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Recycling of steel scrap has obvious 
economic and resource conservation 
benefits. However, steel industry generates 
every day significant quantities of dust and 
the use of scrap as raw material brings 
harmful elements into furnaces and they 
end up into dust. The dusts are considered 
as harmful waste and cannot directly be 
used as landfill today. Also a direct recycling 
of dust back to steel production is hindered 
mainly due to the presence of zinc. On the 
other hand, the metals recovered from the 
dusts may be used as raw materials. Various 
pyro- and hydrometallurgical processes 
have been developed for treating 
steelmaking dusts aiming to produce a 
residue that could be recycled further or 
safely disposed-off. Metal extraction from 
the dusts is difficult due to their complex 
composition and finding a suitable process 
is complicated as each dust is unique. The 
major advantage of alkaline leaching is its 
selectivity in leaching zinc compared to iron 
compounds. 
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Abstract 
Steel production generates significant quantities of dust and sludge in blast furnaces (BF), 
basic oxygen furnaces (BOF), and electric arc furnaces (EAF). These dusts contain toxic 
elements, such as heavy metals, and are thus classified as harmful waste making the disposal 
of them expensive. In addition, direct recycling of dust back to steel production is hindered due 
to the presence of zinc. 

In this literature survey the alkaline leaching of zinc from iron and steelmaking dusts is 
reviewed. The characteristics of EAF, BOF and BF dust and their processing based on caustic 
soda (NaOH) leaching is described. Also some methods, e.g. pre-treatments, to enhance 
leaching are introduced. 

Dusts from iron and steel production consist mainly of ferrous oxides. In addition, they 
contain zinc, lead and cadmium oxides as well as minor amount of many other elements. The 
zinc content in EAF dust can run up 30 %, when it is usually lower in BOF and BF dusts, around 
1-3 % and 1.5 %, respectively. Zinc is present mainly as zinc oxide, ZnO (50-80 %), and rest is as 
zinc ferrite, ZnFe2O4. The dusts are very fine (usually < 0.01 mm) and have tendency to 
agglomerate. 

Metal extraction from the dusts is difficult due to their complex composition and finding a  
suitable process is complicated as each dust is unique. The advantage of caustic soda leaching 
is its selectiveness in leaching zinc compared to iron compounds. Thus a relatively clean and 
iron-free solution is obtained and the complicated iron removal processes is avoided. Some 
facilities using NaOH leaching have been constructed for dissolving zinc from the steelmaking 
dusts, but they have been closed as inefficient and expensive. 

For the optimal leaching conditions 6-10 M NaOH solution, liquid to solid ratio of around 10, 
and temperature of 80 – 95 °C has been presented. Zinc recoveries of 80-85 % can be reached 
but part of zinc is not dissolved and recovered. ZnO dissolves easily in caustic soda, but 
ZnFe2O4 is highly stable compound and is the major obstruction in the hydrometallurgical 
extraction of zinc. Pressure leaching, and microwave or ultrasound assisted leaching has not 
improved significantly zinc recovery. For breaking the zinc ferrite structure, pyrometallurgical 
processes, such as roasting, can be used prior to leaching. By roasting with caustic soda prior 
to alkaline leaching zinc ferrites can be decomposed and leaching of zinc could be improved. 
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Tiivistelmä 
Teräksen valmistuksessa syntyy huomattavia määriä pölyjä ja liejuja masuunissa (BF), 
konvertterissa (BOF) sekä valokaariuunissa (EAF). Nämä pölyt sisältävät haitallisia aineita, 
kuten raskasmetalleja, ja ne on siten luokiteltu haitalliseksi jätteeksi, mikä tekee niiden 
sijoittamisen kaatopaikalle kalliiksi. Lisäksi pölyjen sinkkipitoisuus estää niiden 
kierrättämisen suoraan takaisin teräksen valmistusprosessiin. 

Tässä kirjallisuuskatsauksessa on tarkasteltu sinkin emäksistä liuottamista raudan ja 
teräksen valmistuksessa syntyvistä pölyistä. Masuuni-, konvertteri- ja valokaariuunipölyjen 
ominaisuuksia sekä niiden liuottamista natriumhydroksidilla (NaOH) on kuvattu. Myös jotain 
menetelmiä sinkin liuotuksen parantamiseksi, kuten erilaisia esikäsittelyjä, on esitelty. 

Raudan ja teräksen valmistuksen pölyt koostuvat pääosin raudan oksideista. Lisäksi ne 
sisältävät sinkin ja lyijyn oksideja sekä pieniä määriä monia muita ainesosia. EAF pölyn 
sinkkipitoisuus voi olla jopa 30 %, kun se on yleensä alhaisempi BOF ja BF pölyissä, noin 1-3 % 
ja 1,5 %. Sinkki on pölyissä pääosin oksidina, ZnO (50-80 %), ja ferriittinä, ZnFe2O4. Pölyt ovat 
erittäin hienojakoisia (yleensä < 0,01 mm) ja ovat taipuvaisia agglomeroitumaan. 

Metallien erottaminen pölyistä on hankalaa johtuen niiden kompleksisesta koostumuksesta 
ja sopivan prosessin löytäminen on vaikeaa sillä jokainen pöly on omanlaisensa. Emäksellä 
liuottamisen etu on, että sinkki liukenee selektiivisesti verrattuna raudan yhdisteisiin ja siten 
saadaan raudaton ja suhteellisen puhdas liuos, ja vältytään monimutkaiselta prosessilta raudan 
poistamiseksi. NaOH liuotukseen perustuvia laitoksia on perustettu ennenkin sinkin 
poistamiseen teräksen valmistuksen pölyistä, mutta ne on suljettu tehottomina ja liian kalliina. 

Optimaalisiksi liuotusolosuhteiksi kirjallisuudesta saadaan väkevyydeltään 6-10 M NaOH 
liuos, neste-kiinteä suhteeksi n. 10 ja lämpötilaksi 80-95 °C. Sinkin saanti on ollut tällöin 80-
85 % mutta osa sinkistä ei ole liuennut ja jäänyt ottamatta talteen. ZnO liukenee helposti 
natriumhydroksidilla mutta ZnFe2O4 on erittäin stabiili yhdiste ja tärkein este sinkin 
erottamisessa pölyistä hydrometallurgisin menetelmin. Paineliuotus sekä mikroaaltojen tai 
ultraäänen käyttö liuotuksen apuna ei ole parantanut merkittävästi sinkin saantia. 
Pyrometallurgisia prosesseja, kuten pasutusta, voidaan käyttää ennen liuotusta 
sinkkiferriittien hajottamiseen. Ennen emäsliuotusta tehty pasutus natriumhydroksidin 
kanssa hajottaa sinkkiferriitit ja sinkin liukeneminen saadaan parannettua. 
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1. Introduction 

Iron and steel production generates significant quantities of various solid 

wastes in form of dusts and sludge, and the amounts of these wastes are 

yearly increasing. Their disposal or possible re-use has been a serious 

concern for iron and steel industry.  

Common practice has been dumping of the dust to the landfill close to 

mills, but nowadays in most industrial countries iron and steelmaking dust 

are considered as harmful waste as they contain toxic elements such as 

heavy metals. Thus, they must be stored in special landfill areas, which 

make the disposal expensive. On the other hand, iron and steelmaking 

dusts usually contain some useful resources such as iron, calcium, zinc, lead 

etc., which can be recovered and reused in a judicious manner [1]. In case of 
disposal the valuable metals are lost.  

From both of economic and environmental point of view it is desirable to 

recover the valuables and utilize these wastes. However, direct recycling of 

dust back to steel production is not possible because they often contain 

metals and compounds that can harm the primary processes if the 

materials are not pre-treated [2].  

The element that causes the most problems is zinc, which vaporizes easily 

and  condenses  to  steel  production  fumes  ending  up  in  the  flue  dust  or  

sludge usually as an oxide or ferrite. The use of galvanized steel scrap in 

steel production has been increasing, which has led to the increase of zinc 

content in the dusts and this trend will likely continue. Nevertheless, these 
flue dusts can not be reused in zinc smelters as the zinc content is too low 

and they contain high amounts of impurities. 

Because some of these dusts can not be recycled directly or used as 

landfill, it is necessary to consider the recovery of valuable elements from 

them and to obtain residue that can be reused or safely disposed-off 

without affecting the environment [2]. A number of pyrometallurgical, 

hydrometallurgical and combined processes have been developed to allow 

better utilization of steelmaking dusts in primary operations [3,4]. Yet, 

there are still problems associated with treating these materials and none of 

the developed processes have been entirely satisfying [5]. 
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Today the dust treatment processes are predominantly pyrometallurgical 

and dusts are recycled in separate treatment plants. However, they are 

gradually been replaced by hydrometallurgical processes [6]. The major 

drawbacks with pyrometallurgical processes are high energy consumption 

and a need of relatively large tonnage of dust to be economically 

competitive.  

There is an impetus for developing hydrometallurgical processes as they 

can fit on small-scale and an on-site process could be possible. 

Hydrometallurgical processes on a small scale are regarded as more 
environmentally suitable and economical for treating materials having 

relatively low zinc content. Also these processes can provide a good 

selectivity in metal separation and flexibility in end products. [5-7] 

The choice between the processing routes depends strongly on the dust 

characteristic. Therefore detailed characterization is important, including 

particle size and the number of valuable elements and mineralogical 

phases. Dusts containing many elements make metal extraction complex 

and difficult. In addition, each dust is unique, which makes finding a 

suitable treatment process even more complicated.  

The main target in the dust treatment is the removal of zinc so that iron 

containing material can be recycled and zinc recovered. Among the 
hydrometallurgical methods, the advantage in alkaline leaching is the 

selective solubility of zinc compared to iron compounds and thus relatively 

clean and iron-free solution is obtained and the complicated iron removal 

processes is avoided. Therefore, leaching with alkaline is the most 

promising method of the leaching processes. However, the major 

obstruction in the hydrometallurgical extraction of zinc is the presence of 

zinc ferrite (ZnFe2O4) in the dust, which is a very stable compound. 

In this literature review the different techniques for alkaline leaching of 

zinc from carbon steelmaking dusts are reviewed, including the already 

commercialized processes and the processes, which are at research or pilot 

stage. Some general aspects considering metals separation capability, 
wastes and possibility to treat varying dusts will be discussed. Also the 

characterization and utilization of various flue dusts have been 

summarized. The objective of this study is to explore the technical and 

economic possibilities of increasing the leaching efficiency of zinc and lead 

from dust using alkaline medium. 
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2. Dust formation in iron and steel 
industry 

During the steel production different types of dusts are emitted and the 

composition of these varies widely depending on the source of generation  

[1]. Basically, the steel production is based on two basic routes (Figure 1) 

[8]:  

1) steel is made from raw materials including iron ore, limestone and 
coke along with recycled steel by the blast furnace (BF) and basic 

oxygen furnace (BOF) route, and  

2) steel is made from recycled steel via the electric arc furnace (EAF) 

method.  

Various dusts, such as sintering dust, blast furnace dust, basic oxygen 

furnace dust, electric arc furnace dust, and mill scale are formed in the 

processes of these two steel production routes. Steel production in EAFs 

accounts for about 31% of the world’s annual steel production [9]. 

 

 

Figure 1.  Steelmaking routes [10].  
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Steel industry generates every day significant quantities of dust, sludge and 

slag as waste material or byproduct (Figure 2). They usually contain 

considerable amounts of valuable metals and reuse of those is very much 
essential not only for conserving metals and minerals resources but also for 

protecting the environment [1]. It has estimated that the dust emission in 

the  steel  industry  range  between  1  to  2  %  of  ton  of  steel  produced.  

Worldwide around 7.5 Mt of flue dust is generated annually [11]. 

 

 

Figure 2. By-products formed in steelmaking routes [12]. 

 

The main raw materials in iron and steel plants are iron oxide ore 

(containing hematite, Fe2O3, and magnetite, Fe3O4) and steel scrap. The use 

of scrap in BOF and EAF brings other elements into furnaces and they end 

up into dust. Under the conditions of steel production some metals such as 

zinc, cadmium and lead evaporate and pass nearly all to the dust and sludge 
and very low amount remains in the steel and slag. As soon as metal fumes 

are out from the furnace, temperature decreases and metal fumes oxidize 

and condense. Iron is also vaporized due to high temperature and 

turbulence in the furnace. In addition, lime and silicon are charged in the 

furnace and these elements end up in the collected dust as well [4]. 

The recycling cycle of steel is well established for the steel industry. The 

recycling of steel scrap has obvious economic and resource conservational 

benefits.  The electric arc furnaces can use 100 % steel scrap as raw material 

in steel production. However, the major challenge in this is to maintain the 
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quality of steel products and to minimize contamination of other metals. 

For the last decades the EAF’s share of total steel output has been 

increasing. This trend will likely continue in the future and has to some 

extent created an ever-increasing environmental issue. [8]  

Dusts from iron and steel production consist mainly of ferrous oxides. In 

addition, they contain zinc, lead and cadmium oxides as well as minor 

amount of other elements. The iron industry has traditionally sintered fines 

in integrated operations and part of the dust is again charged into the 

furnace. Nevertheless, the reuse is limited because dusts and sludge often 
contain metals and compounds that can harm the primary processes if the 

materials are not pre-treated. A direct re-use of them will lead to 

accumulation of those elements in charge materials and decrease steel 

quality. In addition, the adoption of pelleting has made sintering of dusts 

uneconomic [6]. 

The steelmaking dusts are rich in zinc and lead. The main source of zinc is 

galvanized steel sheet scrap and use of them in steel production has been 

increasing, which has led to the increase of zinc content in the dusts and 

this trend will likely continue. Any zinc-bearing scrap included in the 

charge  will  result  in  discharge  mainly  of  zinc  oxide  in  the  flue  dust.  The  

BOF process uses minimum 25 % scrap whereas EAF technology uses 
virtually 100 % recycled steel [8] and the dust from EAF can run up to 30 % 

of zinc. The amount of zinc is usually lower in BOF and BF dusts containing 

around 1 – 3 % and 1.5 % of zinc, respectively [6]. 

Zinc is the element that causes the most problem in treating flue dusts 

and also hinders the direct recycling of dust back into steelmaking furnaces. 

The presence of zinc in steelmaking process leads to many harmful effects 

such as the decrease in the steel quality. Zinc vaporizes easily and 

condenses to steel production fumes ending up to flue dust or sludge. When 

vaporized zinc is carried out from the furnace with other gaseous reaction 

products from the steel production, zinc compounds can be formed such as 

zincite (ZnO) and zinc ferrite (ZnFe2O4), which is also known as franklinite. 
The zinc ferrite is formed when zincite particles are in contact with iron at 

elevated temperatures under oxidizing conditions. 

Composition of flue dusts is extremely variable and depends on the type of 

steel being made, and the nature and quantity of used scrap, and alloy 

additions. Fe in dust is mostly in Fe3O4 phase, 50 – 80 % of zinc is present 

as ZnO, rest balanced mainly as compound with Fe in a mixed zinc-iron 

ferrite spinel. Individual particles in the dust are mostly less than 1 μm, 

though agglomeration is prevalent causing poor recoveries by physical 

separation methods. [13] 
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Disposal, recycling or recovery of these dust emissions has been a major 

concern for the metal industry. Due to increasing environmental 

regulations, landfilling has become expensive and recycling is limited due 

to accumulation of impurities (heavy metals, alkali and halides). Alternative 

processes are thus necessary. 

The chemical and mineralogical analyses are important for defining the 

most appropriate recycling strategy. The choice between pyrometallurgical 

or hydrometallurgical processing routes is strongly dependent on the dust 

characteristics. These include particle size, the amount of valuable elements 
and mineralogical phases. These characteristics may indicate the amount of 

leachable constituents. [14] 

Three  types  of  dust,  BF,  BOF  and  EAF,  emitted  in  the  iron  and  steel  

industry  are  shortly  described  below.  The  emphasis  has  been  on  the  EAF  

dust.  

 

2.1 Blast furnace dust 
 

Blast furnace (BF) flue dust is a solid waste material from the iron making 

process consisting of a mixture of oxides. The main solid components in the 

flue dust are Fe, C, SiO2, Al2O3, CaO and MgO [15]. The BF dusts are usually 

rich in carbon (40 – 50 %) and iron (20 – 30 %). The zinc (1.5 %) and lead 

levels are generally low since only minor amounts of these elements are 

permitted to enter into the iron making process. Beside of those there are 

other oxide elements in lesser amounts. An example of BF dust with some 

characteristics is presented in Table 1. [1,6,8,16] 

Part of the blast furnace dust can be readily recycled trough the sinter 

plants. Sintering is a major method of recycling and recovering iron-
bearing waste oxides and secondary materials such as BF dusts. 

Nevertheless, traditional sintering capacity is not expected to increase in 

the future. Despite that sintering can replace iron pellets and add stability 

to BF operation, the environmental concerns and high capital and operating 

costs have lead to a decline in traditional sinter plants. [15] 

The adoption of pellet sintering in remote locations has made sintering of 

dusts uneconomic to recycle iron blast furnace dust to the pellet plant. This 

has led to land filling practice as the small tonnage and low value of units 

do not justify installing a large agglomeration plant [6]. At steelmaking 

operations without sintering plants, BF dust is also sometimes mixed with 
other by-product residues, briquetted, and recycled into the blast furnace. 

Other ways to handle the dust and sludge are stockpiling or sale. [15] 
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Table 1. Physical and chemical properties of a typical BF flue dust sample [1].  

Constituents  Sample I (%)  Sample II (%) 

Carbon  29.90  33.62 
Fe2O3  51.10  49.50 
SiO2  6.31  8.30 
Al2O3  5.12  2.54 
CaO  4.90  1.96 
MgO  0.88  1.33 
Pb  0.024  0.019 
Zn  0.042  0.028 
MnO  0.58  0.02 
K2O  1.22  0.154 
Na2O  0.47  0.07 
Fe(T)  35.7  34.62 
Bulk density (g/cm3)  1.42  1.32 
Specific gravity (g/cm3) 2.59  2.56 
Porosity (%)  45.17  48.53 
 
 

A direct use of the dusts would decrease the agglomeration costs and 

energy as they substitute pellets or briquettes. However, BF dusts can 

contain elements that can cause operational difficulties if the dust is 

recycled directly without pre-treatment [16]. Substances, such as Na, K, Zn, 

Pb,  Cd,  S,  cyanides,  oils,  etc.,  can  be  present  in  BF  dust  and  hamper  the  

reuse of dust to the sintering plant. Alkalis lower down the softening and 

melting temperature of iron and sinters in blast furnace performance and 

they can accumulate. In addition, zinc causes problems by forming a circuit 

in the furnace, which results in extra coke consumption. Also the 
condensation of zinc in cooler region of blast furnace cause serious 

problems. Dusts with high Zn, Pb and alkali contents have hitherto been 

almost entirely dumped [1]. 

 

2.2 Basic oxygen furnace dust 
 

Basic oxygen furnaces (BOFs) produce steel from molten iron (from the BF) 

and ferrous scrap metal  [8].  Around 1  – 2  % of  the  raw materials  fed into  

furnace are converted into dust during the steelmaking process. It is 

estimated that about 4.3 Mt of flue dust is generated annually in the world 

in basic oxygen process. The dust is generally collected as sludge by 

scrubbing in a wet gas cleaning plant [11]. 

The BOF dust is an iron rich by-product, which contains calcium oxides in 

its different forms [11]. BOF dust also contains varying amounts of zinc, 
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lead and other metals.  The primary source of these metals is the scrap used 

in the steelmaking process [15]. Zinc content is higher than in BF dusts due 

to  used  scrap  in  BOF  and  it  varies  depending  on  the  quality  of  the  scrap.   

The zinc content is usually from 1 % to 4.0 % [6,17]. 

 

2.2.1 Recycling possibilities 
 
Iron and steel plants are typically land-disposing the collected BOF dusts 

and sludge. Some companies are recycling these directly to steelmaking 

with  other  wastes  from  steel  plant.  The  BOF  fumes  are  mixed  and  
agglomerated with other  iron oxide materials  such as  mill  scale  [15].   The 

waste oxides have a cooling effect in a BOF and use of them can save scrap 

and/or lump ore [18]. 

If the zinc content is sufficiently low the BOF dust is recycled to the blast 

furnace via sintering plant [15]. However, the zinc content is usually high 

enough to prevent the direct recycling of the BOF dust. At the same time 

the Zn content is too low to economically justify further processing of zinc 

recovery [6]. Though zinc accumulates in the BOF dust, the content is 

usually  around  2  %  in  the  BOF  dust.  If  recycling  is  installed,  it  can  be  

increased to  25 %.  Even then the dusts  should be concentrated if  they are  

wanted to be utilized in the zinc industry [18]. 
Also, if the dust is recycled directly into iron and steelmaking process it 

increases operating costs and rises the build-up of impurities in the melt 

[11,19]. The presence of zinc in the feed materials of a blast furnace can 

cause serious damage to blast furnace refractories, which will shorten the 

life of a blast furnace. The zinc content of the fume, slag or steel can 

increase substantially unless a bleed stream is provided to keep the zinc 

build-up at manageable levels. Zinc build-up has not occurred in facilities 

using this recycling practice [15].  

The concerns related to BOF dust are the cost of landfilling and difficulties 

in recycling the dust. Recovery of iron is an attractive option only if the zinc 

content can be reduced to acceptable level and it can be done economically. 
It has suggested that the zinc content of BOF dust should be reduced to 

below  0.4  %  (wt-%)  in  order  to  be  recycled  in  the  iron-  or  steelmaking  

process [17]. Numbers of processes have been studied to remove zinc from 

BOF dust and some of these processes may be viable in the future [15]. 

 

2.2.2 Chemical composition 
 
The chemical composition of BOF dust varies depending on the alloying 

elements  and the used scrap.  The composition can vary  even from heat  to  
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heat. BOF dust is very rich in iron consisting in range of 55 - 73 % of iron.  

It also contains calcium oxides, around 5 – 9 %, in its different forms [11]. 

BOF dust can also contain some harmful species such heavy metals (Cd, Cr, 

Pb,  Mn,  Ni)  [15].  In  Table  2  are  represented  examples  of  chemical  

composition of the BOF dust and sludge from various references. Only 

elements that occurred with more than 1 % are collected into the table.  

The BOF dust contains mainly iron oxide, iron ferrite, calcium 

(magnesium) oxide, calcium (magnesium) carbonate, and also some other 

metal oxides. Iron is present in different phases mainly as FeO, Fe2O3 and 
Fe3O4. Besides iron compounds, often following phases, CaO, Ca(Mg)CO3, 

FeAl2O4, FeNi, FeCr2S4,  and  FeTiO3,  as  well  occur  in  the  dust.  Zinc  is  

usually present as zincate (ZnO) and as ferrite (ZnFe2O4) [11]. L.-M. Wu [11] 

found that  74 % of  zinc  was in  the form of  ZnO and 26 % was present  as  

zinc ferrite. 

 
Table 2. Reported chemical composition of BOF dust and sludge in various 
references [1,11,17,20,21]. 

BOF dust BOF sludge 
(%) 
[11] 

(wt-%) 
[20] 

(wt-%) 
[21] 

(wt-%) 
[17] 

(wt-%) 
[20] 

(%) 
[1] Element 

Fe 55.7 30 - 85 47.67 54 - 70 54 - 70 61 - 64 
Ca 8.54 - 6.8 - - - 

CaO - 8 - 21 - - 3 - 11 9 - 11 
Mg 1.66 - 0.55 - - - 
Zn 0.197 < 0.2 2.74 0.9-3 1.4 - 3.2 - 
Pb 0.099 < 0.04 0.18 0.1 - 1 0.2 - 1.0 - 
Cl- - - 7.09 - - - 

SiO2 - - - - - 0.71 - 1.97 
C - 1.4 - - 0.7 - 

 

 

2.2.3 Particle size and morphology 
 
The BOF dust consists mainly of very fine-grained spherical particles. The 

spherical particles are believed to have formed by volatilization and 

condensation mechanism [11]. The particle sizes are ranging from less than 

5 μm to as large as 1 mm and as spherical formations in diameter from 3 to 

100 μm. Some large particles are observed to be agglomerates of smaller 

dust  particles  [17].  L.-M.  Wu  [11]  found  that  more  than  80  %  of  the  dust  

was  finer  than  2.0  μm  and  about  57  %  was  even  finer  than  1.0  μm.  The  

finest particles had an average size of ~200 nm. 
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There are two types of particles in the dust [11]:  

1) A rim of iron oxide and a solid core of metallic iron 

2) Porous iron oxide and/or slag particles. 

The majority of the particles in the BOF dusts consist of the spheres with a 

solid core [11]. The agglomerated particles formed of smaller ones had 

somewhat porous surface [17].  

A  zinc-rich  thin  layer  has  found  to  be  present  at  the  surface  of  the  

particles. The morphology of the particles (about 40 μm) showed a metallic 

iron core inside the particle and a slightly agglomerated ferrous oxide layer, 
and also a formation of agglomerated fine particles of zinc ferrite as an 

external coating (Figure 3). Iron was distributed equally within the particle 

as the dominant species in various forms. [17] 

 

 

Figure 3.  A spherical particle from BOF sludge [17]. 

 

2.3 Electric arc furnace dust 
 

The particulate matter that is removed from emissions of electric arc 

furnace in dry system is called electric arc furnace dust (EAFD). It is 

reported that around 10 to 25 kilograms of dust is generated per ton of steel 

produced in EAF [5,6,9,14,22]. This is approximately 1 – 2 % of the charge 

[23]. Dust formation and some operations in EAF are represented in Figure 
4.  Dust  formation  is  strongly  linked  to  the  process,  which  can  be  divided  

into five steps: furnace charging, smelting, refining, slag foaming, and 

casting. During the steelmaking process the temperature can reach � 1600 

°C in which metals, such as Fe, Zn, Cd and Pb, are volatilized and entered to 

the vapor phase. Dust is generated when vapor is cooled and collected 

[4,7,22]. 
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Figure 4. Dust formation in the EAF [22]. 

 

The  composition  of  EAFD  varies  considerably  and  is  dependent  on  the  

composition of charge, the type steel being made, and the operating 

conditions and procedures [6,24]. Because in steel manufacturing with EAF 

100 % of the raw material can be steel scrap, the EAF dust can contain high 
amount of non-ferrous metals and the composition differs from BOF and 

BF dusts [8].  

When galvanized scrap is used in the EAF, most of the zinc from the steel 

scrap  ends  up  in  the  flue  dust.  This  is  because  of  zinc  vapor  pressure  is  

higher than iron vapor pressure at steelmaking temperature and also due to 

very low solubility of zinc in molten steel and slag [25]. The concentration 

of zinc can reach as high as 40 % in the dust, but is usually between in 11 - 

27  %  [3,19].  Also  lead  and  cadmium  with  trace  amount  of  chromium  and  

arsenic are found in the EAF dust. Therefore EAF dust fails in toxicity tests 

and is classified as hazardous waste K061 by US Environmental Protection 
Agency (EPA). [5,6,8,14,15] 

Recycling of steel scrap has resource conservation and economic benefits 

associated with EAF steelmaking [6]. Steel production by EAF has been 

increasing and this trend is expected to continue in the future [26]. As a 

result, growing quantities of EAF flue dust will be generated and more zinc 

will be available to recover. Annually, the world generation of EAF dust is 

estimated to be around 3.7 million tons. An estimation of the steel recycling 

alternatives is necessary due to the great amount of generated dust. [25] 
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2.3.1 Recycling of EAFD 
 
In the old days most of the EAF dust was landfilled as treating of the dust 
was not economic [26]. Common practice for disposal has been landfilling 

near the plants [27]. Another common option has been to stockpile the 

EAF. However, both of these have become non-viable as the sites available 

for stockpiling or landfilling are steadily depleted [6]. In addition, with 

these options the valuable metal values are lost. 

Before the EAF dust was not processed further because EAF operators 

consider further treatment to be uneconomical and legally unnecessary 

[27]. The more stringent environmental regulations have been put into 

effect and the situation has changed as the EAF dusts have been classified 

to hazardous waste in most industrialized countries [5,6].   

Since the use of scrap as raw material the EAF dust contains higher 
amounts of non-ferrous metals. Thus the direct recycling of the dust back to 

the EAF unit is difficult because of possible operating problems. Also the 

EAF dusts are extremely fine and difficult to handle. Nonetheless, recycling 

achieves lower net dust production and reduces overall disposal costs, but 

does not result in a net reduction or disposal of heavy metals. A new 

recycled dust with a higher zinc and lead content can be obtained and iron 

may be partially recovered. [2] 

The content of valuable metals (lead and zinc) and the need to reduce 

imports will certainly encourage the utilization of this waste [27]. 

Treatments of these dusts are limited today to its stabilizing and to storage 

as dump place or to recovery of metals. In case of stabilization and land 
filling the potential of recovering zinc and other metals is lost. New 

technologies are still emerging in this field [6]. Now part of the dust is put 

in regulated dumps awaiting technical developments [26].  

Zinc, due to its relatively large amount present, is the most valuable 

component in EAF dust [14]. The research and processing the EAFD from 

carbon steelmaking commonly aims mainly to recover zinc (and lead). The 

use of galvanized steel scrap has increased the zinc content in the EAF dust 

and thus increasing the interest on recovery of zinc from these dusts. Also 

the fact that zinc has been used progressively in the galvanizing process of 

the carbon steel has increased its price [25]. Nowadays still  about 60 % of 

EAF dust is used as landfill (Figure 5), which means an annual of even 
800,000 t loss of zinc [28]. 
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Figure 5.  EAFD recycling in the world [28]. 

 

Industry  is  aware  of  the  potential  for  further  recovery  of  zinc  and  is  

increasing the treating of these materials. Even though a large part of EAFD 

is landfilled, substantial quantities of these dusts are upgraded and then 

used as feedstock for the production of primary zinc [26]. EAF dust is one 

of the main recycling resources of zinc. The recycling of zinc is an important 

issue because the natural resources of zinc are not believed to be adequate 

to maintain its future sustainable development. About 30 % of world’s 
supply comes from recycled zinc. [29] 

Standards exist for the acceptable treatment and disposal of EAF dusts 

and their treatment residuals. Nevertheless the high cost of treatment and 

disposal continue to present challenges for more cost-efficient means of 

treatment and recovery [15]. Attractiveness of resource recovery from dust 

may depend to large extent on the economics of the alternative of disposal. 

In  both  cases,  in  disposal  or  processing,  it  is  though  extremely  hard  and  

difficult to handle these dusts unless they are first pelletized [30]. 

 

2.3.2 Chemical composition of EAFD 
 
Since the EAF dust is physically, chemically and mineralogically very 

complex material, it is difficult to characterize. As mentioned before, their 

chemical composition varies considerably and is dependent on the 

grade/composition of utilized scrap and furnace additives, on the operation 

conditions and procedures, and the type of steel being produced [9,15]. Also 

the degree of returned dust back to the process affects the chemical 

composition  [24].  Even  a  minor  change  in  the  operating  procedures  from  

heat-to-heat could result in a variation in the composition of the dust [9]. 

Because of the wide range of composition in EAFD it is necessary to make 
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accurate and precise analysis of each individual case in order to optimize 

any recycling or recovery.  

Anyway, some general trends with the composition of EAFD can be noted. 
Usually, EAF dust contains iron and other metallic oxides from alloying 

metals  in  the scrap [15].   The major  element  is  iron and its  content  varies  

from 16 to  44 wt-% [31]  and the average iron concentration is  around 30-

wt% with the carbon steel EAFD [32].  

Zinc compounds are the other main components observed in the dust and 

their concentration can vary between 2 – 40 % [3,24,25,27,31]. In addition, 

the EAF dust also contains smaller amounts of lead, manganese, calcium, 

sodium and potassium as well as trace amounts of other elements, such as 

cadmium, chromium, nickel, copper, magnesium, silicon and chlorine 

[5,6,9,14,27]. The amounts of Zn, Pb, Cu, Cr and Cd in the EAFD are on the 

rise, as the quantity of scrap coming from the automotive industry is used 
with an ever-increasing ratio [3]. 

The dusts from carbon steelmaking are all rich in zinc and lead, whereas 

the dusts from stainless steelmaking are relatively low in these [9]. The zinc 

contents in EAF dust from stainless steel production are between is 1 – 7 % 

[24,25]. However, stainless steel dusts are richer in alloying elements such 

as chromium, nickel, manganese etc. and contain important amount of 

nickel and chromium [9,31].  

In Table 3 are represented examples of the chemical compositions of EAF 

dust from various references. The generally prevailing elements in EAF dust 

vary  in  concentrations  of  Fe  10-47%,  Zn  2-46%,  Pb  0.4-15.14%,  Cr  0.06-

11%,  Cd  0.01-0.30%,  Mn  1-5%,  Cu  <3%,  Si  1-5%,  Ca  1-25%,  Mg  1-12%,  Al  
0.1-1.5%, C 0.11-2.36%, S 1.5-2.5%, Na 0.5-4%, K 0.35-2.3%, Cl (0.01-4%) 

and F (0.01-0.9%) [3-5,7,14,19,24,33-36]. 
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Table 3. Reported chemical composition of EAF dust in various references (wt-%)  

[3,5,7,14,19,33-36]. 

Component  

  [3] [34]  [19] [7] [33] [5] [35] [14] [36]  

Zn 33 29 11.12- 
26.9 24.8 19.4 31.2 13.6 12.20 20.5 

Fe 26 25 24.9- 
46.9 32 24.8 18.3 29.8 37.08 21 

Pb 3.05 4 1.09- 
3.81 1.84 4.5 1.02 0.69 1.72 4 

SiO2 3.15 3 - - 1.4 3.41 - - 0.4 

Cu 0.24 0.3 0.06- 
2.32 0.02 - - - 0.17 0.38 

Cd 0.049 0.07 0.03- 
0.15 0.03 - - 0.02 0.01 0.18 

Cr 0.24 - 0.06- 
0.58 - - 0.19 0.09 0.22 0.19 

Al 0.6 - - - - 0.68 - 0.41 0.6 

Mn 1.83 3 2.46- 
4.60 3.31 - 2.2 - - 2.25 

Ca 2.9 - 1.85- 
10.0 4.08 - 15.6 - - 12.5 

Na 1.03 - 0.29- 
2.31 - - 3.8 - - 1 

K 0.85 - 0.06- 
1.12 - - 0.67 - - 0.68 

Sn 0.024 - - - - - - - - 

Sb 0.06 - - - - - - - - 

Cl 0.011 4 0.51- 
2.36 - - - - - 3.8 

F 0.073 - 0.01- 
0.88 - - - - - - 

 

 

2.3.3 Mineralogical composition of EAFD 
 

The EAF dust is a mixture of metal oxides, silicates and sulfates [24]. Dust 

is  formed  from  vaporized  and  oxidized  metals  and  elements  from  liquid  

metal and slag. Most of the constituents in the dust are in oxide form 

because the exhaust gas-line of the furnace is oxidizing. However, also 

chlorides, sulfides, silicate and sulfates occur in minor concentrations. In 
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Table 4 are shown the typical mineralogical forms of elements occurring in 

average in the EAF dust.  

 
Table 4. Mineralogical phase distribution of major elements present in EAF  
[19,37].  

Element  Phases containing element  

Fe  Fe3O4 is most prevalent phase. In this phase Fe cations are replaced 
to various degrees by Zn, Mg, Ca, Cr, Mn, etc. Some Fe occurs as a 
metal or as �-Fe2O3 

Zn  50-80% as ZnO. Balance mainly associated with Fe in a mixed zinc 
iron ferrite spinel. Very small amounts of zinc may be as a sulphide, 
carbonate, silicate or aluminate 

Cd  Distribution not well established, but possibly as for Zn considering 
the similarities in most properties of the two elements 

Pb  Mostly as an oxide. PbSO4, PBCO3, and PbCl2 are also present 

Cr, Ni  Replace Fe in Fe3O4spinel phase. Some Cr could be as Cr2O3 

Ca  As CaO and CaCO3 mainly. The balance may occur as a fluoride, 
ferrite, or silicate. 

Si  Mainly present as quartz. 

Halides  Cl, Na, F, K, present as salts or chlorides.  

 

 

Iron is occurring commonly as magnetite (Fe3O4)  phase  which  makes  up  
the  matrix  of  the  EAF  dust.  Its  mass  share  can  exceed  of  50  %  [24].  For  

example  the  following  phases  have  been  found  to  be  present  in  the  EAF  

dusts: ZnFe2O4, Fe3O4, MgFe2O4, FeCr2O4, Mn3O4, MgO, SiO2, Ca0.15Fe2.85O4 

and ZnO [25]. With iron-bearing spinel phases (ZnFe2O4, MgFe2O4, 

FeCr2O4, Ca0.15Fe2.85O4) one important property is that iron is partly 

replaced by cations. The cations that can replace the iron are Al3+, Mn2+, 

Ni2+, Cu2+, Co2+, Zn2+, Ca2+ and Ge2+ [25]. 

Laurionite (PbOHCl) has been identified in the EAFD when the lead 

content has been high [31] but in low concentrations lead is present mainly 

as an oxide (PbO) [24]. Also presence of minor compound such as Zn2SiO4 

(willemite), CaSiO3 and SiO2 have been discovered [31].  In addition, it has 
been found a substantial amount of salts like sylvite (KCl) and NaCl as well 

as some carbon (coke) in the EAF dust [38].  

More detailed information of the phases identified in EAF is presented in 

Table 5 [24]. In all average samples and all separated fractions the 
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following phases were identified: Fe3O4, Fe2O3, FeO, Fe (metallic), 

2FeO*SiO2, ZnO, SiO2 (quartz), 3CaO*2SiO2, 4PbO*PbSO4 [24].  

 
Table 5. Phases identified in the EAF dust samples  [24].  

 

 

The forms of zinc present in the dust are important if recovering the zinc is 

considered. Zinc exists as two main compounds in the EAF dust, which are 

zincite (ZnO) and zinc ferrite (ZnFe2O4)  [26,31,32,38].  The  ratio  of  these  

depends on the type of furnace and operations, especially the dust 

collection systems [26].  

The amount of zinc present in the zincite can vary from 30 to 70 % [31]. In 
some cases, it increases with the total zinc content [5,33]. More likely the 

amount of zincite varies with the ratio of Zn/Fe in the dust. Zincite becomes 

predominant form when the molar ratio Zn/Fe reaches high value and zinc 
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ferrite is the major compound with low ratios [31]. Also some correlation 

with particle size has been noticed and the concentration of ZnO increased 

in relation to ferrite from with decreasing particle size [30]. 

 

2.3.4 Particle size distribution 
 
In general, the EAF dust particles have predominantly an agglomerated 

morphology with individual fine particles forming aggregates or covering 

larger particles [5,6,9,25,38]. The agglomeration tendencies are most likely 

caused by exposure to air moisture and consequent hydration reaction. The 
mean particle diameter depends on this tendency [37].  

The particle distribution of EAF dust is heterogeneous and the grain size 

of varies from 0.1 μm to around 200 μm [24,38]. Some of the particles have 

found to be even less than one-tenth of a micron [38]. The individual fine 

particles tend to be very small, generally less than 10 μm [5,19,22,25]. 

However, there are comparatively substantial differences in the measured 

particle sizes in various references. It is also reported that the most of the 

individuals particles are smaller than 1 μm [19,24,25], being usually less 

than 3 μm [23] and for the average particle size have reported to be 1.0 - 4.3 

μm [6,9]. 

According to Machado et al. [25] around 60 % of particles had size 
between  0.90  μm  and  4.30  μm.  Lenz  and  Martins  [38]  found  that  

approximately 90 % of the particles were smaller than 100 μm, 40 % were 

smaller than 10 μm and 10 % of the particles were smaller than 1.7 μm. The 

particle size distribution determined by Dutra et al. [14] indicated that only 

about 15 % of the particles are coarser than 10 μm and the median particle 

size (d50) is around 0.5 μm. 

The shape of the individual particles in EAF dust is generally spherical 

[24,27,38]. Also spherical particles with wrinkled surface and elongated 

non-defined form have been observed. The spherical form of particles 

indicates that they are created in liquid conditions and they contained Fe, 

Zn, Pb, O, Si, Ca and spinel type metal oxides (Fe,Zn,Mn)3O4. The particles 
with angular shape are considered to be zincite (ZnO) [24].  

The majority of zinc has found to associate with particles with a rougher 

surface  and finer  dust  particles  [14].  Both zinc  and lead oxides  tend to  be  

present in small discrete particles or as smaller regions within a larger 

particle [38]. The structure of certain dust particles is represented in Figure 

6  and  7  [25].  In  addition  to  chemical  composition,  the  morphology  of  the  

dust depends on the quality of the scrap and the mode of the operation of 

the EAF [14]. 
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Figure 6.  A spherical EAFD particle (area 1: rich in Fe and O, area 2: rich in Fe 
and Zn) [25]. 

 

 

Figure 7.  Dendritic structure in a EAFD particle (area 1: rich in Fe, Cr and O, area 
2: rich in Fe, Ca, Si and O) [25].  
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3. Treating of steelmaking dusts 

The possibilities for treating the steelmaking dusts are recovering the 

valuable metals from the dusts, recycling them back into furnace, or placing 

them on the dump. However, due to the chemical nature of the dusts, only 

small quantities of dust are possible to charge back to the furnace. The 

common practice has been to throw the collected dust near to the factory on 

the dump. Earlier the EAF dust was not processed further because that was 

considered uneconomical and unnecessary from the point of view of the 

law.  

Nowadays, the steelmaking dust particles are classified as hazardous 

waste due to their chemical nature [14]. Because these dusts are containing 

toxic elements such as heavy metals that could dissolve to ground water it is 
necessary to treat them in order to eliminate the toxic compounds. This is 

why the dusts are not possible to be used straightly as landfill today [1].  

As the environmental protection regulations have become more stringent, 

the disposal of the dust has become an expensive option [4]. On the other 

hand, dusts are containing valuable metals and they can be used as a source 

of raw materials in metal production. The pressure to reduce pollutants has 

increased more interest for further utilizing of dusts as sources of metals or 

as secondary raw material [27].   

As alternative to landfill, various processes have been developed for 

treating these dusts. The target with these treating processes is to produce a 

residue that could be recycled further or safely disposed-off without 
affecting the environment. The most important stage is the separation of 

non-ferrous metals, such as zinc and lead, from iron in the dust.  

The most harmful element in the carbon steelmaking dusts is zinc as it 

hinders the direct recycling of the dust back into the furnace. Still, it is also 

the most valuable element in the dust. The main purpose of treating carbon 

steelmaking dusts is to remove zinc so that iron-containing materials can be 

recycled and zinc recovered.  

The recovery of zinc from the dust does not only save natural resources 

and eliminate environmental problems. Production of zinc from the 

secondary waste materials, such as steelmaking dusts, also consumes less 
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energy. The energy savings can be about 30 % compared to manufacturing 

from primary sources.  The process costs and profitability are extremely 

dependent on the zinc content of the waste and on the market price of zinc. 

[39] 

 

3.1 Treating processes today 
 

Both pyrometallurgical and hydrometallurgical processes or their 

combination have been used for dealing with the secondary materials, such 

as steelmaking dusts [4]. Numerous processes have been developed to treat 

this material but only a limited number of these have reached 

commercialization and the majority of them have been pyrometallurgical.  
Some of these processes have been commercialized for a period of time and 

then abandoned or have only reached the pilot scale [9]. There are some 

plants in commercial operation for processing EAF dusts in the USA, 

Sweden, Germany and Japan [27].  

The pyro- and hydrometallurgical treatment processes for EAF dust 

developed today are represented in Figure 8. Both the commercial 

operation processes and the pilot plant operation processes are included. 

The processes at laboratory scale and under developing are not listed in 

Figure  8  [26].  In  addition  to  pyro-  and  hydrometallurgical  processes,  the  

other options currently for treating these materials are stabilization or 

vitrification processes as well as other miscellaneous processes 
[6,9,14,38,40,41]. But in these options the valuable metals may not 

recovered and thus lost. 

 

 



  

 25 

 

Figure 8. Pyro- and hydrometallurgical treatment processes or EAF dust [26]. 

 

3.1.1 Pyrometallurgical processes 
 

Today the dust treating processes are predominately pyrometallurgical and 

they present over 99 % of the recycling capacity. Most of these are based on 

rotary kilns, plasma, and flame reactor processes [42]. Pyrometallurgical 
processes in dust treatment usually produce an upgraded zinc oxide. The 

ZnO  in  the  EAF  dust  is  enriched  to  around  90  %  grade  ZnO  with  these  

processes  [29].  They  perform  well  when  a  huge  amount  of  EAF  dust  is  

treated at one time [29]. 

The Waelz kiln process is worldwide the most important and oldest 

method for treating the waste dust from steel mills. It has been shown to be 

possible  to  volatilize  95  %  of  Zn  and  Pb  by  Waelz  kiln,  when  the  dust  

contained 4.5 % Zn and 2 % Pb [43]. A schematic presentation of steel mill 

dust recycle via Waelz Kiln is shown in Figure 9. 
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Figure 9. A schematic presentation of dust recycling route via Waelz Kiln [44]. 

 

There are, however, some drawbacks with pyrometallurgical processes that 

drive for developing and searching new options. Pyrometallurgical 

processes face problems such as high energy consumption and a need of a 

dust collection/gas cleaning system, and generation of worthless residues 

[4,45]. Also, the presence of chloride and fluoride salts cause severe 

corrosion problems and thus necessitates the use of expensive alloys as 

construction materials [4]. 

In addition, pyrometallurgical processes usually require a large feeding 

quantity in order to be economical and thus the treatment plant may have 
distant location from the steel factories. For example the Waelz kiln process 

requires a large quantity feed with high zinc content to be economical. Zinc 

content should be higher than about 15 – 20 % in the dust in order for the 

process to be economical and the plant must process at least 50 000 tons of 

feed per year [14,19].  

A short-term solution could be to recycle the dust in order to increase the 

zinc content. Sometimes poor wastes (BOF dusts containing 2 to 5 % of 

zinc) are recirculated to the converter until they reach a zinc content up to 

20 % [46]. But in this case the normal operation of the steelmaking furnace 

is disturbed.  

Moreover, pyrometallurgical processes require some reducing agents and 
relatively high temperatures to produce raw zinc oxide of low commercial 

value [45]. Usually, they produce only crude ZnO and to supply metallic 
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zinc later treatments are needed and at least one process step more is 

necessary. In addition, their separation capability is not always good. An 

insufficient zinc yield and numerous impurities in the final product with the 

pyrometallurgical processes are reasons why the search for an alternative 

process is still important [46]. 

 

3.1.2  Hydrometallurgical processes 
 

The impetus for developing hydrometallurgical processes is that they can fit 

on smaller scale and an on-site process could be possible. 
Hydrometallurgical processes on a small scale are regarded as more 

environmentally suitable and economical for treating materials having 

relatively low zinc content. An on-site type process is desired to reduce 

treatment cost and cost of transportation of the dust [26]. These processes 

are more compact and easy to make a closed system [4,46]. They can also 

provide a good selectivity in metal separation and flexibility in end products 

[5-7].  

In hydrometallurgical processes metals are extracted by a leaching stage 

and then recovered in metallic form by electrowinning or other reduction 

methods [27]. Hydrometallurgical route could offer an interesting 

alternative for zinc recycling if iron dissolution can be controlled [14,45]. 
Although many hydrometallurgical processes for EAF dust treatment have 

been proposed, most of them have not been commercialized [26].  

More detailed description of hydrometallurgical processes is given in 

chapter 4, in which the focus is on alkaline leaching. 

 

3.2 Choice of treatment 
 
The choice between the processing routes depends strongly on the dust 

characteristic. Therefore a detailed characterization is important, including 

the particle size, the number of valuable elements and mineralogical 

phases. These characteristic may indicate the amount of leachable 

constituents [14]. 

Dusts containing many elements make metal extraction complex and 

difficult. In addition, each dust is unique, which makes finding a suitable 

treatment process even more complicated. The problem in the processing of 

dusts is the fact that their chemical and mineralogical composition varies 

widely even if the dust has been taken from the same process. Because of 

the wide range of composition within the dust it is necessary to make 
accurate and precise analysis of each individual case in order to optimize 
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any recycling or recovery process. Thus, also flexibility for handling 

different source material is desired from the treating process [37]. 

Although many pyro- and hydrometallurgical processes have been 

developed, none of them have been entirely satisfying. The reason for 

failures could be that it is still more economical to extract zinc from the 

naturally occurring raw materials [5]. Also the secondary raw materials 

have much more complex structure than primary ones. Agglomeration and 

inclusion of small particles inside large matrix phases are typical for flue 

dusts. Besides the valuable metals, for example the EAF dust is also 
containing numerous other non-ferrous elements (sodium, potassium, 

chlorine, fluorine) that complicates any process which is developed to 

recover valuables metals [5]. 

A process can mature into a full-scale only if it is economically viable and 

if it can compete on a global scale with other processes. The criteria by 

which  a  process  concept  can  be  evaluated  is  represented  in  Figure  10,  

initially the technical feasibility must be proved. In case of dust treating 

processes, the economically viable process can be achieved if the operating 

costs for the process are less than the costs for dumping it. [47] 

 

 

Figure 10. A process evaluating for the iron and steelmaking dust processing [47].  
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The  mineralogical  form  of  the  zinc  seems  to  be  a  basic  indicator  to  the  

effectiveness of dealing the EAF dust. Zinc is present mainly as two 

compounds as oxide ZnO and ferrite ZnFe2O4. The zinc oxide and the ferrite 

behave in a different way, which causes difficulties in dust treating. The zinc 

oxide can be easily handled with both pyrometallugical and 

hydrometallurgical methods, but the zinc ferrite is extremely stable and 

significantly complex and difficult. The major obstruction in the 

hydrometallurgical extraction of zinc is the presence of zinc ferrite 

(ZnFe2O4) in the dust which is a highly stable compound [48].  
Despite the benefits with hydrometallurgical processes there have been 

very few commercial processes because they are essentially dependent on 

the characteristic of EAF dust. If zinc in the dust occurs mainly as ZnO high 

recoveries are expected, but if zinc ferrite is the main component the 

recoveries remains low. [29]  

The carbon steelmaking EAF dust contains in average 20 % of zinc and 

the amount of zinc in ferrite form is about 50 % of the total zinc [48]. When 

zinc particles are in contact with iron particles at high temperatures (800 – 

1300 °C) in an oxidizing atmosphere, zinc ferrite formation will occur in the 

furnace and in the evacuation system [48]. Regarding zinc emission, the 

latter mechanism is particularly important at steelmaking temperatures in 

the 1600 °C range [48]. 

Because dust from iron and steelmaking consist of very fine particles the 

physical concentration techniques, such as gravity or magnetic separation, 

may not be suitable for treating this material and exhibits poor recoveries 

[14,38].  Furthermore, the fine size distribution suggests that the material 

will be difficult to handle dry, if no previous agglomeration is used [14]. On 

the other hand, the reaction kinetics involving these dusts should be fast, 

which suggest that leaching may be an attractive route to treat this material, 

if the zinc can be leached selectively [13,14]. Thus the hydrometallurgical 
processes offer some potential advantages, especially caustic leaching due 

to its selectivity to iron.  
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4. Hydrometallurgical processing of 
iron and steelmaking dusts 

Hydrometallurgical processes are effective and flexible for treating the 

steelmaking dusts as they can control different levels of impurities. Dusts 

from steelmaking are containing impurities in different levels depending on 

the source. Depending on a character and composition of the secondary raw 

material, a suitable solution can be chosen to dissolve the desired metals 

leaving the gangue in the solid residue. The dissolved metal can be 

recovered with different methods as precipitation, crystallizing, extracting 

on selective solvent, ion exchange, electrolytic precipitation etc. [4] 

Hydrometallurgical processes are considered to be suitable for such an 
on-site treatment [26] and they offer an interesting alternative for zinc 

recycling  if  iron  dissolution  can  be  controlled  [14,45].  In  the  recovery  of  

zinc the hydrometallurgical processes have been considered as more pro-

environmental and economical for dealing of materials even with low zinc 

content on small scale [4]. 

The aim of hydrometallurgical treating of dusts is to recover the valuable 

elements contained in the dust and to obtain a non-hazardous residue that 

can  be  stored  without  problem  or  can  be  used  in  agglomeration  units  in  

iron-making industries. The leaching process should produce iron-bearing 

residue with maximum of 0.4 – 1 wt-%  zinc in order to recycle it into steel 

plant furnace [4,17].  
To reach this objective a sequence of unit operations, such as leaching, 

filtration, purification, extraction, stripping and electrolysis processes is 

required  [16].  In  the  first  step  leaching  is  used  to  transfer  zinc  to  the  

solution phase and selective solubility of zinc relative to iron compound in 

this step is very critical. Precipitation and cementation techniques can be 

carried  out  for  the  removal  of  the  impurities  from  the  leach  liquor.  The  

common stages in a hydrometallurgical process are shown in Figure 11. 
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Figure 11. The common stages in a hydrometallurcal process.  

 

4.1 Various leaching methods 
 
Hydrometallurgical processes can be roughly divided into four groups in 

terms of leaching agent and electrochemistry, namely acidic or alkaline 

leaching and oxidative or reducing leaching. Type and concentration of the 

leaching agent is dependent on chemical composition of source material 

and mineral from which the metal has to be extracted [37]. Sulfuric acid, 

hydrochloric acid, ammonia, ammonium carbonate, ammonium chloride, 

sodium  hydroxide,  carboxyl  acid  etc.  have  been  used  for  the  dissolving  of  

zinc [4]. Different processes have been developed with planning stage, pilot 

plant and commercial levels [4]. Table 6 shows an overview of different 

leaching processes with their typical features.  
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 Table 6. Overview of several hydrometallurgical processes [49]. 

Leaching agent                                   Feature 

sodium 
hydroxide 
leaching 

leaching by NaOH 
     cementation of ZnO 
     electrolysis of Zn from solution 
     selective reduction of rests 
     leaching by dilute NaOH  
Zn recovery > 95 %  

ammonium 
carbonate 
leaching 

reduction roasting into Fe3O4  
leaching by (NH4)2CO3  
cementation of ZnO 
     calcination into ZnO 
     alternative production of other Zn compounds 
Zn recovery 70 – 75 %  

sulfuric acid 
leaching 

     neutral leaching (pH=3) 
     oxidative acid leaching in autoclave  
simultaneous precipitation of hematite  

acetic acid 
leaching 

     leaching by acetic acid  
     ion exchange  
Zn recovery 70.5 % 
extraction of Pb,Cd,Cu,Ni,Mn,Ca,Mg,Na,K  

chloride 
leaching  

     leaching by HCl (98 % extraction ) 
     pressure leaching and hematite precipitation 
solvent extraction and Zn electrolysis  

 

 

Principally, the two most used leaching methods for treating carbon steel 

dusts are sulfuric acid (H2SO4) and caustic soda (NaOH) leaching. Both 

laboratory and pilot set-ups have been constructed with these leaching 

methods two in previous researches.  

The major advantages with acidic solutions is that they are very familiar 
and cheap and also with sulfuric acid solutions the traditional 

electrowinning is applicable to obtain metallic zinc [26]. The other 

advantages of acid leaching are better kinetics and recycling of the solution, 

and as well less concentrated solutions. Also, generally, the recovery of zinc 

is enhanced in acidic leaching as compared to alkaline leaching. 

However, there are problems with treating the iron if it is dissolved into 

leaching agent. The amount of zinc is often low compared to iron in dust 

and in acid leaching only a small share of zinc can dissolve without 

dissolving iron and other materials [7].  Furthermore, a large amount of 
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acid will be consumed when other elements are dissolved in addition to zinc 

[7,38]. In addition, the high alkalinity of many dusts consume a lot of acid 

for pH adjustment [2,25]. 

The main problem with dissolved iron is that it makes the solution 

purification process very difficult and complex. The dissolved iron disturbs 

the removal  of  Cu,  Cd and Co ions in  the cementation process  [50].  Even 

though iron removing processes have been developed and have been used 

in the industry for decades, none of them is completely satisfactory [50]. If 

high-quality zinc is wanted to produce, a considerable cleaning system will 
be required in acidic leaching and thus it will not seem economical [27]. In 

addition, the dissolved iron promotes the corrosion of anodes and increases 

the lead and iron content of the cathode in the zinc electrolysis [50]. 

Alkaline leaching has the advantage that iron does not dissolve. They can 

be used to separate non-ferrous metals, such zinc and lead, from iron-based 

materials. Thus, a relatively clean and iron-free leach solution can be 

achieved by alkaline leaching and the complicated iron removal process is 

avoided. Therefore NaOH leaching could be a promising leaching method 

and  sodium  hydroxide  is  one  of  the  common  bases  used  for  leaching  

amphoteric hydroxides or oxides [51]. However, there are also 

disadvantages with alkalis such as more concentrated liquor is needed and 
the  poor  recycling  of  the  liquor.  Also  the  cost  of  leaching  agent  is  higher  

than that of acids and some technical problems lie in recovering metallic 

zinc with the electrowinning process [26]. 

Many pilot plants have been built to test hydrometallurgical technologies. 

In Table 7 several processes used for treating iron and steelmaking dusts 

are compared. The status of the process is symbolized as once tested in 

laboratory (o), tested on pilot scale (ooo), and in use of technical scale 

(oooo).  The  zinc  products  received  are  divided  into  low  grade  (l)  and  

refined  (h)  metals,  for  all  the  processes  iron  products  are  oxides  (o).  Also  

the environmental effects are indicated in respect of possible problematic 

water pollution (wp). [37] 
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Table 7. A comparison of different hydrometallurgical treatment processes for 
treating steelmaking  dusts [37]. 

 

 

However, in general, there still does not exist an effective and economically 

advantageous method for the treatment of these wastes. Many of built pilot 

plants had to stop production after only a few years because of various 

problems. The key problem with hydrometallurgical processes is to 

maximize the recovery of zinc at the same time when the dissolving of iron 
is minimized.  

The presence of zinc ferrite in the iron and steelmaking dusts is the major 

problem with hydrometallurgical processing of these dusts. Zinc is 

occurring predominantly in two phases, zincite and zinc ferrite. From those 

zincite easy to dissolve in many solvents, both in acid and alkaline solutions 

but  the  zinc  ferrite  is  very  difficult  to  decompose  by  leaching  [45].  The  

ferrites are very stable and insoluble and will usually dissolve only in very 

strong acids [50]. However, the strong acids will also leach the other metals 

as well from the dust.  

In a view above, the zinc recoveries with hydrometallurgical processes 

depends on the form of zinc in the dust. If zinc in the dust occurs mainly as 
ZnO high recoveries are expected, but if zinc ferrite is the main component 

the recoveries remain low [29]. The content of zincite can vary from about 

30 % to 70 % of the total amount of zinc in the dust [26]. 

 

4.2 Commercialized and pilot scale alkaline leaching 
processes 

 

Despite that the steelmaking dusts often contain valuable metals in same or 

even higher concentrations than the ores, only few developed processes for 

dust treatment have reached commercialization. Many proposals have been 

done for hydrometallurgical processes [46] but still commercial processes 

are limited. Some alkaline leaching processes have been developed earlier 
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and  used  for  the  leaching  of  zinc  from  the  different  oxidized  ores  and  

secondary materials. However, they have faced difficulties and have closed 

down. 

In the 1960's the U.S Bureau of Mines investigated the recovery of zinc 

from the oxide ores using caustic soda (NaOH) as a leaching reagent [52]. 

The zinc oxide ore contained 21.2 wt-% zinc and zinc recovery of 85 % was 

obtained using 4 - 6 M NaOH solution [3]. The process has also been tested 

to secondary materials, such as EAF dust [30,53] and to galvanized steel 

scrap [54]. 
Amax Co. operated a pilot plant in the 1970’s, which was based on caustic 

leaching and purification of alkaline solutions by removal of lead with zinc 

dust and followed by electrowinning. However, this development faced 

technical and economical problems and was eventually abandoned. Later in 

France was built up a similar plant, based on direct caustic leaching, but it 

has also been abandoned [7].  

Frenay et al. [53] developed the Cebedeau process (Figure 12) for the 

recovering metals from EAF dust. In the process the dust was leached to 

dissolve zinc and lead in hot 95 °C concentrated 6 - 12 M NaOH solution for 

1 - 2 hours. After leaching the solution purification, in order to remove lead, 

was done using cementation with zinc powder. From the purified solution 
zinc was produced, as a powder, by electrolysis as on semi-pilot plant scale 

and the process was economical if dust contained 20 % zinc [3,4].  In 1986 a 

commercial plant was built up in France but was discontinued within a 

short time. The Cebedeau process faced problems with the filtration for 

solid-liquid separation [4]. 

 

 

Figure 12. Principle of the Cebedeau-process [53]. 
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Due to the filtration problems in Cebedeau process in Cardiff was used a 

high intensity magnetic field to settle the slurry after leaching when 80 % of 

zinc and 90 % of lead recoveries were obtained. The unrecovered zinc was 

mainly as zinc ferrite and the process was developed further. [4,55] 

The Cardiff process was proposed of two-stage leaching (Figure 13) with 

an intermediate reducing roasting to decompose ferrites and to enhance 

lead extraction. By reducing roasting zinc can be recovered from ferrites, 

but if it is done before leaching lead oxides will reduce to metallic lead. The 

behavior of trace elements, including cadmium, during the leaching has not 
been  reported.  However,  the  iron  rich  residue  is  said  to  be  suitable  for  

disposal in a landfill. [4] 

 

 

Figure 13. Cardiff process [49]. 

 

Also certain kind of direct alkaline leaching – electrowinning process for 

treating of EAF dusts has been developed in order to release zinc from zinc 

ferrites with strong alkaline solution. In the process the dust is first 

separated into two fractions using a magnetic separator. The magnetic part 

consisted  primaly  of  the  zinc  ferrite  and  it  was  leached  in  11  M  NaOH  

solution for 4 hours at 95 °C. The non-magnetic part was thought to be ZnO 

and was leached with 6 M NaOH solution for 1.5 hours at 95 °C. [56,57] 

In that direct alkaline leaching - electrowinning process around 80 to 85 

% of the total amount of Zn and Pb were recovered from the dust when the 

dust  contained  21.2%  Zn,  21.8%  Fe,  3.6%  Pb  and  2.5%  Mn.  However,  in  
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some earlier  laboratory  experiments  in  which the dust  contained 24 % Zn 

and 33 % Fe only 50 % of zinc was recovered, and when the dust contained 

16 % Zn and 39 % Fe only 32 % of zinc was recovered. Supposedly, higher 

iron content in EAF dust reflects higher zinc ferrite content because the zinc 

ferrite dissolves not in alkaline solution and lowers the zinc recovery. [56] 

Despite that technical and economic problems have emerged, caustic soda 

leaching, could offer some potential advantages for treating the dusts. An 

important factor will be the costs imposed to landfill today. Reduction of 

these by using dust treatment can be decisive to process economics. 
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5. Alkaline leaching of zinc from 
steelmaking dusts 

The alkaline leaching offers a method for separation of zinc and lead from 

the oxidized zinc ores and waste materials. The major advantage of sodium 

hydroxide leaching is the good selectivity between iron and zinc, because of 

the insolubility of iron compounds. Because very few other elements are 

leached the consumption of the leaching agent is low and a solution 
containing only zinc and lead as main elements is obtained [38]. Thus a 

relatively clean and iron-free leach solution can be achieved and the very 

complicated iron removal process is avoided. Zinc extraction from iron and 

steelmaking dust using alkaline leaching could be a promising method for 

dust treatment and sodium hydroxide is one of the common bases used for 

leaching amphoteric hydroxides or oxides [6].  

The previous researching and processing of steelmaking dusts using the 

alkaline leaching have focused on zinc recovery by electrolysis. The 

hydrometallurgical principles of caustic soda leaching - electrowinning 

process  are  described  in  this  chapter  5.  The  emphasis  has  been  on  the  

leaching stage as it is considered to be the most important stage in 
extracting zinc from the steelmaking dusts. 

 

5.1 Caustic soda leaching – electrowinning process 
 

Dusts from steelmaking can be treated by caustic soda leaching - 

electrowinning process in order to recover zinc as a marketable product 

such as zinc dust, powder or cast shapes. A simplified general process flow 

sheet of caustic soda leaching – electrowinning process is illustrated in 

Figure 14. The main stages in the process are: water leach, caustic leach, 

purification of the leachate by cementation, and electrolysis to deposit zinc 

while regenerating the caustic for re-use. [30] 
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Figure 14. A principal flowsheet of caustic leach-electrolysis process [30]. 

 

5.1.1 Water leach 
 

The water leach/wash stage has been seen necessary prior to NaOH 

leaching because there can be a substantial amount of NaCl and KCl salts in 

the dust [9]. Elements such as Na, K and Ca are also soluble in caustic soda 

and thus consuming the caustic. Also the presence of chlorides is 

detrimental to electrolysis and poses health risks due to formation of toxic 

chlorine gases [30,37]. After washing the dust, the water leachate is 

thickened and filtered, and it is recycled and eventually bled-off [30]. 

 

5.1.2 Caustic soda (NaOH) leaching 
 

Leaching stage is applied to extract the desired metals from the dust. An 

aqueous solution containing a suitable leaching agent (NaOH) is used. The 

major advantage with alkaline leaching is its selectiveness in leaching zinc 

compared to iron compounds.   

The selectivity of alkaline leaching in dissolving zinc compared to iron 

compounds is depicted in equilibrium diagrams (Figure 15 and Figure 16), 

which show that speciation and dissolution of iron hydroxide and zinc 



 
 
40

oxides are dependent on pH. These diagrams indicate that zinc can be 

dissolved in either acidic or alkaline media, whereas iron is more readily 

soluble in acidic media [14]. 

 

 

Figure 15. Solubility of ZnO as a function of pH, at 25 °C [14].�
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a) 

 
b) 

Figure 16. Solubility of ferrous (a) and ferric (b) hydroxides as a function of pH, at 
25 °C [14]. 

 

Alkaline leaching, using sodium hydroxide as a leaching agent is seen 

effective in the dissolution of heavy metals, without significant dissolution 

of iron [14]. Oxides of Zn, Pb and Al can be dissolved effectively in strong 

NaOH solution and in limited cases Cr and Cu can be dissolved. Thus, the 
consumption of leaching agent decreases and a solution containing Zn and 

Pb as predominant elements will be obtained. Considering these, it would 
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be appropriate to use the alkaline processes to leach zinc and lead 

selectively from the dusts [7]. 

The earlier experiments have shown that the solubility of the certain 

amphoteric elements in strong alkaline solution decreases in the following 

sequence Zn > Pb > Al > Cr(III) > Cu [7]. The solubility of Cr(III), Cu and 

Cd  are  found  to  be  negligible  in  the  presence  of  zinc  and  lead.  Also  the  

solubility of lead is decreased if the zinc content in caustic solution is 

relatively high. Fe, Cd, Ca and Mg have found to remain in the leaching 

residue [7]. 
Zinc and lead oxides dissolve easily in alkalis. The main dissolution 

reactions (1) and (2) in caustic soda leach can be expressed as follows 

[4,30]:  

 

 ��� + 2���� � ��	���	 +  �	�    (1) 

 
�� + 2���� � ��	
��	 + �	�    (2) 

 

The other form of zinc, which is present in the dust, is zinc ferrite 

(ZnFe2O4). Zinc ferrite is a very stable compound and only partial amount 

will dissolve in alkalis.  

If dust contains aluminum hydroxide or silica they are dissolved in 

alkaline solutions in similar fashion, reaction (3) and (4) [37]. However, 

aluminum and silica have found to dissolve relatively little from EAF dust 

[56]. 

 

 ��	 + 2���� � ��	��� + �	�    (3) 

 ��(��)� + ���� � ��(��)�
� +  ���    (4) 

 

After NaOH leaching the solids are separated from the leachate. A residue 

enriched in iron and depleted in zinc and lead is obtained and it may be 

suitable for recycling or more suitable for disposal than the original 

material. [30] 
 

5.1.3 Solution purification 
 

After leaching solids are separated and a purification process is conducted 

to remove other dissolved heavy metals such as lead, cadmium and copper 

from the leachate. These metals can cause operational difficulties when zinc 

is  electrowon  and  thus  should  be  removed  before  that.  In  

hydrometallurgical processes the solution purification can be done using 

crystallization, cementation, solvent extraction or ion exchange etc. [4]  
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Lead,  cadmium  and  copper  can  be  removed  from  the  leach  solution  by  

cementation with zinc powder [4] and lead containing purification residue 

may  be  a  suitable  feed  to  a  lead  smelter  [30].  Cementation  is  suitable  to  

remove metals that are more noble than zinc from the solution, reaction (5) 

[4]. 

 

 ��	� + ��� �  ��� +  ��	�      (5) 

 Me = Cu, Pb, Cd, Ni, Co  

 

Solution purification studies for leachate after EAF dust leaching with 
NaOH solution showed that amount of zinc powder required for remove Pb, 

Cu and Cd was stoichiometrically four times greater. The Zn, Pb, Cu and Cd 

concentrations of caustic leachate before and after purification are shown in 

Table 8. After cementation using zinc powder, the cement obtained was 

seen a suitable raw material for further recycling of Pb and Cd. The cement 

contained 75.4% Pb, 5.8% Zn, 1.6% Cu, 0.12% Fe and 0.21% Cd. [27] 

 
Table 8. Concentrations of certain elements before and after cementation of 
caustic leachate [27].  

Metal Before After 
Zn (g/l) 18.00 22.00 
Pb (g/l) 3.20 0.21 

Cu (mg/l) 0.70 0.20 
Cd (mg/l) 22.00 1.00 

 

The other method for solution purification would be precipitating lead 

using sodium sulphide. According to Youcai and Stanforth [7] the 
cementation with zinc powder leads only to partial removal of lead (20%) in 

alkaline solution. They have investigated solution purification using sodium 

sulphide as precipitant for selectively removing of lead and almost 100% 

removal of lead was achieved. The concentrations of other elements (Fe, Ca, 

Cu,  Cd,  Mn)  in  leach  solutions  were  all  less  than  0.5  g/l  and  it  could  be  

reduced further to less than 0.1 g/l after sodium sulphide was added.  

Sodium  sulphide  was  not  able  to  remove  aluminium  together  with  lead  

from  the  leach  solution.  However,  aluminium  is  not  considered  as  a  

harmful element in the subsequent treatment of leach solutions 

(purification and electrolysis), but if it is not removed before 

electrowinning, it may accumulate when the leach solutions are recycled 
after zinc electrowinning. [7] 
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5.1.4 Electrowinning zinc from leach solution 
 

After solution purification zinc can be recovered as solid zinc by electrolysis 
or precipitated as its pure compound. Electrowinning is the most important 

method in producing zinc and around 80% of produced zinc in the world is 

obtained by this technology [7]. This technology usually uses acidic sulfate 

solution but a sponge-like, particulate zinc deposit can be produced in 

caustic soda solution [30]. The quality of zinc powder from alkaline 

solution is much more stable than that from acidic solution [7]. 

The reactions during the electrolysis at anode (6) and cathode (7) are 

given as follows: 

 

Anode reaction: 2��� �  �	� +  ½�	 + 2��                 (6) 

Cathode reaction: ��(��)�
	� +  2�� �  ��� +  2��� +  �	� (7) 

 
According the total reaction (8) zinc can be precipitated from caustic soda 

solution by applying an electric potential of 1.6V [37]. 

 

Total reaction:  �����	 + �	� � �� + 2���� + ½�	 (8) 
 

Zinc recovery by electrowinning provides an opportunity to produce a 

premium product without the costs for melting, casting and atomizing [30]. 

 

5.2 Effect of leaching parameters 
 

The most important parameters controlling the efficiency of the leaching 
process are oxidation potential, concentration of leaching agent, 

temperature, and pH [37]. Also other factors, such as particle size, agitation 

and pulp density, are affecting the efficiency of leaching process as having 

influence on leaching rate. If an insoluble reaction product is formed on the 

particles during leaching, the dissolution rate depends on the nature of this 

product [51]. The mineralogical phases indicate the amount the leachability 

and the mineralogical form of the zinc seems to be a basic indicator to the 

effectiveness of dealing the EAF dust. 

 

5.2.1 NaOH concentration 
 

The concentration of leaching agent should set up to optimum level in order 
to maximize the selectivity [51]. Generally the increase of NaOH 

concentration increases dissolution of zinc from the dust. However, with 
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higher than 5 M concentrations, further increase has only little effect on the 

leaching  (Figure  17).  Thus,  a  concentration  of  5  M  NaOH  should  be  

sufficient for optimum extraction of zinc and lead from dust. In leaching 

zinc to reach maximum leaching and extraction for sufficient phase weight 

ratio  of  NaOH/dust  was  considered  the  ratio  of  3  [7].  In  several  

experiments using NaOH concentrations around 6 M gave zinc recoveries 

above 65 %, but to reach recoveries of this level also increased temperature 

is needed [14,27,46].  

 

 

Figure 17. Effect of NaOH concentration on the extraction of Zn and Pb from 
steelmaking dust (25 °C, L/S 3.6, leaching time 42h) [7]. 

 

Additionally, it must be taken into consideration that the viscosity of NaOH 

solutions changes when concentration of NaOH increases and changes in 

viscosity has consequences for the diffusion rate of ions [7]. The viscosity as 

function of temperature and concentration of NaOH can be determined 

from Table 9 [58]. At temperature of 70 °C the zinc extraction was seen to 

increase with increased NaOH concentration up to 10 M, but to drop at 12 

M, due to increased viscosity [3]. At 60 °C the dissolution of zinc was seen 



 
 
46

to decrease already in concentrations over 2.5 M NaOH [35]. There seems 

to be a tendency that zinc dissolution decreases with increasing solution 

viscosity, but no generally valid threshold value has been found. 

 

Table 9. Viscosity of aqueous solutions of NaOH, mPa.s [58]. 

Viscosity of Aqueous Solutions of NaOH, mPa.s  

Concentration Temperature, °C  
kg NaOH/ 

kg  20  30  40  50  60  70  80  90  100  

0,00 0,97 0,78 0,64 0,54 0,46 0,4 0,35 0,315 0,28 
0,05 1,31 1,03 0,83 0,69 0,58 0,5 0,43 0,375 0,33 
0,10 1,86 1,43 1,14 0,93 0,78 0,66 0,55 0,47 0,4 
0,15 2,78 2,07 1,62 1,31 1,08 0,9 0,73 0,62 0,51 
0,20 4,43 3,17 2,43 1,93 1,57 1,26 1,03 0,84 0,68 
0,25 7,45 5,15 3,76 2,87 2,26 1,8 1,44 1,16 0,94 
0,30 12,6 8,43 5,99 4,38 3,28 2,55 2,02 1,62 1,28 
0,35 21,6 13,4 9,23 6,41 4,71 3,57 2,79 2,2 1,75 
0,40 38,1 21,8 13,5 9 6,36 4,76 3,69 2,89 2,29 
0,45 68 32,8 18,9 12,1 8,37 6,13 4,62 3,63 2,85 
0,50 120 47,7 25,5 15,8 10,4 7,6 5,6 4,36 3,41 

 

 

5.2.2 Temperature 
 

In caustic soda leaching of EAF dust the solubility of zinc has seen to 

increase with elevated temperatures [3,27,35]. With concentrations (1 – 4 

M) temperature has had a significant impact to the leaching time. At 32 °C 

leaching was found to be complete in 120 minutes, at 95 °C in 30 minutes 

[35]. The effect of temperature on leaching rate is less significant for 
processes that are diffusion controlled [51]. 

Generally, the dissolution of zinc is discovered to be very fast, tending to 

maximum constant value. The value is however seen to be dependent on 

concentration and temperature at longer leaching times (Figure 18). The 

additional extraction obtained after 2 hours is most likely due to dissolution 

of some entrapped zinc or the destruction of zinc ferrites [14]. Nevertheless, 

in 10 minutes more than 50 % of zinc can be dissolved and 30 – 90 minutes 

leaching times are reported to be reasonable for higher temperatures 

[3,14,27,35]. 
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a) 

 
b) 

Figure 18. a)  Influence of NaOH concentration on zinc recovery at long leaching       
times (90 °C). b) Influence of temperature on recovery of zinc at long leaching 
times (6 M NaOH). [14] 

 

5.2.3 Particle size and pulp density 
 

Small particle size and low pulp density (small volume of solids) will favor 

faster leaching kinetics. As the individual particles in the dust are mostly 

less than 10 μm, the reaction kinetics involving this kind of dust should be 

fast.  The dissolution of  soluble  forms of  zinc  is  reported to  be  very  fast  in  



 
 
48 

caustic soda leaching and leaching times even 30 minutes could be 

sufficient. [3,9] 

Commonly,  the  lower  the  solid  to  liquid  ration  is,  the  higher  are  the  

recovery percentage. However, the solid content have seen to have more 

effect on leaching time than on the maximum possible zinc extraction that 

can be obtained if sufficiently strong NaOH solutions is used (Figure 19) 

[35]. It has been also reported that no remarkable increase of zinc 

dissolution have been observed for the S/L ratios above 1/7, when leaching 

in 10 M NaOH solution for 2 h [3]. On the other hand, Mordogan et al. [27] 
got the best zinc yield with solid content of 10 %, when using 6.5 M NaOH 

solution (20 °C,  600  rpm).  The  solid  contents  above  20  %  have  been  

reported to deteriorate the recovery of zinc probably due the flocculation of 

fine dust particles [27,35].  

 

 

Figure 19. Effect of solid content on leaching rate (850 rpm, 95 °C) [35]. 
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5.2.4 Agitation 
 

Increasing speed of agitation will promote leaching rate if the leaching 
process is diffusion controlled [51]. Increasing agitation has been seen to 

increase solubility as it prevents flocculation. This indicates a relation 

between solid content and stirring rate. Also when using more viscous 

solutions  (6.5  M  NaOH,  40  °C,  10  wt-%  solid)  the  increased  stirring  rate  

(from  400  to  900  rpm)  increased  the  solubility  of  zinc  [27].  With  weaker  

NaOH  solutions  (1.5  M  NaOH,  60  °C,  0.2  wt-%  solid)  it  was  found  that  

changing stirring rate between 500 – 850 rpm stirring did not have effect 

on reaction rate [35]. 

 

5.2.5  Optimal leaching conditions 
 

In Table 10 is collected the achieved zinc recoveries in caustic soda leaching 
from literature. Optimal conditions can be derived as 6 – 10 M NaOH, L/S 

ratio of around 10, and temperature of 80 – 95 °C. When using these high 

concentrations and temperatures, the dissolution of zinc is fast and zinc 

recoveries  of  80  -  85  %  can  be  reached.  Still  there  is  a  part  of  zinc  in  the  

dust that has not dissolved and recovered. The total recoveries of zinc are 

seen to  be  limited in  alkaline solutions due to  the presence of  zinc  ferrite.  

The higher is the content of zinc ferrite in the dust the lower zinc recoveries 

remain. [3,7,14,27,35,46] 

 
Table 10. Conditions and recovery levels of previous caustic leach experiments for 
EAF dusts. 

Reference 
(NaOH)  

[M] 
Temp.    
[°C] L/S ratio 

Leaching 
Time  [min] 

Stirring 
[rpm] 

Recovery  
[%] 

Zn in dust 
[%] 

[14] 6 90 10 240 - 74 12.2 
[27] > 6.5 80 10 30 900 80 - 85 23 
[7] 5 25 3 2520 - 36 24.8 
[3] 10 95 7 120 600 85 33 

[46] 6 80 - 10 - 20 - 65 18.54 
[35] 4 95 500 240 850 75 13.6 

 
 

5.3 Dissolution potential of zinc 
 

Still, the total recoveries of zinc are limited in hydrometallurgical methods, 

such as in alkaline solutions, due to the presence of zinc ferrite. The 

presence of zinc ferrites seems to be the most important factor limiting the 
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zinc recoveries. If the content of zinc ferrite in the dust has been high, the 

zinc recoveries have remained low. 

Xia and Pickles [50] have leached synthetic zinc ferrite and the 

experiments indicated that the maximum percentage of decomposed zinc 

ferrite has been only about 9 % at the optimum conditions. The percentage 

of decomposed zinc ferrite increased with increasing temperature, caustic 

concentrations and leaching time, however, it is limited by high viscosity of 

concentrated solutions.  

Zinc ferrites are insoluble into most acid and alkaline solutions. One 
leaching method for breaking the ferrite is dissolving it in hot and strong 

sulfuric  acid.  In  order  to  obtain  zinc  recovery  more  than  85  %  by  acidic  

leaching, hot (about 100 °C) and strong leaching process is required and in 

that case iron also will dissolve considerably. As mentioned before, this 

consumes large quantities of acid, and iron and other non-wanted metals 
must be removed with solution purification treatment, which will become 

complex and expensive. [56]  

However, these ferrites must be broken before the zinc can be collected 

and  the  breaking  of  the  zinc  ferrite  is  a  key  to  the  recovery  of  zinc  from  

these solid dust materials [56]. When zinc is present mainly as oxide, the 

material can be treated directly, but when a substantial amount is 

combined as ferrite, a more severe alkaline leaching conditions (e.g. high 

temperature - high pressure leaching) or a reduction step may be desirable 

to maximize zinc recovery  [30].  

 

5.4 Methods to enhance leaching 
 

Methods that are used to enhance leaching are for example pressure 
leaching, dust pre-treatment in a microwave oven, and leaching with 

ultrasonic agitation. High pressure leaching is sometimes chosen where the 

cost is justified by the economic value of the product. [9,14,51] 

 

5.4.1 High temperature and pressure leaching 
 

One method that can enhance leaching is to use high temperature and high 

pressure (HT-HP) conditions. The HT-HP leaching is expensive and less 

studied for leaching of iron and steelmaking dusts both in acid and alkaline 

solutions. Dutra et al. [14] have studied alkaline leaching (in 6 M NaOH 

solution) of zinc from EAF dust in an autoclave using temperatures of 120, 

150 and 200 °C, rendering pressures of 2.0, 5.8, and 15.8 atm, respectively. 

The total leaching time was 4 hours and the results showed that the highest 
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recovery  of  zinc  (around  53  %)  occurred  after  30  -  60  minutes.  

Temperature did not affect dissolution significantly. Also a drop of about 10 

%  was  observed  at  temperature  of  120  °C  with  longer  leaching  times.  The  

possible explanation for this behaviour could be that some of the dissolved 

zinc precipitated as zinc ferrite. For a comparison, at Dutra’s study the zinc 

recovery of 74 % was achieved under conventional conditions of 6 M NaOH 

and 90 °C after 4h leaching. 

 

5.4.2 Microwave assisted leaching 
 

A method reported aiming to enhance leaching is to use microwave assisted 

leaching. The potential advantages with microwaves include among others 

the following [9]: 

1) Rapid and selective heating of materials 

2) Reactions can be catalyzed since the heating occurs on a molecular or 

atomic level 

3) The energy source is clean and controllable 

4) The gas volume is reduced and the atmosphere can be controlled as 

there no gaseous combustion products 

5) The material is heated internally in comparison to external heating 

with conventional methods 

6)  The temperature of the container can be minimized 

In microwave leaching the liquid can reach higher temperatures before 

boiling occurs because the vessel wall is cooler than the bulk. In the 

conventional boiling process many of the bubbles nucleate preferentially at 

sites on the vessel surface, which is usually hotter than the bulk. However, 

in Xia’s and Pickles’ study the EAF dust particles were found to promote 

boiling in the NaOH solution and the boiling of the solution was observed 

extremely violent. [9] 
Materials such as metallic oxides absorb the radiation in microwave 

frequencies and this allows the fast heating of such materials under 

microwaves. The fast heating of dust can induce nucleation and 

propagation of cracks in the particles and making them more amenable to 

leaching [14]. According to Xia and Pickles [9] the EAF dust particles 

showed to exhibit good coupling with microwaves and this was attributed to 

the presence of zinc ferrite, zincite and magnetite in the dust. The solid 

particles and thus the interfacial temperatures could get higher than those 

observed in conventional leaching.  

Xia and Pickles [9] leached EAF dust under microwave irradiation using 6 

M  and  8  M  NaOH  solutions  with  solid  to  liquid  ratio  of  180  g/l.  The  
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recoveries of zinc were 5 – 10 % higher than the maximum observed under 

conventional conditions/heating. The conventional conditions used as 

reference was: 10 M NaOH, 70 g/l solids, 93 °C and 180 minutes, and the 

zinc recovery reached the maximum of about 72 %. The maximum recovery 

that reached under microwave irradiation was 80 %. The higher recoveries 

with microwave leaching may indicate that some zinc ferrite has been 

dissolved. Using microwave had effect also on dissolution of lead. The 

recoveries of lead were lower than in conventional leaching and more zinc 

was leached than lead.  This  may be attributed to  the different  behavior  of  

zinc and lead compounds under microwave irradiation. 

Microwaves have influence on leaching rate and the effect of power level 

was significant. When using microwaves the leaching was very fast and 

reached a plateau within few minutes, while it took several hours for 

conventional leaching process to achieve the same recovery. The higher 
power levels resulted in more rapid zinc dissolution and more zinc was 

dissolved.  At  the  higher  power  levels  the  irradiation  time  was  longer  in  a  

given time period and increased temperature particularly during the initial 

leaching period. [9]  

Dutra et al. [14] studied microwave radiation as a treatment stage prior to 

conventional caustic leaching. The samples were transferred immediately 

after heating to the leaching reactor. The leaching studies were done using 

NaOH  solution  of  6  M  and  temperature  of  90  °C. The microwave heating 

prior  to  the  caustic  leaching  did  not  improve  zinc  recovery  in  their  study.  

One explanation to this may be that the heating time was long enough to 

cause an incipient sintering of the phases, which had low melting point but 

not sufficiently long to induce the formation of cracks in the particles. 

 

5.4.3 Ultrasound assisted leaching 
 

The ultra-sonic probe has been expected to improve the dispersion of fine 
and agglomerated particles and thus enhance zinc recovery. The effect of 

ultrasound is attributed to a combination of improved pore penetration 

capacity of the leaching agent, boundary and product layer breakdown, and 

localized temperature increases. Dutra et al. used ultrasonic agitation in 

caustic leaching of EAF dust and observed that no improvements in zinc 

recovery were achieved. The leaching was done at 55 °C and 6 M NaOH 

solutions with duration of 60 min. [14] 
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6. Combined processes based on 
alkaline leaching 

Zinc ferrites can be very difficult to chemically decompose so that zinc can 

be recovered [56]. Hydrometallurgical processes are not able to dissolve 

zinc  ferrite  effectively.  Even  though  the  advantage  of  insolubility  of  iron  

oxides in caustic environment, the zinc ferrites remain also in the residue. 

Presence of zinc ferrites in the residue after conventional leaching indicates 
a need for some treatment prior to leaching (or more severe leaching 

conditions) [5]. 

Pyrometallurgical processes, such as roasting, can be used to break down 

the zinc ferrites. The aim of hybrid processes is to decompose zinc ferrites 

by pyrometallurgical process and then recover the non-ferrous metals by 

hydrometallurgical techniques. [5] 
Some researchers have showed that by treating the dust prior to alkaline 

leaching higher zinc recoveries can be achieved. Converting zinc ferrites 

into soluble zinc oxides can increase the recovery of zinc. This can be done 

for example by roasting the dust under reducing conditions. By special 

methods e.g. by roasting with caustic soda or sodium carbonate (Na2CO3) 
zinc ferrites can be decomposed and leaching of zinc could be improved [7]. 

Both  NaOH  and  Na2CO3 become liquids at temperatures used during 

roasting [37]. 
 

6.1 Roasting with caustic soda 
 
The most promising method of the combined treatments of roasting and 

leaching is to convert ferrite into a soluble sodium zincate form, typically 

Na2Zn(OH)4, in a low temperature caustic roasting followed by caustic soda 

leaching. This roasted product can be dissolved together with the zincite 

from the dust.  
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6.1.1 Experiments on synthetic zinc ferrite 
 

Youcai and Stanforth [56]  have  investigated  the  recovery  of  zinc  from  
synthetic zinc ferrite by using caustic roasting and hydrolysis prior to 

leaching with caustic soda. The experiments showed that fusing synthetic 

zinc ferrite with NaOH pellets at 318 – 450 °C for 1 h the extraction reached 

to 70 – 82 %. With hydrolysis (water and sample are mixed and then dried) 

before fusing the extraction of zinc can be improved even more. The 
extractions increased over 90 % when the zinc ferrite was hydrolyzed with 

water or dilute NaOH solution prior to the fusion step.  

The ferrite structure is very stable and thus the chemical extraction of zinc 

from it is quite difficult. When roasting the synthetic ferrite with sodium 

hydroxide, very little zinc was extracted at temperatures below the melting 

point  of  sodium  hydroxide.  The  NaOH/ferrite  ratio  of  around  1.5  was  

needed  to  reach  75  %  extraction  and  higher  NaOH/ferrite  ratios  did  not  

increase the extraction significantly. Also roasting time affected on 

extraction of zinc and it increased during the first hour and after that was 

constant. [56] 
Xia and Pickles [5] have also studied caustic roasting of synthetic zinc 

ferrite (350 – 450 °C,  30  –  60  min,  with  moisture  of  0  –  3  wt%).   Their  

results showed that the majority of zinc ferrite is decomposed during the 

roasting process and is converted into soluble sodium zincate and relatively 

insoluble hematite. The roast product was leached with 4 M NaOH solution 

for  90  min  at  90  °C. Both the iron and zinc contents of the residue 

decreased with the increasing roasting temperature and sodium hydroxide 

addition.  The  lowest  zinc  content  of  the  residue  was  1.5  %  [5].  For  a  

comparison, experiments for direct caustic soda leaching of synthetic ferrite 

showed  that  only  9  %  of  zinc  ferrites  was  decomposed  in  the  optimum  

leaching conditions (8 – 10 M NaOH, 60 – 93 °C, 120 – 180 min) [5]. 

 

6.1.2 Experiments on EAF dust 
 

Using caustic roasting step is also previously proven for EAF dust and the 
trend of using hydrolysis prior to roasting was same for both synthetic 

ferrite  and  EAF  dust.  The  leaching  of  zinc  has  been  found  to  increase  

greatly when the dust was contacted with water or dilute alkaline solution 

before fusing with caustic soda. EAF dust samples (25% Zn, 1.8% Pb, 33% 

Fe) were leached directly in caustic soda solution and using pre-treatments, 

such as caustic roasting or caustic roasting combined with hydrolysis. In 

direct leaching the amount of extracted zinc was around 38 % and was 

enhanced  to  80  %  when  dust  was  roasted  before  leaching.  The  hydrolysis  
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before caustic roasting increased the leaching of zinc even further to 95 %. 

Fusing  was  done  at  350  °C  for  1  hour.  Longer  fusing  time  improved  the  

extraction only slightly. The chemical reactions in the fusion (9, 10) and 
leaching (11) processes can be summarized as follows. [7] 

 

Fusion: 

��(���	)	 (�) +  8���� (�) = ��	���	 +  2��	���� (�) +  4�	� (9) 

��� (�) +  2���� (�) = ��	���	 (�) + �	�   (10) 

 

Leaching of fused products: 

��	���	(�) +  2������� + 5�	� 

=  ��	��(��)�(��. ) +  2��(��)�(�) +  6���        (11)           

  

After two sequential leaching steps, 94 % of the zinc can be extracted from 

the  fused  dust  and  about  1  %  of  zinc  remained  in  the  leaching  residue.  

However,  long  leaching  time  (24h)  is  needed  after  fusing  to  reach  the  

maximum  extraction  of  the  fused  product  when  the  leaching  is  done  at  

ambient temperature in 5 M NaOH solution. [7] 

Xia and Pickles [5] investigated caustic roasting and leaching for EAF dust 

when  adding  water  3  wt-%  in  part  of  the  roasting  experiments.  Time  for  

roasting was 30 – 60 min at  temperatures  of  350 – 450 °C. For a roasted 

mixture leaching was done for 90 min at 90 °C in a 4 M NaOH solution. The 

majority of zinc was recovered and residue contained, on average, 2.0% zinc 

and 19.9% iron. When the moisture was added the zinc recoveries were 

slightly higher and the iron recoveries were slightly lower. The higher zinc 

recoveries  are  likely  due  to  improved  contact  of  the  reagents.  The  zinc  

recoveries  were  over  95  %  and  for  iron  less  than  1  %  when  moisture  was  

added.  The  major  phases  in  the  roast  product  were  zincite,  hematite  and  

sodium zincate with some unreacted zinc ferrite.  
Xia and Pickles [5] found that the  effect  of  sodium  hydroxide  to  zinc  

ferrite ratio was more pronounced for shorter roasting time and the lower 

roasting temperature. A weight ratio of dust to solid NaOH with higher than 

1.27 does not seem unreasonable for practical application [7]. 
The flow sheet  of  a  hybrid low temperature  roasting process  followed by 

dilute caustic leaching for the treatment of EAF dust is shown in Figure 20. 

In the process the EAF dust is first initially mixed with a fine solid caustic 

soda and introduced into the roasting process. After the roasting, the roast 

product can be easily leached with a dilute caustic solution. The majority of 

iron remains as hematite in the residue and could be recycled back to either 

the iron- or steelmaking operation. The non-ferrous metals could be 
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recovered from the leach liquor by conventional hydrometallurgical and/or 

electrometallurgical techniques. [5] 

 

 

Figure 20. Flowsheet of caustic soda roasting and leaching treatment process for 
EAFD [5]. 

 

6.1.3 Behavior of other elements 
 

In addition to zinc some other elements can be leached after fusing the EAF 

dust. Youcai and Stanforth [7] reported that the concentrations of elements 

such as Fe, Cu, and Cd in the solutions were lower than 0.5, 0.4, and 0.1 g/l, 

respectively, and the resultant leaching residue contained less than 1% of 

zinc, 0.5% of lead, 0.3% of copper, and 0.1% of cadmium, and over 35 % of 

Fe. 

The use of hydrolysis or moisture combined to caustic roasting affect 

differently on various elements in the dust. Using hydrolysis prior to caustic 
roasting the lead extraction was slightly higher, 70 - 80 %, in comparison to 

about 65 % when leached directly with NaOH solution. When the EAF dust 

was directly fused the leaching efficiency of lead was found to decrease to 

around 30 % [7]. Similar results have been obtained when moisture was 

added in roasting process and the lead extraction increased to 85 % when 

the recovery was decreased to 63 % without moisture addition [5]. 

The moisture combined to caustic roasting had the opposite effect on 

extraction of chromium than on extraction of zinc and lead. Without 
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moisture additions, the average chromium recovery was 80.7 % and with 

moisture addition in roasting the average chromium recovery was 37 %. 

The residue after roasting with moisture added contained on average 2.0% 

zinc,  19.9% iron and 0.06% cadmium and in  general  less  than 1  % of  iron 

was leached. The extraction of cadmium was around 89 % after roasting 

with moisture added. [5] 

EAF dust can contain approximately 1 – 5 % of silica and part of silica may 
fuse with caustic soda and dissolve in solution, which will consume some 

NaOH.  [7]  Around  10  %  of  NaOH  will  be  lost  in  the  steps  of  fusion  and  
leaching of the fused product. [7] 

 

6.2 Roasting with Na2CO3 
 

The  other  promising  method  to  destroy  zinc  ferrites  prior  to  alkaline  

leaching could be roasting with sodium carbonate, Na2CO3. According to 

thermodynamic calculations the conversion of zinc ferrite with addition of 

Na2CO3 is described to occur at 820 °C and for optimal roasting conditions 

have  been  reported  to  be  850  -  950  °C.  Although  higher  temperature  is  

required to decompose ferrites with Na2CO3 roasting, the benefits 

compared  to  NaOH  roasting  are  that  lower  additions  of  Na2CO3 are 

required and the cheaper price of Na2CO3 [37,59]. It has also been reported 
that the hydrophobic behavior and handling of NaOH provides more 

difficulties. On the other hand, sintering of calcine product with Na2CO3 has 

consequences because an additional crushing step is then necessary. [37] 

Kemperman [37] studied roasting of synthetic ferrite and zinc bearing 

wastes containing zinc ferrites followed by caustic soda leaching. The 

results were promising for synthetic ferrite, which was almost completely 

converted into soluble zinc compound and the dissolution of iron was found 

to be negligible. However, the results for waste materials gave incomplete 

conversion of zinc ferrites even when stoichiometric addition of Na2CO3 

was increased and only around 50 % of zinc was extracted. 
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6.3 Other roasting methods 
 

Some other possible methods to break the zinc ferrite are for example 

heating with coke or pre-treating with hydrogen-nitrogen mixture. The 

breaking of zinc ferrite would be facilitated by pre-reducing it by heating 

with coke in temperatures of 600 – 800 °C. Other method, a prior treating 

with  hydrogen-nitrogen  mixture  with  more  than  50  %  hydrogen  have  

showed even 100 % zinc recoveries to be possible after leaching with NaOH. 

[13,27,46]  
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7. Feasibility considerations 

The driving forces to treat steelmaking dusts derives from the 

environmental legistlation and from the economics. To these includes the 

market price of zinc and other metals for revenues, the cost of the treatment 

or land filling and also the sufficiency of raw materials from ores. The 

environmental side is driven also by the economics of treatments but in the 

future dusts can be forced to be treated due to more stringent 

environmental legislations. 

The  presence  of  zinc  in  the  dust  seems  to  be  a  crucial  factor  for  the  

economical side as it hinders the direct recycling of dust back into 

steelmaking furnaces. When considering the possibility to recycle 

steelmaking dusts back to the process, the amount of zinc should be 
lowered enough in order to avoid operational problems in the steelmaking 

process. Also the cumulative loading of zinc in the dust may result in 

disposal problems if the zinc content cannot be lowered enough. [60] 
Among dust treatment processes, the hydrometallurgical processes have 

the advantage that they are flexible in scale and are easy to make a closed 

system [26]. However, today’s dust treatments processes are predominantly 

pyrometallurgical, but the disadvantage with these is the need of a large 

feeding of dust in order to be economical. Because hydrometallurgical 

processes are suitable for small-scale operations, the on-site process could 

be possible and thus the costs of transport are avoided. In addition, the 

processes can produce virgin quality of non-ferrous metals.  
 

7.1 Caustic soda leaching process 
 

The advantage with alkaline leaching is the selectivity in leaching zinc, 

which lowers the cost of solution purification as it can be done quite simply. 

The technical and economical profitability study of the caustic – 

electrowinning process showed that the process is flexible and can be 

applied to small, medium or large-scale operations and that it is relatively 

clean in term of work-place and ambient air emissions [30]. However, 

because a concentrated NaOH solution is needed, the solid-liquid 
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separation is difficult and can cause some problems in industrial 

applications due to the high viscosity of strong NaOH solutions and 

extremely fine-grained solid. Despite that, the solid-liquid separation can 

be achieved with conventional equipment [3,4,27] and, in addition, a 

magnetically-induced decantation may offer some improvements in this 

respect [30].  

Electrolysis of zinc from alkaline solution is cost-effective and around 20 

% of energy saving can be achieved with electrowinning from alkaline 

solution. The electricity consumed for production of 1 kg of metallic zinc 
from  the  alkaline  leach  solution  is  2.4  –  2.7  kWh,  while  that  from  acidic  

solution  is  3.3  –  3.4  kWh  [7].  However,  the  leaching  method  with  NaOH  

needs additional developing in recovering the metal from NaZn-solution by 

electrowinning [4]. A commercial alkaline electrowinning plant does not 

exist and it can not to be connected to existing traditional zinc plants, which 

are based on the sulfuric acid bath [39]. About 80 % of the zinc produced in 

the world use the sulfate electrolysis technology [7]. 
For economical feasibility investigations it should be taken into 

considerations that NaOH is an expensive reagent, and that high 

concentrations are needed for sufficient recoveries [4]. Compared to acid 

leaching greater amount of NaOH is needed in addition to that the price of 
NaOH is higher. However, it should be noticed that the difficult iron 

removal process is present in acidic process, making it expensive [46]. The 

alkaline leaching seems economically possible as the solution purification is 

simple and easily done with zinc powder and if the solubility is more than 

80 % for both zinc and lead [38]. 

Palencia et al. [2] have investigated the recycling of EAF steelmaking dust 

and the cost of their treatments. The economic analysis was carried out for 

both caustic soda and sulfuric acid leaching process. The breakdown of cost 

sections and incomes from savings and sales for alkaline process are shown 

in Table 11. The total cost of acidic treatment was 0.958 $/t steel and total 

income 2.327 $/t steel, when those numbers in alkaline leaching were for 
total cost 0.613 $/t steel and for total income 3.149 $/t. According to these 

calculations the alkaline leaching would be more favourable. 
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Table 11. Breakdown of cost sections and items, and income from sales and 
savings for the alkaline treatment and recycling [2]. 

Cost 
($/t steel) 

 Income 
($/t steel) 

Treatment Savings  

Washing 0.065  Net fixed iron (scrap iron) 0.27 
Alkaline leaching 0.026  Elimination of stabilisation 0.977 
Cementation 0.079    
Electrolysis 0.444  Sales  
Process water 0.036  ZnO (50 % Zn) - 
Sodium hydroxide 0.1  Electrolytic Zn powder 1.738 
Electric energy 0.453  Pb cement 0.119 
Natural gas 0.024    

    
Total cost 0.613  Total income 3.149 

 

The profitability of the process depends highly on the zinc content of the 

waste and on the market value of the recovered zinc [39].  Both dusts, BOF 

and EAF, contain zinc values between ore grade and concentrate grade and 

can be seen as a potential zinc resource [46]. To study the economic 

feasibility of the process the costs of the process should be compared to the 

zinc market price and the cost of extracting zinc from ores. Also some 

experiments for caustic leaching have been performed for a composite 
sample which contained EAF dust and Waelz oxide and was proved viable 

[27]. 

 

7.2 Presence of zinc ferrites 
 

Despite all the advantages of hydrometallurgical processes, the recovery 

ratios of zinc are normally lower than those of pyrometallurgical processes. 

This is caused by the presence of zinc ferrites in the dust. Zinc ferrite is very 

stable and difficult to decompose with hydrometallurgical processes. Very 

strong leaching conditions, for example high concentration of solvents and 

high  temperature,  have  to  be  applied  to  obtain  higher  leaching  ratios  of  

ferrites. However, such operations will become difficult and both capital 

and running costs will be high. [26]  

The conversion of zinc ferrites into zinc oxides is the major importance for 

the feasibility. Alkaline leaching is not effective in leaching of zinc ferrite 

suggesting that the process should be intensified to reach these materials. 

For this some prior treatment could be used, such as caustic soda roasting 
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in order to break down the ferrite structures. But, if prior treatments are 

needed they will increase the cost of the alkaline leaching process.  

One method to enhance zinc recovery could also be to change conditions 

in  the  furnace  and  gas  line  so  that  the  formation  of  ferrites  could  be  

avoided, and thereby the leaching of zinc could be be improved. Other way 

could be to remove zinc and other impurities from galvanized steel scrap 

before the scrap is feeded in the steelmaking process [54,60]. By keeping 

zinc  out  of  the  EAF  process  from  the  beginning,  the  whole  process  of  

treating the dust could be avoided but then the cost of treatments of steel 
scrap need to take into profitability considerations. 

 

7.3 Wastes 
 

The precence of heavy metals in the dust is the most crucial factor on the 

environmental side. If they are leached, it can cause problems with disposal 

of  the  leaching  solution  and  if  they  remain  in  the  residue,  the  residue  

cannot be land filled. By caustic soda leaching a residue enriched in iron 

and depleted in zinc and lead is obtained and it may be suitable for 

recycling and more suitable for disposal than the original material. [30] 

The leach residue form caustic soda leaching is reported to contain mainly 

zinc ferrites and iron oxides. If zinc content can be reduced sufficiently low 

the residue can be recycled for reduction in the EAF steel plant. Before that 

it is thickened, filtered, dried and pelletized, possibly with the addition of a 
reductant such as a coke breeze. The solid wastes, if any, are less toxic than 

the feed material but bleed-off liquids may have to be treated before 

discharge  [30].  Also  other  valuable  metals  may  be  recovered  from  the  

residue of caustic soda leaching - electrowinning process balancing the 

costs [39]. 
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8. Conclusions 

The mineralogical form of zinc seems to be a basic indicator to the 

effectiveness of treating the dusts from steel manufacturing. Zinc is present 

mainly as two compounds, zinc oxide ZnO and zinc ferrite ZnFe2O4. 

Because they behave differently, it causes difficulties in dust treating. The 

zinc oxide can be easily handled, but the zinc ferrite is a highly stable 

compound and thus significantly complex and difficult to handle. 

Hydrometallurgical processes are not able to dissolve zinc ferrite 
effectively, but pyrometallurgical roasting processes can be used to break 

down the ferrites. From the roasted product zinc can be recovered using 

hydrometallurgical techniques, such as alkaline leaching. With a hybrid 

process using low temperature NaOH roasting followed by NaOH leaching 

higher zinc recoveries have been achieved. The maximum recoveries using 

direct  leaching  have  been  reported  to  be  around  85  %,  when  the  hybrid  

process  gave  around  95  %  recovery  of  zinc  (for  this  also  hydrolysis  is  

needed prior to NaOH roasting). 

Among hydrometallurgical processes the major advantage with alkaline 

leaching is its selectiveness in leaching zinc compared to iron compounds. 

Using alkaline leaching iron remains in the solid residue and the costly and 
difficult iron removal process from the leachate, that is present with acidic 

leaching processes, could be avoided. A solution containing Zn and Pb as 

predominant elements will be obtained and purification off Pb can be done 

simply by cementation with Zn powder. From purified leach solution Zn 

can be recovered by electrolysis or precipitating in its pure compound.  

The NaOH leaching processes have been developed before for the 

dissolving zinc from steelmaking dusts but they have faced technical and 

economical problems and have been eventually abandoned. However, there 

is an impetus for developing hydrometallurgical processes as they can fit a 

small-scale when on-site process could be possible and thus they are 

regarded as more environmentally suitable and economical for treating 
materials having relatively low zinc content. Also, dusts from iron and 

steelmaking consist of very fine particles (< 10 μm) and will  be difficult to 

handle dry if no previous agglomeration is used.  



 
 
64

Despite the benefits with hydrometallurgical processes a very few 

commercial processes have been successful because the processes are 

essentially dependent on the characteristic of dust. Thus, today the dust 

treatment processes are predominantly pyrometallurgical. There are, 

however, some drawbacks with the pyrometallurgical processes that drive 

for developing and searching new options. The major drawbacks with these 

processes are high energy consumption and need of a large feeding quantity 

to be economical and thus the treatment plant may have distant location 

from the steel factories. 
The choice between the processing routes depends strongly on the dust 

characteristics. Dust containing many elements makes metal extraction 

complex and difficult. In addition, each dust is unique which makes finding 

a suitable treatment process even more complicated. The chemical and 

mineralogical composition of dust varies widely even if the dust has been 

taken from the same process. Although many pyro- and hydrometallurgical 

processes have been developed, none of them have been entirely satisfying. 

The target with these treating processes is to produce a residue that could 

be recycled further or safely disposed-off without affecting the environment 

and to recover zinc. The most important stage is the separation of non-

ferrous metals, such as zinc and lead, from iron in the dust. 
In general, there is still no effective and economically advantageous 

method for treating the dusts. The reason for failures could be that it is still 

more economical to extract zinc from the naturally occurring raw materials. 

But nowadays the dusts form steel manufacturings are considered as 

harmful  waste  due  to  presence  of  soluble  heavy  metal  compounds.   Thus,  

disposal, recycling or recovery of these dust emissions has become a major 

concern for the steel industry. As the environmental protection regulations 

have stringent, the disposal of the dust has become an expensive option and 

the direct recycling is limited due to accumulation of impurities (heavy 

metals, alkali and halides). Zinc is the main impurity in steelmaking 

process and should be eliminated from dust to enable dust recycling back to 
process. 

Every day steel industry generates significant quantities of dust in in blast 

furnaces (BF), basic oxygen furnace (BOF) and electric arc furnaces (EAF). 

The use of scrap brings other elements into furnaces and they end up into 

dust. The steelmaking dusts are rich in zinc; in EAF dust zinc content can 

be even 30 % while in BF and BOF dust it is lower, around 1 – 3 % and 1.5 

%, respectively. The main source of zinc is the use of galvanized steel sheet 

scrap as raw material in steel manufacturing. The use of this kind of scrap 

in steel production has been increasing, which has led to the increase of 

zinc content in the dusts and this trend will likely continue. However, the 
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recycling of steel scrap has obvious economic and resource conservational 

benefits. 

The pressure to reduce pollutants has increased more interest for further 

utilizing of dusts as sources of metals or as secondary raw material. The 

process costs and profitability are extremely dependent on the zinc content 

of the waste and on the market price of zinc. In case of dust treating 

processes, the economically viable process can be achieved if the operating 

costs for the process are less than the costs for the dumping it. However, 

the environmental side is not only driven by the economics of treatment or 
metals, it is also possible that in the future the landfilling of the dust will be 

entirely prohibited and dusts are enforced to be treated. 
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9. Summary 

Every day steel industry generates significant quantities of dust and sludge 

as waste material or byproduct. Their disposal and reuse has been a serious 

concern for steel industry as these dusts are considered as harmful waste in 

most industrial countries due to presence of soluble compounds of heavy 

metals. On the other hand, they usually contain considerable amounts of 

valuable metals and the reuse of those is very much essential not only for 

conserving metals and minerals resources but also for protecting the 
environment. 

Dusts from iron and steel manufacturing are generated in blast furnaces 

(BF), basic oxygen furnaces (BOF), and electric arc furnaces (EAF). The use 

of steel scrap in BOF and EAF brings other elements into furnaces and they 

end up into dust. A direct re-use of dust will lead to accumulation of those 

elements and can harm the primary processes as well as decreases steel 

quality. Zinc is the main impurity in the process and should be eliminated 

from dust in order for the dust to be viable for recycling. In this literature 

survey the alkaline leaching (with NaOH) of zinc from iron and steelmaking 

dusts is reviewed. The characteristics of EAF, BOF and BF dust and their 

processing based on alkaline leaching is described. Also some methods, e.g. 
pretreatments, to enhance leaching are introduced.  

Dusts from iron and steel production consist mainly of ferrous oxides, 

mostly  in  Fe3O4 phase. In addition, they contain zinc, lead and cadmium 

oxides as well as minor amount of many other elements. The main source of 

zinc in the dust is galvanized steel scrap used in steel manufacturing. The 

EAF technology uses virtually 100 % recycled steel and the dust from EAF 

can run up to 30 % of zinc. The amount of zinc is usually lower in BOF and 

BF dusts containing around 1 – 3 % and 1.5 % of zinc, respectively. Zinc is 

present mainly as two compounds, zinc oxide ZnO and zinc ferrite ZnFe2O4. 

The main target in the dust treatment is the removal of zinc so that iron 

containing material can be recycled and zinc recovered. Although many 
pyro- and hydrometallurgical processes or their combination have been 

developed, any of them have not been entirely satisfying and only a limited 

number of these have reached commercialization when the majority has 

been pyrometallurgical. The impetus for developing hydrometallurgical 
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processes is that they can fit on small-scale and an on-site process could be 

possible. Also these processes can provide a good selectivity in metal 

separation and flexibility in end-products. In addition, dusts from iron and 

steelmaking consist of very fine particles (< 10 μm) and will be difficult 

handle dry if no previous agglomeration is used.  

Among the hydrometallurgical methods, the alkaline leaching using 

sodium  hydroxide  (NaOH)  as  a  leaching  agent  is  seen  effective  in  the  

dissolution of heavy metals without significant dissolution of iron, and a 

solution containing Zn and Pb as predominant elements will be obtained. 
Thus a relatively clean and iron-free solution is obtained and the 

complicated iron removal processes is avoided. Some facilities using NaOH 

leaching have build up before for dissolving zinc from the steelmaking 

dusts, but they have closed because of insufficiency. 

For the optimal leaching conditions from literature can be derived as 6 – 

10 M NaOH, liquid to solid ratio of around 10, and temperature of 80 – 95 

°C. When using this high concentrations and temperatures, the dissolution 

of zinc is fast and zinc recoveries of 80 – 85 % can be reached. Still there is 

a part of zinc in the dust that has not dissolved and recovered. Methods that 

can be used to enhance alkaline leaching are for example pressure leaching, 

and microwave or ultrasound assistant leaching, but they have not seen to 

improve (significantly) zinc recovery.  
The total recoveries of zinc are limited in hydrometallurgical methods, 

such as in alkaline solutions, due to the presence of zinc ferrite (ZnFe2O4) in 

the dust. ZnO dissolves easily in sodium hydroxide solutions, but ZnFe2O4 

is highly stable compound. If the content of zinc ferrite in the dust has been 
high,  the  zinc  recoveries  have remained low.  Around 50 – 80 % of  zinc  in  

the dust can be present as ZnO and the rest is mainly as ZnFe2O4. For 

breaking down zinc ferrite, pyrometallurgical processes, such as roasting, 

can be used prior to leaching. Roasting with caustic soda prior to alkaline 

leaching have showed that zinc ferrites can be decomposed and leaching of 

zinc could be improved. 

The chemical and mineralogical composition of dust varies widely even if 

the dust has been taken from the same process making the processing of 

them difficult and complex. However, a process based on caustic soda 

leaching seems promising if zinc ferrite can be decomposed by relative 

simple treatment prior to leaching. 



 
 
68 

10. References 

 

1 DAS, B., PRAKASH, S., REDDY P.S.R., MISRA V.N., An overview of 
utilization of slag and sludge from steel industries. Resources, 
Conservation & Recycling 50(2007) pp. 40-57. 

 
2 PALENCIA. I., ROMERO, R., IGLESIAS, N., CARRANZA, F., Recycling EAF 

Dust  Leaching  Residue  to  the  Furnace:  A  Simulation  Study.  JOM  
1999) pp. 28-32. 

 
3 ORHAN, G., Leaching and cementation of heavy metals from electric 

arc furnace dust in alkaline medium. Hydrometallurgy 78(2005) pp. 
236-245. 

 
4 JHA M.K., KUMAR, V., SINGH, R.J., Review of hydrometallurgical 

recovery of zinc from industrial wastes. Resources Conservation & 
Recycling 33(2001), pp. 1-22. 

 
5 XIA D.K., PICKLES, C.A., Caustic roasting and leaching of electric arc 

furnace dust. Canadian Metallugical Quarterly 38(1999) 3, pp. 175-
186. 

 
6 Chapter 8, Metallurgical slags, dust and fumes. In: Waste 

Management Series: Resource Recovery and Recycling from 
Metallurgical Wastes, ed. RAO, S.R. 2006, pp. 269-327. 

 
7 YOUCAI Z., STANFORTH, R., Integrated hydrometallurgical process for 

production of zinc from electric arc furnace dust in alkaline 
medium. Journal of Hazardous Material B80(2000) pp. 223-240. 

 
8 JAVAID A., ESSADIGI, E., Final Report on Scrap Management, Sorting 

and Classification of Steel. Report No. 2003-23(CF), 2003. 
 
9 XIA D.K., PICKLES, C.A., Microwave caustic leaching of electric arc 

furnace dust. Minerals Engineering 13(2000) 1, pp. 79-94. 
 
10 Energiron, Steelmaking Routes. Available:  

http://www.energiron.com/tour/HYL%20DR-
Minimill%20QTVR%20tour/files/supportdocs/overview/steelmaki
ng.pdf [07/13, 2011] 

 
11 WU, L.-M., Characteristic of steelmaking flue dust. Ironmaking and 

steelmaking 26(1999) 5, pp. 372-377. 
 



  

 69

12 World steel association, Steel industry by-products. Fact sheet. 
Available:  
http://www.worldsteel.org/pictures/programfiles/Fact%20sheet_B
y-products.pdf [12/30, 2011] 

 
13 NYIRENDA, R.L., The Reduction of Zinc-rich Ferrites and its 

Implication for a Caron-type Process for Carbon Steelmaking Dust. 
Delft University of Technology, 1992.  

 
14 DUTRA A.J.B., PAIVA, P.R.P., TAVARES L.M., Alkaline leaching of zinc 

from electric arc furnace steel dust. Minerals Engineering 19(2006) 
pp. 478-485. 

 
15 Steel Technology Roadmap. Chapter 4: Environmental Leadership. 

Report 2001, 83-120 p. 
 
16 ZEYDABADI B.A., MOWLA, D., SHARIAT M.H., KALAJAHI J.F., Zinc 

recovery from blast furnace flue dust. Hydrometallurgy 47(1997) pp. 
113-125. 

 
17 KELEBEK S., YÖRÜK, S., DAVIS, B., Characterization of basic oxygen 

furnace dust and zinc removal by acid leaching. Minerals 
Engineering 17(2004) pp. 285-291. 

 
18 MAKKONEN H.T., HEINO, J., LAITILA, L., HILTUNEN, A., PÖYLIÖ, E., 

HÄRKKI J., Optimisation of steel plant recycling in Finland: dusts, 
scales and sludge. Resources Conservation & Recycling 35(2002) 
pp. 77-84. 

 
19 NYIRENDA, R.L., The processing of steelmaking flue-dust: A review. 

Minerals Engineering 4(1991) 7-11, pp. 1003-1025. 
 
20 JALKANEN, H., OGHBASILASIE, H., RAIPALA, K., Recycling of 

Steemaking Dusts - The Radust Concept -. Journal of Mining and 
Metallurgy 41(2005) B, pp. 1-16. 

 
21 HOANG TRUNG Z., HAVLIK, T., MIŠKUFOVÁ, A., Processes for 

steelmaking dust treatment. Technical University of Košice.  
 
22 GUÉZENNEC, A.-G., HUBER, J.-C., PATINSSON, F., SESSIECQ, P., BIRAT, 

J.-P., ABLITZER, D., Dust formation in Electric Arc Furnace: Birth of 
the particles. Powder Technology 157(2005) pp. 2-11. 

 
23 SEBAG, M.G., KORZENOWSKI, C., BERNARDES, A.M., VILELA, A.C., 

Evaluation of environmental compatibility of EAFD using different 
leaching standards. Journal of Hazardous Material 166(2009) pp. 
670-675. 

 
24 SOFILI� T., RASTOV�AN-MIO�, A., CERJAN-STEFANOVI�, S., NOVOSEL-

RADOVI� V., JENKO M., Characterization of steel mill electric-arc 
furnace dust. Journal of Hazardous Material B109(2004) pp. 59-70. 

 
25 MACHADO, J.G.M.S., BREHM, F.A., MORAES, C.A.M., SANTOS C.A., 

VILELA, A.C.F., CUNHA, J.B.M., Chemical, physical, structural and 
morphological characterization of the electric arc furnace dust. 
Journal of Hazardous Material B136(2006) pp. 953-960. 

 



 
 
70

26 NAKAMURA T., SHIBATA, E., TAKASU, T., ITOU, H., Basic 
Consideration on EAF Dust Treatment Using Hydrometallurgical 
Processes. Resources Processing 55 (2008) pp. 144-148. 

 
27 MORDOGAN, H., CICEK, T., ISIK, A., Caustic Soda Leach of Electric 

Arc Furnace Dust. Tr. J. of Engineering and Environmental Science 
23(1999) pp. 199-207. 

 
28 RUETTEN, J., Application of the Waelz technology on resource 

recycling of steel mill dust. 2011. Available: http://www.valo-
res.com/pdf/ENCO2006-EN.pdf [06/17, 2011] 

 
29 NAKAMURA, T., Zinc recycling technology now and in the future. 

Lead  &  Zinc  '05,  Kyoto,  Japan.  Ed.  Fujisawa,  T.,  MMIJ,  2005,  pp.  
123-137  

 
30 EACOTT, J.G., ROBINSON, M.C., BUSSE, E., BURGENER, J.E., 

BURGENER, P.E., Techno-economic feasibility of zinc and lead 
recovery from electric arc furnace baghouse dust. CIM Bulletin 
77(1984) 869, pp. 75-81. 

 
31 LECLERC, N., MEUX, E., LECUIRE, J-M., Hydrometallurgical recovery 

of zinc and lead from electric arc furnace dust using 
monotrilotriacetate anion and hexahydrated ferric chloride. Journal 
of Hazardous Material B91(2002) pp. 257-270. 

 
32 AL-ZAID, R.Z., AL-SUGAIR, F.H., AL-NEGHEIMISH, A.I., Investigation 

of potential uses of electric-arc furnace dust (EAFD) in concrete. 
Cement and Concrete Research 27(1997) 2, pp. 267-278. 

 
33 CARAVACA, C., COBO, A., ALGUACIL, F.J., Considerations about the 

recycling  of  EAF  flue  dusts  as  source  for  the  recovery  of  valuable  
metals by hydrometallurgical processes. Resources Conservation & 
Recycling 10(1994) pp. 34-41. 

 
34 RUIZ, O., CLEMENTE, C., ALONSO, M., ALGUACIL, F.J., Recycling of an 

electric arc furnace flue dust to obtain high grade ZnO. Journal of 
Hazardous Material 141(2007) pp. 33-36. 

 
35 JARUPISITTHORN, C., PIMTOMG, T., LONGHONGKUM, G., Investigation 

of kinetics of zinc leaching from electric arc furnace dust by sodium 
hydroxide. Material Chemistry and Physics 77(2002) pp. 531-532. 

 
36 DREISINGER, D.B., PETERS, E., MORGAN, G., The hydrometallurgical 

treatment of carbon steel electric arc furnace dusts by the UBC-
Chaparral process. Hydrometallurgy 25(1990) pp. 137-152. 

 
37 KEMPERMAN, D., Metallurgical processing of zinc-bearing residues. 

Delft University of Technology, 2010. 
 
38 LENZ, D.M., MARTINS, F.B., Lead and zinc selective precipitation 

from leach electric arc furnace dust solutions. Revista Matéria 
12(2007) 3, pp. 503-509. 

 
39 BROWN, A.P., MELSENHEIDER, J.H., YAO, N-P., The Alkaline 

Electrolytic Process for Zinc Production: A Critical Evaluation. Ind. 
Eng. Chem. Prod. Res. Dev. 22(1983) 2, pp. 263-272. 



  

 71

 
40 IONESCU, D., MEADOWCROFT, T.R., BARR, P.V., Glassification of EAF 

dust: The limits for Fe2O3 and ZnO content and an assessment of 
leach performance. Canadan Metallurgy Quarterly 36(1997) 4, pp. 
269-281. 

 
41 ZABETT, A., LU, W.-K., Thermodynamical computations for removal 

of alkali halides and lead compounds from electric arc furnace dust. 
Computer Coupling of Phase Diagrams and Thermochemistry 
32(2008) pp. 535-542. 

 
42 CRUELLS. M., ROCA, A., NÚÑEZ, C., Electric arc furnace flue dusts: 

characterization and leaching with sulphuric acid. Hydrometallurgy 
31(1992) 3, pp. 213-231. 

 
43 SERBENT, H., MACZEK, H., RELLERMEYER, H, Large-Scale Test for the 

Treatment  of  BF  Sludge  and  B.O.F.  Dust  According  to  Waelz  
Process. (Retroactive Coverage) Ironmaking Proceedings 34(1975) 
13-16, pp. 194. 

 
44 Steel Dust Recycling, Waelz Kiln Technology. Available: 

http://steeldust.com/waelz.htm [07/17, 2011] 

45 OUSTADAKIS, P., TSAKIRIDIS, P.E., KATSIAPI, A., AGATZINI-
LEONARDOU, S., Hydrometallurgical process for zinc recovery from 
electric arc furnace dust (EAFD), Part I: Characterization and 
leaching by diluted sulphuric acid. Journal of Hazardous Material 
179(2010) pp. 1-7. 

 
46 ANTREKOWITSCH J., ANTREKOWITSCH, H., Hydrometallurgically 

Recovering Zinc from Electric Arc Furnace Dusts. JOM (2001) pp. 
26-28. 

 
47 REUTER, M., SUDHÖLTER, S., KRÜGER, J.,  Some  criteria  for  the  

selection of environmentally acceptable processes for the processing 
of lead- and zinc-containing flue dusts. The journal of Southern 
African Institute of Mining and Metallurgy 97(1997) 1, pp. 27-37. 

 
48 LECLERC N., MEUX, E., LECUIRE, J-M., Hydrometallurgical extraction 

of zinc from zinc ferrites. Hydrometallurgy 70(2003) pp. 175-183. 
 
49 HAVLIK, T., Lecture Slides of Processing of Metallurgical Dusts by 

Hydrometallurgical Methods Seminar, 2009, Espoo 
 
50 XIA, D.K., PICKLES, C.A., Technical Note Kinetics Of Zinc Ferrite 

Leaching In Caustic Media In The Deceleratory Period. Minerals 
Engineering 12(1999) 6, pp. 693-700. 

 
51 Chapter 4, Hydrometallurgical processes. In: Waste Management 

Series: Resource Recovery and Recycling from Metallurgical 
Wastes, ed. RAO, S.R. 2006, pp. 71-108. 

 
52 MERILL, C.C., LANG, R. S., Experimental caustic leaching of oxidized 

ores and minerals and the recovery of zinc from leach solutions. U.S. 
Bureau of Mines Report RI 6576, 1965. 
Available: http://www.worldcat.org/title/experimental-caustic-
leaching-of-oxidized-zinc-ores-and-minerals-and-the-recovery-of-
zinc-from-leach-



 
 
72 

solutions/oclc/681281961?title=&detail=&page=frame&url=http%3
A%2F%2Fcatalog.hathitrust.org%2Fapi%2Fvolumes%2Foclc%2F18
040197.html%26checksum%3Dbbc38006e2fa7e9cdcb4dc202887da
89&linktype=digitalObject [07/11, 2011] 

 
53 FRENAY, J., HISSEL, J., FERLAY, S.,  Recovery  of  lead  and  zinc  from  

steelmaking dusts by the Cebedeau process. Recycle and secondary 
recovery of metals, Fort Lauderdale. Ed. Taylor, P.R. The 
Metallurgical Society, inc., 1985, pp. 195-202. 

 
54 DUDEK, F.J., DANIELS, E.J., MORGAN, W.A., Progress in caustic 

dezincing of galvanized scrap. Iron & Steel Industry Conference, 
Steel Mill Wastes and By-Products, Toronto, Ontario. Ed. 1997.  

 
55 POOLEY, F.D., MALLOWAN, J.M., WHEATLEY, B.I., GURR, W.R., Heavy 

metal recovery in ferrous metal production processes. WO 
81/03500. 1981. Available: 
http://www.patsnap.com/patents/view/WO1981003500A1.html 
patentti [07/11, 2011] 

 
56 YOUCAI, Z., STANFORTH, R., Technical note extraction of zinc from 

zinc ferrites by fusion with caustic soda. Minerals Engineering 
13(2000) 13, pp. 1417-1421. 

 
57 PETERS, E., Hydroemtallurgical process innovation. 

Hydrometallurgy 29(1992) 1-3, pp. 431-459. 
 
58 Solvay Chemicals, Liquid caustic soda - Viscosity. Available: 

http://www.solvaychemicals.com/Chemicals%20Literature%20Doc
uments/Caustic_soda/PCH-1110-0006-W-EN_WW_.pdf [06/03, 
2011]  

 
59 HOLLOWAY, P.C., ETSELL, T.H., MURLAND, A.L., Roasting of Oroya 

Zinc Ferrite with Na2CO3. Metallurgical and Materials Transactions 
B 38(2007) 5, pp. 781-791. 

 
60 Chapter 7, Metal Recycling. In: Waste Management Series: 

Resource Recovery and Recycling from Metallurgical Wastes, ed. 
Rao, S.R. 2006, pp. 167-268. 

 
 
 





9HSTFMG*aeegca+ 

ISBN 978-952-60-4462-0 
ISBN 978-952-60-4463-7 (pdf) 
ISSN-L 1799-4896 
ISSN 1799-4896 
ISSN 1799-490X (pdf) 
 
Aalto University 
School of Chemical Technology 
Department of Materials Science and Engineering 
www.aalto.fi 

BUSINESS + 
ECONOMY 
 
ART + 
DESIGN + 
ARCHITECTURE 
 
SCIENCE + 
TECHNOLOGY 
 
CROSSOVER 
 
DOCTORAL 
DISSERTATIONS 

A
alto-S

T 1
/2

012 

Recycling of steel scrap has obvious 
economic and resource conservation 
benefits. However, steel industry generates 
every day significant quantities of dust and 
the use of scrap as raw material brings 
harmful elements into furnaces and they 
end up into dust. The dusts are considered 
as harmful waste and cannot directly be 
used as landfill today. Also a direct recycling 
of dust back to steel production is hindered 
mainly due to the presence of zinc. On the 
other hand, the metals recovered from the 
dusts may be used as raw materials. Various 
pyro- and hydrometallurgical processes 
have been developed for treating 
steelmaking dusts aiming to produce a 
residue that could be recycled further or 
safely disposed-off. Metal extraction from 
the dusts is difficult due to their complex 
composition and finding a suitable process 
is complicated as each dust is unique. The 
major advantage of alkaline leaching is its 
selectivity in leaching zinc compared to iron 
compounds. 

A
nna S

tefanova et al. 
A

lkaline leaching of iron and
 steelm

aking dust 
A

alto
 U

n
ive

rsity 

Department of Materials Science and Engineering 

Alkaline leaching 
of iron and 
steelmaking dust 
Anna Stefanova, Jari Aromaa 

RESEARCH REPORT SCIENCE + 
TECHNOLOGY 


