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In this thesis the use of statistical inversion method for retrieving geophysical parameters from different
remote sensing data was studied. The statistical inversion method is rather universal. In this work it was
demonstrated by retrieving the following snow and forest parameters: snow depth, snow water equivalent,
snow-covered area and forest stem volume.

One of the benefits of the statistical inversion method is that it can combine data from different sources based
on their statistical accuracy. The method can also estimate the accuracy of the estimation result based on the
accuracy of the input data and the models used.

In this work the statistical inversion method was demonstrated by retrieving snow depth of Eurasia from
microwave radiometer data, snow covered area from microwave and optical data, forest stem volume from
ERS INSAR data, and enhancing the accuracy of the discharge forecasts of the operational watershed
simulation and forecasting system (WSFS) using SAR data.

The statistical inversion method utilises remote sensing models. The Helsinki University of Technology (HUT)
microwave snow emission model, the HUT forest backscattering model, and the optical reflectance model
developed at the Finnish Environment Institute were used as such. In addition to these remote sensing
models, a dynamic environmental model (WSFS) was used to assimilate SAR measurements to it.

In addition to the studies mentioned above, two software applications were developed. The first one was
developed to simulate brightness temperatures observed by a multichannel microwave radiometer and to test
the performance of the available inversion algorithms and the statistical inversion method. The second
software application developed is a general purpose statistical inversion tool that can be used either
independently or as a part of an image processing system.
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Tässä työssä on tutkittu tilastollisen inversion käyttöä geofysikaalisten suureiden estimoinnissa
kaukokartoitushavainnoista. Menetelmä on varsin yleispätevä, työssä demonstroitiin menetelmää metsän
runkotilavuuden sekä lumipeitteen ominaisuuksien – paksuuden, vesiarvon ja peittoalan – estimoinnissa.

Yksi tilastollisen inversion eduista on eri lähteistä tulevien havaintojen yhdistäminen optimaalisesti, koska
menetelmä painottaa eri lähteistä tulevia havaintoja niiden tilastollisen tarkkuuden mukaan. Menetelmä pystyy
myös tuottamaan estimoimilleen suureille tarkkuusarvion, joka pohjautuu käytettyjen havaintojen sekä mallien
tarkkuuteen.

Menetelmää on tässä työssä käytetty koko Euraasian laajuisten lumensyvyyskarttojen luomiseen
mikroaaltoradiometrihavainnoista, lumen peittoalan estimoimiseen tutka- ja optisista havainnoista, metsän
runkotilavuuden estimoimiseen ERS INSAR-havainnoista sekä operatiivisen vesistömallin (WSFS)
virtaamaennusteiden parantamiseen tutkahavaintojen avulla.

Menetelmä käyttää hyväkseen kaukokartoitusmalleja. Kaukokartoitusmalleina käytettiin Teknillisessä
korkeakoulussa kehitettyä lumen mikroaaltoemissiomallia ja metsän mikroaaltosirontamallia sekä Suomen
ympäristökeskuksessa kehitettyä lumen reflektanssimallia. Näiden kaukokartoitusmallien lisäksi käytettiin
dynaamista ympäristömallia (WSFS), johon assimiloitiin tutkahavaintoja.

Edellämainittujen sovellusten lisäksi työssä kehitettiin myös kaksi ohjelmistoa. Ensimmäinen simuloi
monikanavaisen radiometrin havainnoimia kirkkauslämpötiloja testatakseen erilaisia tunnettuja
inversioalgoritmeja sekä tilastollista inversiota. Toinen kehitetty ohjelma on yleiskäyttöinen työkalu suureiden
estimointiin kaukokartoitushavainnoista tilastollisella inversiolla. Ohjelmaa voi käyttää sellaisenaan tai jonkin
kuvankäsittelyjärjestelmän osana.
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7

Contents

Preface 6

Contents 7

List of Publications 9

Author’s contribution 10

List of Abbreviations 11

List of Symbols 13

List of Figures 15

List of Tables 17

1 Introduction 18

2 Theoretical background 21

2.1 Modelling of remote sensing observations . . . . . . . . . . . . . . . 21

2.1.1 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.2 Non-linear models . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Statistical inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 General method . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.3 Nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Assimilation of data to dynamic models . . . . . . . . . . . . . . . . 25

3 Data 26

3.1 Microwave remote sensing data . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Microwave radiometer data . . . . . . . . . . . . . . . . . . 26

3.1.2 Radar data . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



8

3.2 Optical remote sensing data . . . . . . . . . . . . . . . . . . . . . . 33

3.3 In situ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Weather station measurements . . . . . . . . . . . . . . . . . 34

3.3.2 Snow course measurements . . . . . . . . . . . . . . . . . . . 34

3.3.3 Auxiliary data . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Models 41

4.1 Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.1 Optical reflectance model . . . . . . . . . . . . . . . . . . . 42

4.2 Nonlinear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 HUT snow emission model . . . . . . . . . . . . . . . . . . . 43

4.2.2 HUT forest backscattering model . . . . . . . . . . . . . . . 44

4.3 Dynamic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1 Watershed Simulation and Forecasting System . . . . . . . . 49

5 Methodology testing, results and discussion 53

5.1 Statistical inversion method . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Statistical inversion with a priori data . . . . . . . . . . . . . . . . 59

5.3 Statistical inversion with two data sources . . . . . . . . . . . . . . 70

5.4 Assimilating data into a dynamic model . . . . . . . . . . . . . . . 75

5.5 A general statistical inversion tool . . . . . . . . . . . . . . . . . . . 78

5.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.6.2 Remote Sensing Software . . . . . . . . . . . . . . . . . . . . 82

5.6.3 Development Tools . . . . . . . . . . . . . . . . . . . . . . . 83

5.6.4 Documentation tools . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusions 85

References 87

Errata



9

List of Publications

This thesis consists of an overview and of the following publications which are re-

ferred to in the text by their Roman numerals.
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1 Introduction

Nowadays satellites monitor our planet in many ways. Spaceborne remote sensing

has been used for decades to retrieve information of Earth’s surface. Various types

of remote sensing instruments have been used, most common being imaging optical

and microwave instruments. Retrieval of geophysical parameters from satellite data

is important in various applications including environment monitoring. Empirical

models are most common in interpreting the satellite measurements although some

physical models have also been used.

Different instrument types have their own advantages and weaknesses. For example,

optical instruments provide information with good resolution (few meters to tens

of meters) and easily interpreted content (visible light), but suffer from clouds and

darkness.

Microwave instruments on the other hand measure radio frequency signals, that

human is not used to interpret. However, they are not dependent on solar illumina-

tion nor they suffer from clouds. On the down side they produce somewhat lower

resolution images, especially passive microwave instruments that typically have a

footprint of kilometers or even tens of kilometers.

If good spatial resolution and spatially and timely extensive coverage is needed,

the only possibility is to use a combination of optical and microwave instruments.

This is possible to do and has been done. Difficulties arise from the differences of

the instruments: different resolution, time of acquisition and physical phenomena

behind the measured signal.

From the mathematical point of view the statistical inversion promises to combine

different data optimally [16]. The method searches the inverse solution of the re-
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mote sensing model representing the actual measurement. It takes into account the

different accuracies of the data, weighting the data accordingly, finding the solution

having the maximum likelihood.

Many in situ measurements are done in the Earth’s surface, one of the biggest being

the world wide weather station network. From the point of view of remote sensing

in situ measurements are usually used to validate the results obtained by remote

sensing methods. But these measurements can also be combined with remote sensing

observations to enhance retrieval accuracy.

Literally numerous retrieval algorithms have been developed during the last decades

for different remote sensing sensors for different applications. The most common

type of algorithms seems to be empirically determined linear algorithms that have

been obtained by fitting remote sensing observations to the reference data using

linear regression. But when the knowledge of the underlying physics increases, more

and more accurate physical models are developed.

Statistical inversion methods have been used in some extent to remote sensing ap-

plications. In the atmospheric applications statistical inversion has been used to

retrieve atmospheric parameters like temperature and water vapour profiles using

radiative transfer model and radiosondes [14] and atmospheric structure constant

and wind velocity [13]. In the land applications, statistical inversion has been used

to retrieve the soil moisture from radar measurements [9],[50], surface albedo from

BRDF measurements [41], and vegetation leaf area index (LAI) from reflectance

measurements [8]. Snow water equivalent retrieval using microwave radiometer data

with hydrological snow models has been reported in [67]. Pulliainen [43] and Pardé

et al. [40] have performed snow water equivalent estimation using statistical inver-

sion with the HUT snow emission model [46]. The statistical inversion method has

also been used in the water quality mapping from AVHRR data [64], and from the

optical spectroradiometer observations together with in situ measurements [45].
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This work concentrates on the geophysical parameter retrieval from remote sensing

data using statistical inversion methods. While the retrieval method is universal,

most of the work presented concerns with the retrieval of snow parameters like snow

covered area (SCA) and snow water equivalent (SWE). Various types of remote

sensing data have been used: data from optical instruments and from both active

and passive microwave instruments. Also the previously mentioned weather station

data have been used together with the remote sensing data to improve the snow

water equivalent retrieval accuracy.

The statistical inversion method was also used to assimilate remote sensing obser-

vations to a dynamic model. The model was the hydrological watershed simulation

and forecasting system (WSFS) of the Finnish Environment Institute. By assim-

ilating SAR observations to the model, the internal state variable (snow covered

area) were affected towards the right direction, thereby enhancing the forecasting

accuracy of the model.

In the following chapters the background information needed to understand the work

presented in papers is described. Chapter 2 introduces some theory: modelling

of remote sensing observations and the statistical inversion method. Chapter 3

familiarises the reader with the remote sensing data used in the work. Chapter 4

introduces the remote sensing models used in the work and the WSFS hydrological

model. Chapter 5 presents the statistical inversion methods used in this work and

the results achieved. Finally, Chapter 6 concludes the presented work.
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2 Theoretical background

This section introduces the theoretical background of modelling remote sensing ob-

servations and the statistical inversion method.

2.1 Modelling of remote sensing observations

Since modelling of remote sensing observations is an important part of the assimila-

tion process, it is discussed first. The relevant equations are introduced here. They

are described in more detail in [42] and in mathematical form in [23], which is based

on [58] and [59].

Multi-channel remote sensing observations can be described as a function of geo-

physical parameters using modelling:

y = f(x) + ε, (2.1)

where y = [y1, ...yn]T , x = [x1, ...xm]T , ε = [ε1, ...εn]T and f is the remote sensing

model (also called forward model) describing multi-channel remote sensing observa-

tions.

Parameter yn is the remote sensing observation at channel n, xm is the value of

the geophysical parameter m at the observation moment, and εn is the random

measurement error at channel n including instrument measurement accuracy and

geophysical noise due to non-ideality of the remote sensing model f .

In the general case, the function f is non-linear, but when it is linear, the mathe-

matics become much simpler. Therefore the two cases, linear and non-linear, are

discussed separately in the following.
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2.1.1 Linear models

A linear model describes the remote sensing measurement y at channel i as a function

of variable x:

yi = βi1x+ βi2 + εi = fi(x) + εi, (2.2)

where εi is the random error of the model at channel i, βi1 and βi2 denote the

(usually empirical) model parameters.

The model parameters can be estimated fitting the model to a learning data set for

each channel separately [42]:
bi1 = β̂i1 =

N
Pn

i=1 xkyik−
PN

k=1 xk
PN

k=1 yik

N
PN

k=1 x
2
k−(

PN
k=1 xk)

2

bi2 = β̂i2 = ȳi − b̄i1x̄
(2.3)

where xk is the variable k of the learning data set, and yik describes the corresponding

remote sensing observation. N is the total number of elements in the learning data

set.

2.1.2 Non-linear models

Non-linear models are quite common models in describing real world phenomenons.

They exist in many various forms, one common type being the radiative transfer

model [4]. It is used commonly in remote sensing applications, for example for

describing the effect of the atmosphere. It has the form of

y = ae2cx + b(1− e2cx), (2.4)

with three scalar parameters: a, b, and c.
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2.2 Statistical inversion

2.2.1 General method

Using statistical inversion to retrieve geophysical parameters is based on the as-

sumption that the measurements y, measurement errors ε and geophysical variables

x are random variables that are characterised by their probability distributions.

According to the Bayes theorem [2] it is possible to write a conditional probability

equation for the geophysical parameters x given the remote sensing observations

y. Assuming the modelling errors having a Gaussian distribution, we can write the

conditional probability density distribution [16]

ρ(y|x) =
1

(2π)n/2|C|1/2
exp

(
−1

2

(
y − f(x)

)T
C−1

(
y − f(x)

))
, (2.5)

where C is the covariance matrix of the modelling errors between different channels,

y = [y1, ..., yn]T and f denotes remote sensing model(s) that describe the observa-

tions y as a function of x.

If the modelling errors between channels are independent, the covariance matrix

C becomes a diagonal matrix. Then we get a so called cost function J(x) from

the exponent part of (2.5) where the minimum of J(x) gives the values of x which

maximise the probability equation. The J(x) is then

J(x) =
n∑
i=1

1

2σ2
i

(
yi − fi (x)

)2
, (2.6)

where σi is the standard deviation of the modelling error at channel i.

When additional information of the statistical properties of geophysical parameters

exist, we get according to Bayes theorem in case of one estimated parameter x with

a known average x̂REF and standard deviation σREF :

ρ(x|y) =
ρ(y|x)ρ(x)

ρ(y)
=
ρ(y|x)ρ(x)

1
= ρ(y|x)ρ(x), (2.7)
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where ρ(y|x)is the same as (2.5) and

ρ(x) =
1

(2π)1/2σREF
exp

(
−1

2

(
x̂REF − x
σREF

)2
)
. (2.8)

Using (2.5), (2.7), and (2.8) we get a cost function for the case of one geophysical

parameter x:

J(x) =
n∑
i=1

1

2σ2
i

(
yi − fi(x)

)
2 +

1

2σ2
REF

(x̂REF − x)2, (2.9)

which differs from the (2.6) only by the last term.

For the case of m geophysical parameters we get:

J(x) =
n∑
i=1

1

2σ2
i

(
yi − fi(x)

)
2 +

m∑
j=1

1

2σ2
REF,j

(x̂REF,j − xj)2. (2.10)

2.2.2 Linear models

Assuming the modelling errors at different channels are normally distributed with

the bias of zero having a standard deviation of σi we can write an equation for the

best estimate for the unknown x:

x̂ =

∑n
i=1

1
σ2

i
bi1 (yi − bi2) + 1

σ2
REF

x̂REF∑n
i=1

1
σ2

i
b2i1 + 1

σ2
REF

. (2.11)

For the variance of the estimate x̂ we can write [42, p. 81]:

var(x̂) =

∑n
i=1

(
1
σi
bi1

)2

+ 1
σ2

REF(∑n
i=1

1
σ2

i
b2i1 + 1

σ2
REF

)2 . (2.12)
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2.2.3 Nonlinear models

In the general case the the functions fi(x) are not linear, and the solution is the

global minimum of the cost function (2.6), which gives the maximum a posteriori

probability to x, which can be searched by iteration.

The variance of the estimate x̂ can be formulated as [42, p. 91]

var(x̂) =

∑n
i=1

(
Ji

σi

)2

(∑n
i=1

(
J2

i

σ2
i

)
+ 1

σ2
REF

)2 +

1
σ2

REF(∑n
i=1

(
J2

i

σ2
i

)
+ 1

σ2
REF

)2 , (2.13)

where

Ji =
∂fi(x)

∂x
.

2.3 Assimilation of data to dynamic models

When a dynamic model, for example an environment model, is used in the statistical

inversion process, the process is usually called data assimilation instead of statistical

inversion. The goal is then to guide or tune the dynamic model to the right direction

by the assimilated measurement data instead of estimating a particular geophysical

parameter. The process is usually continuous, the measurement data is assimilated

to the dynamic model continuously.

The same cost function presented earlier in this chapter still applies in this case

although it is more complex since the model parameters are typically changed back-

wards in time.

An example of the assimilation of remote sensing data is presented in [P IV] where

SCA retrieved from SAR data was fed into a hydrological model.
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3 Data

In this section the remote sensing data and in situ measurements relevant to this

work are introduced.

Remote sensing instruments are usually divided into two categories based on the

wavelength they measure: optical instruments and microwave instruments. The

microwave instruments are still divided into passive and active instruments. This

categorisation is used in this section.

3.1 Microwave remote sensing data

Microwave instruments operate at microwave range of electromagnetic spectrum.

They can be divided into two main classes: active and passive instruments. Active

instruments send signals and receive the reflected signal. Typical active instruments

are radars and scatterometers. Passive instruments, called radiometers, do not send

anything, they just measure thermal electromagnetic radiation from the target.

3.1.1 Microwave radiometer data

Microwave radiometers are remote sensing instruments that measure thermal radi-

ation at certain radio frequency bands, usually around 1 GHz to 100 GHz. They

measure brightness temperature, usually marked as TB, which is [60, p. 201]

TB = e · Tphys, (3.1)

where e is the emissivity of the target and Tphys is the physical temperature of the

target. Emissivity e is defined as 1 − Γ, where Γ is the reflectivity of the target
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Table 3.1: The main characteristics of the AMSR-E instrument.[18]

Center frequency (GHz) 6.925 10.65 18.7 23.8 36.5 89.0

Bandwidth (MHz) 350 100 200 400 1000 3000

Polarisation H and V

Sensitivity (K) 0.3 0.6 0.6 0.6 0.6 1.1

IFOV cross× along track (km) 43×75 29×51 16×27 18×32 8.2×14 3.7×6.5

Swath width (km) 1450

Incidence angle (degrees) 55

which is dependent on the dielectric properties of the target according to Fresnell

equations. Surface characteristics, like surface roughness, also affect the emissivity

[5].

Microwave radiometers have been flown in satellites since 1970’s including SMMR

which was launched in 1978 [36]. Typically spaceborne radiometer instruments

are equipped with a scanning mechanism to generate an image of the individual

measurements (see Figure 3.1).

AMSR-E

One of the latest spaceborne microwave radiometer is the AMSR-E (Advanced Mi-

crowave Scanning Radiometer for EOS) [18]. It is a twelve-channel, six-frequency

microwave radiometer mounted on the polar orbiting EOS-Aqua satellite. It mea-

sures brightness temperatures at six frequencies, from 6.9 GHz to 89 GHz, each in

both polarisations, horizontal and vertical, with an incident angle of 55 degrees (see

table 3.1).
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Table 3.2: Resolutions 1–5 of the AMSR-E L2A product.[30] S means smoothed
data and X non-smoothed data.

Resolution Footprint Channel

no size 6.9 10.65 18.7 23.8 36.5 89.0

(km×km) (GHz)

1 75×43 S & X S S S S S

2 51×29 S & X S S S S

3 27×16 X S & X S S

4 14×8 X S

5 6×4 X

The AMSR-E data are available free of charge from NSIDC (National Snow and Ice

Data Center) via FTP and WWW. The data are available on several formats from

raw data to ready products. The so called level 2A data product is a radiometrically

corrected product needing geometric rectification [15].

Since AMSR-E measurements of different frequencies do not describe identical lo-

cations, low level processing with the Level 2A (L2A) algorithm produces spatially

consistent data sets, referred to as resolution 1 through 5 as listed in Table 3.2. For

this purpose, the L2A algorithm linearly combines brightness temperatures from the

Level 1 processing. The L2A data are delivered in HDF-EOS format [55], which is

an extension to the hierarchical data format (HDF).

The rectification and mosaicing of data was done in this work in [P II] using a

program developed in TKK by Mr. Juha Lemmetyinen [24]. An alternative to that is

NASA’s recently released HDF-EOS To GeoTIFF Conversion tool (HEGtool), which

allows users to reformat, re-project, stitch/mosaic and subset HDF-EOS images [34].
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Figure 3.1: Scanning geometry of the AMSR-E radiometer [18].

Figure 3.2: AMSR-E brightness temperature images of Finland on 18.7 GHz (left)
and 36.5 GHz (right) horizontal channels. Two swaths are combined and rectified
to 0.125 degree resolution. Data were acquired on March 18th, 2008 at 01:00 and
02:39 UTC.
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Table 3.3: The main characteristics of the ERS-1 SAR.

Sensor Active microwave instrument

Frequency 5.3 GHz (C-band)

Wavelength 5.66 cm

Polarisation VV

Incident angle 19–28 deg (23 deg mid-swath)

Spatial resolution 22 m × 26 m

3.1.2 Radar data

Microwave radars used in satellites are nowadays mainly synthetic aperture radars

(SAR). Using synthetic aperture the antenna does not need to be huge in size in order

to have good ground resolution. Instead, the good ground resolution is achieved

using clever processing of the sent and received signal [38].

ERS

The first European Remote Sensing satellite, ERS-1, was launched on 17 July 1991

into a near-polar orbit. The ERS-1 includes a C-band (5.3 GHz) synthetic aperture

radar (SAR). The main parameters of the ERS-1 SAR are shown in Table 3.3.

ERS-1 data are available from 30 July 1991 to 10 March 2000.[61]

ERS-2, the successor of ERS-1, was launched on 21 April 1995. Together, the

ERS satellites are now orbiting in the same orbital plane, with all instruments

simultaneously operating. ERS-2 is similar to ERS-1 with very similar instruments,

only the GOME (Global Ozone Monitoring Experiment) instrument has been added.

ERS-2 data are available from 13 July 1995 to current day (except from 17 January
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2001 to Autumn 2001 due to gyro failure).

The ERS-1/2 Tandem mission was conducted in 1995–96 while both satellites were

in the same orbital plane. ERS-2 imaged the same area on ground 24h after ERS-1.

These collected image pairs have been used in interferometric studies, therefore they

are known as INSAR data [44].

Available data products of ERS-1/2 include:

• SAR Precision Image Product (PRI)

• SAR Single Look Complex Image Product (SLC)

• SAR Annotated Raw Data Product (RAW)

• SAR Ellipsoid Geocoded Image Product (GEC)

• SAR Wave Mode Fast Delivery Product (SWM)

All the image products cover approximately a 100 km × 100 km area.

ERS-2 Precision Image Products (PRI) were used in [P IV] and INSAR images

(SLC) in [P V].

RADARSAT

RADARSAT is a Canadian remote sensing satellite that carries a Synthetic Aperture

Radar (SAR) as its main instrument. The radar operates at C-band at 5.3 GHz

using horizontal polarisation for transmitting and receiving (HH-polarisation) [49].

Several image types are available depending on the beam mode used as depicted in

Fig. 3.3.
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Figure 3.3: RADARSAT-1 imaging geometry and beam modes [49].

The RADARSAT images are path oriented and they are distributed in CEOS (Com-

mittee on Earth Observation Satellites) format [6]. RADARSAT images cover-

ing Finland are received and processed at Kongsberg Satellite Services (KSAT) in

Tromsø, Norway.

ScanSAR Wide images have been used in this work, in [P III]. They cover a 500 km

× 500 km area with a 50 m pixel size having a 100 m spatial resolution. Since the

image area is so large, the incident angle varies inside the image typically from 20

degrees to 45 degrees. ScanSAR images can have either 8- or 16-bit values for each

pixel.

Since the ScanSAR images are path oriented they have to be rectified to a geograph-

ical coordination. The author has developed a rectification program for this purpose

[17].
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3.2 Optical remote sensing data

Optical imaging instruments have been flown in satellites since late 1960’s. They

are usually multi-channel instruments, most of channels recording visible light, and

a couple of channels recording infrared radiation.

NOAA AVHRR

NOAA Advanced Very High Resolution Radiometer (AVHRR) is a series of space-

borne imaging instruments. The first AVHRR was a 4-channel imaging radiometer,

first carried on TIROS-N (launched October 1978). This was subsequently im-

proved to a 5-channel instrument (AVHRR/2) that was initially carried on NOAA-7

(launched June 1981). The latest instrument version is AVHRR/3, with 6 channels,

first carried on NOAA-15 launched in May 1998.

The AVHRR/3 has three solar channels in the visible-near infrared region and three

thermal infrared channels [35]. The resolution is 1.1 kilometers at nadir. Table 3.4

lists the most important characteristics of the six channels. The AVHRR channel 1

data were used in [P III] to retrieve the snow covered area (SCA).

3.3 In situ data

In addition to remote sensing data some in situ measurement data sets have been

used in this work. The meteorological data described in the following chapter have

been used together with the remote sensing data, while the snow course measure-

ments have been used as reference data in validation.
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Table 3.4: Characteristics of the AVHRR channels.[35]

Resolution

Channel at nadir Wavelength Typical use

number (km) µm

1 1.09 0.58–0.68 Daytime cloud and surface mapping

2 1.09 0.725–1.00 Land-water boundaries

3A 1.09 1.58–1.64 Snow and ice detection

3B 1.09 3.55–3.93 Night cloud mapping, sea surface temperature

4 1.09 10.30–11.30 Night cloud mapping, sea surface temperature

5 1.09 11.50–12.50 Sea surface temperature

3.3.1 Weather station measurements

The synoptic weather station network of World Meteorological Organization (WMO)

constitute one of the largest measurement network in the world. The synoptic

stations measure continuously several physical parameters like temperature, wind

speed, rain and snow depth. Figure 3.4 shows the weather stations providing snow

depth data. Snow depth measurements from weather stations were used in [P II].

The data were received from the Finnish Meteorological Institute.

3.3.2 Snow course measurements

Snow course is a measurement line of few kilometers (typically 4 km) on land, which

contains different types of terrain (pine, spruce, and birch dominated forest, mixed

forest, bog, open area) [53], see Figure 3.5 for an example.

The depth of snow is measured at every 50 meters, typically from about 80 points,
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Figure 3.4: Weather stations above latitude 55◦ N providing snow depth data on
February 2008.

while the snow density is measured typically from 8 points [37].

The measurements are done in winter months (November to May) usually at 1st

and 16th day of the month (see Figure 3.6 for illustration of measurement activity).

Currently there are around 100 active snow courses (93 was measured in spring

2008). Snow course measurements are done by SYKE. Figure 3.7 shows the areal

distribution of the snow courses. These measurements provide excellent validation

data for snow depth estimations. Snow depth maps of [P II] are validated against

these measurements.

3.3.3 Auxiliary data

In addition to remote sensing and in situ measurements, some auxiliary data sets

have been used. These are for example forest stem volume map of Finland, digital

elevation model (DEM), water masks, and drainage area map.

A forest stem volume map from National Board of Survey provided the stem volume

needed to classify SAR data into six different classes based on the forest stem volume

in [P III] and in [P IV]. Also the HUT backscattering model and HUT snow emission
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Figure 3.5: Trace of one snow course in Central Finland shown in white line. The
white grid represents 1 km by 1 km area. Forested areas show in dark and open
areas in light colors.[32]
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Figure 3.6: Number of snow course measurements done on each day in spring 2006,
2007, and 2008.



38

Figure 3.7: The locations of snow courses and weather stations in Finland [32].
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model benefit from the accurate forest stem volume information. A newer map from

SYKE (Figure 3.8) was used in SWE estimation described in Section 5.2.

A digital elevation model from the Land Survey of Finland was used for rectification

of SAR images.

A drainage area map of Finland was used to calculate the average backscattering

coefficient for each sub drainage area in [P III] and [P IV]. The map was provided

by SYKE (see Figure 4.5).



40

Figure 3.8: Forest stem volume in m3/ha of Finland in 0.05◦ resolution. Produced
by Pekka Härmä, SYKE.
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4 Models

In the following, the models used in the work are presented.

Remote sensing models (also known as forward models) play important role when

statistical inversion is employed. A remote sensing model describes the remote

sensing observation as a function of geophysical parameters, like temperature, soil

moisture or snow water equivalent.

Also the WSFS hydrological model is introduced, although it is not a remote sensing

model per se but, rather an example of operational, dynamic environment model

using multi-source data including parameters retrieved from remote sensing data

(SCA and SWE).

The HUT emission model was used in [P II], the HUT forest backscattering model

in [P III] and [P IV], the reflectance model in [P III], a simplified version of the

WSFS model in [P IV], and a linear model in [P V].

4.1 Linear models

A linear model is the simplest type of a remote sensing model. It is of form

y = β1x+ β2 (4.1)

where β1 and β2 are the model parameters. Usually they are the result from linear

regression of remote sensing and reference data. An example of the linear model

used in the work is the optical reflectance model.
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4.1.1 Optical reflectance model

The optical reflectance model used in [P III] for snow covered terrain is in principle

similar to microwave backscattering model. It can written as a function of SCA as

[32]

ρ(SCA) = (1− t2) · ρforest + t2[SCA · ρsnow + (1− SCA) · ρground], (4.2)

where ρforest, ρsnow, and ρground are reflectances of dense coniferous forest canopy,

wet snow cover, and snow free ground, respectively. They have been determined

empirically from the satellite data. t is forest transmissivity which is estimated

from satellite-borne reflectance data. In practice, t varies from 0.26 to 1.0.

The model is employed with the NOAA/AVHRR data at visible band (580–680 nm)

in which the effect of snow grain size is at its minimum [65]. It is used operationally

at SYKE to estimate SCA during the spring time [32].

4.2 Nonlinear models

The radiative transfer model [4] is used commonly in remote sensing applications,

for example for describing the effect of the atmosphere. It has the form of

y = ae2cx + b(1− e2cx), (4.3)

with three model parameters: a, b, and c.

The following microwave models are examples of the nonlinear models having prop-

erties of the radiative transfer model.
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4.2.1 HUT snow emission model

The HUT snow emission model is a semi-empirical model describing the microwave

emission of the snow covered land having forest canopy [46]. It takes into account

the depth, grain size and density of the snow cover. It also takes into account the

effects of atmosphere, forest cover and underlying soil. It describes the brightness

temperature observed from space, TB, as

TB(θ) = t(θ) · TB,gnd(θ) + Tatm↑(θ)+

t(θ) · (1− egnd (θ)) · (Tatm↓(θ) + t(θ) · 2.7K) , (4.4)

where t is the atmospheric transmissivity, TB,gnd the brightness temperature of

ground scene, Tatm↑(↓) the up(down)welling atmospheric brightness temperature,

and egnd the emissivity of ground scene.

Next the ground scene is divided into forested and non-forested areas:

TB,gnd(θ) = ffor · TB,for(θ) + (1− ffor) · TB,snow(θ), (4.5)

where ffor is the forest coverage fraction, TB,for the brightness temperature of

forested snow covered terrain, and TB,snow the brightness temperature contribution

of snow and underlying terrain.

Assuming the temperatures of frozen ground, snow, and forest canopy be equal, and

ignoring the scattering by forest canopy, the brightness temperature of the forested

terrain is

TB,for =
(
1− t2can(1− esnow)

)
· Tphys, (4.6)

where tcan is the transmissivity of the forest canopy and esnow the emissivity of the

snow covered terrain.

Finally, the transmissivity of forest canopy is modelled using empirical formulas
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based on HUTRAD scatterometer measurements [20]:

tcan = t(f,∞) + (1− t (f,∞)) e−0.0035·V , (4.7)

where t(f,∞) is t(∞,∞) + (1 − t(∞,∞))e−0.028·f ; t(∞,∞) = 0.42; f frequency in

GHz, and V is the forest stem volume in m3/ha.

Figure 4.1 describes model behaviour in two respects: diagram at the top shows

predictions for snow pack emissivity as a function of frequency for four different SWE

values and the diagram at the bottom shows the brightness temperature as a function

of SWE for the AMSR-E frequencies calculated using the model implemented by

FMI [25].

Figure 4.2 shows the model behaviour for two important parameters for AMSR-E

frequencies: the top diagram shows the snow pack brightness temperatures as a

function of snow grain size and the bottom one as a function of forest stem volume.

4.2.2 HUT forest backscattering model

The HUT forest backscattering model is a semi-empirical model, which describes

the average backscattering coefficient of forested terrain as a function of forest stem

volume. It is based on the equation of radiative transfer, its 0th order approximation

(so called Cloud Model). However, since the parameters of the model are determined

from empirical measurement data, they include the effects of the multiple scattering.

The model parameters have been determined for C and X-bands, but they could

be determined for other bands also. The forest stem volume range is from 0 to 300

m3/ha. The valid incidence angle range is at least from 20 to 40 degrees.[47]

The backscattering coefficient σo is written as a function of forest stem volume V ,
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Figure 4.1: HUT snow emission model prediction for emissivity of snow covered
terrain [46] (top) and brightness temperatures as a function of SWE (bottom). The
model input parameter values were: nadir angle 53.1◦; density of snow 0.23 g/cm3;
snow grain size 1.0 mm; snow and soil temperature -10◦C; RMS soil surface height
2.5 mm; and soil permittivity 6-1j.
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Figure 4.2: HUT snow emission model estimation of brightness temperatures of
snow covered terrain as a function of snow grain size (top) and as a function of forest
stem volume (bottom). The model input parameter values were: nadir angle 55◦;
density of snow 0.23 g/cm3; snow and soil temperature -10◦C; SWE 100 mm; RMS
soil surface height 3 mm; and soil permittivity 6-1j. At the bottom figure, the snow
grain size was 1.0 mm.
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scalar variable χ, and the incident angle θ [48]:

σo(V, χ, θ) = σocan(V, χ, θ) + t2(V, χ, θ) · σosurf . (4.8)

The backscattering of forest canopy σocan is approximated by the following equation

derived originally from ERS-1/2 observations [44] and later adjusted for RADARSAT-1

data:

σocan(V, χ, θ) = p2 · χ · cos θ(1− t2), (4.9)

where θ is the incident angle of the measurement and p2 = 0.099 for C-band HH-

polarisation (RADARSAT-1) and p2 = 0.131 for VV-polarisation (ERS-1 SAR).

Variable χ is a scalar reflecting the moisture content and freezing status of the

forest canopy which must be solved for the particular weather conditions from the

observed backscattering coefficients. For an example of that, see [28, p. 19].

Figure 4.3 depicts the contributions of different backscattering mechanisms to the

total backscattering coefficient.

The two-way forest transmissivity t2 is [47]:

t2(V, χ, θ) = exp(
p1χV

cos θ
), (4.10)

where p1 = −4.86 · 10−3 for for C-band HH-polarisation and p1 = −5.12 · 10−3 for

VV-polarisation. See Figure 4.4 for an example of the transmissivity behaviour of

forest canopy as a function of stem volume at 5.4 GHz.

To use the above described model in SCA determination, the SCA fraction should

be included in the equation (4.8)

σo(V, χ, SCA) =
[
SCA · σosnow + (1− SCA) · σoground

]
· t2(V, χ) +σocan(V, χ), (4.11)

where σosnow is the backscattering coefficient of snow covered ground and σoground is

that of snow-free ground surface.
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Figure 4.3: Backscattering contributions at 5.4 GHz, HH polarisation, 23◦ angle of
incidence. (1) is the total backscattering coefficient, (2) is the canopy backscattering
contribution, (3) is the soil backscattering contribution, and (4) is the trunk-ground
corner reflection.[47]

The method requires these reference values for backscattering coefficient for the

100% wet snow cover and totally snow-free conditions.

4.3 Dynamic models

As an example of the dynamic environment model discussed in Section 2.3 is an

operational hydrological model, which is presented next.
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Figure 4.4: Forest canopy transmissivity estimated from HUTSCAT measurements
for 5.4 GHz channel. The angle of incidence is 23◦. [47]

4.3.1 Watershed Simulation and Forecasting System

The Watershed Simulation and Forecasting System (WSFS) is a hydrological model

that covers the whole Finland [62] including cross-border watersheds, total area of

390 000 km2. It is a real-time model that is run operationally at SYKE (Finnish

Environment Institute). It is based on the HBV-model [3] and it uses sub drainage

areas as calculation units (see Figure 4.5). The total number of sub drainage areas

in the model is about 6 200.

The WSFS model is fed with a lot of measurement data continuously: meteorological

data from 179 precipitation and 54 real time temperature stations, and weather radar

precipitation information. The model is also updated against 487 water level and

discharge stations, snow covered area (SCA) estimates from satellite data, and 158

snow courses measured once or twice per month [63].
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Figure 4.5: Drainage areas of Finland that the WSFS uses [32]. The map shows
the level 1 drainage areas and the images on the right the level 3 drainage areas.
Note that some drainage areas cross the Finnish border.
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The model forecasts the discharge of the rivers and the corresponding water levels

of both rivers and lakes. Figure 4.6 shows an example of a river discharge and water

level forecast of the model. The model produces daily over 1000 discharge and water

level predictions.

In order to better forecast floods in the spring time, the model needs more detailed

information on the snow melting progress. The snow water equivalent (SWE) and

snow covered area (SCA) are the two most important parameters for the model that

can be retrieved from remote sensing data.
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Figure 4.6: Example of river discharge (top) and water level (bottom) forecast of
the WSFS model for river Kemijoki done at Oct 22nd, 2009. The yellow vertical line
shows where the forecast begins. The thick red line denotes the maximum and green
line the minimum, and the blue line the estimated/average peak. The variations of
the forecasts and observed values are depicted in yellow and grey area, respectively.
Source: SYKE
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5 Methodology testing, results and discussion

In this chapter various ways of statistical inversion studies done in this work are

presented. Also the main results of each study are presented.

5.1 Statistical inversion method

The inversion method presented in [P I] is based on the statistical inversion ap-

proach introduced in Chapter 2.2 and in [23]. A software application that contains

several published microwave emission models and inversion algorithms, and a sta-

tistical inversion procedure was implemented by the author. It was targeted to a

multi-channel microwave radiometer MIMR (Multi-Frequency Imaging Microwave

Radiometer) that was planned by ESA in 1990’s [31].

The software was used to test the inversion algorithms and the statistical inversion

method when system noise was added to the simulated brightness temperature val-

ues. It was also used to test the applicability of the statistical inversion to different

application areas, i.e. snow covered land, vegetated land, ocean, and ice cover.

Emission simulation

The software simulates the apparent temperature of several targets using the equa-

tion

Ta,p(f, θ) = es,p(f, θ) · Ts · t(f, θ) + Ta,atmos↑

+ Ta,atmos↓
(
1− es,p(f, θ)

)
· t(f, θ)

+ 2.7
(
1− es,p(f, θ)

)
· t2(f, θ),

(5.1)
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where

es,p = surface emissivity,

Ts = temperature of the surface,

Ta,atmos↑ = up-welling atmospheric apparent temperature,

Ta,atmos↓ = down-welling atmospheric apparent temperature,

t = transmissivity of atmosphere,

p = polarisation,

θ = angle of incidence, and

f = frequency.

The software simulates the microwave emission from ocean, sea ice, snow-covered,

and vegetation-covered land at the frequencies of the MIMR instrument. It contains

the following emission models:

• Pandey’s model [39] for ocean surface,

• HUT emission model [46] for snow-covered land,

• Kerr’s model [19] for vegetation-covered land,

• constant values for different ice types [10].

Dielectric constant of soil was calculated using equations of Hallikainen [12]. Atmo-

spheric emissivity and transmissivity was simulated using the MPM model by Liebe

[26].

Inversion algorithms

The inversion algorithms for ocean, snow, sea ice and vegetation were obtained from

literature. The inversion algorithms implemented were:
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• Miller’s algorithm [33] for ocean wind speed,

• Wilheit’s algorithm [66] for rain rate over ocean,

• SPD algorithm [1] and Künzi’s algorithm [21] for snow water equivalent,

• Swift’s algorithm [56] for sea ice concentration,

• Lojou’s algorithms [27] for ocean surface temperature and water vapour and

liquid water content of atmosphere.

The statistical inversion algorithm implemented is a maximum likelihood inverse

solver that uses nonlinear least-squares fitting method for fitting the model into the

multichannel results. The minimising problem is the same as (2.10)

Minimize
12∑
i=1

1

2σ2
i

(gi(x1, x2, .., xn)− (Ta)i)
2 +

n∑
j=1

1

2λ2
j

(x̂j − xj)2,

where

gi = model representing the apparent temperature at the ith channel,

(Ta)i = apparent temperature at the ith channel, measured from space,

x1, ..., xn = model parameters including the geophysical parameters of interest,

x̂j = average value of the jth model parameter (a priori information),

λj = standard deviation of the jth parameter value,

σi = standard deviation of the measurement noise of the ith channel.

The initial values for the model parameters x1, x2, .., xn are obtained from previously

mentioned inversion algorithms. The developed technique is a unified method for

retrieval of the geophysical parameters of any surface type.

Statistical model for atmosphere

For the atmospheric transmissivity, a statistical principal component model is utilised.

This model was developed for the MIMR frequencies using the measurements of Salo-
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nen et al.[54]. The principal component model allows the reduction of the statistical

atmospheric transmissivity behaviour in the model representing the measurement

into only one free parameter. Thus (5.1) can be expressed (leaving the a priori term

out for convenience) as

Minimize
12∑
i=1

1

2σ2
i

(
gi(x1, x2, .., xn, α, γ

1)− (Ta)i
)

2, (5.2)

where

α = atmospheric profile factor that contains information about the pressure, wa-

ter content, etc. about the atmosphere, and

γ1 = scalar variable (value of the first atmospheric transmissivity principal com-

ponent).

Simulation software

The software was implemented in UNIX environment using C language and it was

ported also to MS-DOS. The software contains emission simulation and inversion

modules. The emission simulation can entirely be skipped by reading the apparent

temperature values from a file in order to use measurement data.

The software allows one to investigate the sensitivity of the inversion algorithms

to system noise by using the Monte Carlo noise simulation. In this method ran-

dom noise is added to the apparent temperature values after which the inversion

is performed. Figure 5.1 shows a snapshot of the workstation screen showing the

simulated apparent temperature values and the inversion result histograms of the

program.
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Figure 5.1: Windows of the simulation software showing emission calculation and
a subsequent inversion. Apparent temperatures are calculated for sea ice at hori-
zontal and vertical polarisations using the statistical atmosphere model. On both
polarisations there are ten separate apparent temperature vectors corresponding to
ten separate atmosphere transmissivity conditions.
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Sensitivity analysis

Sensitivity analysis of the apparent temperature reveals the quantitative effects of

different parameters affecting the measurement. Therefore, it is an essential part of

developing the inversion techniques. Sensitivity is defined as

S =
∂Ta
∂x

, (5.3)

where Ta is the apparent temperature and x is an affecting parameter.

An example of the sensitivity analysis is presented in Figure 5.2. The sensitivity is

calculated using the HUT snow model and the following equation:

Sd =
Ta(d = 0.4 mm)− Ta(d = 1.2 mm)

(0.4− 1.2) mm
(5.4)

The result shows strong dependence of the apparent temperature to the grain size

at 18.7, 36.5, and 89 GHz. The high sensitivity deteriorates the accuracy of snow

water equivalent retrieval when the grain size cannot be estimated properly.

Results

The conventional inversion methods and the statistical inversion approach were

tested in several applications using the developed simulation and inversion soft-

ware. The statistical inversion method proved promising especially in ocean and sea

ice applications. For land applications the greater number of free parameters made

the inversion more difficult. One novel feature developed was the reduction of the

atmospheric parameters with a statistical model for the MIMR frequencies.
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Figure 5.2: Sensitivity of the satellite observed apparent temperature to the snow
grain size as a function of snow water equivalent for MIMR frequencies at vertical
polarisation.

5.2 Statistical inversion with a priori data

In the study of [P IV] an operational system for production of snow water equivalent

(SWE) and snow depth maps over large areas, like the whole Eurasia, was presented.

The system uses synoptic weather station measurements and microwave radiometer

data to determine the snow water equivalent over the area. The novel feature of the

system was that it combined satellite observations of brightness temperature with

ground-based data applying a nonlinear Bayesian data assimilation technique. This

makes it possible to get better accuracy characteristics than using either of the two

data alone. The original method is published in [43]. Figure 5.9 depicts one example

snow depth map.

The data set consisted of AMSR-E microwave radiometer data and snow depth

measurement of weather stations. Microwave data used were L2A data which were
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rectified to 0.25 degree grid covering the area of 0◦ to 180◦ E and 55◦ to 85◦ N.

The HUT snow emission model introduced in section 4.2.1 was used as a remote

sensing model.

Since the emission model is sensitive to snow grain size, which is an unknown param-

eter, the synoptic weather station snow depth measurements are used to determine

snow grain size at all weather station locations. These values are used to interpolate

the effective grain size over the whole area using ordinary Kriging [7, pp. 105–143].

The snow depth measurements are also interpolated over the whole area using or-

dinary Kriging. This interpolated snow depth map is used in the inversion process.

To omit the effect of liquid water in the snow, possible wet snow areas are screened

using a simple dry snow detection algorithm [11]

SD > 80 mm and T37V < 250 K and T37H < 240 K (5.5)

where SD = 15.9(T19H−T37H) [mm], and T19H and T37H are brightness temperature

values of the 19 and 37 GHz horizontal polarisation channels.

The inversion process is not applied for areas having wet snow, instead the interpo-

lated snow depth value is used as an estimate.

Figure 5.3 depicts the system showing inputs, background information, and the re-

sults. Input files consist of rectified radiometer files of 18 and 37 GHz at horizontal

and vertical polarisations and snow depth measurements of weather stations. Back-

ground information consists of a forest stem volume map and a water mask. Output

consists of SWE and SD estimation maps.
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Figure 5.3: The SWE map production process showing input and output files.
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Inversion process

First the modelled brightness temperature difference is fitted to the observed bright-

ness temperature difference Tdiff = T18.7H −T36.5H using the snow grain size d0 as a

fitting parameter:

d0,ref = min
d0

(Tdiff − f(ρ,Dref , d0))
2 ≡ 0, (5.6)

where f is the HUT emission model, Dref is the observed snow depth and ρ is the

snow density (SWE = ρD).

Next the snow depth for every pixel in the area is determined using inversion method.

The method takes into account the statistical accuracies of the two data sources,

i.e. the microwave radiometer and the weather station data, weighting the two data

sources by their estimated variances.

The equation to be minimised has three terms when the previous estimates of snow

depth (Dt−1) are available

min
Dt

(
(Tdiff − f(Dt))

2

var(ε)
+

(Dt −Dref,t)
2

var(Dref )
+

(Dt−1 −Dt)
2

var(Dt)

)
, (5.7)

where

var(ε) is the variance of the modelling error,

var(Dref ) variance of the snow depth measurements, and

var(Dt) is the day-to-day snow depth variance.

The flowchart of the inversion method is shown in Figure 5.4.

The error estimate for the method is also calculated using (2.13). An example of

the error estimate map is shown in Figure 5.5.
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Figure 5.5: Standard deviation of the error of the SWE estimate. The error is
smallest at the in situ data points ie. weather stations providing snow depth data.
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Table 5.1: Statistics of snow course measurements on validation days.

SWE SWE SWE SD SD SD

range mean median range mean median

Date mm mm mm cm cm cm

2008-01-16 0–114 54 48 0–53 23 22

2008-02-16 1–165 81 71 2–70 30 22

2008-03-16 1–188 89 75 3–82 38 39

2008-04-16 0–223 77 37 0–90 39 42

Validation

The method has been validated in Russia by Takala [57] using Russian in situ

measurements done on 1994–1997 (INTASS SCONE data). The main results are

summarised in Figure 5.6. The method shows an rms error of 33 mm, and also it

shows how the estimate begins to deviate from the measured value with SWE values

larger than 100 mm.

The author has validated the method against snow course measurements done in

Finland (see Section 3.3.2). The measurements of one course were averaged and

the average value was compared to the snow depth or SWE estimate of the same

location. Since the snow course measurements are not done exactly at the 16th of

the month (see Figure 3.6) but also a day before or day after, also the measurements

of one day before and after the estimation day were taken into account. Table 5.1

shows the statistics of the values of SWE and SD on validation points. Forest stem

volume map of Finland produced by SYKE was used (see Figure 3.8).

Figure 5.7 shows the four SWE maps used in the validation.
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Figure 5.6: Scatter plot of SWE estimates vs. in situ measurements in Russia.
Validation is done for winters 1994–97 using INTASS SCONE data. [57]
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Figure 5.7: SWE estimations of Finland on 16th of January, February, March, and
April 2008 in 0.125 degree resolution.
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Table 5.2: Parameters used in the assimilation process.

Parameter value

Snow density 0.24 g/cm3

Variance of snow depth measurements 100 cm2

Forest coverage fraction 77 %

Satellite orbit descending (night time)

Grid 0.125 × 0.125 degrees

Area 16–32◦ E, 58–72◦ N

The parameters used in the assimilation process are presented in Table 5.2. The

value for snow density in Finland varies in early winter from 0.21 to 0.27 g/cm3

increasing in late winter to 0.29–0.34 g/cm3 [51, p. 98]. However, a constant value

of 0.24 g/3 was used for snow density.

Table 5.3 presents the results of the SWE validation and Table 5.4 results of the

snow depth validation in spring 2008. Figure 5.8 shows the corresponding scatter

plots of the results for SWE and snow depth.

These results show some over estimation (positive bias), which could possibly be

reduced by tuning the modelling parameters. The accuracy is within the errors

reported by others, in the range of 10–20 mm of SWE, even 30 mm or more [52].

Pulliainen has reported RMSE values of 9–13 cm in snow depth and 28–35 mm in

SWE in his study [43], which is in line with the results obtained here.
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Table 5.3: Validation results of the retrieved snow water equivalent against snow
course measurements in spring 2008.

Snow Unbiased

Date Julian course N RMSE BIAS RMSE r

day JD (mm) (mm) (mm)

2008-01-16 16 15–17 41 24 8 23 0.862

2008-02-16 47 46–48 77 27 16 22 0.902

2008-03-16 76 75–77 96 25 5 24 0.912

2008-04-16 107 106–108 68 32 -13 29 0.926

total 282 27 4 27 0.900

Table 5.4: Validation results of the retrieved snow depth against snow course
measurements in spring 2008.

Snow Unbiased

Date Julian course N RMSE BIAS RMSE r

day JD (cm) (cm) (cm)

2008-01-16 16 15–17 40 8.5 -1.3 8.4 0.892

2008-02-16 47 46–48 77 9.5 4.2 8.5 0.920

2008-03-16 76 75–77 71 10.3 3.0 9.8 0.912

2008-04-16 107 106–108 51 11.0 -1.8 10.8 0.943

total 239 9.9 1.7 9.8 0.923
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Results

An operational system for estimating SWE and SD over large areas was developed

and tested. SWE and snow depth maps covering the whole Eurasia were produced

operationally for the winter 2007–2008 at FMI (http://snow.fmi.fi). The method

is also used in Finnish Environment Institute (SYKE) covering the area of Finland

to provide SWE data to the WSFS system.

5.3 Statistical inversion with two data sources

In the study presented in [P III] the SCA was retrieved from SAR data and from

optical AVHRR data. While optical data is more accurate, it is lacking on some

days due to cloudiness. Then the microwave radar still can provide SCA estimate.

The area used in the study was whole Northern Finland containing over 2000 sub

drainage areas covering an area of 130 000 km2.

The SAR data consisted of five RADARSAT wide swath images for spring 2004.

The backscattering values were averaged into six classes based on the forest stem

volume (open areas, 1–50, 51–100, 101–150, 151–200, over 200 m3/ha) for each sub

drainage area.

The optical data used were NOAA AVHRR images from spring 2004. Reflectance

values of AVHRR channel 1 (580–680 nm) were averaged to each sub drainage area.

Two remote sensing models were used: the HUT backscattering model introduced

in Section 4.2.2 and the optical reflectance model introduced in Section 4.1.1.

http://snow.fmi.fi
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Figure 5.9: Snow depth map (in cm) over Eurasia on March 13th, 2007.
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The inversion was performed using the equation (2.10) yielding in this case to:

min
SCA,a

J(χ, SCA) = min
SCA,a

N∑
i=1

w1(σ
o
model,i − σoSAR,i)2 + w2(ρmodel − ρAVHRR)2, (5.8)

where σomodel,i is the calculated and σoSAR,i the measured backscattering coefficient

for the forest stem volume class i and N is the number of forest stem volume

classes. Similarly, ρmodel is the calculated and ρAVHRR the measured reflectance of

the sub drainage area. Weighting factors w1 and w2 represent the accuracy of the

corresponding values inversely proportional to variance of the modelling error.

Figure 5.10 illustrates the iterative minimisation procedure.

Results

The SCA estimation was first performed using both AVHRR data and SAR data

alone, and then using both data together. Figure 5.11 depicts visually the results of

the SCA retrieval.

Figure 5.12 depicts the correspondence between SCA estimates retrieved from SAR

and AVHRR instruments.

Currently the retrieval accuracy for SAR data is lower than for optical data: reported

accuracies for the SAR method is 25 % units [29] versus 15 % units for the optical

method [32].

When optical images are not available due to clouds, SAR data can be used to

augment the SCA retrieval in these cases.
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Figure 5.10: Flowchart of the retrieval of SCA from two remote sensing data sets:
optical and SAR data.

Figure 5.11: SCA derived from NOAA AVHRR data of May 5th, 2004 (left), from
SAR data of May 6th (center), and from both data using statistical inversion (right).
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Figure 5.12: SCA derived from NOAA AVHRR data of May 5th, 2004 versus SCA
from SAR data of May 6th, 2004. Correlation coefficient r=0.66 and RMSE=0.197.
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5.4 Assimilating data into a dynamic model

In the study of [P IV] the SCA retrieved from SAR data were assimilated directly

into the WSFS model.

The test area was in Northern Finland in river Kemijoki drainage area near lake

Lokka (see Figure 5.13).

The satellite data consisted of 16 ERS-2 images from years 1997, 1998, 2000, and

2001. The backscattering values inside the 14 drainage areas (see Fig. 5.13) were

averaged into five classes based on the forest stem volume. These average values

were used in the inversion.

The models used in the inversion procedure were a simplified version of the WSFS

model (see section 4.3.1) and the HUT forest backscattering model (see section

4.2.2).

The developed assimilation method can be described as follows: The hydrological

model is optimised with respect to uncertain model state variables by applying

a constrained iterative algorithm in which the difference between the the remote

sensing model and remote sensing observations is minimised (statistical inversion

using a maximum a posteriori likelihood method). The method takes into account

the error characteristics of the hydrological and remote sensing models.

The hydrological model has two correction factors that can be adjusted historically:

temperature and precipitation correction factors. These two factors have different

effects on the model behaviour. Increasing the temperature accelerates the melting

process (if done during the melting season) or shifts the beginning of the melting

earlier. On the other hand, increasing the precipitation (if done before the melting

season) increases the snow depth and the volume of the discharge. During the
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assimilation process, both parameters can be used to drift the internal model state

variable SCA to the direction that the measured SAR data points. The output of

the model (discharge) behaves though quite differently in these cases.

The equation to be minimised was

J(χ, z) =
∑
i,j

w1(σ
o
model(i, j)− σoradar(i, j))2 + w2(SCA− SCAorig)2, (5.9)

where

z is either precipitation correction coefficient p or temperature correction factor ∆T ,

σomodel(i, j) is the calculated backscattering coefficient for the forest stem class i (open

areas, 1–50, 51–100, 101–150, 151–200, over 200 m3/ha) of the sub drainage area j,

σoradar(i, j) measured backscattering coefficient for the forest stem class i of the sub

drainage area j,

SCA is the internal state variable of the hydrological model with the modified

parameter (p or ∆T ), and SCAorig the same variable initially. Weighting factors w1

and w2 represent the accuracy of the corresponding values.

Figure 5.14 depicts the iterative procedure used.

Results

Figures 5.15 and 5.16 depict two examples of the results of the procedure to the

WSFS output. Both figures contain two diagrams: the left diagram depicts the

river discharge and the right one the SCA state variable of the model. The discharge

diagram shows three curves: measured discharge, forecasted discharge without as-

similation, and forecasted discharge with assimilation.

Figure 5.15 shows how the assimilation has clearly enhanced the discharge forecast.

In this case the model has been corrected using the precipitation correction. Figure
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Figure 5.13: The 14 sub drainage areas near lake Lokka in Northern Finland.

Figure 5.14: Flowchart of the assimilation of remote sensing data into the WSFS
model.
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5.16 shows the effect of the temperature correction: again the forecast has clearly

moved towards the actual measured discharge.

5.5 A general statistical inversion tool

[P V] describes a tool for retrieving geophysical parameters that was developed by

the author. The tool uses statistical inversion method presented in Chapter 2. The

tool can be used by its own, or it could be integrated to a image processing system.

The tool supports linear models of type y = β1x+β2 and one non-linear model: the

radiative transfer model (2.4).

The usage of the tool is the following:

• Preparation of the field measurement data (reference data)

• Selection of the remote sensing model (type and parameters) either by know-

ing it beforehand or by using the learning phase

• Execution of inversion (analysis phase)

• Post processing the result

Usage example

In the example presented in [P V], forest stem volume was estimated from ERS

INSAR coherence data. The coherence data was averaged for 210 forest segments

of Southern Finland. The forest stem volume measurements were available for all

the segments.
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out the precipitation correction obtained from the assimilation procedure. Right:
Corresponding SCA of the model (spring 1998).
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out the temperature correction obtained from the assimilation procedure. Right:
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The remote sensing model was not known but it was determined conventionally by

fitting a line to the data set (see Figure 5.17). That gave a linear model of

V = −0.000535 · coh+ 0.617,

where V is the stem volume in m3/ha and coh the coherence value.
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Figure 5.17: INSAR coherence data set versus forest stem volume data.

The statistical inversion tool described in [P V] was used to perform the inversion.

Since the model in this case was linear, (2.11) and (2.12) were used by the tool. The

accuracy (variance) of the measurement data was estimated to be 20 %. The results

of the inversion are shown in Figure 5.18 with the estimated accuracies (variances).

Results

A general tool for retrieving geophysical parameters from remote sensing data was

developed. It uses statistical inversion techniques, which means that the estimation
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results have also accuracy estimations. The developed tool is rather general, not

tied to any particular application area. Since the program reads and writes the

data using plain text files, it can be integrated to data processing chains. Also a

prototype integration to a commercial image processing system was sketched.
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5.6 Software

The work described in this thesis has been executed using different software tools

in different computer systems running different operating systems. The computing

environments, specific remote sensing software, software development tools, and

documentation tools used are listed in the following.

5.6.1 Environment

Several different computing environments have been used to implement the software

presented in papers [P I] to [P V].

The simulation software of [P I] was developed in UNIX environment (SunOS) and

MS-DOS environment. The software for [P V] was developed for Windows XP

environment, but was also compiled for Linux.

Systems described in [P II], [P III], and [P IV] were implemented on MATLAB.

MATLAB, product of MathWorks, is a mathematical programming environment,

that is currently available for Windows, Linux, Solaris, and Mac OS X. (http:

//www.mathworks.com)

5.6.2 Remote Sensing Software

• RADARSAT Swath Planner (for RADARSAT-1 image ordering)

• ERDAS IMAGINE (Image processing) http://www.erdas.com

• ER Mapper 6.4 in [P V]

http://www.mathworks.com
http://www.mathworks.com
http://www.erdas.com
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5.6.3 Development Tools

Compilers

The software of [P I] was implemented using the C language, which is rather similar

in both UNIX and MS-DOS environments. The graphics, however, are different in

those environments, so they were done using different functions.

• SunOS: GCC (GNU C Compiler), X Window System

• MS-DOS: Borland C and its own graphics library

GNU C Compiler is available on wide range of operating systems: Windows, UNIX,

and Mac OS X.

The statistical inversion software of [P V] was developed using the free Dev C++

programming environment (http://www.bloodshed.net). The Linux version was

compiled using the GNU C++ compiler.

The system described in [P IV] contained a hydrological model component imple-

mented in FORTRAN language. That part was compiled using GNU Fortran (G77)

to a MATLAB mex-file. The mex-file is a special file that is possible to call from

MATLAB code.

Libraries

A MATLAB add-on toolbox M-Map v1.4e (http://www.eos.ubc.ca/~rich/map.

html) was used to produce figures of [P II].

http://www.bloodshed.net
http://www.eos.ubc.ca/~rich/map.html
http://www.eos.ubc.ca/~rich/map.html
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Tools

CVS was used for source version control especially for program code of [P V].

SLOCcount was used to count the number of lines of the program code of [P V].

5.6.4 Documentation tools

Several documentation tools were used to write documentation and produce figures.

• LATEX (Document preparation system) [22]

• BibTeX (Reference management) http://www.bibtex.org

• LYX (Document processor) http://www.lyx.org

• DIA (Diagram drawing) http://live.gnome.org/Dia

• GIMP (GNU image manipulation program) http://www.gimp.org

http://www.bibtex.org
http://www.lyx.org
http://live.gnome.org/Dia
http://www.gimp.org
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6 Conclusions

In this work, the retrieval of geophysical parameters from remote sensing data us-

ing statistical inversion method was studied. The statistical inversion method was

used in several different ways with different types of data. The application area

was mainly snow, although the method is universal per se. The snow applications

were selected because in that area Laboratory of Space technology has a lot of

competence: it has developed both microwave remote sensing models and inversion

algorithms for snow.

The remote sensing models play an important role on statistical inversion. Good

models are essential in order to get good retrieval results. In this work, both

microwave emission and scattering models, and an optical reflectance model were

used. Remote sensing data were also assimilated into a dynamic environment model

(WSFS). However, the method does not need a physical remote sensing model, the

model can be determined from the remote sensing data conventionally, using for

example regression. This approach was demonstrated in this work also.

One of the benefits of the statistical inversion method is that it automatically takes

into account the statistical accuracy of the data used. If data from different accura-

cies are used, the method weights the different data optimally in the process. The

method can also estimate the accuracy of the results based on the accuracy of the

data and the models used.

The statistical inversion method was demonstrated with the following applications:

snow water equivalent mapping in large areas (whole Eurasia) using microwave

radiometer data, snow-covered area estimation of Northern Finland using optical

and radar data together, and assimilating SCA retrieved from radar data directly

into the watershed simulation system. Also the ERS INSAR data was used to
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estimate the forest stem volume.

In addition to the studies mentioned above, two software applications were devel-

oped. The first one was developed to simulate brightness temperatures measured by

a multichannel microwave radiometer and to test available inversion algorithms and

the statistical inversion method. The other software application was developed as a

statistical inversion tool that could be used either independently or as a component

in an image processing system.

As a conclusion of the studies mentioned, the statistical inversion method is a feasible

method for retrieving geophysical parameters from remote sensing data. The method

is especially suitable for application where extensive measurement data are available

to augment the remote sensing data.
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Errata

Errata of [P II]

Page 3, last row: The first T37H should be T37V .

Errata of [P III]

The flow chart in Figure 5: the iteration condition should read d < min

instead of d > min.

Errata of [P V]

Equation (10) in page 5 should read
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J-P. Kärnä, J. Pulliainen, M. Huttunen, and J. Koskinen. 2002. Assimilation of
SAR data to operational hydrological runoff and snow melt forecasting model. In:
Proceedings of the IEEE International Geoscience and Remote Sensing Symposium
2002 (IGARSS’02), volume 2, pages 1146–1148. Toronto, Canada. 24–28 June
2002.

c© 2002 IEEE.

Reprinted with permission.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Aalto University
School ’s products or services. Internal or personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promo-
tional purposes or for creating new collective works for resale or redistribution must
be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choos-
ing to view this material, you agree to all provisions of the copyright laws protecting
it.

pubs-permissions@ieee.org


V

Publication V
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