 

Here we will discuss the signaling details that take place between the pipeline’s 

modules and the registers.  
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The speed at which the 64 bit wide user_data_path is running is 125MHz. This 

means that the maximum bandwidth that could be achieved is 8Gbps. Packets 

arrive at different modules and pushed to the other modules using synchronous 

FIFO like protocol. The signals which are used are write (WR), ready (RDY), 

data (DATA) and control (CTRL). The sizes of these signals are WR one bit, 

RDY one bit, DATA 64 bits and CTRL 8 bits. Let’s assume module j has packet that 

it wants to push forward to next module j+1. When the module j+1 is ready to 

accept data, it asserts the RDY signal. On this module j places the packet on DATA 

bus with required information on CTRL bus and asserts the WR signal. Module j 

accepts the data on this and keeps on receiving data until it deasserts the RDY 

signal. It should be done one clock cycle prior to intentions of not receiving data 

anymore. [23] 

The CTRL bus has two purposes. One is to distinguish between module headers 

and the second is to indicate the last byte of packet. It has non-zero value for 

different headers until it receives the payload. For data part in the packet it goes 

to zero. Finally, when comes the end of the packet, the CTRL bus gets the value of 

the last byte. Hence, giving indication to the end of the packet with last byte in 

the last word. It is shown in Figure 18. The CTRL bus has 0xXX and 0xYY (some 

non-zero) value for different headers until the packet data starts when it get 0x00 

value. The last word has 0x40 that in binary is 0b01000000. This shows the 7 

byte is the last byte in the last word. [13] 

 

Figure 18. General format of the packet passing on the packet bus [23] 
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5.1.3 Register bus 

The register bus is designed in the form of a chained pipeline that gives access to 

the host to change values in their own modules. The 32 bits wide register bus also 

runs at 125MHz. There are two set of signals. One for incoming requests and the 

second for outgoing replies. For incoming requests the registers are: 

REG_REQ_IN, REG_ACK_IN, REG_RD_WR_L_IN, REG_ADDR_IN (23-bits), 

REG_DATA_IN (32-bits), REG_SRC_IN (2-bits). For outgoing replies the 

registers are: REG_REQ_OUT, REG_ACK_OUT, REG_RD_WR_L_OUT, 

REG_ADDR_OUT (23-bits), REG_DATA_OUT (32-bits), REG_SRC_OUT(2-

bits).[13] 

For request/reply REG_REQ_IN and REG_REQ_OUT are set to high for one clock 

cycle. Signals REG_RD_WR_L_IN and REG_RD_WR_L_OUT show the request/reply 

is read or write. For read it is high and for write it is low. Signals REG_ACK_IN 

and REG_ACK_OUT should be low for request and high for reply. “The 

REG_SRC_IN/OUT signals are used by register request initiators to identify the 

responses that are destined to the requestor. Each requestor should use a unique 

value as their source address.” [13] 

REG_ADDR_IN carries the right address of the module for which the request is 

made. The module looks for the address in this register. If it matches it performs 

the request. Once the request is finished, it places the processed data on 

REG_DATA_OUT and sets the REG_ACK_OUT. Rest output signals get all input 

values. All this is done in a single clock cycle. For the modules if REG_ADDR_IN 

doesn’t match it forwards all the inputs to the output registers set. [13] 

5.2 Packet Forwarding Operations 

The main functionality is implemented in module called 

output_port_selector, where the forwarding decision takes place and the 

packet is placed on the correct output queue.For computing the dynamic Link 

IDs, a separate module moustique is implemented for the stream cipher, and 
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aes_cipher_top for the block cipher. For each link, these modules are 

instantiated, in parallel with the output_port_selector module. The basic 

structure of output_port_selector is given in Figure 19.  

Prior to sending packets, the computed key K3 and the O2 value set are written 

into the NetFPGA registers from the user space. In our current implementation, 

the key K3 and the O2 values in the value set are both 256 bits each, as a result of 

HMAC-SHA-256 computed at the software side. One 32-bit port is used for 

writing these values into the registers. [27] 

 

 

 

 

 

 

 

 

 

 

Packets arrive in 64-bit pieces at each clock cycle. From the input_arbiter 

module, packets are sent into the SRAM and to the output_port_selector 

module, for computing the dynamic link IDs and then taking the forwarding 

decision. Along-with the forwarding decision that takes place in the 

do_zfiltering logic block, the three parallelized operations take place for the 

packet goodness verification, i.e. bit_counter, ethertype, and TTL checks. [27] 
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Figure 19. output_port_selector module structure 
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For computing the dynamic Link IDs, two separate implementations were made, 

one for the Moustique stream cipher and the other for AES block cipher. Both of 

them are explained as follows. 

5.2.1 Moustique 

For Moustique, as the 96 bits of K3 register and 256 bits of O2 gets value from 

the user space, a control signal start_initialization is set to 1 and the 

initialization vector bits are applied at the cipher input for 105 clock cycles. The 

implementation then goes to a hold state, until a packet arrives. In the packet 

header, there comes the in-packet information (I). I is XORed with each value in 

the O2 value set (currently one for each port) and then applied to the cipher input 

of the Moustique module, with a control signal start_moustique set to 1. 

Moustique is instantiated four times, once for each outgoing port, for the 

NetFPGA in a parallel manner. [27] 

Our current Moustique implementation performs the ciphering in a single-bit 

fashion. Hence, the number of clock  cycles to perform whole ciphering depends 

upon k (see section 2.1.5). In our case, when k = 5 and m = 256, we need to 

perform only 40-bits of decryption, and hence it will take 40 clock cycles with 

the current implementation. With unrolling, we expect to get this down to maybe 

5 cycles, depending on the details of the propagation delays. As soon as the 

decrypted data is ready, decrypted_data_ready signal is set to 1 by moustique 

for one clock cycle, so that decrypted data can be read by 

output_port_selector. [27] 

5.2.2 AES 

In the block cipher case, AES, with the key and block sizes of 128, is used for the 

computation of F3. We used the OpenCores AES implementation.[24]  As the 

in-packet information I arrives, it is exclusive-ORed with the values in the O2 

value set. The data and the key K3 are loaded into the input of the cipher function, 

and start_AES is set to 1. [27] 
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The AES block cipher performs complete encryption sequence in 12 clock cycles, 

where the initial key expansion takes 1 clock cycle, 10 rounds take 10 clock 

cycles, and the output stage takes 1 clock cycle. [25] The clock timings are given 

in Figure 20.  

As the encryption is finished, decrypted_data_ready is set to 1 and the 

output_port_selector reads the encrypted data. 

 

Figure 20. AES cipher core timing [25] 

 

The Bloom mask is then computed for each outgoing link. As in our case m = 

256, each 8-bits of the decrypted data, from Moustique or AES, gives an index in 

Bloom mask where a 1 should be written. 

5.2.3 do-zfiltering 

In do-zfiltering, the actual matching is done for each outgoing link. For each 

interface we have a single bit forming a bit-vector. These bits are set to 1 initially. 

Matching is done for each Bloom mask and in-packet Bloom filter (iBF) using 

“AND” and comparison operations. If there is a mismatch for a particular link, 

the corresponding bit gets zero. At the end, when the matching is finished for 

each Bloom mask, the bit vector shows the interfaces to forward the packet. 

Wherever we have one in the bit vector, the packet is forwarded on that interface. 

But still we have some other checks from the three verification functions. [27] 
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5.2.4 bit_counter 

The bit_counter module counts number of ones in the iBF. This is done to 

avoid attacks of setting all bits to one in iBF. The maximum allowed number of 

ones in a iBF is a constant value. If the iBF contains more number of ones than 

the constant value, the packet gets dropped. This module is implemented using 

only wires and logic elements. It takes 64 bits input and returns number of ones. 

It means for 256 bits iBF it takes 4 clock cycles to count the number of ones. [27] 

5.2.5 Ethertype and TTL  

Currently, our iBF-based packets are identified using 0xacdc as the ethertype. 

This is checked upon the arrival of the packet. TTL is also checked to avoid loops 

in the network. As the packets are placed into the output-queues TTL is also 

decremented. [27] 

If any of the three verification checks or the iBF matching itself fails, the packet 

is dropped. All the operations are shown in reference to clock cycles in Figure 21 

and Figure 22, for Moustique and AES respectively. 

5.3 5.3 Management Software 

From the user space, the management software computes keys K1, K2 and K3 

using HMAC-SHA-256. Similarly, defining outgoing interfaces and then 

computing O1 and the O2 value sets using HMAC-SHA-256. It writes key K3 and 

O2 value set into the registers in NetFPGA card. At the software side it also 

computes zFormation i.e. F3 by using K3, O2 and generates nonce I for each 

packet. This is done for each interface and then iBF is computed and packed into 

the packet. [27] 

The software can send customizable packets to the NetFPGA card. It controls the 

delay between the transmitting packets, packets’ size, Time-to-live (TTL) in 

packet header, computing nonce I, defining iBF and ethernet protocol field. [27]



 

  
bit counter 

  

 
Moustique (K3, in-packet information XOR O2) 

Wait for the 

packet set 

selections to 1 

Get ethertype 

& remove  

incoming 

port from 

selection 

In-packet 

information 

[0 … 63] 

In-packet 

information 

[64 … 127] 

In-packet 

information 

[128 … 191] 

In-packet 

information 

[192 … 255] 

TTL 
zFilter 

[0 … 63] 

zFilter 

[64 … 127] 

zFilter 

[128 … 191] 

zFilter 

[192 … 255] 
 

Combine 

results 

 

Figure 21. Flow Diagram for Moustique [27] 
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6  
EVALUATION 

 

In this chapter we will discuss several testing and verification results for the 

implementation. Two type of testing is given. One is regression tests and the other is 

simulation tests. The performance is also discussed on the basis of delay caused by 

each encryption technique for the computation of zFormation. This chapter also 

concludes the thesis.   

6.1 Regression Tests 

The regression tests verify the functionality of the hardware component of the 

zFormation. As there are two implementations. First, regression tests for Moustique 

and later the same steps for AES. In order to run the tests we need to connect the 

cables as described in each of the regression test below. All the procedure should be 

done while being root. The path and procedure for regression test is also defined at 

[26]. 

For these tests the bitfiles are downloaded into the NetFPGA and instructions can be 

found at [26][13]. In each of the regression tests some verification are done by 

sending pre-computed packets. These packets are sent using different ports and as per 

computation, expected to receive on particular ports and hence, verifying the correct 

implementation of the forwarding node. We have done testing for each and every 

interface individually to check the right implementation in the hardware. All these are 

defined in each of the regression test below. Each test checks for arrival of packets on 

port defined, ethertype check, TTL check and maximum number of 1s defined in the 

link IDs. Before sending the packets the values for O2 and K3 are also written into the 

registers of the NetFPGA using our management software. 

Test 1: Test for receiving packets on each port (Broadcast) 
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Connect interfaces eth1 and eth2 of a sending node to any of the ports from nf2c0 to 

nf2c3 on the NetFPGA. The shell script is used to send ten packets from interface 

eth1. The pre-computed packet information iBF for this test includes all the link 

indices M on the path while calculating O2. Hence, there should be a match for all the 

output queues and are received on all the ports on NetFPGA except the one from 

which it receives the packets. When packets are sent using interface eth1 they are 

received on eth2 and vice versa.  

As an output received for this test, 10 packets were received from interface eth2 when 

sent using interface eth1 and vice versa. 10 packets were sent with wrong ethertype 

and we didn’t receive any packet. For 10 packets, TTL was set to zero and again we 

didn’t receive any packets. To test the limitation of No. of 1’s in the iBF, 10 packets 

were sent with 1s
 
exceeding the limitation so that it may not forward the packets sent 

by an attacker just by writing all 1s. Although there would be a match with the Link 

ID but the check for 1s doesn’t allow the packets to get forward and we didn’t receive 

any packets for this check also..  

Hence, all the checks for ethertype, TTL, number of 1s limitation and broadcast 

passed.  

Test 2: Test for receiving packets only on port 2 (nf2c1)  

Connect interface eth2 to nf2c1 and eth1 to any other port. This test will send 10 

packets from interface eth1. The pre-computed packet information iBF for this test 

matches with only nf2c1 and eth2 receives the packets. Here, only the path for 

interface nf2c1 is added in O2. This test will fail if eth2 is connected to any other port.  

In the output, we received 10 packets only when the receiving interface eth2 was 

connected to nf2c1. All the three checks for ethertype, TTL and number of 1s 

exceeding limit were passed also. The test got failed when eth2 was connected to 

some other port than nf2c1. This verifies the right implementation of the zFormation. 

Test 3: Test for receiving packets only on port 3 (nf2c2)  
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Connect interface eth2 to nf2c2 and eth1 to any other port. This test will send 10 

packets from eth1. The pre-computed packet information iBF for this test matches 

with only nf2c2 and eth2 receives the packets. This test will fail if eth2 is connected to 

any other port.  

In the output, we received 10 packets only when the receiving interface eth2 was 

connected to interface nf2c2 on the NetFPGA. All the three checks for ethertype, TTL 

and number of 1s exceeding limit were passed also. The test got failed when eth2 was 

connected to some other port than nf2c2 since we didn’t receive any packets on other 

nodes as the packets were not supposed to get forward. 

Test 4: Test for receiving packets only on port 4 (nf2c3)  

Connect interface eth2 to nf2c3 and eth1 to any other port. This test will send 10 

packets from eth1. The pre-computed packet information iBF for this test matches 

with only nf2c3 and eth2 receives the packets. This test will fail if eth2 is connected to 

any other port.  

In the output, we received 10 packets only when the receiving interface eth2 was 

connected to interface nf2c3 on the NetFPGA. All the three checks for ethertype, TTL 

and number of 1s exceeding limit were passed also. The test got failed when eth2 was 

connected to some other port than nf2c3 since we didn’t receive any packets on other 

nodes as the packets were not supposed to get forward. 

Test 5: Test for receiving packets only on port 1 (nf2c0)  

Connect eth2 to nf2c0 and eth1 to any other port. This test will send 10 packets from 

eth1. The pre-computed packet information iBF for this test matches with only nf2c0 

and eth2 receives the packets. This test will fail if eth2 is connected to any other port.  

In the output, we received 10 packets only when the receiving interface eth2 was 

connected to interface nf2c0 on the NetFPGA. All the three checks for ethertype, TTL 

and number of 1s exceeding limit were passed also. The test got failed when eth2 was 

connected to some other port than nf2c0 since we didn’t receive any packets on other 

nodes as the packets were not supposed to get forward. 
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As we discussed the output of all the regression tests, that verifies the correct 

implementation of our forwarding node in the hardware. All the tests got passed as 

were supposed to perform for each included path and other mentioned checks.  

6.2 Tests for simulation  

There are 10 different tests for simulation verification. These are written using Perl 

script and can be found at [26]. The software tool they need is ModelSim for testing 

of Verilog code. Each script has the capability to generate packets with computing the 

in-packet information separately for each packet using the cryptographic technique it 

uses. It calculates the in-packet information dependent upon keys K1, K2 and K3 with 

O1, O2 and O3. It writes the required information that is K3 and O2 values into the 

registers in NetFPGA. Caculates the nonce I and F3, packs them into the packet's 

header and sends using different ports.  

First four tests are done to verify the broadcast functionality with verifying the 

packets are not received from the same port from where sent to avoid loops. 

Test 1: Sending packets using port 1 and expecting on all other ports  

Ten packets were sent using port 1 that is nf2c0. They are expected to arrive on all the 

other ports, except port 1 from which they are sent to avoid loops, as their paths are 

included when calculating the in-packet bloom filter (iBF).  

The simulation output verified the arrival of ten packets on each output port except 

port 1 from where the packets were sent. This output verifies the correct functionality 

of the implementation for broadcast.  

Test 2: Sending packets using port 2 and expecting on all other ports  

Ten packets were sent using port 2 that is nf2c1. They are expected to arrive on all the 

other ports, except port 2 from which they are sent to avoid loops, as their paths are 

included when calculating the in-packet bloom filter.  
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The simulation output verified the arrival of ten packets on each output port except 

port 1 from where the packets were sent. This output verifies the correct functionality 

of the implementation for broadcast.  

Test 3: Sending packets using port 3 and expecting on all other ports  

Ten packets are sent using port 3 that is nf2c2. They are expected to arrive on all the 

other ports except port 3, from which they are sent to avoid loops, as their paths are 

included when calculating the in-packet bloom filter.  

The output for this simulation showed arrival of ten packets on the ports except port 3 

proving test 3 passed.  

Test 4: Sending packets using port 4 and expecting on all other ports  

Ten packets are sent using port 4 that is nf2c3. They are expected to arrive on all the 

other ports, except port 4 from which they are sent to avoid loops, as their paths are 

included when calculating the in-packet bloom filter.  

The result for this test also got passed as all the ports received 10 packets each except 

port 4 where zero packets were received.  

Test 5: Sending packets using port 1 and port 2 is not included in the path  

Ten packets are sent using port 1 that is nf2c0. They are expected to arrive on all the 

other ports except the port 1 and port 2 because port1 is used to send the packets 

while port 2 is not included in the path while calculating iBF. Hence, there will be a 

mismatch at port 2. So no packets will arrive on port 1 and port 2.  

The output of the simulation also showed the same results of receiving ten packets on 

port 3 and port 4 each and zero packets on port 1 and port 2.  

Test 6: Sending packets using port 1 and port 3 is not included in the path  

Ten packets are sent using port 1 that is nf2c0. They are expected to arrive on all the 

other ports except the port 1 and port 3 because port1 is used to send the packets 
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while port 3 is not included in the path while calculating iBF. Hence, there will be a 

mismatch at port 3. So no packets will arrive on port 1 and port 3.  

The test also passed as ten packets were received on port 2 and port 4 and no packets 

were received on port 1 and port 3.  

 

Test 7: Sending packets using port 1 and port 4 is not included in the path  

Ten packets are sent using port 1 that is nf2c0. They are expected to arrive on all the 

other ports except the port 1 and port 4 because port1 is used to send the packets 

while port 4 is not included in the path while calculating iBF. Hence, there will be a 

mismatch at port 4. So no packets will arrive on port 1 and port 4. 

 The output of this simulation showed that this test also got passed by receiving ten 

packets on each port 2 and port 3 and no packets on port 1 and port 4.  

Test 8: Test for Ethertype  

Ten packets are sent using port 1 that is nf2c0. Ethertype is set different from 0xacdc. 

Hence, no packets should arrive on any of the ports.  

The output also verified the test by receiving zero packets on any of the ports. Hence, 

check for ethertype is working properly.  

Test 9: Test for TTL  

Ten packets are sent using port 1 that is nf2c0. TTL is set to 0. Hence, no packets 

should arrive on any of the ports.  

The output of this simulation test verified the functionality by not getting any packet 

on any port.  

Test 10: Test for different keys  

Ten packets are sent using port 1 that is nf2c0. Key K3 to calculate iBF is different 

from the key saved into the registers. There should be a mismatch and hence, no 

packets should arrive on any of the ports.  
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The output of this test verifies that the keys for particular flow for calculation of F3 

are working fine. If there is a mismatch in the secret key the traffic is not authorized 

and hence no forwarding takes place. Here, we didn’t receive any packets on any of 

the port.  

6.3 Performance 

The packet traversal times were measured in our test environment. Packets were sent 

at the rate of 25 packets/second. Sending and receiving operations were implemented 

in the FreeBSD kernel. Table 5 shows the measurement results with plain wire and 

one NetFGPA. The measurements were taken with Moustique, AES and then for 

LIPSIN [1] separately on the NetFPGA. The packet format “new” and “old” refer to 

packet header with in-packet information and without it. These formats can also be 

noticed from the flow diagrams for Moustique, AES, and LIPSIN in Figures 21, 22 

and 23 respectively. The readings were taken for 10 000 samples. [27] 

 

The delay caused by Moustique is 320ns (40 clock cycles for 40 bits) with k set to 5 

and m set to 256. The delay caused by AES is 96ns (12 clock cycles). After this, 

matching is performed only in a single clock cycle. These delays are quite small 

compared to the measured 3μs overall delay of the whole NetFPGA. The numbers 

presented in Table 6.1, the average delay for Moustique and AES measured agrees the 

expected results. As can be seen Moustique has average delay of 15,272ns and AES 

has 15,057ns. The measured difference between the two techniques is quite close to 

the expected results. [27] 

Figure 23. Flow diagram for LIPSIN [18] 
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Comparing Moustique and AES, with the increase in k and m set to 256, the bits to 

compute increase with a multiple of 8 in Moustique. Each bit requires 1 clock cycle 

and hence the clock cycles also increase in multiples of 8. For AES, upto 128 bits the 

clock cycles remain same that is 12. 128 bits mean that with AES k can be set to 16 

without any additional performance penalty. Hence, it became clear that the need for 

having the k bit indices before performing the zFilter comparison and the 64-bits 

nature of the NetFPGA data path make AES a faster choice. [27] 

In comparison to LIPSIN, although the delay time is greater for the computation of 

zFormation but it gives us more secure and dynamic way to compute the link IDs. 

 

Path and packet format Average Latency Standard deviation 

Wire (new) 12,784ns 4,448.96ns 

NetFPGA with Moustique (new) 15,272ns 4,991.28ns 

NetFPGA with AES (new) 15,057ns 3,756.86ns 

Wire (old) 12,549ns 4,867.34ns 

NetFPGA with LIPSIN 14,627ns 4,204.58ns 

 

Table 5. Latency measurement results [27] 
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7  
CONCLUSION 

 

In this thesis, we have described our early design and implementation for a source-

routing-based forwarding mechanism. Initial goal was to construct the mechanism 

that is dynamic and secure. Along with providing these functionalities, to measure the 

delays caused by the forwarding node in computation of secure methods in real 

hardware.  

The dynamic property was needed to avoid maintaining static tables to store the 

names of the outgoing links. Instead, forwarding node computes the forwarding link 

identifiers on the basis of some information from the packet, the link identifiers, and 

thereby the in-packet Bloom filters, may be made flow or packet contents dependent.  

To ensure security, the design described in chapter 4 takes care of resistance against 

forwarding-identifier-guessing attacks. In a forwarding fabric based on in-packet 

bloom filters, only authorized nodes are able to send packets; packets sent with 

guessed forwarding identifiers will be dropped with high probability.  

 We have briefly described two different implementations, one using the Moustique 

self-synchronizing stream cipher, and the other the AES block cipher function. Our 

initial assumption was to use self-synchronizing stream cipher because of their fast 

nature. For this, a single bit stream cipher Moustique was chosen. Contrary to our 

initial assumption that a stream cipher might be faster as it can efficiently produce a 

partial result, it turned out that the block-cipher-based implementation is faster in 

practice. The measurement results obtained from the hardware implementation in the 

NetFPGA proved AES to be a better choice. While unrolling the stream cipher might 

help to give more bits out on each cycle, also the block cipher can be unrolled. In any 

case, the results show the time taken by the cryptographic operations is negligible 

compared to the overall NetFPGA forwarding delay.  
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APPENDIX A 

 

Pseudocode for the SHA-256 algorithm follows.  

Note 1: All variables are unsigned 32 bits and wrap modulo 232 when calculating 
Note 2: All constants in this pseudo code are in big endian  
 
Initialize variables 
(first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19): 
h[0..7] := 

   0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 

0x9b05688c, 0x1f83d9ab, 0x5be0cd19 

 

 

Initialize table of round constants 
(first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): 
k[0..63] := 

   0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 

0x59f111f1, 0x923f82a4, 0xab1c5ed5, 

   0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 

0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 

   0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 

0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 

   0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 

0xd5a79147, 0x06ca6351, 0x14292967, 

   0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 

0x766a0abb, 0x81c2c92e, 0x92722c85, 

   0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 

0xd6990624, 0xf40e3585, 0x106aa070, 

   0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 

0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 

   0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 

0xa4506ceb, 0xbef9a3f7, 0xc67178f2 

 

Pre-processing: 
append the bit '1' to the message 

append k bits '0', where k is the minimum number >= 0 such that the 

resulting message 

    length (in bits) is congruent to 448 (mod 512) 

append length of message (before pre-processing), in bits, as 64-bit 

big-endian integer 

 

Process the message in successive 512-bit chunks: 
break message into 512-bit chunks 

for each chunk 

    break chunk into sixteen 32-bit big-endian words w[0..15] 

 

 

         Extend the sixteen 32-bit words into sixty-four 32-bit words: 
    for i from 16 to 63 

        s0 := (w[i-15] rightrotate 7) xor (w[i-15] rightrotate 18) 

xor (w[i-15] rightshift 3) 

http://en.wikipedia.org/wiki/Pseudocode
http://en.wikipedia.org/wiki/Modular_arithmetic
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        s1 := (w[i-2] rightrotate 17) xor (w[i-2] rightrotate 19) xor 

(w[i-2] rightshift 10) 

        w[i] := w[i-16] + s0 + w[i-7] + s1 

        Initialize hash value for this chunk: 
    a := h0 

    b := h1 

    c := h2 

    d := h3 

    e := h4 

    f := h5 

    g := h6 

    h := h7 

 

        Main loop: 
    for i from 0 to 63 

        s0 := (a rightrotate 2) xor (a rightrotate 13) xor (a 

rightrotate 22) 

        maj := (a and b) xor (a and c) xor (b and c) 

        t2 := s0 + maj 

        s1 := (e rightrotate 6) xor (e rightrotate 11) xor (e 

rightrotate 25) 

        ch := (e and f) xor ((not e) and g) 

        t1 := h + s1 + ch + k[i] + w[i] 

        h := g 

        g := f 

        f := e 

        e := d + t1 

        d := c 

        c := b 

        b := a 

        a := t1 + t2 

 

         Add this chunk's hash to result so far: 
    h0 := h0 + a 

    h1 := h1 + b 

    h2 := h2 + c 

    h3 := h3 + d 

    h4 := h4 + e 

    h5 := h5 + f 

    h6 := h6 + g 

    h7 := h7 + h 

 

 
Produce the final hash value (big-endian): 
digest = hash = h0 append h1 append h2 append h3 append h4 append h5 

append h6 append h7 

 


