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This thesis studies the effect of Wiener phase noise on the performance of orthogo-

nal frequency division multiplexing (OFDM) systems. The main performance metrics

used in the analysis are capacity and signal-to-interference-plus-noise ratio (SINR).

OFDM is a multi-carrier modulation technique in which data is transmitted in paral-

lel streams using closely spaced (in frequency) orthogonal carriers. Phase noise is the

random fluctuation in the phase of the oscillator signal used in the frequency transla-

tion between baseband and radio frequency. These fluctuations occur because of the

inherent imperfections in the components that make up the oscillator. With respect

to OFDM, phase noise destroys the orthogonality between the carriers and this causes

interference between the parallel streams of data which results in degradation of the

capacity and SINR. We derive closed-form analytical expressions of average capacity

and average SINR and highlight the key parameters of the phase noise process and

OFDM system that affect its behavior. In comparison with previous works, a proba-

bility density function (PDF) based approach is used in arriving at these performance

metrics. This approach necessitates the derivation of the PDF of a sum of gamma

random variables. In earlier literature, this result is available for gamma variables that

have a full-rank square-root normalized covariance matrix. We generalize the result

for the rank-deficient case and apply this result to obtain the statistical expressions of

capacity and SINR.
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Chapter 1

Introduction

1.1 Background

Telecommunication, by means of electrical or generically electromagnetic signals, is the

act of conveying information from a sender to a receiver. It has revolutionized human

civilization to such an extent that most of our modern human life would seem devoid of

function without it. Our acts of watching television, listening to the radio, browsing the

Internet for information, meeting friends on social networking websites, using our mobile

devices to reach a destination and making travel plans are some of the most mundane

activities that involve some form of telecommunication.

Telecommunication can be characterized by the physical medium or channel on which

information is transmitted. Wireline communication involves transmission of signals by

means of coaxial cables or waveguides. In wireless communication, the signals propagate

through free space. No matter what channel we talk about, signals always undergo some

form of distortion during transmission. A signal is typically characterized by its frequency

response. It represents the range of frequencies required to constitute the signal. For signals

to pass undistorted through a channel, the frequency response of the channel must be wider

and more or less constant over the signal bandwidth.

Transmission of signals can take place in two ways. One is baseband transmission and

the other is known as passband transmission. Baseband transmission implies that signal

bandwidth is around the DC frequency of 0 Hertz which is transmitted through a baseband

channel. In a passband transmission system, the signal to be transmitted has a bandwidth

spread around a particular frequency, also known as the carrier frequency, which implies

that the channel in question is also of the passband type. Typical information bearing

signals to be transmitted are of the baseband type. They are upconverted to passband (or,

specifically, to the carrier frequency) by the process of modulation, where in, the baseband

1



CHAPTER 1. INTRODUCTION 2

signal is multiplied with a carrier signal which is a sinusoidal signal of a certain frequency.

As a result, the multiplied signal has spectrum equal to the baseband signal but is now

spread around the frequency of the carrier signal.

The above paragraph on passband transmission is also described as a single-carrier (SC)

system, i.e., the signal is transmitted by means of one and only one carrier alone. Orthogonal

frequency division multiplexing (OFDM) is a multi-carrier transmission technique in which

data is transmitted in parallel using Nc orthogonal carriers. The data to be transmitted

is split into Nc parallel streams, where each stream modulates carrier signals that are

orthogonal to each other and the modulated streams are combined and transmitted through

the channel. The spectrum of the OFDM signal consists of overlapping frequency bands

between these Nc parallel streams, unlike, in the SC case where the entire band is allocated

to one carrier. The method was initially proposed in the 1950’s and is currently a reality by

its wide usage in many communication systems such as DAB, DVB, WIMAX, ADSL and

the upcoming fourth generation LTE systems.

One of major drawbacks of SC systems is their susceptibility to the frequency selective

nature of the channel. As earlier mentioned, for a signal to pass undistorted through a

channel, the channel frequency response should be more or less constant over the signal

bandwidth. In wide-band systems, where the signal bandwidth is large, the flat response

of the channel does not hold but it instead can be highly frequency selective. Frequency

selectivity distorts the signal transmitted and necessitates compensation (equalization) at

the receiver. Equalization is a non-trivial task when the channel is highly frequency selective.

The advantage of OFDM is that the equalization of the channel effects is simple and requires

less computation. This is because data is transmitted in parallel with overlapping frequency

bands, where in, each of these frequency bands occupy a narrow portion of the signal

bandwidth. Over this narrow portion, the channel frequency response will more or less be

constant and, hence, makes equalization a simple task.

Although OFDM has the advantage in that channel equalization is simple, it is highly sen-

sitive, compared to SC, to radio frequency (RF) impairments that occur at the analog front-

end of a communication system. RF impairments such as power amplifier non-linearities,

phase noise, IQ-imbalance and jitter, cause significant degradation of performance in OFDM

systems and have received significant attention in the scientific community. For example,

consider phase noise; it is the random fluctuations in the phase of the sinusoidal waveform

used for frequency upconversion of baseband signals to RF. This occurs due to the inher-

ent imperfections of oscillators used for this purpose. With respect to OFDM, phase noise

destroys the orthogonality of the parallel carriers and causes interference between them.
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1.2 Research Problem and Scope

The scope of this thesis is in the analysis of the phase noise RF-impairment on the perfor-

mance of OFDM systems. The phase noise is modeled as a Wiener process. We consider

performance metrics of signal-to-interference-plus-noise-ratio (SINR) and capacity. The

research problem is, thus, to determine analytical closed-form expressions of the perfor-

mance metrics and, in doing so, to identify key system parameters that are critical to the

performance.

1.3 Contributions of the Thesis

A plethora of earlier literature is available on the phase noise analysis of OFDM systems.

The analysis is typically quantified by determining performance metrics of SINR and bit

error rates (BER). A missing aspect in the literature related to phase noise for OFDM is

the evaluation of the capacity. Thus, we choose the capacity as one of our performance

metrics and derive closed-form expressions for it. Most of the approaches in evaluating the

average SINR are based on obtaining second order statistics to the variables in question.

In this thesis, we use a probability density function (PDF) based approach for evaluating

the average capacity, average SINR and outage capacity. Knowledge of this PDF facilitates

an accurate estimate of the average measures of performance metrics. An outcome of this

thesis is a journal article which is soon to be published [28].

The main contributions are summarized as follows

• We use a PDF-based approach for obtaining the average capacity and SINR of OFDM

systems impaired by phase noise.

• We show that the instantaneous SINR and capacity are characterized by two ran-

dom variables, one describing the phase noise process and the other representing the

channel. Using a Taylor series approximation, we show that the random variable,

characterizing Wiener phase noise, can be expressed as a sum of correlated gamma

random variables.

• We derive the PDF of a sum of correlated gamma random variables. A similar result

was derived in [2]. However, their PDF is applicable only when the square-root of the

normalized covariance matrix of the gamma variables is full-rank while the correlated

gamma variables in our case have a rank-deficient square-root normalized covariance

matrix. We generalize the earlier result for the rank-deficient case.
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1.4 Outline of the Thesis

The remainder of the thesis is organized as follows. In Chapter 2, we conduct a literature

study of phase noise effects on OFDM. We cover both aspects: analysis of its effects on

OFDM and compensation methods to negate its undesired effects. Although the phase

noise process dealt in this thesis is of the Wiener type, we also dwell briefly into phase

noise modeling. In general Chapter 3 presents the OFDM system model in the presence

of phase noise. We derive expressions for instantaneous SINR and show its dependence on

two random variables, one characterizing the phase noise process and the other the fading

channel. We show in Chapter 4, that the random variable characterizing Wiener phase

noise, in the SINR expression, is a sum of correlated gamma random variables whose PDF

we derive. With the PDFs describing the channel and the phase noise process at hand,

we proceed in the Chapter 5 to derive closed-form statistical expressions of capacity and

SINR. In Chapter 6, we compare our analytical results with the simulations and analyze

key parameters that affect the behavior of the performance metrics. We finally conclude in

Chapter 7.



Chapter 2

Recent Advances in OFDM

Impaired by Phase Noise

In this chapter, we summarize much of the work that has been done on OFDM affected by

phase noise. We begin by a brief treatise on what OFDM is, its benefits and drawbacks. The

drawbacks are mainly to do with RF impairments such as frequency offset, phase noise, IQ

imbalance and power amplifier nonlinearities. As phase noise is in the focus of this thesis,

we discuss first the characterization of phase noise processes in Section 2.3. The literature of

phase noise related to OFDM can be classified into two kinds. One is analysis of the effects

of phase noise in OFDM and the other is about compensation techniques. The performance

analysis measures are typically signal-to-noise-plus-interference ratio (SINR) and bit error

rates (BER). We review work on the analysis methods in Section 2.4. The compensation

techniques typically deal with signal processing algorithms that compensate the effect of

phase noise at the receiver end of a communication link. The final section of this chapter

is focused toward some of these compensation techniques.

2.1 OFDM

OFDM (Orthogonal Frequency Division Multiplexing) [52,60] is a multi-carrier modulation

technique in which Nc parallel data streams are transmitted in Nc orthogonal carriers.

In the conventional single carrier modulation system, the entire bandwidth is allocated

to one single carrier on which the baseband user signal is modulated. In OFDM, the

same bandwidth is divided among Nc overlapping orthogonal carriers called as subcarriers.

Figure 2.1 compares the frequency domain representation of both these systems. For the

figure shown, the number of subcarriers is Nc = 5 for the OFDM system. In a single

carrier system, each user is alloted a bandwidth equivalent to the bandwidth alloted for Nc

5
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Figure 2.1: Comparison between single carrier and OFDM systems.

orthogonal subcarriers in an OFDM system. There are many ways of multiplexing user data

in an OFDM system. One method is to allocate all the subcarriers to one particular user

while the other assigns to each user a particular subcarrier. One can always speculate that

for the same bandwidth as in the single-carrier case, the capacity for the OFDM system

would be higher compared to its single carrier counterpart as we have Nc parallel data

streams. However, this is not the case as the bandwidth in both the cases are the same and

by Shannons capacity theorem, the net throughput depends on the available bandwidth.
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The motivation for switching toward OFDM is multi facet. One of the major pluses for

using OFDM has to do with how it sees the channel. As data is independently multiplexed

on orthogonal subcarriers with a certain subcarrier spacing, each subcarrier when it passes

through the channel will more or less see a channel that is flat faded. The frequency response

of a channel is typically characterized by its coherence bandwidth [42, Chapter 14]. The

coherence bandwidth specifies the range of frequencies over which response is more or less

flat. Thus, if the subcarrier spacing is small compared to the coherence bandwidth, then

each subcarrier of the OFDM signal will see a flat faded channel. In most practical cases,

the coherence bandwidth is in the order of hundreds of kilo Hertz and the subcarrier spacing

for most OFDM systems is about a few tens of kilo Hertz. Contrast this to the single carrier

case, where the user signal is spread across the entire bandwidth of the transmitted signal

which then sees a frequency selective channel.

A consequence of the flat faded channel seen by the orthogonal subcarriers is that equal-

ization becomes a trivial task at the receiver. An equalizer tries to invert the effects of

what a channel does to the transmitted user signal. Now because, each subcarrier sees a

flat faded channel, equalization is easily implemented in the frequency domain by a single

tap FIR filter (scalar gain) which simplifies complexity and equalizer design.

Low complexity in the generation of the OFDM signal is another major factor as to

why OFDM has become so popular. The use of the discrete Fourier transform (DFT)

and its extremely efficient and well established FFT algorithms for implementation has

made OFDM amenable, in terms of cost, to many of the telecom operators and device

manufacturers that it has been incorporated in numerous standards and systems that we

encounter today.

A typical OFDM signal is transmitted by means of frames in which each frame is composed

of a certain number of OFDM symbols. Now, because of the multi-path nature of the

channel, the received signal is corrupted by intersymbol interference, i.e., successive OFDM

symbols overlap in time. To combat this effect, an additional and sufficient amount of

samples (guard interval) is appended to the OFDM symbol. At the receiver side, after

passing through the channel, the OFDM symbols do not overlap in time (the effect of

multipath is still experienced within each symbol) and this additional amount of samples

can then discarded before retrieving the useful data. There are many ways of choosing the

guard interval and each has its own benefits. The typical guard interval used in OFDM

is the cyclic prefix. Its name derives from the fact that it is the last few samples of the

OFDM symbol prefixed at the beginning of the OFDM symbol. Clearly, the length of the

cyclic prefix depends on the nature of the multipath channel and should be long enough to

capture the entire effect of the channel, i.e., it should be longer than the number of channel

taps. The drawback with a long cyclic prefix is the net reduction in the throughput. To



CHAPTER 2. RECENT ADVANCES IN OFDM IMPAIRED BY PHASE NOISE 8

counter this effect, the number of subcarriers has to be large in comparison with the cyclic

prefix length.

2.2 Susceptibility of OFDM to RF Impairments

One of major drawback of OFDM is its sensitivity to the RF impairments that typically

occur at the analog front-end of an RF communication chain [13]. RF impairments such as

IQ imbalance, carrier frequency offset, phase noise, power amplifier non-linearities have all

been shown to have considerable negative impact on the performance of systems employing

OFDM. In this section, we briefly describe the effects that each of these impairments have

on OFDM.

2.2.1 IQ Imbalance

IQ imbalance is the amplitude and phase mismatch of the oscillator signals used for mixing

the in-phase and quadrature components of the input signal [24, 62, 63]. These arise due

to limitations in the accuracy of the hardware used in the generation of these signals.

Any typical real transmitted signal would have its spectrum centered around the carrier

frequency. In the absence of IQ imbalance, at the receiver side, during the conversion from

RF to baseband, the spectrum of the transmitted signal is translated to baseband with the

spectrum now being symmetric around the origin. However, in the presence of a mismatch,

the spectrum above and below the carrier frequency of the transmitted signal overlap with

each other after downconversion. In the case of OFDM because of the two overlapping

spectra (from the positive and negative side w.r.t.the carrier), each subcarrier experiences

interference from its symmetric counterpart.

The origin of IQ imbalance has to do with image rejection architectures proposed for

heterodyne receivers [45]. Heterodyne receivers are highly prone to image frequencies espe-

cially when employing multiple intermediate frequency (IF) stages in the RF chain. Image

rejection architectures basically consist of splitting the input path into an in-phase and

quadrature-phase paths and in the ideal case of no mismatch, the image signal is removed.

However, most transceivers today are of the direct-conversion type, i.e., no IF stage is em-

ployed and direct conversion from RF to baseband is done. For these type of receivers, i.e.,

no IF stage, the image signal does not arise and is not the main consideration.

2.2.2 Frequency Offset and Phase Noise

Frequency offset and phase noise are two of the major deterrents to the amount of capacity

a communication system can achieve [15,39,41,56] and, hence, the development of efficient
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and low complexity signal processing algorithms is crucial to mitigate their effect [32,33,53],

especially given cost constraints. Frequency offset and phase noise create the same effect on

the signal with the fundamental difference being that frequency offset is deterministic while

phase noise is random. Frequency offset is the frequency mismatch between the incoming

RF signal impinging the receiver and receiver oscillator used to down convert the RF signal

to IF frequency or baseband frequency. This can arise out of two situations.

• Frequency mismatch between the transmit and receive oscillators.

• Time variations in the channel causes the transmitted RF frequency to vary in time

which is popularly known by the phenomena of Doppler shift.

Phase noise on the other hand is random perturbations in the phase of the carrier signal

generated by the oscillators. An ideal oscillator will generate a pure complex sinusoid of

a particular frequency also called carrier frequency, i.e., a(t) = e2πfct whose spectrum is

characterized by an impulse function located at the frequency fc. In the presence of phase

noise or frequency offset, the oscillator output can be written as a(t) = e(2πfct+θ(t)). In

the case of frequency offset, θ(t) = fvt, where fv denotes the offset. Thus, the spectrum of

the oscillator output is still an impulse function located at frequency fc + fv rather than

at fc. With phase noise, θ(t) is a random process. The output of the oscillator can, thus,

be viewed as a multiplication of the complex sinusoid with the function eθ(t), which, in

the frequency domain, results in convolution of the impulse function located at fc with the

spectrum of the signal eθ(t). The net effect being the spectrum of eθ(t) is translated by fc.

For most practical oscillators, θ(t) is generally a low pass process and, hence, the oscillator

output spectrum would be a narrow band around the carrier frequency which can be seen

as a spreading of the impulse function. This effect is demonstrated in Fig. 2.2.

In the previous paragraph, we described the spectrum of the oscillator output corrupted

by offset or phase noise. It is also important to see the effects of these impairments on the

input signal itself, especially on an OFDM signal. Let us first consider frequency offset.

At the receiver side after down conversion and in the presence of an offset, the received

baseband signal is multiplied with a complex sinusoid of frequency equal to the offset. This

is equivalent to convolving the spectrum of the received signal with the spectrum of a

windowed complex sinusoid (it is windowed because of the finite duration of the received

signal) which is the sinc function (frequency response of a rectangular pulse) centered around

the offset frequency. In OFDM, because data (drawn from a particular constellation, e.g.,

QAM, PSK etc.) is transmitted on parallel orthogonal subcarriers, each subcarrier will now

experience interference from neighboring subcarriers because of the convolution operation

in the frequency domain. Similarly, in the case of phase noise, the spectrum of the OFDM

signal is convolved with the complex exponential of the low pass phase noise process (which is
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Figure 2.2: Comparison between power spectral density (PSD) of ideal and practical oscil-
lators.

still a low pass process) and, hence, results in interference from the neighboring subcarriers.

Ultimately, this causes a rotation and noise like blurring of the signal constellation which are

termed as common phase error (CPE) and inter-carrier-interference (ICI) respectively [57].

2.2.3 Power Amplifier Non-Linearities

Power amplifier is an indispensable component in any telecommunication system. Power

amplifiers are typically used for boosting the signal power before transmission. However,

power amplifiers are inherently non-linear which result in distortion of the input signal.

The situation becomes worse with OFDM because of its large signal dynamics. OFDM

signals are characterized by having a large peak-to-average-power-ratio (PAPR) and will

experience clipping when passed through the power amplifier (because of the saturation

level of the power amplifier). This introduces in-band distortion and out-of-band spectral

regrowth [7,9].

One way of overcoming the distortion effects of the power amplifier is to simply use a

linear power amplifier with high signal dynamics which would inherently increase the cost

of the RF front end. Another method is to operate the non-linear power amplifier at a

high input back off (defined as the ratio of the saturation power of the power amplifier to

the input signal power), so that the signal experiences the linear region of the amplifier.

However, this decreases the efficiency of the amplifier. The above two methods are not
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practical, in terms of cost, and, hence, signal processing techniques are used to overcome

the distortion effects. One of the most popular methods is to use a pre-distorter at the

transmitter prior to amplification [5]. The pre-distorter is designed in such a way that the

combined effect with the power amplifier makes the input signal to always see a linear region.

However, this requires accurate modeling of amplifier non-linearities. Another method is

to clip the OFDM signal to reduce the PAPR, so that it experiences the linear region of

the power amplifier. At the receiver side, the goal is to undo the effect of clipping done

at the transmitter [13] where it is assumed that the receiver has knowledge of the clipping

function used at the transmitter.

2.2.4 Jitter

Jitter is the random fluctuation in the sampling instants at which a continuous-time signal

is converted to a digital signal [13]. The sampling process is typically done by analog-to-

digital converters (ADC). Jitter causes the ADC to sample at incorrect instances, thereby,

corrupting the output signal. Jitter can occur in two ways depending upon how the sampling

operation is performed. Aperture jitter is due to the noise that occurs in the sample and

hold circuitry of the ADC. If the sampling operation is done by means of an external clock

generated by an oscillator then the jitter is due to the phase noise inherent in the oscillator.

One of the straightforward ways of reducing the effect of jitter is to design better quality

ADCs. ADC performance is typically characterized by its resolution (number of bits per

sample) and SNR [59]. The effect of jitter is decreased SNR and resolution of the ADC,

especially, for high sample rates for which it is more pronounced. The other scheme is to

employ digital signal processing methods to compensate the effects of jitter at the receiver.

With respect to OFDM, it is shown in [43], that jitter causes two effects:

• it introduces phase noise whose effect is manifested in the form CPE and ICI.

• it introduces waveform noise whose effect is to cause additive interference termed as

jitter excess noise (JEN).

Thus, the compensation of jitter in OFDM consists of estimating the CPE and ICI induced

by the phase noise process for which existing phase noise mitigation techniques can be used.

However, the estimation of JEN is still to be investigated.

2.3 Modeling of Phase Noise

Oscillators form one of the key components in any communication system and more broadly

in any digital system. In most digital systems, oscillators are typically used for timing



CHAPTER 2. RECENT ADVANCES IN OFDM IMPAIRED BY PHASE NOISE 12

synchronization. However, w.r.t. analog transmissions through the channel, their use for

frequency translation between baseband and RF is unique.

An ideal oscillator generates a pure sinusoid which is used to modulate the baseband

signal. A complex representation of such a signal is

a(t) = Ae2πfct, (2.1)

where fc denotes the frequency of oscillation and A is the amplitude of the complex tone.

The frequency translation of the input signal to RF takes place by multiplying it with oscil-

lator signal a(t). However, because of inherent imperfections in oscillators [47], a practical

oscillator output signal will be of the form

a(t) = A(1 + α(t))e(2πfct+θ(t)), (2.2)

where the respective α(t) and θ(t) denote the amplitude and phase modulation of the

carrier. These amplitude and phase modulating signals are termed as amplitude and phase

noise respectively. The effect of these undesirable quantities is shown in Fig. 2.2. In the

figure, we have ignored the amplitude noise which in general is quite small. The spreading

of the oscillator spectral density due to phase noise causes interference from neighboring

channels in single carrier systems and interference between sub-carriers in OFDM (multi-

carrier) [41]. Thus, in order to understand its impact on the performance of communication

systems accurate modeling of phase noise processes is essential [26].

The characterization of phase noise is typically done in the frequency domain by analyzing

its PSD. The power law model for the PSD of the phase noise is the most widely used and

has been found to closely match with measurements of most practical oscillators [3,47,48].

This power law model is given below as

Sθ(f) =
4
∑

i=0

hi

f i
, (2.3)

where Sθ(f) denotes the PSD of the phase noise process θ(t) and the coefficients hi depend

on the specific oscillator used. For most oscillators, high slopes of PSD (e.g., 1/f4 or 1/f3)

occur for values of f close to the carrier frequency while lower slopes of flicker noise (1/f)

and white noise (1/f0) occur at large frequency offsets from the carrier frequency. A typical

plot in the log scale is shown in Fig. 2.3. Thus, we observe from the figure that steep slopes

of the PSD correspond to the low offset frequencies and high frequencies are associated with

less steep ones. However, not all of terms are present in (2.3). For example, in two port

devices, the phase noise PSD cannot be steeper than 1/f [47]. Although, the exponents
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Figure 2.3: Phase noise power spectral density

in the power model take integer values, in practice these are non-integer values that can

be approximated to the nearest integer. From (2.3), a common method used to estimate

the phase noise process would be to pass white Gaussian noise as input to a linear-time-

invariant filter such that PSD of the output filter matches closely with measured PSD of

the phase noise [15]. Although, the PSD of the phase noise is crucial to understanding its

effect on communication systems, it is the PSD of the oscillator output that is generally

used as a measure of its spectral purity. A general expression relating the PSD of the phase

noise and the oscillator PSD of (2.2) can be found in [48].

The above power law model of the PSD of phase noise, that is widely used in the literature,

is typically obtained by applying either linear time invariant or time variant techniques

to the oscillator in question [11]. Although, these methods provide a simple and easy

understanding on the behavior of phase noise in oscillators, fundamental issues like infinite

power of the oscillator PSD at the zero offset frequency which the method predicts do not

hold in practice. In their seminal works [10, 11], the authors undertake a radical approach

to understand the behavior of phase noise on open loop oscillators and oscillators with

feedback. By considering a general model for the oscillator [11], the authors use non-linear

perturbation analysis for the noisy oscillator, where the noise contributions, from different

components that make up the oscillator, are modeled as white Gaussian noise sources.

The authors show that asymptotically, the phase noise becomes a Brownian motion or

Wiener process and the oscillator PSD follows a Lorentzian spectrum (see (3.29) of Chapter

3). In [10], the authors generalize the approach for a combination of white and colored

Gaussian noise sources that arise in the different components that make up the oscillator.

They show that the oscillator PSD, for frequencies close to the carrier, becomes essentially a

Lorentzian spectrum while for large frequency offsets, the white noise sources cause a 1/f2
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fall and the colored noise sources cause 1/f2 fall multiplied with the spectral density of the

colored noise sources (implies that the colored noise sources are stationary processes).

Building on the foundations of the principles used in [10,11], the analysis in [29] focuses

on phase noise for closed-loop oscillators or phase-locked loops (PLL). A typical PLL com-

pares the phase of the voltage-controlled oscillator (VCO) with a reference oscillator whose

difference, after filtering through a loop filter, is used to control the VCO input. As the

reference signal is not part of the loop, the phase noise of the reference oscillator is mod-

eled as Brownian motion. By taking into account various noise sources (modeled as white

Gaussian processes) in the PLL (the loop filter, the phase comparator and the components

that make up the VCO), the authors show the resulting phase noise of the VCO output is

a sum of two stochastic processes. One is the Wiener phase noise process of the reference

oscillator and the other is a Ornstein-Uhlenbeck process [16]. The author also shows that

the output PSD of VCO output, for low offset frequencies, follows the PSD of the reference

oscillator while for large offsets the PSD follows the spectrum of the open loop VCO output.

2.4 Performance Analysis

In this section, we briefly review much of the literature related to analyzing the effect of

phase noise on OFDM. We more or less use a time-line approach in reviewing the literature.

In earlier literature, the phase noise effects are typically measured in terms of the signal-to-

noise-plus-interference (SINR) ratio and bit-error rate (BER) or symbol error rate (SER).

The initial work by Pollet et al. in [41] shows that OFDM is more sensitive to frequency

offset and phase noise when compared to its single-carrier counterpart. They derive the

degradation in the SINR for the single and multi-carrier (OFDM) case. For the frequency

offset and phase noise, the degradation, for single and multi-carrier, is proportional to the

offset and the 3dB bandwidth of the phase noise process (assuming a Wiener phase noise

model), respectively. However, a larger degradation for OFDM comes from the fact that,

the degradation is also proportional to the number of subcarriers.

In [58], Tomba provides BER analysis for Wiener phase noise impaired OFDM with four

modulation schemes namely, BPSK, QPSK, DBPSK and DQPSK with DBPSK performing

the best. Although analytical expressions of the BERs are derived, they need to be evaluated

numerically and clear insight is not obtained into the behavior of phase noise on BER

curves from the expressions. Another drawback with the above analysis is the assumption

of independence between the CPE and ICI, and also the Gaussianity assumption of the ICI

which is not necessarily true [51].

In [50], Santhanathan and Tellambura derive the probability of symbol error conditioned

on a fixed realization of the phase noise process. Since frequency offset is a deterministic
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case of phase noise, the conditional probability becomes the exact symbol error probability.

However, for phase noise, the symbol error probability is a random variable and to obtain

its average, we need to average over the distribution of the DFT of the phase noise process.

In [15], Armada discusses how high phase noise levels can be tolerated if proper phase

noise correction schemes are employed. The phase noise model is described by passing white

Gaussian noise through a lowpass filter that accurately matches the power spectral density

(PSD) of the phase noise. As expected the SINR degradation is larger for high phase noise

levels implying a larger passband cutoff frequency of the lowpass filter. After applying a

CPE correction scheme, we would expect that SER decreases. This is valid only when

passband cutoff is well within the subcarrier spacing as the CPE is the dominant factor

contributing to high SER and degradation. For high phase noise levels, the ICI is dominant

and just CPE correction does not improve the SER. Thereby, employing proper correction

schemes in order to achieve a target SER and SINR, tolerable phase noise levels can be

allowed at the oscillators which reduces costs.

In [49], the authors use a non-linear (cf. linear in previous works) approximation of phase

noise. The authors derive the SINR and its degradation and show how previous works

of SINR degradation are special cases of the non-linear approximation method, thereby

being more applicable to high phase noise levels. However, the approximation is only up

to the second-order polynomial. The work by Wu and Bar-Ness in [56] generalizes the

analysis to any phase noise level while also considering a multi-path fading channel unlike

AWGN channels in previous literature. Clear insight is obtained from the closed-form SINR

expressions that the degradation depends on the subcarrier spacing and 3dB bandwidth of

the phase noise process. However, the analysis is for Wiener phase noise.

In [4], Bittner et al. provide a semi-analytical approach for evaluating the SER and ca-

pacity. The analysis includes impairments of phase noise and power amplifier non-linearities

while also considering channel estimation errors. They derive the PDF of the decision vari-

able, which is the input to the detector, conditioned on a fixed transmitted symbol and

fixed realization of the DFT of phase noise. Thus, given the PDF, one can evaluate the

probability of correct decision and hence the symbol error probability. However, the PDF is

first averaged over the distribution of the DFT of the phase noise which is then used in the

error probability calculations. This averaging is done numerically as so far there is no know

closed-form expression for the joint PDF of the DFT of the phase noise. The throughput

is also evaluated from the PDF of the decision variable [61].

One of the major controversies with regard to phase noise in OFDM is the characteriza-

tion of the distribution of the ICI. In evaluating the BER and SER, most previous works

assume a Gaussian distribution for the ICI when the number of subcarriers is very large.

Because the ICI is composed of interference from other subcarriers, then by the central limit
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theorem, if the number of subcarriers is large then the resulting distribution tends toward

a Gaussian distribution. However, some of the work in [37,38,51] clearly demonstrate that

this does not hold even when the number of subcarriers is large. This is because the ICI

is mainly composed of interference from the neighboring subcarriers because typical phase

noise processes are low-pass processes and practically zero interference occurs from far away

subcarriers. Hence, the central limit theorem no longer holds. In [38], the authors derive

two ways of computing the ICI power. One is by using the correlation matrix between the

DFTs of the phase noise process and the second is by using the PSD of the phase noise

process. The analysis is applicable to both free-running oscillators (characterized by Wiener

phase noise process) as well as PLL realizations. The test for Gaussianity of the ICI is done

by using the kurtosis statistic which requires knowledge of the mean and variance of the ICI.

For a Gaussian random variable, the kurtosis is zero and in the case of the ICI, it clearly is

shown to be a positive quantity. However, for very high phase noise level, the authors show

that the kurtosis approaches zero and, hence, conclude the Gaussianity of the ICI.

In [51], Schenk sheds more light into the non-validity of the Gaussian distribution by

deriving the distribution of the ICI term. It is clearly shown that the ICI distribution

is characterized by thicker tails when compared with the Gaussian distribution. Typical

performance measures like BER and SER are characterized by the tail probabilities of the

additive noise that corrupts the desired symbol. Thus, using a Gaussian approximation

severely underestimates the BER and SER. Also, it is visible that the Gaussian approxi-

mation works well for very high phase noise levels or more specifically for high ratios of the

3dB bandwidth of the phase noise process and the subcarrier spacing. However, in practice,

this ratio is kept much less than one, thus requiring to not assume a Gaussian distribution

for the ICI.

More literature related to phase noise analysis can be found in [8,12,19,20,27,31,35,36,40,

44, 55]. In conclusion, phase noise has a detrimental effect on the performance of systems

employing an OFDM modulation scheme and, thus, necessitates the use of high-quality

oscillators at the transmitter and receiver. However, given cost constraints, effective com-

pensation techniques to mitigate the effects of phase noise need to be used. In the following

section, we briefly review some of the literature related to phase noise compensation.

2.5 Compensation Techniques

The problem formulation of phase noise compensation can be stated as follows. Treating

the ICI as noise or more specifically Gaussian noise, the goal is to estimate the CPE which

is common to all subcarriers. Most of the literature related to phase noise compensation

make this assumption of Gaussianity for the ICI, which does not generally hold in practice.
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For low and reasonable phase noise levels, the ICI is not Gaussian irrespective of the number

of subcarriers [38]. In [39], however, the radical approach of estimating the ICI along with

the CPE is undertaken.

Phase noise compensation can be broadly classified into the following types.

• Pilot based

• Non-pilot based or decision directed

In a practical OFDM system, a fraction of the total number of subcarriers is allocated for

pilot data which can be used also for synchronization purposes. Pilot based schemes make

use of these pilot data to estimate the CPE and ICI in a phase noise impaired OFDM

system. Non-pilot based or decision directed schemes make use of past detected symbols

in the estimation and suppression of phase noise. In the following paragraphs, we briefly

review some of them.

Maximum-likelihood (ML) based estimation techniques are proposed in [36]. The work

includes the combined effect of frequency offset and phase noise. By treating the ICI as

additive Gaussian noise, the goal is to estimate the CPE which now also includes the effect of

the frequency offset. By assuming that the CPE of the current OFDM symbols is a product

of the CPE of the previous OFDM symbol (whose estimate is available) and a residual term,

the authors derive the ML estimator for this residual component. The residual component is

obtained by averaging out the rotation experienced by all the subcarriers assuming that we

know the transmitted symbols. These symbols can be obtained either as pilot data (pilot

based estimation) or an initial estimate of these symbols can be used for the estimation

(decision directed).

A time-domain phase noise compensation algorithm is proposed in [6]. In the time

domain, at each time instant, the OFDM signal is rotated by the phase noise process

(φ[n] = eθ[n]), where θ[n] denotes the phase noise. Thus, in order to recover the OFDM

signal, we could multiply the received signal with the conjugate of φ[n]. One of the goals

of the paper is, thus, to estimate φ∗[n]. This is done by realizing that any time domain

signal can be represented by a set of basis functions. This time domain signal is obtained by

a transformation from the frequency domain to the time domain. Effectively, the authors

try to estimate the frequency components of φ∗[n] using a least-squares estimator. The

accuracy of the algorithm depends upon how many basis functions are used to estimate the

phase noise process. The authors show that by choosing only one basis function, thereby,

estimating only the DC frequency component, their estimator reduces to the ML estimate of

the CPE derived in [36] (see paragraph above). The authors also compare the performance

between choosing a DFT and DCT basis.
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In [39], Petrovic et al. provide a very similar idea to compensate for the effect of phase

noise. At the receiver side after the operation of the DFT, the received OFDM symbol

is corrupted by CPE and ICI. The aim is, thus, to estimate the DFT of φ[n] = eθ[n]

(which is choosing a DFT basis in [6] (see the above paragraph). However, the authors

use a minimum mean square error (MMSE) estimator when compared to the least-squares

estimator of [6] with the other difference being that the final compensation is done in

the frequency domain. Although, the proposed method works well, the MMSE estimator

used is based on the principle idea that the parameters to be estimated are drawn from a

Gaussian distribution. The DFT coefficients of φ[n] are generally not Gaussian distributed

random variables. Thus, knowledge of their exact distribution would improve the estimation

accuracy.

In [64], Wu and Bar-Ness propose a pilot based phase noise suppression scheme for OFDM

based WLANs systems. By utilizing the preambles in the IEEE 802.11a standard, the au-

thors arrive at a MMSE estimator [22, Chapter 10] for the transmitted symbols. For the

802.11a standard, the total number of subcarriers is 64 (48 data, 4 pilot and 12 null sub-

carriers). The derived MMSE estimator is done for each subcarrier and requires knowledge

of the channel, which is estimated by means of the preambles, the CPE and the variance of

the ICI plus AWGN. The CPE is estimated by using the least-squares estimator [22, Chap-

ter 8]. The variance of the total noise (ICI plus AWGN) term is estimated from the null

subcarriers.

Another time-domain phase noise compensation method is developed in [54]. The aim

is to estimate the average phase shift that occurs due to phase noise during one OFDM

symbol. With this average phase shift, a linear interpolator is used to approximate the

phase noise process multiplying (φ[n]) the time-domain OFDM signal. This average phase

shift is obtained by recognizing that the tail of the OFDM signal is the same as the cyclic

prefix ( i.e., the head). Thus, by correlating these two regions of the OFDM signal, an

estimate for the average phase shift is obtained.

In [46], a phase noise equalization algorithm in the time domain is proposed. By lineariz-

ing the phase noise process, i.e., linear in time, estimates of the parameters of this linear

model are determined for each OFDM symbol. A direct application of this linear model

would be the compensation of constant frequency offset which is characterized as being

linear. The parameters are determined by correlating the phase compensated symbols with

the non-phase compensated symbols. Because of the dependence on the decisions of the

detector, this scheme operates in a decision directed fashion and requires no prior pilot data

to be known.



Chapter 3

System Model

Our starting point is to derive the OFDM system model impaired by phase noise. The aim is

to derive the instantaneous SINR and hence capacity and show its dependence on the phase

noise process and on the channel. An approximation to the system model is then obtained

where we make use of the fact that, for most practical purposes, the 3dB bandwidth of

the oscillator power spectral density is small compared to the subcarrier spacing. With

the approximated system model, we go on to derive the instantaneous SINR. Simulations

confirm that this approximation is well justified. We explicity show the dependence of the

SINR on what we call the ‘ICI power’ which is a sum of the magnitude squares of the DFT

of the phase noise process excluding the DC component.

3.1 Phase Noise Impaired OFDM System
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Figure 3.1: OFDM system impaired by oscillator phase noise

A typical OFDM system with Nc subcarriers is shown in Fig. 3.1. The input symbol

vector s, with elements {sj}Nc−1
j=0 , is converted to the discrete time domain by the inverse

discrete Fourier transform (IDFT) operation. Cyclic prefix is added to combat intersymbol

interference followed by the parallel-to-serial and digital-to-analog conversion to obtain the

baseband signal u(t). We can write the discretized version, u[n], of u(t) using matrix

19
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notation, in terms of the transmitted symbol vector s as follows

u = CAF−1s, (3.1)

where F and CA are the respective Nc ×Nc DFT matrix and Nt ×Nc cyclic prefix addition

matrix. The cyclic prefix length is Nt − Nc with Nt being the OFDM symbol length in

samples. The DFT and cyclic prefix matrices are defined as

F =

































1 1 1 . . . 1

1 W 1 W 2 . . . W (Nc−1)

1 W 2 W 4 . . . W 2(Nc−1)

...
...

...
. . .

...

1 W (Nc−1) W 2(Nc−1) . . . W (Nc−1)2

































, (3.2)

CA =









0 I(Nt−Nc)

INc









, (3.3)

where W = e−j 2π
Nc , the Nc × Nc identity matrix is denoted by INc and 0 is an all zero

matrix with dimensions (Nt − Nc) × (2Nc − Nt). This baseband signal is converted to RF

by the transmit oscillator aT (t) = ej(2πfct+θT (t)) with transmit phase noise θT (t) and carrier

frequency fc. The transmitted RF signal is given by

x(t) = u(t)ej(2πfct+θT (t)),

=
(

u(t)ejθT (t)
)

ej(2πfct). (3.4)

In the above equation, u(t)ejθT (t) is the complex envelope [18, Appendix 2] of the bandpass

signal x(t). The RF signal passes through a bandpass channel h̃(t) = h(t)ej2πfct, h(t) being

the complex envelope, which at the receiver is obtained as y(t). Mathematically, the received

RF signal can be expressed as

y(t) = x(t) ∗ h̃(t) + ñ(t),

=
((

u(t)ejθT (t)
)

∗ h(t) + n(t)
)

ej2πfct, (3.5)

where (3.4) was used to arrive at the above equation and ñ(t) = n(t)ej2πfct denotes the

receiver noise. The received RF signal is converted back to baseband by the receive oscillator
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aR(t) = e−j(2πfct−θR(t)), where θR(t) denotes the receiver phase noise. The relationship

between the received RF and baseband signals is given by

v(t) = y(t)e−j(2πfct−θR(t)),

=
(

y(t)e−j(2πfct)
)

ejθR(t). (3.6)

Using (3.5) in (3.6), the received baseband signal v(t) can be expressed in terms of the

transmitted baseband signal u(t) as follows

v(t) =
((

u(t)ejθT (t)
)

∗ h(t)
)

ejθR(t) + n(t)ejθR(t). (3.7)

The signal v(t) is converted to the discrete time domain by applying the analog-to-digital

and serial-to-parallel operations to obtain v[n]. From (3.7), v[n] can be expressed in matrix

notation as

v = PRGPT u + nr, (3.8)

where G denotes the Nt × Nt convolution matrix of the channel and is defined as

G =

































h[0] 0

...
. . .

h[L − 1] . . . h[0]

. . .
. . .

0 h[L − 1] . . . h[0]

































. (3.9)

The impulse response h[n] is the discrete time equivalent of the complex envelope h(t) of

the channel. The noise vector is given by nr whose elements are the discrete version of

n(t)ejθR(t). The PT and PR diagonal matrices with dimensions Nt × Nt are defined below

as

PX = diag
[

ejθX [mNt] ejθX [1+mNt] . . . ejθX [Nt−1+mNt]
]

, (3.10)

where the integer m refers to the mth OFDM symbol.

The signal v[n] is converted to the discrete frequency domain by applying the DFT

operation, before which the cyclic prefix is removed, to obtain the received symbol vector r

with elements {rj}Nc−1
j=0 as shown in Fig. 3.1, i.e.,

r = FCRv, (3.11)
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where CR is the Nc × Nt cyclic prefix removal matrix and is defined as

CR = [0 INc] . (3.12)

Substituting (3.8) and (3.1) in (3.11), the expression relating r and s can be derived to

obtain the equation below

(3.13)
r = FCRPRGPT CAF−1s + FCRnr,

= FCRPRCAF−1HFCRPTCAF−1s + n,

= Vs + n.

In arriving at (3.13), we made use of the fact CRGCA = F−1HF, i.e., the matrix

CRGCA is circulant and hence is diagonalizable by the DFT matrix [14]. The elements of

the diagonal Nc × Nc H matrix are Nc point DFTs of h[n]. It is defined as

H = diag
[

H0 H1 . . . HNc−1

]

, (3.14)

where Hl =
∑L−1

n=0 h[l]e−j 2πnl
Nc , l = 0, 1, . . . , Nc − 1. From the definition of the DFT, cyclic

prefix, PT , PR and H matrices, the matrix V in (3.13) can be derived to be obtained as

V =

























∑Nc−1
i=0 δR

i Hiδ
T
−i

∑Nc−1
i=0 δR

i Hiδ
T
−i+1 . . .

∑Nc−1
i=0 δR

i Hiδ
T
−i+Nc−1

∑Nc−1
i=0 δR

i−1Hiδ
T
−i

∑Nc−1
i=0 δR

i−1Hiδ
T
−i+1 . . .

∑Nc−1
i=0 δR

i−1Hiδ
T
−i+Nc−1

...
...

. . .
...

∑Nc−1
i=0 δR

i−Nc+1Hiδ
T
−i

∑Nc−1
i=0 δR

i−Nc+1Hiδ
T
−i+1 . . .

∑Nc−1
i=0 δR

i−Nc+1Hiδ
T
−i+Nc−1

























,

(3.15)

where δX
i = 1

Nc

∑Nc(m+1)−1
n=mNc

ejθX [n]e−j2πin/Nc , X ∈ {T,R}, is the Nc point DFT of ejθX [n]

and m refers to the mth OFDM symbol, i.e., m = 0, 1, . . .. The discrete-time equivalent of

θX(t) is given by θX [n]. With the V matrix defined above, the jth received subcarrier is

given by

(3.16)rj =
(

Nc−1
∑

i=0

δR
i−jHiδ

T
−i+j

)

sj +
Nc−1
∑

k=0,k 6=j

(

Nc−1
∑

i=0

δR
i−jHiδ

T
−i+k

)

sk + nj.

The white Gaussian receiver noise is denoted by nj with variance σ2
n.

From (3.16), we see that the transmitted data sj on the jth subcarriers phase rotated

which is called the common phase error (CPE) along with unwanted interference from other

subcarriers with data sk termed as intercarrier interference (ICI). In the absence of phase

noise, i.e., θX [n] = 0, ∀ n, hence δX
i = 1 only for i = 0 and zero elsewhere, and V, thus,
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reduces to a diagonal matrix of elements Hi, i = 0, 1, . . . , Nc−1. This is easily visualized in

Fig. 3.2a which shows the spectrum of an OFDM signal with three orthogonal subcarriers.

Note the subcarriers are not the dirac delta functions but sinc functions (sinc(x) = sin(πx)
πx ),

because of the rectangular time window that is used to obtain one OFDM symbol in the

time domain. These sinc functions would be weighted by transmitted symbols sj at the

transmitter end. For simplicity and ease of understanding, we have neglected the effect of

the channel in the figure. Clearly at the DFT sampling instants, there is no interference from

other subcarriers. The scenario does not change even when we have a channel (provided the

Doppler bandwidth is small) except that the DFT sampling instants are weighted by the

channel frequency response. Contrast the case when we have phase noise and the spectrum

would look as in Fig. 3.2b. We see from the figure that at the DFT sampling instants, each

subcarrier is affected by the sidelobes from other subcarriers, with larger interference from

neighbouring subcarriers compared with subcarriers that are further apart.

3.2 Approximation to the System Model

The weights of the symbols in (3.16) represent the output of a circular convolution operation

of (δR
i−jHi) ∗ δT

i . In the absense of phase noise, the PSD of the oscillator will have only

a spectral component at the carrier frequency. However, this is an idealistic scenario and

most practical oscillators, because of phase noise, will see the spreading of its PSD (nonzero

δX
i ), around the carrier frequency, whose power decreases with increasing frequency. The

amount of spread is characterized by the 3dB bandwidth of the PSD. For most oscillators,

the 3dB bandwidth is small compared with the subcarrier spacing fsub. Thus, δR
i−j has

its maxima at i = j and the power decreases rapidly around this frequency and we may

approximate

δR
i−jHi ≈















0 for large i − j

δR
i−jHj for small i − j

i.e., the channel is coherent around the frequency i = j. This is a reasonable assumption

as the main lobe of the PSD for most oscillators is in the order of a few kiloHertz which is

well within the coherence bandwidth of most channels. Consequently, we can approximate

the weights as follows

(3.17)(δR
i−jHi) ∗ δT

i ≈ Hj

(

δR
i−j ∗ δT

i

)

= Hjδi−j ,

where

(3.18)δi−j =
1

Nc

Nc(m+1)−1
∑

n=mNc

ej(θT [n]+θR[n])e−j(2π(i−j)n)/Nc .
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Figure 3.2: Comparison between OFDM frequency spectrum with and without phase noise.

The expression for δi−j was obtained by making use of the Fourier transform property that

convolution in the frequency domain is equivalent to multiplication in time domain. Using
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(3.17), (3.16) can be closely approximated as

rj = Hjδ0sj + Hj

Nc−1
∑

k=0,k 6=j

δk−jsk + nj. (3.19)

3.3 Signal to Interference-Plus-Noise-Ratio

In order to evaluate the SINR per subcarrier, we assume first that the input symbols

{sj}Nc−1
j=0 are independent of each other. The noise nj is also assumed independent of the

input symbols as well as of the phase noise. The channel coherence time [42] is typically

larger compared to the OFDM symbol length, and thus, Hj can be assumed constant over

the symbol length. From (3.19), taking the expectation of |rj|2 conditioned on fixed δk and

Hj we have

(3.20)E
[

|rj |2
∣

∣

∣Hj, δk

]

= |Hj |2|δ0|2σ2
s + |Hj|2

Nc−1
∑

k=0,k 6=j

|δk−j |2σ2
s + σ2

n,

where σ2
s = E

[

|sj |2
]

, σ2
n = E

[

|nj|2
]

are the respective signal and noise powers. The SINR

for the jth subcarrier can then be expressed as

γj =
|Hj|2|δ0|2σ2

s
(

|Hj |2
∑Nc−1

k=0,k 6=j |δk−j|2
)

σ2
s + σ2

n

. (3.21)

From the definition of δk in (3.18), by the Parseval’s theorem we have

(3.22a)
1

Nc

Nc−1
∑

k =0

|δk|2 =
Nc−1
∑

k=0

|e
j(θT [n]+θR[n])

Nc
|2,

(3.22b)
Nc−1
∑

k=0

|δk|2 = 1 , and, hence, |δ0|2 = 1 −
Nc−1
∑

k=1

|δk|2.

Using (3.22b) in (3.21), we have the final expression for the SINR as

γj =
1 − y

y + σ2
n

σ2
sgj

, (3.23)

where

y =
Nc−1
∑

k=1

|δk|2, gj = |Hj|2. (3.24)

In arriving at (3.23), we have used the fact that, irrespective of index j, the summation in

the denominator of (3.21) would be composed of the same {δk}Nc−1
k=1 .
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Figure 3.3: Comparison between average SINR γj and the SINR corresponding to (3.16).
The dashed lines represent γj. OFDM system parameters are chosen as follows: Bandwidth
is 20MHz, Nc = 1024 and fsub = 19.531kHz. The 3dB bandwidth of the oscillator PSD
is denoted by f3dB. Channel is Rayleigh fading with five taps and coherence bandwidth is
300kHz with exponential power-delay profile.

We now spare a moment in giving a meaningful name to y. From the definition of y in

(3.24), we see that it is always composed of unwanted subcarriers that cause interference to

the desired subcarrier. It can be looked as the total power of the interfering subcarriers. It

is, hence, fitting to call y as the ICI power. From (3.22b), we see that the power of the CPE

and ICI power always add up to one, and hence can be looked as being complementary to

one and another.

Using simulations, we show that the system model in (3.19) is a good approximation to

(3.16). The comparison between these system models is done in terms of the average SINR.

Figure 3.3 shows the average SINR plots corresponding to (3.23) compared with the exact

SINR one would obtain using (3.16). Clearly, Fig. 3.3 justifies the use of the SINR as in

(3.23) and hence of the signal model in (3.19).

Denoting the respective random variables of the realizations y and gj by Y and Gj , (3.23)

shows how the SINR depends on the phase noise process (at the transmitter and receiver)

and the channel. Because Y and Gj can be assumed independent of each other, the average

SINR (or average of any function of the SINR) is obtained by sequentially averaging over

the PDFs of Y and Gj . Assuming a Rayleigh fading channel, our aim now is to determine

the PDF of Y , which we derive in Chapter 4, before which, we digress in the following
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section to discuss the Wiener phase noise model.

3.4 Wiener Phase Noise Process

It is shown in [11] that, for autonomous oscillators, as t → ∞, the phase noise θ(t) becomes

asymptotically a Gaussian process with variance σ2 = ct that linearly increases with time,

c being the rate of the variance whose value depends on the kind of oscillator used. We can

describe such a process as being a Wiener process or Brownian motion.

Definition A process is said to be Wiener if it satisfies the following

• θ(0) = 0.

• θ(t2) − θ(t1) ∼ N (0, c(t2 − t1)) for all t2 ≥ t1 ≥ 0.

• θ(t1), θ(t2) − θ(t1), θ(t3) − θ(t2) . . . θ(tn) − θ(tn−1) are all independent increments for

all tn ≥ tn−1 ≥ tn−2 . . . t2 ≥ t1.

Here X ∼ N (µ, σ2) denotes the random variable X follows a Gaussian distribution with

mean µ and variance σ2. A discrete Wiener process θ(nTs) is obtained by sampling its

continuous-time counterpart θ(t). From the third property of a Wiener process, we have

the following

θ[n] =
n
∑

i=0

ε(i), (3.25)

where, by definition of the Wiener phase noise process, θ[0] = ε(0) = 0 and ε(i) = θ[i] −
θ[i−1] are the independent increments drawn from a zero mean Gaussian distribution with

variance [52] given below as

σ2 = cTs =
c

fsubNc
=

4πf3dB

fsubNc
. (3.26)

Another means of characterizing the phase noise process θ(t) is by looking at the PSD of

the oscillator. Although from the definition of the Wiener process, we see that the process is

non-stationary with variance increasing with time, suggesting a non-stable system, however,

the oscillator process a(t) = ej(2πfct+θ(t)) is a stationary process and hence a stable one [52].

This is easily verified by taking the auto-correlation function of a(t) i.e.

Ra(t, t + τ) = E [a∗(t)a(t + τ)] = e−
1

2
c|τ |ej2πfcτ , (3.27)

where we made use of the second property of Wiener process and that for X ∼ N (0, σ2),

we have

E
[

ejX
]

= e−
1

2
E[X2]. (3.28)



CHAPTER 3. SYSTEM MODEL 28

10 100 1000 10 000 100 000
f - logscale

-100

-80

-60

-40

PSD

Figure 3.4: PSD of oscillator impaired by Wiener phase noise. The 3dB bandwidth is chosen
as 80Hz.

Clearly, from (3.27), we see no time dependence of the autocorrelation function. The PSD

of oscillator is obtained by taking the fourier transform of (3.27) to obtain

S(ω) =
c/2

(∆ω)2 + (c/2)2
, (3.29)

where ∆ω = 2(πf−πfc). Clearly, (3.29) shows the spreading of the spectrum in comparison

to an ideal oscillator. The slope of the PSD can be used as measure of the spread. For

reasonably small 3dB bandwidths of PSD, we can approximate (3.29) as

S(ω) =
c/2

(∆ω)2
, (3.30)

from which we get a -20dB/decade slope from the 3dB bandwidth onwards. Figure (3.4)

shows a typical oscillator single side band PSD plot for the Wiener phase noise. It is

obtained by evaluating (3.29) only for positive ∆ω and multiplying the result by a factor

of two. With this phase noise model in mind, we now proceed, in the next chapter, to

determine the distribution of the ICI power of (3.24).



Chapter 4

Probability Density Function of

the ICI Power

In the previous chapter, we showed the dependence of the instantaneous SINR, in (3.23),

on the phase noise process through the random variable Y defined in (3.24). We call Y as

the ICI power from its very definition. The knowledge of the distribution of the ICI power

provides means to evaluate statistical measures such as average SINR, average capacity etc.

In this chapter, we show that, for the Wiener phase noise process, the ICI power can be

expressed as a sum of gamma random variables using a Taylor series approximation. The

validity of the approximation requires that the ratio of the subcarrier spacing and the 3dB

bandwidth of the oscillator PSD to be large. In Chapter 6, we quantify this ratio over which

the approximation holds and is true for most practical oscillators and standards. With this

meaningful characterization of the ICI power, we next derive the PDF of a sum of gamma

variables. A similar result was derived in [2, Eq. (5)]. The PDF, however, is applicable only

when square root of the normalized covariance matrix of the gamma variables is full-rank.

We generalize the result for the rank-deficient case and apply it to Y . Finally, for the Taylor

series approximation of Y , we present the structure of the normalized covariance matrix of

the gamma variables. This is necessary as the parameters of the PDF are the eigenvalues

which are obtained from this matrix.

4.1 Taylor Series Approximation of the ICI Power

Proposition 4.1.1 As long as the accumulated variance of the Wiener phase noise process

over one OFDM symbol is sufficiently small, i.e., σ2
max = (Nc − 1)σ2, y is a sum of N =

29
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Nc(Nc−1)
2 correlated gamma variables as follows

y =
Nc−1
∑

k=1

|δk|2 ≈
Nc−1
∑

l=1

Nc−l
∑

i=1

Zil, (4.1)

where Zil follows a gamma distribution with parameters α = 1/2 and βl = 2σ2l
N2

c
(Zil ∼

G(1/2, 2σ2l
N2

c
)) and is given as

Zil =
1

2
βl

(
∑l−1

j=0 ε(i + mNc + j)√
lσ

)2

. (4.2)

Proof: From (3.24), the expression for y is given as y =
∑Nc−1

k=1 |δk|2, where δk is given in

(3.18). Assuming independent transmit and receive phase noise processes, we can say that

the combined process θ[n] = θT [n] + θR[n] in (3.18) is still a discrete Wiener process. Using

(3.25) in (3.18), we can write the real and imaginary parts of δk as

(4.3a)Re{δk} =
1

Nc





Nc−1
∑

l=0

cos





mNc+l
∑

j=0

ε(j) − 2πk(mNc + l)

Nc







 ,

(4.3b)Im{δk} =
1

Nc





Nc−1
∑

l=0

sin





mNc+l
∑

j=0

ε(j) − 2πk(mNc + l)

Nc







 .

We denote the arguments of the cosine and sine functions in the above expression as

Al =
mNc+l
∑

j=0

ε(j) − 2πk(mNc + l)

Nc
. (4.4)

Squaring (4.3a) and (4.3b) and applying the following binomial expansion,

(4.5)

(

N−1
∑

i=0

xi

)2

=
N−1
∑

l=0

x2
l + 2

N−1
∑

l=1

N−l
∑

i=1

xi+l−1xl−1,

to the real and imaginary parts and then summing, gives the squared magnitude of |δk|2 as

follows

(4.6)

|δk|2 =
1

N2
c





Nc−1
∑

l=0

(

cos2(Al) + sin2(Al)
)

+ 2
Nc−1
∑

l=1

Nc−l
∑

i=1

cos(Ai+l−1) cos(Al−1)

+ sin(Ai+l−1) sin(Al−1)



 ,

=
1

N2
c



Nc + 2
Nc−1
∑

l=1

Nc−l
∑

i=1

cos(Ai+l−1 − Al−1)



 ,
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where the trigonometric identity cos(A) cos(B)+sin(A) sin(B) = cos(A−B) is used. Using

(4.4) in (4.6) and re-arranging the terms, we finally get

|δk|2 =
1

N2
c



Nc + 2
Nc−1
∑

l=1

Nc−l
∑

i=1

cos





l−1
∑

j=0

ε(i + mNc + j) − 2πkl

Nc







 . (4.7)

The arguments of the cosine functions in (4.7) are Gaussian random variables with mean

−2πkl
Nc

in which l = 1, 2, . . . , Nc − 1. For l = 1, the arguments have variance σ2. For

l = 2, the variance is 2σ2 and so on till l = Nc − 1 with variance equal to (Nc − 1)σ2.

If the largest variance σ2
max = (Nc − 1)σ2 is small enough, we can use a Taylor series

approximation around the point −2πkl
Nc

and restrict the approximation up to to the second

order polynomial. Doing this for the cosine term in above equation we have

|δk|2 ≈ 1

N2
c






Nc + 2

Nc−1
∑

l=1

Nc−l
∑

i=1

cos

(

−2πkl

Nc

)

−
Nc−1
∑

l=1

Nc−l
∑

i=1

sin

(

−2πkl

Nc

)





l−1
∑

j=0

ε(i + mNc + j)





−
Nc−1
∑

l=1

Nc−l
∑

i=1

cos

(

−2πkl

Nc

)





l−1
∑

j=0

ε(i + mNc + j)





2





.

(4.8)

Now, summing the above equation over k, i.e., the sum y =
∑Nc−1

k=1 |δk|2 reduces to (4.1)

after using the fact that
∑Nc−1

k=1 cos(−2πkl
Nc

) = −1 and
∑Nc−1

k=1 sin(−2πkl
Nc

) = 0.

Remark 4.1.2 Through the definition of σ2 in (3.26), we can write σ2
max as

(4.9)σ2
max = (Nc − 1)σ2 =

(Nc − 1)4πf3dB

fsubNc
≈ 4πf3dB

fsub
with Nc ≫ 1.

From (4.9), we see that fsub and f3dB determine the accuracy of the approximation in (4.1).

Now, for each l in (4.1), the gamma variables {Zil}Nc−l
i=1 have the same parameters of α = 1

2

and βl = 2σ2l
N2

c
.

In the following section, we derive the PDF of a sum of N gamma random variables with

normalized covariance matrix Mz. In [2, Eq. (5)], the PDF was derived using the moment

generating function (MGF) approach of [25]. This, however, is not applicable if the element-

wise square-root of Mz ( i.e., (Mx)ij =
√

(Mz)ij , i, j = 1, 2, . . . , N) is rank-deficient which

is the case for the gamma variables Zil in (4.2). Therefore, we generalize next the result

of [2, Eq. (5)] for the rank-deficient case and apply this to Y in (4.1).
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4.2 PDF of Sum of Gamma Variables

Let {Zn}N
n=1 be a set of N correlated gamma variates with normalized covariance matrix

Mz, i.e., Zn ∼ G(α, βn). Each Zn is constructed from a set of 2α i.i.d. N -dimensional

Gaussian random vectors, xi, i = 1, . . . , 2α, each with the same covariance matrix Mx [25],

i.e.,

Zn =
1

2
βn

2α
∑

i=1

x2
ni, n = 1, . . . , N, (4.10)

where (Mx)ij =
√

(Mz)ij , i, j = 1, 2, . . . , N [21]. The components of xi = [x1i, x2i . . . xNi]
T

are Gaussian random variables with zero mean and unit variance.

The PDF derived in [2, Eq. (5)] is obtained by first constructing the moment generating

function (MGF) of
∑N

n=1 Zn which assumes that Mx is full-rank. Comparing (4.2) with

(4.10), we have 2α = 1, and thus only one Gaussian random vector is used to generate Zil

∀ l = 1, 2 . . . , Nc − 1, i = 1, 2 . . . , Nc − l. The structure of this Gaussian vector from (4.1)

and (4.2) can be obtained as follows

x =
[

xT
1 xT

2 . . . xT
(Nc−1)

]T
, (4.11)

where xl is an (Nc − l) × 1 column vector with elements

(xl)i =
l−1
∑

j=0

(

ε(i + mNc + j)√
lσ2

)

, i = 1, 2 . . . , Nc − l. (4.12)

From (4.11) and (4.12), the covariance matrix Mx of x will be rank-deficient with rank

Nc − 1. This is because the elements of x are constructed from only Nc − 1 independent

Gaussian random variables. With this background, we present next the PDF of a sum of

gamma random variables for any rank of Mx.

Theorem 4.2.1 Let {Zn}N
n=1 be a set of N correlated gamma variates (Zn ∼ G(α, βn)) with

normalized covariance matrix Mz of any rank R ≤ N . Then, the PDF of Y =
∑N

n=1 Zn is

given as

(4.13)pY (y) =
R
∏

n=1

(

λ1

λn

)α ∞
∑

k=0

ζky
Rα+k−1e

−y
λ1

λRα+k
1 Γ(Rα + k)

,

where {λn}R
n=1 are the ordered eigenvalues of the matrix PBPT∆ with λ1 being the mini-

mum. The P and ∆ matrices are obtained from eigenvalue decomposition of Mx which is

related to Mz as

(4.14)(Mx)ij =
√

(Mz)ij, i, j = 1, 2, . . . , N.
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Mx = CΣCT , Σ =









∆R×R 0

0 0









, C =

[

c1 c2 . . . cR Ω1 Ω2 . . . ΩN−R

]

.

(4.15)

(4.16a)P = [c1 c2 . . . cR]T,

(4.16b)B = diag(β1 β2 . . . βN ) .

The weights ζk, k = 0, 1, 2, . . ., are given as

ζ0 = 1, ζk+1 =
α

k + 1

k+1
∑

i=1

(

R
∑

j=1

(1 − λ1

λj
)i
)

ζk+1−i. (4.17)

Proof: Let x be an N -dimensional Gaussian random vector with covariance matrix Mx of

rank R ≤ N . The multi-variate PDF of x is given as [30, Chapter 3]

pX(x) =
1

(2π)
R
2 |∆| 12

exp(
−1

2
xTM+

x x)
N−R
∏

k=1

δ(xTΩk), (4.18)

where M+
x is the pseudoinverse of Mx. The Dirac delta function is denoted by δ(·) and |∆|

is the product of the nonzero eigenvalues of Mx. The PDF defined above is quite intuitive:

It clearly shows that PDF of the random vector x is defined only in the R-dimensional

subspace spanned by the eigenvectors {ck}R
k=1 and is zero in the (N − R)-dimensional

subspace spanned by the vectors {Ωk}N−R
k=1 . This should be expected as a random vector x

having a covariance matrix of rank R ≤ N will always lie in an R-dimensional subspace [65,

Appendix C].

The MGF of Y is given by

E
[

esY
]

=

∫ ∞

−∞
esY p(Y )dY. (4.19)

Using (4.10), we can write Y =
∑N

n=1 Zn as follows

Y =
1

2

N
∑

n=1

2α
∑

i=1

βnx2
ni =

1

2

2α
∑

i=1

xT
i Bxi, (4.20)

where B is defined in (4.16b). Using (4.20) in (4.19) we have

E
[

esY
]

=

∫ ∞

−∞
. . .

∫ ∞

−∞
es 1

2

∑2α

i=1
xT

i BxipX1
(x1)dx1 . . . pX2α(x2α)dx2α, (4.21)

where the fact that, joint PDF of mutually independent {Xi}2α
i=1 is a product of their
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respective PDFs was used. Using (4.18) in the above equation, the MGF of Y becomes

MY (s) =
2α
∏

i=1

∫ ∞

−∞

e
1

2
sxT

i Bxie−
1

2
(xT

i M
+
x
xi)
∏N−R

k=1 δ(xT
i Ωk)

(2π)
R
2 |∆| 12

dxi,

=

[

∫ ∞

−∞

e−
1

2
xT[M+

x
−sB]x∏N−R

k=1 δ(xTΩk)dx

(2π)
R
2 |∆| 12

]2α

. (4.22)

The integrand in (4.22) will be non-zero only for vectors x in the R-dimensional subspace

and zero elsewhere. This implicitly means we perform the integration in an R-dimensional

subspace. Thus, in order to evaluate the above integral, we could equivalently do a trans-

formation y = Px from the N -dimensional space to an R-dimensional space, such that

• Null space of P is the (N−R)-dimensional subspace spanned by the vectors {Ωk}N−R
k=1 ,

i.e., Null(P) = span
{

Ω1Ω2 . . .ΩN−R

}

.

• P is an isometry w.r.t R-dimensional subspace of x and R-dimensional space of y.

The second condition ensures the Jacobian to be unity. Such a transformation P is defined

in (4.16a). Thus, expressing x = P+y = PTy and inserting this into (4.22) gives

MY (s) =

[

∫ ∞

−∞

e−
1

2
(PTy)T[M+

x
−sB]PTy∏N−R

k=1 δ((PTy)TΩk)dy

(2π)
R
2 |∆| 12

]2α

,

=

[

∫ ∞

−∞

e−
1

2
yT[(PMxPT)+−sPBPT]ydy

(2π)
R
2 |∆| 12

]2α

,

=

[

∣

∣

∣(PMxP
T)+ − sPBPT

∣

∣

∣

− 1

2

|∆| 12

]2α

. (4.23)

Now using (PMxP
T)+ = ∆+ = ∆−1 in (4.23), the MGF of Y becomes

MY (s) =

[

∣

∣

∣∆−1 − sPBPT
∣

∣

∣

− 1

2

|∆| 12

]2α

=
∣

∣

∣I − sPBPT∆
∣

∣

∣

−α
,

=
R
∏

n=1

(1 − sλn)−α, (4.24)

where the last step is obtained as used in [23] and λn are the R eigenvalues of the matrix

PBPT∆. Using the Moschopoulos technique [34] of inverting the MGF of Y , we obtain

the PDF in (4.13).

Remark 4.2.2 In the full-rank case, R = N , P = CT, ∆ = Σ and PBPT∆ = CTBMxC.
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Since C is a unitary matrix, the eigenvalues are the same as those of BMx, as was obtained

in [2].

4.3 PDF of ICI Power

The PDF of Y , defined in (4.1), is given by (4.13) with parameters

(4.25)R = Nc − 1, α =
1

2
, N =

Nc(Nc − 1)

2
.

The eigenvalues are obtained from PBPT∆. The diagonal matrix B with elements βn is

given as

(4.26)B =
2σ2

N2
c

diag
(

1T
(Nc−1) 2 · 1T

(Nc−2) 3 · 1T
(Nc−3) . . . (Nc − 1) · 1T

1

)

,

where 1i denotes an i-dimensional column vector of ones. The respective P and ∆ matrix

are obtained from Mz, given in Appendix 4.4, through (4.14), (4.15) and (4.16a).

Remark 4.3.1 From (4.26), we see that the eigenvalues {λn}R
n=1 are proportional to σ2

and hence to f3dB/fsub from (3.26).

Figure 4.1 shows the PDF plots of Y for two different values of f3dB . Clearly, Fig. 4.1a

shows good correspondence between the simulated and analytical PDFs while in Fig. 4.1b

one starts to see deviations. This is where the Taylor series approximation begins to break

down. As mentioned in the previous subsection, the approximation holds as long as σ2
max

is small. From (4.9), we see that in order for (4.1) to hold, fsub should be large compared

to f3dB . It is important to know at what value of σ2
max does the approximation become

intolerable. This tolerance limit can be specified depending upon the performance measure

one wants to evaluate. That is, it is chosen to be that value of σ2
max beyond which there

is significant difference between the simulated and analytical performance measure. We

specify this limit in terms of the average capacity which is elaborated more in Chapter 6.

In Fig. 4.2, the PDF of the ICI power is shown for differing values of the number of

subcarriers Nc. Visible from the figure is the effect of increased ICI power with increasing

Nc while keeping the bandwidth constant. This is because with increased Nc, the subcarrier

spacing reduces, the interference from unwanted subcarriers increases and thereby, increased

ICI power.
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Figure 4.1: Comparison between analytical and simulated PDF of Y . Bandwidth is 625kHz,
Nc = 32 and fsub = 19kHz.
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Figure 4.2: PDF of the ICI power for different values of Nc. The bandwidth of the OFDM
system is 625kHz. The oscillator PSD 3dB bandwidth is 200Hz.

4.3.1 Mean of CPE and ICI Power

It is interesting and useful to know the second-order statistics of the CPE and ICI power.

With the PDF of ICI power defined in (4.13) whose parameters are given by (4.25), we can

evaluate the mean as follows

Ȳ = E [Y ] ,

=

∫ ∞

0
ypY (y)dy,

=

∫ ∞

0
K

∞
∑

k=0

ζky
Rα+ke

−y
λ1

λRα+k
1 Γ(Rα + k)

dy,

= K
∞
∑

k=0

ζk

∫ ∞

0

yRα+ke
−y
λ1

λRα+k
1 Γ(Rα + k)

dy, (4.27)
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where K =
∏R

n=1

(

λ1

λn

)α
. The integral in the above equation is of the form [17, Eq (3.381.4)],

∫ ∞

0
xv−1e−µxdx = µ−vΓ(v). (4.28)

Applying (4.28) in (4.27) we get the final result for the mean as

Ȳ = K
∞
∑

k=0

ζk

(

1
λ1

)−(Rα+k+1)
Γ(Rα + k + 1)

λRα+k
1 Γ(Rα + k)

,

= K
∞
∑

k=0

ζk
λ1Γ(Rα + k + 1)

Γ(Rα + k)
. (4.29)

Equation (4.29) can be used for evaluating the mean of the CPE power. The relation

between the CPE power and its complement is given by (3.22b). Its mean can, thus, be

evaluated as

Ȳcpe = E
[

|δo|2
]

= E [1 − Y ] ,

= 1 − Ȳ ,

= 1 − K
∞
∑

k=0

ζk
λ1Γ(Rα + k + 1)

Γ(Rα + k)
. (4.30)

4.3.2 Variance of CPE and ICI Power

With PDF of Y at hand, the variance is evaluated as follows

σ2
Y = E

[

(y − Ȳ )2
]

= E
[

y2
]

− Ȳ 2,

=

∫ ∞

0
y2pY (y)dy − Ȳ 2. (4.31)

Substituting the PDF of Y in (4.31) and making use of (4.28), the variance of the ICI power

simplifies to

σ2
Y = K

∞
∑

k=0

ζk
λ2

1Γ(Rα + k + 2)

Γ(Rα + k)
− Ȳ 2. (4.32)

From (3.22b), we see that CPE power is a simple linear translation of ICI power and hence

its variance will be exactly the same as that of its complements. We, thus, have

σY
2
cpe = σ2

Y . (4.33)

Figure 4.3 shows the plots of the mean and variance of the CPE power and its complement

for different values of 3dB bandwidth of the oscillator noise PSD. Clearly, we see that the
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mean and variance of (4.29) and (4.32) deviate from their true values as the f3dB increases.

This is again attributed to the fact that the Taylor approximation does not hold any longer.

However, from both the plots we see that error is of the order of 10−2 for f3dB =1500 Hz.

For such reasonable 3dB bandwidths, we show in Chapter 6 that this does not cause any

significant difference between the analytical performance measures (derived in Chapter 5)

and the simulations.

4.4 Structure of Mz for the Gamma Variables in (4.1)

To evaluate the PDF of Y given in (4.1), we need the eigenvalues which are obtained from

the eigendecomposition of Mx which is related to Mz by (4.14). From the gamma variables

defined in (4.1), we arrive at a block-matrix structure for Mz as follows

(Mz)ij =















Zij j ≥ i, i = 1, 2, . . . , Nc − 1

ZT
ji j ≤ i, i = 1, 2, . . . , Nc − 1

where Zij is an (Nc − i) × (Nc − j) sub-matrix given as

(4.34)Zij =Toeplitz
[

cij rT
ij

]

Jij.

Above Toeplitz[cij rT
ij] is the (Nc− i)×(Nc− i) Toeplitz matrix formed from the (Nc− i)×1

column vectors cij and rij. The first element of cij corresponds to the diagonal. The second

element corresponds to the first lower off diagonal and so on. It is given as

(4.35)cij =
[ i

j

i(i − 1)2

j(i2)
1T

(j−i+1)

i(i − 2)2

j(i2)

i(i − 3)2

j(i2)
. . .

i1

j(i2)
0 . . . 0

]T
,

where 1(i−j+1) is (j − i + 1) × 1 column vector of ones. The vector rij is given as

(4.36)rij =
[ i

j

i(i − 1)2

j(i2)

i(i − 2)2

j(i2)
. . .

i1

j(i2)
0 . . . 0

]T
,

where the first element of rT
ij corresponds to the diagonal, the second element to first upper

off diagonal and so on. The (Nc − i) × (Nc − j) column selection matrix Jij is given as

(4.37)Jij =









I(Nc−j)×(Nc−j)

0(j−i)×(Nc−j)









.
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Figure 4.3: Comparison between analytical and simulated second order statistics of the
CPE and ICI power. OFDM system parameters are as follows: Bandwidth is 625kHz, Nc

= 32 and fsub = 19kHz.



Chapter 5

Performance Measures

In this chapter, we derive closed-form expressions of average capacity, average SINR and

outage capacity. From (3.19), we see how the desired data on the jth subcarrier is corrupted

by the CPE and ICI from other subcarriers along with noise. For a system model with the

received signal comprising of the desired signal part plus the noise part and assuming inde-

pendence between the two, with each drawn from the Gaussian distribution, the Shannon

capacity is typically employed to evaluate the throughput.

With respect to (3.19), it is shown in [51] that the ICI cannot be regarded as a Gaus-

sian random variable. However, we can come around this problem by using a PDF based

approach as follows. The instantaneous SINR derived in (3.23) is conditioned on a fixed

realization of the phase noise process and of the channel. Thus, if the input data {sj}Nc−1
j=0

are complex i.i.d. Gaussian RVs, then the ICI along with the receiver noise in (3.19) will also

be complex Gaussian for this one realization. Thus, we may use the Shannon capacity for

evaluating the throughput which will also be a random variable dependent upon different

realizations of the phase noise process and the channel.

From (3.23), we see the dependence of the instantaneous SINR and, hence the Shannon

capacity, on the random variables Y and Gj . The channel is described by Gj while Y , which

denotes the ICI Power, characterizes the phase noise process. For the channel, we assume

it is Rayleigh fading and the phase noise model is of the Wiener type. Having derived

the PDF of Y for a Wiener process, we can, thus, evaluate the average SINR and average

capacity.

41
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5.1 Capacity

The instantaneous SINR is given by (3.23). It is derived for one realization of the phase

noise process and of the channel. Consequently, the instantaneous Shannon capacity seen

by the jth subcarrier is given by

(5.1)Cj = log2(1 + γj),

where γj is given by (3.23) and repeated here

γj =
1 − y

y + σ2
n

σ2
sgj

, (5.2)

where

y =
Nc−1
∑

k=1

|δk|2, gj = |Hj|2. (5.3)

For ease of notation and without loss of generality, we drop the subscript j. In order to see

the impact of only the phase noise on the capacity, we first fix G and average C over the

PDF of Y . The result is then averaged over the distribution of G.

Before we proceed to derive the average capacity, we define the following definite integral

and in the following subsection, we express it in terms of the exponential integral function.

Im−1 =

∫ ∞

0
ln
(

y + a
)ym−1e−µy

µ−mΓ(m)
dy = eµa

∫ ∞

a
ln
(

y
)(y − a)m−1e−µy

µ−mΓ(m)
dy. (5.4)

5.1.1 The Definite Integral I(m−1)

Integrating (5.4) by parts gives

e−µaµ−mΓ(m)I(m−1) = (y−a)m−1
∫

ln(y)e−µydy
∣

∣

∣

∞

a
−
∫ ∞

a
(m−1)(y−a)m−2

∫

ln(y)e−µydy.

(5.5)

The indefinite integral in the above equation is given by, after the application of integration

by parts,

∫

ln(y)e−µydy =
ln(y)e−µy

−µ
+

1

µ

∫

e−µy

y
dy,

=
ln(y)e−µy

−µ
+

1

µ
Ei(−µy), (5.6)

where Ei(·) is the exponential integral function [17, Eq. 8.211.1, 2.325.1] and is defined as

Ei(−x) = −
∫ ∞

x

e−t

t
dt = −

∫ ∞

1

e−xt

t
dt. (5.7)



CHAPTER 5. PERFORMANCE MEASURES 43

Substituting (5.6) into (5.5) and solving we have

e−µaµ−mΓ(m)I(m−1) =
1

−µ
(y − a)m−1 ln(y)e−µy

∣

∣

∣

∞

a
+

1

µ
(y − a)m−1Ei(−µy)

∣

∣

∣

∞

a

+
m − 1

µ
µ−(m−1)Γ(m−1)I(m−2) −

m − 1

µ

∫ ∞

a
(y−a)m−2Ei(−µy)dy,

=
m − 1

µ
e−µaµ−(m−1)Γ(m − 1)I(m−2)

− m − 1

µ

∫ ∞

0
ym−2Ei(−µ(y + a))dy.

(5.8)

Now consider the definite integral in the above equation and after using (5.7), we have

∫ ∞

0
ym−2Ei(−µ(y + a))dy = −

∫ ∞

1

e−µat

t

(

∫ ∞

0
ym−2 e−µyt

t
dy

)

dt. (5.9)

The inner integral in the above equation is solved using the result [17, Eq. 2.325.1]

∫ ∞

0
ym−2 e(−µt)y

t
dy =

[

e(−µt)y
m−2
∑

k=0

(−1)kk!
(m−2

k

)

(−µt)(k + 1)
y(m−2−k)

]∞

0

,

= −(−1)(m−2)(m − 2)!

(−µt)(m−1)
. (5.10)

Equation (5.9) is simplified to, after applying the above equation

∫ ∞

0
ym−2Ei(−µ(y + a))dy =

(−1)(m−2)(m − 2)!

(−µ)(m−1)

∫ ∞

1

e−µat

tm
dt,

= −(−1)(m−2)(m − 2)!

(−µ)(m−1)
Em(µa), (5.11)

where Em(x) is the exponential integral function and defined as

Em(x) =

∫ ∞

1

e−xt

tm
dt. (5.12)

Finally, using (5.11) in (5.8) after simplifying gives

I(m−1) = I(m−2) + eµaEm(µa),

= I0 + eµa





m
∑

j=2

Ej(µa)



 . (5.13)
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The integral I0 can be evaluated from (5.4) and using [17, Eq. 4.337.1]

I0 = µ

∫ ∞

0
ln(y + a)e−µydy,

= ln(a) − eµaEi(−µa),

= ln(a) + eµaE1(µa), (5.14)

where, Ei(−x) = −E1(x). Substituting the above equation in (5.13), we get the final

expression as follows

Im−1 = ln(a) + eµa





m
∑

j=1

Ej(µa)



 . (5.15)

5.1.2 Capacity after Averaging over PDF of Y

Substituting (5.2) in (5.1) and taking the expectation with respect to the PDF of Y in

(4.13) whose parameters are given in Section 4.3, we have

C̄ = log2(e)E
[

ln
(

1 + γ
)]

,

= log2(e)

∫ ∞

0
ln
(

1 + γ
)

pY (y)dy,

= log2

(

1 +
σ2

n

gσ2
s

)

− log2(e)
R
∏

n=1

(

λ1

λn

)α ∞
∑

k=0

ζk





∫ ∞

0
ln

(

y +
σ2

n

gσ2
s

)

yRα+k−1e
−y
λ1

λRα+k
1 Γ(Rα + k)

dy



 .

(5.16)

The integral in the above equation is of the form

I(m−1) =

∫ ∞

0
ln
(

y + a
)ym−1e−µy

µ−mΓ(m)
dy = eµa

∫ ∞

a
ln
(

y
)(y − a)m−1e−µy

µ−mΓ(m)
dy. (5.17)

Thus, the final expression for the capacity averaged over the PDF of Y , after using (5.15)

in (5.16), is given by

C̄ = log2

(

1 +
σ2

n

gσ2
s

)

− log2(e)
R
∏

n=1

(

λ1

λn

)α ∞
∑

k=0

ζk



ln

(

σ2
n

gσ2
s

)

+ e
σ2

n
gσ2

sλ1





Rα+k
∑

j=1

Ej(
σ2

n

gσ2
sλ1

)







 .

(5.18)

Jensen Approximation of (5.16)

The capacity derived in (5.18) is expressed in terms of exponential integral functions. There

are, however, a couple of drawbacks associated with this expression. One is to do with the

computational complexity because of the number and order of exponential integral functions
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increases with the index k. The other is that, in order to determine the average capacity, we

need to integrate (5.18) over the PDF of the random variable G which can be mathematically

intractable. We, thus, resort to determine a simpler expression for (5.18).

Since we know that 0 ≤ Y ≤ 1, we may expect that the PDF of Y to be narrow over

this region which is quantified by its parameters Rα + k and λ1. As mentioned in Remark

4.3.1, λ1 ∝ f3dB/fsub and, thus, for moderate levels of phase noise, the PDF will be narrow

as seen in Fig. 4.1. The logarithm in the above integral, over this range of the PDF, will

be a linear function and hence we could use the Jensen’s inequality for the above integral

which will be a good approximation, i.e.,

E [ln(y + a)] ≈ ln (E [y] + a) . (5.19)

Applying the above Jensen approximation to (5.16), the integral can be approximated as

∫ ∞

0
ln
(

y +
σ2

n

gσ2
s

) yRα+k−1e
−y
λ1

λRα+k
1 Γ(Rα + k)

dy ≈ ln





σ2
n

gσ2
s

+

∫ ∞

0

yRα+ke
−y
λ1

λRα+k
1 Γ(Rα + k)



 ,

= ln

(

σ2
n

gσ2
s

+
Γ(Rα + k + 1)λ1

Γ(Rα + k)

)

, (5.20)

where Γ(·) is the gamma function and
∫∞
0 xv−1e−µxdx = µ−vΓ(v) [17, Eq. 3.381.4] was used

in arriving at the above equation. Using (5.20) in (5.16), the capacity averaged over the

PDF of Y becomes

C̄ = log2

(

1 +
σ2

n

gσ2
s

)

−
R
∏

n=1

(

λ1

λn

)α ∞
∑

k=0

ζk log2

(

σ2
n

gσ2
s

+
Γ(Rα + k + 1)λ1

Γ(Rα + k)

)

. (5.21)

Writing K =
∏R

n=1

(

λ1

λn

)α
, (5.21) can equivalently be written as

C̄ = log2

(

1 +
gσ2

s

σ2
n

)

+ log2

( σ2
n

gσ2
s

)

+ log2





∞
∏

k=0

(

σ2
n

gσ2
s

+
Γ(Rα + k + 1)λ1

Γ(Rα + k)

)−Kζk


 ,

= log2

(

1 +
gσ2

s

σ2
n

)

+ log2





∞
∏

k=0

(

σ2
n

gσ2
s

+
Γ(Rα + k + 1)λ1

Γ(Rα + k)

)−Kζk
( σ2

n

gσ2
s

)



 , (5.22)

from which we get the final expression as

(5.23)C̄ = log2

(

1+
gσ2

s

σ2
n

)

−K
∞
∑

k=0

ζk

[

log2

(

( σ2
n

gσ2
s

)

Kζk−1

Kζk +
Γ(Rα + k + 1)λ1

Γ(Rα + k)

(gσ2
s

σ2
n

) 1

Kζk

)]

,

where K =
∏R

n=1(
λ1

λn
)α, R = Nc − 1, α = 1

2 . As seen in (5.23), the capacity expression
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consists of two terms: The first term is the capacity in an AWGN channel and the second

term arises because of the phase noise. As expected, the net effect is a reduction from the

AWGN capacity.

5.1.3 Average Capacity

We next average C̄ in (5.23) over the PDF of G to get the average capacity in block-fading

channel. Assuming Rayleigh fading, G follows an exponential distribution with average

value ḡ and its PDF is given by

(5.24)pG(g) =
1

ḡ
e−

g
ḡ .

We start by averaging (5.21) over the PDF of G. Denoting p = σ2
n

σ2
s
, K =

∏R
n=1(

λ1

λn
)α and

bk = Γ(Rα+k+1)λ1

Γ(Rα+k) , (5.21) can be written as

(5.25)

C̄ = log2(e)

(

ln

(

1 +
p

g

)

− K
∞
∑

k=0

ζk ln

(

p

g
+ bk

)

)

,

= log2(e)

(

ln (p + g) − ln (g) − K
∞
∑

k=0

ζk

(

ln(p) + ln

(

1 + g
bk

p

)

− ln (g)

)

)

,

= log2(e)

(

ln

(

1 +
g

p

)

+ ln(g)

(

K
∞
∑

k=0

ζk − 1

)

− K
∞
∑

k=0

ζk

[

ln

(

1 + g
bk

p

)]

+ ln(p)

(

1 − K
∞
∑

k=0

ζk

))

.

Averaging the above equation over the PDF in (5.24), we get the expression for the average

capacity as

¯̄C = E
[C̄] ,

=

∫ ∞

0
C̄pG(g)dg,

= log2(e)

[

(

1 − K
∞
∑

k=0

ζk

)(

ln
( σ2

n

ḡσ2
s

)

+ E
)

− e
σ2

n
ḡσ2

s Ei
(−σ2

n

ḡσ2
s

)

+ K
∞
∑

k=0

ζke
σ2

n
ḡbkσ2

s Ei
( −σ2

n

ḡbkσ2
s

)

]

,

(5.26)

where E ≈ 0.577215 is the Euler’s constant, Ei(·) is the exponential integral and bk =
Γ(Rα+k+1)λ1

Γ(Rα+k) . In arriving at (5.26), we employed the following identities:
∫∞
0 log(x)e−µxdx =

− 1
µ(E +log(µ)) and

∫∞
0 log(1+βx)e−µxdx = − 1

µe
µ
β Ei(−µ

β ) [17, Eq. (4.331.1) and (4.337.2)].
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5.2 SINR

The average SINR is obtained by first averaging γ given in (3.23) over the PDF of Y and

then over the PDF of G. Taking the expectation of (3.23) with respect to the PDF of Y ,

we have

γ̄ = E [γ] ,

=

∫ ∞

0

1
σ2

n
gσ2

s
+ y

pY (y)dy −
∫ ∞

0

y
σ2

n
gσ2

s
+ y

pY (y)dy. (5.27)

Substituting the PDF of (4.13) in the above equation, and making use of
∫∞
0

xv−1e−µx

x+b dx =

bv−1ebµΓ(v)Γ(1 − v, bµ) [17, Eq. (3.383.10)], (5.27) can be simplified to

(5.28)
γ̄ = K

[

∞
∑

k=0

ζke
(

σ2
n

gσ2
sλ1

)
(

σ2
n

gσ2
sλ1

)
Rα+k−1 Γu

(

1 − (Rα + k), σ2
n

gσ2
sλ1

)

λ1
−

∞
∑

k=0

ζke
(

σ2
n

gσ2
sλ1

)
(

σ2
n

gσ2
sλ1

)
Rα+k

Γu

(

− (Rα + k),
σ2

n

gσ2
sλ1

)

(Rα + k)
]

,

where Γu(·, ·) is the upper incomplete gamma function. The continued fraction representa-

tion of the incomplete gamma function is given as [1, Eq (6.5.31)]

(5.29)Γcf = x−aexΓu(a, x) =

(

1

x+

1 − a

1+

1

x+

2 − a

1+
. . .

)

.

Using (5.29) in (5.28), we can write the final expression for the SINR averaged over distri-

bution of Y as

γ̄ = K
∞
∑

k=0

ζk





Γcf

(

1 − (Rα + k), σ2
n

gσ2
sλ1

)

λ1
− Γcf

(

− (Rα + k),
σ2

n

gσ2
sλ1

)

(Rα + k)



 , (5.30)

where as before K =
∏R

n=1(
λ1

λn
)α, R = Nc − 1 and α = 1

2 . From (5.30), it is seen that γ̄

depends on the phase noise process through λ1 and on the ratio of the eigenvalues through

ζk which are given in (4.17).

The average SINR is obtained by averaging γ̄ in (5.30) over the PDF of G. A closed-form

expression, however, is mathematically intractable. However, at high SNR, the average

SINR can be derived because (3.23) can then be approximated closely as

(5.31)γ∞ ≈ 1 − y

y
.

This reflects the contribution of only the phase noise process to the SINR. Finally, averaging

(5.31) over the PDF of Y in (4.13) and making use of
∫∞
0 xv−1e−µxdx = µ−vΓ(v) [17, Eq
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(3.381.4)], the expression for the average SINR at high SNR is obtained as

γ̄∞ = ¯̄γ∞ =

[

K
∞
∑

k=0

ζk

(

Γ(Rα + k − 1)

Γ(Rα + k)λ1

)

]

− 1. (5.32)

Most previous methods of evaluating the average SINR have been based on obtaining

accurate second-order statistics of the CPE and ICI. From the system model given in (3.19)

and repeated below

rj = Hjδ0sj + Hj

Nc−1
∑

k=0,k 6=j

δk−jsk + nj, (5.33)

the average SINR is typically evaluated by taking the expectation of the magnitude square of

the above equation and then taking the ratio of the desired signal power and the interfering

noise power [40,41,49]. This measure of the SINR is accurate only if the desired signal and

noise parts are independent of each other which is not the case when we have phase noise.

Thus, evaluating the average SINR by this method, from (5.33), the average power of the

jth received subcarrier, while assuming the transmitted symbols {sj}Nc−1
j=0 are independent

of each other, is given by

(5.34)E
[

|rj |2
]

= E
[

|Hj|2
]

E
[

|δ0|2
]

σ2
s + E

[

|Hj |2
]

Nc−1
∑

k=0,k 6=j

E
[

|δk−j |2
]

σ2
s + σ2

n,

where independence between the phase noise process, the channel is also assumed. Dropping

the subscript j without loss of generality, the average SINR is obtained as

γ̄est =
E
[|H|2]E [|δ0|2

]

σ2
s

E [|H|2]E
[

∑Nc−1
k=1 |δk|2

]

σ2
s + σ2

n

,

=
1 − Ȳ

Ȳ + σ2
n

ḡσ2
s

, (5.35)

where ḡ = E
[|H|2], |δ0|2 = 1 − Y , Y =

∑Nc−1
k=1 |δk|2 and Ȳ denotes the mean of Y and is

given by (4.29). In Chapter 6, we compare the average SINR estimates of (5.35) and (5.30).

Since (5.30) was derived under the assumption of a fixed channel, the ḡ in the denominator

of (5.35) would now be a fixed realization when we do the comparison. We show that (5.35)

is a poor estimate of the average SINR.
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5.3 Outage Capacity with Fixed G

The outage capacity is typically defined as the maximum bit rate Cout with probability of

outage equal to q, i.e., PC(C < Cout) = q from which the outage capacity is obtained as

Cout = P−1
C (q), (5.36)

where PC(·) is the cumulative distribution function (CDF) of C. From the definition of the

capacity in (5.1), to which it is related to Y through (3.23), we can equivalently expresses

the probability of outage of C in terms of Y as follows

PC(C < Cout) = q =⇒ PY





1 − y

y + σ2
n

gσ2
s

<
1 − yout

yout + σ2
n

gσ2
s



 = q,

= 1 − PY (Y < yout) = q. (5.37)

Thus, yout is given as

yout = P−1
Y (1 − q), (5.38)

where PY (·) is the CDF of Y and is obtained by integrating over its PDF in (4.13) as

PY (Y < y) =

∫ y

0
pY (t)dt,

= K

∫ y

0

∞
∑

k=0

ζkt
Rα+k−1e

−t
λ1

λRα+k
1 Γ(Rα + k)

dt,

= K
∞
∑

k=0

ζk

Γl(Rα + k, y
λ1

)

Γ(Rα + k)
, (5.39)

where Γl(·, ·) is the lower incomplete gamma function. Using (3.23), (5.1), and (5.38), the

expression for the outage capacity in a fixed channel is given as

(5.40)Cout = log2

(

1 +
1 − yout

yout + σ2
n/(gσ2

s )

)

.

An explicit expression for yout is difficult to derive as the inverse function P−1
Y does not

exist in the general case and, hence, we evaluate it numerically. In following chapter, we

compare the analytical expressions derived in this chapter with the simulations alongside

discussions on the inferences of the results.



Chapter 6

Numerical Results

In this chapter, we present the Monte Carlo simulations of the SINR and capacity. We

present two cases. In the first, the analytical performance measures derived in Chapter 5

are compared with the simulations in Section 6.2. The analytical performance measures of

SINR and capacity were derived on a per-subcarrier basis and, hence, it does not reflect

the net throughput of the system. Thus, in Section 6.3, we present the simulations of the

net throughput and analyze its behavior in the context of phase noise. In Section 6.1, we

explain the system setups used in the simulations of Sections 6.2 and 6.3.

6.1 System Setup

For the Monte Carlo simulations in Section 6.2, we consider an OFDM system with band-

width 20MHz and Nc = 1024 subcarriers given the subcarrier spacing fsub = 19.5kHz. For

obtaining the analytical performance measures, we need the eigenvalues which are obtained

from the square-root of the normalized covariance matrix Mz of the gamma variables in

(4.1). The number of gamma RVs is N = Nc(Nc−1)
2 and, hence, the number of elements in

Mz, with Nc = 1024, is in the order of 1010. Obtaining the eigenvalues for such a large

matrix is practically infeasible mainly due to memory storage issues. However, as long as

f3dB is small compared to fsub, there is negligible ICI between subcarriers that are very

far apart. Thus, without causing any significant change to the ICI term, we can reduce Nc

while keeping fsub fixed, thereby reducing the bandwidth. Hence, without loss of accuracy,

we may evaluate the analytical performance measures with Nc = 32, fsub = 19.5kHz and

bandwidth of 625kHz.

For evaluating the net throughput in Section 6.3, the bandwidth of the OFDM system is

20MHz. We might be inclined to believe that the net throughput, in the absences of phase

noise, would increase as the number of subcarriers increases as more data is transmitted

50



CHAPTER 6. NUMERICAL RESULTS 51

−5 0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

 

 

AWGN
C̄

[b
it

/
s/

H
z
]

σ2
s/σ2

n [dB]

f3dB = 80Hz

f3dB = 200Hz

f3dB = 500Hz

f3dB = 800Hz

f3dB = 1kHz

f3dB = 2kHz

Figure 6.1: Comparison between simulated and analytical capacity C̄ plots with fixed g=1.
The dashed lines represent the analytical results and the solid marker lines represent the
simulations.

in parallel. It is, thus, interesting to see the effect of the number of subcarriers on the

net throughput. Hence, for the simulations of the net throughput, we vary the number

of subcarriers from as low as two subcarriers to a maximum of two thousand forty eight

subcarriers. Again, as mentioned in the earlier paragraph, presenting the analytical net

throughput for subcarriers even larger than thirty two can be quite demanding in terms of

memory. Hence, we omit the presentation of the analytical throughput.

6.2 Capacity and SINR per Subcarrier

Figures 6.1 and 6.2 show the plots for C̄ (capacity averaged over PDF of Y ) and ¯̄C (capacity

averaged over PDFs of both Y and G), respectively. The capacity with phase noise in both

figures is compared with the AWGN capacity. The impact of phase noise is clearly visible

on the capacity and the analytical capacities derived in (5.23) and (5.26) predict well the

simulation results. We see that, for any given fsub and σ2
s/σ

2
n, increasing f3dB decreases

the capacity. This is also evident from (5.23) and (5.26). As seen in (5.23), C̄ indirectly

depends on Nc, fsub and the f3dB through λ1, K and ζk. As earlier mentioned, {λn}R
n=1

are proportional to σ2 of (3.26). The ratio λ1/λn is independent of σ2 and Nc, hence, K

and ζk too. Thus, C̄ in (5.23) depends only on λ1 and as f3dB/fsub increases, λ1 increases

and C̄, thus, decreases. Similarly, ¯̄C, in (5.26), depends on λ1 which is an argument of the
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Figure 6.2: Comparison between simulated and analytical ¯̄C plots. The channel is Rayleigh
fading with ḡ = 1. The dashed lines represent the analytical results and the solid marker
lines represent the simulations.

exponential and the exponential integral function. As λ1 increases, the exponential and the

exponential integral functions decrease, thereby, decreasing the capacity.

From Fig. 6.2, we see that capacity is decreased once fading is taken into account. How-

ever, this effect is more pronounced in the low to midrange SNRs. At very high SNRs,

there is practically no difference between the curves of Fig. 6.1 and Fig. 6.2 which can be

proved as follows. At high SNRs, from (5.31), we see that there is no effect of the channel

on the capacity which now depends only on phase noise process. We can use (5.20), again

assuming that f3dB/fsub is small, to derive the capacity at high SNR as

C̄∞ = ¯̄C∞ = K
∞
∑

k=0

ζk

[

log2

(

Γ(Rα + k)

Γ(Rα + k + 1)λ1

)]

. (6.1)

From Figs. 6.1 and 6.2, we see that, for f3dB = 2kHz, there is a minor difference between

the analytical and simulated capacities. This is attributed to the fact that the Taylor series

approximation starts breaking down. As mentioned in Section 4.1, σ2
max given by (4.9)

characterizes the accuracy of the approximation. It is, thus, imperative to see its effect on

the prediction of the capacity by the analysis done so far. Figure 6.3 shows the plots of

C̄ in terms of σ2
max for four different SNR values. The plot for σ2

s/σ
2
n = ∞ corresponds

to C̄∞ = ¯̄C∞ of (6.1). We can conclude that the achievable capacity for a given SNR
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Figure 6.3: Comparison between simulated and analytical C̄ plots with fixed g=1. The
respective dashed, solid star and solid diamond lines represent the analytical results, simu-
lation results and the AWGN channel capacity.

clearly depends mainly on the ratio of f3dB and fsub which agrees with intuition. Also,

the analytical capacities predict the simulations well even for σ2
max as large as one, which

corresponds to fsub = 4πf3db by (4.9). Thus, if fsub ≥ 4πf3dB ≈ 10f3dB then we are well

within the limits for which the Taylor series approximation holds.

Figure 6.4 shows the average SINR plots for γ̄ of (5.30) and γ̄est of (5.35) and compares

them with Monte Carlo simulations. Clearly, we see that γ̄est is poor estimate of the average

SINR and does not match with Monte Carlo simulations. Thus, this reaffirms the fact that

complete knowledge of the distribution of ICI power in (3.23) is necessary to get accurate

estimate of the statistics of the SINR and functions derived from it. The closeness between

the simulation and analytical plots of γ̄ here is better than in the capacity plots of Figs. 6.1

and 6.2. This is because no kind of approximation was used in arriving at γ̄ in (5.30) but

the Jensen approximation was used in order to arrive at the analytical capacity in (5.23).

Also, as with the capacity, we see saturation of γ̄ at high SNRs. For such high SNRs, γ̄

converges to γ̄∞ = ¯̄γ∞ given in (5.32).

Figure 6.5 shows the outage capacity plots for Cout of (5.40). We see that there is larger

deviation between the analytical and the simulation results for the same f3dB used in the

capacity and SINR plots. This is expected because the CDF of Y is more in error when

compared to the PDF, which was derived using the Taylor series approximation, since any

error in the PDF accumulates into the CDF because of the integration operation. Any
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Figure 6.4: Comparison between simulated and analytical average SINR plots with fixed
g=1. The dashed lines represent the analytical γ̄ of (5.30) and the solid lines represent its
corresponding Monte Carlo simulations. The marker lines denote γ̄est of (5.35).

performance measure based on the CDF will, thus, be higher in error when compared to

performance measures based on the PDF.

6.3 Net Throughput

In the previous section, we compared the analytical results of the average capacity and SINR

with the simulations. However, the capacity derived was illustrated on a per-subcarrier basis

which does not reflect the net throughput of the OFDM system impaired phase noise. To

obtain the net throughput, we need to multiply C̄ (or ¯̄C if we consider the channel) by the

number of subcarriers and divide it by the time duration of the OFDM symbol which is

T = (Nc + Ncp)Ts. Here Ncp and Ts denote the respective cyclic prefix length and the

sampling period. As mentioned in Chapter 2, cyclic prefix is added to combat the effect

of ISI introduced by the multi-path channel. It introduces overhead into the system and

results in a reduction of the net throughput of an AWGN channel as shown in Fig. 6.6.
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Figure 6.5: Comparison between simulated and analytical Cout plots with 10 percent outage
probability and g=1. The dashed lines represent the analytical results and the solid marker
lines represent the simulations.

The net throughput is, thus, given by

C̄T =
C̄Nc

T
,

=
NcC̄Fs

Nc + Ncp
, (6.2)

where Fs = 1/Ts is the sampling frequency. Using (5.23) in (6.2), we have the net through-

put in terms of

(6.3)

C̄T =

(

NcFs

Nc + Ncp

)

log2

(

1 +
gσ2

s

σ2
n

)

− K

(

NcFs

Nc + Ncp

)

∞
∑

k=0

ζk

[

log2

(

( σ2
n

gσ2
s

)

Kζk−1

Kζk +
Γ(Rα + k + 1)λ1

Γ(Rα + k)

(gσ2
s

σ2
n

) 1

Kζk

)]

.

Figure 6.6 shows the Monte Carlo simulations of C̄T vs. the number of subcarriers for

different 3dB bandwidths of the phase noise process and different cyclic prefix lengths. We

have not plotted the analytical C̄T , again due to memory storage issues in computing the

Mx matrix. From Fig. 6.6, the maximum throughput is achieved for the AWGN case and

in the absence of phase noise. This is achieved for Ncp = 0 or, for a given Ncp, choosing

Nc ≫ Ncp as seen in Fig. 6.6. This behavior is easily evident from (6.3) for the AWGN
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Figure 6.6: C̄T vs. Nc. Bandwidth of the OFDM system is 10MHz with SNR of 20dB.

case (the summation term is zero). The addition of cyclic prefix to combat the multipath

nature of the channel and its effect of ISI results in a reduction of the net throughput in

an AWGN channel with Ncp = 0. We can minimize this loss by increasing the number of

subcarriers. However, the scenario worsens when we have phase noise, because we know

that, for a fixed bandwidth, increasing Nc (and hence reducing fsub) reduces the capacity

as evidenced in Fig. 6.3. Thus, we have two conflicting scenarios, where for a given Ncp,

increasing Nc decreases the relative overhead due to cyclic prefix, while at the same time,

the phase noise decreases the SINR and hence the throughput.

From (6.3), for a given SNR and Ncp, both the first and second terms increase with

Nc with the rate of increase being slower for the second term. However, the first term in

(6.3) represents the throughput in an AWGN channel which saturates after a certain Nc

(see Fig. 6.6 for the AWGN case). This saturation does not take place for the second

term as summation term increases with increasing Nc. We would then expect the net

throughput to reach a maximum and then start decreasing after a certain value of Nc as

evidenced in the figure. We, henceforth, call this maximal point as the optimal throughput

C̄opt and the subcarrier corresponding to it as the optimal number of subcarriers Ncopt.
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Figure 6.7: C̄opt vs. f3dB . Bandwidth of the OFDM system is 10MHz with SNR of 20dB.

This is appropriate because it clearly tells for a given phase noise level, SNR and cyclic

prefix length, the optimal number of subcarriers we should use to achieve the maximum

throughput.

In Fig. 6.6, for a given cyclic prefix length, we see that the maximal point, i.e., C̄opt

reduces when the f3dB bandwidth increases. Intuition dictates that the optimal throughput

decreases with increase in f3dB which can also be seen from (6.3). Figure 6.7 exemplifies

this behavior for different 3dB bandwidths of phase noise process.

Figure 6.8 shows the optimal number of subcarriers required to achieve the maximum

throughput as a function of the 3dB bandwidth of the phase noise process. The figure

clearly illustrates, for a given cyclic prefix length and SNR, how we should optimally choose

the number of subcarriers, knowing the 3dB bandwidth of the phase noise process, so that

the net throughput is maximized.
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Chapter 7

Conclusions

This thesis considers the effect of Wiener phase noise on the performance of OFDM systems.

Analytical statistical expressions of capacity and SINR are derived and verified by the

simulations. It is shown that the aforementioned performance metrics depend on the ratio

of the subcarrier spacing and the 3dB bandwidth of the oscillator power spectral density.

The performance degrades as this ratio becomes small. Thus, to achieve a given performance

level, a trade off between the number of subcarriers and the type of oscillator need to be

considered. In comparison to previous works on performance analysis of phase noise effects

on OFDM, a probability density function based approach is employed. From the system

model of OFDM in the presence of phase noise, it is seen that the SINR and capacity depend

on two independent random variables, one characterizing the phase noise and the other the

channel. The random variable characterizing the Wiener phase noise is shown to be a sum of

correlated gamma variables (with rank-deficient square-root normalized covariance matrix)

using a Taylor series approximation. The validity of the approximation depends on the ratio

of the subcarrier spacing and the 3dB bandwidth of the oscillator power spectral density and

holds well when this ratio is at least one order of magnitude, which for most standards and

commercially available oscillators is the case. In earlier literature, the probability density

function of a sum of correlated gamma variables with full-rank square-root normalized

covariance matrix is derived. In this thesis, the generalization to the rank-deficient case is

presented and applied to the random variable describing the Wiener phase noise process in

the instantaneous SINR and capacity expressions.

7.1 Future Work

The analysis of this thesis is limited to Wiener phase noise process. Typically Wiener

phase noise processes occur in free-running or autonomous oscillators which are basically
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open loop voltage controlled oscillators. Most commercial oscillators typically are of the

phase locked loop type. These involve feedback where the phase of a reference oscillator is

compared with the phase of the voltage controlled oscillator and the phase difference drives

the voltage controlled oscillator; in the ideal case of zero phase difference, no phase noise

is present. In the more practical case, the resulting phase noise process is no longer of the

Wiener type. Applying the analysis done in this work for this general class of oscillators

would be area of research to pursue.
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