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Graphene, a 2D allotrope of carbon, has, since its synthesis in 2004, taken the
world of physicists by storm. By virtue of its unique energy spectrum graphene
exhibit many unique electronic properties - ultra high mobility of charge carriers
and ambipolar effect are two of the most important ones. Three terminal ballistic
junctions (TBJ), a new class of device, which has in past showed a host of novel non
linear electrical properties when fabricated out of semiconductor heterostructure,
can be used to form active devices out of graphene that contravene the latter’s
gapless nature.
In this thesis three terminal junctions were fabricated on both mono- and bi-
layer graphene. When operated in a push-pull configuration at room temperature
both of them displayed near parabolic voltage and current output. Due to the
ambipolar effect of graphene the nature of the output curves could be tuned with
a back gate voltage. It was observed that the output curves tend to bend upward
for operation in the electron transport regime and downward in the hole transport
regime. More over, the output curves became progressively more non linear as
the back gate voltage drove the system deeper into either of these regimes. Both
of these observations were in direct opposition to the data published in earlier
literatures. The voltage rectification of the devices were found out to be ∼ 5%.
With clearer theoretical understanding of the mechanism and better fabrication
strategies it is hoped that three terminal graphene junctions can be used to make
rectifiers, frequency multipliers and logic gates capable of performing at high speed
and low power.

Keywords: Graphene, ballistic transport, three-terminal junctions, non-linear
electrical property, nano-electronics
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1 Introduction

1.1 Background

The last half century has seen some rapid technological progresses being made by

human civilisation. From harnessing power from the nucleus of atoms, to conquering

the deep recesses of space, we have made major advances in all fields of technology.

However in no discipline has the progress been as rapid as in the field of electronics

- bulky ENIACs of yesteryears have been replaced by hand-held palm-tops, huge

volumes of magnetic tape have been replaced by miniature discs. This rapid

advancement has been made possible by the ability of physicists and engineers to

process and store information in an ever-shrinking network of circuits. However,

with the ever-expanding volume of information challenging the very physical limit

of semiconductor based devices, which have been the workhorse of this electronic

age, the information age may die a premature death. It is slightly ironical that this

eventuality had been predicted, though not directly, by Intel co-founder Gordon E.

Moore [1] some 40 years back.

However, graphene, a truly two dimensional atomic thick layer of isolated carbon

crystal, might save us from this eventuality. Soon after its discovery in 2004 [2],

numerous experiments have revealed the exceptional physical properties of graphene

that are not found in any other material (for a review of such experiments please

refer [3, 4, 5, 6]). It is simultaneously the thinnest and the strongest material known

to mankind. It is the best known conductor of heat and electricity, is impermeable

to gases and is capable of detecting adsorption of a single molecule.

By virtue of the excellent crystal quality of graphene, even those formed by a

very “crude” method employing scotch tapes and ordinary graphite, charge carriers

in it travel at a speed of 106 m/s. In effect, these charge carriers have zero effective

mass, and under the right condition, can travel for micrometers without scattering.

While such “ballistic transport” of electrons have been achieved previously in

semiconductor heterostructure, the process of growing such crystals is expensive

and cumbersome. Electron states in graphene are described by a Dirac-like equation,

rather than the more familiar Schrödinger equation. This allows for investigation of

quantum relativistic phenomenon in a convenient bench-top experimental setup.

The electrons in graphene obey a linear dispersion relation; the resulting energy

spectrum is conical in shape. Hence, graphene behaves like a gapless semiconductor.
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The obvious advantage of this property is the so called ambipolar electric field effect

- charge carriers in graphene can be tuned continuously between electrons and holes

in high concentration using an external electric field. Additionally, graphene exhibits

extremely high carrier mobility, even under high carrier concentration and at room

temperature. These properties has prompted it to be taken as a serious contender

for being the successor, if not the replacement, of silicon as the materia prima of

the electronics industry. However, experimental studies on graphene is still in its

infancy and there are lot of issues to be solved before graphene can pose a serious

threat to silicon in the semiconductor industry.

One of the primary disadvantages of the gapless nature of graphene is the very

low on-off ratios obtained in graphene FETs. In fact conventional design to produce

diodes and transistors might not be possible on graphene. A new class of nano-scale

devices based on conventional Y-branch switches exploiting the ballistic transport

of electrons in a material, the three-terminal ballistic junction (TBJ) might just

provide the answer. Initial theoretical modeling based on ballistic transport in such

three terminal devices indicated strong non linear output and was predicted for use

as rectifiers, frequency multipliers and logic gates [7]. Further studies has extended

the non linear behaviour to devices with diffusive transport. Though, there has been

a fair share of study done on TBJ devices based on semiconductor heterostructure,

till date there has only been one instance of investigation of graphene based three

terminal device [8]. This leaves the opportunity of studying three terminal graphene

junction in greater detail.

1.2 Scope of the Thesis

The scope of this thesis was the fabrication and electrical characterisation of nano-

scaled, three terminal junction devices on graphene. This entailed, first and

foremost, synthesising graphene using the “scotch-tape” method (to be discussed

in Sec. 3.1). The second step was to identify mono and bi-layer graphene (these

terms have been defined in Sec. 2.1) using a combination of optical microscopy,

atomic force microscopy and Raman spectroscopy. This was followed by fabrication

of nano scaled Y-shaped structure on both mono- and bi-layer graphene; additional

metallic structures were fabricated to aid the electrical characterisation of the device.

Though the resulting device can be operated in many configuration, the one chosen

for this thesis was the so-called push-pull configuration where equal but opposite

voltage is applied to the left and right branch of the Y-shaped device and the output
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is detected at the central branch.

Room temperature electrical characterisation of the devices revealed a non linear

voltage and current output; when plotted against the input, the curve for the output

data was found out to be nearly parabolic, albeit not about the x-axis. Furthermore,

it was observed that the application of a back-gate voltage changes the nature of the

output curve. When the back-gate voltage is such that electrons are the majority

carriers in graphene, the output voltage tends to bend upward. It tends to bend

downward when the back-gate voltage causes the majority carriers to be holes. In

addition to this, increasing the magnitude of the back-gate voltage in either of these

regimes causes the output to become progressively more non linear.

1.3 Outline of the Thesis

The rest of thesis is organised in the following order. Chapter 2 gives a theoretical

background of graphene and three terminal junction. It includes the definition

of graphene as well as its types, followed by a foray into graphene’s fascinating

electronic and physical properties and their possible applications. The principle of

operation of three terminal ballistic junction devices is discussed along with practical

implementations and applications so far. Chapter 3 turns the discussion into the

various approaches toward realising such a structure in graphene. Various ways

of synthesising graphene and identifying the number of layers in it are discussed.

Forming a practical device on graphene would require shaping the flake as well as

drawing metal contacts to it - nanolithographic and microfabrication techniques

that can be used to do so is outlined in this chapter. Chapter 4 gives a step-by-

step description of the preparation of the three terminal device onto synthesised

and isolated graphene flakes as was done in this thesis. The results obtained at

each step of synthesis, characterisation and fabrication of graphene is displayed.

Chapter 5 is devoted to electrical characterisation of the obtained device. It gives

the measurement results along with analysis of the data and finally analysis of the

output in comparison with result published in earlier literatures. Chapter 6 draws

a conclusion by giving a brief summary of the entire process.
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2 Theory

2.1 Graphene

Graphene, by definition, is a flat monolayer of carbon atoms tightly packed into a

two-dimensional honeycomb lattice. Conceptually it can be thought of as a benzene

ring stripped of its hydrogen atoms. It acts as the basic building block for graphitic

materials of all other dimensionality as seen in Fig. 1. Theoretically, graphene, or

“2D graphite” was studied closely over the years and has been widely used to describe

properties of other carbon-based material over the years. Ironically however, in spite

of being widely studied, it eluded any experimental observation. Numerous attempts

to synthesise a stable form of this two-dimensional atomic crystal failed, giving rise

to speculations that it is no more than an “academic” material [4].

Figure 1: Graphene is a 2D, planar, hexagonal arrangement of carbon atoms that can
be wrapped into 0D buckyballs, rolled into 1D nanotubes or stacked into 3D graphite [4]

Incidentally, the very fact that two dimensional atomic crystal can exist stably

under ambient conditions contravene quite a few theoretical predictions [3]. More

than 70 years ago, the eminent physicist Landau argued that strictly 2D crystals

were thermodynamically unstable and hence could not exist, an argument that was

later extended by Mermin and henceforth, strongly supported by many experimental

observations. An absence of long-range order in 2D, a large perimeter-to-surface

ratio and a rapid decrease of melting temperature with decreasing thickness

were cited as reasons for instability (in the form of segregation into islands or
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decomposition) of layers of true atomic thickness. Atomic monolayers have so far

been known only to exist as an integral part of a larger 3D structure (e.g. those

formed by epitaxial growth).

However, in 2004 a group of physicists led by Andre Geim and Kostya Novoselov

used a novel approach to obtain graphene that bypassed most of the problems

of thermodynamic instability mentioned earlier. They started with graphite and

extracted as single sheet of atoms, i.e. graphene, using a technique called micro-

mechanical cleaving [2] (the technique will be explained in greater details in

Section 3.1). This anomalous existence of the atomic monolayer was reconciled

to earlier, contradictory, theoretical predictions by positing that 2D crystals become

intrinsically stable by exhibiting “metastable quenching” and “3D warping” [4].

Importantly, the graphene crystals thus obtained exhibit both long range continuity

as well as high crystal quality; this resulted in enormous experimental activities to

demonstrate and further the many wonderful physical and electronic properties that

were predicted of this novel material. Some of the major properties will be discussed

in the next two sections with a short, and by no means exhaustive, discussion on

possible applications of graphene.

Before proceeding further it would be instructive to explain how 2D crystals are

defined in the case of graphene from an experimental point of view. Digressing from

the obvious theoretical viewpoint of treating the monolayer as 2D and hundred or

more layers as essentially a thin film of 3D material, it would be helpful to choose a

suitable “transition point” from 2D to 3D. It has been observed that the electronic

structure of stacks of graphene rapidly evolve with number of layers, approaching the

3D limit of graphite at ten layers. Additionally, only graphene and to some extent

its bi-layer has simple electronic spectra. This has resulted in single-, double- and

few- (3 to 10) layer graphitic material to be distinguished as three different types of

“graphene” - monolayer (MLG), bilayer (BLG) and few-layer (FLG) graphene [4].

Pedantic aside, such division is also sensible from an experimental point of view.

2.1.1 Electronic properties of graphene

The structural flexibility and fascinating electronic property of graphene results

from its crystal structure. The carbon atoms in a monolayer of graphene are sp2

hybridised leading to formation of a trigonal planar structure with σ bonds between

adjacent atoms. The unaffected p-orbital, which lies perpendicular to the planar

structure forms a loose π bond with similar orbital of neighbouring atoms. The
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resultant lattice structure consisting of two equivalent carbon sublattices is shown

in Fig. 2a; it can alternately be viewed as a triangular lattice vector with a basis

of two atoms per unit cell. The lattice vectors can be written as a1 = a/2(3,
√

3)

and a2 = a/2(3,−
√

3), where a ≈ 1.42 Å is the carbon-carbon distance. It is worth

taking a note of the two points K and K′ located at the corner of the Brillouin zone

- these are called Dirac points and are of paramount importance to the electronic

structure of MLG, as will be seen here. Their position in momentum space is given

by:

K =
2π

3a

(
1,

1√
3

)
, K′ =

2π

3a

(
1,− 1√

3

)
(1)

Under the nearest neighbour, tight-binding approach [9] the electronic band

structure of MLG can be expressed as:

E±(k) = ±t

√√√√3 + 2 cos(
√

3kya) + 4 cos

(√
3

2
kya

)
cos

(
3

2
kxa

)
(2)

where, t ≈ 2.8 eV is the nearest neighbour hopping energy and k is the wave

vector. The plus sign applies to upper (π) and the minus sign to lower (π∗) band.

When Eq. 2 is expanded close to the K (or K′) vector, as given in Eq. 1, the following

equation is obtained [10]:

E±(q) = ±~vF |q|+O((q/K)2) (3)

where, q is the momentum measured relatively to Dirac points and vF = c/300 =

106 m/s is the Fermi velocity.

The band structure with a detailed view near Dirac points is shown in Fig. 2b

and it clearly shows a conical band structure with the valence and conduction band

touching at Dirac points making MLG a zero gap semiconductor. Incidentally, the

linear energy dispersion in Eq. 3 resembles that of ultra-relativistic particles, more

specifically that of massless Dirac fermions traveling with the speed of vF . The

interaction of electrons with the periodic potential of graphene’s honeycomb lattice

give rise to new massless, charge-carrying quasi-particles with a chiral pseudospin

index. Under the long wavelength, low energy approximation they can be described

by the Dirac like Hamiltonian [10]:
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(a) (b)

Figure 2: a. Lattice structure of MLG and corresponding Brillouin zone; b. Energy
spectrum of MLG with an enlargement close to Dirac point [10]

H = ~vF

(
0 kx − iky

kx + iky 0

)
= ~vFσ.k (4)

Bilayer graphene, with two carbon monolayers (inter-layer separation of 0.3

nm) weakly coupled by electron hopping between the layers, has a totally different

electronic structure. Though the charge carriers in BLG are still chiral, the energy

dispersion is no longer Dirac-like. Considering the so-called A-B stacking of layers

(Fig. 3a), the low energy, long wavelength dispersion is given by the relation [11]:

E±(q) =

√
V 2 + ~2v2F q2 + t2⊥/2± (4V 2~2v2F q2 + t2⊥~2v2F q2 + t4⊥/4)

1/2
(5)

where, t⊥ ≈ 0.4 eV is the effective interlayer hopping energy and V is shift in

inter-layer electro-chemical potential due to external voltage and/or electric charge

induced on bilayer. From the above relation it can be deduced that BLG has

an effective bandgap ∆g ≈ V
√
t2⊥/(t

2
⊥ + V 2) for non-zero V . For zero applied

external bias, however, BLG appears to be a gapless semiconductor with a parabolic

dispersion relation E±(q) ≈ ~2q2/(2m∗), with m∗ ≈ 0.03×m. For high values of q

(~vF q > t⊥), corresponding to carrier densities larger than 5 × 1012 cm−2, a linear

dispersion relation E±(q) ≈ ~vF q, identical to that of MLG, is obtained. As can

be seen in Fig. 3b, the dispersion relation, in-spite of being parabolic maintains the

electron-hole symmetry observed in MLG. Beyond bilayer, graphitic system becomes

increasingly metallic with increasing number of layers.

Thus, one of the distinguishing properties of graphene, both MLG and BLG, is
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(a) (b)

Figure 3: a. Lattice structure of BLG with A-B interlayer stacking; b. Energy
dispersion relation in BLG with(dashed line) and without(solid line) external potential

[12]

that it is a gapless semiconductor where the nature of carrier changes from hole to

electron (and vice versa) at the Dirac point, also known as the charge neutrality

point (CNP). An easy way of tapping this ambipolar effect of graphene is offered by

tuning the electro-chemical potential (or Fermi level EF ) of the system by applying

an external potential. The easiest way to do so is to use a back-gate configuration

fashioned as a parallel plate capacitor consisting of silicon and graphene with an

intermediate layer of silicon dioxide acting as the dielectric. A finite back gate

voltage of Vbg applied to silicon layer would induce charge carriers in the graphene

layer, the magnitude of concentration of which is given by:

|n| = C|Vbg|
e

+ nQ

[
1−

√
1 +

C|Vbg|
enQ

]
(6)

where, C = εdε0
td

is the gate capacitance with td being the dielectric thickness and

nQ = π
2
(C~vF

e2
)2. The second part of the equation arises due to quantum capacitance

effects and can be safely ignored for thick oxide layers that are commonly in use.

The electrochemical potential of MLG and BLG are associated in different degrees

to their respective carrier concentration as [11]:

MLG: |EF | = ~vf
√
π|n| (7)

BLG: |EF | =
π~2|n|
m∗

(8)

A positive back-gate voltage (Vbg > 0) leads to the accumulation of electrons in
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graphene (n < 0), causing the Fermi level to rise above the Dirac point, into the

conduction band (EF > 0), and vice versa. Increasing the magnitude of Vbg leads

to a linear increase in charge carrier concentration due to an increase in density

of states (DOS). Thus, the relation between back-gate voltage and conductivity of

graphene is characterised by a high resistivity at Vbg = 0, with the resistivity falling

rapidly on either side, as explained in Fig. 4a.

(a) (b)

Figure 4: a. Ambipolar electric field effect in graphene. Inset shows its conical low
energy spectrum indicating changes in position of Fermi Energy EF with changing gate

voltage Vg [4]; b. Effect of n-doping of graphene with phosphorus on position of CNP and
mobility [13]

Though this simple model would seem to suggest that the conductivity of

graphene should be zero when EF = 0 (i.e. the Fermi level is at Dirac point - with

a vanishing DOS at this point, n should be zero too) experiments seem to indicate

a finite minimum conductivity of the order of ∼ 4e2/h. Further studies have shown

that transport in graphene is significantly affected by long-range Coulomb scattering

and subsurface charged impurities. Among other things, these factors result in a

finite DOS, and hence, a finite charge carrier density at the Dirac point [11, 14].

This transport mechanism has been used to explain the presence of, and to obtain

analytical expressions for, the minimum conductivity plateau (MCP) at CNP and

dependence of mobility and Dirac point on impurity concentration in graphene [15].

Another remarkable property of graphene is the high mobility µc of its charge

carriers (as, µc = 1/ρne, a high µc can be inferred from the rapid decrease in
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resistivity ρ in Fig. 4a). Mobilities exceeding 15 000 cm2/Vs has been reported for

samples with high degree of impurity, even under ambient conditions [4]. This gave

rise to hopes of observing ballistic transport in submicrometre scale - this property

and important ramifications thereof will be examined in further detail in Section 2.2.

It must be noted that most of this discussion is based on the assumption that EF

is exactly at the Dirac point when Vbg = 0, i.e., the graphene is intrinsic (or,

undoped). However, this is more of an equilibrium model; an infinitesimal amount

of doping (in the form of impurities or external potential or thermal fluctuation),

makes the system extrinsic and CNP is reached for some finite Vbg - especially at

higher temperatures [11]. In addition to shifting the Dirac point, external doping

also affects the mobility of sample [13], as can be seen from Fig. 4b.

The material above is a short discourse on the fascinating electronic properties

of graphene - for a detailed and comprehensive reference of electronic properties of

graphene readers are referred to Ref [10, 11, 14].

2.1.2 Physical properties of graphene

With the plethora of electronic properties of graphene it is but customary to overlook

its non-electronic properties. Recent research in this field has revealed graphene’s

remarkable physical and optical properties, thereby opening up new possibilities

with regard to its application.

The first measurement of graphene’s mechanical and thermal properties revealed

a breaking strength of 42 N/m (it correspond to a Young’s modulus of 1.0 TPa and

an intrinsic strength of 130 GPa) and a room-temperature thermal conductivity of

∼ 5000 W/mK [16]. This makes it the strongest as well as the most conductive

man-made material. Graphene has a very high optical transparency (it reflects only

< 0.1%of visible light), shows luminescence over a broad spectral range, and, owing

to its linear dispersion relation, allows for ultra wideband optical tunability [17]. The

chemical properties of graphene, as yet unexplored, promise to open up new fields

too - it can adsorb and desorb various atoms and molecules and is impermeable to a

variety of gases. The exploration of physical properties of graphene are, as yet, in its

nascent stage. It is expected to yield more results with improvement in production

method.
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2.1.3 Applications of graphene

As with theoretical and experimental work on graphene, a large share of research on

application is geared towards graphene based electronics. However, relatively low on-

off ratios (limited to less than hundred because of graphene’s minimum conductivity)

and the fact that graphene remains metallic even at neutrality points act as primary

deterrents to progress [4]. Various novel techniques are being conceptualised to

circumscribe these difficulties, the most widely used approach being that of the

graphene nano-ribbons (GNR). Spatial confinement effects due to the narrow width

(≈ 10 − 20 nm) of GNR allow a band-gap to be opened for room temperature

operation. This ensures semi-conductor like behaviour and FETs constructed of

such material have shown an on-off ratio as high as 107 at room temperature [18].

The ability to induce and tune the bandgap in BLG using an external electrical

field [19] makes it a desirable candidate for electronic applications. Graphene

has been used to form ultrahigh-frequency analogue transistors, known as high-

electron mobility transistors (HEMT), which have the potential to operate well

into tetrahertz frequencies [20]. In spite of the reigning optimism about graphene

based electronics, by all indications, it will be some time before they pose a serious

challenge to the present silicon based market.

Meanwhile it would be instructive to check its usability in other fields. Graphene

powder is shown to be excellent, low-cost filler for compound materials [21];

additionally, by virtue of its large surface-to-volume ratio and high conductivity it

can be used in batteries, supercapacitors and field emitters [5]. Graphene based gas

sensors capable of detecting single molecule have been demonstrated [22]. Given

its lightness and stiffness graphene could be an excellent choice for nano-electro-

mechanical systems. Already, membranes with a quality factors of ∼ 100 at 100

MHz frequencies have been demonstrated [23]. Graphene has also been used in a

wide range of optical devices like touch-screens, LED’s, solar cells, etc. [17]

However, given the lack of direct electronic application of graphene, the

opportunity remains to investigate into novel devices that utilise the ultra-fast

mobility of graphene. The next section will focus on the most direct implication

of the high mobility of charge carriers in graphene - ballistic transport.
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2.2 Ballistic transport

The passage of electron through any medium subjected to an external electric field

is affected by scattering from one or more localised non-uniformities (e.g impurities,

defects, surface effects, etc.) forcing it to deviate from a straight trajectory. Ballistic

transport of electrons, in its simplest term, is said to happen when the trajectory

is unaffected by scattering, except those due to device boundary. It is observed

to occur when the dimension of the medium is smaller than the characteristic

scattering lengths (viz. the mean free path, the phase relaxation length and the

Fermi wavelength) of electron in that medium [24]. The electrical conductance

G of a ballistic conductor is quantised (at low temperatures) and is expressed

by the Landauer formula G = 2e2

h
N (where, N is the total number of occupied

transverse quantum confinement modes in the channel) unlike the more familiar

Ohm’s Law. In recent years, ballistic transport of electrons has been observed in

certain semiconducting material viz. GaAs, GaAs/AlGaAs in low temperature and

Ga0.25In0.75As/InP at room temperature. Electron mobilities as high as 15 000

cm2/Vs at room temperature and 100 000 cm2/Vs at 77 K has been observed in

these materials [25].

Graphene, as has been explained earlier, has a very high charge carrier mobility.

This indicates high relaxation time τm (since, τm = µcm
e

) and large mean free path

Lm (since, Lm = τmvF ), and hence, a high chance of ballistic transport. In reality

however, the presence of sub-surface charge carriers in graphene supported by a

dioxide substrate affect the transport of electrons severely, thereby reducing mobility

and hindering ballistic transport. It is only by chemically etching the dioxide layer

below graphene and current annealing it that the effect of these “charge puddles”

can be removed. Low temperature transport measurements of “suspended graphene”

have revealed mobility of 200 000 cm2/Vs and mean-free path of the order of 2−3 µm

[26]. Near-ballistic transport has been observed in these samples, both at and away

from CNP, for temperatures lower than 100K [27]. Unlike supported graphene the

mobility of these samples depend considerably on carrier concentration and hence

are unlikely to show ballistic behaviour for concentrations greater than 1013 cm−2.

In the next section a unique way of fabricating useful devices by exploiting

the geometrical dependence of conductance, in a ballistic transport regime, will

be discussed. As will be seen a range of operation can be obtained from certain

simple geometrical patterning of the active device.
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2.3 Three terminal ballistic junctions

Over the last couple of decades several electronic waveguide structures have been

proposed and analysed for being a functional nanoelectronic device to take advantage

of a ballistic electron system. The Y-branched switch (YBS), has in particular, been

considered for low-power, high-speed electronics, especially in its non-linear regime

of operation. When the dimensions of the YBS are shrunken to a scale conducive

to ballistic transport they can be considered as a three-terminal ballistic junction

(TBJ). The following sections will analyse the principal-of-operation of such devices

followed by practical results demonstrated so far and possible applications.

2.3.1 Principle of operation

Figure 5: Schematic representation of a TBJ with adiabatic boundaries

A TBJ, or for that matter, YBS can be operated under many configuration; the

one being discussed here would pertain to the case where voltages are supplied to

the right and left branches and output is measured at the central branch. A simple

schematic of such an arrangement is shown in Fig. 5. Here, µi and Vi represent the

the electrochemical potential and voltage applied at the ith (i = L,R or C) branch,

respectively; they are related as µi = µF −eVi, where µF is the chemical potential of

the system at zero bias voltage. For nanoscale operation of multijunction mesoscopic

system, where inelastic scattering is negligible, the transport properties are better

described by the Landauer-Büttiker theory than the more common drift-diffusion

theory. According to L-B formalism the current Ii flowing into the ith branch, at an

energy E, is given by the relation [24]:
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Ii(E) =
∑
i 6=j

e

h
f(E − µi)Tji −

∑
i 6=j

e

h
f(E − µj)Tij

where, f(E) and Tij are the Fermi-Dirac distribution and the transmissivity

from the jth to the ith branch, respectively. For a vanishingly low applied voltage,

the transmissivity can be considered to be constant for low temperature operation.

In this so called linear regime the potential through the central branch would be a

simple average of the potential of the left, and, the right branch. This is the intuitive

conclusion from the more familiar drift-diffusion perspective too.

The same approach was extended for operation of TBJ under higher applied bias

by Xu [7], with an important caveat - the energy dependence of transmissivity was

explicitly taken into consideration. Under this model the current from the central

branch is given by:

IC =
e

h

∫ {
[TLC(E) + TRC(E)]f(E − µc, T )−

∑
i=L,R

TCi(E)f(E − µi, T )

}
dE, (9)

Solving this equation with IC = 0 gives the value of µC , from which the central

branch voltage can be found out. For a junction where the left and right branches

are symmetrical, it was shown that TLC = TRC = (h/4e2)GC , where GC is the

conductance of the central branch. Thus, for a symmetric, adiabatic ballistic

junction, VC is determined solely by GC , and is independent of the structure of

left and right branch, as well as included angle. When input voltage is supplied in

a push-pull fashion, i.e., VL = −Vi, and, VR = Vi, VC is derived from Eq. 9 as [7]:

VC = −1

2
αV 2

i +O(V 4
i ),

where α = −e
∫
GC(E) δ

2f(E−µF ,T )
δE2 dE∫

GC(E) δf(E−µF ,T )
δE

dE

(10)

Thus, for the discussed configuration, the output voltage VC depends quadrat-

ically on input voltage Vi. Furthermore, for δGC/δµC > 0 (i.e., the transmissivity

of the branch increases with potential), the so called non-linearity factor α > 0 and

VC is always negative, being zero only when Vi is zero. This behaviour is displayed

graphically in Fig. 6a. Results for an asymmetric TBJ where the right branch has

a stronger lateral confinement is given in Fig. 6b. It can be seen that in addition to
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the non-linear behaviour, the non linearity becomes weaker (i.e., |α| decreases) as

the electro-chemical potential of the system is increased.

(a) (b)

Figure 6: Voltage output from central branch vs applied bias voltage for a.symmetric,
and b.asymmetric TBJ [7]

An alternate theory proposed to explain the non-linear behaviour of nanojunc-

tions, albeit specific to the material in use, is the non-uniform distribution of electric

field and charge carriers in the horizontal branch under application of push-pull

voltage [28]. Under low bias the imbalance is caused due to a combination of

space charge effects and the ballistic transport of electrons. For higher biases the

inhomogeneity is due to the intervalley transfer mechanism in the semiconducting

material. An important ramification of the Monte-Carlo simulations based on this

mechanism is that VC is linearly dependent on −Vi (instead of −V 2
i ) for higher

bias voltages. As this semi-classical model explains non-linearity in the presence of

scattering processes, it somehow relaxes the necessity of having coherent, ballistic

transport [29].

In spite of some recent reviews (e.g. [30, 31]) the study of nanojunctions, ballistic

or otherwise, in high-bias, high-temperature regime is in its infancy and needs further

investigation.

2.3.2 Implementation

Most of the initial experiments on three terminal devices were done on high mobility

heterostructure like GaAs/AlGaAs or GaInAs/InP with the junction size being

smaller than, or comparable to, the mean free path of electron in room temperature.

The devices included both Y-shaped and T-shaped structure, with additional side



2 THEORY 16

or top gates to aid modulation of the electrochemical potential of the system. All

structures showed the strong negative, non-linear behaviour as predicted in [7], at

low as well as room temperatures (e.g. Fig. 7) [32, 33]. Further experiments revealed

that at slightly higher input bias (Vi > 300 mV) the output becomes linear, as was

pointed out in [28]. Interestingly, the non linear behaviour seen in ballistic junctions

persisted in structures with dimension larger than the mean free path of electrons;

ballistic behaviour in these large devices was explained by bias-induced enhancement

of the mean free path [34]. Further studies demonstrated that, at low temperature,

both large and small devices have identical non-linear behaviour (the threshold for

transition to the high bias linear regime does decrease with device size). At higher

temperature, however, the larger devices show considerable weakening of curvature

with occasional null output for very small bias [35].

Figure 7: A TBJ with 180nm waveguide and measurement results at 4K [32]

Non-linear behaviour has also been demonstrated on TBJs fabricated from

nanowires, nanotubes [36] and silicon [37]. Recently rectification effect was obtained

from three terminal junction fabricated on supported single layer graphene [8]. The

size of the junction (a STM image can be seen in Fig. 8a), was 200 nm; mean

free path in the structure was estimated to be 70 nm. In spite of the diffusive

nature of the device non-linear behaviour was obtained in a push-pull configuration,

as is evident from Fig. 8b. The curvature is quite strong at 77K, degrading, but

nevertheless remaining non-linear, at room temperature.

From the low temperature measurements in Fig. 8b it can be observed that, for

Vbg = +7V , i.e., in the electron transport regime (the Dirac point was found out to

be at Vbg = +3V ) the output voltage remained negative; in the hole transport regime

(Vbg = −7V ), however, the output voltage was positive for all values of input voltage.

This change of sign was explained in terms of the schematic presented in Fig. 9 -
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(a) (b)

Figure 8: a. STM image of three terminal junction fabricated on graphene; b. Output
voltage in a push-pull configuration at 77K and RT [8]

it presents the difference of conductance GCi (i = L,R) between two terminals

of the struture, as a function of electrochemical potential µ. As can be seen, GCi

increases with the potential in the electron transport regime, and vice-versa. Now,

in order to maintain IC = 0 in a push-pull confuguration, the potential of the central

terminal would follow the potential of the terminal with higher conductance. In the

electron transport regime the terminal with a negative applied voltage has higher

conductance, and hence the output, too is negative. A similar argument could be

put forth in the hole transport regime where the terminal with higher conductance

has a positive voltage applied to it. An important corollary of this assumption, as

was presented in the literature, was a progressive weakening of the output curvature

as the system is tuned away from the Dirac point.

Figure 9: Schematic explaining change of sign of output voltage due to back-gate voltage
in a graphene TBJ[8]
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From the examples above it can be deduced that the predicted non-linear ouput

from a three terminal nano-junction, operating in a push-pull configuration, is in

no way limited to devices with ballistic transport. This is significant for graphene

devices, as in Sec. 2.2 it was pointed out that only suspended graphene can exhibit

true ballistic transport. The observation made in [8] confirms that non-linear

operation can be extracted from graphene in the diffusive transport regime. As the

device structure used in the literature was more akin to a nano-constriction, it would

be useful to know the behaviour of a graphene device with a conventional Y-branch,

or, T-branch structure. Before going into the details of fabricating such device on

graphene some of the proposed application of TBJ devices would be presented next.

2.3.3 Applications

The basic push-pull configuration outlined in the above discussion can be used to

make rectifiers, frequency multipliers and even logic gates. The rectification effect

is obvious - when two out-phase ac voltage signals are applied to the left and right

branches of a symmetric TBJ, the output voltage from the central branch is always

negative. The quadratic output can be filtered out to obtain second and higher-order

harmonics of the input, thereby allowing the use of TBJ as frequency multiplier.

A circuit configuration made on a Ga0.25In0.75As/InP based heterostructure that

simultaneously exhibits the rectification and frequency multiplication effect of the

TBJ is shown in Fig. 10 [38]. A TBJ can also be used as a logic gates when separate

dc voltages are applied to the input branches [7]. With a little variation to the

push-pull configuration, viz. by grounding or modulating the power source to one

of the branches the TBJ can exhibit diode and transistor characteristics [39].

Figure 10: Frequency multiplier using TBJ: a. SEM image of device with circuit
schematic; b. Results [38]

Three terminal ballistic junction have some unique advantages when compared
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to conventional devices [40]. Lack of junction or gate capacitance, typically

assosciated with semiconductor diode or MOS structures, means they have very

low intrinsic capacitance. Thus, TBJ has an implicit advantage when it comes to

high speed operations - of no less importance is the fact that they are compatible

with HEMT devices. Rectfication through TBJ is not limited by any threshold,

commonly seen in semiconducting rectifiers. Furthermore, the non-linear behaviour,

at least in truly ballistic devices, persist for a long temperature range without any

significant deterioration. These factors, combined with the characteristic low power

requirement of nanoelectronic devices and apparent ease of fabrication, make it a

strong contender for future use in high-speed, low-power electronics.
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3 Experimental methods

With the theoretical background on the components that constitute the matter of

this thesis being explained, it would be instructional to examine various avenues

towards achieving the goal of fabricating three-terminal junctions on graphene.

Issues that are likely to arise are, how graphene can be synthesised in a reliable

and consistent way to give enough opportunity to fabricate meaningful structures

on them. The question of identification and confirmation of whether the synthesised

sample is indeed MLG is also important. Finally, a brief review of the methods

required to fabricate nano-scale structures on a prepared sample is required to pick

and choose the means most pertinent to achieve the end in question.

3.1 Synthesis of graphene

As has been outlined in Section 2.1 growth of 2-D crystals forbid certain basic

principles of nature. However, in theory, the principles of artificially growing 2D

crystal structures like graphene is rather simple, notwithstanding regular failures in

achieving to do so in last century. It simply consists of growing a monolayer inside or

on top of another crystal and then removing the bulk at sufficiently low temperatures

such that thermal fluctuations are unable to mould them into 3D shapes.

One of the ways to achieve this is to mechanically split a strong layered material

like graphite, where in-plane C-C Ω bonding are stronger than inter-layer π bonds,

into individual atomic planes, the so called micromechanical cleavage method.

Earliest attempts to isolate graphene tried were focused on chemical exfoliation

of bulk graphite using large-molecule intercalating species; however results were not

satisfactory [41]. Truly 2D crystals were first obtained by using micromechanical

cleavage in 2004 [2]. This “scotch-tape” method of extracting graphene is a rather

simple and inexpensive process to produce crystals of high structural and electronic

quality. It consists of putting graphite flakes on the adhesive side of a scotch

tape and repeatedly peeling them off using same/different tape to obtain a layer

of fine graphitic granules. These are then transferred to a suitable substrate, most

commonly SiO2, by pressing it firmly onto the tape - some of the granules thus

transferred turn out to be graphene flakes, albeit of varying thickness, width and

shape. These flakes are attached to the substrate, most likely due to van der Waals

and/or capillary forces. A step-by-step depiction of the method underlined above

is shown in Fig. 11. The process outlined above can be automated, to a degree, by
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means of ultrasonic cleavage [42] to obtain a stable suspensions of sub-micrometre

graphene crystallites. In this work, however, the simple “scotch-tape” method was

used to produce graphene.

Figure 11: Micromechanical cleavage of graphene by scotch-tape method

As a passing note, it is worth mentioning that though micromechanical cleavage

remains the technique of choice for making proof-of-concept devices, the tedious

nature of the process renders it unsuitable for industrial scale production. The

answer lies in various methods to produce graphene epitaxially. The earliest

attempts targeted growing graphene on the Si-terminated (0001) face of single-

crystal 6H-SiC by the thermal desorption of Si [43]. Chemical routes of producing

graphene by reduction of graphene oxide have also been tried [44]. The focus

nowadays is on deposition of graphene on sheets of transition metal (like copper,

cobalt or nickel) using decomposition of hydrocarbons. Good results have been

obtained from chemical vapour deposition employing decomposition of gaseous

sources like CH4, C2H4, C2H2 and benzene [45], as well as solid carbon sources

like PMMA and sucrose [46]. With optimisation of substrate material, growth, and

transfer procedures this method seems to show real promise of producing large-scale,

high-quality graphene [47, 48].
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3.2 Characterisation of graphene

Characterisation of graphene is a broad field that encompasses investigation of the

number of layers in a given sample as well as identifying surface states, ripples,

defects and impurities on it. Owing to the unique two-dimensional nature of

graphene, each of these factors have profound effect upon the ultimate electronic

nature of the sample. A variety of techniques have been used to study the property

of graphene produced by different method [49], as well as its behaviour under

varying ambient. Of these, Transmission Electron Microscopy (TEM), Atomic Force

Microscopy (AFM) and Raman Spectroscopy are the ones used most widely and

effectively. In this work the last two methods have been used to identify number of

layers and impurities on isolated graphene flakes.

Using mechanically exfoliated graphene incurs the additional step of locating

the flakes on a substrate, which is typically populated with thicker graphitic flakes,

adhesive glue and other impurities. This is a tedious process and none of the

sophisticated visualisation techniques mentioned above, is capable of concurrently

identifying and characterising graphene, primarily due to their low throughput.

Currently the only way of identifying cleaved graphene is to carefully scan the surface

of the substrate with an optical microscope.

3.2.1 Optical microscopy

Although graphene is nominally transparent to visible light, even a single layer of

graphene, when put on a suitable substrate, adds up enough difference in the optical

path to be identified by naked eye. The origin of this optical contrast between MLG

and underlying SiO2 substrate can be explained with the aid of Fresnel’s Theory of

double refraction [50]. It has been found out to be a function of the thickness of

oxide layer as well as the spectrum of source light, as can be seen from Fig. 12.

With the aid of specialised filters, graphene can be visualised on top of SiO2 of

practically any thickness, except for ≈ 150 nm and below 30 nm. Without any filter,

thickness of 90 nm and 280 nm are most suitable, with the lower thickness providing

a better choice. In practise, a thickness of 250− 300 nm is used. It must be noted

that even a 10% change of thickness beyond this limit reduces visibility sufficiently

to render graphene, especially MLG, invisible. This can be seen in Fig. 13c, where

graphene deposited on a 200 nm thick SiO2 is practically invisible as compared

to Fig. 13a, where a 300 nm thick dioxide layer has been employed and a clear
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Figure 12: Contrast of MLG as a function of wavelength and thickness of SiO2

substrate [50]

contrast between the different graphene layers exists. The increase in contrast due

to employment of filters can be seen in Fig. 13b where green (λ = 560 nm), instead

of white light has been used.

Figure 13: Graphene crystals on 300 nm silicon dioxide layer imaged with a. white,
and, b. green light. c. Another graphene sample on 200 nm thick dioxide layer [50]

Optical microscopy, in isolation, cannot be used to quantitatively separate MLG

from BLG or FLG, although with sufficient experience, a user can make an intelligent

guess about the thickness of graphene crystal. For better result more sophisticated

methods like AFM or Raman spectroscopy must be used.
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Figure 14: Schematic of Atomic Force Microscope

3.2.2 Atomic force microscopy

Atomic Force Microscopy, invented in 1986 by Binnig and Quate [51], has become

a method of choice to study surface topography. A schematic of a typical AFM

arrangement is given in Fig. 14. When the tip is brought into proximity of a sample

surface, forces between the tip and the sample (primarily, but not limited to van

der Waals forces) lead to a deflection of the cantilever according to Hooke’s law.

The deflection is detected from the laser beam reflected from the cantilever into

a two-segment or four-segment position sensitive photo-diode. Holding this signal

constant, by varying the sample height through a feedback arrangement, gives the

sample height variation, as the tip is scanned across the surface using piezoelectric

components. Topography of a sample can be extracted with an AFM in contact,

non-contact oscillating, or, tapping mode. Of these, the first one is prone to surface

damage, and, the second one suffers from low sensitivity. Hence, AFM is operated

mostly in intermittent-contact oscillating (or, tapping) mode. It is achieved by

allowing, during scanning, the vertically oscillating tip to alternately contact the

surface and lift off at a frequency of 50 to 500 KHz. The amplitude of oscillation

is larger than 100 nm, and amplitude detection is used. It allows for high vertical

resolution with negligible surface damage. AFM is a versatile technique that can

be used for both conducting and insulating surfaces under a variety of ambient

conditions.

AFM is especially useful to differentiate MLG and BLG from FLG. Considering

that the inter-layer thickness of graphene is ≈ 3.35 Å, it can be said that a

modern AFM with its high resolution would be able to differentiate up to a single

layer. However, there exists a certain chemical contrast between the substrate and
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(a) (b)

Figure 15: a.AFM image image of graphene showing areas of varying thickness, an
indication of number of layers ; b.Another image showing folds and crumples that occur

between the transition of layers in graphene [2]

graphene, which causes the AFM tip to be more strongly attracted to the SiO2

substrate. There also exists a certain “dead layer” of absorbed water between the

crystal and substrate [52]. This results in an apparent chemical thickness of 0.5− 1

nm for MLG, when observed in AFM, rendering differentiation between MLG and

BLG slightly difficult. For FLG the apparent thickness is more than 1 nm. Even so,

AFM is a very useful tool to observe the surface topography of graphene crystals

deposited with the scotch-tape method, as can be seen in Fig. 15a . It is the only

conceivable tool to study the folds and crumples in graphene (seen in Fig. 15b) that

apparently renders it stable against possible decomposition into smaller islands of

greater thickness.

3.2.3 Raman spectroscopy

Raman spectroscopy, is in its simplest terms, a light scattering technique that can

be used for chemical identification, the characterisation of molecular structures, the

effects of bonding, the environment and stress on a sample. As will be seen here it

can be used very efficiently to identify and isolate layers of graphene quantitatively

with high accuracy.

Raman spectroscopy is based on a phenomenon called Raman scattering,

discovered by C.V. Raman in 1928. When monochromatic radiation is incident

upon a sample then the back-scattered light consist mostly of the photons with

same energy and wavelength as the incident photons (Rayleigh scattering). Yet a
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very small part of the photons (≈ 1 in 107) are backscattered inelastically with a

different wavelength than that of the incident photon. The process leading to this

inelastic scattering is termed the Raman effect. Raman shifted photons of light can

be either of higher (anti-Stokes scattering) or lower energy (Stokes scattering), with

the former being weaker of the two processes. Numerically, the energy difference

between the initial and final vibrational levels, or Raman shift in wave numbers

(cm−1), is calculated as the difference between the inverse of the wavelengths (in

cm) of the incident and Raman scattered photons [53].

Modern day Raman spectroscopes consist of lasers, optics, detector systems and a

sample stage as illustrated in Fig. 16. The desired area of the sample is scanned with

coherent light from the laser, which is guided through a delivery optics (microscope)

to the sample surface. The scattered light is then collected and sent through a

monochromator to a photodetector. The function of the monochromator is to remove

Rayleigh scattered photons. Finally, to get the Raman spectrum, the intensity of

the scattered light is plotted against the Raman shift (energy difference).

Figure 16: Schematic of a modern day Raman spectrometer

The Raman spectrum of graphite has four prominent peaks [54]. The peak at

around 1580 cm−1, known as the G line, is caused by the doubly degenerated zone

centre E2g mode close to the Dirac point. The D line around 1350 cm−1 is seen only

in disordered graphite and is caused by zone-boundary phonon. The associated

overtone 2D (also known as G′) at around 2700 cm−1 however is observed even in

pristine samples. Finally, a weak peak is observed at the overtone of the G line, the

2G line, at around 3248 cm−1.

For the purpose of identifying the number of layers the G peak and 2D band

are of paramount importance [55]. As can be seen in Fig. 17a and Fig. 17b there
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(a)

(b)

Figure 17: Comparison of Raman spectra
for a.bulk graphite and graphene [55], and,

b.for MLG and BLG [54]

Figure 18: Progression of 2D
band of graphene layers [54]

is a significant change in shape and intensity of 2D peak in MLG when compared

to BLG or bulk graphite. MLG is characterised by a single, sharp 2D peak, greater

in intensity than the G peak. In BLG and bulk graphite, the 2D peak broadens to

form a band and its intensity is increasingly lesser than the corresponding G peak.

In fact, the width of 2D band continues to increases with the addition of each extra

layer; beyond 5 or more layers the width becomes comparable to that of graphite.

For BLG, the 2D band can be fitted into 4 components, whereas that for FLG and

graphite can be fitted into 2 components, as is shown in Fig. 18 [56]. The intensity

of the G-peak intensity depends on the number of layers too - as the number of layer

increases so does the intensity of the peak. An increase in number of layers is also

marked by a marked downshift in the position of G peak.

3.3 Fabrication on graphene

Fabrication of any sort of devices on graphene present some peculiar challenges.

As the aim is to get nano-scaled device from samples strewn randomly on a

substrate, traditional photolithographic techniques are out of the question. Hence,
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nanolithographic techniques like Electron Beam Lithography (EBL) and Focused Ion

Beam Lithography (FIB) must be investigated to come up with a suitable solution

for making, at the least, proof-of-concept devices. Care must also be taken to avoid

aggressive lithographic and etching techniques that might damage the single layer

thick crystal. Another contentious issue is that of fabricating metal contacts that

can be employed to make useful electrical characterisation of the obtained device.

3.3.1 Nanolithography

Electron beam lithography is a specialised, and nowadays, the dominant technique

for creating nanoscaled patterns. Based on Scanning Electron Microscope (SEM),

the technique in brief, consists of scanning a beam of electrons across a surface

covered with a resist film sensitive to those electrons, thus depositing energy in

the desired pattern in the resist film. The main advantage of this technology is its

capability of very high resolution and its flexibility. However, it is a slow process

with expensive and complicated mechanisms.

A block diagram of a typical electron beam lithography tool is shown in Fig. 19

[57]. The electron source in most modern day EBL’s are Schottky (thermal field

emission) guns as they have a high ampere per steradian output with a low energy

spread, although LaB6 sources are sometimes preferred for their stability. The

emitted electrons are accelerated under high voltage and made to pass through

a series of magnetic lenses to shape and focus the beam through an evacuated

column. The final pattern size and accuracy largely depends upon the number

and energy of electrons hitting per unit surface area (commonly known as dose),

the speed with which the beam traverses over the surface, the accelerating voltage

and the aperture size used to shape the electron beam. A great deal of precision

automation is embedded into the system to enable control over these variables. High

accelerating voltage with low beam current and small step size with average beam

speed give best results, provided of course that focusing and astigmatic corrections

are proper. A Zeiss Supra 40 Scanning Electron Microscope with Raith Quantum

pattern generator was used extensively during the course of this thesis work, both to

obtain high resolution images as well as for nanolithography. It employs a Schottky

field emitter, with an acceleration voltage range of 100 V to 30 kV and a beam

current range of 1 pA to 10 nA. It offers lateral resolution of up to 0.8 nm (at 30

kV) in the SEM mode - small enough for the purpose of this work.

Electron beam resist are generally polymers dissolved in a liquid solvent; electron
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Figure 19: Block diagram of an Electron Beam Lithography tool

exposure modifies the resist, leaving it either more soluble (positive) or less soluble

(negative) in a developer. The type of resist and its underlying chemistry determines

film thickness, exposure dose, development time, etc. Positive resist like Polymethyl

methacrylate (PMMA) are preferred because of the simplicity and predictability

of their chemistry [58]. The sensitivity of PMMA scales roughly with electron

acceleration voltage. It has an intrinsic resolution of less than 10 nm, although,

electron-solid interactions introduce a bias of 20 - 150 nm. It is normally dissolved in

casting solvent such as chlorobenzene or anisole and developed using Methyl isobutyl

ketone (MIBK). MIBK, in isolation, is a strong developer and might remove some of

the unexposed resist. Hence it is usually diluted by mixing it with a weaker developer

such as Isopropyl alcohol (IPA). The level of dilution of PMMA and MIBK directly

influence the dosage and exposure time. PMMA has poor resistance to plasma

etching; hence, frequently it is used with an addition layer of Methyl methacrylate

(MMA). This is also useful for lift-off processes because of the favourable undercut

and reduced stiction to surface.

Focused Ion Beam lithography is a commonly used technique for site-specific

analysis, deposition, and ablation of materials. An FIB setup is conceptually similar

to a SEM, but uses a focused beam of ions instead of electrons. For production of

an ion beam the common medium of choice is liquid-metal ion sources (LMIS),

especially gallium ion sources. FIB is commonly used in conjunction with other

gases to either etch surfaces or deposit material on them. One important advantage

of FIB based lithography over EBL is that it does not require use of any photoresist,

thereby vastly simplifying patterning process. However, the ion beam is inherently

destructive and cannot be used with sensitive samples; furthermore it tends to get
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trapped in material underneath, thereby introducing impurity.

3.3.2 Metalisation

To utilise the structures fabricated on graphene, metal contacts must be drawn.

This can again prove to be a contentious issue - the basic physics behind the contact

junction must be taken into consideration while choosing the metal contacts on

graphene. The aim, of course remains to find a metal that would enable formation

of an ohmic junction - such conditions can be obtained only when the work function

of graphene and contact metal is evenly matched and ionisation energy of the

resultant system is zero. Even under ohmic conditions, contact resistivity should be

sufficiently low to avoid charge accumulation and heat dissipation. Certain metals

can be straight away ignored as they alter the electronic structure of graphene.

Ohmic contacts require that the work function of metal must be closely matched to

that of graphene (4.5 eV). The best contenders are titanium Ti (3.9 eV), chromium

Cr (4.5 eV), molybdenum Mo (4.6 eV) and palladium Pd (5.1 eV). Normally, metals

are deposited in pair with the underlying metal forming the metal-graphene junction

and the top buffer metal providing for improved contact to external devices. The

most commonly used metal pairs are Pd/Al, Cr/Au, Mo/Ti and Ti/Au. Among

these, the Cr/Au and Ti/Au combination display better values of contact resistance

and sheet resistivity [59], with the second combination being chosen in this work

due to its robustness. Contact resistance also depends on the thickness of deposited

metal; for Ti/Au good results are obtained for a deposited thickness of ∼ 5 nm and

∼ 35 nm respectively.

Deposition of metal is most often done by one of the many physical vapour

deposition processes [60]. The principle behind this is rather straight forward -

heat the target material to eject energised particles from it and enable transport

under high vacuum to the substrate. Reactive agents can be emitted from the

target material using various means - by resistive heating (thermal evaporation),

electron beam heating (e-beam evaporation), equilibrium source heating (molecular

beam epitaxy), ion bombardment (sputtering) or laser bombardment (ablation).

Out of these e-beam evaporation (Fig. 20) is best suited for metal deposition on

graphene as it does not expose the fragile crystal to high energy particles, like in

sputtering or ablation, or, high temperatures, like in thermal evaporation or MBE.

The disadvantage is insufficient control over deposition rate and yield - this however

can be overlooked as it does not cause any significant change to the final structure.
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Figure 20: Schematic for electron beam evaporation technique for metal deposition

Even after choosing and depositing suitable metal for contact pads, the problem

remains in how it can be patterned on graphene. Two common methods of

metalisation exist in the semiconductor industry - direct deposition and deposition

by “lift-off” technique [60]. In the first method metal is deposited on the surface and

then etched away to get the required structure. In the second method, lithography

with a negative pattern is first performed on the surface before depositing metal

on it. Thus except for the developed part where metal is in direct contact with

underlying surface, metal is deposited on resist. If the resist is removed after this

step, only metal on patterned part remains. This is shown in Fig. 21. This technique

has got the advantage of guarding underlying surface from harsh conditions and

aggressive chemicals required for deposition and etching. Additionally, it allows for

profile tailoring of deposited metal film. Hence the lift-off technique was adopted

for patterning.

3.3.3 Etching

Etching of mono layer graphene is relatively straight forward. Chemically assisted

etching, however, must be avoided - due to its surface absorption capability, graphene

may easily trap reactive ions in its lattice. Though simple plasma etching is enough

to etch away MLG, it results in jig jag edges. This can be problematic for nano-

ribbons and alternate etching mechanisms employing thermally activated metal

nanoparticles [61], etc. have been proposed. For structures approaching 100 nm,
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Figure 21: Lift-off technique of metalisation

however, uncontrolled edge termination is not a big handicap. Currently, oxygen

plasma etching is the most widely used method [62]. Oxygen assisted etching in

graphene proceeds by formation and merging of nano-sized “etch-pits” [63] and is

a slightly volatile process. Hence, it is mixed with inert gases like argon to prevent

damage to resist and adjoining graphene. The etch rate depends strongly on the

partial pressure of component gases and an optimum combination is important to

prevent inadvertent destruction of the film.

Figure 22: Schematic of a parallel plate reactive ion etching chamber

The dominant method of plasma etching is the parallel plate Reactive Ion Etching

(RIE) technique [60], a schematic of which is shown in Fig.22. Etchant gases are

introduced through the top electrode, which is kept grounded. Plasma is generated

by applying a strong electromagnetic field, typically set to a frequency of 13.56 MHz,
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to the bottom electrode. The wafers, being electrically isolated from the system,

develop a large negative voltage. As a result the positively charged ions from the

plasma collide with the sample at high velocity. Etching of the surface is carried out

by ion-induced desorption, ion-induced damage and ion-activated chemical reactions.

Plasma ion etching typically leaves a lot of burnt carbon contamination, even in

areas protected by the resist. In addition to this, the fabrication processes might

result in polymer residues on the graphene film. Hence, a final annealing process, in

ultra-high vacuum, or, in forming gases, is necessary to drive away impurities and

reduce possible crystal damage. However, exposure to ambient after the annealing

affects the doping density of graphene, sometimes irreversibly [64]. The medium and

time of annealing decides the degree of doping and are factors that must be taken

into consideration. Recent studies [65] have pointed out that thermal annealing

might actually cause further contamination of graphene due to binding of foreign

material from residual glue. However, in view of the widespread use of this technique

as damage-reducing final step, it would be unwise to drop it summarily.
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4 Fabrication techniques and results

The last section gave a broad, if not exhaustive, investigation of various approaches

that can be employed to fabricate three terminal junctions from graphene. This

section will present the actual methods used to synthesise, characterise and fabricate

graphene, along with the obtained results.

4.1 Sample preparation

The first step in preparing graphene samples is of course developing a suitable

substrate. To this end SiO2 was thermally grown on a n-type Si(100) wafer with

a resistivity of 10 − 15 Ωcm. During the course of this work wafers with dioxide

thickness of 245 nm and 305 nm were used. As can be seen from Fig. 23a and

Fig. 23b these values of substrate thickness give sufficient contrast for graphene

flakes to be visible. Thereafter, 100 nm deep cross-marks were patterned on the

substrate using photolithography and BHF etching to obtain a 1 mm × 1 mm

grid-like structure across the surface. This was done for ease of locating deposited

graphene flake at later stages of processing. Using a dicing saw the wafer was then

sawed to 1 cm× 1 cm square pieces. To get rid of residual photoresist and particle

contamination, the chips were then subjected to ultrasonic agitation in acetone and

IPA for 10 minutes each, followed by rinsing in deionised water (DIW) and nitrogen

blow drying.

(a) (b)

Figure 23: Micromechanically exfoliated graphene on a.245 nm (unclean), and, b.305
nm (inset shows rolled up MLG due to prolonged ultrasonication) thick dioxide layer

High quality graphite flakes supplied by NGS Naturgraphit GmbH were used
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as a starting material to obtain graphene. The “scotch-tape” method outlined in

Sec. 3.1, and utilised in this thesis, typically leaves the surface strewn with graphitic

granules and residual adhesive glue from tape (Fig. 23a). Therefore, ultrasonic

agitation in acetone for 2 minutes, followed by rinsing in IPA and DIW was used to

clean the substrate. Though this process did not remove the contamination fully,

it was found out that the ultrasonication process tends to bend and roll graphene

flake (inset Fig. 23b). Agitation for longer time left the flakes too disfigured for

further use; shorter times left the surface too dirty for subsequent processing. After

the cleaning process, bright-field optical microscopy under white light was used to

isolate graphene (MLG, BLG and FLG) from thicker graphite flakes.

4.2 Sample characterisation

Characterisation of graphene, within the scope of this thesis, was limited to

identification of number of layers in graphene flake that had been identified using

optical microscope. To this end, the flakes were scanned with a NT-MDT Ntegra

Aura AFM in tapping mode, at room temperature. A NSG-01 n-Si probe, with a

125× 30 µm cantilever and an uncoated tip with the radius of curvature 6− 10 nm

was used. Under the scanning condition and configuration a vertical resolution of

1 nm is supposed to be achievable. However, the provided setup was not optimum

for unambiguous layer detection. As an example, Fig. 24 shows the AFM image of

two graphene flakes; the variation in height, 4 − 6 nm for both, does not confirm

any appreciable difference between them. But even with optical microscopy, ample

difference in contrast were obtained between these flakes to safely assume that they

were not constituted of the same number of layers.

Consequently confocal Raman microscope alpha300R manufactured by WiTEC

Gmbh was used to extract Raman signatures of prepared graphene sample.

Measurements were obtained at room temperature with a 532 nm laser excitation on

a back-illuminated spectroscopic charge-coupled device cooled down to −60◦C. For

spectrometry a single grating of 600 g/mm with a spectral unit parameter equal to

2050 cm−1 was used. To prevent surface damage as far as possible, low laser power,

as well as, low signal acquisition times were used.

The results obtained thereof have been shown in Fig. 25; the spectra have been

offset in y-direction for better clarity. They clearly show the increase in intensity

and downshift of the G peak at ≈ 1580 cm−1 with the increase in number of layers.

Position and intensity of the G peak was found out to be mildly dependent on
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Figure 24: Obtained AFM image of graphene flakes with the height variation across a
horizontal cross section displayed on the right
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Figure 25: Obtained Raman signature of different graphene flakes with varying number
of layers

applied laser intensity and integration time. Shape of the 2D peak, however did not

suffer from such conditional anomalies. Identification of MLG, with its characteristic

sharp and intense 2D peak, thus becomes straightforward. Identification of BLG

from FLG required additional processing - spectrum deconvolution of the 2D band
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was used to obtain Lorentzian peaks that fit the obtained data. An example has

been given in Fig. 26. The measured data (blue dots) was fitted to 4 peaks (green

line) centred at 2653, 2677, 2695 and 2712 cm−1, with the final fit (red line) giving

an error of 2.8%. This is a clear indication of the presence of BLG, as explained by

the double-resonant model of graphene in Sec. 3.2.3.
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Figure 26: Spectral deconvolution of 2D band of the Raman signature of a graphene
flake

4.3 Fabrication on sample

A number of geometries can be used to realise a three-terminal junction on graphene.

It can realised as a nano-constriction between three wider regions of graphene, or,

as a traditional T-shaped or Y-shaped device. Even among the latter class, the

dimension of each branch and the angle between them can be varied. For the

purpose of this work, the representative geometry was chosen to be a Y-shaped

structure with the length and width of each branch being 1200 nm and 200 nm,

respectively. The angle between the left and right branch was kept at 90◦. Each

branch terminated in a wider region of graphene, from which a thin metallic contact

line was drawn to a 200 µm × 200 µm metallic pad. A schematic of this structure

is given in Fig. 27.

Both MLG and BLG flakes were used in this work to fabricate three-terminal

junctions upon. The cross-marks etched on the substrate were found out to be too

far-apart to be used for identification of flakes during nanolithographic processes.
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Figure 27: Representative diagram of Y-branch fabricated on graphene

Hence, the first step was to fabricate additional cross-mark at the corners of a

400 µm × 400 µm square centred at the flake of interest. To this end, direct

deposition of 80 nm high platinum cross-marks with FIB was attempted. A Helios

Nanolab 600 Dual focused beam system, manufactured by FEI company was used.

The process, however, was found out to be highly detrimental towards quality of

graphene. It also left the surface strewn with organic contamination and poly-

carbon dust - the contaminants are clearly visible in the AFM image of a BLG flake

subjected to FIB deposition, in Fig. 28. For this reason, lift-off metalisation was

performed to deposit 50 nm high gold cross-marks; the intricacies of the method

would be given shortly.

The final structure could be obtained using one of two ways - deposit the metal

lines required for metalisation, and then etch the graphene flake to desired shape,

or, use the exact opposite order. Of these, the first alternative was utilised to obtain

better control over final structure. The metal lines and pads were deposited using

the lift-off technique. To this end, the chip was first rinsed in IPA-DIW solution

and heated on a hot-plate at 90◦C for two minutes. This step was included to

remove any particle contamination, and, to drive away moisture from the substrate

to ensure better adhesion of e-beam resist in the following spin-coating stage. Two

layers were deposited - first, a solution of 6% MMA in ethyl lactate, and then a

solution of 2% 950 K molecular weight PMMA in anisole. About 2 ml of MMA

was dispensed on the substrate, which was then spun at 6000 rpm for 45 seconds.
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Figure 28: AFM image of contaminations on a graphene flake after FIB-assisted Pt
deposition

The substrate was then baked on a hot-plate at 170◦C for 150 seconds, primarily to

evaporate the solvent and harden the resist. Thereafter, the same cycle was repeated

for PMMA. According to the specifications given by Microchem Co., suppliers of the

resist polymer, these spinning parameters should result in a MMA layer thickness of

400 nm and a PMMA layer thickness of 70 nm. Electron-beam lithography, with a

beam acceleration voltage of 20 kV and dose of 225 µC/cm2, was then performed to

pattern the resist. The resist was then developed by immersing the chip in a solution

of MIBK in IPA (in a ratio of 1:3; the ratio typically gives a very high resolution at

the cost of low throughput and sensitivity) for 25 seconds at room temperature. To

stop the development process, the chip was immediately immersed in IPA for about

10 seconds, and blow dried. The resulting pattern was checked under microscope

and subject to longer development times, if required. After the final development,

to remove any residual developer, the substrate was subject to a post-bake stage of

90◦C for 60 seconds on a hot-plate.

Subsequently, e-beam evaporation technique was used to deposit 5 nm of

titanium and 35 nm of gold on the resist. An Instrumentti Mattila 9912 Electron-

beam evaporator, equipped with a 10 kV electron gun and a cryopump for deposition

at ≈ 10−8 mbar, was used for this purpose. To wash away the resist, the substrate

was kept in acetone heated to 70◦C for 20-25 minutes. This process helped to seep

the acetone underneath the unexposed resist; after this removing the resist, along

with the metal layer above it, simply required ultrasonic agitation for few seconds.

The substrate was thereafter promptly rinsed in IPA and DIW followed by nitrogen
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Figure 29: SEM image of Ti/Au metal lines deposited on a MLG flake

blow-drying. As impurities in resist can cause incomplete lift-off or breaks in thin

metallic lines the surface was checked to ensure homogeneous and continuous metal

deposition. A SEM image of the effects of incomplete lift-off process can be seen in

Fig. 29. Luckily, in this case there were no visual evidence of metallic remains on

the graphene flake and it could be used for the subsequent etching stage.

For this stage, a dual layer of resist was again spin-coated on the substrate. This

time however, PMMA was deposited before MMA. At each resist deposition stage

the substrate was spun at 4000 rpm for 60 seconds, and, then left on a hot-plate at

170◦C for 5 minutes. The longer pre-baking time ensured thinner resist layer heights,

thereby reducing bias introduced due to scattering by secondary electrons during

exposure. PMMA being less soluble in developer than MMA, and hence, offering

significantly better resolution, was used as the first layer in this highly sensitive

stage. Exposure was done with a beam acceleration voltage of 30 kV and dose of

275 µC/cm2. The dose was slightly less than the critical dose of PMMA at 30 kV,

and was found out to give sharper edges after etching. Development was done in

1:3 MIBK:IPA solution kept at 9◦C. Development is slightly slower at such reduced

temperatures and ensures better vertical side-profile of resist. After the development

process the substrate was put in a Plasmalab 80+ Reactive ion etcher, manufactured

by Oxford Instruments Plasma Technology, for plasma etching.

Etching was done at a pressure of 250 mTorr with an operating power of 20 W

and a mixture of oxygen and argon. A flow rate of 18 sccm for oxygen and 25 sccm
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Figure 30: SEM image of the MLG flake in the previous figure after etching

Figure 31: SEM image of a BLG flake after etching for 90 seconds

for argon was used - changing the flow rates to 45 sccm and 5 sccm respectively,

gave significantly faster etch rates but unpredictable results. It was found out that

the time required to etch through MLG was about 30 seconds. SEM image of a

Y-branch fabricated on MLG can be seen in Fig. 30 - the geometry of the obtained

device, in this case, is in accordance to what was intended, and the edges are more-

or-less uniform. For BLG, however, the etching time was variable. An example

is given Fig. 31 - the SEM image revealed large areas of unetched graphene even

after etching for 90 seconds (in two steps of 60 seconds and 30 seconds, without any
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Figure 32: SEM image of the BLG flake in the previous figure after further 30 seconds
of etching

nanolithographic processes in between). So the sample was subjected to a second

round of exposure and etching for 30 seconds. Even after that, the dimension of the

branches (SEM image in Fig. 32) were 300 nm and 1200 nm; further etching to reach

the intended width of 200 nm was not attempted in this case. This is because each

iteration of etching process requires additional nanolithographic stages and increase

chances of contamination.
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Figure 33: Raman signature of a MLG flake before and after annealing
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After RIE, the resist was removed by treatment in hot acetone (70◦C) for 15

minutes, followed by rinsing in IPA and DIW and nitrogen blow-drying. Thereafter,

the samples were annealed in a Plasmalab 80+ PECVD, manufactured by Oxford

Instruments Plasma Technology. Annealing was done at 300◦C for 15 minutes, under

nitrogen gas with a flow rate of 1000 sccm and an operating pressure of 200 mTorr.

The effect of fabrication and annealing was studied with Raman spectroscopy. As

can be seen from Fig. 33 the Raman signature of the fabricated sample is different

from that of a pristine MLG. It shows a peak at 1355 cm−1 (D line) indicating

damage to the crystal, and, a band at 1625 cm−1, probably due to doping.



5 MEASUREMENT AND DISCUSSION 44

5 Measurement and discussion

Having obtained three terminal junctions on graphene the next step is electrical

characterisation of the devices. Measurements were carried out on both MLG

and BLG samples shown in Fig. 30 and Fig. 32 respectively. Unfortunately, the

MLG sample was damaged during measurement; some of the data for MLG sample

presented here was the result of measurements carried out on a similar sample

provide for kindly by my thesis instructor. The device geometry precluded the

possibility of simultaneous application and measurement of voltage/current signal

at a particular contact. The irregular shape of the contacts also ruled out any

meaningful approximation of the contact resistance. These limitations rendered

conductivity measurements impossible; observation and analysis had to be restricted

to I-V measurements.

5.1 Measurement results

Electrical characterisation of the graphene nano-junction was conducted in a probe

station equipped with a Hewlett-Packard 4155A semiconductor parameter analyser.

The probes attached to the analyser allowed for application of a voltage signal

and simultaneous measurement of current flowing through it (and, vice versa). A

schematic of the measurement setup is shown in Fig. 34. As can be seen from the

figure, contact with the three branches of the device were made by directly pressing
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Figure 34: Schematic of measurement setup



5 MEASUREMENT AND DISCUSSION 45

the metallic probe onto the metallic pad connected to the respective branch. The

back-gate voltage was provided for by pressing another probe onto the metallic

chuck on which the sample chip was put; to facilitate the connection the backside

of the chip was coated with a conductive gallium-based fusible alloy. For the ease

of reference the voltage or current signal, applied to, or detected at, any branch of

the device would be referred to as Vi or Ii, where, i = L,R or C. All measurements

were carried out at room temperature.

(a)

−40 −20 0 20 40  
 

5.5

 

6.5

 

7.5

 

8.5

V
BG

 (V)

I C
 (

µ
A

)

V
min

 = 13 V

(b)

−60 −40 −20 0 20 40
 

2

4

6

8

10

 

V
BG

 (V)

I C
 (

µ
A

)

V
min

 = 29 V

Figure 35: IC vs VBG graph for a.MLG, and, b.BLG device

The first set of observations were directed toward finding out the change in

conductivity of graphene with the application of back-gate voltage. For this set of

measurement VL and VR were set to 100 mV and 0 mV respectively, while VBG was

varied from −60 V to +60 V. The detected output IC was then plotted against VBG;

with a constant applied bias, the change in IC was the best available parameter to

analyse the change in conductivity of graphene. The obtained results for the MLG

and the BLG sample are shown in Fig.35a and Fig.35b respectively. Both of them

exhibit the familiar ampbipolar character of graphene. The obtained CNP (indicated

in the figures as Vmin) for MLG and BLG are at 13 V and 29 V respectively. For

VBG > Vmin the device would be in the electron transport regime, and, For VBG <

Vmin the device would be in the hole transport regime. For both samples, Vmin

is greater than zero - this indicates strong p-doping. As has been mentioned in
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Sec. 3.3.3 this doping is an inadvertent result of the fabrication process and exposure

to the ambient after the final annealing step.
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Figure 36: IC vs EF graph for a.MLG, and, b.BLG device

A better way to analyse the ambipolar nature of graphene would be to plot

conductivity (or, in this case IC) against the Fermi energy EF of the system. It has

already been mentioned in Sec. 2.1.1 that VBG affects the carrier concentration n

according to Eq. 6. This in turn changes EF according to Eq. 7 (for MLG) or Eq. 8

(for BLG). As the devices under discussion are constituted of extrinsic graphene

the term VBG in Eq. 6 should be replaced by (VBG − Vmin) to accommodate for the

change in CNP. Substituting for the values of the parameter, the following simplified

equations are obtained:

MLG: EF = sgn(Vbg − 13)31.15
√
|Vbg − 13| meV (11)

BLG: EF = 5.7(Vbg − 29) meV (12)

where, sgn(x) is the signum function.

IC and δIC/δEF were plotted against EF for both MLG and BLG. For BLG,

EF ∝ VBG and the graph for IC vs EF in Fig. 36b is quite similar to that of IC
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vs VBG. It can also be observed from the same figure that δIC/δEF (and hence,

δG/δµ) is greater than zero when EF > 0 meV (i.e., VBG > 29 V ), and vice-versa.

For MLG, however, the dependence between EF and VBG is non-linear and the

graph for IC vs EF in Fig. 36a exhibits one striking difference from that of IC vs

VBG. There is a minimum conduction plateau from about −50 meV to +50 meV

(corresponding to Vbg of 0 V to 16 V) where IC remains more or less constant at

5.56 µA. It has already been argued in Sec. 2.1.1 that this is a direct result of the

long range Coulomb scatterers. Furthermore, Fig. 36a also shows that for MLG,

δIC/δEF is approximately zero in the MCP, greater than zero for EF > 50 meV

(i.e.,VBG ' 16 V ) and less than zero for EF < −50 meV (i.e., VBG / 10 V ).

Additionally, δIC/δEF decreases much more rapidly in the hole transport regime

than it increases in the electron transport regime - this might again be a result of

p-doping of the MLG.
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Figure 37: Output curve for BLG device in push-pull configuration with VBG set a.far
away from, and, b.near the CNP

For the purpose of measuring the behaviour of devices under push-pull configu-

ration VL was varied from −200 mV to +200 mV, while keeping VR = −VL. The

output voltage VC was then plotted against VL ; different values of VBG were chosen

to observe device operation near, as well as far away, from the CNP. Results for the

BLG device functioning far away from CNP (by setting VBG equal to 0 V and 60 V)

is seen in Fig. 37a, whereas those for device functioning near CNP (by setting VBG
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equal to 20 V, 30 V and 40 V) is presented in Fig. 37b. The output, for all values

of VBG is, to a degree non linear, though perhaps not about the x-axis.

The extent to which the curves are non linear depend prominently on applied

VBG. When the device was made to operate deep into the hole transport regime by

setting VBG = 0 V (EF = −165.3 meV ), the obtained output curve bend downward.

Operating it at an almost equal distance into the electron transport regime by setting

VBG = 60 V (EF = +175.7 meV ) caused the output to bend upward. When VBG =

20 V (EF = −51.3 meV ) the output curve bends downward, whereas setting VBG =

40 V (EF = +62.7 meV ) the output curve bends upward. However, compared to the

curves in Fig. 37a, those in Fig. 37b are distinctly flatter. Comparing these plots with

Fig. 6b indicate that the tilting of axis might be due to asymmetry between the left

and right branches of the device. Interestingly, at VBG = 30 V (EF = +5.7 meV ),

when the device is operating very close to the CNP, the curvature of the output

decreases drastically.
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Figure 38: a. Second order coefficient obtained from a fit of the push-pull data of BLG
plotted against VBG; b. δVC/δVL vs VL for push-pull measurements on BLG

In order to get a closed form mathematical expression for the output data,

the VC vs VL curves were fit to polynomial equations. A third degree polynomial

with a large first order coefficient and a very small third order coefficient gave the

best fit for all output curves. The second order coefficient was found out to be a
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good representative of the curvature of the output. Following the convention set in

Sec. 2.3.1 this coefficient can be referred to as α. The values of α obtained from

a cubic fitting of output curves corresponding to different VBG, is plotted against

VBG in Fig. 38a. As can be seen from the plot, α is negative for VBG < Vmin

(implying, EF < 0 and from Fig. 36b δIC/δEF < 0) and positive for VBG > Vmin

(i.e., EF > 0 and δIC/δEF > 0). This is an affirmation of the fact that the

output curve bends downward for hole dominated transport, and upward for electron

dominated transport. Furthermore, it is also observed that the magnitude of α

increases as |VBG − Vmin| increases. Thus, the effect of increasing VBG within a

particular transport regime is a progressive strengthening of the curvature of the

output.

A further confirmation of this behaviour comes from Fig. 38b which plots

δVC/δVL against VL. Owing to the noise in the VC curve, the δVC/δVL curves

are quite irregular. Nevertheless all of them tend to be linear for the entire range

of applied VL; this suggests that the actual outputs were parabolic in nature and

were non linear for all values of input voltage. The slope of the δVC/δVL curve when

VBG is equal to 20 or 30 or 40 V is visibly lesser than when VBG is set to 0 or 60 V.

This proves unambiguously that the output curve becomes more non-linear as the

device is made to operate further away from the CNP. It is also worth noting that

the slopes are positive in the electron transport regime, and negative in the hole

transport regime.

For testing the MLG device a configuration similar to the BLG device was chosen.

As can be seen in Fig. 39a, for VBG = −20 V (EF = −178.94 meV ) the output

curve bends downward, whereas for VBG = 50 V (EF = +184.48 meV ) the output

curve bends upward, albeit less prominently. The curves are again non linear, but

not about the x-axis. Thus, qualitativelt both MLG and BLG device have the

same output behaviour when operated far away from the CNP. To test the output

behaviour close to the CNP four values of VBG were chosen: two of them at the

edge of the MCP and two away from it. The results are shown in Fig. 39b. When

VBG was equal to 10 V (EF = −53.95 meV ) or 20 V (EF = +82.42 meV ), i.e.,

the device was operated at the edge of the MCP, the output becomes almost linear.

When the device was operated slightly away from the MCP, by setting VBG equal to

0 V (EF = −112.31 meV ) or 30 V (EF = +128.43 meV ) the output becomes non

linear. The curves, as seen in Fig. 39b are distinctly flatter than those in Fig. 39a.

While the curve for VBG = 0 V distinctly bends downward, the one for VBG = 30 V

is only slightly non linear.
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Figure 39: Output curve for MLG device in push-pull configuration with VBG set a.far
away from, and, b.near the CNP

Each of the obtained output curves for MLG were fitted to a cubic polynomial.

Values of the second-order coefficient derived thereof is plotted against VBG in

Fig. 40a. Additionally, results of plot between δVC/δVL and VL is shown in Fig. 40b.

Both of these curves show a a trend similar to that of BLG. Interestingly, for VBG

equal to 10 V or 20 V, the values of α and δVC/δVL are almost equal to zero . This

shows that when the MLG device is operated at, or very near to the MCP, the

push-pull output is still linear. The metrics, i.e., magnitude of α and the slope of

δVC/δVL becomes larger as the device is operated farther away from the MCP. The

metrics for VBG equal to −20 V or 0 V (in the hole transport regime) are visibly

larger in magnitude than the ones when the device is operated with VBG equal to

30 V or 50 V (in the electron transport regime). This behaviours suggests that |α|
is linked to δIC/δEF . As was as seen in Fig. 36a, δIC/δEF is zero in the MCP,

and its magnitude increased faster in the hole transport regime than in the electron

transport regime - the same trend is also seen in |α|. Also noticeable from these

curves is the change in sign of the metrics when device operation is switched from

electron dominated to hole dominated transport regime.

To analyse the dependence of output curve on the degree of imbalance between

two branches, measurements were repeated with VR = 0.8 × VL for the BLG bsed
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Figure 40: a. Second order coefficient obtained from a fit of the push-pull data of MLG
plotted against VBG ;b. δVC/δVL vs VL for push-pull measurements on MLG

device and with VR = 0.9×VL for the MLG based device. The output data is given

in Fig. 41a and Fig. 41b for the BLG and the MLG based device, respectively. From

the output data for BLG, it can be inferred that the imbalance in electrical input has

offset the ones in the structure. The output curves for VBG = 0 V and VBG = 60 V

are parabolic and nicely symmetrical along the x-axis. The curve for VBG = 30 V is

almost linear and amplifies the electrical imbalance between branches. The output

data for MLG reveal a general increase in non linearity, especially when device was

operated far away from CNP. The output curves for device operated at the edge of

MCP remained linear.

The measuring apparatus allowed for detection of the current flowing through

the branches while operating the devices in push-pull configuration. For all

measurements, IC was predictably, zero. The current through the other two branches

increased linearly with the voltage applied to that branch. This can be clearly seen

in Fig. 42a and Fig. 42b which shows IL vs VL curves for different VBG in the BLG

and MLG sample, respectively. For both MLG and BLG sample, the current is

higher in magnitude while operating away from the CNP. Furthermore, the current

is higher when the devices are operating in the hole transport regime. Both of these

observations are predictable - the magnitude of the current ultimately depends upon
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Figure 41: Study of effect of asymmetrical bias: a. Output curves obtained from BLG
device for VR = 0.8× VL; b.Output curves obtained from MLG device for VR = 0.9× VL
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Figure 42: IL vs VL curve obtained during push-pull measurements on a.BLG, and,
b.MLG device

the concentration of charged carriers in the system.

Both devices also displayed some degree of current rectification. The devices were

again operated in a push-pull configuration, but instead of VC , it was the current

through the central branch, IC that was detected. Graphs obtained by plotting IC
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Figure 43: Curves for output current obtained with push-pull measurements on a.BLG,
and, b.MLG device

against VL is shown in Fig. 43a for the BLG sample and in Fig. 43b for the MLG

sample. For the BLG sample, the output curves for VBG equal to 0 V and 60 V

are markedly non linear. When VBG = 30 V , i.e., the device is operated near to

the CNP, the output is linear. Similarly, for the MLG sample, the obtained output

curves are linear when the device is operated at the edge of MCP (when VBG is

equal to 10 V or 20 V), and non-linear otherwise (when VBG is equal to −20 V or

50 V). For both devices, output remains very low for operation near the CNP; it is

almost zero for the MLG sample. The output curves for current measurement also

show the effect of imbalance observed in voltage measurements.

This concludes the section on measurement results. In a nutshell, the data

can be summarised as follows: in a push-pull configuration, a non linear output is

obtained from both MLG and BLG device. The degree of non linearity, α is positive

for δIC/δEF > 0, and vice-versa. Also, |α| increases with |EF | and as observed

from the data corresponding to MLG device, is correlated to δIC/δEF . The next

section will explain these salient points in slightly greater detail, in light of earlier

observations furnished in Sec. 2.3.2. An effort would also be made to explain the

behaviour according to the theoretical knowledge developed in Sec. 2.1.1 and 2.3.1.
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5.2 Discussion

Measurement data presented in the last section clearly shows that the voltage or

current output from a graphene based three terminal junction operating in push-

pull configuration, is non linear for the entire range of input voltage. Unlike the

output curves demonstrated on semiconductor heterostructure (refer Sec. 2.3.2) the

ones obtained here are not symmetrical across the x-axis. This anomaly could be

attributed to a probable mismatch in the dimensions of the left and right terminal

of the devices. SEM images of the MLG and BLG shown in Sec. 4.3 indicate that

the mismatch arose due to the irregular shape of the area where the metal contacts

meet graphene.

In spite of the irregularity of the output curves, qualitatively, they are parabolic

for the entire range of input. This is confirmed by the dominance of the second order

coefficient in the cubic fit of the VC/; vs/;VL curves and the fact that the slope of

the output curves are linear for the full input range. Moreover, the curves obtained

by biasing the left and branches asymmetrically are distinctly parabolic. Hence, it

would be reasonable to conclude that the output obtained from a balanced three

terminal junction would be parabolic, and symmetric along the x-axis.

The observations also indicate that the output of the device is intricately linked

to the applied back-gate voltage. When the applied VBG is such that electrons

are majority carriers in the device, the output curve tends to bend upward. For

a symmetrical device this would mean that the output would be positive for the

applied input voltage. Similarly, in the hole transport regime, the output curve

tends to bend downward; for a balanced device the output would be negative for

the entire range of input voltage. This observation is in direct contradiction with

those obtained in [8]. Their output data, as seen in Fig. 8b, indicates the exact

opposite! A further contradiction comes from the way the output behaves when the

device is made to operate progressively deeper into a particular transport regime.

From the voltage output measured in this thesis, it is seen that the output curve

becomes more and more non linear as VBG is moved away from the CNP. The

data reported in [8] suggests that under these conditions the curves should become

weaker.

These two observations also contravene the theoretical prediction and experi-

mental proves thereof presented in Sec. 2.3. These anomalies forced repetition of

the entire gamut of measurement. However, other than a degradation in quality of

output curves, possibly due to ageing of contact material, no significant differences
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were noticed. Hence, within the limit of the observed data the anomalies can be

reconciled with the earlier, published results as follows: the results given in [8] were

obtained from a three terminal nano-constriction, not from a more traditional Y-

branch device, as was done in this thesis. The conflict with the results obtained for

heterostructure based three terminal junctions might be attributed to a difference

in the underlying mechanism.

It must be said that, at this point, the physics behind the output behaviour is

not well understood. One thing can be said with certainty - the transport in the

graphene devices is not ballistic. As was pointed out in Sec. 2.2 ballistic transport

can only be observed in suspended graphene. This rules out the possibility of

explaining the behaviour in terms of the model proposed in [7] - the devices used

in this thesis were based on supported graphene. Ballistic behaviour due to bias

induced enhancement of mean free path can also be ruled out. As was pointed out

in Sec. 2.3.2, this mechanism entails appearance of a linear segment in the voltage

output [34]. The output, as observed in this thesis, remained non linear for the entire

range of operation. The justification furnished for non linear output from graphene

device in [8] cannot be used as the output data is the complete opposite of what

has been measured in here. Additionally, their explanation seems to suggest that

the effect on the conductance of a branch would be the same for the two contrasting

cases: the applied back gate voltage is changed with a constant bias, and, the bias

is changed with a constant back gate voltage. Although, conceptually this is an

attractive way of explaining the phenomenon in terms of difference in conductivity

between the two input terminals and the central one, the lack of any analytical

expression prevented the extension of this schematic to the geometry, and hence the

output behaviour of the device discussed in this thesis.

The only way to obtain an analytical explanation for the behaviour would

probably be a bottoms-up approach starting from the basic transport properties

of graphene. This can be done in either of two ways. The first one is based on

transmissivity calculations [66]. Though, there have been some studies on multi

terminal graphene junction based on this approach , e.g. [67, 68] the investigation

was based on GNR. The other approach is of course based on the drift-diffusion

approach used to explain behaviour of traditional silicon MOSFET devices. There

have been some recent studies based on this approach which show inhomogeneous

charge distribution in a straight graphene sheet [69, 70]. It remains to be seen

whether these principles can be extended to a three terminal, Y-shaped device based

on graphene.
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Before concluding the discussion of the results obtained here, it would be

imperative to quote and compare the performances of the MLG and BLG based

devices. The irregular shape of the output makes direct comparison a bit difficult.

However a qualitative comparison can be made by utilising the cubic fit of the

measured data, more specifically by retaining only the second order term from the

fit. Under this assumption, it was found out that for operation away from CNP at

comparable VBG, the output from both MLG and BLG varies between 0% and ∼ 5%

of the input. For operation near CNP at comparable VBG, the output for BLG is

at its maximum equal to ∼ 3% of input, whereas for MLG it is ∼ 2%. Though, the

data set is too small and limited to give a firm comment upon the relative efficiency

of either class of device, from the obtained measurements it can be said that the

BLG device showed better rectifying properties in the electron transport regime and

close to the charge neutrality point.

5.3 Future outlook

In view of the irregular output obtained from the devices due to the imbalance in

left and right terminal, the first task would be to come up with better fabrication

strategies to ensure proper balancing of the branches in a repeatable, unambiguous

way. A bigger challenge would of course be to improve the structure so that it

allows for elimination of the effects of contact resistance. This would also enable

measurement and analysis of conductance of individual branches. Both of these

aims can be achieved by reducing the ratio of the size of the active device and the

graphene flake on which it is fabricated. Finally, using a top gate structure instead

of the back gate configuration used here would make actual circuit realisation easier

by eliminating the need to employ high voltages to achieve the ambipolar effect in

graphene.

From a theoretical point of view, a deeper understanding of the physics behind

the operation of three terminal graphene junction is of utmost importance. In

this respect low temperature measurement of the devices might give some valuable

insight. To test the role of ballistic transport in the scheme, devices based on

suspended graphene can also be fabricated and investigated into. Finally, a detailed

study of the dependence of output curve on the size, included angle and width vs

length ratio of T and Y-shaped branches fabricated on graphene would be desirable.
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6 Conclusion

Graphene, a newly discovered allotrope of carbon is poised to take the scientific

world by storm. Its unique electronic structure makes it a perfect candidate for

experimental observation of many new physical phenomenon and making forays

into high-speed, low-power electronics, thereby continuing the breath-taking pace

at which the electronics industry has been expanding over the last few decades. Of

particular importance are the high mobility of charge carriers and the ability to tune

the nature of charge carriers from electron to hole using an external electric field.

Unfortunately the lack of band gap in graphene also means that traditional device

structures cannot be used to make useful electronic components from graphene.

However, a novel structure known as three-terminal ballistic junctions, which show

non-linear electrical properties for a wide range of temperature, provide a way to

exploit the ‘useful’ properties of graphene. It was the aim of this thesis to verify if

this is indeed possible.

To this end graphene was synthesised and deposited on a silicon dioxide substrate

(the dioxide layer was obtained by thermal growth on a silicon chip) using micro-

mechanical cleavage method employing a scotch-tape and graphite. The graphene

flakes thus obtained were characterised using optical microscopy, atomic force

microscopy and Raman spectroscopy; single and two layer graphene flakes were

isolated from flakes with greater number of layers. Nanolithographic techniques

were used to etch out nanoscale, Y-shaped structures out of both MLG and BLG

flakes. Microfabrication techniques were used to deposit Ti/Au metal contacts to

facilitate electrical measurement of the devices.

Measurement was carried out at room temperature with a push-pull configura-

tion. It was found out that when equal and opposite voltage is impressed upon the

left and right arm of the devices, the output from the central branch, be it voltage

or current, is non linear for the entire input range. Due to an asymmetry between

the left and right terminal of both devices the obtained was not symmetrical along

the x-axis. Fitting the output curve to a third degree polynomial revealed that the

output is largely parabolic.

Due to the ambipolar effect of graphene, the nature of the output curve could

be tuned by applying a back-gate voltage to the devices. More specifically, the non-

linearity factor of the voltage output curves, α was found out to be dependent upon

δIC/δEF . The latter factor was calculated by varying the back gate voltage while
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applying a constant bias to the device; this measurement also revealed that the

charge neutrality point for both devices is reached for a positive VBG. It was found

out that when the applied VBG causes the device to operate in electron transport

regime (under this condition, the Fermi level EF of the system is greater than

zero, i.e. it is in the conduction band) both δIC/δEF and α are positive. The

voltage output curves under this situation were inclined upwards. The exact opposite

behaviour was observed while operating the device in the hole transport regime, i.e.,

for EF < 0, both δIC/δEF and α are negative and the output curves were inclined

downward.

It was also observed that within a transport regime, moving the back gate voltage

away from the neutrality point causes the output curve to become more and more

non linear. The obtained output data from MLG based device also suggested a

correlation between the magnitudes of α and δIC/δEF . Both of these observations

are in direct contradiction with the results published in earlier literature. However,

due to a lack of clear understanding of the physics underlying the operation, the

anomaly could not be resolved completely. The efficiency of voltage rectification

for both MLG and BLG based devices were found out to be ∼ 5%. It can be

anticipated that with improvement of fabrication techniques and a clearer insight

into the physics of operation, the bottle necks faced in this thesis would be removed.

This would pave the way for a slew of electronic components like rectifiers, frequency

multipliers, logic gates, diodes, transistors etc., all capable of performing at very high

frequency, with a low power consumption.
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