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Internetin alueiden välisen reitityksen skaalatuminen on nähty ongelmallisena jo vuo-

sia. Sen välittömiä seurauksia ovat operaattoreille aiheutuvat suuret kustannukset ja 

tilanteen pahentuessa myös Internetin kasvamisen vaarantuminen. Tähän mennessä to-

teutetut parannukset ovat vain lieventäneet ongelmia tai viivästyttäneet niiden ilmene-

mistä. Reitittimien muistia pidetään suurimpana lähitulevaisuuden haasteena, koska 

reitittimien täytyy pystyä ohjaamaan sisääntulevat paketit nopeasti kohti jotakin jopa 

useista sadoista tuhansista verkoista. 

Tämä opinnäytetyö esittelee ongelma-alueen tunnistamalla suurimmat ongelmat sekä 

niiden perimmäiset syyt, ja kartoittaa näiden ongelmien tärkeyttä. Parannusmenetel-

mistä muutama oleellisin on esitelty ja analysoitu. Syvempi analyysi kohdistuu työssä 

ennen kaikkea reititinten muistintarvetta pienentävään Virtual Aggregation -

menetelmään, jonka kantavana ideana on sallia virtuaalisten IP-osoiteprefixien käyttö 

yksittäisten verkkojen sisällä. Työ esittelee myös uuden tavan muodostaa ja käyttää 

näitä virtuaalisia IP-osoiteprefixejä ja vertailee sitä muihin nopean muistin tarvetta 

vähentäviin menetelmiin simuloimalla näitä Sprint operaattorin verkkotopologiassa. 

Simulointitulosten perusteella esittämämme menetelmä kykenee huomattaviin muis-

tisäästöihin välttäen samalla joitain Virtual Aggregation -menetelmästä löydetyistä on-

gelmista. Menetelmän jatkokehitystä on myös mietitty simulointien pohjalta. 
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For years inter-domain routing scalability has been seen as a problem which increases 

ISPs costs and may even decelerate the growth of the Internet. Few improvements have 

been made over the years, but they have only delayed the issue. Router memories (i.e. 

FIBs) are the most critical concern as they have to be fast and ever larger to handle 

great amounts of packets to possibly hundreds of thousands of networks. 

This thesis introduces the problem set by identifying the main issues and their root 

causes, as well as present analysis on their criticality. The improvement mechanisms 

are also considered by introducing and comparing few most relevant proposals. Deeper 

study and analysis in this thesis focuses on Virtual Aggregation which allows networks 

to individually lower their routers’ memory load via the use of virtual IP address pre-

fixes. Also, a new solution for allocating Virtual Prefixes and aggregation points for 

them is introduced and compared against other FIB shrinking mechanisms using exten-

sive simulations on Sprint topology. As a result, the new solution is identified to save 

FIBs considerably while avoiding some drawbacks found in Virtual Aggregation. Fur-

ther improvements to the mechanism are also considered although not tested. 
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1. Introduction 

Only two decades ago nobody could predict how important Internet will be for so many 

people and businesses already at the beginning of the 21
st
 century. Internet has grown 

with a remarkable speed for the last fifteen years and has shaped the society fundamen-

tally by enabling global communications and businesses even for common citizens. It 

has played a crucial role in building today’s information society by revolutionizing the 

way information is managed and exchanged. 

Taking into account that Internet originates from the trusted University world, it is a 

small miracle that it even works as well as it does in our world of conflicting interests. 

Yet at the same time, its open design has made it so flexible and popular. During the last 

two decades Internet has faced many challenges which have usually been solved only 

incrementally. Today the challenges are perhaps more severe and versatile than ever 

before which, if left unsolved, will slow down Internet’s further growth, make it too ex-

pensive and disallow the creation of some wanted new services. 

There are some fundamental limitations in the design of several key protocols which 

dictate the way routing and addressing is done in the Internet. One of the most proble-

matic and important is the Internet Protocol (IP). Its first widely used version (version 

4) has too small address space to allow every network interface in every device to have 

a globally unique IP address while even more fundamental problem is the way ad-

dresses are used in Internet in general. In road network addresses indicate only loca-

tions, but in Internet they also specify hosts’ identities. This makes mobility and many 

other functions hard and costly. Moreover, it exacerbates the creation of a scalable 

routing system which can handle billions of users cost efficiently. The Internet inter-

domain routing scalability problem is most acute on the routers which cannot keep up 

with the constantly rising number of routing entries. Forwarding tables are often the 

bottlenecks because they must reside on fast memory in order to not adversely delay 

packet forwarding. 

It is indeed the scalability which has been seen as a problem for many years. Some 

enhancements have been deployed along the years, but they have only pushed the prob-

lem slightly into the future. But, if the problem has been identified years ago, why is it 

so hard to fix? The reasons are exactly the same which have made Internet so important: 

size and openness. Internet is approximated to currently have about two billion users [1] 

and thousands of Autonomous Systems (AS) which offer their customers the connec-

tivity to the Internet and participate in the inter-domain routing at the heart of the Inter-

net. By considering that most ASs are private companies which have business responsi-

bilities, it is easy to understand that they will probably never share a common view on 

what if anything should be done to correct large scale problems. Most actions would 

also require changes on many devices, which ask for a great amount of coordination, 

work and money. 

In an attempt to address the scalability and other issues in Internet inter-domain 

routing, Internet Research Task Force (IRTF) asked the research community to bring 

forth their suggestions on how the problems should be solved. By the summer 2010 they 

received several proposals out of which two were selected as recommendations for In-

ternet Engineering Task Force (IETF) to work on: 1) Evolution Towards Global 

Routing Scalability (Evolution) as a short term and 2) Identifier-Locator Network Pro-

tocol (ILNP) as a more final solution. Address renumbering needs also to be considered 
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together with the ILNP. In addition to the IRTF recommended proposals Locator Iden-

tifier Separation Protocol (LISP) is entitled to get significant attention as well because it 

is driven by a major player in the industry and may thus end up being used. 

The objectives of this thesis are to introduce Internet inter-domain routing along 

with its many challenges and the possible future solutions to the reader as well as to 

evaluate the capabilities of Virtual Aggregation (VA) and deepen the understanding on 

it as a central part of the Evolution proposal. The assets of Evolution are on its approach 

to solve the problems. Therefore, it is a more plausible solution to be deployed than 

many of the other proposals which design a novel new architecture and lack real incen-

tives for early adopters. VA is a network wide mechanism which uses rather short Vir-

tual Prefixes and tunnels to sacrifice packet latencies in minor extent in order to drasti-

cally diminish FIBs on possibly all of the routers. 

This thesis does not only introduce and analyze what others have done before, but 

also identifies a previously undocumented issue in VA and describes a new way of us-

ing it. To be able to base the analysis on something concrete, a simulation environment 

resembling the Sprint network from 2002 is constructed with Matlab. Various simula-

tions are run on that environment to show the benefits and drawbacks in using VA, the 

relevance of the previously undocumented problem and the feasibility of the new de-

sign. 

This thesis continues from here by first briefly going through some relevant back-

ground information related to Internet routing in Chapter 2. Chapter 3 then properly 

specifies the research question by elaborating on a number of inter-domain routing chal-

lenges and analyzing their core reasons. Chapter 4 introduces three different approaches 

(LISP, Evolution and ILNP) from the larger set of proposals which aim to alleviate 

many of the problems described in Chapter 3. The functionality of Virtual Aggregation 

is considered in Chapter 5 along with its strong and weak properties. From Chapter 6 

onwards the focus is more on what new this thesis brings and what kind of studies have 

been conducted. More specifically Chapter 6 introduces a new approach in using VA 

while Chapters from 7 to 9 elaborate on the conducted simulations on VA, present the 

acquired results, and discuss their meaning and relevance. Finally, Chapter 10 con-

cludes this thesis by summing up what it has presented, how the proposed new mechan-

ism could be further improved and how this all relates to building the future Internet. 
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2. Background 

To be able to understand issues in Inter-domain Routing, some background information 

is needed. This Chapter briefly introduces how addressing and routing is done in the 

Internet by explaining IP addressing, the inter-domain routing protocol called Border 

Gateway Protocol (BGP), and the basic architecture in IP routers. 

2.1 IP Addressing and Aggregation 

Starting from 1993 a historical Internet Protocol version 4 (IPv4) addressing scheme 

with three network classes [2] was replaced by Classless Inter-domain Routing (CIDR) 

[3], which allows any sized prefixes to exist. With this change Internet could keep up 

with the increasing popularity among especially medium sized networks for quite long 

time. Still, researchers envisioned that IP addresses will eventually run out and only half 

a decade from CIDRs deployment next IP version (version 6) [4] was promoted to 

gradually replace its predecessor. Among many improvements, it promised to have vast-

ly greater address space with different scopes to help in scaling the routing. Part of the 

CIDR and IPv6 is the strategy of aggregating multiple longer prefixes into shorter ones 

within topological limits. The idea is to hide overly specific information about distant 

networks to help scale the global routing system. Only the Internet Service Provider 

(ISP) knows its clients specific prefixes, which effectively lowers the amount of prefix-

es propagated over the Internet. 

As many of us know, the deployment of IPv6 has not proceeded as anticipated and 

even today only a small portion of Internet traffic is carried on it. One of the main rea-

sons is the lack of deployment incentives for those who already have routable IPv4 ad-

dresses. Also, IPv6 requires changes to every node and end-host in the network which 

has furthermore diminished its attractiveness. Instead of turning into IPv6, people have 

invented ways of using IPv4 addresses prudently. Network Address Translation (NAT) 

[5] devices allow the use of private addresses to connect to Internet and reduces the 

amount of required global addresses. They map between local (private) and global IP 

addresses with the help of port numbers allowing multiple end hosts to use one global 

IP-address. 

2.2 Border Gateway Protocol 

Internet consists of over thirty thousand independently operated interconnected Auto-

nomous Systems (AS) [6] which exchange routing information with their adjacent ASs 

by using Border Gateway Protocol [7]. BGP is a policy constrained path vector protocol 

operating both within an AS and between adjacent ASs. Accordingly, the protocols are 

called internal BGP (iBGP) and external BGP (eBGP). In principal, iBGP forms one 

coherent view of all known prefixes between the internal BGP routers while eBGP op-

timizes the routing on inter-domain scale, letting business and political reasons to ulti-

mately dictate the course of action. On operational level, BGP routers advertize policy 

matching best routes to external neighbors and re-advertize eBGP and customer routes 

to all internal BGP routers. Means for doing this are the update and withdrawal messag-
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es that can be sent between adjacent BGP routers. The actual implementation on how 

routes are preferred over each other is quite complex and varies over router vendors and 

ISPs. Nevertheless, the longest matching rule is the most important factor, having the 

property of guaranteeing loop free route formation. [7] 

The basic iBGP approach is to run it in a full mesh in order to avoid loops that 

would occur if iBGP learned routes would be re-advertized via iBGP. Alternative solu-

tions like Route Reflectors (RR) [8] or confederations [9] can enhance the scalability. 

Another way of managing the vast amount of control plane signaling (i.e. BGP messag-

es) and routing information load inside an AS is to use core-edge topologies and allow 

routing information to spread only where needed. Instead of advertizing all the known 

routes, default routes can be used. This is a possible approach e.g. on internal customer 

or external peer facing Provider Edge (PE) routers, where most of the routes and traffic 

go via the core. Peer is another AS for which there is a mutual agreement to share con-

nectivity to own and customer networks, but not to locations learned from third party 

ASs. 

2.3 IP Router Functionality 

To be able to handle the vast amount of packet formatted data as quickly as possible and 

to be able to offer routing and other services, routers perform a clear separation of data 

and control plane functionalities. Routing protocols etc. operate on control plane and 

there are typically many Routing Information Bases (RIB) for different protocols and 

purposes. Figure 1 outlines a typical IP router architecture. 

BGP as an extreme case has one RIB for usable routes (Loc-RIB) and two for each 

BGP neighbor connection; Adj-RIB-In for received routes and Adj-RIB-Out for adver-

tized routes. Before all the relevant routing information is delivered to the data-plane 

memories, a set of all the known routes is gathered into the main RIB. The selected best 

routes from this are then inserted into the Forwarding Information Base (FIB) that is 

also copied to fast line-card memories (dFIB). On the same fast memories resides also 

other information (such as packet filtering rules and different counters) which has to be 

accessed at near line speed [10]. Both RIB and FIB memories are always limited, but 

because operations on RIBs do not have to be as quick as on FIBs and because slower 

memory is less expensive, memory bottleneck on routers is usually on the FIB. 
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Figure 1: IP router architecture.  
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3. Inter-domain Routing and Addressing Related Challenges 

Current inter-domain routing architecture has many issues [11], [12], [13] and [14] that 

can be seen on economic, political and technical aspects. For example, ISPs can for 

some extent affect each others’ operations and there are serious concerns about the sca-

lability of the global routing system. This Chapter introduces and discusses these and 

other main issues in global routing. 

3.1 Operational Environment 

Internet can be seen as an ecosystem where its maintenance and development is a 

shared responsibility of the internet community, consisting of all the parties who make 

their living around it. ISPs are at the heart of it making the direct profit out of it. They 

are typically in a rivaling relationship with each other and try to benefit at each other’s 

expense. Businesswise it is therefore not very feasible to invest in the Internet with its 

holistic operation in mind. ISPs rather try to boost their capabilities in comparison to 

other players in the field and most commonly are not willing to take the risk of invest-

ing in a solution that would be beneficial only after the majority of ISPs have adopted it 

[14]. A good example of this is the IPv6 deployment challenge. 

Furthermore, when one ISP decides to change or enlarge its network, it is not the on-

ly one who has to pay for it. Other ASs can be affected with increased routing table siz-

es, BGP signaling load and data traffic load. Mutual agreements between ASs should 

direct the induced costs to whoever benefits from the growth of data traffic. However, 

for other costs there are no mutual agreements since inter-domain control plane is very 

global in nature and ISPs have not been willing or able to take these costs into account. 

The problem in the operational environment is a very serious one and if not properly 

addressed it may lead to the tragedy of commons [15], where a common good (Internet) 

is rendered useless in the face of overuse by each individual (ISP) trying to maximize its 

gain without considering the whole. Fortunately, ongoing market consolidation may mi-

tigate the problem because a fewer number of larger players will more probably agree 

on the problem and have willingness and power to address it than the current incoherent 

group of different sized ISPs. 

3.2 Running Out of Free IPv4 Addresses 

IP address assignments are coordinated by Internet Assigned Numbers Authority 

(IANA) together with Local, National and Regional Internet Registries (LIR, NIR and 

RIR). IANA hands over /8 prefixes to RIRs when they come close to depleting their ex-

isting prefix space and RIRs further coordinate the prefix allocations towards end or-

ganizations such as ISPs and in minor volume other parties. Some institutions are also 

holding excessively large IPv4 address blocks because they were not seen as a scarce 

resource in the early days of the Internet. 
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Figure 2: IANA and RIR address pool size as time series. [16] 

32-bit long IPv4 address space, containing roughly 4.3 billion addresses would as 

such suffice for a long time, but because of the unequal address allocation and the tech-

nical properties of the global routing system, the depletion of free IPv4 addresses will 

happen in the near future. As Figure 2 shows, IANA has already run out of free address 

blocks in February 2011 and other organizations will gradually follow [16]. Thus, some 

may be denied new addresses already in 2011 while somewhere else in the world free 

addresses may be available for some years. 

The problem has been known for some time and it has been fought mainly with two 

different approaches: limiting IP address usage with Network Address Translation 

(NAT) [5] and by introducing IPv6 [4] as an alternative addressing scheme. As ex-

plained in Section 2.1, NAT devices map between local and global IP addresses allow-

ing multiple end hosts to use one global IP-address. This naturally lowers the need for 

globally unique IP addresses, but on the downside NATs violate the end-to-end connec-

tivity principal which was originally one of the main ideas in the Internet. More impor-

tantly NATs induce problems on many services and to the protocol level operation be-

hind them, although the severity depends on the NAT type. 

IPv6 [4] has a 128-bit address space, effectively increasing the amount of unique 

addresses in comparison to IPv4. It also improves many other features, but this all 

comes at the expense of required router and end system support. While the support has 

widely been there for years, the usage of IPv6 has just recently shown some increase 

[17]. Although the amount of traffic or advertized prefixes on IPv6 is still just a fraction 

of that on IPv4, it is foreseeable that IPv6 becomes more popular when there are no 

longer any free IPv4 address blocks available. Still, there is the challenge of dual-

stacking, i.e. operating these two protocols simultaneously with the purpose of allowing 

IPv4 and IPv6 hosts to communicate with each other [12]. 
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3.3 Growth of the Global Routing Table 

3.3.1 Overview 

Before going in to the details of global routing table growth and its semantics, the term 

itself should be specified. Global routing table (also called as Default Free Routing Ta-

ble - DFRT) is a theoretical table on a router where all the advertized BGP routes are 

visible, i.e. default or some other local aggregate routes are not used to reach each and 

every network on the Internet. The set of ASs which are connected in this manner are 

said to be on a Default Free Zone (DFZ), although strictly speaking no single AS holds 

all the routes due to route filtering and global routing dynamics. ASs are commonly 

classified in a loose tier hierarchy, where only tier-1 ASs (only a few) do not have to 

pay anyone for knowing routes to every network in the Internet. Instead they make peer-

ing arrangements with each other to get the connectivity information. Tier-2 and tier-3 

ASs pay for some or all routes accordingly and seek peering agreements when possible 

and advantageous to both parties. Recently, large content providers and Content Distri-

bution Networks (CDN) have made direct connections to many customer networks (tier-

1 – tier-3) getting to the same level with tier-1 providers in terms of inter-network con-

nections [18]. Traditionally DFZ consisted of mainly tier-1 ASs, but with the growing 

interest to multihoming [19] DFZ may have to reach even tier-3 networks today. Multi-

homing, i.e. getting connectivity to the Internet through multiple ISPs not only removes 

the single point of failure between the end site and the ISP, but allows also one to use 

load-sharing as well as policy and performance based routing. 

The issue of routing tables growing faster than the fairly priced router hardware 

[11], [13] has been on discussions for few decades now. Figure 3 depicts how the num-

ber of active BGP entries in IPv4 DFZ FIB has increased from 1994 to June 2010, 

showing rather stable super-linear increase pattern since 2002. Currently there are al-

ready over 350000 prefixes and if the DFZ continues to grow similarly in the future, its 

size will reach the milestone of 0.5 million prefixes in around 2015. The number of en-

tries in IPv4 DFZ RIB is already nearly eleven millions. [17] 

 
Figure 3: Number of prefixes in IPv4 DFZ FIB from 1994 to February 2011. [20] 
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Many factors have contributed to the DFZ FIB growth behavior and continue to do 

so while some new trends may further accelerate its growth rate [12], [17]. The reasons 

behind global routing table growth are introduced and discussed in the following sub-

section to give a better understanding of the specific factors contributing to it and to 

elaborate the overall situation. The actual relevance of this issue is explained in Sections 

3.4 and 3.5 because it is one of the main contributors to the problems of routers running 

out of fast memory and of routing instability.  

3.3.2 Reasons for increasing number of routing table entries 

Ideally for routing, ISPs would form a topological tree structure where each would hold 

only a few prefixes to minimize both the control plane load and the FIB size on BGP 

routers. In reality, topology is dictated by history and business reason and ISPs are typi-

cally forced to hold several prefixes. Nevertheless, effort has been put to keep the 

amount of advertized prefixes relatively small by assigning large enough consecutive 

address blocks and by using aggregation where appropriate [3]. 

For significantly better topological aggregability, the relation between organizations 

and IP addresses should be loosened. As IP addresses serve and have always served as 

both the endpoint identifier in transport layer and the locator in routing [21], they are 

assigned organizationally following the former semantic. However, to get IP addresses 

to follow the real topology, they should be assigned according to the locator property. 

This clearly brings about an incongruity and therefore a split of semantics would be 

beneficial in accomplishing an aggressively aggregating global routing system. The split 

would also be beneficial for other purposes, such as end host mobility. [11] 

As free address space becomes smaller, the remaining free prefixes come smaller 

and more scattered in the address space, forcing their users usually to advertize each 

new prefix separately instead of growing existing ones. When networks are split or 

merged, it may also increase the amount of prefixes in routing tables because address 

renumbering is costly and there may not be enough consecutive address space left to fit 

all the new hosts. Furthermore, it is feared that ISPs will start to trade with rather small 

prefixes when RIRs run out of addresses [22]. The scarce IPv4 address space is there-

fore problematic as such, increasing the amount of prefixes in routing tables for mul-

tiple reasons. [12] 

As the adoption of IPv6 goes further, the new addresses from IPv6 will also increase 

the routing tables as the two IP versions are most certainly dual-stacked on the routers, 

inducing as big as 50 percent increase to FIB sizes [12]. If IPv6 would be the only ad-

dressing scheme, then there would naturally be no address space scarcity inherent prob-

lems. Unfortunately, this is not a probable scenario in the near future, because IPv4-

only hosts are predicted to exist for several centuries ahead and many years could pass 

even for an IPv6-only core to materialize. In fact, a likely scenario is to have IPv4 in the 

core and IPv6 at the edge with support to both IP version end hosts. 

One of the biggest reasons for DFZ growth is the growing use of multihoming [23]. 

To get its benefits, additional routes must be installed into the routing tables (DFZ) [12]. 

More specifically two kinds of addresses can be used to enable multihoming: Provider 
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Independent (PI) and Provider Aggregated (PA) [19]. PI addresses are harder to get and 

they are assigned through IANA and different registries. They form typically rather 

small prefixes and are spread through all the used ISPs. Sometimes PI addresses are ac-

quired even though not immediately needed for multihoming, because it gives the site 

address space freedom from any single ISP. This on the other hand allows organizations 

to more easily put ISPs out to tender and reduce their ICT (Information and Communi-

cation Technologies) expenses. PA addresses are acquired from one of the ISPs address 

blocks and although belonging to the shorter prefix in that ISP, the PA block must be 

spread as such to the DFZ through every used ISP. If this would not be the case, the site 

would not be truly multihomed because the longest matching rule would always favor 

the more specific route. [12] 

ISPs wish also to have some control over how data is forwarded in their network to 

balance the load percentage on each link, to be able to use cheaper routes and to adjust 

the traffic to match peering relations as well as to apply policies. This is called Traffic 

Engineering (TE) and it must be applicable for both incoming and outgoing traffic. For 

outgoing TE, IGP means are sufficient because the egress point is determined by the 

preferability of intra-domain routes. On the contrary, the only means to get control over 

incoming traffic is to advertize prefixes in smaller units via BGP and by specifying how 

each prefix is advertized. Consequences for the routing table size can vary greatly de-

pending on the used granularity, i.e. the number of routes needing differentiated treat-

ment. [12] 

3.4 Limitations on Routers’ Memory Capacities 

3.4.1 Fast Memory Consumption 

As discussed in Section 3.3, DFZ FIB will probably continue to grow about 10 percent 

per year if not even faster, causing routers eventually to run out of FIB space. Among 

others, people on Internet Architecture Board (IAB) identified this to be an acute prob-

lem and one of the main concerns regarding today’s Internet routing system in their 

workshop in 2007[11]. In many cases the DFZ growth, however, is not the only if even 

the main concern. In addition to external (DFZ) routes, an ISP must also store internal 

and VPN customer routes. In a large ISP, the number of internal customer site routes 

can be close to that of the global routes [12], but in a small ISP, their share may be neg-

ligible. Depending again on the ISP, the VPN share of the total fast memory consump-

tion on PE routers can be even an order of magnitude larger than the external routes’ 

share [24]. That being said an explanation of what constitutes to the huge number of 

VPN routes is in order. 

Each VPN customer must have its own addressing and routing, separated from the 

other VPNs and from the Internet traffic. Typical ISP VPN services include layer 2 (L2) 

and layer 3 (L3) MPLS VPNs, where the former provides routing information across the 

different sites of a VPN and the latter logical wires between the sites. In both cases 

MPLS is used to logically connect PE routers leaving the core (i.e. P routers) to only 

perform simple label based forwarding. L2 solution maps circuit IDs (e.g. VLAN IDs) 

to MPLS labels on PE routers and stores it on their Virtual Forwarding Tables (VFTs). 

http://en.wikipedia.org/wiki/Information_and_communication_technologies
http://en.wikipedia.org/wiki/Information_and_communication_technologies
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L3 solution on the other hand stores the routing information in separate VPN Routing 

and Forwarding (VRF) tables for each VPN customer. Considering that an ISP can have 

thousands, or even tens of thousands of VPN customers, this alone explains part of the 

memory needs. But what really makes the memory need so high, is the cumulative 

amount of routes each L3 VPN customer advertizes to all of its sites. As an example, 

having a thousand VPN customers each advertizing thousand prefixes will result to a 

total of one million VPN prefixes in VRFs. And as Kim, C. et al. illustrates [10], a sin-

gle L3 MPLS VPN customer can quite easily account for more than ten thousand routes 

while many of the large and medium sized businesses have MPLS VPNs in place or are 

planning to have them in the near future. 

As explained in Section 2.1, the number of prefixes in DFZ is heavily scaled down 

by aggregating customer site routes on ISP level. Moreover, many ISPs use default 

routes where possible in order to effectively shrink the number of external or internal 

routes on some of their routers. However, the same approach is not applicable for the 

VPN routes, since every customer must have its own routes which are originated on dif-

ferent parts of the topology. Further, because only PE routers are aware of these routes, 

there are no clear aggregation points in the network. Then, what can be done is to have 

the VPN customer serving PE to be different from the one that has the Internet routes, 

so that DFZ and VPN routes do not reside on the same PE router. Doing so does not still 

necessarily separate the Internet connectivity from the VPN customers as default routes 

can be used to forward Internet packets where they belong to. 

3.4.2 Memory Capacity Estimations 

Commodity memories like DRAMs (Dynamic Random Access Memory) used in PCs 

(Personal Computer) and other devices have rather large capacities, are relatively cheap 

and their advancement is expected to follow Moore’s Law. The law indirectly predicts 

that memory capacity will be doubled in every two years with unchanged costs [25].  

However, the same cannot be said of extremely fast memories, like TCAMs (Ternary 

Content-Addressable Memory) or SRAMs (Static Random Access Memory) which are 

used in some switches and routers. They come on little volumes which makes them ex-

pensive while their development is typically slower. RLDRAMs (Reduced Latency 

DRAM) are something newer and in between of SRAMs and DRAMs considering la-

tency times and cost. In terms of (static cost) development speed, they are close to 

SRAMs. 

Building a router with a large FIB is not a problem as such, but building a router that 

is not overly expensive and has a fast and rather large FIB may be. According to T. Li 

[26], the development of large and fast enough FIBs with SRAM is lacking behind the 

growth curve of DFZ, making the router hardware costs to constantly increase. Howev-

er, he only considered the SRAMs and did not take into account the ISPs internal and 

VPN routes. Later, K. Fall et al. [27] came to the conclusion that by using RLDRAMs 

in FIBs it should be possible to build cheap enough routers that can hold at least 5 bil-

lion prefixes even today. Juniper for example, which is one of the largest IP router ven-

dors, supported 2 billion IPv4 routes on RLDRAM back in 2007 [13] and claims that it 

is not a problem to build much larger FIBs too if demand rises. 

http://en.wikipedia.org/wiki/Content-addressable_memory#Ternary_CAMs
http://en.wikipedia.org/wiki/Content-addressable_memory#Ternary_CAMs
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3.4.3 Is There a Real Problem with Scaling Router Memories? 

The role of the DFZ table in outgrowing the FIBs is often exaggerated, because ISPs 

internal and VPN routes are not taken into account. Nonetheless, studies show that it 

should be possible to build large enough FIBs with reasonable price, if the need truly 

exists and the business case makes sense for vendors. Therefore, there should be no 

problems with newer routers for years to come if the ISPs see it beneficial for investing 

a little more on routers that have larger FIBs. Older routers, however, are a completely 

different issue, because back then ISPs and vendors where not so conscious about the 

upcoming problems in FIB sizes and the technology was not ready to support large and 

fast memories. It may also be that due to some surge in routing information, some new-

er routers will face the same problem as the older ones sooner than was expected. 

In recent history and in near future, many otherwise perfectly usable routers are ei-

ther rendered useless or their locations in the ISPs network are changed because of too 

small FIBs. Locations where large VPN tables must be supported and where most of the 

DFZ routes have to be stored are the most demanding ones. Therefore the problem with 

too small FIBs has not vanished completely and there is definitely room for remedy so-

lutions. Taking into account that larger memories usually also consume more energy 

and require more efficient cooling arrangements than smaller ones, i.e. increase the 

usage expenditures, a solution which lowers the memory needs instead of growing the 

memory sizes would be preferred. 

3.5 Routing Load and Instability 

As briefly explained in Chapter 2, BGP is a path vector protocol that operates via up-

date and withdrawal messages sent between adjacent routers. When something (e.g. a 

fault or a deliberate action) incurs a best route change or unreachability for some desti-

nation in a BGP router, it informs its adjacent BGP routers about the change via the 

aforementioned messages accordingly. This something can be a rather permanent or an 

oscillating event, but nevertheless, the change information is propagated everywhere in 

the Internet where it changes some of the best routes. The propagation does not happen 

instantly as the information may have to travel thousands of kilometers and pass several 

routers on the way. Every router has to e.g. update its RIBs, calculate new best routes 

and send messages onwards to other routers. Thus, it is a typical situation that a router 

gets the changed information from some of its neighbors significantly sooner than from 

others and makes the decision of the new best paths based on incomplete routing infor-

mation. This possibly incorrect information is then advertised further and the Internet 

for the affected parts may go into an unstable state where best paths are continuously 

changed. When routers finally have the necessary information and all the correct new 

best paths have been installed, the network is said to have converged. In case of oscillat-

ing routes, it is possible that the route has gained back its original state before some dis-

tant ASs have converged and hence the process is further delayed. 
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Figure 4: BGP origin AS update cumulative distribution. [28] 

A great number of academic studies (e.g. [29], [30] and [31]) have been made 

around the BGP convergence and instability topic and a few mechanisms have actually 

been implemented. A default mechanism for reducing the total number of advertise-

ments is the Minimum Route Advertisement Interval (MRAI) timer. It sets the router to 

wait for some time before advertizing the changed routes so that advertisements are 

more often based on complete and up-to-date routing information. Typical values for 

MRAI are 5 and 30 seconds for iBGP and eBGP while more optimal would probably be 

a fifth of those values [32]. Sadly, it is also common that MRAI is disabled. Another 

mechanism called route flap damping [33] was widely used during the 00’s to prevent 

oscillating routes from causing frequent update churns. Unfortunately, it turned out to 

only magnify the problem [31] and hence its use is not recommended anymore [34]. 

Increasing routing (i.e. control plane) load and convergence time has also been a 

concern in IETF regarding the current architecture [12]. Routing load is clearly affected 

by the huge and increasing number of advertized routes as well as the convergence 

process and the increasing interconnectedness in the Internet. Naturally, each separately 

advertized route increases among others the complexity of the best path calculations and 

the chance of some route change happening at any given time. A rather intuitive ap-

proach in reasoning taken by Narten [12] would also indicate that the more direct con-

nections ASs have with each others, the more BGP messages are sent and the more 

processing is needed in each router. Although this is certainly true regarding the events 

that do not involve a long convergence process, in overall, it is much more dubious be-

cause the number of BGP messages sent in the whole Internet greatly increases when an 

event induces a long converge process. 

In fact, Geoff Huston showed in his presentation [17] that interconnectedness actual-

ly lowers the overall instability in the Internet. Even though the number of ASs and pre-

fixes in DFZ has increased rather fast (see Figure 3), the number of convergence se-

quences and the average convergence time has seen only a mild increase. Huston rea-

sons that the major factor in stability is the average AS path length which has stayed 
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rather constant (around 3.5) for years while the amount of prefixes and the interconnec-

tedness has risen. A study carried through by Labovits et al. [35] backs this conclusion 

by showing that AS path length is the ultimate factor in determining the convergence 

speed of the BGP. Instability is also heavily concentrated on certain ASs (and therefore 

prefixes) as can be seen in Figure 4. This further indicates that simply increasing the 

amount of prefixes does not explicitly lead to significantly increased routing load. It is 

much about the actual amount of unstable prefixes which has been increasing on a much 

slower rate than the DFZ FIB. [17] 

So, how do different trends contribute to the overall control plane load and instabili-

ty? Those that simply lower the aggregation rate increase the control plane load and in-

stability for two reasons. They increase the amount of advertized prefixes and make it 

more probable that information about local changes is spread widely in the Internet. Ex-

ample of such a trend is the shrinkage of free IPv4 address space. In addition, if more 

than one prefix covers the same network (as is the case e.g. with TE and dual stacking), 

a change concerning a single link can cause multiple routes to be changed. The effects 

of multihoming are even little controversial because on one hand it increases the amount 

of advertized prefixes and therefore also the routing load, but on the other, it lowers the 

load by increasing the interconnectedness. Some ISPs also try selfishly to optimize their 

network performance and usage by changing route advertisements according to traffic 

patterns causing other ISPs to suffer from increased control plane load. 

3.6 Security 

Security in Internet has gained much publicity during the recent years and not least be-

cause criminals are using Internet in their businesses ever more. Most of this is about 

hoaxes etc. where Internet is used simply as a tool and medium, but sometimes criminal 

activity is directly related to Internet infrastructure. Criminals are for example changing 

routing decisions, braking into systems, overloading networks and servers as well as 

extorting companies that they will attack its networks or servers if it does not pay large 

sums of money. However, all security problems cannot be dealt with technical solu-

tions, but a network which does not allow a host to hide its true identity is both possible 

and a big help in the fight against criminals. End-to-end security is also an important 

tool as it is a necessary property in many applications over the Internet to implement a 

reliable communiqué between remote parties. 

Traditionally Internet has been very unsecure and many protocols do not secure the 

information sent between different nodes. Only later on patches and additional features 

have been introduced to offer security for example on IP packets and BGP connections. 

With IP, a whole new protocol called IPSec (IP Security Architecture) [36] was intro-

duced to give end-to-end security. Unfortunately, its usage is not always as simple as 

would be desirable because it requires that each end-point’s IP address remains un-

changed or that certain special purpose modifications are to be used. Multihoming, pri-

vate addressing with NATs and IP mobility solutions tend to make IPSec operation 

more difficult as they change the IP addresses between the end-hosts. 

With BGP, if an eBGP connection is not secured, a third party may be able to cor-

rupt or terminate an eBGP session and thus cause harm on inter-domain routing and 
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traffic forwarding. In fact, securing the actual connections is not enough, because legi-

timate adjacent BGP routers may also behave wrongly either accidentally or intentional-

ly. A very serious misbehavior is the case when an AS falsely announces its neighbors 

to have better routes to certain prefixes, causing routing to change for possibly large 

parts of the Internet. This issue is called BGP hijack, because an AS hijacks traffic des-

tined to the affected prefixes. History knows several incidents of it starting from 1997 

while the latest was in 2010 with a Chinese ISP [37] which advertised to originate 

37000 prefixes that it actually did not originate. Tools already exist to prevent the BGP 

hijacking, but apparently all ASs do not bother or know how to configure their routers 

properly. 

3.7 Mobility 

Originally IP was designed to interconnect fixed networks implemented with different 

technologies. At that time there were no mobile computers or real reasons for fast mo-

bility and the case when a node changes its network was thought to be handled with lo-

cal addressing changes. TCP (Transmission Control Protocol) was also built with these 

assumptions and it was decided that both IP addresses and port numbers would have to 

remain fixed during a TCP session. Only later on when mobile phones and laptops be-

came common, the need rise for fast mobility: a capability to change network without 

breaking transport (e.g. TCP) connections. However, as IP addresses are bound to net-

works and TCP is bound to IP addresses, no simple solution can be adopted to imple-

ment mobility. The proposed identifier locator split would widely solve the problem. 

Today, mobility is implemented in Internet with Mobile IPv4 (MIPv4) [38], Mobile 

IPv6 (MIPv6) [39] and Network Mobility (NEMO) [40]. They are all far from optimal 

solutions as they require special functionality nodes to intermediate the mobility. In 

principle, a home agent keeps track where the node is moving and tunnels packets sent 

to it to the mobile node. For doing this, it requires a Home Address (HA) and must map 

this to Care of Address (CoA) which is the address the mobile gets from the network it 

is visiting. Disadvantages of such solutions are diversified and include the increased 

transmission latency, tunneling costs, triangle routing and problems with firewalls and 

NATs. 

3.8 Problem Summarization 

A crucial infrastructure for a big part of the world, which Internet has become, faces 

pressure from many directions. The number of users, the amount of carried data and the 

variety of required functionalities are constantly rising while the foundations of the sys-

tem are largely the same they were two decades ago. Because Internet has become ever 

more important and vast, and because of its distributed nature, changing any basic com-

ponent in it asks for great and unified endeavors from many central parties. Even though 

everybody would understand what should be done for the common good, business rea-

sons dictate many actions and if there are not large enough incentives for individual 

companies to invest in changes, they will never happen. 

The most serious concerns today are on the scalability of the routing system which 

manifests in a few ways: as too large routing tables, as disruptive routing load and as 
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huge energy consumption figures. Memories (especially fast memories) on routers are 

having tough time on keeping up with the increasing capacity requirements while ever 

more processing power is needed to keep up with the routing changes and more over to 

be able to forward traffic to correct outbound links. The direct impact of these is the in-

creased energy requirements which the world has become very concerned in general. 

Baliga et al. [41] estimates that one to four percentages of the world’s energy goes into 

keeping Internet up and running and argues routers being the largest energy users. An 

even alarming although questionable estimation carried out by Namiki et al. [42] pre-

dicts that energy consumption with current technologies skyrockets with the estimated 

traffic increase in a few years’ time. 

The pressure on Internet routing and addressing to better support secondary functio-

nalities like multihoming, traffic engineering, mobility, security and multi-paths can al-

so be seen as an important issue. Many of the problems in this area stem from the dua-

listic nature of IP addresses: indicating both the location and the identity. Solutions exist 

to implement the mentioned functionalities but they are not of novel design, simplistic 

nor very scalable. E.g. multi-homing and traffic engineering are brought in on the ex-

pense of increased routing state and mobility as an add-on tunneling solution with poor 

performance. Time will also tell will the depletion of free IPv4 address space cause ma-

jor problems or will the adoption of IPv6 go forward as planned and relieve any worries 

on insufficient number of IP addresses. 

All in all, challenges in Internet routing and addressing are many while the tools to 

drive any major changes are scarce. A best way to solve at least nearly all the mentioned 

challenges would be to revise the Internet architecture completely. As this is very un-

likely due to high change costs and lack of co-operation in the industry, we can only 

hope to tweak the existing system towards something which is good enough for the time 

being. Thus, in my personal opinion, the question of how to do the changes is much 

more important than the seeking of an optimal solution for the problems.  
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4. Proposed New Solutions for Improving the Inter-domain 

Routing Scalability 

This Chapter introduces three main proposals for alleviating challenges discussed in 

Chapter 3. None of them address all the aspects, but offer solutions at least for better 

routing scalability. The purpose is not to extensively cover all the proposals, but rather 

to introduce samples of different approaches while also considering their implementa-

bility. Locator/ID separation protocol (LISP) is the first to be introduced, approaching 

the problem set with a Map & Encapsulate type of a solution. LISP has gained most in-

terest among the Internet community, although mainly so because it is driven by the 

world’s largest IP router vendor. The proposal introduction is then continued with 

IRTFs recommendations for the short and long term solutions [43], i.e. Evolution and 

Identifier-Locator Network Protocol (ILNP). Evolution is an evolutionary approach of 

implementing the locator – identifier split with a focus on the most imminent problems 

at each point in time. ILNP in turn outlines a clean solution for separating locators from 

identifiers. In the last section of this chapter the positive and negative aspects of each of 

the three introduced proposals are consider and compared against each others. 

4.1 Locator/Id Separation Protocol 

Locator/Id Separation Protocol (LISP) is designed to turn the Internet into a significant-

ly better network in terms of scalability. It does this by forming a tunneled virtual net-

work over the site border nodes, which connect ISPs to their client networks. Inside and 

outside of this tunneled core network IP addresses have different meanings: inside they 

indicate locations while outside they more or less only mean the host identities. The key 

idea is to separate the global core network from all other networks so that the number of 

locations, i.e. routing entries in the core, will scale. A vital policy for simpler implemen-

tability is to change as few things as possible. Therefore, in LISP, IP and many other 

protocols are used without modifications and only relatively few routers will need to 

change how they operate. End hosts will also stay as they are and IPs are allocated to 

them as the network owner pleases from the address pool it possesses, although, end site 

prefix aggregation should still be used. [44] 

LISP does not change anything when packets are sent within an individual network. 

When a host sends an IP packet to a host in another network, in LISP terminology it 

will have source and destination endpoint IDs (EID) specified with source and destina-

tion IP addresses. Destination EID is used for routing inside the local network until the 

packet arrives to the edge of the tunneled core network. Such a router is called an In-

gress Tunnel Router (ITR) because it prepends a LISP header on top of the existing IP 

packet and sends it through the tunneled core network. Similarly Egress Tunnel Router 

(ETR) removes the LISP header on the other side of the core network and forwards it on 

the correct end-site network which will again use the EID for routing. What happens in 

between the ITR and ETR is how LISP contributes. [44] 
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Figure 5: Operation of LISP. Routing is split to core and site areas where different lo-

cators are used. 

The routing between tunnel routers (e.g. ETRs and ITRs) is based on Routing Loca-

tors (RLOC) which are given in the LISP header’s IP address fields. RLOCs are as-

signed to ETRs where they are mapped to EID-prefixes. All tunnel routers have RLOC 

to EID-prefix mapping tables. Figure 5 visualizes where different address types are 

used. 

ITR now knows the source and destination EIDs by looking at the IP packet headers 

and uses its own source RLOC when sending packets to an ETR. The destination RLOC 

is yet to be figured out and to do that ITR sends map-requests via a mapping system and 

waits for a map-reply from one of the destination site ETRs. ETRs reply on map-

requests when the destination EID in the request matches with a prefix in its EID-RLOC 

mapping database. From the possibly many returned RLOCs ITR will choose one to be 

used. [44] 

Mapping queries between destination EID-prefixes and subsequent RLOCs does not 

have to be made every time a packet is to be sent through the core network. Instead, the 

information can be stored on ITRs’ local mapping cache which provides fast access 

times. LISP also supports the use of alternative logical topologies over which the map-

ping requests can be sent. Such could possibly improve the mapping procedure consi-

derably by lowering the amount of map-request messages and the mapping delay. Sev-

eral have already been described (e.g. [45], [46], [47]) while the testing is furthest with 

ALT [45]. 

4.2 Evolution Towards Global Routing Scalability 

Evolution towards global routing scalability (also called as Aggregation in Increasing 

Scopes (AIS)) approaches the Internet routing scalability problem in an evolutionary 

fashion. It argues that if early adopters do not have large enough business incentives, no 

significantly different new architecture or design should be expected to be widely im-

plemented. Moreover, ASs see the scalability problem differently as they come in many 

flavors. For some the problem is real and they would like to see a major change in the 

whole Internet as soon as possible, while for others the change would only mean addi-
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tional expenditures. Authors behind the proposal say that an evolutionary path is there-

fore more likely to be taken; starting from ASs that are having problems today. Still, to 

have operators implement some small fixes that help only locally, will not lead to a 

dramatically better architecture which is more scalable in inter-domain context. Howev-

er, if the small fixes are designed to lead towards such architecture, a more comprehen-

sive change can be expected to happen. [48] 

The proposal presents a five step process, where each step could be deployed in 

networks where needed, while others can simply ignore it. Each step should fix the most 

imminent problems at each point in time and give immediate benefits to their users as it 

is the only way to make it attractive for early adopters. The steps they give and which 

are introduced here are to give an example that an evolutionary path is possible, not to 

give an absolute plan which procedures should the steps be composed of. [48] 

4.2.1 FIB Aggregation 

First step, i.e. FIB Aggregation [49], seeks to reduce the amount of prefixes routers 

have to keep in their FIBs by removing ineffectual prefixes, combining longer prefixes 

into shorter ones and otherwise reducing the total amount of prefixes needed to get the 

same forwarding behavior for known prefixes. Compression can be done in case two or 

more prefixes use a same link to reach a next hop and they reside conveniently in the 

prefix tree. FIB Aggregation does not change control plane or RIB in any way, but in-

curs some latency and other overhead when preferred paths are changed. In FIB Aggre-

gation, each router can be separately set to compress its FIB using different algorithms. 

These algorithms are divided into four levels in terms of what they will do, while the 

implementation details and even the scope can vary within a level. [49] 

Each FIB compression level will perform everything the lower levels do and add 

something new. The basic operational depiction of the algorithmic levels is visible in 

Figure 6. Level 1 removes prefixes that are already covered by their parent with same 

next-hop (Figure 6a). Level 2 allows sibling prefixes, i.e. prefixes with same non-

existent parent, to be combined to their parent (Figure 6b). Level 3 continues here by 

allowing extra routable space and hence the combination of non-sibling nodes into 

grandparents and even further up in the prefix tree. However, level 3 algorithm (Figure 

6c) must make sure that a shorter prefix with a different next-hop does not cover the af-

fected part of the prefix tree; otherwise routing for some prefixes is altered. This would 

happen e.g. for Ps siblings when a prefix with next-hop other than P would cover the 

whole tree on the left side of the Figure 6c. Level 4 is the highest FIB Aggregation level 

and in addition to everything level 3 does, it allows holes in the aggregation. Figure 6d 

depicts the behavior with next-hop X prefix. [49] 
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Figure 6: FIB Aggregation levels 1 – 4 (a) – d)). P and X are next-hops of the prefix in 

question. Circle fill colors indicate the routable space: white is unroutable and blue is 

routable. Red circle border means that the address space is routable only after FIB 

compression. 

Each aggregation level is expected to give further savings in FIB size compared to 

the previous levels, but at the same time computation and other overheads will increase. 

There is therefore a clear tradeoff between the compression efficiency and overheads. 

Level 3 and 4 algorithms can also increase the routable space which can increase the 

load in routers and links. This can be seen especially adverse when extra traffic is in-

duced on inter-domain links increasing operators’ direct costs. Zhang et al. [49] have 

done an evaluation on the trade-offs and also considered when and how should FIBs be 

updated. 

4.2.2 Virtual Aggregation 

Virtual Aggregation (VA) [50] is properly explained in Chapter 5 and introduced here 

only briefly to show its role in the evolutionary road. Evolution steps two and three are 

about Virtual Aggregation in which the aggregation is done in a larger scope consisting 

of many nodes or even networks. In Virtual Aggregation, Virtual Prefixes (VP) are used 

to gather traffic from multiple nodes into an Aggregation Point Router (APR) which 

then forwards it onwards. VPs are shorter than any real prefixes and are advertized by 
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APRs. Those routers which are not assigned as aggregation points for a certain VP need 

only to insert route to VP in their FIBs, not prefixes which are covered by that VP. By 

assigning different routers to aggregation points for different VPs, the FIB size can be 

reduced on all the routers. Forwarding to and from APRs must happen through tunnels 

in order to avoid loops. 

One of the costs in VA is the increased processing requirements which lead to in-

creased energy consumption and latency (similar to FIB Aggregation). Another cost in 

using aggregation points is path stretch, which can be controlled by allocating VPs and 

assigning APRs optimally. In evolution towards global routing scalability step two, VA 

is applied inside an autonomous system, allowing operators to freely choose whether to 

use it or not. For further reducing the stretch or the amount of aggregation points, adja-

cent ASs can direct tunnels to go through each other’s networks and avoid doing the 

aggregation twice (step three). To be able to do this, aggregation routers on each AS 

needs to be made aware of each other’s egress routers for the selected set of prefixes. A 

simple piggybacking over BGP is proposed, although it will not scale in case the adja-

cent AS VA is widely used. [48] 

4.2.3 Control Plane Scalability 

Evolution step four continues fixing the most imminent problem in this five step scena-

rio by introducing a better mapping system for Virtual Aggregation prefix to egress rou-

ter mappings. With piggybacking, RIBs may start growing substantially when multiple 

adjacent ASs start exchanging mapping information with each other. Same information 

will be learned from multiple sources and hence saved multiple times in RIBs. A sepa-

rate BGP session only between aggregation routers could be controlled with rules to 

keep only one copy of the mapping information, since the path through which the map-

ping information was sent is irrelevant. Furthermore, with such a setup in place, many 

routers would not even have to keep the full RIB, because forwarding is done according 

to VPs. This would ultimately lead to a separation of transit and edge routing if the ma-

jority of ASs would use Virtual Aggregation and a mapping system. This is similar to 

what e.g. LISP describes.  

The final step in this proposal is to protect the routing system from routing churns 

caused by edge site instabilities [48]; something route flap damping [33] tried to achieve 

during the 00’s. The separation of transit and edge routing should help on this, since it 

would be easier to keep the dynamics in edge routing out of the mapping system. 

4.3 Identifier-Locator Network Protocol 

Somewhat similarly as the other two proposals introduced in this chapter and as its 

name indicates, Identifier-Locator Network Protocol (ILNP) describes an architecture 

which breaks the address identity in IP to locator and identifier identities. Different 

from the LISP and evolution towards global routing scalability, it does not revert into 

using tunnels but implements the separation straight on the protocol headers (such as 

IPv4 & IPv6 headers). Moreover, ILNP introduces changes to where the identity is 

bound to. Currently IP addresses are given to interfaces, but ILNP dedicates the identity 
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to nodes. The implications of this are many and some are considered later, but first the 

functionality of ILNP is explained. 

ILNP can support many network layer protocols out of which IPv4 and IPv6 have 

been specified. The main difference between these is which bits represent which identi-

ties. Address field in IPv6 is 128-bits long and can therefore be split to two 64-bit parts 

while IPv4 needs extra bits to support the 64-bit identity field in ILNP. The extra bits in 

IPv4 are brought in with a new type of option.  The bits in IPv4 which currently indicate 

the source and destination IP addresses are to be interpreted as locators, i.e. the sub-

networks where the source and destination nodes reside. In IPv6 the first 64-bits indi-

cate the locator and the last 64-bits the identity. For compatibility with current architec-

ture, locators should be same as today’s IP prefixes, and for the same reason, a special 

nonce in both IPv6 and IPv4 is used to indicate other nodes that the source is operating 

as an ILNP node. To allow Fully Qualified Domain Names (FQDN) to be mapped to 

identifiers and locators instead of addresses, ILNP introduces also new DNS resource 

records. 

Because ILNP changes the DNS and IP protocol level operation, changes have to be 

made at least on each end node and DNS server. The IP protocol stack is altered slightly 

which in the worst case would mean that all the applications would also have to be re-

written. Fortunately the situation is not quite that bad as special APIs can be used to do 

the converting between ILNP network stack and applications which are built to use tra-

ditional network stacks. Anyhow, each end node that implements ILNP requires 

changes which severely diminish ILNP’s deployability. 

4.4 Proposal Analysis and Comparison 

As discussed in Chapter 3, multihoming and traffic engineering have been great sources 

for increase of routing tables while the depletion of IPv4 addresses is predicted to radi-

cally increase the amount of IPv6 prefixes in the near future. Nevertheless multihoming 

and TE are desired properties in addition to routing security, network robustness and 

mobility. Thus, the remainder of this section concentrates on explaining how the three 

proposals affect these and other functionalities and what exactly are the operation and 

deployment wise pros and cons of each solution. 

LISP efficiently reduces the amount of routing state on the Internet core, adequately 

solving the routing table size related challenges: tough requirements on fast memory 

and routing load & instability. It also allows one to use PI addresses, traffic engineering 

and multihoming without adding state to the global routing system. Multihoming is 

brought in by mapping one EID to multiple RLOCs and TE can be done with the help of 

TE tunnel routers. A major weakness in the proposal is in the mapping between RLOCs 

and EIDs. It asks for complexity in the system and induces high latency on initial pack-

ets for which there is not already a cache entry; although some argue that the issue is not 

that bad. For end-host mobility LISP has a special mechanism [51], but it does not na-

tively solve the problem like some other remedy proposals do. Finally, as LISP does not 

change many of the currently used protocols, it does not improve the security properties 

either. However, some new security threats are possible, especially along with the map-

ping system. [43] 
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Because LISP is driven by a major router vendor Cisco, it has a good chance of be-

coming the standard in the Internet. The implementation is also only moderately painful 

as only site border routers need to be modified. But, although LISP authors claim oth-

erwise [43], there are only minor incentives for early adopters as routes for the rest of 

the Internet have to be handled as is done today. The real gains are to be expected only 

when a large number of ISPs have adopted it. Additionally there are legitimate concerns 

whether LISP is really the best option being mainly a business opportunity for its inven-

tor company. On the other side, testing with LISP is quite far and hence many problems 

have been identified and fixed or at least alleviated. The same may not be true for many 

other proposals. 

Contrary to any other proposal, Evolution focuses on the deployability more than on 

anything else. It does not even seek to solve all the problems at once, but concentrates 

on the most urgent issues on each step. Memory size problems are handled first and 

with the last two steps, the routing load and instability issues are presumably overcome 

too. However, e.g. mobility and security are not addressed at all, making the solution 

less complete in comparison to LISP and ILNP. 

Deployment of the Evolution starts from single routers and spreads to networks and 

adjacent networks. While this is an ideal option for individual ISPs and will therefore 

probably gain some popularity, are there enough incentives for most to ever proceed in 

the multi-step process? If that will be the case, routing load and instability will never be 

improved. And further, because ISPs can solve their immediate problems with relatively 

painless quick fixes, they may not see it beneficial to put effort in adopting some larger 

change. All in all, IRTF has still promoted Evolution as a short term solution, even 

though there is a real possibility that the short term solution will become also the long 

term solution. [43] 

ILNP is among these three solutions the best in terms of technical properties. As a 

fully deployed architecture, it would perform identifier-locator split in a clear manner, 

gaining all of its advantages. Traffic engineering, multihoming and mobility are natural-

ly there with simple and efficient solutions while routing table and state related prob-

lems are clearly diminished by the efficient topological aggregation. Even multipath 

TCP is easily implemented and there are clear benefits to many other applications which 

today suffer from the use of NATs. [43] 

However, ILNP’s Achilles heel is the deployability. There are only minor incentives 

for the early adopters while the expenses are great and are also targeted to end users. 

The fact that routers may not have to be changed is a relatively small relief when each 

and every end node needs to upgrade its IP stack and DNS servers have to be enhanced 

with ILNP support in order to fully exploit the advantages in the architecture. The sug-

gestion of an API between current IP stack and applications would help a lot, but there 

is still a big concern whether such an API can be actually deployed on at least most of 

the end nodes. There are also many concerns related to using DNS in the described 

manner. Nevertheless, IRTF saw ILNP as a promising and clean new architecture which 

should be developed further [43]. 

It is clear that none of the three introduced proposals cover all aspects that users 

want from the Internet. For example, trust issues are skipped altogether, although it is 

the basis for reliable communication in the network. They simply assume that such con-
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cerns are handled separately e.g. with secure DNS [52] and IPSec [36]. However, some 

other proposals, like Host Identity Protocol (HIP) [53], do describe a trust model and 

are in that sense better than any of the proposals introduced in this Chapter.  

Comparing the three introduced proposals, one can see a clear relation between the 

functionality and the deployability. The richer and more efficient the solution is, the 

harder it is to deploy. Evolution promises only to address some of the perceived issues 

while its efficiency may even be questioned, but it has immediate benefits to its users, 

requires no initial co-operation between different parties and to start with, can be dep-

loyed on a router granularity. ILNP on the other extreme would seem to help on a varie-

ty of current and future challenges, and do so elegantly without resorting to the patching 

approach. Unfortunately the deployment seems to require too much to ever succeed. Fi-

nally, LISP is something in between of the two in terms of functionality and deployabil-

ity. For this reason, it is clear that none of these are perfect and only future will show 

how much we can and are willing to put effort in enhancing the global telecommunica-

tion system. Of course there are many other options for the future architecture and new 

ones are developed all the time.  
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5. Virtual Aggregation 

5.1 Overview and Motivation 

Virtual Aggregation [50] is part of the Evolution Towards Global Routing Scalability 

proposal [48] and with it a substantial reduction in routers FIB sizes is sought. VA does 

not require any major changes to the network, nor does it require co-operation between 

different ASs (although, some additional benefits may be achieved if adjacent ASs op-

erate VA over AS borders). VA is also applicable with configuration changes only and 

minimally with very little data plane overhead. It is intended especially for older routers 

that can support rather limited number of prefixes in their FIBs, effectively prolonging 

their service time. How much could VA contribute to alleviating the FIB size related 

scalability challenges in ISPs networks is a more difficult question to deal with. None-

theless, it is something this thesis tries to find an answer to. Following sections elabo-

rate more closely on how VA works and what kind of positive and negative conse-

quences it has on the network where it is used. Furthermore, simulations described in 

Chapter 7 try to find out how VA should be used to get the best out of it and how big 

FIB savings can be expected. 

5.2 Operational Description 

The fundamental idea in Virtual Aggregation is to aggregate larger than physically ag-

gregateble external prefixes by using tunnels. The aggregates, called Virtual Prefixes 

(VP), can be freely configured, allowing any sized aggregates to be created. VPs do not 

even have to be similar across the domain, but can be different on e.g. POP or router 

basis. In contrast to normal route aggregation, VA does not impact control plane opera-

tion, i.e. routing protocols, or shrink RIBs in any way, but merely limits the number of 

routing table entries that are loaded into FIBs. This operation is called FIB suppression 

and its intention is to lower the capacity requirements for fast memory in BGP routers. 

[50] 

In a network where VA is in use, routers are assigned different roles. To distinguish 

VA capable routers from others, the terms VA and legacy router are used correspon-

dingly. VA routers can furthermore have different roles in respect to particular VPs. A 

VA router can be simultaneously an Aggregation Point Router (APR) for a certain VP 

and a non-APR for another. The function of the APR is to operate as a tunnel end-point 

for a VP so that non-APRs can use this VP in their FIBs instead of real prefixes. The 

real prefixes that are covered by a VP are called sub-prefixes. In addition to normal and 

VP prefixes, non-APRs can have Popular Prefixes (PP), i.e. sub-prefixes which are in-

stalled normally from RIBs to FIBs even though a VP covering it exists. The idea in this 

is to minimize the tunneling inherent extra latency and network load for traffic intensive 

prefixes. [50] 
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Figure 7: FIB suppression process. The suppression is done from RIB to FIB and is 

guided by virtual and popular prefix lists. 

To visualize the process of selecting prefixes to be installed into the FIB, an exam-

ple is illustrated in Figure 7. There are four partially overlapping entries in RIB: 

10.0.0.0/8 learned from an APR and the rest from adjacent ASs via BGP. Without VA, 

all the eBGP routes would have to be inserted into the FIB. Configuring 10.0.0.0/8 into 

the VP-list makes it effectively an active VP and an aggregate route for all the other en-

tries in RIB. Finally, by specifying 10.0.1.0/24 to be a popular prefix it is added into the 

FIB even though it is covered by the VP (10.0.0.0/8). The actual suppression must hap-

pen when routes are inserted from RIB to FIB, not between e.g. Loc-RIB and RIB be-

cause Protocol Independent Multicast – Sparse Mode (PIM-SM) requires full routing 

information on the RIB. 

A basic case of VA operation in a network is presented in Figure 8, where red boxes 

(E-F) represent APRs for VP1 and non-APRs for VP2. Comparably, green boxes (G) 

are APRs for VP2 and non-APRs for VP1. Blue ones (A-D) are non-APRs for both of 

the VPs. Similarly, red and green arrows indicate the route to VP1 and VP2 accordingly 

while blue arrows indicate the non-aggregated popular prefix route. When a data packet 

comes to the ingress router, it forwards the packet normally according to its FIB while 

obeying the longest matching rule. If VP for a destination is not specified or a popular 

prefix overriding any VP is configured, forwarding path will be the normal shortest path 

(blue). However, if the packet destination belongs to a configured VP (VP1), ingress 

router forwards it to the closest APR associated with that VP via a tunnel (tunnel 1) 

which forwards it onwards to the correct external peer via another tunnel (tunnel 2). It 

should be noted that indeed all of the VA routers can suppress their FIBs if they are 

non-APRs for at least to one VP. In this example, red and green routers can suppress 

each other’s sub-prefixes (covered by VP1 & VP2), while blue routers do not have to 

store neither VP’s sub-prefixes. 

RIB

•10.0.0.0/8

•10.1.0.0/16

•10.0.1.0/24

•10.200.0.0/16

VP list

•10.0.0.0/8

Popular prefixes

•10.0.1.0/24

FIB

•10.0.0.0/8

•10.0.1.0/24



27 

 

 

 
Figure 8: Basic operation of Virtual Aggregation. 

 

 
Figure 9: Possible paths (in different colors) a packet can take in a VA enabled net-

work. 
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Before Virtual Aggregation can be used, a number of things have to be in place. To 

start with, there must be some sort of plan on how to partition the address space into 

VPs and a way to determine which routers are associated as APRs for which VPs. Initial 

set of popular prefixes should also be considered. Setting up the planned configuration 

involves actions on all VA routers. Non-APRs must configure a VP-list which indicates 

the VPs it is willing to use in suppressing the FIB. To make all the other routers aware 

of the VP routes, APRs originate and advertize VPs via iBGP. They must have all the 

sub-prefixes covered by advertized VPs in their FIBs so that they can forward the traffic 

ultimately to the correct external peer. In addition, plenty of tunnels have to be confi-

gured in the network in order to guarantee correct and loop free packet forwarding. [50] 

VPs as well as real prefixes are distributed in an AS using BPG. How exactly VPs 

are advertized from node to node depends on the network as different techniques (such 

as route reflectors [8]) may be in use. In general, BGP routers advertize known prefixes 

to each peer BGP router. The advertisement message, i.e. BGP update message, in-

cludes information of the origin of the advertized prefix, the next-hop towards the ori-

gin, the prefix itself and several possible attributes influencing the routing decision. To 

prevent VPs from being advertized outside of the local AS, a community attribute must 

be specified to prevent it. A community attribute includes a number and a short text, and 

all BGP routers belonging to a same AS are set to behave similarly for a certain com-

munity value. 

For routing correctness, every VA router must initiate a tunnel towards every BGP 

next-hop address. First of all, each non-APR must initiate a tunnel to all of the APRs 

that are associated with the VPs configured in its VP-list (tunnel 1 in Figure 8). The 

purpose of this is to allow non-APRs to forward packets directly to correct APRs. Se-

condly, each APR must have a tunnel towards each external neighbor it has a BGP next-

hop route (tunnel 2 in Figure 8) so that APRs can forward packets directly out of the AS 

and avoid them to be forwarded back via non-APR to APR tunnels. Depending on the 

Autonomous System Border Router (ASBR), these tunnels can either be terminated on 

the local ASBR or on the remote ASBR. Legacy ASBRs must terminate the tunnels 

while non-APRs set the BGP next-hop to remote ASBR, so that they can forward pack-

ets without FIB lookup. All currently specified options use Multiprotocol Label Switch-

ing (MPLS) to create Label Switched Paths (LSP) (tunnels). In the direct approach 

LSPs are formed just as described earlier. The use of MPLS inner labels can be benefi-

cial in limiting the amount of tunnels. In that case the inner label identifies the remote 

ASBR and the outer label or IP tunnel identifies the local ASBR. Importantly, with both 

mechanisms the remote ASBR will not be aware of the tunnels as all the labels and tun-

nel headers are stripped away before sending the packets on inter-domain links. With 

MPLS this kind of operation is called Penultimate Hop Popping (PHP). [50] 

Although legacy routers do not have to insert packets into tunnels or create them for 

that matter, they must be able to forward packets inside tunnels and act as tunnel end-

points. They must also be capable of communicating with other network nodes in creat-

ing tunnels that terminate on them. However, as all the above mentioned features are 

part of IP router’s standard operation, most of the routers readily have them. [50] 

A conclusion of different paths a packet can take in a VA enabled network is shown 

in Figure 9. If VA router is on ingress point, the packet can either be tunneled towards 
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the external neighbor directly (blue) or via the closest VP matching APR (red). The case 

where the ingress point is an APR is not shown in the figure, but anyhow APRs always 

tunnel packets straight towards the external neighbor. If the ingress point is a legacy 

router which is capable of tunneling packets, packets will be tunneled directly to the 

correct external neighbor (orange). If the legacy router cannot initiate tunnels, it for-

wards packets according to IGP routes. In that case packets can go all the way to the 

egress router without passing any VA routers on its way (green) or find its way on some 

VA router (black, purple and yellow) and end up tunneled to the external neighbor. VA 

routers do not make a difference on where a packet came from and therefore there is no 

difference whether the packet came directly from inter-domain neighbor or via some 

legacy router(s). Also, where the tunnels actually terminate depends on whether the 

egress router is VA capable or a legacy one. In the former case tunnels must go all the 

way to the external neighbors while the tunnel headers and labels are stripped in the 

egress point. In the latter case, normal routing is enough to ensure that loops are not 

formed. [50] 

5.3 Simple VA 

In many cases it is not necessary to suppress FIBs on all routers and for that purpose a 

simpler setup of VA could be more ideal. By allowing only the existence of one VP 

(namely 0/0) covering all the sub-prefixes, a great deal of planning, configuration and 

management can be avoided. One must only tell the routers whether they are core or 

edge routers, i.e. whether they install full FIBs or not. This kind of default route usage is 

naturally beneficial only when the ISP has some kind of a core-edge topology and some 

older routers with limited FIBs on the edge. Still, in comparison to traditional use of de-

fault routes (as explained in Section 2.2) FIB can be saved on more routers. Unlike with 

traditional default routes, there are no limits in using simple VA on transit or on any 

other edge router, even though an external neighbor would require full DFZ routing ta-

ble. [54] 

Despite the fact that configuration could be made extremely easy, similar tunneling 

arrangements than with full VA are in order. A tunnel must exist from FIB-suppressing 

routers to all FIB-installing routers and from the latter ones to external neighbors (indi-

cated by BGP next-hop). In case some legacy routers are present, they too must perform 

all the tunneling operations mentioned in Section 5.2. All in all, simple VA is a tech-

nique somewhere in between of the conventional network planning strategies and the 

full VA both in its capability to shrink FIBs and in required changes to typical configu-

rations. [54] 

5.4 Limitations and Overhead 

The use of VA does not come without downsides as can be seen by looking at Figure 8 

and the possible path stretch VA induces by causing paths to go through APRs which 

are not necessary on the shortest paths. To be formal, path stretch tells the amount of 

hops in comparison to the shortest path and is calculated with equation 1. Path stretch 

and otherwise non-optimal routes cause packets to experience increased latency and 

network to suffer from increased load as packets may visit more routers and take longer 
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on their way to network border. Other overheads come from the tunneling, more com-

plex network management and increased complexity in the network in general. [24], 

[55] 

 (1) 

As explained in sub-section 3.3.2, traffic engineering requires the insertion of new 

longer prefixes into routing tables. The goal of Virtual Aggregation is on the contrary to 

aggregate longer prefixes into shorter ones. Hence, TE makes Virtual Aggregation 

harder to implement. Popular prefixes or more specific virtual prefixes must be confi-

gured to engineer the traffic for the needed parts slightly reducing FIB size savings and 

increasing network complexity. 

An important aspect in planning and operating VA in any network is to control the 

negative effects. Analyzing TE capabilities, network management and network com-

plexity overheads is hard as they cannot be measured quantitatively without knowing 

how different networks are operated. Path stretch and FIB size effects are however 

much easier to consider. Therefore, the focus is put on looking what affects FIB sizes 

and path stretches and how VA could be used to control them. 

FIB space and path stretch are closely tied together and the balance between them 

can be tuned for example with the number of APRs per VP. By setting a big portion of 

the routers as APRs, one can eliminate the stretch completely, but the acquired savings 

on routers FIBs is then also minimal if not even negative due to tunnels. On the other 

extreme one could assign only one APR per VP causing all the packets to be tunneled 

via it and allowing most of the routers to hold only the tunnel routes to APRs. By as-

signing enough routers to VPs APRs so that for each VP there is at least one APR (pre-

ferably two for resiliency) close to every ingress router, one can get meaningful savings 

in FIB size with only a few milliseconds maximum stretch latency. A good strategy is to 

have an APR for every VP in each POP if possible. And if the POPs are too small for 

this, the same can be done for small POP groups which cover small geographical areas. 

[55] 

Ballani et al. [55] considered this strategy in AT&Ts network by minimizing the 

maximum FIB size while constraining the maximum stretch latency to different values. 

Results indicate that maximum FIB could be as small as 5 percent of the DFRT with 4 

millisecond maximum stretch latency. At the same time average stretch latency would 

be below 0.3 milliseconds. 

As APRs are assigned per VP, the number of VPs plays also a role in controlling the 

path stretch. With only a single VP, the situation transforms to simple VA, which is ex-

plained in section 5.3, and only moderate FIB savings can then be expected. Too many 

VPs naturally increases the minimum FIB size on routers to a too high level, as every 

router must have routes to all of the VPs (or their sub-prefixes). How many VPs one 

should use and how they should be allocated depends on the network topology. Ballani 

et al. [55] considered also different VP allocations in their simulations. They used 128 

VPs of prefix length 7 and 1024 VPs allocated in a manner so that each VP has approx-

imately same amount of sub-prefixes. The uniform allocation with 1024 VPs achieved 
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somewhat better results, because the maximum number of sub-prefixes in a VP is 

smaller. 

5.5 Popular Prefixes 

The effects of path stretch can be substantially lowered by allowing high traffic volume 

prefixes to be routed via shortest paths. Direct approach for this is to add such prefixes 

to Popular Prefixes (PP) in which case they are matched because they are longer prefix-

es than any covering VP. A number of studies conducted roughly within the past decade 

(e.g. [56], [57], [58], [59] and [60]) clearly show that a major part of all the traffic is 

destined to a set of prefixes that take only some percents from the complete routing ta-

ble. Moreover, according to the same study by Ballani et al. [55] by adding as few as 

one percent of the POPs most popular routes to each routers FIB would cause about 90 

percent of the packets to be routed via the shortest paths. The fact that VA allows prefix 

popularity to be considered on POP or router basis, allows capturing the effect more ef-

ficiently. 

Unfortunately, the benefits of popular prefixes are still not quite as good as one 

might think. The reason for this is that many prefixes cannot simply be added as popular 

prefixes to the FIB without causing some other prefixes to be incorrectly routed. The 

longest prefix matching rule that allows one to add a sub-prefix into the FIB even 

though a shorter VP exists causes also problems in handling popular prefixes. It forces 

prefixes with longer prefix length to be always preferred over shorter ones, i.e. allowing 

a popular prefix to be used instead of a VP covering it. Identically, if a popular prefix 

covers some other prefixes, they will be matched by the PP, instead of a VP. Due to 

this, traffic towards the PP and the prefixes it covers are forwarded according to the 

popular (shorter) prefix and forwarded directly out of the AS via tunnels. If the next-

hops on a PP and covered prefixes directs to different ASs, packets towards the covered 

(longer) prefixes may be dropped on the next AS or forwarded via a detour. 

To further clarify the problem, an example is gone through. Say there is a VP 

10.0.0.0/8, and its sub-prefixes 10.1.0.0/16 and 10.1.1.0/24. If the VP is used to sup-

press all the prefixes it covers and 10.1.0.0/16 is marked as a popular prefix, FIB would 

include the VP and the PP but not the 10.1.1.0/24. According to the longest prefix 

matching rule, traffic towards 10.1.1.0/24 would now be forwarded to the AS indicated 

by the PP, which may or may not be the same as in 10.1.1.0/24. 

If the address space would be perfectly aggregated, such problem would never oc-

cur. However, prefix space is highly hierarchical and current trends tend to make the 

situation worse. The average number of covered prefixes a single prefix has was over 

0.68 in 2010 (calculated from a real routing table consisting of over 99 percent of the 

DFRT at that time). Moreover, 61 percent of the prefixes with prefix length less than 13 

covered some other prefixes, and the same for prefix length less than 17 and shorter pre-

fixes was still 37 percent. Respectively, the average number of covered prefixes for the 

same prefix length limits was 67 and 6.9.  How meaningful this is in VA depends on the 

length of the most popular prefixes, which may vary according to ISP and its POP as 

well as over time. Traffic engineering and policy based PPs should not be greatly af-
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fected as they typically are longest matching prefixes. Nevertheless, parenthood of pre-

fixes should still be checked when installing PPs for any purpose.  

Even though the direct PP selection should not be used, popular prefixes can still be 

useful. The selection could e.g. include all the same prefixes as with the direct ap-

proach, but include also all the prefixes they cover. Alternatively PPs could include only 

those prefixes which do not cover any longer prefixes. Although both of these would 

offer correct routing in any static situation, they do not take into account the dynamicity 

of the routing table. If a new prefix would appear in such part of the prefix tree which is 

covered by a PP, it would again be touched by the same problem with incorrect routing. 

It should also be remembered that most of the DFRT growth has come from the use of 

traffic engineering and multihoming introduce these long prefixes. Therefore, the issue 

is not purely theoretical, but something which would cause problems in VA enabled 

networks which use PPs e.g. to lower stretch. 

To completely overcome the problem would therefore require constant prefix set 

monitoring and dynamic mechanisms to revise the PPs when erroneous situations are 

detected. Still, simulations described in Chapter 7 consider both of the introduced PP 

selection strategies and try to analyze their effectiveness in comparison to the direct 

most popular prefix selection and the case without popular prefixes. Same simulations 

analyze also another approach in making use of the unequal popularity of prefixes, 

which does not have similar problems with changing routing tables as with the use of 

PPs. The basic idea there is to pick Virtual Prefixes so that most of the traffic inside 

each one of them is forwarded to the same next-hop AS. This approach is further ex-

plained in Chapter 6. 

  



33 

 

 

6. Popularity Based Virtual Prefix Allocation 

6.1 Overview 

The functionality of Virtual Aggregation along with its limitations has been introduced 

and the Internet traffic has been noted to concentrate on a few prefixes. In this chapter a 

new VP selection mechanism for VA is formulated. It considers the prefix popularity 

distribution directly without needing to use additional routes called popular prefixes to 

forward a big portion of the traffic via shortest paths. As explained in section 5.4, PPs 

cannot be used without jeopardizing routing correctness or introducing a new task for 

active network management and there is therefore room for a better solution.  

A new solution, called “Popularity Based Virtual Prefix Allocation” tries to make 

the best use of the notion of unequal popularity distribution by allocating VPs cleverly 

so that most of the traffic inside any VP is destined to the same next-hop AS. To get the 

most benefits from that requires also to assign APRs so that there is no path stretch to 

the popular next-hop ASs. Concretely this means that for each router the closest APR 

should reside on the shortest path to the closest egress point of VPs popular next-hop 

AS as visualized in Figure 10. If the traffic volumes from some routers towards the ad-

dress space covered by a VP are small, it may be enough that APRs are close to the 

shortest path. 

A setup which considers all the above is however hard to build with the additional 

constraints that should be present. The stretch for unpopular routes should be minimized 

and the amount of APRs should not be allowed to get too high. There should usually 

also be an upper limit for all stretch in order to guarantee that latency dependent servic-

es will not be disturbed. In general, the closer the APRs are to the ingress points, the 

less the traffic will be stretched and the more APRs are required. 

 
Figure 10: In Popularity Based VP Allocation APRs are selected from those routers 

that are on the shortest path to VP’s popular next-hop AS. 

APR
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Figure 11: Difficulty of assigning APRs. 

Figure 11 illustrates the challenges in assigning APRs with a sample network, where 

red routers are APRs and blue routers non-APRs for the VP in question. VPs popular 

next-hop egresses at E and J and additionally the VP covers also prefixes which egress 

at A. The administrator of the network would like to use only two APRs for the VP at 

hand in order to save enough FIB space. Let’s say he can choose the APRs freely, but 

must allow traffic to go to popular next-hop AS without any additional delays and limit 

the delay for other traffic to one hop. If the administrator selects D and G routers to 

APRs (as is shown in Figure 11) all of the constraints would seem to be satisfied. The 

only problem is that because G is closer to A than D, A will use G as its APR and the 

shortest path is no longer used. If H would be used instead of G, such problem would 

not exist, but then the unpopular traffic from F to A would be stretched too much. 

Therefore one would need at least three APRs to solve the problem. Then the assign-

ments could for example be A, C, F. 

6.2 Selecting Virtual Prefixes 

While the idea in Popularity Based Virtual Prefix Allocation dictates to choose VPs so 

that most of the traffic is forwarded via the shortest path, it does not yet say how the 

VPs should be picked. One could e.g. pick the most popular prefixes as such and add 

some short prefixes to allow the forwarding to prefixes which are not covered by any 

popular prefix. Such a setup would result in a somewhat similar outcome as what Balla-

ni et al. [55] considered in their simulations with the differences that PPs would now be 
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VPs and paths to covered prefixes would only be stretched, not broken. The freedom of 

choosing popular prefixes on the router or POP basis would not be possible in this case 

and the APRs would of course be chosen from the popular prefixes’ shortest paths. 

Another approach is to try to pick VPs so that they cover as large parts of the ad-

dress space as possible without breaking the idea that most of the traffic in a VP should 

go to a single next-hop AS. One way to implement this strategy is to use FIB Aggrega-

tion techniques and algorithms (introduced in Sub-section 4.2.1) to formulate a forward-

ing table with minimal amount of prefixes while considering popular prefixes as the ini-

tial set and next-hop ASs instead of IGP next-hops. The use of FIB Aggregation tech-

niques will squeeze the table and allow the unpopular prefixes to be covered by fewer 

VPs in comparison to using PPs as such. Only such level 4 FIB compression algorithms 

(see sub-section 4.2.1) which consider all the covered prefixes when determining if a 

certain node should be an aggregate will guarantee that all prefixes will be covered. It 

will also squeeze the table most while calculating it requires most processing power and 

time. Because VPs are selected for a whole AS at a time, support for FIB Aggregation is 

not required on routers. The pre-calculated set is rather given, e.g. via network man-

agement system, to the routers after it has been formed elsewhere. 

6.3 Changes to Virtual Aggregation 

According to the Virtual Aggregation specifications [50], a VP must not be identical to 

any real prefix or be covered by one. However, to be able to create VPs flexibly, popu-

larity based VP allocation requires that this requirement is released. The requirement 

was originally put there to guarantee that packets to real prefixes are never dropped or 

looped. Packets might get dropped if a VP would be the longest matching prefix for 

some destinations. By default the VP is put on the FIB, but there should not be any rea-

sons why it could not be suppressed similarly as all the sub-prefixes in non-APRs. Sup-

pression should also include all the VPs which are covered by the locally originated VP. 

In case there are legacy routers in the network, this is not enough. If a legacy router 

would receive a packet to which a VP is the best match, it would be forwarded towards 

the VPs closest originator APR. Although this might cause path stretch, it should be to-

lerated if APRs for that VP are scattered all over the topology. Intolerable path stretch 

should only happen when some VPs are meant to be used only in certain parts of the 

topology and therefore have APRs only close to that area. In addition, if legacy routers 

would be used as ASBRs, loops would be possible as they would forward packets back 

to an APR instead of the remote ASBR. To fix this requires that tunnels from APRs are 

always directed straight to the remote ASBR and that legacy routers are able to initiate 

MPLS LSPs.  
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7. Simulations on Virtual Aggregation 

The simulations as part of this thesis try to give an idea how much FIB space can be 

saved using Virtual Aggregation while also considering the drawbacks. Important part 

of this is to analyze how large extra latency costs are to be expected and what are the 

benefits in giving shortest paths towards rather stable most popular prefixes. The basis 

of these simulations are on an earlier study [55] which considers Virtual Aggregation in 

AT&T network with two VP allocation schemes and a single approach in selecting di-

rectly routed popular prefixes. The simulations of this thesis try to complement and dis-

pute its results by comparing different strategies in selecting popular and Virtual Prefix-

es. FIB Aggregation (see Section 4.2.1) is also used as a reference, since it is more light 

weight and straight forward solution for the same problem. It can therefore give mini-

mum target values for FIB sizes. 

7.1 Simulation Environment and Setup 

Ideally to get a real and accurate snapshot of a ISPs network at a single point in time, 

the topology (i.e. intra and inter-domain router connections, link latencies, used link 

weights and policies on all routing protocols), routing table and traffic matrix would be 

gathered from a target ISP directly. Unfortunately, many of these are considered as 

business secrets and hence are not widely accessible. The lack of reliable and accurate 

first hand information made the construction of the simulation environment complex. 

Absolute correctness had to be sacrificed and information had to be synthesized from 

several sources and in some cases even randomized in a way believed to produce a 

somewhat realistic simulation environment. Hence, one may question how well the 

achieved results on this simulated environment correspond to those that would have 

been gained using real information. Although this is a valid point, the simulations con-

ducted on VA will further proof the ideas presented in Chapters 5 and 6, and give rough 

estimates on how well different strategies would work in live networks. The following 

sub-sections describe the process of constructing the simulated environment using the 

selected tools and equipment. 

7.1.1 Tools and Equipment 

The simulations were conducted with Matlab, because it offers a rather easy to use an 

environment to build the simulations on while allowing a great deal of freedom in im-

plementation. It also offers simple but powerful tools for analyzing the results. Devel-

opment work was done with a common laptop PC, but the actual simulations were run 

in a grid computing environment, since the required simulation time would have been 

months or even years with a single PC. The performance was the only downfall of se-

lecting Matlab, as a single simulation could take days or weeks (depending on the simu-

lation case) even after the code for slowest parts was rewritten to drastically improve 

the performance. 

In Matlab the use of for and if sentences is very slow in comparison to many com-

mon programming languages (e.g. C). On the other hand, Matlab is very fast in han-

dling vectors which take up a consecutive block from the memory. Many of the slowest 
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routines were therefore rewritten from for structures to vectorized operations which 

handle entire vectors instead of going through vector elements one at a time. The use of 

vertical vectors was also helpful, because Matlab stores matrix elements first in row or-

der and then in column order in the memory. 

7.1.2 Topology 

A critical part of the whole simulation setup is the topology. To be able to simulate VA 

requires not only the intra-domain topology, but also the inter-domain connections to 

different ASs. The starting point in building such a setup was the information available 

from the Rocketfuel ISP topology mapping engines webpage [61], which includes 

among others router level ISP topology maps as well as latency and IGP link weight 

information. Because the information was originally gathered through probing, it is nat-

ural that some inaccuracies exist. Furthermore, the usage of Rocketfuel ISP topology 

maps forced to simulate an outdated situation, since the information was released in 

years 2002 and 2003. To be able to estimate the feasibility of any topology dependant 

tool or feature, a set of different ISPs should be considered. However, a decision to use 

only one topology was made to accommodate for the time limitations.  From the ISPs 

Rocketfuel analyzed, Sprint was chosen because it is one of the largest ISPs in the 

world. 

With the Rocketfuel topology information alone, it is possible to create ISPs internal 

topology with roughly correct link latencies. A version of the topology map which con-

tains backbone routers and their adjacent nodes was used for getting the router ids, their 

locations on city accuracy and the interconnections between the routers. A more com-

plete map would also have been available, but it would have included too many routers 

that actually belong to customers at ISP. For the purpose of simulating concepts like 

Virtual Aggregation, this would be undesirable because ISPs do not have control over 

them. As mentioned earlier, Sprint’s topology from Rocketfuel is an abstraction of the 

real one. A clear indication of this is the fact that the network is not fully connected, 

having few islands apart from the main network. For the sake of meaningful simula-

tions, only the largest contiguous part is used, which covers over 99% of the routers. 

Some estimation and randomization were also necessary to get a reasonably correct 

set of link latencies, because latency information was available only to backbone links. 

Fortunately, it was evident that the latency information between routers on different ci-

ties was homogenous on city level, i.e. the latency from any city A to any city B did not 

depend on the selected direct link. IGP weight as a more meaningful value in terms of 

routing could not be used because it did not share this property. By using the homogen-

ous latency information, latencies for nearly all the links could be specified as the in-

formation of routers’ locations was readily available from the Sprint topology map. The 

only exception was the routers which had unknown location because of the limitations 

in probing. The latency for links that terminate to such routers is randomly picked from 

the routers other links. In case there are no links to pick from, a random link from fur-

ther away is used. While this definitely causes some minor additional inaccuracies, it 

minimizes the error by keeping the link latency distribution on each router close to what 

it originally was. 
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7.1.3 Routing Information and External ASs 

BGP routing table, i.e. in our simulations the information about the best external routes, 

makes it possible to say to which AS each packet should be sent. Route Views [62] has 

been gathering this kind of information for years by having BGP connections from sev-

eral locations to many ASs. A RIB dump is taken from a monitoring station which has 

BGP connection to Sprint and is dated back to the times when the Rocketfuel topologies 

were mapped (2002). A routing table corresponding to the Rocketfuel Sprint topology 

could be derived by filtering out all the routes which were not learned directly from 

Sprint. This table contains about 115 000 routes to nearly two thousand ASs, 

representing a vast majority of the DFRT in the early 2000’s. 

Rocketfuel maps contain also links to external ASBRs, i.e. give their IP addresses. 

Hence, with the internal topology and links to external ASBRs from Rocketfuel and the 

routing table from Route Views, the only thing still missing in terms of routing was the 

link between the external ASBRs IP addresses and the next-hop Autonomous System 

Numbers (ASN) in the routing table. The question was: how to do the mapping between 

them? In theory, this could have been achieved by simply mapping the router IPs to the 

ASNs where they belong to. It was also the starting point for the whole mapping and a 

method based on WHOIS [63] was used for doing this. Unfortunately, the mapping was 

not complete because ASNs could not be resolved for all of the routers’ IP addresses, 

and moreover, large parts of the acquired ASNs did not match those from the routing 

table. Therefore only a partial mapping could be done with this approach and for the 

rest, a mapping between ASNs acquired from the two sources had to be done. Rocket-

fuel inherent ASNs were replaced by randomly choosing ASNs from the routing table in 

a round robin fashion. The result was that several ASBRs had more ASNs connected to 

them, than was originally the case in Rocketfuel topology and thus the visible part of 

the inter-domain topology is also altered. 

In real life, operators use default routes in edge routers to lower the amount of en-

tries in routing tables and to simplify their routing. Again, the information how the de-

fault routes are used in Sprint was not available and therefore correct settings could not 

be specified. A somewhat accurate or at least good setting would be to set the default 

routes to go from edge routers to most popular (in terms of number of advertized prefix-

es) core routers. However, default routes were not used as they can be unfavorable in 

some cases; e.g. when a customer wishes to multihome and needs all the routes adver-

tized separately. Additionally, Virtual Aggregation can in most situations reduce the 

amount of entries in FIBs sufficiently so that there is no need for default routes any-

more.  

7.1.4 Traffic Matrix 

In Virtual Aggregation, some of the routes are typically stretched creating additional 

latency to packets. Latency is still to be controlled and therefore it is important to ana-

lyze how big percentage of the traffic suffers from the stretch and how significant it is. 

Traffic matrices are often also business secrets eliminating the direct approach once 

again. For example, by simply analyzing some packet flow traces one could get some 

information about which destination and source prefixes are popular and which are not. 
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However, this does not yet reveal much about how the traffic flows through the Internet, 

or the Sprint network for that matter. A purely randomization based approach was cho-

sen because no good source of information to build a traffic matrix could be found.  

According to e.g. [60] traffic matrix distributions on different locations are typically 

heavy tailed. A rough estimate is that ten percents of the prefixes carry ninety percents 

of the traffic and the traffic follows a Zipfian distribution. Locally the ratio may be even 

higher [55], but here, only prefix wise total traffic volumes across the selected ISPs 

network are considered. By using a slope of -1.1 on a log-log scale, the ten to ninety ra-

tio is achieved allowing to simulate the popularity distribution on prefixes in a rather 

realistic way. A research [64] also suggests that ASs follow the Zipfian distribution with 

-0.9 slope on Europe and -1.1 slope on Asia-Pacific region, which backs up the notion 

even though North America where Sprint mainly operates was not considered.  

In the simulations, each prefix is given a popularity value which represents the 

amount of traffic destined to it in comparison to other prefixes. Equation 2 is used to get 

the wanted popularity distribution (shown in Figure 12), i.e. Zipfian distribution with a -

1.1 slope on a log-log scale and for that popularity rank for every prefix is randomized. 

To get more realistic results, the ranks should accurately reflect the actual situation. One 

could try to model the ranks by weighting prefixes which have rather short prefix 

length, because they typically cover larger parts of the address space. One might how-

ever argue that a good deal of longer prefixes should be very popular as they have been 

split apart from larger prefixes because so much traffic is destined to them and indivi-

dualized policing is therefore needed for them. As there seems not to be any clear way 

to say which prefixes should be more popular than the rest, popularity rank allocation is 

done at random. 

 (2) 

 

Figure 12: Prefix popularity distribution for the hundred most popular prefixes. 
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7.2 Overview of the Simulations 

There are two main purposes in these simulations: to compare popular prefix selection 

methods and to validate and analyze the effectiveness of popularity based Virtual Prefix 

selection method. First a minimum target level is created by calculating FIB sizes after 

running FIB Aggregation on each router separately. Then a comparison point for ordi-

nary Virtual Aggregation is set by considering Virtual Aggregation with uniform Vir-

tual Prefix allocation and without popular prefixes. Using it, FIB sizes and path stretch 

inherent latencies are calculated with varying amount of VPs and with different maxi-

mum stretch latencies to see how they affect the results. 

Only then is the effect of different popular and Virtual Prefix selection methods si-

mulated and compared. Simulation cases were chosen to reveal the differences in 

achievable FIB sizes and path stretches in the best possible way while trying to also 

consider the credibility of the simulations. As each simulation takes tens of hours or 

even several days, simulations could not be repeated in the given time with different 

random seeds as many times as would have been desirable. Instead, a few runs were 

done to have at least some kind of confidence for the simulation results. In the follow-

ing sections, processes and algorithms behind the simulations are first explained and in 

section 7.6 simulation cases are introduced and the reasons for running them are moti-

vated. 

7.3 FIB Aggregation 

FIB Aggregation is implemented in these simulations following the idea (same results, 

different implementation) presented in FIB Aggregation IETF draft [49] level 4B algo-

rithm which considers all the covered prefixes while implementing level 4 aggregation 

(see sub-section 4.2.1). In our simulations, first a prefix tree is formed. To avoid exces-

sive memory usage, it only holds those prefixes which might be selected during the 

compression process, i.e. prefixes in a tree where longest real prefixes are its leaves and 

/0 is its root. During the tree build up, all prefixes in the tree are considered separately. 

For each prefix the number of covered prefixes towards different next-hops is calcu-

lated. In the second phase the tree is traversed in prefix length (level) order, checking on 

each prefix whether it should be installed or not and whether the prefix already has a 

next-hop or should it be set to the most popular covered next-hop. Code implementing 

the tree build up and the level 4B FIB aggregation algorithm are presented in Appendix 

A. 

The result of running the algorithm is a smaller set of prefixes which still does not 

change routing for the advertized prefixes. FIB Aggregation and the resulting FIB sizes 

are calculated for each router separately since prefix to adjacent link mappings are 

usually different on different routers. Figure 13 depicts a simple case of this, showing 

that several variable forwarding tables are possible even in a very simple topology. In 

reality, networks may have hundreds or thousands of routers which can handle hundreds 

of thousands of prefixes, making it very probable that in most of the routers prefixes 

form unique sets on adjacent links they use. 
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Figure 13: Prefix set forming in different parts of the topology. Px denotes a prefix. 

7.4 Virtual Aggregation 

Simulating Virtual Aggregation is divided into four main steps: picking a set of popular 

prefixes which get a differentiated treatment, allocating VPs according to the selected 

allocation scheme, assigning APRs for each VP and calculating the resulting FIBs and 

stretches. Results depend heavily on all of the first three while the last step tries to cap-

ture the essential statistics which are then later analyzed.  

7.4.1 Virtual Prefix Allocation Schemes 

The basic idea for uniform allocation algorithm is taken from [55] although the results 

with the used routing data do not give as uniform distribution as in the previous study. 

The allocation starts by having all the possible prefixes with prefix length 7 as VPs and 

continues by splitting those which cover too many sub-prefixes until all are below a 

specified VP size threshold. If the threshold is small enough, one or more of the sub-

prefixes may cover so many other sub-prefixes that the threshold is exceeded from those 

alone. Because VPs must not be covered by sub-prefixes in any situation, the threshold 

must simply be exceeded. In fact VP is then set to be the immediate parent of the sub-

prefix with shortest prefix-length (i.e. if sub-prefix is of length 8, VP is of length 7). 

Some of the VPs may still contain very few sub-prefixes either because some /7s con-

tain only few sub-prefixes or because one of the too large VPs children covers only a 

few sub-prefixes. Appendix A includes code for implementing uniform VP allocation. 

Popularity based Virtual Prefix allocation is implemented in these simulations ac-

cording to the second approach described in section 6.2. Popular prefixes are used as the 

input for FIB Aggregation level 4b algorithm which forms a set of VPs by considering 

the adjacent ASs as the next-hops to aggregate on. The implementation of FIB Aggrega-

tion algorithm was described in section 7.3. 

A E

P1

P2

P2

P3

a – P2,P3

b – P1

d – P4

P3

P4

b
a

d

e

c

f

d – P2

e – P1

f – P3,P4

b – P3

c – P1,P2

e – P4



42 

 

 

7.4.2 Strategies for Selecting Popular Prefixes 

Section 5.4 gave the reasons for simulating different strategies for selecting popular pre-

fixes. All popular prefixes cannot simply be routed via shortest paths without possibly 

causing more specific prefixes to be routed to incorrect adjacent ASs due to longest pre-

fix matching. Our simulations have three different strategies, including the malfunction-

ing direct approach. Because the traffic matrix is based on randomization, it is better to 

leave the distribution of the traffic’s source unconsidered. Therefore, it is possible to 

only use AS wide prefix popularity information and not to consider different popular 

prefixes for different POPs or routers. 

The selection arguments for the direct approach are very simple: just select the given 

percentage of most popular prefixes and set them to be tunneled directly to the closest 

egress points. This method is called the Default Popular Prefix Selection (DPPS). The 

second considered strategy includes only those most popular prefixes which do not cov-

er any other prefixes; meaning that most of the short prefixes will not be selected even 

though they were more popular than the longer ones. Because only a part of the most 

popular prefixes are selected, it is called a Picky Popular Prefix Selection (PPPS). The 

third strategy sacrifices some FIB for unpopular routes so that most popular prefixes can 

get the special treatment. More specifically, with this Inclusive Popular Prefix Selection 

(IPPS) strategy, the most popular prefixes with all their covered prefixes are inserted 

into the FIBs. With IPPS the amount of PPs cannot be precisely adjusted since if a pre-

fix is added all of its covered prefixes are also added. In our implementation the set of 

prefixes is added if the amount of accepted PPs was not exceeded beforehand, causing 

the amount of PPs to be usually a little higher than where the target limit was set on. 

7.4.3 APR Assignments 

The problem of assigning aggregation points is a complex issue with several things to 

consider. It determines how much path stretch will accrue and how it is distributed to 

different routes. APR selection is also the largest factor in deciding how large FIBs rou-

ters will have. The purpose of the assignments is to find in some way optimal set of 

APRs for all the predetermined VPs within the given boundaries. Figure 14 visualizes 

an example setup in a network after APRs have been assigned showing the relation be-

tween the number of APR roles (for different VPs) and FIB size. It also becomes evi-

dent that a router may have very small FIB although it serves a great number of routers 

as an APR. If the goal is to have small FIBs on every router, no router should be an 

APR for many VPs. Still, there may be topological restrictions which dictate that some 

routers cannot reduce their FIB size considerably without causing too much stretch on 

some routes. In Figure 14, the centermost router can serve most of the other routers for 

one of the VPs while the largest FIB router serves only two other routers, but for many 

VPs. These two examples clearly show that in terms of FIB size, the latter is inefficient 

and should be avoided. 
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Figure 14: APR assignment algorithm decides which routers are APRs for which VPs. 

Based on a previous work [10], Ballani et al. [55] give a reference solution for as-

signing APRs by specifying a greedy algorithm for minimizing the maximum FIB size. 

The new algorithm implemented for this thesis (Appendix A) follows the same idea ex-

tensively, although tries also to keep the amount of APRs low. A major point in both 

algorithms is to constrain the maximum path stretch so that the most crucial disadvan-

tages (namely: extra latency and load) can be controlled. 

In reality, each non-APR uses the closest APR in terms of IGP metrics. To do that, 

the whole set of APRs for a single VP would have to be considered simultaneously and 

it would be hard to find a set of routers that obey both requirements while still roughly 

minimizing the worst FIB size. Therefore, the used algorithm (in Appendix A) relieves 

the closeness requirement and allows any APR to serve a router if it simply complies 

with the stretch limit. This may not even be such a big abstraction of the real situation 

since close by routers tend to be selected as serving APRs quite often because far away 

routers will more probably increase the stretch for some destinations beyond the con-

straint. 

Table 1: Notations used in APR assignment algorithm. 

Notation Meaning 

R All the ISPs routers 

r Single router in ISPs topology 

T The full routing table consisting of all the external routes 

V The chosen Virtual Prefixes 

v A single Virtual Prefix 

P Popular prefixes 

Fr FIB size in router r 

A[r] The set of Virtual Prefixes for which r is an aggregation point 

nv Number of sub-prefixes VP v covers 

FIB size

Tunnel to 

serving APR

Different VPs
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Figure 15: Aggregation point router assignment algorithm to minimize largest FIB size 

with a constant maximum stretch latency. 

To help understand the used APR assignment algorithm in Figure 15 the notations 

used in it are introduce. In short, r stands for a router, T for a routing table, v for a Vir-

tual Prefix and p for a popular prefix. Capital letter characters indicate the whole set 

while lower-case characters mean a certain individual in the set. Also, Fr means the FIB 

size in router r, A[r] the set of Virtual Prefixes for which r is an aggregation point and nv 

the number of sub-prefixes covered by VP v. The complete list of notations is summa-

rized in Table 1. 

1. Worst FIB Size = 0 

2. for all r in R do 

3.     for all v in V do 

4.         Calculate can_server,v 

5.     end for 

6. end for 

7. Sort V in decreasing order of nv 

8. for all v in V do 

9.     while all routers all served for Virtual Prefix v 

10.         Sort R in decreasing order of |can_serve_newr,v| 

11.         for all r in R do 

12.             if Fr + nv <= Worst FIB Size && v  A[r] && |can_serve_newr,v| > 0) then 

13.                 A[r] = A[r]  v 

14.                 Fr = Fr + nv 

15.                 Mark all routers in can_server,v as served 

16.             end if 

17.             if All routers are served for v then 

18.                 break 

19.             end if 

20.         end for 

21.         if All routers are not served for v and all routers have been checked then 

22.             for all r in R do 

23.                 if v  A[r] then 

24.                     A[r] = A[r]  v 

25.                     Fr = Fr + nv 

26.                     Mark all routers in can_server,v as served 

27.                     Worst FIB Size = Fr 

28.                     break 

29.                 end if 

30.             end for 

31.         end if 

32.     until while 

33. end for 
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The algorithm splits up to two separate parts of which the first (lines 2-6) depends 

on the used VP allocation scheme and the second (lines 7-33) is always the same. The 

first part calculates the set of routers for which each router can be an APR and repeats 

this for each VP. For uniform allocation, the router set with each router-VP pair is all 

the routers that do not cause more than threshold amount of extra latency for any pack-

et. For popularity based allocation there is an additional requirement that the APR must 

be on the shortest path from router r to VPs popular next-hop, so that path stretch can be 

prevented for popular routes. 

The actual APR assignments (lines 7-33) starts by sorting the VPs according to how 

many sub-prefixes they have (line 7), causing APRs to be selected for largest VPs first. 

The benefit of this is that FIBs are more of the same size in different routers as smaller 

VPs fill up the FIBs in routers which are not APRs for larger VPs. If a larger VP would 

be handled last FIBs would be more evenly loaded before it and some of the FIBs in last 

VP’s APRs would then become larger than any other. While considering a single VP, 

APRs are assigned in the order of how many not yet served routers a candidate can 

serve. Additionally the algorithm uses a boundary on FIB size that may not be exceeded 

while assigning APRs in lines 11-20, so that all the smaller FIB routers that can serve 

some routers are assigned prior to routers that already have bigger FIBs. The threshold, 

i.e. worst FIB size, is increased only when smaller FIB routers cannot serve all the rou-

ters (lines 21-31). After the threshold is increased, the same routine is repeated until all 

routers have been served for that VP. At the end, all routers will be served by some 

APR for each VP, ensuring reachability from any router towards any prefix. 

As mentioned earlier in this sub-section, the basis of this algorithm was taken from 

Ballani’s work and was only slightly modified by us. The largest change was the intro-

duction of can_serve_new variable which is used to sort the entire router set (R) after 

each APR assignment. In the original algorithm the router set was sorted only before 

each VP. This change was done to lower the amount of APRs, since with the original 

algorithm many routers which could serve a similar but not identical set of routers were 

all assigned to APRs on the basis of how many routers they can serve even though few-

er routers could actually serve the combined set of routers. Minor changes were also 

done on when a router is selected and marked as an APR. 

7.5 Gathering and Analyzing Results 

Some key information about how the VPs are chosen, how the APRs are assigned and 

what kind of FIBs and stretch latencies there exist with each setup, had to be calculated. 

After a simulation the FIB size of each router was stored along with the results of a cal-

culation which gives several variables related to stretch latencies. Using these variables 

the behavior in FIB sizes and stretch latencies was analyzed with Matlab and the results 

introduced in Chapter 8 were constructed. 

7.6 Simulation Cases 

In total, nine sets of simulations were performed, each trying to capture one behavior 

with the selected aggregation strategy. Two of these are about FIB Aggregation and the 

rest about Virtual Aggregation. With Virtual Aggregation, simulations are run to show 
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how the amount of VPs and the maximum stretch with both uniform and popularity 

based VP allocation schemes influences the outcome, and what kind of effects different 

popular prefix selection strategies gives with different amount of PPs. For better credi-

bility a set of five different random seeds is used with each configuration. The purpose 

of this is to show the effects of randomization between the simulation sets while still 

being able to show that the results do not depend greatly on the random values. 

The first FIB Aggregation simulation set gives an overall view how much FIB Ag-

gregation can shrink FIBs by running the algorithm for all the routers. Because com-

pressing every routers’ FIB with FIB Aggregation level 4B algorithm and calculating 

their FIB sizes takes very long to compute with our implementation, a smaller set of 

routers is useful so that multiple random seeds can be used to evaluate simulations on a 

few weeks time frame. The second set considers only ASBRs and 30 core routers allow-

ing it to capture the effect of randomization on the selected sample set. By comparing 

the results of these two sets it is possible to get better confidence intervals for the ac-

quired results than would have been with the first set alone. 

Out of total seven Virtual Aggregation simulation sets, five will capture the effects 

with uniform allocation. The first reveals how FIB sizes and path stretches vary in rela-

tion to maximum stretch constraint while the second does the same with VP size and 

amount of VPs. The last three will show how much lower stretch latencies can be ex-

pected by using different amount of popular prefixes and how the use of different popu-

lar prefix selection strategies influences the outcome. Popularity based VP allocation 

scheme is run with different amount of popular prefixes and with different maximum 

stretch latency constraints. Similarly as with FIB Aggregation, Virtual Aggregation si-

mulations are repeated with different random seeds. 
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8. Simulation Results 

This Chapter represents results of the simulations described in the previous Chapter. 

Results show how FIB Aggregation was able to shrink FIBs and how different settings 

with Virtual Aggregation influenced the achieved FIB sizes and path stretch. 

8.1 FIB Aggregation 

Running FIB Aggregation on all the 7303 routers in the simulation topology resulted in 

quite high savings in terms of FIB size on most of the routers. On average the remaining 

FIB size on a router was 3017 prefixes, i.e. 2.6 percents of the full DFZ FIB. Even the 

largest FIB was 58 percents smaller than the full DFRT and had 48473 prefixes. As de-

picted in the FIB size distribution in Figure 16, most of the routers can actually manage 

all the eBGP routes with very few FIB entries. Concretely, 90 percents of the routers 

can manage with a FIB that can hold only 12 percents of the DFRT. Many of the routers 

have only a single entry (indicated by the leftmost bar in the figure), illustrating that 

they have only one link over which the inter-domain routes are learned. However, the 

situation is somewhat worse in reality when internal routes are also considered. 

It was also considered how the location of the router affects its FIB size by defining 

a backbone (BB) router set and an AS border router (ASBR) set. Routers are considered 

as ASBRs if they are an egress point towards any prefix while backbone routers are rea-

dily indicated in the Rocketfuel topology map. The result was that FIB size correlates 

heavily with the location. As Figure 16 shows, largest FIBs are typically found in back-

bone (green bars). Non-backbone AS border routers (red bars) and most of the non-

ASBR and non-BB routers (blue bars) have very small FIBs. BB routers can also be 

ASBRs and in fact in the simulation topology a large majority of the backbone routers 

are also border routers, while the amount of ASBRs is still over twice the amount of BB 

routers. In total, 72 percents of the cumulative amount of FIB entries is found on 

ASBRs and 64 percents on BB routers. Together they still only constitute roughly three 

quarters of the total FIB load as there are quite few non-ASBR BB routers. 

The presented results above were gathered using only one random seed value. Ten 

simulations which considered only ASBRs and 30 core routers were run to show that 

the randomization does not affect the trend but merely change the absolute values. 

Among these simulations average FIB, largest FIB and FIB variance were calculated 

and indeed, the results did not vary too much. The difference of the largest value from 

the smallest value in each set is presented in Table 2. 

Table 2: Difference of the largest value from the smallest value within each identifier 

set (using FIB Aggregation). 

Average 

FIB 

Largest 

FIB 

FIB va-

riance 

3.0 % 6.7 % 7.9 % 
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Figure 16: Routers’ FIB size distribution with FIB Aggregation. Dashed line shows the 

90
th

 percentile. 

8.2 Virtual Aggregation with Uniform Virtual Prefix Allocation 

The effectiveness of Virtual Aggregation in shrinking FIBs should be better than of FIB 

Aggregation as it has more severe drawbacks like increased latency and router load. Our 

simulations show that this is indeed true if the configuration values for the APR as-

signment algorithm (presented in section 7.4.3.) are chosen wisely. What kind of FIB 

savings are to be expected in general as well as how the number of VPs and the maxi-

mum stretch latency constraint affects FIBs and stretch latencies is illustrated in this 

section. 

As said in section 7.1.4, there is no real or simulated view on how the traffic actually 

flows in the network. In these simulations two measures are used to describe the stretch 

and both assume that traffic is injected from each ASBR with equal capacities and with 

a pre-determined distribution on prefixes. The first measure is about the path wise 

stretch latency and the second about packet wise stretch latency. Path stretch latency is 

used to show how routes are affected with each configuration. Increased packet stretch 

latency on the other hand illustrates how latencies are altered on packet level. They are 

both included in the results to show how well the unequal popularity among the prefixes 

can be taken advantage of with different mechanisms and setups. More precisely, it is 

their difference that shows it. 

To start with, results first show what happens when the maximum stretch latency is 

gradually changed from two to ten milliseconds. Figure 17a depicts the maximum and 

average FIB sizes and Figure 17b the average path and packet stretch latencies with VP 

size limited to 0.1 percents of the full routing table (justified later), giving 1444 prefix-
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es. Maximum FIB size could not be reduced when stretch latency was constrained to 

two milliseconds and substantial reduction to it could only be seen when the stretch 

constraint was set to at least six milliseconds; although the error margin was also signif-

icantly increased at that point. Interestingly, no further maximum FIB savings could be 

achieved with larger latency constraints. Because average stretch latency seems to in-

crease constantly (with a slope of ~ 0.3) and average FIB size is lowered only slightly 

when more stretch is allowed, maximum stretch latency is constrained to six millise-

conds in the rest of our simulation cases.  

The second simulation case is to reveal how the maximum VP size and the number 

of VPs affects FIB sizes and path stretch latencies. In forming VPs, the VP size was 

used as the main parameter. However, because the number of VPs is more intuitive and 

with uniform VP allocation the number of VPs changes with the maximum allowed VP 

size, the latter is used in results. Figure 18 depicts what kind of an effect the number of 

VPs gives with constant six millisecond maximum stretch latency. Figure 18a shows 

how both maximum and average FIB size varies and Figure 18b illustrates the relation 

between the number of VPs and average stretch latencies. 

From Figure 18a it is visible that a more fine grained VP allocation has a positive ef-

fect on the worst FIB size while at the same time average FIB size increases only mildly 

as aggregators are spread more evenly on the network. Figure 18b shows a rather con-

stant and small increase to the average path and packet stretch latencies as the number 

of VPs is increased. The packet wise average stretch latency increases slightly faster 

than the path wise average stretch latency because heavy traffic prefixes are by chance 

stretched more than prefixes on average. The maximum VP size of 0.1 percents in the 

previous simulation case was chosen because it gives smallest worst FIB size. 

  
Figure 17: Average and maximum FIB size and average stretch latency with different 

maximum stretch latencies (uniform VP allocation). 
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Figure 18: Average and maximum FIB size and average stretch latency with different 

number of VPs (uniform VP allocation). 

 
Figure 19: Routers’ FIB size distribution with Virtual Aggregation 6 ms maximum 

stretch and 1444 uniformly allocated VPs. 

Table 3: Difference of the largest value from the smallest value within each identifier 

set using Virtual Aggregation with 1444 uniformly allocated VPs and maximum stretch 

latency constrained to six milliseconds. 

Average 

FIB 

Largest 

FIB 

FIB va-

riance 

1.5 % 42 % 70 % 
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 In order to better see the FIB savings on the topology with uniform VP allocation 

and without handling popular prefixes in any special way, similar analysis as with FIB 

Aggregation in section 8.1 is conducted here. For that, the simulation settings which 

gave the best results in terms of lowest worst FIB size are used. That is, maximum 

stretch latency is set to six milliseconds and the number of VPs to the largest simulated 

(1444 VPs). Results for this in Figure 19 show that, again, most of the FIB load is con-

centrated on backbone routers and less than one percent of all routers have more than 

ten percent of the full DFRT. Differences among simulations with different random 

seeds are now somewhat higher than with FIB Aggregation, which can also be seen 

from the error bars in Figure 18a. Still the effect is limited to how FIB load is distri-

buted in the network and does not change the actual cumulative load indicated by the 

average FIB size. Table 3 gives the exact numbers on how average FIB, largest FIB and 

FIB variance changed due to different random seeds.  

8.3 Virtual Aggregation with Popular Prefixes 

 
Figure 20: Effect of using popular prefixes with three different styles. DPPS: pick most 

popular to PPs. PPPS: pick only non-covering most popular to PPs. IPPS: pick most 

popular and the prefixes they cover to PPs. 

Popular prefixes (PP) are used to forward a big part of the traffic directly out of the AS 

via shortest paths, eliminating path stretch completely for the affected prefixes from the 

routers in which they are used. Because in the simulations PPs are set identically on all 

of the routers, a prefix is chosen to be either popular or not for the whole network. In 

case of the default PP selection (DPPS) and picky PP selection (PPPS), FIBs are in-

creased directly according to the number of prefixes considered popular. As explained 

in sub-section 7.4.2, the FIB size increase in inclusive PP selection (IPPS) is typically 
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slightly larger than the amount of popular prefixes and is affected by the number of pre-

fixes popular prefixes cover. In our simulations this had a negligible effect and FIB siz-

es were practically identical with all three methods. 

Figure 20 illustrates the effect of each PP selection strategy on average path and 

packet stretch latencies. With all three strategies the improvements are small and linear 

for average path stretch latencies – as was expected. However, for average packet 

stretch latencies the results are more dramatic and there are some differences between 

the PP selection methods. As anticipated, DPPS gives the best results because it selects 

the most popular prefixes and is able to direct most traffic via PPs. With it, it’s possible 

to get as low as 0.5 millisecond average stretch latency for all of the traffic by increas-

ing FIBs with a reasonable one percents of the full DFRT. But, because DPPS does not 

function properly with the covered prefixes, it can only be used as an upper bound on 

the improvements achievable with methods that do not cause packets to get forwarded 

erroneously. In fact, IPPS delivers only slightly worse results with a very small error 

margin. For PPPS the results are worse even though in the most favorable simulation 

run, it is as good as IPPS. 

8.4 Virtual Aggregation with Popularity Based Virtual Prefix Alloca-

tion 

The popularity based Virtual Prefix allocation scheme is designed to reduce stretch in 

comparison to Uniform Allocation scheme. Our simulations prove this, although, the 

overall results are less impressive. Similarly as with Uniform Allocation, graphs are 

plotted on FIB size and average stretch behavior while letting the maximum stretch la-

tency (Figure 21) and the number of VPs (Figure 22) to change in turn. Figure 21b illu-

strates that average stretch increases linearly with the maximum stretch constraint, i.e. 

quite similarly than with uniform VP allocation. Figure 22b shows stretch to be very 

small when there are only a couple hundred VPs but to become significantly worse 

when the number of VPs is increased. By comparing the average path and packet 

stretches, it can actually be seen that the method was unable to take advantage of the 

prefix popularity distribution when there were close to one thousand VPs or more. The 

sharp increase in the average packet stretch is due to the Zipfian distribution which is 

used to simulate the prefix popularity. At a certain point (~800 VPs) the average of the 

most popular prefixes becomes almost the same as the average of all the prefixes; after 

which the stretch improvements are small. The large error bars here indicate that with 

different random seeds the point when the stretch sharply increases is different.  
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Figure 21: FIB size and stretch latency with different maximum stretch latencies (popu-

larity based allocation). 

 
Figure 22: FIB size and stretch latency with different number of VPs (popularity based 

allocation). 

With popularity based VP allocation FIB savings are quite modest in comparison to 

uniform VP allocation. Worst FIB sizes are especially poor (shown in Figures 21a and 

22a) while average FIB size varies between 10 and 15 percents of the full DFRT. Again 

by looking at the FIB distribution among the routers in Figure 23 it can be seen that the 

largest FIBs are on backbone routers. However, a notable amount of non-ASBR and 

non-BB routers (blue bars) have semi-large FIBs. This is the main source for the rela-

tively high average FIB size and reflects the behavior of our method and APR assign-

ment algorithm in general. Because over half of the routers are an APR for at least one 

VP and because the maximum VP size is nearly 20 percents of the full DFRT in the 

worst case (depending on the number of VPs and the random seed), a single VP may be 

responsible for a great number (at most ~21 000) of entries in many routers. 90
th

 percen-

tile (dashed line in Figure 23) further describes that most of the routers will have to do 

with an average sized FIB, having about 19 percents of the DFRT. These results seem 
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also to be sufficiently stable with different random values and in comparison to simula-

tions on uniform allocation. FIB distribution and largest FIBs vary only mildly while 

average FIB experiences more variance. Table 4 gives the exact number on how much 

average FIB, maximum FIB and FIB variance vary within the set of simulations. 

 
Figure 23: Routers’ FIB size distribution with Virtual Aggregation using popularity 

based VP allocation. Dashed line shows the 90
th

 percentile. 

Table 4: Difference of the largest value from the smallest value within each identifier 

set using Virtual Aggregation with popularity based VP allocation and a 6 millisecond 

maximum stretch latency. 

Average 

FIB 

Largest 

FIB 

FIB va-

riance 

34 % 7.3 % 59 % 
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9. Analysis of the Simulation Results 

Chapter 7 introduced the setup on which the simulations were conducted, the methods 

used to conduct them and the simulation cases which were chosen to run. Chapter 8 pre-

sented the simulation results and in this chapter we finally analyze the results. Because 

randomization was the only option to simulate several details in building our simulation 

environment and in measuring path stretches, the correctness of the results should be 

further analyzed. Therefore, it is necessary to consider how our results using uniform 

VP allocation with and without popular prefixes (DPPS) correlate with those Ballani et 

al. [55] achieved in their simulations on AT&T network. However, before that, the pros 

and cons in using PPs to lower stretches are analyzed and the popularity based VP allo-

cation scheme is compared to other mechanisms. The reliability check finishes this 

Chapter. 

9.1 Benefits of Popular Prefixes 

Comparing the results from uniform VP allocation VA with and without directly routed 

popular prefixes shows clearly the benefits in using PPs. Several times smaller path 

stretch can be anticipated with all three simulated selection methods than completely 

without PPs (see Figure 20). Importantly, PPs can be chosen so that they give signifi-

cant reduction to stretch and do not violate routing correctness in any static situation. 

According to our simulations, the best way to do this is to include the most popular pre-

fixes and all their covered prefixes to PPs (IPPS). To further analyze the goodness of 

IPPS, Figure 24 was plotted to show how the number of PPs influences routes and traf-

fic in the network. With only one percent of prefixes as PPs the amount of traffic im-

pacted can be lowered from 86 percents to only 24 percents, indicating that over 75 per-

cents of the traffic would be forwarded via the same route as when VA is not deployed. 

Traffic stretched, i.e. the relative stretch a packet will experience on average, can also 

be lowered significantly and while considering the latency increase with one percent of 

PPs, traffic is stretched only 16 percents. If popular prefixes would be considered on 

each POP separately, the results would be even better. 

However, as mentioned in Chapter 5, using PPs might still be risky and at least re-

quire more from the network management because the set of prefixes usually changes 

over time. Again, this can cause some of the prefixes to be routed incorrectly if the set 

of PPs is not revised after the introduction of new prefixes which are covered by a PP. 

Whether good and fast revision mechanisms can be built dictates how feasible scenario 

it actually is to use PPs. 
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Figure 24: Percents of routes & traffic impacted and percents of traffic stretched with 

uniformly allocated VPs, IPPS and 6ms maximum stretch. 

9.2 Using Popularity Based VP Allocation 

 
Figure 25: Percents of routes & traffic impacted and percents of traffic stretched with 

popularity based VP allocation and 6ms maximum stretch. 
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Figure 25 summarizes how big part of the traffic is stretched and how large latency in-

crease is accrued when using popularity based VP allocation. With 0.1 percents of pre-

fixes considered as popular the average stretch latency (traffic stretched) is increased 

only 13 percents which is distributed on 23 percents of the traffic (traffic impacted). By 

comparing this with the graphs on Figure 24, it becomes evident that the results are 

quite similar with uniform VP allocation and PPs. With uniform VP allocation and 

without PPs traffic stretched and traffic impacted increases constantly as the amount of 

VPs is increased. The former stays always above 50 percents and the latter above 80 

percents, but in comparison to what popularity based VP allocation achieves, this is 

much worse. 

So, if the stretch is so much lower with popularity based VP allocation, how much 

worse FIB savings could be tolerated to still make it an appealing option? Ultimately it 

is up to the network administrator who has to consider the magnitude of required FIB 

savings. But, if most of the ISP’s routers are capable of handling at least average sized 

FIBs (~30 % of the full DFRT) and there are no tools to update PP-list sufficiently fast 

after a change in routing table, using popularity based VP allocation might be benefi-

cial. By looking into how DFRT has grown in the past (see Figure 3 in Chapter 3) it can 

be seen that routers would get several years more operational time (in terms of suffi-

cient memory space for FIBs) if FIBs would be two thirds smaller than they are. That is, 

a router running out of memory in 2002 would have had enough memory still in year 

2010 and although DFRT growth speed has constantly accelerated, the prolongation 

would be almost as long today and certainly long enough to cause the router to be re-

placed for other reasons. 

On the other hand, if FIB sizes are to be pushed low in every router, on the basis of 

these simulations, the use of popularity based VPs is not advisable. A need to do so 

might emerge for example if DFRT would be suddenly increased due to e.g. deploy-

ment of IPv6 and routers with large enough FIBs would not be available. To sum up, 

there are situations where popularity based VPs would seem better than the alternatives, 

but overall it may not give small enough FIBs, considering that shrinking FIBs is the 

reason VA could be deployed in the first place. 

9.3 Reliability of the Simulations 

As properly explained in Chapter 7, exact information about the used Sprint topology, 

its routing table or its traffic matrix was not available. Instead, incomplete measure-

ments of the given network along with network independent statistics were used to si-

mulate the environment. This puts the acquired absolute results in doubt as there are un-

certainties in the simulation environment. However, by comparing the results shown in 

Chapter 8 with results gained from similar simulations elsewhere on a real data, the re-

liability of the former results can hopefully be increased. 

The comparison is started from uniform VP allocation without PPs. In Ballani’s et 

al. paper [55] the maximum stretch value after which no further reduction in maximum 

FIB size could be achieved was 4 milliseconds. In our simulation the effect was similar, 

but the crucial point was on 6 milliseconds. This behavior is topology dependant and 

can well be explained with the different used topologies. With about one thousand VPs 
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and six milliseconds maximum stretch latency, our simulations give about 80 percent 

maximum FIB size reduction, about 99 percent average FIB size reduction (in compari-

son to DFRT) and about 2.3 millisecond average packet stretch latency. Ballani et al. 

got four times larger maximum FIB, four times smaller average FIB and three times 

smaller stretch with 4 millisecond maximum stretch and 1024 VPs. Although the differ-

ences seem large and their results do not fit into the error margins of our study, there are 

many reasons that could possibly explain them (e.g. different topology, different applied 

maximum stretch limit, different APR allocation algorithm, usage of default routes in 

Ballani’s et al. work) and most importantly the FIB size and stretch changes similarly, 

but with different absolute values. According to simulations on [55], the different topol-

ogies of AT&T and Sprint alone could explain half of the difference in maximum FIB 

sizes and the difference in average FIB sizes completely. 

Similar behavior can also be seen with the use of popular prefixes. In Ballani’s et al. 

simulations having only most popular prefixes as PPs (i.e. DPPS), the amount of traffic 

impacted by VA was reduced from 100 percents to almost ten percents with one percent 

of prefixes as PPs. In our case (depicted in Figure 24), only 82 percents of the traffic 

were impacted without PPs and 20 percents when one percent of PPs were allocated us-

ing IPPS. The most significant influence to the worse results is how PPs are used. Be-

cause of the lack in detailed information same PPs were used on whole ISP, while Bal-

lani et al. could pick different PPs for different POPs. Additionally, topology, prefix set 

and VP allocations change the outcome of the simulations.  

Shown that the results change similarly in both considered simulations when setup 

values are altered and that the differences could well be explained with a number of fac-

tors, it should be safe to say that although randomization had to be used to simulate 

many details, the results can be considered valid.  
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10. Conclusions 

The foremost purpose of this thesis was to make the reader familiar with the challenges 

in Internet inter-domain routing and the remedy approaches Internet community has 

considered. This thesis started by finding out the main challenges and by considering 

what has so far been done to overcome them. In general, scalability and the difficulty to 

introduce changes were found to be the main themes around many separate problems; 

envisioning Internet a difficult future. When studying the most acute problem, i.e. rou-

ters running out of fast memory in the face of growing FIBs, it became evident that it is 

not affected only by the amount of Internet routes, but also by the operators’ VPN cus-

tomer routes. The criticality of the problem was also found to be less severe than many 

might think, because router vendors seem to be able to provide routers with large 

enough memories if their customers are willing to pay for it. The problem is really 

about how long ISPs should be able to use their routers and how quickly the memory 

size becomes the prohibiting factor. Several approaches to solve issues in Internet inter-

domain routing were studied and three were introduced as well as briefly analyzed. 

None of the three were sawn to be significantly better than the others while they vary in 

effectiveness to solve problems and in deployment easiness. 

As also promised, Virtual Aggregation as part of the easiest to deploy solution (Evo-

lution) was examined rather deeply by elaborating its functionality, considering its pros 

and cons, formulating possible improvements, simulating its operation on a real-like 

environment and analyzing its ability to shrink FIBs while considering the most severe 

drawback: path stretch. The lack of available information about the details in ISPs net-

work made the construction of the simulation environment challenging. However, by 

combining information from several sources, a real like environment could be con-

structed and meaningful results which are also comparable to a previous study could be 

achieved. After more or less repeating some of the simulations conducted in [55], it was 

feasible to evaluate how path stretch can be lowered by using directly routed popular 

prefixes and how the popularity based Virtual Prefix allocation scheme compares to 

other simulated operation modes with Virtual Aggregation. 

Appendix A represents several key functions used to implement the simulations on 

Matlab. The example code shows how prefix tree was built, how the used FIB aggrega-

tion, uniform VP allocation and APR allocation algorithms were implemented. In total 

over four thousand lines on Matlab code were written to construct the simulation envi-

ronment, to build the functionality and simulation cases and to capture and present the 

results. 

Simulation results in Chapter 8 showed clear benefits in shrinking FIBs and thus 

proved Virtual Aggregation to be an efficient mechanism to lower routers’ memory 

load. Results also showed that if a large part of the traffic is not routed via shortest paths 

(e.g. by giving traffic intensive prefixes special treatment), path stretch may become too 

severe; diminishing networks usefulness and increasing operators expenses. To actually 

lower operators’ costs, VA needs to be configured so that it gives small enough FIBs on 

most of the routers while limiting stretch to a very low level, i.e. allowing an ISP to op-

erate its network longer with existing equipment. The new popularity based Virtual Pre-

fix allocation scheme described and considered in this thesis delivers just that, although, 
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not as efficiently as when Virtual Prefixes are allocated uniformly and popular prefixes 

are routed via separate tunnels. 

However, directly routed popular prefixes cannot be allocated as such without caus-

ing some packets to get dropped on AS border. This thesis illustrated that this can best 

be avoided by also including all the prefixes which popular prefixes cover in to the 

FIBs. The acquired path stretch reduction would then be only slightly lower than if FIBs 

would only include virtual and popular prefixes. Still, constant routing table monitoring 

and popular prefix set adjustments are required if the set of covered prefixes changes. 

Exactly how much overhead this would incur is unknown, but the effort of revising 

FIBs and rebuilding tunnels is not expected to be overwhelming if the existing network 

management tools are harnessed to do the job in a centralized fashion. Of course the 

overhead depends on how often such crucial changes happen. 

With the knowledge gained during working with this thesis the previously described 

use of Virtual Aggregation which routes popular prefixes outside of the Virtual Prefixes 

is recommended if substantial reduction to most of the routers’ FIB size is required. If 

the FIB shrinking need is mild, it is better to turn to FIB Aggregation which does not 

induce path stretch at all and is an easy to deploy router local solution. In fact, accord-

ing to our simulations and the data available from the literature [49], FIB Aggregation 

can shrink FIBs considerably on many routers leaving only part of the routers to handle 

significantly large FIBs. Therefore, it is a little controversial whether the router memory 

issue will ever reach a point when FIB Aggregation would not be enough. Then yet 

again, it can be a cost reduction mechanism for operators if they can also buy new rou-

ters with less memory and have only few routers which can hold the entire DFRT and 

more. 

To better respond to a situation where the maximum FIB should not be pushed as 

small as possible and the FIB load is rather concentrated on a few routers than distri-

buted all over the topology, the way aggregation points are allocated should be revised. 

By looking at Figure 14 the situation would change so that there would be few routers 

rather close to the center of the topology with large FIBs, most of the routers with very 

small FIBs in the edge and some routers with medium sized FIBs only where needed to 

further limit the path stretch. Since the aggregation points would then be pushed quite 

far away from routers on average, Virtual Prefix allocations should also make it possi-

ble without high path stretch; that is, allocating Virtual Prefixes based on prefix popu-

larity. 

Further research should be done to understand exactly what kind of an aggregation 

point allocation algorithm would give the most favorable results. In retrospective, this is 

also something this thesis could have focused on since it could yield better results in 

terms of FIB load and path stretch and therefore increase the feasibility of VA. In fact, it 

is the likely path we are going to pursue in the near future. In this context the way VPs 

are formed becomes increasingly important motivating one also to think of better ways 

to allocate them. We are also considering how the ongoing IPv6 transition affects the 

feasibility of different aggregation techniques. 

As shrinking FIBs is only a partial solution in truly improving Internet inter-domain 

routing scalability and issues in Internet routing in general, Virtual Aggregation and FIB 

Aggregation should not be used for an argument to delay larger modifications. Instead, 
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more focus should be put on how the entire Internet architecture could be revised to 

something better which lacks many of the current issues. The optimality of the actual 

outcome is less important and may have to be sacrificed to some extent in hope for any 

major improvements to take place. The Evolution towards global routing scalability is a 

good proposal to start with, but further work is still required to have a highly convincing 

outline of the next big change in Internet architecture. 

All in all, the evolution of Internet is a highly current topic in general and in re-

search. Internet has established its irreplaceable position in people’s everyday lives, 

played a big role in increasing globalization and become an infrastructure without 

which the society could not operate anymore. With popularity come also the responsi-

bility and the need to be reliable. In that light, even though Internet is working reasona-

bly well, several issues threaten to make the situation worse and prohibit further growth 

as well as the increase in reliability and feature richness. As remedy actions in Internet 

scale take several years at best and probably even longer, the work and decisions have 

to be made well in advance before any results are to be expected. The studies conducted 

for this thesis have been a part of that great endeavor by concentrating on both under-

standing the problems in detail and trying to develop mechanisms for short term im-

provements. A new algorithm for selecting aggregation points and a few notions about 

the Virtual Aggregation were the main contributions of this thesis. 

  



62 

 

 

References 

[1] Miniwatts Marketing Group, Internet World Stats: Internet Usage Statistics. 

Online document. Updated on 30.6.2010. Cited on 28.1.2011. Available: 

wwww.internetworldstats.com/stats.htm. 

[2] Postel, J. IETF RFC 791 - Internet Protocol. Online document. Updated in 

September 1981. Cited on 8.7.2011. Available: http://tools.ietf.org/html/rfc791. 

[3] Fuller, V. and Li, T. IETF RFC 4632 - Classless Inter-domain Routing (CIDR): 

The Internet Address Assignment and Aggregation Plan. Online document. 

Updated in August 2006. Cited on 7.8.2010. Available: 

http://tools.ietf.org/html/rfc4632. 

[4] Deering, S. and Hinden, R. IETF RFC 2460 - Internet Protocol, Version 6 (IPv6) 

Specification. Online document. Updated in December 1998. Cited on 8.7.2010. 

Available: http://tools.ietf.org/html/rfc2460. 

[5] Srisuresh, P. and Egevang, K. IETF RFC 3022 - Traditional IP Network Address 

Translator (Traditional NAT). Online document. Updated in January 2001. Cited 

on 7.8.2010. Available: http://tools.ietf.org/html/rfc3022. 

[6] Huston, G. The 32-bit AS number report. Online document. Updated on 

28.1.2011. Cited on 28.1.2011. Available: http://www.potaroo.net/tools/asn32/. 

[7] Rekhter, Y., Li, T. and Hares, S. IETF RFC 4271 - A Border Gateway Protocol 4 

(BGP-4). Online document. Updated in January 2006. Cited on 8.7.2010. 

Available: http://tools.ietf.org/html/rfc4271. 

[8] Bates, T., Chen, E. and Chandra, R. IETF RFC 4456 - BGP Route Reflection: An 

Alternative to Full Mesh Internal BGP (IBGP). Online document. Updated in 

April 2006. Cited on 8.7.2010. Available: http://tools.ietf.org/html/rfc4456. 

[9] Traina, P., McPherson, D. and Scudder, J. IETF RFC 5065 - Autonomous System 

Confederations for BGP. Online document. Updated in August 2007. Cited on 

8.7.2010. Available: http://tools.ietf.org/html/rfc5065. 

[10] Kim, C., Gerber, A., Lund, C., Pei, D. and Sen, S. Scalable VPN Routing via 

Relaying. Proceedings of the ACM SIGMETRICS, 2008. 

[11] Meyer, D., Zhang, L. and Fall, K. IETF RFC 4984 - Report from the IAB 

Workshop on Routing and Addressing. Online document. Updated in September 

2007. Cited on 8.7.2010. Available: http://tools.ietf.org/html/rfc4984. 



63 

 

 

[12] Narten, T. IETF Draft - On the Scalability of Internet Routing. Online document. 

Updated on 17.2.2010. Cited on 8.7.2010. Available: 

http://tools.ietf.org/html/draft-narten-radir-problem-statement-05. 

[13] Scudder, J. Router Scaling Trends. APRICOT Future of Routing workshop. 

Updated on 27.2.2007. Cited in 8.7.2010. Available: 

http://submission.apricot.net/chatter07/slides/future_of_routing/apia-future-

routing-john-scudder.pdf. 

[14] Arkko, J. Solving the Routing Scalability Problem --The Hard Parts. APRICOT 

Future of Routing workshop. Updated on 27.2.2007. Cited on 8.7.2010. Available: 

http://submission.apricot.net/chatter07/slides/future_of_routing/apia-future-

routing-jari-arkko.pdf. 

[15] Hardin, G. The Tragedy of the Commons. Journal of Natural Resources Policy 

Research, 2009, vol. 1, issue 3, pages 243-253. 

[16] Huston, G. IPv4 Address Report. Online document. Updated on 28.1.2011. Cited 

on 28.1.2010. Available: http://www.potaroo.net/tools/ipv4/. 

[17] Huston, G. BGP in 2009. Asia Pacific Regional Internet Conference on Opera-

tional Technologies. 2010. Cited on 2.2.2011. Available: 

http://www.potaroo.net/presentations/2010-03-04-bgp2009.pdf. 

[18] Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J. and Jahanian, F. 

Internet inter-domain traffic. ACM SIGCOMM computer communications review, 

2010, vol. 40, issue 4, pages 75-86. 

[19] Abley, J., Lindqvist, K., Davies, E., Black, B and Gill, V. IETF RFC 4166 - IPv4 

Multihoming Practices and Limitations. Online document. Updated in July 2005. 

Cited on 2.2.2011. Available: http://tools.ietf.org/html/rfc4116. 

[20] Huston, G. AS6447 - BGP Table Analysis Report. Online document. Updated on 

2.2.2011. Cited on 2.2.2011. Available: http://bgp.potaroo.net/as6447/. 

[21] Carpenter, B., Crowcroft, J. and Rekhter, Y. IETF RFC 2101 - IPv4 Address 

Behaviour Today. Online document. Updated in February 1997. Cited on 

2.2.2011. Available: http://tools.ietf.org/html/rfc2101. 

[22] Francis, P. and Xu, X. Extending Router Lifetime with Virtual Agregation. The 

Internet Protocol Forum. Online document. Updated in April 2010. Cited on 

2.2.2011. Available: http://www.ipjforum.org/?p=255. 

[23] Meng, X., Xu, Z., Zhang, B., Huston, G., Lu, S. and Zhang, L. IPv4 Address 

Allocation and the BGP Routing Table Evolution. ACM computer 

communications review, 2005, vol. 35, issue 1, pages 71-80. 



64 

 

 

[24] Ballani, H. Harnessing tunnels for dirty-slate network solutions. Doctoral 

dissertation, Cornell University, 2009. 

[25] Moore, G., E. Cramming more components onto integrated circuits. Electronics, 

1965, vol. 38, issue 8. 

[26] Li, T. Router scalability and Moore’s law. IAB workshop on the future of routing 

and addressing in the Internet, 2006. Cited 2.2.2011. Available: 

http://www.iab.org/about/workshops/routingandaddressing/Router_Scalability.pdf

. 

[27] Fall, K., Iannaccone, G., Ratnasamy, S. and Godfrey, P. B. Routing Tables: Is 

Smaller Really Much Better? Eighth ACM workshop on Hot Topics in Networks, 

2009. Cited on 2.2.2011. Available: http://berkeley.intel-

research.net/sylvia/hotnets2009-final156.pdf. 

[28] Huston, G. The BGP Instability Report. Online Document. Updated on 18.2.2011. 

Cited on 18.2.2011. Available: 

http://bgpupdates.potaroo.net/instability/bgpupd.html. 

[29] Varadhan, K., Govindan, R. and Estrin, D. Persistent route oscillations in 

interdomain routing. Computer Networks, 2000, Vol. 32, issue 1, pages 1-16. 

[30] Labovits, C., Ahuja, A., Bose, A. and Jahanian, F. Delayed Internet Routing 

Convergence. IEEE/ACM Transactions on Networking, 2001, vol. 9, issue 3, 

pages 293-306. 

[31] Mao, Z. M., Govindan, R., Varghese, G. and Katz, R. H. Route flap damping 

exacerbates internet routing convergence. ACM SIGCOMM computer 

communications review, 2002, vol. 32, issue 4, pages 221-233. 

[32] Jakma, P. IETF draft - Revised Default Values for the BGP 'Minimum Route 

Advertisement Interval'. Online document. Updated in November 2008. Cited on 

4.8.2010. Available: http://tools.ietf.org/html/draft-jakma-mrai-00. 

[33] Villamizar, C., Chandra, R. and Govindan, R. IETF RFC 2439 - BGP Route Flap 

Damping. Online document. Updated in November 1998. Cited on 2.2.2011. 

Available: http://www.ietf.org/rfc/rfc2439.txt. 

[34] Smith, P. and Panigl, C. RIPE Routing Working Group Recommendations on 

Route-flap Damping. Online document. Updated in May 2006. Cited on 4.8.2010. 

Available: http://www.ripe.net/ripe/docs/ripe-378.html. 

[35] Labovits, C., Ahuja, A., Wattenhofer, R. ja Venkatachary, S. The impact of 

Internet Policy and Topology on Delayed Routing Convergence. Proceedings of 

the IEEE INFOCOM, 2001. 



65 

 

 

[36] Kent, S. and Seo, K. IETF RFC 4301 - Security Architecture for the Internet 

Protocol. Online document. Updated in December 2005. Cited on 18.2.2011. 

Available: http://tools.ietf.org/html/rfc4301. 

[37] Toonk, A. Chinese BGP hijack, putting things into perspective. Online document. 

Updated 21.11.2010. Cited 3.12.2010. Available: http://bgpmon.net/blog/?p=323. 

[38] Perkins, C. IETF RFC 5944 - IP Mobility Support for IPv4, Revised. Online 

document. Updated in November 2010. Cited on 2.2.2011. Available: 

http://tools.ietf.org/html/rfc5944. 

[39] Johnson, D., Perkins, C. and Arkko, J. IETF RFC 3775 - Mobility Support in 

IPv6. Online document. Updated in June 2004. Cited on 2.2.2011. Available: 

http://tools.ietf.org/html/rfc3775. 

[40] Devarapalli, D., Wakikawa, R., Petrescu, A. and Thubert, P. IETF RFC 3963 - 

Network Mobility (NEMO) Basic Support Protocol. Online document. Updated in 

January 2005. Cited on 2.2.2011. Available: http://tools.ietf.org/html/rfc3963. 

[41] Baliga, J., Hinton, K. and Tucker, R.S. Energy Consumption of the Internet. 

Proceedings of the COIN-ACOFT, 2007. 

[42] Namiki, S., Hasama, T., Mori, M., Watanabe, M. and Ishikawa, H. Dynamic 

Optical Path Switching for Ultra-Low Energy Consumption and Its Enabling 

Device Technologies. Proceedings of the SAINT, 2008. 

[43] Li, T. Recommendation for a Routing Architecture. Online document. Updated on 

29.11. 2010. Cited on 1.12.2010. Available: http://datatracker.ietf.org/doc/draft-

irtf-rrg-recommendation/?include_text=1. 

[44] Farinacci, D., Fuller, V., Meyer, D. and Lewis, D. IETF draft - Locator/ID 

Separation Protocol (LISP). Online document. Updated in October 2010. Cited in 

1.12.2010. Available: http://tools.ietf.org/html/draft-ietf-lisp-09. 

[45] Fuller, V., Farinacci, D., Meyer, D. and Lewis, D. IETF draft - LISP Alternative 

Topology (LISP+ALT). Online document. Updated in April 2010. Cited on 

1.12.2010. Available: http://tools.ietf.org/html/draft-ietf-lisp-alt-04. 

[46] Flinck, H. Compact routing in locator identifier mapping system. Online 

document. Cited on 2.2.2011. Available: 

http://www.tschofenig.priv.at/rrg/CR_mapping_system_0.1.pdf. 

[47] Letong, S., YinXia, ZhiLiang, W. and Jianping, W. A Layered Mapping System 

For Scalable Routing. Online document. Cited on 2.2.2011. Available: 

https://docs.google.com/fileview?id=0BwsJc7A4NTgeOTYzMjFlOGEtYzA4OC

00NTM0LTg5ZjktNmFkYzBhNWJhMWEy&hl=en. 



66 

 

 

[48] Zhang, B., Zhang, L. and Wang, L. IETF draft - Evolution Towards Global 

Routing Scalability. Online document. Updated in October 2009. Cited on 

2.2.2011. Available: http://tools.ietf.org/html/draft-zhang-evolution-02. 

[49] Zhang, B., Wang, L., Zhao, X., Liu, U. and Zhang, L. IETF draft - FIB 

Aggregation. Online document. Updated in October 2009. Cited on 2.2.2011. 

Available: http://tools.ietf.org/html/draft-zhang-fibaggregation-02. 

[50] Francis, P., Xu, X., Ballani, H., Jen, D., Raszuk, R and Zhang, L. IETF draft - FIB 

Suppression with Virtual Aggregation. Online document. Updated on 31.8.2010. 

Cited on 2.2.2011. Available: http://tools.ietf.org/search/draft-ietf-grow-va-03. 

[51] Meyer, D., Lewis, D. and Farinacci, D. IETF draft - LISP Mobile Node. Online 

document. Updated on 25.10.2010. Cited on 2.2.2011. Available: 

http://tools.ietf.org/html/draft-meyer-lisp-mn-04. 

[52] Arends, R., Austein, R., Larson, M., Massey, D. and Rose, S. IETF RFC 4033 - 

DNS Security Introduction and Requirements. Online document. Updated in 

March 2005. Cited on 18.2.2011. Available: http://tools.ietf.org/html/rfc4033. 

[53] Moskowitz, R. and Nikander, P. IETF RFC 4423 - Host Identity Protocol (HIP) 

Architecture. Online document. Update in May 2006. Cited on 18.2.2011. 

Available: http://tools.ietf.org/html/rfc4423. 

[54] Francis, P., Xu, X., Ballani, H., Raszuc, R. and Chang, L. IETF Draft - Simple 

Virtual Aggregation (S-VA). Online document. Updated on 31.8.2010. Cited on 

2.2.2011. Available: http://tools.ietf.org/html/draft-ietf-grow-simple-va-01. 

[55] Ballani, H., Francis, P., Cao, T. and Wang, J. Making Routers Last Longer with 

ViAggre. Proceedings of the 6th USENIX symposium on Networked systems de-

sign and implementation, 2009. 

[56] Fang, W., Peterson, L. Inter-AS traffic patterns and their implications. 

Proceedings of the GLOBECOM, 1999. 

[57] Feldmann, A., Greenberg, A., Lund, C., Reingold, N., Rexford, J. and True, F. 

Deriving traffic demands for operational IP networks: methodology and 

experience. IEEE/ACM Transactions on Networking, 2001, vol. 9, issue 3, pages 

265-280. 

[58] Rexford, J., Wang, J., Xiao, Z. and Zhang, Y. BGP routing stability of popular 

destinations. Proceedings of the 2nd ACM SIGCOMM Workshop on Internet mea-

surement, 2002. 

[59] Taft, N., Bhattacharyya, S., Jetcheva, J. and Diot, C. Understanding traffic 

dynamics at a backbone POP. Proceedings of the SPIE 4526, 150, 2001. 



67 

 

 

[60] Broido, A., Hyun, Y., Gao, R. and Claffy, kc. Their Share: Diversity and 

Disparity in IP Traffic. Lecture Notes in Computer Science, 2004, vol. 3015, pag-

es 113-125. 

[61] Anderson, T., Mahajan, R., Spring, N. and Wetherall, D. Rocketfuel: An ISP 

Topology Mapping Engine. Online document. Cited on 2.2.2011. Available: 

http://www.cs.washington.edu/research/networking/rocketfuel/. 

[62] Advanced Network Technology Center, University of Oregon. University of 

Oregon Route Views Project . Online document. Cited on 2.2.2011. Available: 

http://www.routeviews.org/. 

[63] Team cymru. IP to ASN Mapping. Online ducument. Cited on 2.2.2011. 

Available: http://www.team-cymru.org/Services/ip-to-asn.html. 

[64] Chang, H., Jamin, S., Mao, Z. M. and Willinger, W. An Empirical Approach to 

Modeling Inter-AS Traffic Matrices. Proceedings of the 5th ACM SIGCOMM 

conference on Internet Measurement, 2005. 

  



68 

 

 

Appendix A 

Simulations described in this thesis were conducted using Matlab. This appendix 

presents Matlab code that implements some main sub-tasks used in the simulations. 

Prefix tree build up 

 

function create_prefix_tree 

  

% Creates a prefix tree following the set of popularPrefixes. The tree 

% consist of every node from those prefixes to the root, i.e. longer prefixes than  

% the corresponding popular prefixes are not inserted in to the tree in order to save 

% memory and processing. 

  

global popularPrefixes 

global prefixCells 

global CoveredNHs 

  

% Slice the popularPrefixes matrix into 24 cell columns where rows are prefixes 

% with the specific slash value (e.g. /16). Start from /24 and go through  

% the lists in order. For each prefix, see if it already has a parent  

% (binary search). If no, add it. Then update the popularity value  

% (cumulative) and set this node to be its child (determine if it is left  

% or right). When all matrices have been traversed, traverse the three from 

% root to leafs (/n matrix at a time) and mark the parents (cannot be done  

% sooner, because parent matrices are sorted and indexes don’t therefore  

% hold). 

  

% - Format in /n matrices is the following: 

% column 1=ASN 2=prefix_int 3=prefix_len 4=popularity 5=parent 6=left_child 

% 7=right_child 

% - Encoding in the child and parent info is the following: 

% (cell,row) = cell + 100*row (e.g. cell 18, row 7 = 718) 

  

% CoveredNHs is a cell array of cell arrays which holds information about 

% the nodes (similarly as in prefixCells, i.e. (2,3) = CoveredNHs{2}{3}. An 

% integer matrix is in each inner cell and has the format: column 1:NH_ASN  

% 2:number of covered hits 3:NHs cumulative popularity 

  

% Create the cell array (correct to be able to support longer than /24s) 

prefixCells = cell(1,25); 

  

% Create the cell structure for inner NH cells 

CoveredNHs = cell(1,25); 

  

% Count how many lines in each matrix 

count = zeros(1,25); 

for i = 1:size(popularPrefixes,1) 

    count(popularPrefixes(i,3) + 1) = count(popularPrefixes(i,3) + 1) + 1; 

end 

  

% Initialize the /n matrices and inner NH cells 

for i = 1:25 

    prefixCells{i} = zeros(count(i),7,'uint32'); 

end 

  

% Copy the lines to correct cell matrix 

lineCounter = ones(1,25); 

for i = 1:size(popularPrefixes,1) 

    prefixCells{popularPrefixes(i,3) + 1}(lineCounter(popularPrefixes(i,3) + 1),1:4) 

= popularPrefixes(i,:); 

    lineCounter(popularPrefixes(i,3) + 1) = lineCounter(popularPrefixes(i,3) + 1) + 

1; 

end 
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% Create the prefixTree 

% Go through the matrices in order (/24 -> /0) 

for i = 1:length(prefixCells) 

    currentCellNro = length(prefixCells) - i + 1; 

     

    % Sort the current matrix according to prefix_int 

    [l, k] = sort(prefixCells{currentCellNro}(:,2)); 

    prefixCells{currentCellNro} = prefixCells{currentCellNro}(k,:); 

  

    % Go through the current matrix 

    [rows, h] = size(prefixCells{currentCellNro}); 

    CoveredNHs{currentCellNro} = cell(rows,1); 

    for j = 1:rows 

         

        % if not at root, do the following 

        if(currentCellNro ~= 1) 

            % Determine the parent 

            parent_int = bitshift(prefixCells{currentCellNro}(j,2), -int8(32 - (cur-

rentCellNro - 2))); 

            parent_int = bitshift(parent_int, int8(32 - (currentCellNro - 2))); 

                 

            % Sort the next matrix, i.e. where parents lie 

            [l, k] = sort(prefixCells{currentCellNro - 1}(:,2)); 

            prefixCells{currentCellNro - 1} = prefixCells{currentCellNro - 1}(k,:); 

             

            % See if parent prefix already exists 

            parent_index = binarySearch(prefixCells{currentCellNro - 

1}(:,2),parent_int); 

            if(parent_index == 0) 

                 

                % If not, create it and put it to the list 

                parent = zeros(1,7,'uint32'); 

                parent(2) = parent_int; 

                parent(3) = prefixCells{currentCellNro}(j,3) - 1; 

                prefixCells{currentCellNro - 1}(end + 1,:) = parent; % SLOW!!! Copies 

all nodes to a new matrix! Too slow? 

                [parent_index, l] = size(prefixCells{currentCellNro - 1}); 

            end 

             

            % Determine wether this prefix is parents left or right child 

            % and update parents child info accordingly 

            if(prefixCells{currentCellNro}(j,2) == parent_int) % left child 

                prefixCells{currentCellNro - 1}(parent_index,6) = currentCellNro + 

100 * j; 

            else % right child 

                prefixCells{currentCellNro - 1}(parent_index,7) = currentCellNro + 

100 * j; 

            end 

        end 

         

%Part of the FIB aggregation 4B algorithm 

        % Update covered Next-hop ASN count & ASN wise covered 

        % cumulative popularity and store it in a different structure. 

        % The format in this structure is the following: 1=ASN 

        % 2=ANS_count 3=ASN_cumulative_popularity. 

        % For each prefix, copy left childs matrix if not empty and in  

        % case it is, copy right childs matrix. If both are empty,  

        % create new from current prefix's information. To make the  

        % matrix complete, merge information from right childs matrix  

        % (if neither childs matrix is empty) and from the current  

        % prefix (if a real prefix). 
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        % left child exists 

        if(prefixCells{currentCellNro}(j,6) ~= 0) 

            leftChildCell = rem(prefixCells{currentCellNro}(j,6),100); 

            leftChildRow = fix(prefixCells{currentCellNro}(j,6)/100); 

             

            % Left child as the basis 

            CoveredNHs{currentCellNro}{j} = CoveredNHs{leftChildCell}{leftChildRow}; 

                

            % Add info from right child if it exists 

            if(prefixCells{currentCellNro}(j,7) ~= 0) 

                rightChildCell = rem(prefixCells{currentCellNro}(j,7),100); 

                rightChildRow = fix(prefixCells{currentCellNro}(j,7)/100); 

                [a,b] = size(CoveredNHs{rightChildCell}{rightChildRow}); 

                for c = 1:a 

                    % Should binary search be used instead of find 

                    % (would have to sort after each add) 

                    index = find(CoveredNHs{currentCellNro}{j}(:,1) == Cove-

redNHs{rightChildCell}{rightChildRow}(c,1)); 

                    if(index > 0) 

                        CoveredNHs{currentCellNro}{j}(index,2) = Cove-

redNHs{currentCellNro}{j}(index,2) + CoveredNHs{rightChildCell}{rightChildRow}(c,2); 

                        CoveredNHs{currentCellNro}{j}(index,3) = Cove-

redNHs{currentCellNro}{j}(index,3) + CoveredNHs{rightChildCell}{rightChildRow}(c,3); 

                    else 

                        CoveredNHs{currentCellNro}{j}(end + 1,1) = Cove-

redNHs{rightChildCell}{rightChildRow}(c,1); 

                        CoveredNHs{currentCellNro}{j}(end,2) = Cove-

redNHs{rightChildCell}{rightChildRow}(c,2); 

                        CoveredNHs{currentCellNro}{j}(end,3) = Cove-

redNHs{rightChildCell}{rightChildRow}(c,3); 

                    end 

                end 

            end 

                 

        % No left child. Right child exists  

        elseif(prefixCells{currentCellNro}(j,7) ~= 0) 

            rightChildCell = rem(prefixCells{currentCellNro}(j,7),100); 

            rightChildRow = fix(prefixCells{currentCellNro}(j,7)/100); 

                

            % Right child as the basis 

            CoveredNHs{currentCellNro}{j} = Cove-

redNHs{rightChildCell}{rightChildRow}; 

        end 

               

        % If real prefix, add its ASN hit and per ASN popularity 

        if(prefixCells{currentCellNro}(j,1) ~= 0) 

            if(isempty(CoveredNHs{currentCellNro}{j}) ~= 1) 

                index = find(CoveredNHs{currentCellNro}{j}(:,1) == prefix-

Cells{currentCellNro}(j,1)); 

                if(index > 0) 

                    CoveredNHs{currentCellNro}{j}(index,2) = Cove-

redNHs{currentCellNro}{j}(index,2) + 1; 

                    CoveredNHs{currentCellNro}{j}(index,3) = Cove-

redNHs{currentCellNro}{j}(index,3) + prefixCells{currentCellNro}(j,4); 

                end 

            else 

                CoveredNHs{currentCellNro}{j}(end + 1,1) = prefix-

Cells{currentCellNro}(j,1); 

                CoveredNHs{currentCellNro}{j}(end,2) = 1; 

                CoveredNHs{currentCellNro}{j}(end,3) = prefix-

Cells{currentCellNro}(j,4); 

            end 

        end 
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        if(currentCellNro ~= 1) 

            %Sort the matrix where parent lies so that next parent search 

            %can be done (not in root) 

            [l, k] = sort(prefixCells{currentCellNro - 1}(:,2)); 

            prefixCells{currentCellNro - 1} = prefixCells{currentCellNro - 1}(k,:); 

        end  

    end 

end 

  

% Traverse the tree level by level from root to parents of leafs 

for i = 1:length(prefixCells) - 1 

     

    % Go through every prefix in the current level 

    [rows, h] = size(prefixCells{i}); 

    for j = 1:rows 

         

        % Mark the parent according to child info 

        child1Cell = rem(prefixCells{i}(j,6),100); 

        child2Cell = rem(prefixCells{i}(j,7),100); 

         

        % Left child 

        if(child1Cell ~= 0) 

            child1Row = fix(prefixCells{i}(j,6) / 100); 

            prefixCells{child1Cell}(child1Row,5) = i + (100 * j); 

        end 

         

        % Right child 

        if(child2Cell ~= 0) 

            child2Row = fix(prefixCells{i}(j,7) / 100); 

            prefixCells{child2Cell}(child2Row,5) = i + (100 * j); 

        end 

    end 

end 

end 
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FIB Aggregation 

 

  

function FIB_Aggregation_4B () 

  

global prefixCells 

global CoveredNHs 

 

% First half of the algorithm is integrated with prefix tree build up  

% All variables and explanations are for NH-ASN based solution, but it  

% works also for regular FIB aggregation where each router calculated its  

% FIB locally and NH router id is there used in stead of NH-ASN.  

% For all prefixes in the tree: in case non-real prefix, mark ASN according 

% to the one with most covered Next-hop ASN hits. Although the algorith 

% desciption in draft-zhang-fibaggregation-02 tells to go through the tree 

% recursively in postorder, CoveredNHs already has all the neccessary 

% information and all nodes can thus be traversed iteratively prefix length 

% level at a time. 

  

for i = 1:length(prefixCells) 

    for j = 1:size(prefixCells{i},1) 

         

        % Parent ASN 

        parentASN = 0; 

        temp = get_closest_marked_parent(i + (100 * j)); 

        if(temp ~= 0) 

            parentASN = prefixCells{rem(temp, 100)}(fix(temp / 100),1); 

        end 

  

        % If not a real prefix, calculate new ASN 

        if(prefixCells{i}(j,1) == 0) 

             

            % Set prefixes NH-ASN to be Next-hop ASN with most hits. If  

            % more than one with the same #hits, randomise the selection. 

            [l, k] = sort(CoveredNHs{i}{j}(:,2), 'descend'); 

            last = 1;  

            while(last < size(CoveredNHs{i}{j},1) && CoveredNHs{i}{j}(k(last),2) == 

CoveredNHs{i}{j}(k(last + 1),2)) 

                last = last + 1; 

            end 

             

            % Pick the candidate new ASN 

            newASN = CoveredNHs{i}{j}(k(ceil(rand * last)),1); 

             

            % If none of the most popular ASNs equals to the parent ASN, 

            % new ASN should be inserted 

            for m = 1:last 

               if(CoveredNHs{i}{j}(k(m),1) == parentASN) 

                   newASN = 0; 

               end 

            end 

             

            % If real prefix, ANS is old ASN or 0 

        else 

            if(prefixCells{i}(j,1) == parentASN) 

                newASN = 0; 

            else 

                newASN = prefixCells{i}(j,1); 

            end 

        end 

         

        % Set the new ASN 

        prefixCells{i}(j,1) = newASN;      

    end  

end 

end 
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Uniform VP Allocation 

 

function select_VPs() 

  

% Uniform Allocation: Partitions the address space into /7  

% prefixes (Virtual Prefixes) and slices them up so that no single VP covers 

% more than 2 percentage of all the real prefixes. VPCovers info is 

% calculated simultaneously as it is used to indicate the prefixes that 

% belong to yet too large VPs in each iteration. Such VPs are split untill 

% all VPs are below the allowed size or a real prefix would be used (only  

% possible when allowed size <= 1). 

 

global ASPrefixes 

global VPList 

global prefixCells 

global simulationMode 

global VPCovers 

global maxNroOfPrefixesInVP 

global VPPopASNs 

  

% Uniform Allocation 

if(simulationMode == 2) 

     

    % Initiate variables 

    VPList = zeros(128,2,'uint32'); 

    VPCovers = cell(128,1); 

     

    % Put /7s to the VPList 

    for i = 1:128 

       VPList(i,1) = 2 * (i - 1) * (256 ^ 3); 

       VPList(i,2) = 7; 

    end 

     

    % Split VPs untill no VP countains more than maxNroOfPrefixesInVP of  

    % the BGP routing table with the exception that all VPs must be shorter 

    % than real prefixes. 

     

    % Maximum size for a VP 

    maxVPSize = ceil(length(ASPrefixes) * maxNroOfPrefixesInVP); 

     

    % Update the VPCovers 

    for i = 1:length(ASPrefixes) 

        found = 0; 

        j = 1; 

        while(found == 0 && j <= length(VPList)) 

            if(prefixCover(VPList(j,:),[ASPrefixes(i,2),ASPrefixes(i,3)]) > 0) 

                 

                % A cell array of pointers (indexes) to prefixes in 

                % ASPrefixes 

                VPCovers{j}(end + 1,1) = uint32(i); 

                found = 1; 

            end 

            j = j + 1; 

        end 

    end 
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    % Split VPs if < maxNroOfPrefixesInVP && < preflen(real_pref_in_VP) 

    modifiedIndexes = 1:length(VPList); 

    while(~isempty(modifiedIndexes)) 

        tempIndexes = []; 

        for i = 1:length(modifiedIndexes) 

            if(length(VPCovers{modifiedIndexes(i)}) > maxVPSize && VPL-

ist(modifiedIndexes(i),2) < min(ASPrefixes(VPCovers{modifiedIndexes(i)},3)) - 1) 

  

                % Correct old VP to be the first half 

                VPList(modifiedIndexes(i),2) = VPList(modifiedIndexes(i),2) + 1; 

                tempCovers = cell(2,1); 

                for j = 1:length(VPCovers{modifiedIndexes(i)}) 

                    if(prefixCover(VPList(modifiedIndexes(i),:), [ASPrefix-

es(VPCovers{modifiedIndexes(i)}(j),2), ASPrefix-

es(VPCovers{modifiedIndexes(i)}(j),3)]) > 0) 

                        tempCovers{1}(end + 1,1) = VPCovers{modifiedIndexes(i)}(j); 

                    end 

                end 

                tempIndexes(end + 1) = modifiedIndexes(i); 

             

                % Create new VP (second half) 

                VPList(end + 1,1) = VPList(modifiedIndexes(i),1) + 2 ^(32 - VPL-

ist(modifiedIndexes(i),2)); 

                VPList(end,2) = VPList(modifiedIndexes(i),2); 

                for j = 1:length(VPCovers{modifiedIndexes(i)}) 

                    if(prefixCover(VPList(end,:), [ASPrefix-

es(VPCovers{modifiedIndexes(i)}(j),2), ASPrefix-

es(VPCovers{modifiedIndexes(i)}(j),3)]) > 0) 

                        tempCovers{2}(end + 1,1) = VPCovers{modifiedIndexes(i)}(j); 

                    end 

                end 

             

                VPCovers{modifiedIndexes(i)} = tempCovers{1}; 

                VPCovers{end + 1,1} = tempCovers{2}; 

                tempIndexes(end + 1) = length(VPCovers); 

            end 

             

        end 

        modifiedIndexes = tempIndexes; 

        %fprintf('made a round\n'); 

    end 

     

    %Remove empty VPs 

    i = 1; 

    while(i <= size(VPList,1)) 

        if(isempty(VPCovers{i})) 

            VPList(i,:) = []; 

            VPCovers(i,:) = []; 

        else 

            i = i + 1; 

        end 

    end 

end 

end 
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APR Allocation 

 

% Sort VPList, VPCovers and nroCovered in decending order according to the  

% number of covered real prefixes. 

nroCovered = zeros(nroOfVPs,1,'uint32'); 

for i = 1:nroOfVPs 

    nroCovered(i,1) = length(VPCovers{i}); 

end 

[l, k] = sort(nroCovered,'descend'); 

VPList = VPList(k,:); 

VPCovers = VPCovers(k,:); 

if(simulationMode == 3) 

    VPPopASNs = VPPopASNs(k,:); 

end 

nroCovered = nroCovered(k,:); 

  

% Create VP, ASN, id structure 

create_VP_ASN_id_structure; 

  

% Undirect external routes per VP 

undirectExtRoutes = zeros(nroOfVPs, nroOfIds,'uint32'); 

for vp = 1:nroOfVPs 

    for id = 1:nroOfIds 

        undirectExtRoutes(vp,id) = length(union(VPCovers{vp}, directExtPrefix-

es{id})); 

    end 

end 

fprintf('undirectExtRoutes formed at '); 

fprintf('%i ',fix(clock)); 

fprintf('\n'); 

  

% Splitting the VAP case in smaller parts to lower the memory need (>20GB 

% otherwise with 15% VPs) 

divisor = nroOfVPs; 

VPSetRound = 1; 

firstVP = 1; 

lastVP = 0; 

served = cell(0); 

servable = cell(0); 

servingAPRs = zeros(nroOfIds, nroOfVPs,'uint16'); 

while(lastVP < nroOfVPs) 

% ---------- Can serve ---------- 

  

    if(VPSetRound == 1) 

        lastVP = fix(nroOfVPs / divisor); 

    elseif(VPSetRound == divisor) 

        firstVP = fix(nroOfVPs / divisor) * (VPSetRound - 1) + 1; 

        lastVP = nroOfVPs; 

    else 

        firstVP = fix(nroOfVPs / divisor) * (VPSetRound - 1) + 1; 

        lastVP = fix(nroOfVPs / divisor) * VPSetRound; 

    end 

     

    % Create a datastructure for can serve information 

    servable = cell(nroOfIds,(lastVP - firstVP + 1)); 

     

    % Create a datastructure for served routers (ids per vp) 

    served = cell(nroOfIds,(lastVP - firstVP + 1)); 
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% VAD can serve 

if(simulationMode == 2) 

        

    % Try out all the router ids as APRs 

    for id = 1:nroOfIds 

     

        % Go through every VP 

        for vp = firstVP:lastVP%1:nroOfVPs 

         

            % Calculate a list of router ids that can be served with id(id) and  

            % VP(vp). 

            servable{id,vp - firstVP + 1} = can_serve_VAD(id,vp); 

        end 

    end 

     

% VAP can serve 

elseif(simulationMode == 3) 

     

    % Initialize temporary variable to store each ids possible APRs in each 

    % VP 

    possibleAPRs = cell(nroOfIds,(lastVP - firstVP + 1)); 

     

    % Go through every VP 

    for vp = firstVP:lastVP 

         

        % Try out all the routers and find out which ids can serve it as an APR 

        for id = 1:nroOfIds 

            possibleAPRs{id,vp - firstVP + 1} = can_be_served_by_VAP(id,vp); 

        end 

    end 

     

    % Create a reverse structure of possible APRs (== servable) 

    for id = 1:nroOfIds 

        for vp = firstVP:lastVP 

            for i = 1:length(possibleAPRs{id,vp - firstVP + 1}) 

                servable{possibleAPRs{id,vp - firstVP + 1}(i),vp - firstVP + 1}(end + 

1) = id; 

            end 

        end 

    end 

end 

     

% --------- //Can serve --------- 

  

% Go through every VP (in order) 

for vp = firstVP:lastVP 

     

    servedIds = []; 

    servingRounds = 0; 

  

    % Repeat all the rest untill all routers are served for the VP(vp) 

    allServed = 0; 

    while(allServed == 0) 

         

        allChecked = 0;  

        servingRounds = servingRounds + 1; 

 



77 

 

 

 

        % Sort router ids in decreasing order of nro of unserved entries in 

        % servable 

        nroOfEntries = zeros(nroOfIds,1,'uint16'); 

        for id = 1:nroOfIds 

            nroOfEntries(id,1) = sum(ismember(servable{id,vp - firstVP + 1}, serve-

dIds) == 0); 

        end 

        [l, k] = sort(nroOfEntries,'descend'); 

        orderedIds = ids(k,:); 

         

        % Go through every id following the above sorting and try to insert 

        % them as APRs for the VP(vp) 

        for i = 1:nroOfIds 

            id = orderedIds(i); 

                         

            if(FIBSizes(id) + undirectExtRoutes(vp,id) <= worstFIBSize && ismemb-

er(vp,APRs{id}) == 0 && nroOfEntries(id) > 0) 

                 

                % Add id as APR for vp 

                APRs{id}(end + 1) = vp; 

             

                % Mark all routers in servable{id,vp} as served 

                served{id,vp - firstVP + 1} = setdiff(servable{id,vp - firstVP + 1}, 

servedIds); 

                servedIds = union(servedIds, servable{id,vp - firstVP + 1}); 

                 

                % Increase ids FIB size 

                FIBSizes(id) = FIBSizes(id) + undirectExtRoutes(vp,id); 

                break; 

            end 

             

            if(i == nroOfIds) 

                allChecked = 1; 

            end 

            if(length(servedIds) == nroOfIds) 

                allServed = 1; 

                break; 

            end 

        end 

         

        % All routers are still not served with current worstFIBSize 

        if(allServed == 0 && allChecked == 1) 

 

        % With id as new APR, will it serve any new ids? 

            for i = 1:nroOfIds 

                id = orderedIds(i); 

                if(ismember(vp,APRs{id}) == 0) 

                    APRs{id}(end + 1) = vp; 

                    served{id,vp - firstVP + 1} = setdiff(servable{id,vp - firstVP + 

1}, servedIds); 

                    servedIds = union(servedIds, servable{id,vp - firstVP + 1}); 

                    %newFIBRoutes = union(VPCovers{vp}, directExtPrefixes{id}); 

                    FIBSizes(id) = FIBSizes(id) + undirectExtRoutes(vp,id); 

                    %temp = sort(FIBSizes); 

                    %worstFIBSize = temp(round(0.99 * length(FIBSizes))); 

                    worstFIBSize = FIBSizes(id); 

                    break; 

                end 

            end 

        end 

         

        if(length(servedIds) == nroOfIds) 

            allServed = 1; 

            break; 

        end 

    end 

end 
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function [servingIds] = can_be_served_by_VAP (id, VP) 

  

% Gives the set of servable ids with the given id as the APR for the given 

% VP. Whether some node can be served, is determined by the topology and 

% the stretch limit maxStretchLatency. 

  

global sPaths 

global SPCosts 

global maxStretchLatency 

global VPASNs 

global nearestASBRs 

global SPsA2ASBR 

global VPPopASNs 

global ASNList 

global ASBRList 

  

% For given node(id) determine which nodes can serve it as an APR in the 

% given VP(vp). I.e. Which APRs are on the path from the node to ASN-NHs  

% ASBR and so that stretch for other ASNs ASBR does not violate the stretch 

% constraint. Returns a list of ids that can serve id as an APR. 

  

servingIds = zeros(0,'uint16'); 

  

% Get the set of ids that are on the path 

ASBR = nearestASBRs(id,ASNList == VPPopASNs(VP),2); 

onPathIds = sPaths{id,ASBR}; %SPsA2ASBR{id,ASBRList == ASBR}; 

  

% From on-the-path ids, take only those that don't end up violating the 

% stretch constraint to other ASNs closest ASBRs. 

  

% To APR latencies 

toAPRLatencies = SPCosts(id, onPathIds); 

  

% Direct latencies 

directLatencies = nearestASBRs(id, VPASNs{VP}); 

  

for i = 1:length(onPathIds) 

    apr = onPathIds(i); 

     

    % From APR latencies with apr 

    fromAPRLatencies = nearestASBRs(apr, VPASNs{VP}); 

     

    % If too much stretch to one of the ASs, can't be an APR, otherwise can 

    if(toAPRLatencies(i) + fromAPRLatencies - directLatencies <= maxStretchLatency) 

        servingIds(end + 1) = apr; 

    end 

end  

end 
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function [servableIds] = can_serve_VAD (id, VP) 

  

% Gives the set of servable ids with the given id as the APR for the given 

% VP. Whether some node can be served, is determined by the topology and 

% the stretch limit maxStretchLatency. 

  

global ids 

global VPList 

global adjMtrx 

global sPaths 

global SPCosts 

global maxStretchLatency 

global VPASNs 

global nearestASBRs 

  

% For each node determine if given node(id) can serve as an APR for given 

% VP (does not violate stretch constraint). Return a list of ids that can 

% be server. 

  

servableIds = zeros(0,'uint16'); 

  

% Determine the shortest latencies from apr(id) to nearest ASBRs of each AS 

fromAPRLatencies = nearestASBRs(id,VPASNs{VP}); 

  

for i = 1:length(ids) 

     

    % Determine the direct latencies from i to nearest ASBRs of each AS 

    directLatencies = nearestASBRs(i,VPASNs{VP}); 

     

    if(SPCosts(i,id) + fromAPRLatencies - directLatencies <= maxStretchLatency) 

        servableIds(end + 1,1) = i; 

    end 

end  

end 
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