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So called resting state networks (RSNs), i.e. functionally connected brain areas
that are active both during rest and task conditions, are receiving growing atten-
tion in modern brain research. The first observed RSN was the motor network.
Since then, several different cortical networks have been identified. In this thesis
the focus was on the sensorimotor, dorsal attention and default-mode networks.

Independent component analysis (ICA) was used to segregate the three cor-
tical networks from fMRI data collected from 15 subjects who were watching a
15 minutes long film (”At land” by Maya Deren). ICA was performed at three
different dimensionalities and the effect of increasing the number of component
estimates was examined. The functional connectivity between brain areas occu-
pied by the three networks was examined also with seed-based correlation. The
stimulus-related brain areas were indentified with intersubject correlation (ISC)
analysis and the ICs were sorted according to the spatial overlap with the ISC
map. The time courses of the most stimulus related ICs were compared with
events in the movie.

At a low dimensionality of ICA (25), the ICs representing the sensorimotor and
dorsal attention networks included brain areas that do not belong to the networks.
With an intermediate number of components (40) the additional areas were sepa-
rated from the networks. This dimensionality was apparently closest to the correct
one. When the dimensionality was further increased (70), the networks split into
subcomponents. Although the spatial splitting was physiologically sensible, the
time courses of the ICs got distorted at a too high dimensionality. The results
of this work contribute to understanding how the number of components affects
the group-ICA results and how the correct number of ICs could be empirically
controlled in group-fMRI data.

Keywords: fMRI, ICA, seed-based correlation, ISC, RSN, naturalistic stimula-
tion, human brain, movie
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Niin levon kuin tehtävän suorituksen aikana aktiiviset, toisiinsa toiminnallises-
ti kytkeytyneet aivoalueet, eli nk. lepoverkostot, ovat yksi nykyaikaisen aivo-
tutkimuksen erityisistä mielenkiinnon kohteista. Ensimmäiseksi havaittiin mo-
torinen verkosto, minkä jälkeen on löydetty monia muita aivoverkostoja. Tässä
diplomityössä tutkittiin sensorimotorista ja dorsaalista tarkkaavaisuus verkostoa
sekä nk. default mode -verkostoa.

Nämä kolme aivoverkostoa erotettiin 15 minuutin pituisen elokuvan (”At
Land”, Maya Deren) katselun aikana 15 koehenkilöltä kerätystä fMRI-datasta
riippumattomien komponenttien analyysillä (ICA). Estimoitujen riippumattomien
komponenttien (IC) lukumäärän vaikutusta ryhmä-ICAn tuloksiin tarkasteltiin
kolmella eri komponenttimäärällä. ICAlla löydettyjen aivoverkostojen toiminnalli-
nen yhteys todettiin myös lähdekorrelaatiomenetelmällä. Korrelaatioanalyysin
(ISC) avulla paikannettiin ärsykkeeseen liittyvät aivoalueet ja ICt järjestettiin
ISC-kartan avulla. Näin pystyttiin tunnistamaan ärsykkeeseen reagoivat kompo-
nentit, joiden aikasarjoja verrattiin elokuvan tapahtumiin.

Pienellä komponenttimäärällä (25) sensorimotorista ja tarkkaavaisuusverkos-
toa vastaavat komponentit sisälsivät myös näihin verkostoihin kuulumattomia
aivoalueita. Kun komponenttimäärää kasvatettiin (40), ylimääräiset alueet erot-
tuivat omiksi verkostoikseen, josta voitiin olettaa, että tämä komponenttimäärä
oli lähellä oikeaa. Suurella komponenttimäärällä (70) aivoverkostot jakaantuivat
pienempiin osiin. Vaikka spatiaalinen jakaantuminen oli fysiologisesti mielekästä,
komponenttien aikasarjat vääristyivät liian suurella komponenttimäärällä. Tämän
työn tulokset auttavat ymmärtämään, miten riippumattomien komponenttien
lukumäärä vaikuttaa ryhmä-ICAn tuloksiin. Tuloksia voidaan soveltaa oikean
komponenttimäärän kokeellisessa etsimisessä ryhmä-fMRI datasta.

Avainsanat: fMRI, ICA, lähdekorrelaatio, korrelaatioanalyysi, lepoverkosto,
luonnonmukainen ärsyke, aivot, elokuva
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1 Introduction

In modern brain research, the interest has grown to study brain networks, typically
called resting state networks (RSNs). The networks consist of functionally connected
brain areas that are active during rest and whose temporal behaviours can be mod-
ulated by external stimulation and cognitive load (1). Because the functional and
anatomical connections have evolved and developed under natural conditions, real-
life-like circumstances appear optimal for revealing the functional organisation of the
brain. This is why many recent studies have started to use naturalistic stimulation,
such as movies (2–7).

Functional resonance imaging (fMRI) is a brain imaging technique sensitive to
haemodynamic changes related to brain activation. The analysis of fMRI data col-
lected during naturalistic stimulation or rest benefits from data-driven approaches,
such as independent component analysis (ICA) or seed-based correlation. These
methods reveal functional connectivity without any a priori knowledge of the acti-
vation time course. ICA can reveal hidden independent factors from multivariate
data. In fMRI, ICA can separate brain networks that are spatially independent of
each other, for example the visual and auditory areas. In seed-based correlation, a
”seed point” is selected and the signals from other parts of the brain are correlated
with the signal from this seed point to reveal brain areas, whose temporal activations
are similar and can therefore be considered to be functionally connected.

The aim of this work is to study three brain networks, i.e. the dorsal attention
network, the sensorimotor network, and the default-mode network (DMN), that are
segregated from the fMRI data collected from 15 subjects who watched a short film.
Both ICA and seed-based correlation are used and the results of these two different
methods are compared.

One challenge for the application of ICA in fMRI is that the number of inde-
pendent components (ICs) to be computed has to be decided. Without any a priori

information, it is impossible to know the correct number of sources, although algo-
rithms exist for estimating the proper number. It is known that ICs representing
cortical networks split into subcomponents when the number of components is in-
creased (8–11). In this work, ICA is performed at three different dimensionalities.
The aim is to examine the splitting of the ICs and to study whether the splitting is
functionally relevant.

Inter-subject correlation (ISC) analysis is a data-driven method that reveals
brain regions that are activated in synchrony across subjects by examining the
strength of correlation between individual time courses in corresponding spatial
locations. Here, ISC is utilized to find the most stimulus-related components. The
time courses of the stimulus-driven ICs are compared with events in the movie. The
activations are assumed to be related to specific features, such as the movements
and touch of the main character (the sensorimotor network) and salient events in the
movie (the attention network). Because the activity in the DMN has been shown
to diminish during task performance and external stimulation (12; 13), the DMN
activity is assumed to decrease when the activity in the other networks increases.
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2 Spontaneous BOLD fluctuations in the human

brain

The brain is constantly active, also during rest. This section provides a short
overview of the research that has been done on spontaneous activation fluctuations
in the brain and is largely based on the review by Foxe et al. (1). Also the three
resting-state networks, which are in focus in this work, are introduced. Functional
magnetic resonance imaging, the brain imaging method used in most of the studies,
is explained in more detail in Section 5.7.

Typical fMRI research has focused on stimulus-dependent blood-oxygenation-
level-dependent (BOLD) signal changes in the brain. However, the brain is active
also during ”rest”, when no external stimuli are presented. The resting brain con-
sumes 20 per cent of the body’s energy whereas performing a task increases the
energy consumption to only maximally 21 per cent. Recently more attention has
been paid on this baseline state of the brain. Slow fluctuations (typically under 0.1
Hz) in the BOLD signal are of special interest in this context.

Biswal et al. (14) discovered that spontaneous BOLD fluctuations in the left
somatomotor cortex correlated with the spontaneous fluctuations in the right and
medial motor cortices. Since then, this observation has been replicated in several
studies (15–20). Also many other RSNs have been discovered, including visual,
auditory, language, default mode, episodic memory, dorsal attention and ventral
attention systems (1). Brain areas in which the spontaneous BOLD activity is
correlated seem to be functionally connected. These networks continue to co-vary
even during sleep, anesthesia, and task performance (1). Simultaneous recordings
of spontaneous fMRI fluctuations and electrical measures of brain activity, such as
electroencephalography (EEG), have shown that the spontaneous fluctuations in the
BOLD signal correlate well with high-frequency neuronal activity, suggesting that
the resting fluctuations are a result of neuronal activity (1).

It appears that the basic correlation structures of the spontaneous activity do not
disappear during task performance but they may be modulated. The correlation be-
tween brain regions similarly activated by the task or stimulus increases during task
or stimulation whereas the correlation between other regions decreases (1). Two
explanations have been proposed. First, the changes in the correlation structure
could be due to neural reorganization through suppression and facilitation of synap-
tic activity (21). Second, the correlation structure during task performance would
reflect a superposition of spontaneous fluctuations and task-related activation (18).
The baseline state of the brain affects task performance. Many experiments have
shown that the spontaneous fluctuations explain the variability of BOLD responses
and behavior between trials (1).

What is the functional role of the resting-state networks? First, if either direct or
indirect anatomical connections exist between the nodes of the functional networks
that can explain the synchronized activity also during rest. Second, it is possible
that the spontaneous fluctuations work like a memory showing correlation between
brain regions in which the activation has been modulated simultaneously during a
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Figure 1: The dorsal attention, sensorimotor and default mode networks. Figure
adapted from (31) .

task (1). Another explanation is that the spontaneous activation organizes neural
activity and that the coordination is stronger between regions that commonly work
together (1). The fluctuations could also serve as a dynamic prediction of the future
with correlations occurring between regions that will probably be used together
(1). However, no conclusive evidence exist for any of these hypotheses, and further
investigation is needed.

Analysis of spontaneous BOLD data requires data-driven methods, such as seed-
based correlation, hierarchical clustering, or ICA (see section 6). Independent com-
ponent analysis has been widely used for analyzing both task-related and sponta-
neous BOLD activity within neuronal networks (8; 11; 22–29).

In this work the focus is on three brain networks: the dorsal attention, the
sensorimotor, and the default-mode networks illustrated in Figure 1. The sensori-
motor network covers bilaterally the primary motor and somatosensory cortices as
well as the supplementary motor area (SMA). In addition some other areas have
been reported to covary with these areas, such as the thalamus and cerebellum (15–
20). The default mode network is distinct from the others in that its activation
decreases during task performance (12; 13). It covers the posterior cingulate cortex
(PCC) and precuneus, medial prefrontal cortex and bilateral inferior parietal cortex
(23; 24; 30). The fluctuations in this network have been suggested to be important
for the processes during rest (12). However, the exact role of this network remains
unclear.

Two sensory orienting systems, the ventral and dorsal attention networks, dy-
namically interact and guide our attention. The dorsal attention network is involved
in voluntary (top-down) processing of sensory information and links the selected
sensory cues to appropriate motor responses. It includes the dorsal parietal cortex,
particularly the intraparietal sulcus (IPS) and superior parietal lobule (SPL), and
the junction of the precentral and superior frontal sulcus (frontal eye fields, FEFs)
in each hemisphere (32). This network is activated by expectation of seeing a target
in a particular location or with specific features, by the preparation of a response,
or by short term memory of a visual scene (33).

The ventral attention network reorients the attention to salient stimuli in the



4

environment, especially when unattended. The network is lateralized to the right
hemisphere and includes the right temporal-parietal junction and the right ventral
frontal cortex (32; 33). It is activated when targets appear in unexpected locations
or when a target appears infrequently (33). The ventral system probably detects
surprising events (stimulus-driven re-orienting) and disrupts the ongoing selection
in the dorsal network which then shifts the attention to the novel target (34).
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3 Naturalistic stimulation in fMRI

In human brain imaging, the interest has recently increased towards real-life-like
stimulus settings. This section covers some of the work done in this field.

Traditional fMRI experiments use rather simple block designs, and the analysis
is commonly done using the general-linear-model (GLM) analysis (see section 6.2).
Much of what is known about brain function by means of fMRI has been found out in
this way. In the GLM approach, a hypothetical activation time course is constructed
on the basis of the stimulus presentation. This time course is then compared with
the measured data, and brain regions whose time courses match the modeled one in
statistical sense are considered to be activated by the stimulus. Conventional fMRI
experiments typically use rather simple stimuli in highly controlled conditions to
reveal stimulus-dependent activations, which can be predicted and modeled. How-
ever, in real life the environment is multimodal and constantly changing. If we want
to know how our brains function in such situations, the stimulus settings in brain
imaging should also be as naturalistic as possible. Quite recently fMRI experiments
have started to utilize more naturalistic stimulation, such as movies (2; 3; 5; 6; 35–
39). Although movies are quite far from a real-life experience, they still mimic it
well given the constraints of the experimental setup. On one hand, using naturalistic
stimulation can reveal activity patterns that would not be found with traditional
methods. On the other hand, the activations triggered by naturalistic stimulation
should agree with the activations aroused by simple stimuli.

Because naturalistic stimuli often are highly unpredictable and multimodal, it
may be difficult to use temporal covariates necessary for GLM analysis. The anal-
ysis of fMRI data recorded during naturalistic stimulation therefore benefits from
data-driven approaches that make no assumptions on activations triggered by the
stimulus. The most widely used methods are seed-based correlation, ICA, and ISC
(39). Data-based analyses have shown that human brain activity can be highly re-
liable under naturalistic conditions (2; 3; 5–7; 35–39). The stimuli in these studies
have included for example movies, audio books and music. For example, Bartels
and Zeki (3) applied ICA and seed-based correlation to identify networks related to
seeing, hearing and language processing. Correlations between directly connected
regions increased during natural viewing while the correlation between unconnected
regions decreased. In an earlier work, they used ICA to separate functionally con-
nected brain networks from fMRI data collected during both free movie viewing and
during a traditional block-design setup (2). Natural viewing activated more regions
in a more distinct manner than did conventional stimuli.
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4 Number of independent sources in fMRI data

In ICA, the number of components to be estimated has to be decided. How to
determine the correct amount of independent sources in fMRI still remains an open
question, although some attempts to address this issue have been recently taken.
This section gives an overview of the research done concerning this problem.

Estimating too few ICA components leads to loss of information. McKeown et

al. (29) concluded that compressing the data too much leads to loss of important
information and thus it is better to estimate a large number of components. Many
other studies have also concluded that a too low dimensionality causes ICA to mix
various components (3; 9–11; 40). Ma et al. (41) detected RSNs with ICA and
investigated the effect of the number of ICs on the results of ICA. They showed that
a too low number of components affected the ICA results, but estimating too many
components had no significant influence. An excessive reduction of the ICA dimen-
sionality may be especially problematic when analyzing resting state fluctuations,
because some of the sources are weak compared with noise (42).

On the other hand, estimating too many components causes splitting of the com-
ponents (8–11). Li et al. (43) proposed a new method for order selection in ICA
of fMRI data and showed that at too high dimensionalities the stability of the IC
estimates decreases and the estimation of task related activations is degraded. Beck-
mann and Smith (10) examined the dependency between the number of estimated
components and the accuracy of the spatial maps and time courses of the estimated
ICs. On one hand, estimating too few components led to loss of information and
to suboptimal signal extraction, whereas estimating too many components caused
overfitting and led to arbitrary splitting of the ICs due to unconstrained estimation.

Smith et al. (8) investigated the splitting of RSNs, identified with ICA, using the
massive BrainMap database including over 7000 functional maps collected during
task conditions as well as resting state data from 36 subjects to calculate both 20-
component and 70-component ICA compositions of both datasets. Similar brain
networks in both datasets were found, which implies that the networks are active
both in rest and during task performance. With the ICA-dimensionality of 70 the
networks found in the 20-component composition split into smaller subnetworks of
brain areas with slightly different function or into left- and right-sided subnetworks.

Abou-Elseoud et al. (9) examined the effect of increasing the model order on
IC’s characteristics of RSNs. Probabilistic group ICA (PICA) with ICASSO (see
Section 6.5.6) was used for analyzing resting state fMRI data. At low dimension-
alities, the signal sources merged into singular components, which were split into
subcomponents with higher model orders. Also, some components emerged only at
higher model orders whereas some did not split. The characteristics of the ICs, i.e.
the volume and mean z-score, were significantly affected by the number of estimated
components. The repeatability of the components decreased with increasing model
order. Model orders around 70 were considered to offer a detailed and reliable eval-
uation of the RSNs. Increasing the dimensionality further reduced reliability, but
neither the mean z-score nor the volume showed any statistically significant changes.
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5 Magnetic resonance imaging

This section gives a short overview of the basic principles of magnetic resonance
imaging (MRI) as well as fMRI. The introduction starts from nuclear physics and
proceeds step by step to image formation and different imaging techniques. The final
part of the section introduces fMRI, a MRI technique to measure brain activity. This
section is based on the textbooks of Huettel et al. (44), Buxton (45), and Liang and
Lauterbur (46).

5.1 A short history of MRI

Magnetic resonance imaging utilizes high magnetic fields to produce images of bio-
logical tissue. MRI is based on the phenomenon of nuclear magnetic resonance
(NMR). The first NMR experiments were carried out in 1946 independently by two
scientists and their research groups: Felix Bloch, working at Stanford University,
and Edward Purcell from Harvard University. They found that certain nuclei placed
in a magnetic field were able to absorb energy in the radiofrequency range of the
electromagnetic spectrum and re-emit this energy. In 1970s, Raymond Damadian
noticed that the NMR signal properties of cancerous tissue are different from that
of healthy tissue. Paul Lauterbur introduced the idea of using field gradients in the
magnetic field for NMR image formation and produced the first 2-D NMR image of
test tubes containing water and heavy water in 1973. Peter Mansfield developed the
echo-planar-imaging (EPI) technique for fast imaging. In the early 1980’s, the first
magnetic resonance imaging scanners for humans became available. Figure 2 shows
the 3-T scanner used in this work located in Advanced Magnetic Imaging (AMI)
Centre, Aalto University School of Science.

Figure 2: The 3T-MRI scanner (AMI Centre, Aalto University School of Science)
used in this work.
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5.2 Nuclear spins

The underlying mechanism of signal generation and detection in MRI occurs at the
nuclear level. An atom consists of a nucleus, which includes protons and neutrons,
and an electron shell. A fundamental property of nuclei is that they possess spin

angular momentum ~J , whose magnitude is given by

J = ~

√
s(s+ 1) s = 0,

1

2
, 1,

3

2
..., (1)

where s is the spin quantum number, which takes either integer or half-integer values,
and ~ the reduced Planck’s constant. Nuclei with odd mass number have half-integer
spin, nuclei with even mass number and even charge number have zero spin, and
nuclei with even mass number and odd charge number have integral spin. In MRI,
a set of nuclei of same type present in the object being imaged is called a spin

system. For example, the hydrogen protons in the human body form a spin system.
Since hydrogen (H1) is the most abundant proton in the human body, it is the most
commonly imaged nucleus in MRI. A hydrogen nucleus contains only one proton,
so that it has a half-integer spin sH = 1

2
.

Since the proton has a spin and carries a positive charge, it creates a magnetic
field around it. The proton has a magnetic dipole moment ~µ, which is related to the
spin angular momentum ~J by

~µ = γ ~J, (2)

where γ is a nucleus specific physical constant called the gyromagnetic ratio. Al-
though the magnitude of ~µ is known in any conditions, the direction of ~µ is random
in the absence of an external magnetic field. In an external magnetic field of strength
B0, applied in the z-direction, the z-component of µ can have values

µz = γms~ ms = −s,−s+ 1, ..., s , (3)

where ms is the magnetic quantum number. For a hydrogen atom, the spin quantum
number is equal to 1

2
and thus hydrogen spin system is a spin-1

2
system. In a spin-1

2

system, the magnetic moment vector has two possible orientations: either parallel
or anti-parallel to the external field.

In the external magnetic field ~B0, a spin experiences a torque that is equal to
the rate of change of its angular momentum ~J

d ~J

dt
= ~µ× ~B0. (4)

Because of the torque, the spin precesses about the z-axis with a stable angle with
respect to the field. The angular frequency of this nuclear precession is

ω0 = γB0, (5)

which is known as the Larmor frequency. At 3T the Larmor frequency for a H1

nucleus is about 127,7 MHz.
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5.3 Net magnetization

As noted earlier, in a spin-1
2
system, ~µ can either align parallel or antiparallel to the

external field. Spins in different orientations have different energy states. For the
spins that are aligned parallel with the external field the energy is

E↑ = −
1

2
γ~B0 (6)

and for the spins aligned anti-parallel

E↓ =
1

2
γ~B0. (7)

Thus the energy states of the spins that are parallel to the external field are
lower than those of the antiparallel spins. A spin is more likely to be in the lower
energy state, so a small majority of the spins (at 3T an excess of 1∗10−6 spins) align
parallel to the field. Although the population difference of the two energy states is
very small, it creates a magnetization vector ~M from a spin system

~M =
Ns∑

n=1

~µn, (8)

where Ns is the number of spins. In a spin-1
2
system

µn,z =

{
+1

2
γ~ if µn,z is parallel to the external field

−1
2
γ~ if µn,z is anti-parallel to the external field

, (9)

so that the magnetization vector is given by

~M = (

N↑∑

n=1

1

2
γ~−

N↓∑

n=1

1

2
γ~)~k =

1

2
(N↑ −N↓)γ~~k. (10)

In equilibrium, the bulk magnetization vector points along the positive direction
of the z-axis. The transverse component of ~M is zero at equilibrium because the
precessing magnetic moments have random phases.

5.4 Radio-frequency excitation

The alignment of the spins with the external field does not as such lead to any
measurable signal. To generate an NMR signal, a radio-frequency (RF) pulse is sent
to the system. The RF pulse is an oscillating magnetic field perpendicular to B0.
According to the Planck’s law, electromagnetic radiation of frequency ωRF carries
energy

ERF = ~ωRF . (11)

To induce a transition of the spins from the lower energy state to the higher
energy state, the radiation energy must be equal to the energy difference between
these states
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ERF = ~ωRF = ∆E = γ~B0. (12)

Or more simply

ωRF = ω0. (13)

In this resonance condition spins absorb the energy from the RF pulse and flip from
the low energy state to the high energy state so that the longitudal component of
the net magnetization M0 decreases. In addition, the protons start to precess in
phase, which establishes a transversal magnetization. This means that the RF pulse
tippes the net magnetization vector to an angle θ with respect to the z-axis. The
magnitude of θ is proportional to the product of the duration and amplitude of the
RF pulse and is called the flip angle (FA). The precessing net magnetization produces
a time-varying magnetic field, which induces a current in a receiving coil located in
the MRI scanner. Thus, a free induction decay (FID) signal can be measured. As
the name implies, this signal decays in time because of spin relaxation. After the
RF pulse is turned off, the individual spins start to loose their phase coherence
and thus the transversal magnetization decreases (transverse relaxation). The time
constant of this decay in a homogenous field is called T2. The spins also flip back
to the lower energy state, which causes the longitudal magnetization to increase.
This phenomenon is known as longitudal relaxation and its time constant is called
T1, which is generally longer than T2. The combined process of precession and
relaxation are described by the Bloch equations:

dMx

dt
= γB0My −

Mx

T2

(14)

dMy

dt
= −γB0Mx −

My

T2

(15)

dMz

dt
= −

Mz −M0

T1

. (16)

Due to local magnetic field inhomogeneities, the FID signal actually decays faster
than could be expected from a known T2. This enhanced decay is described by a
time constant called T2∗, which plays a critical role in fMRI. It is defined as

1

T2∗
=

1

T2
+

1

T2
′ , (17)

where T2
′

reflects the dephasing effect caused by field inhomogeneity. The T1, T2,
and T2∗ values are tissue specific and are used as sources of contrast in MRI images.
Figure 3 shows the effect of the RF pulse and the relaxation of the spins.

5.5 Gradient fields

To image a three-dimensional object, three orthogonal gradient fields are superim-
posed on the uniform external field ~B0. A gradient field is a spatially linearly varying
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Figure 3: The majority of the protons align parallel to the external magnetic field
~B0. The RF pulse flips some of the protons to the higher energy state (antiparallel
to the external field), which causes the longitudal magnetization (red arrow) to
decrease (with a 90o pulse it goes to zero, as in the figure). The protons start to
precess in phase, which causes a transversal magnetization. After the RF pulse, the
protons start to lose their phase coherence (transversal magnetization decays) and
flip back to the lower energy state (longitudal magnetization recovers). Note that
the figure is illustrative and the number of spins in the two energy states is not
proportional to the true population difference.

field produced by gradient coils in the scanner. The variations caused by the gradi-
ent fields are small compared with the main magnetic field. Since MR images are
sampled in three dimensions, the basic sampling units of MRI are three-dimensional
volume elements called voxels.

The slice selection gradient is applied in the same direction as the uniform mag-
netic field. It causes the resonance frequency of the spins to vary linearly along the
z-axis. This gradient field is applied while an RF pulse containing only a narrow
band of frequencies centered at the desired ω0 is sent. In this way it is possible to
excite spins in a certain slice, i.e. those spins that are in resonance with the RF
pulse. Slice thickness can be altered by changing the bandwidth of the RF pulse or
by modifying the steepness of the gradient.

To determine a specific voxel in the slice from which the signal is coming, two
additional gradients are used. The frequency-encoding gradient is in a typical MR-
imaging sequence applied after the radio frequency pulse and it results in different
precession speeds along the x-axis. The phase-encoding gradient is turned on for
a short time after the RF pulse and it is perpendicular to the frequency encoding
gradient. When the gradient field is applied, the protons start to precess at different
frequencies. When the gradient is then turned off again, the protons go back to their
former precession frequencies, but now they have different phases. The result is a
mixture of signals with different frequencies and phases. The frequency and phase
information are collected in a so called k-space (47; 48). The spatial MR image can
then be reconstructed from the measured data using the Fourier transform.

5.6 Pulse sequences and image contrast

Because the signal decays in time, a new RF pulse is applied to trigger a new signal.
The time between successive excitation pulses is called the repetition time (TR).
Generally, the FID signal is not measured, but an echo of the original signal is
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Figure 4: a) A spin-echo pulse sequence and b) a gradient-echo pulse sequence.
DAQ = data aquisition.

created occurring at a time TE, the echo time. In a spin-echo sequence this is done
by sending in a second RF pulse after a delay of TE/2. Commonly a 180o pulse
called the refocusing pulse is used, because it creates the strongest echo. After the
original 90o pulse, the spins start to lose their phase coherence, because they precess
at slighly different rates. The spins that precess faster get ahead of the slower ones.
The 180o pulse flips the spins so that the phase acquired by each spin is converted
into a negative phase. Now, the faster-precessing spins are behind the slower ones.
At t =TE, the faster-precessing spins have caught up with the slower ones and the
spins are back in phase and create an echo. A gradient-echo sequence uses gradient
fields instead of a refocusing pulse to generate the signal echo. In this sequence a
negative field gradient is turned on after the RF pulse to dephase the spins, which are
then rephased by a subsequent positive gradient. Gradient-echo sequences typically
use small flip angles (< 90o) and thus the TR can be reduced, which in turn reduces
the scanning time. Figure 4 illustrates these two types of pulse sequences.

If TR is much longer than T1, the spins recover to equilibrium after each pulse
and the signals after succeeding pulses are equally strong. As the TR is shortened,
the signal generated by the second RF pulse becomes weaker, since the spins have
not relaxed completely. Because the T1 values are tissue-specific, the spins in some

S
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P
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I

LR AP

Figure 5: T1-weighted skull-stripped MR image from one of the participants of
this study showing coronal, axial and sagittal slices. The abbreviations refer to the
orientation of the figure: right (R), left (L), superior (S), inferior (I), anterior (A),
posterior (P).
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Figure 6: Example of T1-, T2- and a PD-weighted images. The cerebrospinal
fluid appears black in T1-weighted images and white in T2-weighted images. PD-
weighted images show only little contrast between tissue types. Figure adapted from
http://en.wikibooks.org/wiki/File:T1t2PD.jpg .

tissues have recovered more than in others and give thus a stronger signal. This
creates a contrast between different tissue types, and the resulting image is called
T1-weighted. Fat appears bright and water dark in T1-weighted images. Figure 5
shows an example of T1-weighted MRI images in three orthogonal slice orientations:
the coronal, axial and sagittal slices. Figure 6 (left) compares a T1-weighted image
with images acquired with other contrast weightening.

The signal received is proportional to the net magnetization M0, which in turn
depends on the amount of protons in the tissue. For the tissues in the body, proton
density (PD) and T1 are positively correlated. This conflicts with the T1-contrast,
because a tissue with high proton density has a greater net magnetization and
therefore a larger signal than a tissue with low proton density. On the other hand,
long T1 tends to make the same tissue darker because there is less recovery at long
T1. A proton-density-weighted image can be produced if the TR is long enough so
that the spins have had time to relax in all tissue types. With a small flip angle
the recovery is faster and the longitudal magnetization is hardly affected by the
RF pulse; the sensitivity to differences in T1 is greatly reduced. Figure 6 (right)
shows an example of a PD-weighted image. PD-weighted images show less contrast
between tissue types than T1-weighted images.

TE is an important parameter for T2-weighted images. With TE < T2, transver-
sal decay is small and the T2 contrast is weak. If the TE is too long, nearly all
transversal magnetization will be lost and thus there is no T2 contrast. However,
with TE ≈ T2, the signal is strongly sensitive to the local T2, and T2 contrast can
be maximized. T2-weighted images provide maximal signal from fluid-filled regions,
as is seen in Figure 6 (middle).

T2∗-weighted images are sensitive to the relative concentration of deoxygenated
haemoglobin in the blood, which changes according to the metabolic demand of
active neurons. T2∗-contrast is best achieved with gradient echo pulse sequences
with long TR and medium TE. Spin-echo sequences have reduced T2∗-sensitivity,
because the refocusing pulse eliminates inhomogeneity effects. T2∗ decay forms the

http://en.wikibooks.org/wiki/File:T1t2PD.jpg
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basis for BOLD-contrast fMRI, described in more detail in Section 5.7.

5.7 Functional magnetic resonance imaging

5.7.1 The BOLD effect

FMRI provides information on brain physiology. The blood oxygenation level depen-

dent (BOLD) effect, discovered by Ogawa and coworkers in 1990 (49), is the most
widely used source of contrast in fMRI. It arises because of two distinct phenomena:
the different magnetic properties of oxygenated and deoxygenated heamoglobin and
changes in blood flow.

Neurons in the brain continuously consume glucose and oxygen (O2), which
are supplied by the cerebral blood flow (CBF). In the blood, oxygen is bound
to haemoglobin. Oxygenated haemoglobin is diamagnetic whereas deoxygenated
haemoglobin is paramagnetic. Therefore, changes in the relative concentration of
oxygenated vs. deoxygenated haemolobin result in changes in the BOLD signal,
which is stronger when less deoxygenated haemoglobin is present. In an active
brain area, the cerebral metabolic rate of O2 consumption (CMRO2) increases and
haemoglobin becomes deoxygenated. At the same time, more blood is brought to
the active site. Because the blood flow increases much more than the CMRO2, the
amount of oxyhaemoglobin in the blood is increased and the relative concentration
of deoxygenated haemoglobin is decreased, which results in a stronger MR signal.

BOLD effects are commonly measured using T2∗-contrast. The presence of de-
oxygenated hemoglobin makes the magnetic field stronger in the red blood cells than
in the surrounding plasma, which creates field inhomogeneities that shorten the T2∗.
In an active brain area the relative concentration of deoxygenated hemoglobin is de-
creased and thus the field inhomogeneities are reduced. T2∗ becomes longer and the
signal is increased in a T2∗-weighted image.

5.7.2 Echo planar imaging

To detect brain activity, images have to be acquired very rapidly, approximately at
the same rate as the physiological changes happen. One approach to reduce the
scanning time is to collect data corresponding to more than one phase-encoding
step from each excitation. Figure 7 shows the most popular sequence suited for fast

90
o

RF

. . .

. . .

Figure 7: A gradient-echo-planar imaging pulse sequence.
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Figure 8: The shape of a typical haemodynamic response to a single short-duration
event.

imaging, the echo planar imaging (EPI) sequence, originally developed by Mansfield
in 1977 (50). Here, the gradients oscillate so rapidly that all the phase-encoding
steps required for an image can be measured after a single excitation. Thus the
whole k-space is filled after each RF pulse.

Fast scanning enables the detection of functional changes in the brain, but it
impairs the spatial resolution. EPI images have low signal-to-noise ratio and the
contrast between different tissues is poor. Therefore, high resolution structural MRI
images are often acquired so that statistical maps of the functional images can be
superimposed on them to better pinpoint the activation sites.

5.7.3 The haemodynamic response

The change in the dynamics of the BOLD signal triggered by neuronal activity
is called the haemodynamic response (HDR). The shape of the HDR can vary in
different brain areas and between individuals (51). The first observable HDR changes
occur with a 1–2 s lag with respect to the neuronal events that initiate it. The HDR is
typically modeled with a canonical haemodynamic response function (HRF), shown
in Figure 8 to a single short-duration event (occurring at t = 0) and modeled as a
gamma-variate function.

An initial negative dip may precede the response (52; 53) and it has been at-
tributed to a transient increase in the amount of deoxygenated blood. The initial
dip is however often not separately modeled. After a short latency the signal rises,
because more oxygen is brought to the area than is extracted by the neurons. The
signal reaches its peak at about 5 s. If the stimulus lasts for a longer time, the
peak is extended to a plateau. About 6 seconds after the peak, the signal decreases
below baseline. The poststimulus undershoot results from faster decrease of blood
flow than blood volume after the neuronal activity has returned to baseline. Thus,
the relative amount of deoxygenated blood increases and the fMRI signal is reduced
below baseline levels. When the blood volume slowly returns to normal level, the
signal rises back to baseline.
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6 Analysis of fMRI data

This section focuses on the analysis of fMRI data. First, the typical image prepro-
cessing necessary prior statistical analysis is explained. Then the most widely used
method for determining brain activation in fMRI, the general-linear-model (GLM)
based analysis, is introduced. Finally, the data-driven methods used in this work
are presented, concentrating mainly on independent component analysis.

6.1 Pre-processing of images

The BOLD images are noisy and suffer from several types of artifacts, such as
head movements. In addition, the images acquired from different subjects are not
directly suitable for group analysis. Thus, careful preprocessing is necessary before
the analysis. This section explains the main pre-processing steps implemented in
the SPM8 software, which was used in this work.

6.1.1 Slice-timing correction

Because the slices in a volume are acquired at slightly different times, the measured
signal has a sampling delay in each slice. To correct for this error, the data are often
retimed. This is usually done by temporal interpolation, which uses information
from nearby time points to estimate the amplitude of the signal at the onset of the
TR. No retiming was however applied to the data of this work due to a quite modest
TR (2.015 s).

6.1.2 Realignment

Head motion is probably the most damaging artifact in fMRI. If the head moves
during scanning, the signal from a given voxel will be from different parts of the
brain in succeeding images. Head-motion-related artifacts are corrected by realign-

ing the images. The images are coregistered to a single reference volume using a rigid
body transformation, which assumes that the shape of the head does not change and
corrects for rotations and translations along the x-, y- and z-axes. In spatial regis-
tration, the parameters that either maximise or minimize some objective function,
such as sum of squared differences, are estimated and then applied to the images.

6.1.3 Coregistration

The functional images are coregistered to the structural images from the same sub-
ject to facilitate the mapping of low-contrast functional data on high-resolution and
high-contrast anatomical images. The coregistration of functional images to struc-
tural ones differs from motion correction in two ways. First, the head may not be the
same shape in the structural and functional images. Thus, instead of a rigid-body
transformation, non-linear transformations are used. Second, the intensity values
are different in these two types of images. Therefore, simple cost functions, such as
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the sum of squared differences, are not appropriate. For example, mutual informa-

tion can be used as a cost function in functional-structural image coregistration.

6.1.4 Spatial normalization

The shape and size of the head varies remarkably across individuals. For group anal-
ysis or for averaging effects across subjects, the brains in the images are normalized

into a standard coordinate system, such as the Talairach space or the Montreal
Neurological Institute (MNI) space. In SPM, the procedure has two steps. The
first step is a 12-parameter affine transformation to match the size and position of
the images. The second step is a non-linear affine transformation, which is modeled
by linear combinations of three-dimensional smooth discrete cosine basis functions.
The parameters of this non-linear transformation can be found for example within
a Bayesian framework, which estimates the most likely regional deformations and
then combines them with the global transformations.

6.1.5 Spatial smoothing

Spatial smoothing reduces the high-frequency spatial components and ”blurs” the
images. The smoothing is commonly done by spatially low pass filtering the data
with a Gaussian filter. Smoothing improves the signal-to-noise ratio and the validity
of statistical analysis by making the error distribution more normal. It also decreases
the differences across subjects in the sites of brain activations.

6.2 The general linear model

To examine real activations in the low-resolution fMRI images, the data are sub-
jected to statistical analysis. The most common way is to use the GLM-based
analysis. To find brain areas most affected by the stimulus, a reference time course
is constructed by convolving the stimulation time course with a haemodynamic re-
sponse function. This reference time course is then inserted into the GLM as a
covariate. The basic idea is that the observed data x can be modeled as a weighted
sum of several covariates gi:

x = β1g1 + β2g2 + ...+ βngn + ǫ, (18)

where βi are the parameter weights, which tell how much each covariate contributes
to the overall data, and ǫ is the error term. For different conditions, a time course
can be modeled for each one separately. Known sources of variability, such as head
movement or respiration, can also be added as nuisance covariates to improve the
validity of the GLM. After the model has been constructed, the weights are approx-
imated by least-squares estimation. The statistical significance of the estimated
weights can be tested with t-statistics. The analysis can be extended to group
level by inserting the individual contrast images into a random-effects analysis to
reveal brain areas that are statistically significantly activated in the whole group of
subjects.



18

The use of the GLM requires that the responses can be predicted and a reference
time course can be formed. If we want to reveal brain activations during more
naturalistic conditions, where the stimulus is multimodal and highly unpredictable,
GLM is no longer feasible for the analysis. Purely data-driven approaches, such
as inter-subject correlation or independent component analysis, need no a priori
models of the stimulus-related activations, and are thus sometimes more suitable
for analyzing fMRI data acquired during naturalistic stimulus presentation.

6.3 Inter-subject correlation

Inter-subject correlation analysis, proposed by Hasson et al (39), is a data-driven
model-free approach for analyzing fMRI data. With ISC it is possible to reveal
brain areas whose temporal behaviour is similar across subjects during continuous
and complex stimulus presentation, such as watching movies. ISC uses the signal
of one subject to model the signal in the corresponding voxels for other subjects by
correlating the time series. The signals are correlated voxel by voxel for each subject
pair. The correlation maps for all subject pairs are then subjected for group-analysis
by testing for significance, for example with a t-test. ISC has been shown to segregate
e.g. the extrinsic, stimulus-driven brain networks from the intrinsic, spontaneous
BOLD-signal fluctuations (35; 54).

6.4 Seed-based correlation

In seed-based correlation, the measured signal from a pre-defined seed point is cor-
related with signals from other voxels of the brain to reveal brain areas that are
functionally connected with this seed point. The analysis can be extended to group
level by subjecting the individual connectivity maps for statistical analysis.

6.5 Independent component analysis

This section is mostly based on the tutorial paper on ICA by Hyvärinen et al. (55).

6.5.1 Motivation

Let’s start with a popular simple example to describe what ICA is. Imagine two
people speaking in a room and two microphones recording their speech. The signals
recorded with the microphones are mixtures of these two speech signals. With ICA,
it is possible to estimate the original source signals—the two speech signals—from
the mixture signals recorded with the microphones. The mixing of the two speech
signals depends on many factors, such as the locations of the microphones and the
acoustic properties of the environment. If this mixing would be known, separating
the two signals would be easy and could be done by classical methods. However,
both the mixing and the original source signals are often unknown and we only have
the recorded signals, which makes the problem difficult. One approach for solving
the problem is to use some information about the statistical properties of the source
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(a)

(b)

(c)

Figure 9: A simple example on how ICA works. (a) The original signals, (b) two
mixed observations of the source signals, and (c) the source signals estimated with
ICA. These independent components match very well the original signals, with only
small differences in scales and signs. FastICA on own simulated data.

signals to estimate the mixing. ICA is based on the assumption that the source
signals are statistically independent. This assumption is often tenable, and actually
does not have to hold exactly for ICA to work (55). ICA can be implemented
by many algorithms, such as Infomax (28) and FastICA (56). Figure 9 shows a
simple example on how ICA separates two source signals from two mixed signals.
In fMRI, the mixed signals are the acquired BOLD signals and the source signals
are temporally/spatially independent brain networks.

6.5.2 Definition of ICA

ICA is an approach for solving the blind source-separation problem, which is the
problem of separating the original signals from a set of mixed signals without in-
formation (or with very little information) about the source signals or the mixing
process. The ICA model is formulated as a generative linear latent-variables model.
Latent means that the independent components cannot be directly observed. Gen-
erative means that the model describes how well the observed data are generated by
a process of mixing the components. When the data are represented by a random
vector x and the independent components by s, the mixing can be expressed in
matrix form as

x = As, (19)

where A includes the mixing weights ai and is therefore called the mixing matrix.
The ICA model assumes that the components are statistically independent and
have non-gaussian distributions. In practice, the ICs are obtained by estimating the
inverse matrix W = A−1

s = Wx. (20)
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6.5.3 Measures of non-gaussianity

ICA estimates the independent components by maximizing an objective function,
which measures nongaussianity. Measures of nongaussianity are for example kurtosis
and negentropy. Kurtosis is estimated by using the fourth-order statistical moment
and is defined as

kurt(s) = E
{
s4
}
− 3E

{
s2
}2

, (21)

where E {·} stands for the expectation value. Kurtosis is simple to compute, but it
is very sensitive to outliers (57).

Another measure of nongaussianity is negentropy, which is based on the informa-
tiontheoretic quantity of entropy H, which in turn is a measure of uncertainty. The
entropy of a random variable is larger than that of a structured and predictable one.
Since gaussian variables have the largest entropy among all random variables with
equal variance (58), minimizing entropy corresponds to maximizing nongaussianity.
Negentropy can be considered as negative entropy, and it is defined as

J(s) = H(sgauss)−H(s), (22)

where sgauss is a gaussian random variable with the same covariance matrix as s.
Negentropy is zero for gaussian variables and always non-negative. Calculating the
negentropy according to its definition is computationally difficult and in practice
approximations are used.

Another approach for ICA estimation is to minimize mutual information. Mutual
information I gives the amount of information shared between random variables and
is defined as

I(s1, s2, ...) =
∑

i

(H(si)−H(s)). (23)

Mutual information is closely related to negentropy. ICA estimation by minimizing
mutual information is equivalent to maximizing the sum of nongaussianities of the
estimates.

Independent components can be estimated for example with the algorithm called
FastICA (56), which was used in this work. It uses negentropy as an objective
function and a fixed point optimization scheme based on Newton-iteration.

6.5.4 Preprocessing for ICA and order estimation

Before estimating the independent components, some further preprocessing has to
be done. The observed data are centered (made zero mean) and whitened (uncor-
related and normalized). Whitening can be done for example with principal com-
ponent analysis (PCA) (59). PCA transforms the possibly correlated variables into
uncorrelated variables called principal components. The components are ordered so
that the first principal component explains most of the variance of the data. Each
succeeding component accounts for as much of the remaining variability as possible.
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One way of finding the principal components is to use the eigenvalue decomposition
(EVD) of the covariance matrix E

{
x̃x̃T

}
of the data:

E
{
x̃x̃T

}
= EDET , (24)

where E is the orthogonal matrix of eigenvectors of the covariance matrix and D is
the diagonal matrix of its eigenvalues. The data can now be whitened

x̃ = ED−1/2ETx. (25)

Whitening transforms the mixing matrix A into a new one, Ã, and the whitened
ICA model can be written as

x̃ = ED−1/2ETAs = Ãs. (26)

Since Ã is orthogonal, whitening reduces the amount of parameters to be es-
timated. The dimension of the data can be reduced by leaving out the weakest
principal components. This often improves the signal-to-noise ratio and reduces the
risk of overfitting, which is sometimes observed in ICA (56). The right number of
true components is not known, but several methods exist to estimate it. The mini-
mum description length (MDL) criterion, which was used in this work, is based on
the minimum code length (60). The MDL criterion for order selection is

EMDL(k) = −L(x|Θk) +
1

2
G(Θk) logN, (27)

where L(x|Θk) is the maximum log-likelihood of the observations, i.e. the measured
signals x, based on model parameters Θk of the kth order and G(Θk) is the penalty
term for model complexity given by the total number of free parameters in Θk and
N is the number of samples (in case of fMRI images, the samples are the voxels).
The maximum log-likelihood is given by (43)

L(x|Θk) =
N

2
log

(∏T
i=k+1 λ

1/(T−k)
i

1
T−k

∑T
i=k+1 λi

)T−k

, (28)

where T is the original dimension of the multivariate data and λi is the ith eigen-
value of the covariance matrix E

{
x̃x̃T

}
of the measured data. The number of free

parameters is given by (43)

G(Θk) = 1 + Tk −
1

2
k(k − 1). (29)

Estimating too few components leads to loss of information. On the other hand,
overestimation could result in splitting of the informative components and in spuri-
ous components due to unconstrained estimation and factorization that will overfit
the data (10).



22

6.5.5 Ambiguities of ICA

ICA has two main ambiguities. First, the signs and scales of the sources cannot be
identified. Second, the ICs do not appear in any specific order. What is more, all
ICA algorithms converge to slightly different results in separate runs.

6.5.6 ICASSO

ICASSO (61) is an algorithm for investigating the reliability of the components.
ICASSO runs ICA several times with different initial values and/or with differently
bootstrapped data sets. The estimated components are clustered according to a
similarity measure, such as absolute correlation. The stability index of the ICA-
estimate clusters is computed as the difference between intra-cluster similarities
and average extra-cluster similarities, and it provides a quantative estimate of the
compactness of the clusters. If the stability index is close to unity, ICA estimation
is stable and consistent, meaning that similar components are estimated at every
run of the algorithm. The tighter the cluster a component belongs to is, the more
reliable the IC is. The most unreliable components do not belong to any cluster.
The cluster centers represent the ideal components. ICASSO was used in this work,
since it is inbuilt in the group-ICA toolbox (62) that was used for ICA analysis.
However, also other methods for estimating the consistency of ICs exist (63; 64).

6.5.7 Application of ICA to fMRI data

ICA is well suited for analyzing fMRI data, since both activity-related signals and
noise match the assumptions and limitations of ICA (29). One advantage of us-
ing ICA in fMRI data analysis is that it separates some of the noise sources as
independent components (29; 65).

Spatial ICA is typically used in the analysis of fMRI data. Spatial ICA finds
systematically non-overlapping brain networks without constraining the temporal
domain. In the spatial model, the rows of the data matrix contain the images and
the columns are the voxels. The rows of S are the spatially independent components.
The columns of the mixing matrix A contain the weights, i.e. the time courses of
the spatial ICs.

6.5.8 Group ICA

ICA analysis can be extended to group level. Calhoun et al. (62) proposed a method
for performing group ICA, which was also used in this work. The first step is data
reduction, which can be done in either two or three stages. First the dimension
of each subject’s functional data is reduced. Then, the data from all subjects are
concatenated together and the dimension of this aggregate data set is reduced. The
reduced aggregate data matrix X is then (62)



23

X = G−1




F−1
1 X1

.

.

F−1
M XM


 (30)

where M is the number of subjects and G−1 and F−1
i are the reducing matrices from

PCA for the concatenated data set and for subject i, respectively. Xi represents the
original data matrix from subject i, in which one row contains one volume of fMRI
data. Alternatively, the subjects can be divided into groups of which the dimension
is decreased before the final data reduction. The next step is to apply ICA to
the reduced data set. The mixing matrix can further be partitioned according to
individuals and the ICA model can then be written as




G1

.

.

GM


 ÂŜ =




F−1
1 X1

.

.

F−1
M XM


 , (31)

where Â is the mixing matrix for the group data and Ŝ is the component map. The
individual subject components Ŝi can be also reconstructed utilizing the matrices
G and F:

Ŝi = (GiÂ)−1F−1
i Xi. (32)

The ICs of individual subjects can be used for calculating the mean components and
for t-statistics. Both the group components and the individual subject components
can be scaled for visualization using percent signal change or z-scores.
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7 Materials and methods

7.1 Subjects

Twenty two healthy volunteers (9 females, 6 males, mean age 24 years, range 19–
49 years) participated in the study after written informed consent. The study had
prior approval by the Ethics Committee of Helsinki and Uusimaa Hospital District.
Altogether, the data from 7 subjects were rejected because of technical problems,
drowsiness of the subject or excessive head movements; thus, the following analyses
are based on data of 15 subjects.

7.2 Stimuli

During fMRI scanning, the subjects viewed a 15-min silent film (At Land by Maya
Deren, 1944). The film was followed by a 44-s long compressed version of the film.
This summarization consisted of 22 2-s episodes from the film selected by means
of an automatic video summarization algorithm (66). The algorithm analyzed low
level features and the selection was additionally weighted by face and movement
detection. The summarization was preceded and followed by 20-s resting periods,
during which the subjects were asked to fixate on a cross. Otherwise, the subjects’
task was simply to watch the movie and the summarization. Figure 10 illustrates the
order and durations of the stimuli. The stimuli were delivered using the Presentation
software (version 0.81, http://www.neurobehavioralsystems.com). Videos were
projected (projector Vista X3 REV Q, Christie Digital Systems, Canada, Inc.) to
a transparent screen placed behind the subjects, which the subjects viewed via a
mirror.

7.3 Data acquisition

The fMRI images were acquired with a Sigma VH/I 3.0 T MRI scanner (General
Electric, Milwaukee, WI, USA). Functional images were obtained using gradient
echo-planar-imaging sequence with following parameters: TR 2.015 s, TE 32 ms,

Movie S

15 min 20 s 44 s 20 s

Figure 10: The order of stimuli. The 15 min long movie was followed by a 44-s
summarization (S) of the movie.

http://www.neurobehavioralsystems.com
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FA 75o, 34 oblique axial slices, slice thickness 4 mm, matrix 64 × 64, voxel size
3 × 3 × 3 mm, field of view (FOV) 22 cm. Altogether 485 volumes were collected.
These volumes included 4 dummy scans (the first scans that were acquired to ensure
that a spin system was in a steady state before data collection), which were removed
from further analysis. Structural images were scanned with 3-D T1 spoiled gradient
imaging, matrix 256 x 256, TR 10 ms, TE 3 s, flip angle 15o, preparation time 300
ms, FOV 25.6 cm, slice thickness 1 mm, number of excitations 1. Movements of the
subject’s right eye were followed with SMI MEye Track long-range eye tracking sys-
tem (Sensomotoric Instruments GmbH, Germany), based on video-oculography and
the dark pupil-corneal reflection method. The eye-tracking data were not utilized
in this thesis.

7.4 Pre-processing

The fMRI data were preprocessed using SPM8 software (http://www.fil.ion.ucl.
ac.uk/spm/software/spm8/), including realignment, co-registration, normalization
into MNI space and smoothing with a 6-mm (full-width half maximum) Gaussian
filter. Before normalization, the images were skull-stripped using the FreeSurfer
software (http://surfer.nmr.mgh.harvard.edu/).

7.5 ICA

The IC analysis was performed with the GIFT software (version v2.0d, http://
icatb.sourceforge.net/groupica.htm) for group-ICA. The number of sources
was estimated to be 70 using the minimum description length algorithm inbuilt in
GIFT. Twenty five, 40 and 70 ICs were calculated with the Fast ICA algorithm.
ICASSO analysis was done to confirm the reliability of the components. Three
ICs, representing the sensorimotor, dorsal attention and default-mode networks,
were selected by visual inspection from the 25-component decomposition. From the
decompositions of 40 and 70 components, respectively, ICs were selected by visual
inspection so that they together resembled the spatial maps of the selected ICs
from the 25 component decomposition. The selection was facilitated by spatially
correlating the unthresholded spatial maps with the three 25-component maps. Most
of the selected subcomponents belonged to the eight ICs with highest correlation
coefficients. The correlations between the time courses of the selected components
were computed.

7.6 Sorting of components using inter-subject correlation

The ISC map, revealing the brain areas that are activated temporally similarly
across subjects, has been shown to include extrinsic, stimulus-driven brain networks
(35; 54). Malinen and Hari (67) introduced an approach for spatial sorting of ICs
on the basis of ISC maps to find the most stimulus-driven ICs. This approach
was utilized also in this work. First, the ISC map identified the brain regions that
were most related to the external stimuli. The ICs in each decomposition were

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://surfer.nmr.mgh.harvard.edu/
http://icatb.sourceforge.net/groupica.htm
http://icatb.sourceforge.net/groupica.htm
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sorted according to the spatial overlap with the thresholded ISC map (threshold at
p = 10−7; corrected for family wise error, FWE; minimum cluster size 150 voxels).
The sorting parameter was defined as the equally weighted sum of the Pearson’s
correlation coefficients between the thresholded ISC map and the mean ICs and the
amount of overlapping voxels relative to the total amount of voxels. The amount
of overlapping voxels was determined from binary images, where the value of voxels
exceeding a certain threshold was set to 1 and for the others to 0. Also, the time
series of the components that were most related to the stimulus were compared with
events in the movie.

7.7 Seed-based correlation

The seed-based correlation was done utilizing the SPM8 software. The aim was to
see whether the areas of the independent components sm

25 IC10,
att
25 IC11 and def

25 IC17,
representing the sensorimotor, dorsal attention and default mode networks, really
were functionally connected. In the notation used, the superscript refers to the
network (att = attention, def = default, sm = sensorimotor) and the subscript
to the decomposition to which the component belongs (25, 40 or 70 components).
Three seed points were determined on the basis of the ICA results by subjecting
the individual ICs to group analysis (one sample t-test, p < 0.001 uncorrected)
and selecting a voxel with high statistical significance (p < 10−4 uncorrected) as the
center for the seed-point (a sphere with 6-mm radius). For att

25 IC11 the seed point was
near the IPS (MNI coordinates –24 –76 37) and for def

25 IC17 on the PCC (0 –55 22).
With this criteria, the seed point for sm

25 IC10 lied on the right supratemporal auditory
cortex (54 –10 7). Because this area was not located on the sensorimotor cortex,
another seed point was selected from the right hand area in the left hemisphere, in
the ”precentral knob” (68) (–37 –24 61, calculated as an average from coordinates
reported in earlier studies (69–72)). The mean pre-processed signals from these areas
were extracted for each individual with the MarsBaR software (http://marsbar.
sourceforge.net/). Each extracted time course was used as a regressor in a GLM
analysis to reveal the individual connectivity maps. These maps were then subjected
to a one sample t-test.

http://marsbar.sourceforge.net/
http://marsbar.sourceforge.net/
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8 Results

8.1 Brain areas comprising the sensorimotor network

Figure 11a shows the spatial maps and Figure 11b the time courses of the selected
ICs for the sensorimotor network in each decomposition.

sm
25 IC10 corresponds to the sensorimotor network: it covers bilaterally the pri-

mary motor cortex (MI), the supplementary motor area (SMA) and the primary
somatosensory (SI) cortices bilaterally. It also covers the Sylvian fissure overlapping
with the secondary somatosensory (SII) and auditory cortices in both hemispheres.

In the 40-component decomposition, three subcomponents—sm
40 IC5,

sm
40 IC7 and

sm
40 IC32, shown in Figure 11a—cover the spatial map of sm

25 IC10. Of these, sm
40 IC32

was flipped, and therefore its spatial map and the corresponding time course were
multiplied by –1 for visualization. This IC includes bilaterally the superior MI and
SI and the SMA in the medial surface of the brain. sm

40 IC5 covers the inferior part of
the primary sensorimotor cortex bilaterally. sm

40 IC7 includes parts of the secondary
somatosensory cortex as well as parts of the auditory cortex in both hemispheres.

In the 70-component decomposition, sm
25 IC10 is split into four subcomponents:

sm
70 IC35,

sm
70 IC41,

sm
70 IC1, and

sm
70 IC15.

sm
70 IC35 comprises the supplementary motor area

and bilaterally the most superior parts of the primary sensorimotor cortex. sm
70 IC41

covers bilaterally the superior part of the primary sensorimotor cortex. Together
these two components roughly correspond to sm

40 IC32.
sm
70 IC1 encompasses the inferior

part of the primary sensorimotor cortex and corresponds to sm
40 IC5.

sm
70 IC15 covers

the SII and the supratemporal auditory cortex and is about the same as sm
40 IC7.

Figure 11c shows the splitting of the components in the sensorimotor network
and lists the related brain areas in detail.

8.2 Brain areas comprising the attention network

Figure 12a illustrates the spatial maps and Figure 12b the time courses of the selected
ICs for the attention network.

att
25 IC11 corresponds to the attention network: it covers bilaterally the intrapari-

etal sulcus (IPS), the junctions of the precentral and superior frontal gyri (the FEFs)
as well as inferior temporal areas. In addition, occipital visual areas, the fusiform
gyri, as well as the superior parts of the cerebellum are within this IC.

Two ICs in the 40-component decomposition—att
40 IC38 and att

40 IC15—cover atten-
tion-related brain areas. att

40 IC38 covers bilaterally the IPS, the FEFs, the middle
temporal areas, and some additional areas. In general, att

40 IC38 covers more superior
areas than att

25 IC11. However, the superior areas became visible also in the spa-
tial map of att

25 IC11 when the threshold was decreased to z = 0.5. att
40 IC15 closely

resembles the spatial map of att
25 IC11.

In the 70-component decomposition the attention network is mostly related to
the five subcomponents shown in Figure 12a. att

70 IC43 shows bilaterally the IPS and
the FEFs. It resembles att

40 IC38.
att
70 IC67 is more lateralized to the right hemisphere,

and it extends bilaterally over the inferior IPS and parietal areas. att
70 IC50 is similar
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Figure 11: a) The spatial maps and b) the time courses of the ICs selected to represent the sensorimotor network
in each decomposition. The spatial maps are thresholded at z = 1.5 for the 25-IC decomposition, at z = 2.0 for the
40-IC decomposition and at z = 2.5 for the 70-IC decomposition. c) The splitting of the components. MI = primary
motor area, SMA = supplementary motor area, SI = primary somatosensory area, SII = secondary somatosensory
area, MCC = middle cingulate cortex, PCC = posterior cingulate cortex, STG = superior temporal gyrus (part of
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covered by sm
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IC10, sm

40
IC7 and sm
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IC15 include bilaterally the supratemporal auditory cortex.
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Figure 12: a) The spatial maps and b) the time courses of the ICs selected to represent the dorsal attention
network in each decomposition. The spatial maps are thresholded at z = 1.5 for the 25-IC decomposition, at z = 2.0
for the 40-IC decomposition and at z = 2.5. for the 70-IC decomposition. c) The splitting of the components. IPS
= intraparietal sulcus, FEF = frontal eye field (the junction of the precentral and superior frontal gyrus), ITG =
inferior temporal gyrus, FFG = fusiform gyrus, MT = middle temporal area, IPG = inferior parietal gyrus, SOG =
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Figure 13: a) The spatial maps and b) the time courses of the ICs selected to represent the default-mode network
in each decomposition. The spatial maps are thresholded at z = 1.5 for the 25-IC decomposition, at z = 2.0 for
the 40-IC decomposition and at z = 2.5. for the 70-IC decomposition. c) The splitting of the components. PFC =
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superior and inferior parietal gyrus, the angular gyrus and the SMG), SFG = superior frontal gyrus, IFG = inferior
frontal gyrus, IFC = inferior frontal cortex, MT = middle temporal area.
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to att
70 IC67, but is lateralized to the left hemisphere. att

70 IC51 covers mainly occipital
visual areas. att

70 IC42 coincides bilaterally with the fusiform and lingual gyri as well
as superior parts of the cerebellum. Together att

70 IC67,
att
70 IC50,

att
70 IC51 and att

70 IC42
cover the spatial map of att

40 IC15.
Figure 12c lists the splitting and related brain areas in detail.

8.3 Brain areas comprising the default-mode network

Figure 13a shows the spatial maps and Figure 13b the time courses of the selected
ICs for the default-mode network in each decomposition.

def
25 IC17 represents the default mode network, covering parts of the posterior and

anterior cingulate cortices (PCC and ACC), the precuneus, medial prefrontal cortex,
and bilaterally parts on the temporoparietal cortex. It also extends bilaterally over
the lateral orbital gyrus.

The default mode component def
25 IC17 is split into 3 partly overlapping subcom-

ponents in the 40-component decomposition (Figure 13a). def
40 IC27 is concentrated

on the medial prefrontal cortex. def
40 IC22 and def

40 IC24 look quite similar, def
40 IC22 is

just more lateralized to the left and def
40 IC24 to the right. Together these components

cover parts of the frontal cortex, the PCC, bilaterally parts of the temporoparietal
cortex, the precuneus and the calcarine gyrus.

In the 70-component decomposition, def
25 IC17 is split into five subcomponents

shown in Figure 13a. def
70 IC16 comprises the medial parts of the prefrontal cortex.

def
70 IC64 is lateralized on the right hemisphere and covers parts of the right prefrontal
cortex, the right side of the precuneus and areas on the right temporoparietal cortex.
def
70 IC56 is similar to def

70 IC64, but lateralized to the left hemisphere. def
70 IC14 includes

the inferior parts of the frontal cortex. def
70 IC58 is concentrated on the PCC.

Figure 13c illustrates the splitting and related brain areas in detail.

8.4 ICASSO results

Figure 14 illustrates the 2D curvilinear component analysis projections of the clus-
tered ICASSO-based ICA estimates. Small and tight clusters correspond to similar
component estimates at every run. The background color of a cluster indicates the
average intra-cluster similarity. At the dimensionality of 25, the clusters are tight
and well separated and all clusters have an intra-cluster similarity greater than 0.8.
When the dimensionality is increased to 40, some of the clusters start to overlap and
four clusters have an intra-cluster similarity less than 0.8. At the dimensionality of
70, a large portion of the clusters distributed in the center of the graph overlap con-
siderably and several clusters have an intra-cluster similarity lower than 0.8. Thus
the ICA estimation starts to become less stable at high dimensionalities.
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Figure 14: The 2D curvilinear component analysis projections of the clustered IC
estimates in each decomposition. The number of a cluster refers to the IC number.
Note that the pairwise similarities sij are not plotted if the average intra-cluster
similarity is over 0.9.

8.5 IC time courses

8.5.1 Correlations between the IC time courses

Figure 15 illustrates the correlation matrix for the selected components. The solid
lines segregate the decompositions of 25, 40 and 70 components from each other. The
dashed lines separate the components belonging to the sensorimotor, dorsal attention
and default-mode networks, respectively. The correlations explained in more detail
below are highlighted with white circles/ellipses and indicated with capital letters
(A–R). Also the spatial maps of the ICs of the 70-component decomposition are
illustrated. All correlations mentioned hereafter are statistically significant (p <
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Figure 15: The correlation matrix of all the selected components. The solid lines
segregate the decompositions of 25, 40 and 70 components from each other. The
dashed lines separate the components belonging to the sensorimotor, dorsal attention
and default mode network, respectively. The areas encircled with white and labeled
with capital letters are explained in more detail in the text. The components, whose
time courses match the mean extracted fMRI signal badly (from top to bottom
sm
70 IC35,

sm
70 IC41,att70 IC43,att70 IC51,def70 IC58 and def

70 IC64) are indicated with arrows.

10−3).
In the 40-component decomposition, the subcomponents belonging to the same

network correlate positively with each other (A–C), except for sm
40 IC32, whose time

course correlates very weakly with the other 40-IC sensorimotor components (A) and
it does not correlate statistically significantly with the time course of sm

25 IC10 (D).
The time courses of att

40 IC15 and att
25 IC11 are strongly positively correlated (r = 0.99)

(E). att
40 IC38 correlates modestly with att

25 IC11 (r = 0.18) (E). The ICs of the default-
mode network in the 40-component decomposition correlate positively with def

25 IC17
(F).

In the sensorimotor network, the time course of sm
70 IC41 correlates negatively

with its neighbouring components sm
70 IC35 (r = −0.96) and sm

70 IC1 (r = −0.33) and
positively with the time course of sm

70 IC15 (r = 0.68). sm
70 IC35 correlates negatively

with sm
70 IC15 (r = −0.63) and positively with sm

70 IC1 (r = 0.44). (G)
Within the attention network, att

70 IC43 and att
70 IC51 correlate positively with each

other (r = 0.94) and negatively with the other components neighbouring them (H).
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The time courses of att
70 IC43 and att

70 IC51 also correlate negatively with the time
courses of the components belonging to the attention network in the lower dimen-
sionalities (I–L).

Within the default-mode network, def70 IC16 has a negative correlation with def
70 IC58

(r = −0.45) and def
70 IC64 (r = −0.50) (M). def

70 IC58 and def
70 IC64 correlate negatively

with the selected default mode components in the 25- and 40-component decompo-
sitions (N,O).

In general, components of the attention network correlate negatively with the
ICs of the default mode network within and across the decompositions, except for
the ICs in the 70-component set (P–R).

8.5.2 IC time courses and the extracted fMRI signal

As noted above and seen in Figure 15, the time courses of some neighbouring ICs
in the 70-IC decomposition correlate negatively with each other. Because strong
negative temporal correlation between neighbouring brain areas is physiologically
unlikely, the original preprocessed fMRI data were extracted from the areas of the
ICs from each subject to see how well the IC time courses match with the actual
signal. The regions of interest (ROIs) were spheres of 6-mm radius with the center
at the highest peak of the t-maps of each component. The correlations between the
ROI-signals and the time courses of corresponding individual IC time courses were
computed. Figure 16 shows the mean (± standard deviation) correlation for each
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Figure 16: The mean correlations and standard deviations between the time
courses of the selected components in the 70-IC decomposition and the extracted
BOLD signals. Only statistically significant correlations are shown (p < 0.05).
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component.
Two components did not have statistically significant correlation with the ROI-

signal (att70 IC51 and def
70 IC64; not shown in the Figure 16) and three ICs (sm70 IC41,

sm
70 IC35 and def

70 IC58) have only a weak correlation with the extracted signal. One
component of the attention network (att70 IC43) correlates negatively with the ex-
tracted signal (r = −0.33 ± 0.12), indicating that the time course of this IC was
flipped. These six ICs with spurious time courses are indicated with arrows in Figure
15.

8.6 Single-subject ICA

Since the time course of att
70 IC43 was most probably flipped, this IC was further

examined. ICA was performed for each subject individually to see whether the
IC time courses get distorted only in group ICA or in ICA in general. Seventy
components were estimated for each subject and an IC corresponding to att

70 IC43
was selected according to best spatial correlation. The correlations between the
time courses of these selected components and the mean time course of att

70 IC43 were
then computed. For two subjects, no significant correlation was found and for the
rest of the subjects, the correlation was negative (mean r = −0.31± 0.17), meaning
that the flipping occurred only in group ICA.

8.7 ICASSO analysis with subjects in different concatena-
tion order

It has recently been shown that the subject concatenation order can affect the output
of GIFT (73). Therefore, the group ICA analysis with ICASSO was repeated by
giving the subjects’ data in a different order into GIFT. Spatial correlation was used
to match the ICs between the first and second ICASSO analysis. The correlations
between the time courses of these ICs were then computed similarly as was done for
the first data order.

Figure 17 shows the correlation matrices of the time courses in the 70-IC de-
compositions. Clearly, the matrices for the first and second ICASSO analysis differ.
Notably, with the second data order, neighbouring components do not correlate
negatively with each other, as was the case for the first data order. Still, the time
course of the component corresponding to att

70 IC43 correlates negatively with the
other attention-related components. Also the time course of the IC corresponding
to sm

70 IC41 has only weak correlation with the other sensorimotor components. The
IC corresponding to def

70 IC58 is the only default component that does not correlate
negatively with the ICs of the attention network. It still correlates positively with
the other default components.

8.8 IC ordering using the ISC map

Figure 18a shows the ISC map used to sort the ICs (thresholded at p = 10−7

FWE-corrected, minimum cluster size 150 voxels). The map covers bilaterally the
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Figure 17: The correlation matrices of the time courses of the ICs of the 70 com-
ponent decompositions for the ICASSO analysis with subjects’ data in two different
concatenation orders (data order 1, data order 2).

visual areas in the occipital lobe, the middle and inferior frontal areas bilaterally,
the temporal lobes, precentral gyri, bilaterally the IPS and the FEFs, parts of
the supplementary motor area and cingulate cortex, the precuneus, cuneus, the
hippocampi and parahippocampal gyri, fusiform and lingual gyri, basal ganglia and
superior parts of the cerebellum.

The spatial maps of the components in each decomposition were ordered accord-
ing to the spatial overlap with the ISC map to find out which of the ICs were most
related to the stimuli. Figure 18b shows the sorting parameters for the ICs in each
decomposition. Components covering the visual cortex had high sorting parameter
values as expected for the silent video stimulus. Also the components belonging to
the attention network spatially overlapped the ISC map. Instead, the sensorimotor
and default-mode ICs had only a minor spatial overlap with the ISC map.

8.9 Relation to events in the movie

Since the ISC map suggested that only the visual and attention components were
closely related to the stimuli, the time courses of these components, only, were
compared with events in the movie by taking into account the typical haemodynamic
lag of 6 seconds. Because the reliability of the time courses of the components in
the 70-IC set was uncertain, components in the 40-IC set were evaluated. att

40 IC38
covered bilaterally the IPS and the FEFs. Because att

40 IC15 included higher order
visual areas, also one component comprising the primary visual area (vis40 IC21) but
not belonging to the attention network was included in the analysis.

Figure 19 illustrates the time courses of these three components with scenes
associated with maxima and minima of the time courses. The time courses of att

40 IC38
and att

40 IC15 are very similar. Interestingly, most of the peaks coincide with hand
action or hand movement. The visual component vis

40 IC21 does not peak at all of
these time instants. The movie and the summarization are illustrated in Figure
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duration of the movie followed by the summarization. Below the time courses are
examples of movie scenes associated with peak activity indicated by vertical lines in
the time courses.

19 with yellow bars on the time axis. The end of the movie (at t = 884 s), the
period with no visual stimulation (t = 884–904 s) and the beginning (t = 904 s)
and end (t = 948 s) of the summarization can clearly be distinguished in the time
courses of att

40 IC15 and vis
40 IC21, but not so obviously in att

40 IC38.
att
40 IC15 includes also

visual areas but att
40 IC38 does not, so the existence of visual stimulation affects more

the time course of att
40 IC15. The activity of the visual component vis

40 IC21 decreases
during scenes with little details, for example during a scene of a desert.

8.10 Seed-based correlation

Figure 20 illustrates the correlation maps produced using four seed points. All maps
are thresholded at p = 0.01 (FWE-corrected).

The correlation map for the seed region located in the IPS (cluster threshold
100 voxels) shows bilaterally the IPS, parts of the parietal cortex, the right FEF
and the middle temporal areas, all known to belong to the dorsal attention network
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and also covered by att
25 IC11. The correlation map matches well with the spatial

map of att
25 IC11 also in other brain areas, such as the visual cortex. In addition, the

correlation map covers in both hemispheres the precentral gyrus, the central sulcus,
the SMG, the calcarine gyrus, putamen, pallidum, hippocampus and parts of the
cerebellum. It also extends to precuneus, cuneus and middle cingulum.

For the seed in the PCC, the correlation map (cluster threshold 50 voxels) covers
the same areas as def

25 IC17 and extends also bilaterally to the lingual gyrus and the
calcarine gyrus, as well as the left thalamus and caudate.

For the seed in the right hand knob the correlation map (cluster threshold 150
voxels) reveals connectivity between MI, SI, SMA and SII, precuneus, middle cingu-
lum, IPG, parts of the frontal cortex and the rolandic operculum. The map agrees
well with the spatial map of sm

25 IC10, except that
sm
25 IC10 did not include frontal areas

and the correlation map does not reach the auditory cortex. However, the correla-
tion map produced with the seed located on the maximum of the t-map of sm

25 IC10
on the right supratemporal auditory cortex (cluster threshold 150 voxels) covers the
part of sm

25 IC10 located in the auditory cortex and SII, but does not include any
primary motor or somatosensory areas. The map extends to ACC, MCC, thalamus
and basal ganglia; the latter areas include relay regions of the motor and sensory
circuits.
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Figure 20: Correlation maps produced using four different seed points: a) local
maximum of att

25 IC11 in the IPS b) local maximum of def
25 IC17 in the PCC c) the motor

cortex hand knob in the left hemisphere, and d) global maximum of sm
25 IC10 in the

right supratemporal auditory cortex. The seed points are shown as blue circles.
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9 Discussion and conclusions

In this thesis, three cortical networks, i.e. the sensorimotor, dorsal attention and
default-mode networks, were examined with ICA, seed-based correlation and ISC
applied to fMRI data acquired with a 3-T magnet. The results of ICA and seed-based
correlation were compared and the stimulus-related components were identified by
examining their spatial overlap with the ISC map. The effect of increasing the
number of estimated independent components on the results of group ICA was
examined. In addition, the interest was to find out how the activations in the
networks were modulated by the movie stimulus.

The three networks were identified with ICA and seed-based correlation from
fMRI data collected when subjects were watching a 15-min film (”At Land” by
Maya Deren). The results of these two methods resembled each other. The results
of ICA differed at the three different dimensionalities. When the dimensionality of
ICA was 25, the ICs of the sensorimotor and dorsal attention networks included
brain areas that do not belong to the networks as described in the literature. In
the 40-IC decomposition, the ICs resembled the previously described sensorimotor
and dorsal attention networks (31; 32) without any additional areas, and therefore
this dimensionality seemed to be close to the correct one. At dimensionality of 70,
the networks split further into smaller subnetworks and peculiarities in the IC time
courses appeared. The problem of distorted time courses seemed to be specific to
group ICA.

According to the spatial overlap with the ISC map, the visual and attentional ICs
were most closely related to the stimulus. The activity of these ICs followed distinct
features in the movie. The sensorimotor ICs were not stimulus-related, which was
surprising since the movie included a lot of movement and touch, and was expected
to activate the sensorimotor cortex.

9.1 Effect of the number of ICs on group ICA results

With 25 components the networks were wide-ranging, but still functionally feasible.
At this low dimensionality of ICA, additional areas merged to the sensorimotor and
attention ICs. The attention-related IC included visual areas, indicating that the
activity in these areas was rather similar. Coinciding activation of the attention
network and visual areas is reasonable during watching to and concentrating on a
silent film. The correlation map produced with the seed in the IPS supported the
assumption of functional connectivity, since it matched well with the attention IC
that also included visual areas. The ISC map also included areas of the attention
network as well as visual areas.

In the 25-IC decomposition, the sensorimotor IC included auditory areas. The
SII and parts of the auditory cortex occurred in same IC also when the dimension-
ality of ICA was increased. That result could be due to the proximity of the SII and
the auditory cortex, albeit, audiotactile interactions are known to exist (74–77). In
a similar way, the seed-based analysis showed functional connectivity between these
areas. In contrast, the seed-point analysis with a seed in the hand motor cortex did
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not show any connection between the sensorimotor network and auditory cortex.
On the other hand, with the seed in the auditory cortex, the auditory cortex and
SII but no primary sensorimotor areas were covered by the correlation map.

When the number of components was increased, the networks split into func-
tionally reasonable subnetworks. Additional areas in the attention and sensorimotor
networks were separated from the networks when the dimensionality was increased
from 25 to 40. With 70 components, the networks split further into smaller subnet-
works. The splitting either resulted in lateralized subnetworks or the networks were
separated in the superior-inferior direction. Some functionally meaningful subareas
of the networks formed own ICs, such as the PCC in the default-mode network and
the SMA in the sensorimotor network.

One IC of the attention network emerged only when the dimensionality was
increased to 40. Also in the study of Abou-Elseoud et al. (9), where the characteris-
tics of RSN-related ICs at different model orders were studied, new subcomponents
emerged at higher model orders. Similarly as here, at low dimensionalities the
individual signal sources merged into singular components involving functionally
separate units. The authors suggested that a high model-order forces ICA to search
for more local non-Gaussianity maxima and therefore the algorithm succeeds better
in separating and finding functionally relevant components.

Some of the components did not split any further when the dimensionality was
increased from 40 to 70. Also this result agrees with the findings of Abou-Elseoud
et al. (9), who suggested that the stable components might represent less connected
nodes, while the branching ones are kind of connector hubs with lots of connections
to other nodes. The stable components, with less connections, are functionally more
independent.

When the number of ICs was high (70), some peculiarities occurred in the IC
time courses so that a few neighboring components had negative correlations with
each other. Such a behaviour is physiologically unlikely and thus most probably was
an artifact of the ICA analysis. The distortion was confirmed by the observation
that the time courses of all ICs did not match with the raw fMRI signal extracted
from the IC maxima. Especially one IC correlated negatively with the extracted
signal, indicating that the time course, but not the spatial map of this IC was
flipped. Nevertheless, the spatial splitting was still functionally meaningful as it is
physiologically feasible that brain networks consist of smaller subnetworks of slightly
different function. However, splitting can result from a too high dimensionality of
ICA so that the algorithm ”forces” areas actually belonging to the same component
apart, and thus the time courses of these components get distorted. This result
agrees with earlier work of Beckmann and Smith (10), who concluded that estimating
too many components causes overfitting and leads to arbitrary splitting of the ICs
due to unconstrained estimation.

When the dimensionality of ICA was 40, the additional areas and the networks
were separated as distinct ICs. No negative correlations existed between the time
courses of ICs covering neighbouring brain areas and no IC time courses got flipped.
Thus, 40 likely was closest to the correct dimensionality.

The problem of spurious or flipped time courses at a too high dimensionality was



42

specific to group ICA, since no peculiarities occurred when ICA was performed at
individual level.

Similarly to earlier findings (73), the subject concatenation order affected the
outputs of GIFT. Despite slightly different results, the modified subject order still
led to spurious or flipped time courses.

The data reduction steps included in the group-ICA estimation might have con-
tributed to the peculiarities of the IC time courses. In this work, data reduction
was performed in two stages. First, the data of each subject were compressed with
PCA. Then the compressed data from all subjects were concatenated to a big data
matrix and the dimensionality of this aggregate data set was reduced. In the first
step, the data from each subject were reduced to the same dimensionality (70).
Also, the number of retained components was the same in the subject-level and
group-level PCA. Erhardt et al. (78) compared different group-ICA methods for
fMRI data analysis including data reduction, ICA estimation and back reconstruc-
tion. Concerning data reduction, they concluded that on one hand, estimating the
same number of components in the subject- and group-level retained the greatest
information. On the other hand, the estimation quality of the subject-specific IC
time courses and spatial maps was better when more components were retained in
the subject-level reduction than in the group-level reduction.

The results of this work suggest that the MDL algorithm inbuilt in GIFT over-
estimated the number of components, since the number of components estimated
by MDL (70) resulted in peculiarities in the IC time courses. The MDL criterion
is based on the assumption of independent and identically distributed (i.i.d.) sam-
ples. Li et al. (43) suggested that smoothing, a common pre-processing step of
fMRI images, weakens the i.i.d. assumption. When dependent samples are taken
as i.i.d., the MDL criterion tends to overestimate the number of sources. Li and
coworkers proposed a subsampling scheme to improve the performance of different
information-theoretic criteria, such as MDL. Another factor that might cause the
MDL criterion to overestimate the number of sources is the presence of noise in the
fMRI signal. Cordes et al. (79) introduced another approach for order selection
in fMRI data based on an autoregressive noise model. Unlike information-theoretic
criteria like MDL, this method takes into account the autocorrelations of noise.

According to the ICASSO results, the repeatability of the ICs decreased when
the number of component estimates was increased. With 70 ICs, a large portion
of the clusters of the single-run-estimates overlapped considerably. Thus the ICA
estimation started to get less stable at a high dimensionality. Significant reduction
in ICA repeatability with increasing model order has been reported earlier (9; 43).

9.2 Temporal activation patterns of the ICs

According to the ISC map, the visual and attention-related ICs were most stimulus-
related of all components. Instead, the components of the default and sensorimotor
networks overlapped poorly with the ISC map, indicating that watching the movie
did not affect these networks similarly across subjects. On the other hand, most of
the sensorimotor components were very stable in the ICASSO analysis. Thus, the
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sensorimotor network seemed to have been consistently active, but not significantly
affected by the movie, at least not in a similar manner across subjects.

The activation patterns of the visual and attention ICs followed specific features
in the movie. The attention-related components were activated especially during
hand actions. These components covered the IPS, which has been shown to be acti-
vated during watching manual activity (80; 81). It might also be that the activation
was driven by attentional processing, when the subjects were consciously following
the movements of the hands. The visual component did not peak at these time in-
stants, indicating that the attentional components, although containing some visual
areas, were not entirely driven by the visual features.

In general, the time courses of the ICs belonging to the attention network corre-
lated negatively with the time courses of the ICs of the default-mode network. Thus,
the activity of the default network decreased during attention-involving processing.
This result agrees with earlier studies that have shown deactivation in the brain
regions of the default mode network during visual attention (35; 82).

9.3 Conclusions

This thesis had two main objectives. The main focus was on examining the effect of
increasing the number of components to be estimated on the results of group ICA.
Stimulus-related components were identified utilizing the spatial overlap with the
ISC map and their activation time courses were compared to events in the movie.

According to the ISC map, the visual ICs and ICs of the dorsal attention network
were most stimulus-related and their activation patterns followed distinct features
in the movie.

The results of group ICA were different at the three dimensionalities tested. At
low dimensionality (25), ICs merged together, but in a meaningful way, possibly
providing a general picture of large-scale neuronal networks. The dimensionality
of 40 ICs seemed to be closest to the correct one, since at this dimensionality the
additional areas were separated from the networks and the IC time courses appeared
reliable. At high dimensionality (70), the ICs split into functionally meaningful
subcomponents, but peculiarities occurred in the IC time courses, indicating that the
number of ICs was too high. This problem did not occur when ICA was performed
at individual level, suggesting that the error might be generated either in the PCA
or back reconstruction steps involved in group ICA analysis. Erhardt et al. (78)
compared different group-ICA methods including data reduction, ICA estimation
and back reconstruction. The conclusion was that using subject-specific PCA with
noise-free ICA with certain back reconstruction method provides the most robust
and accurate IC spatial maps and time courses. However, whether the problem of
peculiar IC time courses applies only to one or all of the possible combinations of the
different PCA and back reconstruction methods and in which step the error occurs
are issues that need further examination.

The results of this work contribute to current understanding of how the number
of IC estimates affects the outcome of group ICA. The findings could be applied to
empirical probing of the correct number of independent sources in group-fMRI data.
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