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Abstract 
The understanding and optimisation of the metallurgical processes require access to accurate 
data of the physical properties of slags. Viscosity is one of the most important properties in the 
case of metallurgical melts, in view of its direct effect on the kinetic conditions of the processes, 
and is one of the key factors to be taken into consideration in process modeling. 

 
The difficulty and high cost of measuring the viscosity of slags has led to development of 

number of viscosity models. Most of these models employ parameters extracted from 
experimental data of viscosity, which ensure the validity of the models in viscosity estimation. 

 
In this report models developed to estimate the viscosity of fully molten oxide slags were 

discussed. In addition viscosities of converter slags (Basic Oxygen Furnace, Argon-Oxygen 
Decarburization furnace) predicted with different models were compered. 

 
In the case of BOF-slag the Iida and the modified Urbain models seemed to be more reliable 

than the other models in predicting the viscosities. The values calculated by KTH model were 
too high for this high basic slag whereas in the case of NPL model the slag composition was 
observed to be outside of the working range of the model. 

 
Urbain model modified by Forsbacka as well as the modified Iida models takes account of  

chromium oxide as a separate component in the calculations and are thus assumed to be more 
reliable than the other models in predicting viscosities of chromium containing slags. However 
the reliability of these models is debatable in the case of high chromium containing slags e.g. 
AOD-slag after oxidising period due to existing of solid phases in the slag. 

 
Iida as well as the Urbain model modified by Forsbacka are also assumed to be reliable 

predicting viscosity of slag composition corresponding the AOD-slag after reduction period. 
Also NPL-model seemed to give reliable viscosity values, since in this case the slag composition 
is inside the working range of the model. 

 
Although there are plenty of experimentally measured viscosity data available for ternary 

systems, less data in limited ranges are available as the order of the system gets higher. Also 
lack of experimental data of very basic slag compositions as well as slags containing iron and 
chromium oxides is apparent. Due to lack of experimental data the performance of these 
models in predicting viscosities of converter slags was not able to evaluate. Thus more 
experimental work is necessary to provide the data to test and optimise the models for these 
very complex slag compositions. 
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1 Introduction 
 

Slag metallurgy is an essential part of metal manufacturing. Slags are used for refining metal, 

i.e. dissolving impurity elements from metal (e.g. S) in order to achieve required 

composition, slags remove detrimental non-metallic inclusions (oxides and sulphides), 

protect the metal from oxidizing atmosphere and also act as thermal insulation layer on 

molten metal. Furthermore, slag is often a medium, where reactions take place. The various 

processes and different purposes in which slags are involved, each obviously demands 

particular properties of slag, and thus a certain composition.[1] 

 

The undersanding and optimisation of the metallurgical processes require access to accurate 

data of the physical properties of slags. Viscosity is one of the most important physical 

property of slag, in view of its direct effect on the kinetic conditions of the processes. The 

transport of mass and heat, the solubility of slag formers and additions, the separation of 

metal and slag are improved by the low viscosities. But on the other hand a low viscosity of 

aggressive slags increases the correction of the refractory material of metallurgical vessels.[2,3] 

 

The significance of slag viscosities in many metallurgical processes involving production, 

refining and casting, in the area of ironmaking and steelmaking as well as nonferrous 

metallurgy has long been recognised. Viscosity of molten slag is related to internal structure 

of oxide melt, and very sensitive to the changes of temperature, slag composition and oxygen 

partial pressure [4]. 

 

Generally, slag viscosity has difficulty in being precisely measured, and predicted by 

empirical methods. Viscosity measurements are also very expensive to perform. Therefore, 

the development of a reliable viscosity model has been required to accurately and reasonably 

estimate slag viscosities over whole composition range for multicomponent oxide systems 

through the structural features of oxide melts.[4] 

 

Viscosities for molten oxide slags systems have been extensively studied and many models 

have been developed. This report provides an overview of different viscosity models 

developed to estimate the viscosity of fully molten oxide slags. In addition the performance of 

these models in predicting viscosities of some industrial slags will be compared. 
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2 Viscosity  
 

2.1 Definition 
 

Viscosity (�) is a measure of the internal friction of a fluid. This friction becomes apparent 

when a layer of a fluid is made to move in relation to another layer (Figure 1). 

 

 

 

     Figure 1.  Representation of the viscous flow of a liquid in  
     response to an applied shear force [5]. 
 

 

The greater the friction, the greater amount of force required to cause this movement.[5] 

 

dy
dv

dy
dv

A/F �
���  (1) 

 

The term F/A indicates the force per unit area required to produced shearing action “shear 

stress (�)” and dv/dy is a measure of the change of speed at which the intermediate layers 

move with respect to each other and is called “shear rate”. 

 

rateshear
stressshear

��  (2) 

 

The SI-unit for this dynamic viscosity is Pa·s (Nm-2s). A common non-SI unit is P (poise), 

equal to 0.1 Pa·s. 

 

In many scenarios, it is practical to use a quantity called the kinematic viscosity �, which is 

dynamic viscosity divided by density (� = �/�). The SI-unit for kinematic viscosity is m2s-1, 

and a common non-SI unit is St (stoke), equal to 0.0001 m2s-1. 
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Most metallic melts and molten slags are Newtonian fluids where the viscosities are 

independent of the shear rate, and thus the viscosity is defined according to Newton’s law as 

the proportionality constant between the shear stress and the velocity gradient normal to the 

shear stress (Figure 2) [6, 7]. 

 

 
   Figure 2.  Shear stress - shear rate behaviour of Newtonian and non-Newtonian fluids.[7] 

 

 

Non-Newtonian fluids exhibit a more complicated relationship between shear stress and 

velocity gradient than simple linearity. There are several types of non-Newtonian flow 

behavior, characterised by the way a fluid's viscosity changes in response to variations in 

shear rate[7]: 

Psuedoplastic 

This type of fluid will display a decreasing viscosity with an increasing shear rate. This type of 

flow behavior is sometimes called shear thinning. 

Dilatant 

Increasing viscosity with an increase in shear rate characterises the dilatant fluid. Dilatancy is 

also referred to as shear thickening flow behavior.  

Plastic 

This type of fluid will behave as a solid under static conditions. A certain amount of force 

must be applied to the fluid before any flow is induced; this force is called the yield value. 

Once the yield value is exceeded and flow begins, plastic fluids may display Newtonian, 

pseudoplastic, or dilatant flow characteristics. 

 

Both Newtonian and non-Newtonian behavior has been observed in slag systems. Non-

Newtonian behavior is complex and can involve pseudoplastic flow of the fluids. Newtonian 

behavior has been reported to occur in slag systems containing less than 10–40 vol.% solids. 

The viscosity behavior of slags containing a high volume percentage of solids has been found 

to be more accurately described as Bingham plastics.[8] 
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2.2 Temperature dependence of viscosity 
 

Viscosity of molten slag is related to internal structure of oxide melt, and very sensitive to the 

changes of temperature and slag composition. The temperature dependence of the viscosity 

(�) is usually expressed in the forms of the Arrhenius relationship [9]: 

 

 RT
E

A

A

eA ���  (3) 

 

where AA is the pre-exponential factor, R is the gas constant, EA the activation energy and T 

temperature (K). 

 

However, molten slags are made up of discrete ionic structural units and their activation 

energy is closely related to the type of ions and ionic complexes present as well as the 

interionic forces they give rise to. Since types and sizes of ions change with temperature, the 

activation energy changes with temperature. In order to account for this change, the 

Wayman-Frankel relationship is sometimes used [6]: 

 

RT
E

W

W

eTA ���  (4) 

 

where AW and EW are similar to the AA and EA parameters in equation (3) but will have 

different values. In many cases this relationship has been found to give better agreement with 

experiemntal data than can be achieved using th Arrhenius expression (Eq. 3) [5]. 

 

Since increased temperature loosens up the structure, the viscosity will deacrease with 

increasing temperature. Usually viscosity is exponentially proportional to inverse 

temperature; however at a certain temperature, very small changes in temperature can result 

in large changes in viscosity. This temperature is called a temperature of critical viscosity 

(TCV, Figure 3). The nature of a such phenomenon is related to the crystallization of the solid 

phase from the melt, which in turn, affects the slag viscosity bahaviour.[10] 

 

 
      Figure 3.  Schematic diagram of the definition of  
      Temperature of critical viscosity (TCV).[10] 
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2.3 Effect of slag composition on viscosity 
 

As the slags are ionic in nature and as the extent of polymerisation varies with the metal 

oxide contents in the slag, it can be surmised that the viscosities of slags are extremely 

sensitive to the size of ions as well as to the electrostatic interactions, and thereby to the 

structure of slags. [11] 

 

The slag systems in metallurgical process often involve numerous components. The oxides 

usually found in steel slags are Al2O3, CaO, Cr2O3, MgO, MnO, and SiO2, as well as FenO. Most 

of these oxides are also important components in the slags of nonferrous metals.[12]  

 

Network formers such as SiO2, P2O5 and B2O3 possess strong, highly covalent metal-oxygen 

bonds, leading to high liquid viscosities. With addition of alkali and alkali earth oxides, Li2O, 

Na2O, K2O, MgO, CaO, as well as other two-valent oxides like MnO and FeO, the network 

breaks down and, consequently, the viscosity decreases gradually. The magnitude of the 

effect is strongly dependent on the components and their proportions present in the slag. 

Amphoteric oxides, like Al2O3, Fe2O3, may act either network former or breaker following the 

composition of the slag. [8, 11, 13] 

 

In the case of transition metals (e.g. Fe, Cr) it is important to know the oxidation state (Fe2+ 

or Fe3+, Cr2+ or Cr3+) since they have different effect on the viscosity. The oxidation states 

depend critically on oxygen partial pressure, temperature and bulk composition of the slag, 

and any of these changes can lead to significant changes in phase equilibria and to variations 

of the slag viscosity.[8, 14] 

 

 

2.4 Measurement of slag viscosity 
 

Knowledge on viscosity of molten oxide slag has been of a significant importance in various 

kinds of metallurgical processes for metal production. A wide range of techniques has, over 

the years, been developed to measure the viscosity of various liquids at high temperatures. 

Due to the high temperatures involved in the determination, the following methods are 

usually adopted: the capillary method, the falling body method, the oscillating methods, as 

well as the rotating cylinder method [11]. The methods used for measuring viscosities of slags, 

glasses and fluxes are summarised in Table 1. Detailed descriptions of different methods can 

be found for example in reference [9]. 
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Table 1.  Methods used for measuring viscosities of slags, glasses and fluxes.[9] 

 
 

The most popular method of measuring slag viscosities is the concentric cylinder method, 

which consists of centrally - aligned bob in a cylindrical crucible [9]. The method can be 

operated by measuring the torque when rotating either the bob or the crucible; the rotating 

bob method tends to be more popular because of ease of operation. Rotation speed is 

determined by the viscosity and torque measured and it is usual to make measurements at 

least two different speeds to ensure the flow is Newtonian. Falling sphere and capillary 

viscometers have been used for slags but tend to be difficult to operate at high temperatures 

because of the need for a large zone of uniform temperature. Oscillating viscometers have 

been used for measuring de-polymerised slag viscosities [9]. 

 

As mentioned before viscosity of molten slag is very sensitive to the changes of temperature 

and slag composition. Hence experimental measurement of slag viscosities at high 

temperatures is inherently difficult to carry out and the accuracy of the measurements may 

be influenced by a number of factors. The following three categories of experimental errors 

may inflect on the accuracy and thereby the reliability of the viscometric evaluations: (i) 

instrumental factors, (ii) material factors and (iii) hydrodynamic factors. Instrumental 

factors relate to inadequate temperature control and geometric misalignment within the 

viscometer. Examples of material factors are inhomogeneities in the liquid due to improper 

mixing, molecular degradation, solvent evaporation, phase separation and particle 

agglomeration. Hydrodynamic factors involve flow instabilities, secondary flows, end effects 

and transient effects due to fluid elasticity. Any one, or a combination of, these factors can 

lead to significant errors and corresponding misinterpretation of the executed data. The 

uncertainty in the measurements for many slags is ca. ± 20%. The very best viscosity 

measurements are probably subject to an uncertainty of ca. ± 10%. [11, 15]. 

 

Knowledge of viscosities is of immense important in the modeling of high temperature 

processes. Before accepting and using experimentally-determined viscosities a careful and 

systematic analysis of the experimental results should therefore be carried out in order to 

identify inaccurate and erroneous measurements, and exclude them from consideration 

when undertaking optimisation of model parameters [14, 16].  

 

A number of compilations and reviews are available that summarise and evaluate the 

experimental data on slag viscosities published in the literature [9, 12, 16, 17]. 
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3 Viscosity models for molten slags 

Viscosity of slags is a complex function of the slag composition, temperature and oxygen 

partial pressure in the system. Slags commonly contain four or more main chemical 

components that have a complex effect on viscosity. The determination of viscosities of the 

industrial slags is therefore a complicated task due to large number of variables and can not 

be solved by means of experimental measurements only.[18] The difficulty and high cost of 

measuring the viscosity of slags has led to development of number of viscosity models. 

Mathematical models can be used to predict the trends in viscosity as a function of the key 

variables, and so assist in the selection of process conditions and the optimisation of the 

performance of the system interest. [8] An excellent classification of the various models 

available and their salient features has been presented by Kondratiev et al.[8] and Mills[15]. A 

summary covering most of the published viscosity models suitable for use in metallurgical 

applications and the particular chemical and metallurgical systems to which they have been 

applied is given in Table 2. 

 

Table 2.  Classification of slag viscosity models.[8] 
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The early-stage models were empirical, using limited experimental data to obtain the model 

parameters. A number of viscosity models use of the well-known Arrhenius equation (Eq. 3) 

to describe the temperature dependence of silicate viscosity. However, the compositional 

dependencies of the models are still fully empirical. More advanced viscosity models 

introduce a more fundamental physicochemical basis into the viscosity description. For 

example, the NPL model also uses the Arrhenius equation for temperature dependence of 

slag viscosity, but links the compositional dependence to the corrected optical basicity of the 

slag, which in turn can be obtained from experimental data or estimated. Many viscosity 

models are based on the Weymann-Frenkel kinetic theory of liquids (Eq. 4). In many cases, 

these models have been found to give better agreement with experimental data than can be 

achieved using the Arrhenius expression. The quasi-structural models have been developed to 

take into account the complex internal structures of molten slags. Thermodynamically based 

viscosity models have been developed using a number of very different approaches. [8, 19] In 

recent years, the capabilities of commercial thermodynamic software packages have 

expanded from the estimation of thermodynamic properties to the estimation of parameters 

to represent the slag structure and which lead to the calculation of slag densities and 

viscosities[20]. 

 

In this report models based on fully liquid Al2O3-CaO-MgO-SiO2 system have been 

considered since it is a key slag system for ironmaking and ferroalloys production.  

 

 

3.1 Urbain Model 
 

The Urbain formalism is one of the most widely used slag viscosity models. The model is 

based on CaO-Al2O3-SiO2 system and in the model the slag constituents are classified into 
three categories: glass formers (XG); modifiers (XM) and amphoterics (XA)[9, 20-22].
 

XG  =  XSiO2 + XP2O5 (5) 

 

XM  =  XCaO + XMgO + XFeO + XMnO + XCrO + XNiO + XNa2O + XK2O + XLi2O +  

       2XTiO2 + 2XZrO2 + 3XCaF2 (6) 

 

XA  =  XAl2O3 + XFe2O3 + XB2O3 + XCr2O3 (7) 

 

The Urbain model works predominantly on basis of MxO so this creates extra ions and it is 

necessary to normalise XG, XM and XA by dividing them by term (1 + XCaF2 + XTiO2 + XZrO2) to 

give *
A

*
M

*
G  and X, XX .[9] 
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The model assumes Weymann-Frenkel relation[22]:

,nmBAln;
T

BexpAT)P( ����	



��

��
1000

 (8) 

 

where A and B are compositionally dependent parameters whereas m and n are empirical 

parameters. 

 

Urbain found that A and B were linked through the equation [22] 

 

 -ln A = 0.29B + 11.57 (9) 

 

The parameter B can be expressed by third order polynomical equation (10) where B0, B1, B2 

and B3 can be obtained by equations (11) and (12) 

 

)(XB)(XBXBBB 3*
G3

2*
G2

*
1o G

����  (10) 

 

 cbB 2
iiii ����� a  (11) 

 

where subscript i can be 0, 1, 2 or 3 and a, b and c are given constants for each case. 

 

)XX/(X *
A

*
M

*
M ���  (12) 

 

B0, B1, B2 and B3 can be calculated from the equations listed in Table 3. These parameters are 

then introduced into equation (10) to calculate B. The parameter A can be calculated by 

equation (9) and the viscosity of the slag can then be determined by using equation (8). 

 

Table 3.  Equations for B-parameters in Urbain model.[21] 

B0 = 13.8 + 39.9355 � – 44.049 �2 

B1 = 30.481 - 117.1505 � + 139.9978 �2 

B2 = -40.9429 + 234.0486 � – 300.04 �2 

B3 = 60.7619 - 153.9276 � + 211.1616 �2 

 

Urbain modified the model later[22] to calculate separate B-values for different individual 

modifiers CaO, MgO and MnO  and then the mean B is calculated (Eq. 13). Table 4 shows the 

parameters ai, bi and ci of equation (11) for three cations. 
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Table 4. Parameters ai, bi and ci for MgO, CaO and MnO.[22] 

 ai bi ci

i all Mg Ca Mn Mg Ca Mn 

0 13.2 15.9 41.5 20.0 -18.6 -45.0 -25.6 

1 30.5 -54.1 -117.2 26 33.0 130.0 -56.0 

2 -40.4 138 232.1 -110.3 -112.0 -298.6 186.2 

3 60.8 -99.8 -156.4 64.3 97.6 213.6 -104.6 

 

Mills et al.[20] modified XMnO to repsesent XMnO + XFeO + XNiO + XCrO + 0.6(XFe2O3 + XCr2O3) 

 

It is assumed that Fe2O3 and Cr2O3 behave both as network breakers and as amphoterics, 

where f is the fraction bahaving as network modifiers and a value f = 0.6 is assumed.[20] 

 

The global B-value is given by: 

 

 
MnOMgOCaO

MnOMnOMgOMgOCaOCaO
global XXX

BXBXBX
B

��

��
�  (13) 

 

 

Modified Urbain model 

Kondratiev and Jak [17] modified the Urbain viscosity model in order to describe viscosities 

of multi-component slags. The modification has been made by introducing more 

composition-dependence parameters to describe the viscosity bahavior of slags over the 

whole composition range in the four-component system SiO2-Al2O3-CaO-“FeO” slag. The 

model is based on the Weymann-Frenkel equation modified by Urbain (Eq. 8). 

 

According to Kondratiev and Jak[17] constant values of m and n in Eq. (8) proposed by 

Urbain[22] can’t provide an accurate description of “experimental” values of A and B over the 

whole compositional range. 

 

In their model reasonable description of A through B could be achieved with a constant n and 

the following equation for m: 

 

,SSFFCCAA XmXmXmXmm ����  (14) 

 

where mA, mC, mF and mS are model parameters; and XA, XC, XF and XS are the molar 

fractions of Al2O3, CaO, ‘FeO’ and SiO2, respectively. 

 

They introduced also compositional dependence of B for two different modifiers (CaO and 

FeO): 
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;
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sii
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�
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2
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3

0

0
3

0
 (15) 

 

where 0
ib  values are parameters for the Al2O3-SiO2 system, and jC,

ib and jF,
ib  are sets of 

parameters for CaO and ‘FeO’ respectively, which are determined by optimisation.  

 

Optimized model parameters (n, mi , and bi
j ) are given in Table 5. 

 

Table 5.  Viscosity Model Parameters (10-1 Pa·s) for Al2O3-SiO2-CaO-‘FeO’ - system.[17] 

 
 

The model uses one set of parameters (Table 5) and agrees well with more than 3000 

experimental points covering four unary, six binary, and four ternary systems, and the liquid 

in the whole of the quaternary system.[8] 

 

Forsbacka et al.[22] extended the modified Urbain model to include MgO, CrO and Cr2O3, in 

addition to existing Al2O3, CaO, ‘FeO’ and SiO2. 

 

If CrO and Cr2O3 are treated as two different modifiers, expressions for m and B for the 

Al2O3-CaO-‘FeO’-CrO-Cr2O3-‘MgO-SiO2 system can be written as follows: 

SSMM'''Cr'''Cr''Cr''CrFFCCAA XmXmXmXmXmXmXmm �������  (16)
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where XA, XC, XF, XCr’’, XCr’’’, XM, XS are the molar fractions of Al2O3, CaO, FeO, CrO, Cr2O3, 

MgO and SiO2, respectively; mY, 0
ib  and jY,

ib  adjustable model coefficients (Y = A, C, F, Cr’’, 

Cr’’’, M, S). 

 

Table 6 show parameters for Al2O3-CaO-CrO-Cr2O3-FeO-MgO-SiO2 system. 

 

Table 6. Parameters of the modified Urbain model for  
Al2O3-CaO-CrO-Cr2O3-‘FeO’-MgO-SiO2 system.[23] 

 j/i 0 1 2 3   

bi0 0 13.31 36.98 -177.70 190.03 n 9.322 

1 5.50 96.20 117.94 -219.56 mA 0.37 biC,j 

2 -4.68 -81.60 -109.80 196.60 mC 0.587 

1 34.30 -143.64 368.94 -254.85 mF 0.665 biF,j 

2 -45.63 129.96 -210.28 121.20 mM 0.522 

1 -23.41 159.56 114.40 -303.38 mS 0.212 biM,j 

2 20.60 -176.64 2.84 206.02 mCr’’ 0.75 

1 104.70 546.24 408.59 56.32 mCr’’’ 0.5 biCr’’,j 

2 -113.01 -523.55 -112.89 -366.40   

1 50.67 -410.14 192.62 -10.48   biCr’’’,j 

2 -54.98 112.55 440.99 -321.23   

 

 

3.2 Riboud Model 
 

Riboud et al.[24] classified the slag components into five different categories, depending on 

their ability to break or form polymetric chains in the molten slag. Additional slag 

constituents were later added to various groups by Mills et al.[20]. 

 

i. Network formers,  X“SiO2”  =  XSiO2 + XP2O5 + XTiO2 + XZrO2

ii. Network breaker,  X“CaO”  =    XCaO + XMgO + XFeO + XFe2O3 + XMnO + XNiO + XCrO

   + XZnO + XCr2O3

iii. X“Al2O3” = XAl2O3 + XB2O3

iv. XCaF2

v. X“Na2O” = XNa2O + XK2O + XLi2O

 

The temperature dependence is expressed via the Weymann-Frenkel equation {�(dPas) = AT 

exp (B/T)} and the viscosity is calculated from this relation where A and B are calculated 

using equations 18 and 19 [24] 

 

 A = exp (-19.81 + 1.73X“CaO” + 5.82X“CaF2” + 7.02X“Na2O” – 35.76X“Al2O3”) (18) 

 

 B = 31140 - 23896X“CaO” - 46356X“CaF2” - 39159X“Na2O” + 68833X“Al2O3” (19) 
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The model was initially developed to estimate the viscosity of mould powders in the SiO2-

CaO-Al2O3-CaF2-Na2O system but has also been applied to estimate viscosity of other types of 

slags. The major disadvantage of this model might be that it fails to differentiate between the 

various cations, e.g. MgO on a mole fraction basis is treated as if it was CaO etc. 

 

 

3.3 Models based on optical basicity (NPL) 
 

The NPL (National Physical Laboratory) model was developed by Mills and Sridhar [25]. It 

uses the Arrhenius equation (Eq. 3) for temperature dependence of slag viscosity and relates 

the viscosity (�) of slag to the structure through the optical basicity corrected for the cations 

used for charge balancing (�corr). 

 

The routine employed for calculating the optical basicity is given by: 

 

 
ii

iii

nx
nx

�
��

��  (20) 

 

Where x is the mole fraction, n refers to the number of oxygen atoms in the molecule and �i is 

components optical basicity (Table 7). 

 

Table 7.  Optical basicity values of various constituents. [15] 

  K2O  Na2O  BaO SrO  Li2O CaO   MgO  Al2O3  TiO2 SiO2  B2O3 P2O5   FeO Fe2O3  MnO  Cr2O3 CrO  CaF2 

 1.4 1.15 1.15 1.1 1.0 1.0  0.78 0.60  0.61 0.48 0.42 0.40   1.0 0.75  1.0 0.75 1.0 1.2 

 

The correct optical basicity (�corr) is calculated similarly to theoretical optical basicity, but the 

mole fractions xi have been balanced to take into account the amphoteric �5
4AlO -anions. The 

�5
4AlO -anions are charge balance by cations with higher �i values. These cations are 

consumed and play no part in the de-polymerisation of the melt. The corrected optical 

basicity (�corr) considers the cations required to balance the �5
4AlO -anions with cations in 

basic oxides. The first consumed oxides have higher �i values.[1, 25] 

 

For example, if the melt composition is: 

 

xSiO2 = 0.5, xAl2O3 = 0.15, xCaO = 0.2, xMgO = 0.1 and xK2O = 0.05 

 

the mole fraction values used for calculation of �corr are 

 

xSiO2 = 0.5, xAl2O3 = 0.15, xCaO = 0.1, xMgO = 0.1 and xK2O = 0 
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After correction of � the viscosity can be calculated via equations 21-23. 

 

Mills and Sridhar[25] derived the following empirical equations from various experimental 

data: 

 

 corr
..)Bln(
�

���
882771

1000
 (21) 

 

 171443235769232 2 ..)(.Aln corrcorr ��������  (22) 

 

The viscosity can be calculated via equation 23: 

 

 
)

T
B(

eAs)(Pa ����  (23) 

 

Ray and Pal[26] applied the optical basicity concept to the Weymann-Frenkel type of 

equation: 

 

)
T

B(
eAT)P(

1000

���  (24) 

 

where A and B are linearly related, and B is a function of optical basicity: 

 

-ln A = 0.2056B + 12.492   (25) 

 

B = 297.14�2 – 466.69� + 196.22   (26) 

 

The model is said to accurately predict viscosities of standard glasses, but is less accurate for 

slags[27].  

 

 

3.4 Iida Model 
 

Iida’s viscosity model [28] is based on the Arrhenius type of equation, where network structure 

of the slag is taken into account by using basicity index Bi. 

 

 ��
�

�
��
�

�
������

i
O B

EexpA)sPa(  (27) 

 

where A is pre-exponential term, E is activation energy and �0 is hypothetical viscosity for 

each slag constituent (i). 
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The parameters A, E and �0 are all given as functions of temperature. 

 
263 1005011007820291 T.T..A �� �����  (28) 

 
262 1000041088424628 T.T..E �� �����  (29) 

 

iiX00 ����  (30) 

 

�0i values can be approximately calculated using the following expression: 

 

� �� � � �
� � � �� �imiim

i
/

imi
i

TRHexpV

RTHexpTM
.

32

21
7

0 1081 ����  (31) 

 

where Mi - formula weight, Vmi - molar volume, Tmi - melting temperature, R - gas constant, X 

- mole fraction, Hi – melting enthalpy of individual component i. Hi can be calculated from a 

simplified formula: 

 
2115 .

imi T.H ��  (32) 

 

The various constituents are divided into the following categories [20]:  

(1)  acidic (SiO2, ZrO2, TiO2) denoted by subscript A,  

(2)  basic (CaO, MgO, Na2O, K2O, Li2O, FeO, MnO, CrO, CaF2, etc.) denoted by subscript B, 

and  

(3)  amphoteric (Al2O3, B2O3, Fe2O3, Cr2O3).  

 

In the original Iida model the basicity index Bi is calculated by [20]: 

 

 
�
�

�

�
�

Aii

Bii
i )W(

)W(
B  (33) 

 

where �i is specific coefficient, Wi mass percentage for component i and the subscripts A and 

B represent acidic oxide and basic oxide or fluoride, respectively. 

 

The Iida model was later modified [28] to account for the amphoterics where their basicity 

changed according to the temperature. This was done through the modified basicity index 

(Eq. 34). It was concluded that Fe2O3 and Cr2O3 worked basically as basic oxides so they 

appear on numerator.  
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� �
� � *

OAl
*

OAlAii
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*

OCrOFe
*

OFeBii*

WW
WWW

Bi
3232

32323232

����

������
�  (34) 

 

�i* is the modified specific coefficient indicating the interaction of the amphoteric oxide with 

other components in slag. If we assume that value of �* is independent of slag composition 

and temperature �i* = �i. 

 

The model gets exceedingly complicated because the modified � (denoted �* in Eq. 34) for 

Al2O3 is obtained from experimental viscosity data for certain systems, e.g. 

CaO+MgO+Al2O3+SiO2 and then expressed by equation (35)[20]: 

 

 cbWaBi OAl
*

OAl ����
3232

 (35) 

 

Iida et al.[28] defined the a, b and c equations for CaO+MgO+Al2O3+SiO2 system to be: 

 

 a = 1.20·10-5 T2 – 4.3552·10-2 T + 41.16 (36) 

 b = 1.40·10-7 T2 – 3.4944·10-4 T + 0.2062 (37) 

 c= -8.00·10-6 T2 + 2.5568·10-2 T - 22.16 (38) 

 

Values for the coefficients a, b and c for the same system determined by Forsbacka et al.[29] 

are shown in Table 8. 

 

Table 8.  Values for the coefficients a, b and c in eq. 35 by Forsbacka et al.[29] 

Temperature, �C a b c 

1580 1.057 0.0022 -1.019 

1600 1.056 0.0058 -1.115 

1650 1.038 0.0157 -1.379 

1700 0.991 0.0243 -1.587 

1750 0.863 0.0186 -1.249 

 

Forsbacka et al.[30] reported also that Cr2O3 was found to have much stronger basic 

characteristics with the parameter 32OCr�  as large as 0.71. The parameter 32OCr�  has been 

reported earlier to have a value of 0.13 (see Table 9). 

 

It is difficult to apply the Iida model to systems where there is no experimental data since 

*
OAl 32

� values are determined for each system/family and there is no general overall value for 

*
OAl 32

� . The high accuracy claimed with this model comes from its calibration with 

experimental data for each family of slags.[15] 
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The values for calculation of slag viscosities using Iida model are listed in Table 9.  

 

Table 9.  Values for melting temperature (Tm), density (�m), formula weight (Mi), molar volume (Vm) at 
Tm, hypothetical viscosity (�0i) and specific coefficient �i for slag components i. [31] 

 
 

 

3.5 KTH Model 
 

The KTH viscosity model is based on the Eyring equation wich is similar to the Weymann-

Frenkel formalism. The viscosity, �, can be expressed by the following equation [3]: 

 

�
�
�

�
�
�
�

� ��
���

RT
Gexp

M
hN

)sPa(
*

A  (39) 

 

where h is the Planck’s constant; NA is Avogadro’s numbers; � and M are the density and 

molecular weight of the melt, respectively; R is the gas constant; T is temperature in Kelvin. 

�G* is the Gibbs energy of activation for viscosity, which is considered to be a function of both 

temperature and composition of the melt. 

 

In the case of multicomponent systems, the use of Eq. (39) requires the molecular weight and 

density of the melt. The molecular weight can calculated by: 

 

�
�

�
m

i
iiMXM

1

 (40) 
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where Xi and Mi represent the mole fraction and the molecular weight of component i in the 

solution, respectively. 

 

The density can be approximated as: 

 

�
�

���
m

i
iiX

1

 (41) 

 

where �i is the density of pure component i in the liquid state. 

 

The Gibbs activation energy for viscosity in Eq. (39) can be expressed as: 

 

�
�

�����
m

i

*
mix

*
ii

* GGXG
1

 (42) 

 

where �Gi
* represents the Gibbs activation energy of pure component i in the liquid state and 

is usually a linear function of temperature. The term �Gmix
* is due to mutual interactions 

between different species and is expected to be a function of composition.[3] In the case of 

oxide systems, only the interactions of different cations in the presence of O2- ions are taken 

into account.[32] 

 

In the case of ionic solutions, the Temkin description is adopted. It classifies the cations and 

anioins in different subgroupings. An oxide ionic solution can be represented by the 

formula[3]: 

 

(C1,C2,…Ci,…Cn)P(O)Q 

 

For example, a silicate solution, CaO-FenO-MgO-MnO-SiO2 can be represented by: [32]  

 

(Ca2+, Fe2+, Mg2+, Mn2+, Si4+)p(O2-)Q 

 

where P and Q are the stoichiometric coefficients 

 

The ionic fraction of cation Ci within the cation grouping is defined as: 

 

�
�

C

Ci
Ci N

Ny  (43) 

 

NCi represents the number of the Ci cations, and � NC the total number of cations in the 

system. 
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The Gibbs free energy expression contains many adjustable parameters, which are used to 

obtain agreement with experimental results. The expression of the Gibbs activation energy 

for the viscosity in the CaO-FenO-MgO-MnO-SiO2 system is given in Eq. (44). In view of the 

similarity of the cations, Ca2+, Fe2+, Mg2+ and Mn2+, the binary interactions between these 

ions are not considered in the model calculations. [32] 

 

� �
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������

2222

2

22  (44) 

 

Model parameters predicting viscosity of slag system consisting of CaO-FenO-MgO-MnO-

SiO2 are shown in Table 10. 

 

Table 10.  Optimised model parameters.[32] 

 
 

The model is reported to be applicable to a wide range of systems, from liquid metals to 

molten slags. The KTH model is now commercially available as a software, ‘THERMOSLAG’ 
[11]. 
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4 Performance of models in predicting viscosities of industrial slags 
 

As shown in chapter 3 various viscosity models have been developed to estimate the viscosity 

of fully molten oxide slags. In this chapter the viscosities of converter slags (Basic Oxygen 

Furnace, Argon-Oxygen Decarburization furnace) predicted with different models are 

compered. 

 

 

4.1 BOF slag 
 

The purpose of the Basic Oxygen Steelmaking (BOS) process is to refine the hot metal 

produced in the blast furnace into raw liquid steel, which may be subsequently refined in the 

secondary steelmaking shop. 

 

The main functions of the Basic Oxygen Furnace (BOF) are to decarburise and remove 

phosphorus and other impurities from the hot metal, and to optimise the steel temperature 

so that any further treatments prior to casting can be performed with minimal reheating or 

cooling of the steel. The exothermic oxidation reactions that occur during BOS generate a lot 

of heat energy - more than is necessary to attain the target steel temperature. This extra heat 

is used to melt scrap and/or iron ore additions.  

 

BOF slag is generated at a rate of 60 to 100 kg per tonne of steel. The BOF-slag contains 

oxides arising from some oxidation reactions (SiO2, MnO, FeO, V2O5, P2O5 and TiO2), added 

fluxes (CaO, MgO) and refractory wear (MgO). Typical composition of the BOF-slag is shown 

in Table 11. 

 

Table 11.  Typical composition of BOF-slag (wt-%).[33] 

CaO SiO2 MgO Al2O3 MnO FeO V2O5 P2O5 TiO2 Cr2O3 

54.6 11.4 1.6 1.2 3.5 21.7 3.1 0.8 1.8 0.3 

 

Figure 4 shows comparison of estimated viscosity values calculated using different models for 

BOF-slag as a function of temperature. 
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Figure 4.  Calculated viscosity values of BOF-slag. 
 

 

The viscosity values calculated by the Iida[20, 28, 29] and modified Urbain models[17, 23] are 

almost equal through the whole temperature range. The values changes from ~0.021 Pa·s at 

1580�C to ~0.013 Pa·s at 1780�C. The use of the original Urbain model [21] resulted higher 

viscosity values compared to the other Urbain models[17, 22, 23]. The major advantage of the 

modified Urbain models is that they enables the differences in chemistry of individual 

components to be taken into account and thus these models should be more accurate in 

predicting slag viscosities than the original Urbain model. 

 

In addition to the original Urbain model [21], the Riboud model [24] fails to differentiate 

between the various cations, e.g. MgO on a mole fraction basis is treated as if it was CaO etc. 

Thus similar viscosity values were obtained by both of these models. 

 

The values calculated by KTH model[32] seems to be too high for this high basic slag whereas 

the NPL model by Mills and Sridhar [25] show too low viscosity values. In the NPL model by 

Ray and Pal [26] the temperature dependence of the viscosity is expressed in the forms of the 

Weymann-Frenkel equation instead of Arrhenius equation which is used in the model by 

Mills and Sridhar thus different viscosity values were obtained. Accordin to the literature[25] 

the slag compositions, which have corrected optical basicity above 0.73 are unlikely to receive 

very accurate viscosity prediction by using the NPL model. Since the corrected optical 

basicity of the BOF-slag is 0.86, the slag composition is outside of the working range of the 

NPL model. 
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Although the Iida[20, 28, 29] and the modified Urbain models[17, 23] seems to be more reliable 

than the other models, it is not possible to evaluate their performance in predicting 

viscosities of BOF-slag since no measured viscosity values corresponding to the slag 

composition shown in Table 11 were found in the literature. 

 

4.2 AOD slag 
 

In the AOD-converter (Argon Oxygen Decarbonization), decarburisation of stainless steel is 

carried out with an oxygen – inert-gas mixture. The AOD process uses the dilution principle 
to minimise chromium oxidation. The molten metal is initially blown with a high ratio of 

oxygen to inert gas. As the carbon content of the bath decreases, the oxygen-to-inert gas ratio 

lowers. Dilution of the oxygen by the inert gas lowers the partial pressure of carbon monoxide 

in the bath, which favors carbon removal. As a result, carbon removal is increased, while 

metallic chromium oxidation is diminished. During the reduction period, oxidised chromium 

is returned from the slag to the metal phase simultaneously with desulphurisation. Typical 

AOD-slag compositions after oxidation and reduction periods are shown in Tables 12 and 13, 

respectively.  

 

Table 12.  Typical composition of AOD-slag after oxidation period (wt-%). [34] 

CaO SiO2 MgO Al2O3 MnO FeO Cr2O3 

42.1 5.3 4.2 1.1 10.5 10.5 26.3 

 

Table 13.  Typical composition of AOD-slag after reduction period (wt-%). [34] 

CaO SiO2 MgO Al2O3 MnO FeO Cr2O3 

57.0 31.1 9.3 1.1 0.5 0.5 0.5 

 

Comparison of estimated viscosity values calculated using different models for AOD-slag as a 

function of temperature after oxidation and reduction periods are shown in Figures 5 and 6, 

respectively. 
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Figure 5.  Calculated viscosities of AOD-slag after oxidation period. 
 

 

The viscosity values calculated by the Iida[20, 28, 29], modified Urbain[23] and Riboud[24] models 

are quite close to each other through the whole temperature range. The other values are 

divergent. Also in this case the highest viscosity values were obtained by KTH model[32] and 

the lowest values by NPL model [25]. Forsbacka et al.[23] extended the modified Urbain model 

by Kondratiev and Jak[17] to include parameters for chromium oxides as well as for magnesia 

in addition to existing Al2O3, CaO, FeO and SiO2 and thus the calculated viscosity values 

between these models are quite different. 

 

Like in the case of BOF-slag, no measured viscosity values corresponding to the slag 

composition shown in Table 12 were found in the literature. This is due to chromium-

containing slags are one of the most difficult slags to be measured. They have very high 

melting points and the chromium appears in two oxidation stages in metallurgical slags: Cr2+ 

and Cr3+, with corresponding oxides CrO and Cr2O3 (CrO1.5). Both of these oxides have a 

different effect on viscosity and it is therefore necessary to know how much CrO and Cr2O3 

there are in the slag.[35] In the model calculations all the chromium was assumed to be in 

Cr2O3 form.  

 

Due the facts mentioned above it is not possible to say which of the models (if any) are 

suitable in predicting viscosity of AOD-slag during oxiadation period. However the Urbain 

model modified by Forsbacka et al.[23] as well as the modified Iida models[28, 29] takes account 

of chromium oxide and are thus assumed to be more reliable than the other models in 

predicting viscosities of chromium containing slags. 
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Figure 6.  Calculated viscosities of AOD-slag after reduction period. 
 

 

In this case the NPL-models[25, 26] gives almost equal viscosity values through the whole 

temperature range than the Iida models[20, 28, 29]. The corrected optical basicity value of the 

investigated slag is 0.74 so the slag composition is assumed to be inside the working range of 

the NPL model. In addition to these models the Urbain model modified by Forsbacka et al.[23] 

is assumed to be reliable. The model by Forsbacka et al.[23] includes separate parameters for 

MgO unlike the other Urbain models. This is important since the slag contains almost 10% 

MgO. The calculated viscosity values by this model are close to values obtained by Iida and 

NPL models. 

 

Unfourtenately no measured viscosity values corresponding to the slag composition shown in 

Table 13 were found in the literature. 
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5 Discussion and Conclusions 

Viscosity is a physical property which is related to the structural and physical properties of 

the melt. In slags, viscosity is dominated by the silicate structure; an acid slag with large 

polymerized silicate ions is highly viscous whereas a basic slag with small de-polymerized 

silicates is much more fluid. Except the presence of net-forming and non-net-forming oxides 

in the slag, complicated interactions between the cations and anions make the predicting and 

modeling of slag viscosity often quite problematic. 

 

Although viscosity of slags can be measured experimentally, the high cost and low accuracy of 

high temperature experiments impede the acquirement of reliable data. The uncertainty in 

the measurements for many slags is ca. ± 20%. Variations in reported viscosity values for 

laboratories using good practice are <10%. [11, 15] Experimentally measured viscosity data are 

available for ternary systems which consists of most oxide components for metallurgical 

interest, such as MgO, CaO, SiO2, Al2O3, FeO. As the order of the system gets higher, less data 

in limited ranges are available.  

 

Several models have been reported for calculating the viscosity of melts from their chemical 

composition. Among these the Iida[20, 28, 29] and the modified Urbain models[17, 23] seems to be 

more reliable than the other models in predicting the viscosities of BOF-slag. As mentioned 

earlier no measured viscosity values corresponding to investicated BOF-slag compositions 

were found in the literature. However Ji[12] reported that steelmaking slag has a viscosity 

value about 0.05 Pa·s at 1873K. This is bit higher compared to the calculated values using the 

above mentioned models (~0.02 Pa·s at 1873K). Assuming that the basicity of the slag used 

in the calcualtions (CaO/SiO2 = 4.8) is higher compared to ‘normal’ slag practice (CaO/SiO2 = 

3.5-4.5), lower vicsosity value is expected to be received with this slag compared to ‘normal’ 

slag composition. 

 

Urbain model modified by Forsbacka et al.[23] as well as the modified Iida models[28, 29] takes 

account of chromium oxide and are thus assumed to be more reliable than the other models 

in predicting viscosities of chromium containing slags e.g. AOD-slag after oxidising period. 

However the solubility of Cr2O3 to this type of slag is about 5% [34]. Since the Cr2O3 content of 

slag after the oxidation period is about 25% (see Table 12) the slag contains solid phases 

which have influence on slag viscosity. The viscosity models used in the calculations  are only 

valid for homogenous Newtonian liquids. When the solid phase starts to precipitate out of 

slag, the viscosity quickly becomes non-Newtonian. The limit of the Newtonian/non-

Newtonian transition has been reported to be from 10 to 40 vol% solid fraction of melt 

depending on the shape and size of solid particles[8]. 
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Finally NPL[25,26], Iida[20,28,29] and the Urbain model modified by Forsbacka et al.[23] is 

assumed to be reliable to predict viscosity of slag composition corresponding the AOD-slag 

after reduction period.  

 

As mentioned earlier no measured viscosity values corresponding to investigated slag 

compositions were found in the literature. This is caused by difficulties encountered in 

experimental studies. These are mainly chemical attack of the containing materials by slags 

and difficulty in controlling the oxidation states of Fe and Cr in melts[36]. Due to lack of 

experimental data the performance of the models in predicting viscosities of converter slags 

was not able to evaluate. Most of the available models employ parameters extracted from 

experimental data of viscosity, which ensure the validity of the models in viscosity 

estimation. Thus more experimental work is necessary to provide the data to test and 

optimise the models for these very complex compositions. As a final comment, it should be 

pointed out that the accuracies of the viscosity models that are available can only be as good 

as the original experimental data. 
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