

Aalto University School of Science and Technology
Faculty of Electronics, Communications and Automation

Master’s Programme in Electrical Engineering

Lauri Kukkonen

PROCESSOR EVALUATION FOR LOW POWER FREQUENCY
CONVERTER PRODUCT FAMILY

Master’s Thesis left to inspection for Master’s Degree in Espoo 5 November 2010.

Supervisor Prof. Raimo Sepponen

Instructor MSc Kalle Suomela

 I

AALTO UNIVERSITY SCHOOL OF
SCIENCE AND TECHNOLOGY

ABSTACT OF THE
MASTER’S THESIS

Aalto University School of Science and Technology

Faculty of Electronics, Communications and Automation

Master’s Programme in Electrical Engineering

Author:

Name of the thesis:

Date:

Lauri Kukkonen

Processor Evaluation for Low Power Frequency

Converter Product Family

5.11.2010 Number of pages: 63

Supervisor:

Instructor:

Prof. Raimo Sepponen

MSc Kalle Suomela

The aim of this thesis is to study processors to be used in a low power frequency
converter. Processors under investigation must be currently or in the near future
in the market. The purpose is to examine suitability of a processor to an
application in which price is an essential factor. The requirements presented in
this study will determine which processor will be reviewed more closely. After a
precise review, processor vendors was asked to provide as corresponding device
as possible to a test.

Testing was accomplished eventually with five different processors of which two
were based on a same core. The aim of the testing was to investigate suitability of
the processors to their target task. Suitability was tested by executing code that
models frequency converter application. As a result, spent time and clock cycles
are presented in certain functions. In addition to performance, the testing
included evaluation of the size of the output code the compilers created.
Functions under test consisted of a combination of arithmetic and logic operations
that was used to interpret the suitability of the processor.

Key words: Frequency converter, microprocessor

 II

AALTO-YLIOPISTON
TEKNILLINEN KORKEAKOULU

DIPLOMITYÖN
TIIVISTELMÄ

Aalto-yliopiston teknillinen korkeakoulu

Elektroniikan, tietoliikenteen ja automaation tiedekunta

Elektroniikka ja sähkötekniikka

Tekijä:

Työn nimi:

Päiväys:

Lauri Kukkonen

Prosessorien evaluaatio pienitehoisen

taajuusmuuttajaperheen komponentiksi

5.11.2010 Sivumäärä: 63

Vastuuopettaja:

Työn ohjaaja:

Prof. Raimo Sepponen

DI Kalle Suomela

Tässä työssä tutkitaan markkinoilla olevia tai lähitulevaisuudessa markkinoille
saapuvia prosessoreja käytettäväksi pienitehoisissa taajuusmuutajissa.
Tutkimuksen tarkoitus on selvittää prosessorin sopivuutta sovellukseen, jossa
hinta on merkittävä tekijä. Tutkimuksessa esitettyjen vaatimusten perusteella
houkuttelevimmat prosessorit otetaan tarkempaan tutkimukseen. Tarkemman
selvityksen jälkeen vaatimuksia teknisesti mahdollisimman tarkasti vastaavat
prosessorit pyydettiin valmistajalta testattavaksi.

Testaaminen suoritettiiin lopulta viidelle eri prosessorille, joista kaksi perustui
samaan ytimeen. Testaamisen tavoitteena on selvittää prosessorin sopivuus
käyttökohteeseensa. Sopivuus testattiin suorittamalla prosessoreissa
taajuusmuuttajakäyttöä mallintavaa testikoodia. Tuloksina testikoodin ajamisesta
saatiin tietyissä aliohjelmissa kulutettu aika sekä kulutetut kellosyklit.
Suorituskyvyn lisäksi testaukseen kuului prosessorikohtaisen kääntäjän
aikaansaaman koodin koko. Aliohjelmat sisälsivät sekä aritmeettisia, että loogisia
operaatioita, joiden kombinaationa mahdollisimman hyvä sopivuus saatiin
selvitettyä.

Avainsanat: Taajuusmuuttaja, mikroprosessori

 III

PREFACE

This Master’s thesis has been written to ABB Drives Low Power AC (LAC) profit centre.
The results of this study are part of a current and ongoing product development.
Similar studies have been written before concerning previous product development
projects. The aim of this thesis is to maintain in-house knowhow concerning modern
hardware in motor control applications.

I want to thank the leader of electronics team, MSc Jari Mäkilä for the opportunity to
take part in this essential segment of product development. I also want to thank MSc
Kalle Suomela and MSc Johanna Laukkanen for giving me the right contacts and
technical support to pull through this assignment.

Helsinki, 5 November 2010

Lauri Kukkonen

 IV

CONTENTS

1 INTRODUCTION .. 1

1.1 ABB GROUP IN BRIEF .. 1
1.2 BACKGROUND .. 1
1.3 PROBLEM DESCRIPTION .. 2
1.4 STUDY OBJECTIVE .. 2
1.5 STUDY CONFINING ... 2

2 ELECTRICAL DRIVE .. 3

2.1 INDUCTION MOTOR .. 3
2.1.1 Structure .. 3
2.1.2 Operating Principle ... 4

2.2 FREQUENCY CONVERTER ... 5
2.2.1 Different Types of Frequency Converter ... 5
2.2.2 Structure .. 6
2.2.3 Pulse Width Modulation (PWM) ... 6

3 CONTROL PRINCIPLES OF INDUCTION MOTOR .. 10

3.1 OPEN-LOOP AND CLOSED-LOOP CONTROL ... 11
3.2 SCALAR CONTROL .. 11
3.3 VECTOR CONTROL .. 12

3.3.1 Rotor Field Orientation ... 12
3.3.2 Controlling System .. 13

3.4 DIRECT TORQUE CONTROL (DTC) ... 13

4 MICROPROCESSOR ... 16

4.1 DIFFERENT TYPES OF MICROPROCESSORS .. 16
4.2 ARITHMETIC OF A MICROPROCESSOR ... 16

4.2.1 Fixed-Point Numbers... 16
4.2.2 Floating-Point Numbers ... 17
4.2.3 Arithmetic Comparison ... 18

4.3 BASIC ARCHITECTURE .. 18
4.3.1 Datapath ... 19
4.3.2 Control Unit ... 19
4.3.3 Memory .. 19
4.3.4 Instruction Set and Operation .. 20
4.3.5 Cache ... 22
4.3.6 Interrupt Controller .. 22

4.4 PERIPHERALS .. 22
4.4.1 Communication Interface ... 22
4.4.2 Timers .. 23
4.4.3 A/D Converter ... 24

5 PROCESSOR REQUIREMENTS AND ALTERNATIVES ... 26

5.1 PERFORMANCE AND MEMORY... 26
5.2 PERIPHERALS AND COMMUNICATION .. 27
5.3 AVAILABILITY .. 27
5.4 SECURITY ... 28
5.5 PROCESSOR ALTERNATIVES .. 28

6 PROCESSOR COMPARISON .. 29

6.1 TEXAS INSTRUMENTS TMS320F28035 .. 29
6.1.1 Architectural Overview ... 29
6.1.2 Peripherals .. 31
6.1.3 Feature Summary.. 31

6.2 TEXAS INSTRUMENTS LM3S9B96 .. 32
6.2.1 Architectural Overview ... 32
6.2.2 Peripherals .. 33

 V

6.2.3 Feature Summary.. 34
6.3 STMICROELECTRONICS STM320F207IG ... 34
6.4 FREESCALE MC56F8257 .. 34

6.4.1 Architectural Overview ... 35
6.4.2 Peripherals .. 35
6.4.3 Feature Summary.. 36

6.5 RENESAS SH7216 ... 36
6.5.1 Architectural Overview ... 37
6.5.2 Peripherals .. 38
6.5.3 Feature Summary.. 38

7 TEST RESULTS ... 39

7.1 BENCHMARKING ... 39
7.1.1 Code Contents .. 39
7.1.2 Memory Utilization ... 39
7.1.3 Optimization.. 39

7.2 TEXAS INSTRUMENTS TMS320F28035 EVALUATION .. 40
7.2.1 Development Environment ... 40
7.2.2 Results ... 40

7.3 TEXAS INSTRUMENTS LMS3S9B96 EVALUATION.. 42
7.3.1 Development Environment ... 42
7.3.2 Results ... 42

7.4 STMICROELECTRONICS STM320F207IG EVALUATION ... 43
7.4.1 Development Environment ... 43
7.4.2 Results ... 43

7.5 FREESCALE MC56F8257 EVALUATION .. 44
7.5.1 Development Environment ... 44
7.5.2 Results ... 45

7.6 RENESAS SH7216 EVALUATION ... 46
7.6.1 Development Environment ... 46
7.6.2 Results ... 47

7.7 COMPARISON .. 47
7.7.1 Comparison by Time ... 47
7.7.2 Comparison by Cycle Count ... 51
7.7.3 Comparison by Code Size .. 54

8 CONCLUSION .. 56

BIBLIOGRAPHY .. 57

APPENDIX A: CODE CONTENT WITH F28035 ... 59

APPENDIX B: CODE CONTENT WITH ARM-DEVICES ... 61

APPENDIX C: CODE CONTENT WITH MC56F8257 .. 62

 VI

ABBREVIATIONS

ABB Asea Brown Boveri

AC Alternating Current

ADC Analog-to-Digital Converter

ALU Arithmetic-Logic Unit

CAN Controller Area Network

CLA Control Law Accelerator

CISC Complex Instruction Set Computer

CSI Current Source Inverter

CPU Central Processing Unit

DAC Digital-to-Analog Converter

DC Direct Current

DSP Digital Signal Processor

DTC Direct Torque Control

DRAM Dynamic Random Access Memory

eCAN Enhanced Controller Area Network

FPU Floating-Point Unit

GPIO General Purpose Input/Output

GPTM General Purpose Timer Module

HVAC Heating, Ventilation, and Air Conditioning

IC Integrated Circuit

I2C Inter-Integrated Circuit

ISR Interrupt Service Ruotine

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IGBT Insulated-Gate Bipolar Transistor

IR Instruction Register

LAC Low Power AC

LCI Load Commutated Inverter

LIN Local Interconnect Network

LQFP Low-profile Quad Flat Package

LSU Load Store Unit

 VII

MAC Multiplying Accumulator

MCU Microcontroller

MIPS Millions Insturctions Per Second

MOSFET Metal-Oxide Semiconductor Field-Effect Transistor

NVIC Nested Vectored Interrupt Controller

NRZ Non-Return-to-Zero

OTP One Time Programmable

PC Program Counter

PFU Prefetch Unit

PWM Pulse Width Modulation

RAM Random Access Memory

RISC Reduced Instruction Set Computer

RMS Root-Mean-Square

RPM Rounds Per Minute

RSPI Renesas Serial Peripheral Interface

ROM Read Only Memory

SAR Successive Approximation Register

SCI Serial Communication Interface

SRAM Static Random Access Memory

SVM Space-Vector Modulation

SPI Serial Peripheral Interface

TQFP Thin Quad Flat Package

UART Universal Asynchronous Receiver/Transmitter

VSI Voltage Source Inverter

 VIII

PRINCIPAL SYMBOLS

 Magnetic field

 Electric current

 Rotor current

 Stator current

 Frequency

 Sampling frequency

 Magnetizing inductance

 Rotor inductance

 Length

 Motor rotation speed

 Number of pole pairs

 Stator resistor

 Slip

 Stator voltage

 Torque

 Developed torque

 Sampling time

 Rotor flux linkage

 Stator flux linkage

 Stator field geometric angular velocity

 Rotor geometric angular velocity

 Coordinate system electrical angular velocity

 Rotor electrical angular frequency

 Stator field electrical angular frequency

Introduction 1

1 INTRODUCTION

This Master’s thesis has been written for ABB Drives LAC profit centre. Theoretical
section of this study focuses on presenting general information on technology
assiosiated to motor control and microprocessors. In testing section, a few carefully
chosen processors are evaluated in a test bench.

1.1 ABB Group in Brief
According to ABB Group, they are a leader in power and automation technologies
that enable utility and industry customers to improve performance while lowering
environmental impact. The ABB Group operates in around 100 countries and
employs about 117 000 people.

ABB businesses are divided in five divisions: power products, power systems,
discrete automation and motion, low voltage products, and process automation.
LAC profit centre is part of discrete automation and motion which provides
products, solutions and related services that increase industrial productivity and
energy efficiency. ABB has the leading position in wind generators and a growing
offering of solutions in solar energy markets.

The recent global recession has also affected on ABB’s revenue. Table 1.1 shows the
most critical numbers concerning ABB’s business activity.

Table 1.1 ABB’s business activity in year 2008 and 2009. [1]

Total ABB Group ($ millions)

 2009 2008

Orders

30 969 38 282

Revenues

31 795 34 912

Earnings before interest and taxes (EBIT) 4 126 4 552

EBIT %

13.0 13.0

Net Income

2 901 3 118

Basic Earnings per share ($) 1.27 1.36

Cash flow from operations

4 027 3 958

Return on capital empoyed (ROCE) 27 31

Number of employees 116 000 120 000

1.2 Background
A microprocessor may be considered the brains and the core of operation of any
embedded system. On the other hand, a microprocessor might be one of the most
expensive components as a separate expense. Effect on a system cost may be also
significant. Processor development, which has lasted already decades, has increased
attention to possibilities that processors provide. Following continuously this
development has also made possible to improve applications that use
microprocessors. On the other hand, application development is even a mandatory
process in order to maintain competitiveness.

Introduction 2

While designing a new product family, one should make clear what sort of
processor in expedinture sense a frequency converter can be based on. Features
still must satisfy the need based on custormer feedback. In other words, very high
application level problem is in question. The subject of this study is very dynamic,
therefore similar studies has been done in the past. Previous studies tries to map
contemporary processor supply.

1.3 Problem Description
The greatest challenge in this study is accepting compromises constantly. In
practice, processor features are always inversely proportional to price. Satisfying
device would be easy to choose if expedinture is not an issue. At this point, it is
good to keep in mind that procurement process is always influenced by humane
factors and previous vendor relations.

Another problems is the question what do we want from the device in development
process. Requirements of the processor mirrors directly from desired features of a
new frequency converter family.

1.4 Study Objective
Study objective briefly is to research the most suitable processor alternative for the
next generation low power frequency converter family. The processor must be
currently in the market or at latest in the near future.

1.5 Study Confining
In the beginning of this study, the basic composition and operation of a frequency
converter are explained. These issues create the fundamental requirements to the
processor. Chapters 2 and 3 will familiarize the reader with the principles of motor
control.

Principles and basic features of a microprocessor are explained in Chapter 4.
Processed features are used as selection arguments in latter part of this study.
Another purpose is to familiarize the reader with technologies and related terms
that are used in future in order to make fluent reading possible.

The most essential part of this study begins in Chapter 5, in which the
argumentation is begun in order to solve the final contestants. In section 5.5 , the
final contestants are declared to participate in a pedantic analysis. In the analysis in
Chapter 6, the factors that influenced on the selection among other features are
reviewed.

The testing part of this study begins in Chapter 7. Selected processor go through the
same testing procedures which are created to model the operation of a frequency
converter. Benchmarking is performed as consistently as possible with different
alternatives. Results are compared in section 7.7.

Electrical Drive 3

2 ELECTRICAL DRIVE

Electric drive is a system that converts electric energy to mechanical energy. The
simplest form is a combination of an electric motor and a power source. However, it
is recommended to use a controlled drive. This means that a converter is connected
between the power source and the motor. At present, a common component of a
controlled drive in addition to the power source and the motor is frequency
converter. Electric drives have many applications in merchandise industry and
process industry as well as in vehicles and housekeeping. Examples of applications
are HVAC devices, conveyors, cranes, paper machines, elevators, and robots.
Applications can be classified based on power and performance. In this case,
performance means wide adjustment range of speed as well as fast and accurate
control of rotation speed and position. Pumps may need extremely great power
while robots require precise accuracy. [2] [3]

Despite the fact that electric motors consume significant part of all electricity
consumption in the world, only a small proportion of them are controlled. Using a
controlled drive will decrease the energy consumption substantially. In other words,
in addition to improved system performance, energy and money savings can be
gained.

2.1 Induction Motor
Induction motor is the most common motor type used in industry. It is also called
asynchronous motor based on its operation. The structure of an induction motor is
very simple and solid. They demand a little service and are cheap to manufacture.
Without a frequency converter the rotation speed is tied to the source frequency.
Other downsides are the need for parasitic power and the power loss in rotor
winding while heavily loaded. Induction motors are used over a range of widely
varying power. In industry, the variation may be from a couple hundred watts to
several megawatts. Small induction motors can be used for example in domestic
appliances such as washing machines and refrigerators. [4]

2.1.1 Structure

The two main elements in induction motor are a stator and a rotor. The stator
consists of three-phase winding which are fed with AC current. The rotor may vary
depending on the type of the motor. Alternatives are a squirrel cage rotor and a slip
ring rotor of which the squirrel-cage is more common. It is built up of bars that span
the length of the rotor and are connected through a conductive ring at each end.
The structure is introduced in Figure 2.1. [4]

Electrical Drive 4

Figure 2.1 a) Structure of an induction motor. b) Structure of a squirrel cage rotor
inside a stator.

2.1.2 Operating Principle

The function of induction motor is based on a rotating magnetic field developed by
the stator winding. Rotating magnetic field crosses the rotor winding inducing
electromotive force impacting on them. Currents in the rotor conductors are in
accordance with Lenz’s law. In other words, they try to resist the rotating magnetic
field. The rotor is affected by a torque which aims to rotate to the same direction as
the magnetic field. When the rotation speed of the rotor is reaching the speed of
the magnetic field, induced current will decrease. In static state, torque generated
by the motor is equal to the counter torque originated by a load. [4]

To establish this by formulas, the effecting force has to be considered. When
current is flowing in rotor conductors, Lorentz force is impacting on them according
to the Formula (1.1). [5]

 (1.1)

where is the length of the rods, is the current and is the magnetic field. The
cross product causes directions of the force to be perpendicular to both current and
magnetic field. This force causes perpendicular torque at the location of a magnetic
pole. The torque can be denoted as

 (1.2)

where

 is the radius of the rotor and therefore the lever arm of the force. The

same torque is affecting at the other pole at the same time and it rotates the rotor
to the same direction. Hence, the total torque is double.

 (1.3)

This equation describes the operation principle in a very simplified manner. In
reality the shape and structure of both the stator and rotor have an effect.

(a) (b)

Electrical Drive 5

Rotation Speed and Slip

Speed of the motor can be determined from the rotation speed of the magnetic
field. While the rotor rotates equal speed to the magnetic field, the rotating
magnetic field will not induce any currents to the rotor, hence no torque will be
produced. Thus, the rotation speed of the rotor differs slightly from the speed of
the magnetic field. This difference is called a slip. Zero slip would be possible only in
ideal situation where no torque exists. [4]

While the frequency of the grid beint , the synchronous angular velocity of the
field in static state is

 (1.4)

When the number of pair of poles is p, the geometrical angular velocity is

 (1.5)

The slip is defined as

 (1.6)

where is the geometrical angular velocity of the rotor and can be restated as

 (1.7)

Using rounds per time unit as the overall unit, the same can be written as

 (1.8)

As an example, a motor with a number of pole pairs as 2 and having a slip of 0,03
will rotate at speed of 1455 rounds per minute (rpm).

2.2 Frequency Converter
In general, a frequency converter is a device that is coupled between two separated
electrical networks. Usually these networks are electrical grid and an electrical
motor. In electricity generation, the motor operates as a generator and the energy
flow is opposite. Frequency converters are commonly called variable-frequency
drives or simply drives.

2.2.1 Different Types of Frequency Converter

Frequency converters can be divided into two main types: with or without an
intermediate direct-current link. Frequency converters with an intermediate direct-
current link can be further divided into constant current drives and constant voltage
drives. Existing drives without an intermediate direct-current link are matrix
converter and cycloconverter. Only cycloconverter has some commercial
importance. [3]

Constant current drives can be manufactured using either two thyristor bridges in
load commutated inverter (LCI) or replacing the bridge with self commutation circuit

Electrical Drive 6

on the motor side in current source inverter (CSI). CSI technology has some
advantages over LCI such as smoother torque. In addition, pulse width modulation
(PWM) can be applied. Constant voltage drives also known as voltage source
inverters (VSI) is presently the most employed type of frequency converters. In the
following sections, VSI will be simply called as frequency converter. [3]

2.2.2 Structure

Structure of a frequency converter in further detail is composed of three main
elements: rectifier bridge on the electrical network side, constant DC voltage circuit
or a DC bus, and an inverter circuit on the motor side. Structure is pictured in Figure
2.2. Apart of these, also the control unit and possibly a control panel have to be
taken into account. The rectifier bridge can be either a diode bridge, a thyristor
bridge, or an IGBT (Insulated-Gate Bipolar Transistor) bridge. Constant voltage
circuit is composed of large capacitors to smooth the voltage alteration and store
energy. There are possibly also inductors included to smooth the current. Some
smaller frequency converters may be assembled without the inductors. Modern
inverters are equipped with IGBT or MOSFET (Metal-Oxide Semiconductor Field-
Effect Transistor) modules which enable the use of PWM along the whole
bandwidth. IGBT modules are suited for as large as 500-1000 kW drives and voltage
tolerance is at least 3,3 kV. [3]

Figure 2.2 Main elements of the structure. Picture is modified from [3].

2.2.3 Pulse Width Modulation (PWM)

Control of the inverter switches is based on PWM. Many PWM methods may be
used in order to create desired AC waveform to each phase. Briefly, PWM is a
modulation method with which energy traveling to a load is regulated by changing
the duty cycle. Today, computation-intensive and possibly the best PWM technique
to control three-phase AC motors is space-vector modulation (SVM). SVM differs
from more traditional methods in that there are not separate modulators used for
each of the three phases. Instead, the complex reference voltage vector is
processed as a whole. SVM is illustrated in more detail next. [6]

M

DC Bus Inverter Circuit Rectifier

Mains

Motor

Electrical Drive 7

A three-phase inverter must be controlled so that both switches (of that particular
phase) are never turned on at the same time. Otherwise, the DC supply would be
shorted. This leads to eight possible switching combination. Different switching
positions can be illustrated as vectors according to Figure 2.3. Each vector indicates
a certain switch combination. For example, the combination in Figure 2.3a

corresponds the vector . The target is to consitute a reference signal , as shown

in Figure 2.3b. A convenient way to generate is to use adjacent vectors and

 . From Figure 2.3b can be seen that is the sum of vectors and .

Figure 2.3 (a) Switching state illustrating vector (011). (b) Space vectors of
three-phase bridge inverter showing reference voltage trajectory and
segments of adjacent voltage vectors.

The reference voltage vector is sampled at a fixed clock frequency , which
equals to switching frequency. Sampling time, is the reciprocal of switching
frequency, . Time period , during which the average output matches the
reference, is defined as half of the sampling time . Reverence voltage is
calculated in Equation (1.9).

 (1.9)

where

 (1.10)

 (1.11)

 (1.12)

Time intervals and satisfy the reference voltage and time fills up the
remaining gap for with the zero null vector. Figure 2.4 shows the construction of

 (110) (010)

 (011)

 (001) (001)

 (000)

 (111)

(b)

(a)

 (100)

Electrical Drive 8

the symmetrical pulse pattern for two consecutive intervals that satisfy the

reverence voltage vector in Figure 2.3b.

Figure 2.4 Construction of a symmetrical pulse pattern for three phases. [6]

Overmodulation

Combining all switching states appropriately, any voltage vector located within the
hexagon in Figure 2.3b can be generated. The circle inside the hexagon determines
the limit of linear modulation. Linear modulation will result sinusoidal waveform,
while exceeding the circle, the waveform is distorted. Implementing a vector that
exceeds the circle, yet takes a position inside the hexacon, is called overmodulation.
Overmodulation can be implemented by two alternative methods. The voltage
vector must be inside the hexacon, thus an “ideal” voltage vector must be truncated
to result either minimum phase error vector or minimum magnitude error vector.
These alternatives are described in Figure 2.5.

Overmodulation is used to increase the root-mean-square (rms) value of the
voltage. Higher rms value allows greater rotation speeds without stepping into field
weakening range. It will also compensate the RMS voltage drop due to losses in
frequency converter. Field weakening is explained in more detail in Chapter 3. [7]

Phase a

Phase b

Phase c

Electrical Drive 9

Figure 2.5 Overmodulation resulting (a) minimum phase error vector and (b)
minimum magnitude error vector. [7]

(a)
(b)

Control Principles of Induction Motor 10

3 CONTROL PRINCIPLES OF INDUCTION MOTOR

In many applications it is not practical to drive the motor by its nominal speed.
Considering the interdepence of stator frequency, pole pair number and slip, the
following formula can be written.

 (3.1)

According to this, speed can be affected by changing input frequency, number of
pole pair, or slip. Changing the input frequency is the fundamental technological
issue that is the main topic of this chapter. The other means are also mentioned.

Formula (3.1) indicates that increasing the pole pair number will decrease the
rotation speed of the motor. This is originated from slower rotating magnetic field
in the stator. Stator may be also constructed with two different windings which will
result different pole pair numbers. However, this is not very efficient way to exploit
the stator, because only another winding is in use simultaneously.

The slip can be adjusted by controlling input voltage. Rotation speed depends on
the input voltage and a torque provided by a load. With a lower voltage, a higher
current is needed to maintain the power in air gap. With a higher current, the
resistive losses increase and torque must be limited to prevent excessive increase of
the slip. [4]

Figure 3.1 Example of a cascade control. Modified and combined picture from [2]
and [8].

Position
control

Speed
control

Torque and
flux control

Current
control

DC bus

Referece
position

M

Reference
speed

Reference
torque

DC voltage

Phase current

Reference
current

Reference
voltage

T ()

Tachometer Position sensor

Mains

Position Speed

Motor

Control Principles of Induction Motor 11

In electric drives, the target is to control speed, torque, or the position of the motor
axis. Cascade control is one effective manner to control induction motor. In cascade
control, it is possible to divide a complex process to several simpler processes and
equip them with own adjustment. Figure 3.1 describes a chain of controls including
speed, torque and position control. [2]

3.1 Open-loop and Closed-loop Control
In the following sections in this chapter is studied how to control rotation speed by
changing the output frequency of a voltage source inverter (VSI).

Open-loop and closed-loop control can be distinguished by the means how the
target is achieved. Open-loop control is based on reference values and a model of a
device. Controlling signals, that will reach a desired phenomenon, are based on the
model. In closed-loop control, output is compared to the reference values. The aim
of closed-loop control is to minimize this difference by changing the control signals
according to the control algorithm. In future, the simple word ‘control’ will refer to
closed-loop control. [2]

3.2 Scalar Control
Scalar control, in many occasions simply V/f control, is based on controlling only
stator voltage and frequency. Dynamic model of the motor is not used which results
to a low performance control. Typically, controlling system does not include speed
nor torque regulation, which leads to open-loop control. Analyzing only effective
value of stator voltage, following estimate may be written for reference value. [2]

 (3.2)

Usually the resistive term is used only when the speed is under 10…15 % of the
nominal value. Omitting the resistive term and solving the angular frequency, the
formula can be simplified.

 (3.3)

For simplicity, the subscripts have been shortened. In scalar control, the aim is to
maintain the stator flux linkage as constant. This means that magnetization current
is also constant. If the current is kept constant, it is obvious that the frequency
cannot increase without a limit due to a voltage limit. As a result, the voltage
dependence on the frequency is a straight line until the voltage limit is achieved at
the nominal frequency. This frequency range is called constant flux range.
Increasing the frequency over the nominal value, stator flux linkage has to decrease
while the voltage remains constant. This frequency range is called field weakening
range. Torque depends on the stator flux linkage. Therefore, increasing frequency is
achieved at the expense of torque. Power curve is following the voltage. Flux
linkage, voltage, torque, and power are graphically illustrated in Figure 3.2.

Control Principles of Induction Motor 12

Figure 3.2 a) Flux linkage and voltage. b) Torque and power. All quantities are
proportional to their nominal values while motor is fed with its
nominal current. [2]

3.3 Vector Control
Utilizing vector control, significant enhancement of dynamics can be achieved. The
aim is to control flux linkage and torque separately. A common means in analysis is
to attach the coordinate system to rotor flux linkage. This is called rotor field
orientation.

3.3.1 Rotor Field Orientation

To analyze the principle of rotor field orientation, formulas of rotor voltage, rotor
flux linkage, and developed torque are needed. The formulas can be presented as
follows in an arbitrary coordinate system. [4]

 (3.4)

 (3.5)

 (3.6)

In Equation (3.4), is the angular velocity of a selected coordinate system. The
other term is the electrical angular velocity of the rotor. If is the
synchronous angular velocity, denotes the slip frequency. Solving vector
 from the Equation (3.5), the rotor voltage Equation (3.4) can be presented as

 (3.7)

where the stator current has been separated to a real part (d-axis) and a

complex part (q-axis). Rotor flux linkage has only real part in rotor field

oriented system, thus the vector indicator may be discarded. Solving the real part
of the current, the following equation can be obtained.

 (3.8)

1

1

Constant flux range Field weakening range

(b)

1

1

Constant flux range Field weakening range

(a)

Control Principles of Induction Motor 13

From this equation can be seen that if the direction of the flux is known, the
magnitude of rotor flux linkage may be controlled by regulating , in other words
the d-component of the stator current. Using separated complex form of the stator
current, torque equation can be restated as

 (3.9)

As an inference, torque can be controlled quickly by regulating the q-component of
the stator current which is perpendicular to the rotor flux linkage.

3.3.2 Controlling System

An example of a block diagram of a vector control system is illustrated in Figure 3.3.
The estimate of rotor flux linkage and its angle can be obtained by calculation
from measured stator field orientated stator current

 and stator voltage
 . Stator

current is then converted to rotor field orientated value by multiplying it by .
D-component of the reference stator current can be obtained from and its
reference value, . Combination of and reference torque will

determine the q-component of the reference stator current. is offered by the

speed regulator. Rotor field orientated is the output of the current regulator.

PWM module is controlled by the reference voltage
 , which is gained by

multiplying by . Coordinate system conversions between dq-components

and phase components are not visible in Figure 3.3, only they are included in other
blocks. Neither is pole pair number present in the figure, although calculations are
executed using electrical angular velocity , not mechanical angular velocity .
In other words, speed regulation and rotor flux linkage estimation blocks are
equipped with a multiplier equal to pole pair number. [4]

3.4 Direct Torque Control (DTC)
DTC controls directly the basic quantities of a motor, in other words torque and
speed. It is based on measured DC bus voltage and stator current. The aim is to
estimate flux magnitude and torque from the measurements and compare them
with their reference values. Analysis is done in stator flux oriented coordinate
system and thus no coordinate system conversion is needed. In DTC, coupling to the
motor is done based on flux and torque without concerning the form of the voltage.
In continuous state, the output voltage is sinusoidal. Distinction to PWM inverters,
DTC does not feed the motor with sinusoidal voltage in labile state. With DTC, even
better dynamics can be achieved compared to DC drives. [8]

The operation of DTC can be illustrated with Figure 3.4. Switches , and are
connected between the DC-voltage circuit (. The state of the switches can be
denoted as zero or one depending whether they are down or up. Voltage vectors

 … with a length of

 cover the whole circle and the angle between them is

. In addition, two zero-voltage vectors exists which can be achieved by setting all

the switches either up or down. Asserting a certain voltage vector, it is quite
straightforward to find the equivalent states of switch. Combination in Figure 3.4a
corresponds to the voltage vector .

Control Principles of Induction Motor 14

Figure 3.3 A flowchart of a direct rotor flux oriented vector control with a
tachometer. Stronger lines indicate quantities in component form.
Modified image from [4] and [8].

Flux
regulation

Current
regulation PWM

DC bus

M

T

Tachometer

Mains

Motor

Current q-
component

Speed
regulation

Rotor flux linkage
estimation

Control Principles of Induction Motor 15

Figure 3.4 a) Example of an inverter in (011) position. (b) Space vectors of output
voltage in stator oriented coordinate system. [4]

 (100)

 (110) (010)

 (011)

 (001) (001)

 (000) (111)

(a) (b)

Microprocessor 16

4 MICROPROCESSOR

Microprocessor (or shortly processor) is a device that includes central processing
unit (CPU) and other functional elements inside an integrated circuit (IC).
Microprocessors are intended to solve computational problems in a large variety of
applications. The history of microprocessors begins in early 1970s when several
manufacturers were developing their project simultaneously. The first commercial
single IC processor was Intel 4004, released in 1971 [9].

4.1 Different Types of Microprocessors
Microcontroller (MCU) is the core of intelligence in any embedded system.
Microcontroller can be considered a simple microprocessor with some support
functions, such as an oscillator, timers, serial communication devices, and analog-
to-digigal converter (ADC). Also different types of memory are attached inside the
same integrated circuit. Incorporating peripherals and memory into the same IC
reduces the number of separate ICs, resulting in compact and low-power
implementations. The number of peripherals depends on the application to which
the microcontroller is designed.

Microcontrollers are used in automatically controlled products and devices. The
development of all types of microprocessors has been the key factor of allowing the
design of more complex and controllable frequency converters. Actually, the
microprocessor in a frequency converter processes so complex signals that it is
often referred as digital signal processor (DSP). Digital signal processor is a
processor that is highly optimized for processing large amounts of data. In motor
control the data would be for example various measurements, such as stator
current and rotation speed. DSPs often provide instructions that are central to
certain digital signal processing, such as transforming vectors or metrics of data.
Frequently used arithmetic functions such as multiply-and-accumulate, are
implemented in hardware. Using hardware implementation, faster actions can be
achieved than with a software implementation running on a general-purpose
processor. DSP may also allow for execution of some functions in parallel. [10]

4.2 Arithmetic of a Microprocessor
Representing numbers in a processor is based on binary system. In binary system,
one number (bit) can be either zero or one. One byte consists of eight bits and a
word consists of two or more bits. Processors use two different manners to
represent number, fixed point representation and floating point representation.
Advantages and disadvantages are explained for both representation in the
following section.

4.2.1 Fixed-Point Numbers

In fixed-point arithmetic, numbers are represented either as integers or as fractions
between -1.0 and +1.0. In practice, most fixed-point DSPs support integer arithmetic
and fractional arithmetic. Fractional arithmetic is most useful for signal processing
algorithms, while integer arithmetic is useful for control operations, address
calculations, and other operations that do not involve signals.

Microprocessor 17

The most common method of representing signed integers on computers is two’s
complement. Signed integer means, that the most significant bit determines the
sign of the number. Two’s complement’s advantages are the simplicity to add and
subtract numbers and a single representation of zero. The representation of eight
bit number in two’s complement is presented in Figure 4.1. [11]

Figure 4.1 8-bit number two’s complement representation. [11]

4.2.2 Floating-Point Numbers

In floating-point arithmetic, numbers are represented by the combination of a
mantissa and an exponent. The value of the number is represented in the following
form:

The mantissa is usually a signed fractional value with a single implied integer bit.
The exponent is an integer that represents the number of places that the binary
point of the mantissa must be shifted left or right to obtain the original number
represented. In general, floating-point processors also support fixed-point data
formats. This is necessary to facilitate operations that are inherently integer in
nature, such as memory address computations. A simple floating-point data
representation is illustrated in Figure 4.2.

Figure 4.2 Simplified binary floating-point representation. [11]

Implied mantissa bit is assumed to always be set to ‘1’, and therefore, the mantissa
can have a value only in the ranges of +1,0 to +2,0 and -1,0 to -2,0. [11]

Mantissa Exponent

Sign bit Sign bit

Implied Mantissa
Bit

Radix Point
rfafasdf

2-6 2-7 2-5 2-4 2-3 2-2 2-1 2-0 -23 22 21 20 -21

-27 26 25 24 23 22 21 20

Sign Bit

Bit factor

Microprocessor 18

Floating-point data representation can be defined in many formats. In 1985, the
Institute of Electrical and Electronics Engineers released IEEE Standard 754, which
defines standard formats and a set of standard rules for floating-point arithmetic.
[11]

4.2.3 Arithmetic Comparison

Floating-point arithmetic is a more flexible and general mechanism than fixed-point.
It provides a wider dynamic range, which means the ratio between the largest and
smallest numbers that can be represented. Precision is also better in many cases
compared to fixed-point arithmetic. In many cases, the programmer does not have
to be concerned about dynamic range and precision with floating-point arithmetic.
On the other hand, more complex circuitry is needed, which implies a larger and
more expensive chip. [11]

4.3 Basic Architecture
In this section, a basic architecture of general-purpose processor is briefly covered.
CPU consists of a datapath and a control unit, tightly linked with a memory. The
basic architecture in a nutshell is described in Figure 4.3. [10]

Before going further, the core operation of a microprocessor is stated. Processor
executes instructions stored in program memory sequentially. Program counter (PC)
is a register that is used to hold the information where the processor currently is int
the sequence. The operation is presented in more detail in the following sections.

Figure 4.3 Basic architecture of a general purpose processor. [10]

In Figure 4.3, the black lines indicate both wires and buses. The term bus refers to a
set of wires with a single function within a communication. For example, address

Processor

Control unit Datapath

ALU

Registers

Controller

IR

Memory

Control
/Status

I/O

PC

Microprocessor 19

bus and data bus are needed in order to read from or write something to the
memory. Commonly the term bus can also indicate an entire collection of wires and
buses.

4.3.1 Datapath
The datapath consists of the circuitry where the actual processing is done. It
contains at least an arithmetic-logic unit (ALU) and registers. The main task of the
ALU is transforming data through operations such as additions and subtractions,
multiplications, logical functions, inverting, and shifting. Registers are used to store
temporary data. Temporary data may vary depending on the situation. It may
include data brought in from the memory but not yet sent through the ALU or data
coming from the ALU. Data from the ALU may be used for later ALU operations or
will be sent back to memory. [10]

4.3.2 Control Unit

The control unit consists of circuitry for retrieving program instructions and for
moving data to, from, and trough the datapath according to those instructions. The
control unit has a program counter (PC) which was mentioned already in the
previous section. PC holds the address of the next program instruction to fetch. The
fetched instruction is held in an instruction register (IR). The control unit also has a
controller that generates the control signals necessary to read instructions into the
IR and control the flow of data in the datapath. [9]

4.3.3 Memory

Memory is needed to store longer-term information used by the processor.
Information can be classified as either program information or data. Program
information consists of the sequence of instructions and data represents the values
being input, transformed, and output by the program.

Program memory and data memory can have a combined or separated address
space. In Von Neumann architecture (also known as Princeton architecture), the
memory space is combined and in Harvard architecture, the program memory
space is distinct from the data memory space. While Von Neumann architecture
may result in a simpler hardware connection to memory, Harvard architecture has a
few advantages. Harvard architecture can perform instructions and data fetches
simultaneously. Another advantage is that the memories do not need to share same
characteristics. In particular, the word width, timing, implementation technology,
and memory address structure may differ. Many modern DSPs used in electric
drives utilize Harvard architecture. Figure 4.4 illustrates these memory
architectures. [10]

Microprocessor 20

Figure 4.4 Alternative memory architectures: a) Harvard architecture and b) Von
Neumann architecture. [10]

Memory can be implemented in a separate IC or integrated in the same IC with the
other functions of the processor. To reduce the time needed to access memory, a
local copy of a portion of memory may be kept in a small but especially fast memory
called cache.

Various techniques may be implemented to manufacture on-chip memory. Many
microprocessors include fast Random Access Memory (RAM) as data memory and
Read Only Memory (ROM) as program memory. Today, ROM memory is often
replaced with re-programmable Flash memory. Information in RAM is lost when the
power is switched off from the system while Flash has the ability to hold the
information.

4.3.4 Instruction Set and Operation

Instruction set is a key element of the processor’s architecture. It determines the
operations that are possible on the processor. Depending on the instruction set,
certain operations are more efficient and natural than others. Technically the
instruction set describes the bit configurations allowed in the IR. Each bit sequence
in the IR forms an assembly instruction, and a sequence of instructions forms an
assembly program. These instructions control how data are sequenced through the
processor’s data path and how values are read and written to memory. [10]

A typical instruction consists of opcode field and oprand fields. An opcode specifies
the operation to take place during the instruction. Instruction can be coarsely
classified into three categories. Data-transfer instructions move data according to
the operands. Depending on the opcode, the data movement can be between
registers and memory, registers and input/output channels, or between registers
themselves. Arithmetic/logical instructions configure the ALU to carry out a
particular function, move data from the registers through the ALU, and move data
from the ALU back to a particular register. Branch instructions determine possibly
the address of the next program instruction depending on the type of the branch
instruction. [10]

Program
memory

Data
memory

Processor

Memory
(program and data)

(a) (b)

Processor

Microprocessor 21

Microprocessors may be categorized in two large classes by characterizing their
instruction set architectures: complex instruction set computer (CISC) and reduced
instruction set computer (RISC). The instruction set of CISC microprocessors can
handle both basic operations and complex functions and typically can take many
clock cycles to complete. RISC architecture processors are characterized by large
register set and a small instruction set containing frequent simple instructions that
can be executed in one clock cycle. [12]

Instruction Execution and Pipelining

Execution of instructions typically consists of four basic stages:

1. Fetch instruction (F) : CPU gets the instruction from the memory
2. Decode instruction (D) : CPU decodes the instruction
3. Fetch operands (R) : CPU reads the operands from the memory
4. Execute operation (E) : CPU executes the instruction

In the microprocessor basic architecture, the instructions are executed in a
sequential manner as shown in Figure 4.5.

Figure 4.5 Instruction cycles of a basic architecture. [12]

In basic architecture, each stage is working only one cycle while being in idle during
the rest three cycles. Pipelining is a common means to increase the instruction
throughput of a microprocessor. In pipeline architecture basic operations (fetch,
decode, read, execute) are allowed to overlap so the microprocessor can handle
several instructions at the same time. The execution time can be thus reduced as
shown in Figure 4.6.

Figure 4.6 Executing instructions using pipeline. [12]

Instruction 1

Instruction 2

Instruction 3

Instruction 4

F D R E

F D R E

F D R E

F D R E

Time

F D R E F D R E F D R E F D R E

Instruction 1 Instruction 2 Instruction 3 Instruction 4

Time

Microprocessor 22

4.3.5 Cache

In order to avoid using the slower dynamic random access memory (DRAM)
technology, numerous microprocessors are equipped with fast cache that is
implemented with static random access memory (SRAM) technology. Typically the
size of the cache is very modest compared to other elements in memory hierarchy.
The aim is to keep only the most essential data in the cache as possible at each
time.

The operation of the whole memory system is hierarchical. When some memory
address is accessed, first the system checks for a copy of that location in cache. If
the copy is in the cache, called a cache hit, then the access is quick. If the copy is not
there, called a cache miss, the address must be first read into the cache. There are
several cache design choices which can have a significant impact on system cost,
performance, as well as power. [10]

4.3.6 Interrupt Controller

Interrupt controller is usually a built-in element in a processor that forwards an
interrupt from an external souce to the central processing unit. External interrupt
may be provided for example by some peripheral. An interrupt will cause the
processor to stop executing its current program and branch to a special block of
code called an interrupt service routine (ISR). At this time, some particular
subroutine will be executed. After handling the interrupt, the processor will resume
execution where it left off. Interrupt can come from a variety of sources, such as on-
chip peripherals, external interrupt lines, or software interrupts. Interrupt controller
is equipped with a certain amount of interrupt lines. The interrupt lines may have
unequal priority that assures the urgent interrupt to be handled first. [2]

4.4 Peripherals
In order to function effectively, a microprocessor in embedded system must provide
a good selection of on-chip peripherals and peripheral interfaces. This minimizes
the demand for external hardware to support its operation and interface it to the
outside world. In this section, the essential peripherals for motor control
microprocessors are briefly discussed.

4.4.1 Communication Interface

Transfer of data between a microprocessor and peripherals can be accomplished by
serial or parallel transmission. A serial interface transmits and receives data one bit
at a time. In contrast, parallel ports send and receive data in parallel, typically 8, 16,
or 32 bits at a time. Serial interface is more compact form, requiring as few as three
or four pins for a complete interface. On the other hand, serial interface do not
function as fast as parallel interface.

Serial interface can be categorized into two classes: synchronous and asynchronous.
A synchronous serial port transmits a bit clock signal in addition to the serial data
bits. The receiver uses this clock to decide when to sample the received data. Figure
4.7a shows the waveforms of a typical synchronous peripheral interface. In
asynchronous communication, clock is not contained within the data stream. The
transmitter sends data at a programmed frequency and the receiver operates at the

Microprocessor 23

same nominal frequency. The receiver clock is required to resynchronize on each
character. Specialized data communication unit, which are commonly known as
universal asynchronous receiver transmitter (UART), are needed to interface the
microprocessors and the communication channel. The efficiency of asynchronous
transmission is lower than that of synchronous transmission due to the control bits
required for each data character. A typical asynchronous serial communication
interface is shown in Figure 4.7b. [12]

Figure 4.7 Serial communication: a) synchronous mode and b) asynchronous
mode. [12]

Examples of commonly used serial communication standards are serial peripheral
interface (SPI) and RS-232. SPI is a synchronous serial data link while RS-232 is
asynchronous. RS-232 is commonly known as serial port in personal computer. In
the following chapters, serial communication interface (SCI) stands for generally
other serial interfaces than SPI.

Parallel communication is used when high-speed data transfer is needed.
Disadvantage is the requirement of multiple-conductor cables and connectors.

4.4.2 Timers

A timer is an extremely common peripheral device that can measure time intervals.
Fundamentally, a timer is much like a serial port bit clock generator: it consists of a
clock source, a prescaler, and a counter, as shown in Figure 4.8.

Figure 4.8 A typical DSP processor timer peripheral. [10]

Prescaler Down
Counter

Interrupt Upon
Reaching Zero

Clock
Source

0 1 2 3 4 5 6 7

Character 1

0 1 2 3 4 5 6 7

Character 2
Idle line

Start bit Stop bit

Idle line

(b)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3

Character 1 Character 2

Data Stream

Clock

(a)

Microprocessor 24

The purpose of the prescaler is to reduce the frequency of the clock source so that
the counter can count longer periods of time. Lower frequency is achieved by
dividing the source clock frequency by some selectable value. Counter then uses
this prescaled signal as a clock source, typically counting down from a preloaded
value on every rising clock edge. Counter is often programmed to interrupt the
processor upon reaching zero.

A special type of timer is a watchdog timer. In normal function, a signal is generated
for the watchdog timer every certain time interval. If the watchdog timer does not
succeed to receive this signal, the timer “times out” and will indicate a failure. One
common use of a watchdog timer is to enable an embedded system to restart itself
in case of a failure. [10]

Digital implementatation of PWM is also realized by using timers. Figure 2.4 can be
used here as an example. The first switching takes place at when a PWM timer
runs out. At this moment, the timer is reloaded with a value . After the time
period , a new switching combination is coupled and timer is reloaded with a
value . When time is spent, a new switching combination is again coupled to
correspond zero vector and timer is reloaded with .

4.4.3 A/D Converter
In order to process analog signals from the environment, microprocessor needs to
convert the signal to suitable binary data. This conversion is executed by the A/D
converter (or simply ADC). A/D converters can be divided into two main classes:
indirect converters and direct converters. Indirect converter implies that the
conversion is first made to the ratio of voltage and frequency and then obtained a
numeric value with a counter. Direct converter includes a Flash converter and
various types of closed-loop converters. The most common type is describes in this
section. [2]

Present standard is a method called successive approximation register (SAR). First
the analog voltage is stored in a sample and hold circuit in order to maintain a
constant value during the conversion. SAR is initialized so that the most significant
bit is equal to a digital “one”. This code the converted by the digital-to-analog
converter (DAC) to obtain a reference value to the analog input. Now the
comparator compares the reference value to the input voltage. If the input voltage
is higher than the reference value, the most significant bit will retain its value in the
SAR. Otherwise, the most significant bit will be set to zero. The same operation is
performed to all bits sequentially until the final result is achieved. Functional blocks
are shown in Figure 4.9. [2]

Advantages of SAR converter are relatively high speed and adaptability. The
conversion takes one clock-cycle for each bit of resolution desired. One converter
can also be used to digitize multiple analog signals. Then each analog signal is stored
to a specific sample and hold circuit to which the converter is coupled in turn with a
multiplexer.

The quality of the ADC can be determined by its capabilities. The most fundamental
features are resolution, accuracy, and sample rate. Resolution indicates how many
quantization level the converter possesses. Accuracy describes how the converter

Microprocessor 25

behaves with different types of errors. The sample rate simply defines the amount
of samples the converter produces in a second.

Figure 4.9 Structure of SAR converter. Black/white boxes indicate digital blocks
while purple boxes indicate components that do not handle binary
data. Picture is modified picture from [2].

 SAR

Binary
output

 DAC

D0 D1 D2 DN-2 DN-1

Clock

Vref

 S/H Vin

Comparator

+

-

Processor Requirements and Alternatives 26

5 PROCESSOR REQUIREMENTS AND ALTERNATIVES

The scope of this chapter is to determine requirements of the processor to be used
in low-power frequency converter. The aim is to find a processor that fulfills the
requirements in a reasonable price. Low-power products have great volumes and
thus, the price has a significant role in decision making. This may lead to certain
manufacturers ABB has good relations with and prior contracts. In addition to the
technical requirements, the availability is a major issue. Selected MCU must be in
right point of its life cycle in order to maintain availability. Also support from the
manufacturer must be taken into account.

In the following sections, requirements are discussed in itemized form. Basically,
topics in the fourth chapter are analyzed in a more practical manner. This analysis is
then used making exclusive decision between processor alternatives.

Facts in the following sections are not strictly based on science. On the contrary,
they are based on sophisticated conjectures made mostly by experienced
professionals. Information from previous product families is used and cognizable
modification to the following family is taken into account.

5.1 Performance and memory
Evaluating processor’s performance is not always a straightforward task. The easiest
means are to compare the clock frequency of the processor. Due to versatile
processor architectures, clock frequency is not comprehensively comparative
quantity. Often used measure to determine the speed of a processor is the amount
of instructions executed per second. Common unit is million instructions per second
(MIPS). It is still essential to keep in mind that the amount of instructions executed
in a time unit depends highly on the applications and instruction sets. Some artificial
instruction sequences may lead to greatly higher values than a sequence of a
practical application. In addition, it is not meaningful to compare RISC and CISC
processors in this manner. To ease the comparison, computing benchmark
programs has been developed.

The scope in this research are processors having the speed of 60 – 100 MIPS. This
was the first fundamental requirement for the manufacturers to suggest some of
their models.

Defining the minimum internal memory is extremely difficult task at the present
juncture of product development. Determining precise requirements for future
product family is fairly impossible. To provide some boundary conditions to the
manufacturers, memory requirements were kept somewhat identical to the present
processor. In more detail, minimum amount of flash memory was quantified to 256
kilobytes and the amount of RAM memory to 32 kilobytes. In addition, an option of
expanding to external memory is mandatory.

Processor Requirements and Alternatives 27

5.2 Peripherals and communication
The third baseline is the peripherals. Certain amount of features and
communication are required in order to create a good quality motor control. The
most fundamental of them are reviewed in this section.

According to the ABB specialists, A/D-converter inside the processor has to fulfill at
least the same resolution as the present processor does. Consequently, the
requirements were set to 12-bit resolution and 12 input channels. In many
occasions, processors under investigation provide more than 12 channels with
several separate A/D-converters.

Minimum requirement for PWM outputs was designated to be six. IGBT-modules
can be driven with these six channels and additional brake chopper can be
implemented with a universal timer if necessary. In addition to PWM timer,
processor must include at least three general purpose timers.

Communication interfaces are fundamental to external peripherals and memory.
SPI is especially essential in order to have external memory and SCI is used for
example to attach a control panel or even a PC to the drive. Field bus is also a
relevant feature of the following product family, and therefore controller area
network (CAN) was kept mandatory. Minimum requirements were one CAN, one SPI
and two SCIs. Numerous modern processors fulfill these requirements even
extravagantly. Minimum technical requirements sent to manufacturers are shown
in Table 5.1.

Table 5.1 Technical requirements.

Feature Requirement

Performance: 60 MIPS

RAM: 32 kB

Flash Memory: 256 kB

A/D Converter: 12-bit x 12 channels

SCI: 2

SPI: 1

CAN: 1

PWM: 6 channels

5.3 Availability
In order to maintain reliable production, availability of the components has to be
taken into account. Attention has to be paid especially to processors due to their
laborious replacement project. Requirements, sent to manufacturers concerning
availability, are described next. Processor is recently added to product road map,
release date to market is not later than during the third quarter year in 2011, and
the processor has to be in production for at least several following 10 years. Road
map means the selection of present products and available products in the near
future already having specifications.

Processor Requirements and Alternatives 28

5.4 Security
One topic of investigation is the possibility to encrypt the code loaded to the
processor. At a later point of the evaluation, this option was set mandatory. Ability
to encrypt the code will prevent other parties to abuse ABB’s knowhow. Encryption
will make backward engineering and code uploading impossible or at least
complicate it drastically. Different manufacturers have their own means to
implement security technologies which they call by their individual names.

5.5 Processor alternatives
After a comprehensive evaluations based on technical data and prices, a few
processors pulled through to the testing phase. Due to time limitations concerning
this thesis and sample availabilities, all processors could not be tested. Processors
under investigation in the last phase include two processors from Texas
Instruments. Other processors are from different vendors. The processors are:

 Texas Instruments TMS320F28057PNT

Texas Instruments LM3S9B96

 STMicroelectronics STM32F215VET6

 Freescale MC56F8441

Unfortunately, exactly same models were not available and every manufacturer
offered some close alternative. Texas Instruments provided their TMS320F28035
model to the test. TMS320F28035 does not fulfill the requirements in Table 5.1,
nevertheless directional results could be achieved. STMicroelectornics offered
STM32F217IGT6 which has additionally camera and Ethernet interfaces. Otherwise
217 model is identical to 215 model. The two letters after STM32F21x indicate pin
count and Flash memory size. LM3S9B96 was taken along to the evaluation to be
compared to STM32F215VET6 that is based on the same processor core. Freescale
offered MC56F8257 which differs from 8441 model by having slightly newer core,
lower clock frequency, and smaller memory size. According to Freescale experts,
8441 model has a few additional instruction compared to 8257 model.

In addition, one processor with a separate floating-point unit (FPU) was provided to
the test from Renesas Electronics after the other contestants had been already
tested. Renesas SH7216 group device was tested equally among other devices and
added to the results. Device model is actually R5F7216FAU, yet the group name will
be used in future. SH7216 is an excellent enhancement to this evaluation and
depicted the effectiveness of the FPU in calculations.

Processor Comparison 29

6 PROCESSOR COMPARISON

In this chapter, processors under investigation and testing results are presented in
detail. Primary targets listed below are now disregarded and discussion is only
about the ones that was provided to author’s test bench. Test bench contents are
described superficially without explaining the entire test code.

6.1 Texas Instruments TMS320F28035
TMS320F28035 (in future shortly F28035) is a 60 MHz processor from Texas
Instruments with an additional Contol Law Accelerator (CLA) core besides the main
C28x core. F28035 is designated as a 32-bit Real-time MCU by the manufacturer and
is a member of the C2000TM family. Inside the C2000TM family, the F28035 belongs
to the PiccoloTM series. C28x-based processors has been used in many previous ABB
product families, such as ACS355, and ACS550. Testing was began with F28035 due
to vast amount of technical support inside ABB and previous testing data as a
comparison. Functional overview is presented in Figure 6.1. [13]

6.1.1 Architectural Overview

Central Processing Unit
As mentioned in previous section, F28035 has two separated cores: C28x and CLA.
According to the manufacturer, C28x is a very efficient C/C++ engine at math tasks
and system control tasks. C28x has a 32-bit fixed-point architecture and the 32 x 32-
bit multiplying accumulator (MAC) 64-bit processing capabilities enable the
controller to handle higher numerical resolution problems efficiently. The device
has an 8-level-deep protected pipeline with pipelined memory accesses. [13]

The CLA is an independent single-precision 32-bit floating-point unit that extends
the capabilities of the C28x CPU by adding parallel processing. It has own bus
structure, fetch mechnanism, and pipeline. Eight individual CLA tasks, or routines,
can be specified. Each task is started by software or a peripheral such as the A/D
converter, a pulse width modulator, or a specific CPU timer. CLA was not used due
to challenges in code modification. [13]

Processor Comparison 30

Figure 6.1 Block diagram of F28035. [13]

Memory
The F28035 has the Harvard memory bus architecture containing a program read
bus, data read bus, and data write bus. The program read bus consists of 22 address
lines and 32 data lines. The data read and write busses consist of 32 address lines
and 32 data lines each. The Harvard architecture enables the C28x to fetch an
instruction, read a data value and write a data value in a single cycle.

The device contains 64K x 16 of embedded flash memory, segregated into eight 8K x
16 sectors. Also a single 1K x 16 one time programmable (OTP) memory is included.
Appendix X shows a memory map of the F28035. [13]

Processor Comparison 31

6.1.2 Peripherals

Timers
The F28035 has three identical 32-bit timers. CPU-Timers 0, 1, and 2 have
presettable periods and 16-bit clock prescaling. The timers have a 32-bit count-
down register, which generates an interrupt when the counter reaches zero. When
the timer reaches zero, it is automatically reloaded with a 32-bit value. The counter
is decremented at the CPU clock speed divided by the prescale value setting. Either
12 or 14 Enhanced Pulse Width Modulation outputs are included depending on the
package type. The smaller package type is 64-pin PAG TQFP while the larger is 80-
pin PN LQFP package. [13]

Communication
Several communication interfaces are included in F28035 such as two SPI modules.
SPI module takes four pins and of the processor and if not used, all four pins can be
used as General Purpose Input/Output (GPIO). Another alternative is one Serial
Communication Interface (SCI). The SCI module supports digital communications
between the CPU and other asynchronous peripherals that use the standard non-
return-to-zero (NRZ) format. Local Interconnect Network (LIN) included in F28035
can be used also as another SCI module. In addition, enhanced Controller Area
Network (eCAN) and Inter-Integrated Circuit (I2C) are included in the chip. [13]

A/D Converter
The F28035 is equipped with a 12-bit ADC. The ADC takes 4.6 million samples in a
second while conversion time is 216.67 ns. Number of channels is 14 in the smaller
package while 16 in the larger package. The ADC block contains two sample-and-
hold units for simultaneous sampling. [13]

6.1.3 Feature Summary

The most essential features in summarized form are presented in Table 6.1.

Table 6.1 TMS320F28035 main features. Variations depend on the package. [13]

Feature TMS320F28035

Clock Frequency: 60 MHz

RAM: 20 kB

Flash Memory: 128 kB

A/D Converter: 12-bit x 14-16 channels

SCI: 1 (LIN excluded)

SPI: 2

CAN: 1

PWM: 12-14 channels

Package 64 TQFP, 80 LQFP

Processor Comparison 32

6.2 Texas Instruments LM3S9B96
The first two letters ‘LM’ stands for Luminary Micro which was the first company
that manufactured microcontrollers based on the ARM Cortex-M3 core. Luminary
Micro was acquired by Texas Instruments in May of 2009. ARM Cortex-M3 devices
comprises the commercially known Stellaris® product family. High-level block
diagram is presented in Figure 6.2. [14]

6.2.1 Architectural Overview

Central Processing Unit
LM3S9B96 has the ARM® CortexTM-M3 processor core (shortly ARM Cortex-M3)
with a clock speed of 80 Mhz. According to the manufacturer, the ARM Cortex-M3
device provides the core for a high-performance, low-cost platform that meets the
need of minimal memory impelemtation, reduced pin count, and a low power
consumption, while delivering outstanding computation performance and
exceptional system response to interrupts. [15]

As an ARM Cortex-M3 processor, LM3S9B96 core contains 16 registers of which 13
are general-purpose. The processor supports 32-bit, 16-bit, and 8-bit data types.
Instructions are both 16-bit and 32-bit long. Pipeline has three stages and hardware
division block is included. [16]

Nested Vectored Interrupt Controller (NVIC) is closely integrated with the processor
core. According to CortexTM-M3 Technical Reference Manual, this faciliates low
latency exception processing. [16]

Memory
LM3S9B96 has the Harvard memory to enable simultaneous instruction fetches with
data load and store. Memory accesses are controlled by a separate Load Store Unit
(LSU) and a 3-word entry Prefetch Unit (PFU). LSU decouples load and store
operations from the ALU and PFU ensures that a stall cycle is only necessary for one
particular type of instruction fetched. At system clock speeds of 50 MHz and below,
the Flash memory is read in a single cycle. Above 50 MHz, a prefech buffer of the
Flash memory controller is used automatically and the Flash operates at half of the
system clock. [15]

The device provides 96 kB of single-cycle on-chip SRAM. In order to reduce the
number of slow read-modify-write operations, ARM has introduced bit-banding
technology in the Cortex-M3 processor. With this technology, certain regions in the
memory map can use address aliases to access individual bits in a single operation.
[15]

Processor Comparison 33

Figure 6.2 LM3S9B96 block diagram. [15]

6.2.2 Peripherals

Timers
LM3S9B96 has four 32-bit timers and two Watchdog timers. The Stellaris® General-
Purpose Timer Module (GPTM) contains four GPTM blocks (Timer 0, Timer 1, Timer
2, and Timer 3). Each GPTM block provided two 16-bit timers or counters (Timer A,
Timer B) that can be configured to operate independently as timers or event
counters, or configured to operate as one 32-bit timer or one 32-bit Real Time
Clock). Timers can be used to trigger A/D conversions. In addition to GPTM, other
timer resoureces include the System Timer (SysTick) and the PWM timer in the
PWM module. PWM module contains eight PWM outputs. [15]

Processor Comparison 34

Communication
The most essential communication interfaces included in LM3S9B96 are three SCIs,
two SPIs and two CAN interfaces. Also Ethernet, Inter-Integrated Circuit (I2C), and
USB interfaces are included. [15]

A/D Conveter
The Stellaris® ADC module features 10-bit conversion resolution and supports
sixteen input channels. Input source, trigger events, interrupt generation, and
sequencer priority are fully configurable Maximum sample rate is one million
samples per second. [15]

6.2.3 Feature Summary

The most essential features in summarized form are presented in Table 6.2.

Table 6.2 LM3S9B96 main features. [15]

Feature LM3S9B96

Clock Frequency: 80 MHz

RAM: 96 kB

Flash Memory: 256 kB

A/D Converter: 10-bit x 16 channels

SCI: 3

SPI: 2

CAN: 2

PWM: 8 channels

Package 100 LQFP, 80 LQFP

6.3 STMicroelectronics STM320F207IG
STM32F207IG is the another ARM® CortexTM-M3 based product participating in this
evaluation. Naturally, many properties are quite similar with Texas Instruments
LM3S9B96 due to the same core architecture. While writing this thesis,
STM32F207IG is not yet in production, hence device related issues are confidential,
and therefore not discussed. Nevertheless, CortexTM-M3 Technical Reference
Manual is public and may be considered an information source.

6.4 Freescale MC56F8257
The MC56F8257 is classified as digital signal controller by Freescale and appears
often by simpler name: 56F8257. The product is relatively fresh and available
technical data is quite scarce. 56F8257 is based on the 56800E core with 60 MHz
operation frequency and according to the manufacturer, it combines DSP
processing power and microcontroller functionality with a flexible set of peripherals
on a single chip creating a cost-effective solution. [17]

Processor Comparison 35

6.4.1 Architectural Overview

Central Processing Unit
The 56800E core consists of three execution units operating in parallel, allowing as
many as six operations per instruction cycle. The core includes three internal
address buses and four internal data buses. Main functional elements of the core
are single-cycle 16 x 16-bit MAC, four 36-bit accumulators and a 32-bit arithmetic
and logic multi-bit shifter. DSP and controller functions are supported with 155
basic instructions. A simplified block diagram of the MC56F825x series is illustrated
in Figure 6.3. [17]

Figure 6.3 Simplified block diagram of 56F8257. [17]

Memory
Memory is implemented as dual Harvard architecture that permits three
simultaneous accesses to program and data memory. The 56F8257 provides 64 kB
of flash memory and 8 kB of RAM memory. Word length is 16 bits. Both flash and
RAM supports 60 MHz program execution. Flash security and protection prevents
unauthorized users from gaining access to the internal flash. As can be seen from
Table 5.1, in which the processor requirements are presented, the 56F8257 does
not fulfill these requirements. Nevertheless, directional information of the potential
of the Freescale core may still be achieved. [17]

6.4.2 Peripherals

Timers
The 56F8257 has two four-channel 16-bit multi-purpose timer modules that are up
to 120 Mhz operating clock. Each timer has capture and compare and quadrature
decoder capability. Pulse width modulation is handled by Enhanced Flex Pulse

Processor Comparison 36

Width Modulator (eFlexPWM) module. The module has nine output channels with
16-bit resolution. [17]

Communication
The 56F8257 provides two queued serial communication interfaces (QSCI) modules.
Main features of the modules are four bytes deep transmit and receive buffers,
programmable 8- or 9-bit data format, and LIN slave functionality. In addition, one
queued serial peripheral interface (QSPI) is included. Other communication
interfaces are two I2C ports and one fully CAN 2.0 A/B compliant interface. [17]

A/D Converter
Two independent 12-bit ADCs are included in the device. Both ADCs has 8-channel
exernal inputs. Maximum ADC clock frequency is 10 MHz with a total conversion
time of 1450 ns. ADC conversion can be synchronized by eFlexPWM and timer
modules via so called internal crossbar module. [17]

6.4.3 Feature Summary

The most essential features of the 56F8257 are presented in Table 6.3.

Table 6.3 56F8257 main features. [17]

Feature TMS320F28035

Clock Frequency: 60 MHz

RAM: 8 kB

Flash Memory: 64 kB

A/D Converter: 12-bit x 16 channels

SCI: 2

SPI: 1

CAN: 1

PWM: 9 channels

Package 64 LQFP

6.5 Renesas SH7216
Renesas Electronics is quite obvious participant to this evaluation after all.
According to the manufacturer, Renesas Electronics became the world’s largest
microcontroller supplier through the merger of NEC Electronics and Renesas
Technology. SH7216 belongs to SuperH series in the manufacturer’s road map and
is the fastest device in this evaluation with a clock frequency of 200 Mhz. Block
diagram of SH7216 is illustrated in Figure 6.4. [18]

Processor Comparison 37

Figure 6.4 Block diagram of SH7216. [18]

6.5.1 Architectural Overview

Central Processing Unit
SH7216 has a RISC-type instruction set and uses superscalar and Harvard
architectures. Superscalar architecture allows the device to execute two
instructions at one time. SH7216 has a 32-bit internal-bus architecture, sixteen 32-
bit registers, four 32-bit control registers, and four 32-bit system registers. The
instruction set consists of 16-bit basic instructions and 32-bit instructions for high
performance. Pipeline has five stages. [19]

SH7216 is equipped with a double-precision (64-bits) FPU, which supports IEEE 754-
compliant data types. The FPU has sixteen 32-bit floating-point registers and two
32-bit system registers. Instruction set supports directly multiplying and
accumulation, division, and square root. Also instructions that load constant 0 or 1
is included in the instruction set. [19]

Memory
SH7216 has a 4 Gbyte address space and incorporates 1 MB flash memory, 32 kB
data flash memory, and 128 kB RAM. Flash memory is designed for the storage of
instruction code while data flash is for storing data. RAM can be accessed in 8, 16,

Processor Comparison 38

or 32 bits and can be effectively used as program area or stack for access at high
speed. [19]

6.5.2 Peripherals

Timers
SH7216 has two multi-function timer pulse units (MTU2 and MTU2S). MTU2
comprises six 16-bit timer channels and a selection of eight counter input clocks for
each channel except channel 5, which has only four input clocks. MTU2S comprises
three 16-bit timer channels. MTU2 can operate at 50 MHz max. while MTU2S can
operate at 100 Mhz max. for complementary PWM output functions. For other
peripherals, the maximum operation speed of MTU2S is 50 Mhz. [19]

Communication
SH7216 is quite abundant with its connectivity features. The device comprises five
SCI channels, I2C bus interface 3, a modified Controller Area Network (RCAN-ET)
module, USB function module, Ethernet Controller, and Renesas Serial Peripheral
Interface (RSPI). The SCI can handle both asynchronous and clock synchronous serial
communication. The RSPI is capable of full-duplex synchronous, high-speed serial
communications with multiple processors and peripheral devices.

A/D Converter
Successive approximation type A/D converter has eight input channels and a 12-bit
resolution. Maximum clock frequency is 50 MHz and with with 50 conversion
states, the minimum conversion time is 1,0 μs per channel. Conversion can be
started by software, with timers, or with an external trigger.

6.5.3 Feature Summary
The most essential features of the SH7216 are presented in Table 6.4.

Table 6.4 SH7216 main features. [19]

Feature TMS320F28035

Clock Frequency: 200 MHz

RAM: 128 kB

Flash Memory: 1 MB

A/D Converter: 12-bit x 8 channels

SCI: 5

SPI: 1 (RSPI)

CAN: 1 (RCAN-ET)

PWM: 12 channels

Package 176 LQFP

Test Results 39

7 TEST RESULTS

Testing was performed with a code that has been used in processor benchmarking
before in ABB. The code consists of various arithmetic operations and logic
operations. By these means, a trustworthy evaluation can be achieved. Results can
be also compared to the tests performed in the past.

7.1 Benchmarking

7.1.1 Code Contents

As mentioned in previous section, the target was to evaluate the performance of
the processors in arithmetic and logic functions. The task of the arithmetic function
was to evaluate performance by calculating the basic arithmetic operations, in
other words addition, subtraction, and multiplication. In addition, testing was
performed again separately both with division and with trigonometric functions. In
logic function, various logic operations were executed. Several variable statements
were used to confirm that the code is executed in correct order and the results are
reliable. Both arithmetic and logic function were executed once in the first stage,
and as a loop of ten cycles in the second stage. Nevertheless, time values in result
tables correspond only one complete execution of a function. Looping of ten cycles
is used only to confirm reliability of the result in the first stage, and therefore is not
documented.

Two different arithmetics were used to evaluate arithmetic performance: floating-
point arithmetic and IQ-arithmetic. IQ-arithmetic is based on high precision
mathematical function library collection by Texas Instruments. While evaluating
TMS320F28035, a special TMS320C28x IQmath Library was used. Otherwise,
calculations were made using substitutive IQ definitions created by an ABB expert.
The importance of IQ-arithmetic evaluation is to compare the performance to the
control concept used in current product families. The aim is to test devices using
both arithmetic type. Unfortunately, division and trigonometric functions are
defined only to F28035 while using IQ-arithmetic.

Due to various processor architectures, varying main functions had to written in
order to execute the benchmark code. Main functions including definition
statements are presented in Appendix A – C. Depending on the Integrated
Development Environment (IDE), varying methods was used to obtain the results.
SH 7216 was tested by observing directly the profile clock tool provided by the IDE,
while with other processors, calculation was done additionally by a processor timer.

7.1.2 Memory Utilization

Another target was to examine the operation speed performed from various
storage alternatives. By choosing certain settings in the benchmark code or in the
development environment, execution code was stored either in RAM memory or in
Flash memory. External memory devices was not used in this evaluation.

7.1.3 Optimization

In order to achieve as fast results as possible, code optimization was used during
compilation. Optimization tries to minimize either the size of the compiled code or

Test Results 40

the time needed to execute some process. In this evaluation, minimum execution
time is the main target and level 3 optimization offered by Codegen Tools, RealView
MDK-ARM and Metrowerks M56800E C Compiler. F28035 was evaluated with an
additional Optimize for Speed (-mf) value set to level 5.

7.2 Texas Instruments TMS320F28035 Evaluation

7.2.1 Development Environment

The TMSF28035 evaluation was made with Code Composer Studio v3.3. As code
generation tools were used Codegen Tools v5.2.1. Evalution board used was F28035
Piccolo Experiment’s Kit (TMDXDOCK28035) equipped with F28035 Piccolo
controlCARD (TMDXCNCD28035). Evaluation hardware is illustrated in Figure 7.1.

Figure 7.1 F28035 Piccolo Experiment’s Kit equipped with F28035 Piccolo

controlCARD.

Although manufacturer promises remarkable benefit by using the independent CLA
co-processor in floatin-point arithmetic, it was not used due to need for relatively
complex assembly language coding. The F28035 has no alternative floating point
unit, thus floating-point arithmetic operations are calculated purely by the main
CPU. Program code were stored in, and run from both RAM memory and flash
memory. Target memory was assigned in a linker command file included in the
development project. Texas Instruments offers their own library in order to
calculate effectively IQ-arithmetic with a C28x-based device.

7.2.2 Results
As the following devices, the F28035 was tested with floating-point operations and
with IQ-operations. In addition, results from logic function are listed. All results are
documented using both storage alternatives. Math libraries indicate that

Test Results 41

trigonometric functions were included in the arithmetic function. All results are
listed in Table 7.1.

The test itself was performed using both processor timer and Profile Clock tool.
Profile Clock tool provided thoroughly slightly faster results, in other words, lower
clock cycle expedinture. Due to difficulties using Profile Clock tool while running the
code from flash memory, results using the processor timer are considered final. The
results in Table 7.1 are converted to microseconds by dividing the number of cycles
by the clock frequency of the device. Looping resulted ten times longer execution
times, thus the test may be considered successful. Code content of the main
function including necessary definitions is presented in Appendix A. Implementation
of the loops is excluded due to its trivial nature. Naturally additional code is needed
to set up the processor. Code content of the arithmetic and logic operations
executed during the test is not presented.

Table 7.1 F28035 execution times with and without division and math libraries
are illustrated in tables (a) - (c).

No division nor math libraries included (μs)

 Float Math IQ-Math Logic

RAM 27.37 5.07 17.32

Flash 33.75 5.30 19.33

 (a)

Division included (μs)

 Float Math IQ-Math Logic

RAM 31.30 6.20 17.40

Flash 38.55 6.57 19.35

 (b)

Math libraries included (μs)

 Float Math IQ-Math Logic

RAM 141.42 8.88 17.40

Flash 158.72 9.43 19.32

 (c)

Similar IQ-results was obtained also by TI experts. Cooperation was performed due
to extremely weak performance in Flash execution during the first testing round. In
other words, run optimization and device configuration may be considered similar
compared to the settings made by the professionals.

Test Results 42

7.3 Texas Instruments LMS3S9B96 Evaluation

7.3.1 Development Environment

LM3S9B96 is an ARM Cortex-M3 based device, thus Keil μVision4 was used as
development environment. Version of μVision was V4.03 and used toolchain was
RealView MDK-ARM Version: 4.10. Evaluation board was DK-LM3S9B96. In addition,
ULINKpro Debug and Trace Unit was used in debugging. All hardware is shown in
Figure 7.2.

Figure 7.2 LM3S9B96 evaluation hardware setup.

7.3.2 Results

Testing was accomplished based on a running cycle counter and a profile clock. The
profile clock provided directly microseconds as a result. Results were confirmed by
initializing a core timer and storing the timer value to a variable just before and
immediately after the execution of a function under investigation. Substitutive IQ
definitions do not include division nor trigonometric function, thus in Table 7.2 (b) –
(c), IQ-math column is empty.

Table 7.2 LM3S9B96 execution times with and without division and math
libraries are illustrated in tables (a) – (c).

No division or math libraries included (μs)

 Float Math IQ-Math Logic

RAM 24.63 4.74 17.80

Flash 16.51 4.05 11.69

 (a)

Test Results 43

Division included (μs)

 Float Math IQ-Math Logic

RAM 25.78 - 17.80

Flash 17.41 - 11.64

 (b)

Math libraries included (μs)

 Float Math IQ-Math Logic

RAM 40.76 - 17.80

Flash 32.04 - 11.64

 (c)

Results obtained with LM3S9B96 was not verified by TI experts due to somewhat
expected and consistent values in Table 7.2. Execution times from Flash was
achieved by default settings in μVision 4. RAM execution offered alternative
manners how memory allocation was performed.

Main function and assiociated definitions are presented in Appendix B.

7.4 STMicroelectronics STM320F207IG Evaluation

7.4.1 Development Environment

The same Keil μVision4 was used as development environment while debugging
STM32F207IG. Development board is not publicly available, thus no picture is
shown. Besides the development board, all debugging software, equipment, and
manners are identical to LM3S9B96.

7.4.2 Results

Tools and test manners were identical to LM3S9B96 while evaluating STM32F207IG.
Test results are presented in Table 7.3.

Table 7.3 STM320F207IG execution times with and without division and math
libraries are illustrated in tables (a) – (c).

No division or math libraries included (μs)

 Float Math IQ-Math Logic

RAM 19.03 3.11 11.54

Flash 19.83 3.13 12.16

 (a)

Test Results 44

Division included (μs)

 Float Math IQ-Math Logic

RAM 20.07 - 11.54

Flash 21.49 - 12.16

 (b)

Math libraries included (μs)

 Float Math IQ-Math Logic

RAM 36.09 - 11.54

Flash 37.98 - 12.16

 (c)

7.5 Freescale MC56F8257 Evaluation

7.5.1 Development Environment
The development environment offerd by Freescale was CodeWarrior IDE v5.9.0.
Freescale offers also FreeMASTER application as a separated software to allow
control of an embedded application from a graphical environment running on a PC.
According to Freescale, the application was initially created for developers of hard
real-time motor control applications. Nevertheless, FreeMASTER was not used
during this evaluation. The CodeWarrior included also a tool called Processor
Expert. Briefly, Processor Expert offered a component library of the device inside
the project. For example, registers of a peripheral could be controlled in a graphical
environment with Processor Expert tool.

The compiler used was Metrowerks M56800E C Compiler and linker M56800E
Linker. Freescale provided their TWR-56F8257 evaluation board that has an in-
circuit debugging option. Due to complex usability, an external debugger
CodeWarrior USB TAP was used. Complete hardware environment is presented in
Figure 7.3.

Similar code than with F28035 was created while testing MC56F8257. A timer was
initialized and reset before a function call and the value of the counter register was
stored right after the function.

Test Results 45

Figure 7.3 Freescale TWR-56F8257 with CodeWarrior USB TAP emulator.

7.5.2 Results

For some unknown reason, program execution did not take place from the RAM
memory. Also, compilation of IQ-math code caused serious problems.
Consequently, the results in Table 7.4 include only Float Math and Logic columns.

Table 7.4 MC56F8257 execution times in floating-point arithmetic and logic
operations.

No division or math libraries included (μs)

 Float Math IQ-Math Logic

RAM - - -

Flash 150,72 - 38,22

 (a)

Division included (μs)

 Float Math IQ-Math Logic

RAM - - -

Flash 156,22 - 38,22

 (b)

Test Results 46

Math libraries included (μs)

 Float Math IQ-Math Logic

RAM - - -

Flash 413,75 - 38,22

 (c)

Main function and assiociated definitions are presented in Appendix C. Timer
initialization is implemented as a separate function before the main function.

7.6 Renesas SH7216 Evaluation

7.6.1 Development Environment

Renesas Electronics provides its own devepment environment High-performance
Embedded Workshop (HEW). Alternatively IAR Embedded Workbench can be used.
HEW v.4.07.00.007 was used in this evaluation. The compiler was C/C++ Compiler
Package V.9.01. for SuperH Family. Evaluation board was Renesas Starter Kit2+ and
debugging device was E10A. Hardware is shown in Figure 7.4.

 Figure 7.4 Renesas Starter Kit2+ with E10A-USB emulator.

Test Results 47

7.6.2 Results

Timers could not be used to evaluate SH7216 due to relatively weak time
resolution. Instead, Performance Analysis tool of the IDE was used to calculate
spent clock cycles. Results are presented in Table 7.5.

Table 7.5 SH7216 execution times with and without division and math libraries
are illustrated in tables (a) – (c).

No division or math libraries included (μs)

 Float Math IQ-Math Logic

RAM 1.39 4.89 6.99

Flash 1.24 4.83 7.02

 (a)

Division included (μs)

 Float Math IQ-Math Logic

RAM 1.47 - 6.99

Flash 1.32 - 7.01

 (b)

Math libraries included (μs)

 Float Math IQ-Math Logic

RAM 2.59 - 6.99

Flash 2.76 - 7.15

 (c)

Peripheral timer was not used in evaluation, and therefore, presentation of a main
function does not provide any added value to this study. Consequently, code
content is not presented as an appendix.

7.7 Comparison
In this section, the results obtained above will be compared and analyzed in more
detailed manner. Judging realibility issues and discussing the reasons that led to
these results will be also a significant part of this section. Results will be illustrated
in a graphical form to maximize readability.

7.7.1 Comparison by Time
In order to define, which processor has the highest performance, measurement
results are given in microseconds. Time comparison is an effective means to
combine the core competency with the benchmark code and the nominal speed of
the processor.

Test Results 48

First, all RAM results will be shown maintaining the same colors as the Tables 7.1 –
7.5 have as an indicator of used code contents. As a reminder, blue indicates that
no division nor trigonometric functions are included. Red color indicates division
and green color indicates trigonometric functions. Logic will be illustrated with a
purple bar.

Result charts begin with floating-point arithmetic comparison run from RAM in
Figure 7.5. Floating-point comparison is followed by IQ-math chart in Figure 7.6.
Logic performance is included in both charts to provide some reference. Reader
should keep in mind, that time spent in logic operations differs minimally between
arithmetic content. The same pattern will continue throughout this section and the
following section.

Figure 7.5 Execution times of floating-point arithmetic and logic using RAM. No
results for MC56F8257 due to unsuccessful execution from RAM.

As can be seen form Figure 7.5, MC56F8257 does not have any result. This is due to
difficulties to execute instructions from RAM. With MC56F8257, the framework of
the code, including timer initialization etc., seemed to run correctly, however after
including arithmetic code, execution began to behave inconsistently. Logic code
could not even be loaded to RAM due to scarce memory size. According to the
Freescale experts, they have a tendency to guide customers to run code from Flash.

As can be seen, scaling makes almost the result bars of SH7216 disappear.
Nevertheless, the results can be seen in Table 7.5 in numeric form.

0

20

40

60

80

100

120

140

160

Floating-point from RAM

Floating-point with
division from RAM

Floating-point with
trigonometric functions
from RAM

Logic operations from
RAM

Test Results 49

Figure 7.6 Execution times of IQ-math and logic using RAM. Again, no results for
MC56F8257.

Flash execution provided interesting changes to the results. Corresponding charts
are presented in Figure 7.7 and in Figure 7.8.

Figure 7.7 Execution times of floating-point arithmetic and logic using Flash.
MC56F8257 results are partially cut off due to scaling.

0

2

4

6

8

10

12

14

16

18

20

IQ-math from RAM

IQ-math with division
from RAM

IQ-math with
trigonometric functions
from RAM

Logic operations from
RAM

0

20

40

60

80

100

120

140

160

Floating-point from Flash

Floating-point with
division from Flash

Floating-point with
trigonometric functions
from Flash

Logic operations from
Flash

Test Results 50

Figure 7.8 Execution times of IQ-math and logic using Flash. MC56F8257 results
are partially cut off due to scaling.

Figures 7.7 and 7.8 indicate that while F28035 and STM320F207IG became
somewhat slower, LM3S9B96 accomplished the tasks much faster. SH7216 achieved
relatively similar results from both memories.

Discussion
From Figure 6.9 can be easily seen that the execution time increases consistently
when arithmetic burden is increased. This trend continues throughout all the
measurements.

While running floating-point arithmetic, SH7216 was clearly the fastest device due
to built-in floating point unit. Otherwise the execution speed of floating-point
arithmetic is quite consistent with the clock frequency. One curious observation is
extremely slow performance of F28035 while calculating trigonometric functions
with floating-point arithmetic.

As one might guess, F28035 would be clearly the fastest device in IQ-arithmetic due
to the built-in IQ-architecture. Despite this fact, the ARM devices reach lower time
values than F28035. SH7216 is relatively quite poor in IQ-arithmetic. One reason for
this fact is the means how multiplication is performed using IQ-arithmetic. While
the final result is achieved with ARM devices by shifting the product by 24 bits,
SH7216 has to labor more to gain the desired result. Another important observation
is lack of results including division and trigonometric functions with non-IQ
processors. The code used in this study defines division and trigonometric functions
only for F28035.

0

2

4

6

8

10

12

14

16

18

20

IQ-math from Flash

IQ-math with division
from Flash

IQ-math with
trigonometric functions
from Flash

Logic operations from
Flash

Test Results 51

Logic operations was executed most quickly from RAM by SH7216. This is mostly
due to the highest clock frequency.

When attention is turned into Flash execution, the results reached another track in
some extent. While F28035 and STM320F207IG got slightly slower, LM3S9B96
turned out to be even faster. According to TI experts, this phenomenon roots to the
fact that while executing from RAM, only one bus is used. The standard 12 cycle
interrupt latency is increased when data access interrupts code fetch. LM3S9B96
runs with 1 wait state from Flash at speed of 80 MHz, only separate data bus and
code bus can be utilized.

Another reason was discovered just before the testing was ended. Contrary to
supposition, LM3S9B96 was configured to 50 MHz instead of 80 MHz during the
whole testing due to a Flash error. According to the manufacturer, this problem
exists only in evaluation boards with LM3S9B96. Anyhow, this leads to the fact that
the Flash memory was always operating with zero wait-state. As mentioned in
section 6.2.1, if the clock frequency was over 50 MHz, the Flash would operate at
half of the clock frequency and this would affect on the clock cycles with real 80
MHz clock. Reader must remember now, that the microseconds are calculated by
scaling the spent clock cycles using erroneously 80 MHz clock speed. In other words,
the results of LM3S9B96 are not reliable from Flash.

On the other hand, at speeds over 50 MHz, the prefetch buffer is turned on allowing
some branches to be executed with zero wait-states. Still, if the processor would
have operated 80 MHz, more clock cycles and more time would have been spent.
Results using RAM on the other hand are reliable, and therefore new calculations
using 50 MHz clock speed are not done.

MC56F8257 obtained generally quite poor results. The difference from other
products is so obvious, that the possibility of unsuccessful processor configuration
must be considered. In figure 7.7, these results are partly presented. In order to
maintain maximal readability, the vertical axis has the same scaling as in Figure 7.5.
This will cause the results of MC56F8257 to be cut of. Numerical data is presented
in Table 7.4.

Figure 7.8 is indicating that F28035 is losing its relative advantage in IQ-arithmetic
over other contestants when the code is executed from Flash. MC56F8257 results
are again cut off to maintain comparativeness to results in Figure 7.6.

7.7.2 Comparison by Cycle Count

To compare the efficiency of the core to accomplish the tested tasks, the following
charts will illustrate the consumed clock cycles in arithmetic and logic functions.
While counting only clock cycles, the effect of clock frequency will be disregarded
and core suitability will have all importance. Order of the figures will be exactly the
same as in section 7.7.1. Figures 7.9 and 7.10 present the cycle count using RAM.

Test Results 52

Figure 7.9 Execution cycles of floating-point arithmetic using RAM.

Figure 7.10 Execution cycles of IQ-arithmetic using RAM.

Figures 7.11 and 7.12 present the same charts when the code is executed from
Flash memory.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Floating-point from RAM

Floating-point with
division from RAM

Floating-point with
trigonometric functions
from RAM

Logic operations from
RAM

0

500

1000

1500

2000

2500

IQ-math from RAM

IQ-math with division
from RAM (F28035 only)

IQ-math with
trigonometric functions
from RAM (F28035 only)

Logic operations from
RAM

Test Results 53

Figure 7.11 Cycle count of floating-point arithmetic using Flash. MC56F8257
results are partially cut off due to scaling.

Figure 7.12 Cycle count of IQ-arithmetic using Flash.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Floating-point from Flash

Floating-point with
division from Flash

Floating-point with
trigonometric functions
from Flash

Logic operations from
Flash

0

500

1000

1500

2000

2500

IQ-math from Flash

IQ-math with division
from Flash (F28035 only)

IQ-math with
trigonometric functions
from Flash (F28035 only)

Logic operations from
Flash

Test Results 54

The results presented in Figures 7.9 – 7.12 may be scaled to any clock frequency as
long as operation speed of Flash memory is taken into account. This evaluation does
not include two identical processors that basically would differ only by clock
frequency. However, it is justifiable to assume that clock cycle count remains
somewhat equal if other features do not change drastically.

Discussion
Figures 7.9 and 7.10 present the effectiveness of F28035 executing code from RAM.
Naturally, SH7216 is much more efficient in floating-point arithmetic. In logic
operations, F28035 is surprisingly competent. On the other hand, according to ABB
experts, logic code is always executed from Flash. In cycle count comparison, built-
in IQ-architecture shows its strength leaving both ARM devices behind.

Comparing cycles while executing code from Flash, the efficiency of LM3S9B96 is
conspicuous. The reason for this is the clock speed of 50 MHz as mentioned in last
discussions. This phenomenon is especially prominent in floating-point arithmetic
and in logic operations. Using 80 MHz instead, the author has a reason to assume,
that the results would be closer to STM320F207IG. Microseconds are calculated
based on these cycle counts and therefore, the error mirrors to Figures 7.7 and 7.8
as well.

From Figure 7.11 can be seen again that MC56F8257 is substantially slower
compared to its competitors. The result with trigonometric functions is not fully
presented due to the scaling.

With IQ-arithmetic, F28035 was slightly more efficient than LM3S9B96. The result of
LM3S9B96 is still very likely to increase with a clock speed of 80 MHz. Figure 7.12
presents quite clearly how SH7216 is significantly less efficient with IQ-arithmetic.
This is due to more complex implementation of IQ-multiplication.

7.7.3 Comparison by Code Size

One valuable comparison addition to speed is code size that the compilers result. In
this section, four different compilation results are achieved because the ARM based
devices are built with the same compiler RealView MDK-ARM v4.10. Results are
interpreted from the map files compilers create and they are illustrated in two
separate manner. First, only the precise code included in the executed functions are
taken into account. Secondly, all the code included in corresponding modules is
presented. The difference in these manners is not massive, however, the logic
module consists of a few additional functions besides the principal function
logic_bm(). Additional entity of code besides the principal function
arithm_bm() also appears to the arithmetic module when IQ-arithmetic is
chosen with ARM processors and with SH7216.

Taking only the principle functions into account is quite a straightforward task.
However, including the fragmental pieces from the map file to form the
corresponding module is notably more laborious task. Reader should notice that
calculations including the code module do not include every single piece of code
they are consisted of, nevertheless the error is negligible. This is due to the fact,
that the code is divided in sections and only the most significant section is included
in calculation. One inconsistency is also the word length. In F28035 and MC56F8257

Test Results 55

case, the word length is 16 bits while others have 8 bit word length. Results are
shown in Figure 7.13 and 7.14.

Figure 7.13 Code size comparison taking only the principle functions into account.
Units in the figures are bytes.

Figure 7.14 Code size results including the smaller fragments of the code in the
modules. Units in the figures are bytes.

0

1000

2000

3000

4000

5000

6000

7000

Codegen Tools
v5.2.1

(STM32F28035)

RealView MDK-
ARM v4.10

(LM3S9B96 &
ST320F207IG)

CodeWarrior IDE
v5.9.0

(MC56F8257)

C/C++ Compiler
Package for

SuperH Family
(SH7216)

arithm_bm() :

FLOAT_MATH

arithm_bm() :

IQ_MATH

logic_bm()

0

1000

2000

3000

4000

5000

6000

7000

Codegen Tools
v5.2.1

(STM32F28035)

RealView MDK-
ARM v4.10

(LM3S9B96 &
ST320F207IG)

CodeWarrior IDE
v5.9.0

(MC56F8257)

C/C++ Compiler
Package for

SuperH Family
(SH7216)

arithm.o :

FLOAT_MATH

arithm.o :

IQ_MATH

logic.o

Conclusion 56

8 CONCLUSION

The meaning of the results in this study is to survey possible processor alternatives
in a decent price range. Succesful study will lead to fully functional component with
financial benefits. Unfortunately, this study will not finally determine the target
processor, only guides to the best solution in following surveys. Results in this study
yet give precious new information about the processors on the market today. Exact
prices are not known by either party at this stage and therefore, only price ranges
are used as reference.

Based on the results achieved in Chapter 7, may be stated that if IQ-arithmetic is
utilized, some TI device similar to F28035 is a fine choice. As mentioned before,
F28035 can not be chosen due to lack of memory. Unfortunately, similar device
with larger memory is not available at present. On the other hand, also ARM
devices handled IQ-arithmetic pretty good as far as IQ calculations were performed.
However, this issue would require deeper study including division and trigonometric
functions to state a final recommendation. Otherwise ARM devices offer a great
package of connectivity and memory. Naturally this means also placing to a higher
price range.

On the other hand, operating with floating-point arithmetic would be less laborious
to programmers in the long run. From this point of view, SH7216 would be an
excellent choice. Without any precise offer, it is quite rational to assume, that
SH7216 belongs to a higher price range compared to other processors in this study.
In other words, efforts after this study might concern mosty finding a suitable FPU
device. For example, only RX and SuperH families from Renesas Electronics present
a large collection of processors with a FPU. In addition, an upcoming ARM CortexTM-
M4 is an attractive choice with a FPU. Cortex-M4 device was not tested, because
the first samples are available not before 2011.

One fundamental conclusion after the testing is consideration to use floating-point
arithmetic with a FPU processor. Previously, corresponding product families has not
been based on a FPU device, thus the results of these study might be epochal.

Bibliography 57

BIBLIOGRAPHY

[1] ABB Group. The ABB Group Annual Report 2009. 2009. 154 p. [WWW-
document].
<http://www02.abb.com/global/seitp/seitp255.nsf/bf177942f19f4a98c1257
148003b7a0a/4adfda5dea9d9091c12576e10034d9ec/$FILE/ABB+Group+an
nual+report+2009.pdf>.

[2] Niiranen, J. Sähkömoottorikäytön digitaalinen ohjaus. Helsinki, Finland:
Valopaino, 2000. 381 p. ISBN 951-672-300-4.

[3] Luomi, J & Niiranen, J & Niemenmaa, A. Sähkömekaniikka ja sähkökäytöt
Part 1. Espoo, Finland: Helsinki University of Technology, 2006. 166 p.

[4] Luomi, J & Niiranen, J & Niemenmaa, A. Sähkömekaniikka ja sähkökäytöt
Part 2. Espoo, Finland: Helsinki University of Technology, 2006. 146 p.

[5] Young, H. D. & Freedman, R. A. University Physics 11th ed. San Francisco,
USA: Addison Wesley, 2004. 1714 p. ISBN 0-8053-8684-X

[6] Bose, B. K. Modern Power Electronics and AC Drives. Upper Saddle River, NJ,
USA: Prentice Hall, Inc, 2002. 711 p. ISBN 0-13-016743-6.

[7] Harnefors, L. Conrtol of Variable-Speed Drives. Västerås, Sweden:
Department of Electronics, Mälardalen University, 2003. 234 p.

[8] ABB Oy, Technical guide book. 2008 [WWW-document].
<http://www05.abb.com/global/scot/scot201.nsf/veritydisplay/5108024cea
1cb6f7c125748e004681c5/$File/TechnicalGuideBook_1_9_EN_revD.pdf>.

[9] Bellis, M. Intel 4004 – The World’s First Single Chip Microprocessor. [WWW-
document].
<http://inventors.about.com/od/mstartinventions/a/microprocessor.htm>.
(Referenced 7.9.2010).

[10] Vahid, F. & Givargis, T. Embedded System Design: A Unified
Hardware/Software Introduction. New York, NY, USA: John Wiley & Sons,
2002. 352p. ISBN 978-0-471-38678-0.

[11] Lapsley, P., Bier, J., Shoham, A. & Lee, E. A., DSP Processor Fundamentals:
Architectures and Features. New York, NY, USA: Institute of Electrical and
Electronics Engineering, Inc, 1997. 210 p. ISBN 0-7803-3405-1.

[12] Bose, B. K. Power Electronics and Variable Frequency Drives. New York, NY,
USA: Institute of Electrical and Electronics Engineers, Inc, 1997. 640 p. ISBN
0-7803-1084-5.

[13] Texas Instuments, Piccolo Microcontrollers. 2009. 143 p. [WWW-document].
<http://focus.ti.com/lit/ds/sprs584d/sprs584d.pdf>.

http://www02.abb.com/global/seitp/seitp255.nsf/bf177942f19f4a98c1257148003b7a0a/4adfda5dea9d9091c12576e10034d9ec/$FILE/ABB+Group+annual+report+2009.pdf
http://www02.abb.com/global/seitp/seitp255.nsf/bf177942f19f4a98c1257148003b7a0a/4adfda5dea9d9091c12576e10034d9ec/$FILE/ABB+Group+annual+report+2009.pdf
http://www02.abb.com/global/seitp/seitp255.nsf/bf177942f19f4a98c1257148003b7a0a/4adfda5dea9d9091c12576e10034d9ec/$FILE/ABB+Group+annual+report+2009.pdf
http://www05.abb.com/global/scot/scot201.nsf/veritydisplay/5108024cea1cb6f7c125748e004681c5/$File/TechnicalGuideBook_1_9_EN_revD.pdf
http://www05.abb.com/global/scot/scot201.nsf/veritydisplay/5108024cea1cb6f7c125748e004681c5/$File/TechnicalGuideBook_1_9_EN_revD.pdf
http://inventors.about.com/od/mstartinventions/a/microprocessor.htm
http://focus.ti.com/lit/ds/sprs584d/sprs584d.pdf

Bibliography 58

[14] Luminary Micro. Luminary Micro - Stellaris® - the industry’s first Cortex-M3
MCUs. [WWW-document]. <http://www.luminarymicro.com/>. (Referenced
7.9.2010).

[15] Texas Instruments, Stellaris® LM3S9B96 Microcontroller Data Sheet. 2010.
1282 p. [WWW-document].
<http://focus.ti.com/lit/ds/spms182g/spms182g.pdf>

[16] ARM, CortexTM-M3 Technical Refence Manual. ARM Limited, 2006. 384 p.
[WWW-document].
<http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_c
ortex_m3_r1p1_trm.pdf>.

[17] Freescale Semiconductors. MC56F825x/MC56F824x Product Brief. 2010.

14 p. [WWW-dokumentti].
<http://cache.freescale.com/files/microcontrollers/doc/prod_brief/MC56F8
25XPB.pdf?fpsp=1&WT_TYPE=Product%20Briefs&WT_VENDOR=FREESCALE
&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation>.

[18] Renesas Electronics. Company Message. 2010. 5 p. [WWW-document].

<http://www.renesas.eu/comp/data/renesas_en.pdf>

[19] Renesas Electronics. SH7214 Group, SH7216 Group User’s Manual:

Hardware. 2010. 1920 p. [WWW-document].
<http://documentation.renesas.com/eng/products/mpumcu/rej09b0543_sh
7216hm.pdf>

http://www.luminarymicro.com/
http://focus.ti.com/lit/ds/spms182g/spms182g.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p1_trm.pdf
http://cache.freescale.com/files/microcontrollers/doc/prod_brief/MC56F825XPB.pdf?fpsp=1&WT_TYPE=Product%20Briefs&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation
http://cache.freescale.com/files/microcontrollers/doc/prod_brief/MC56F825XPB.pdf?fpsp=1&WT_TYPE=Product%20Briefs&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation
http://cache.freescale.com/files/microcontrollers/doc/prod_brief/MC56F825XPB.pdf?fpsp=1&WT_TYPE=Product%20Briefs&WT_VENDOR=FREESCALE&WT_FILE_FORMAT=pdf&WT_ASSET=Documentation
http://www.renesas.eu/comp/data/renesas_en.pdf
http://documentation.renesas.com/eng/products/mpumcu/rej09b0543_sh7216hm.pdf
http://documentation.renesas.com/eng/products/mpumcu/rej09b0543_sh7216hm.pdf

Appendix A: Code Content with F28035 59

APPENDIX A: CODE CONTENT WITH F28035

//--

// DEFINITIONS

//--

#define READ_TIMER CpuTimer0Regs.TIM.all

#define START_COUNT() start_count = READ_TIMER;

#define STOP_COUNT() final_count = start_count - READ_TIMER;

//--

// Data types

//--

#define UWORD32 unsigned long // 32 bits unsigned

//--

// VARIABLES

//--

UWORD32 start_count = 123;

UWORD32 final_count = 456;

UWORD32 bm_count_arithm = 0; // Cycle count of arithm_bm

UWORD32 bm_count_logic = 0; // Cycle count of logic_bm

//--

// EXTERNAL FUNCTIONS

//--

extern void arithm_bm(void);

extern "C" {

extern void logic_bm(void);

}

//--

// MAIN FUNCTIONS

//--

int main(void)

{

// Step 4. Initialize the Device Peripheral. This function can be

// found in DSP2803x_CpuTimers.c

InitCpuTimers(); // Only initialize the Cpu Timers

// Configure CPU-Timer 0, 1, and 2 to interrupt every second:

// 60MHz CPU Freq, 1 second Period (in uSeconds)

ConfigCpuTimer(&CpuTimer0, 60, 1000000);

ConfigCpuTimer(&CpuTimer1, 60, 1000000);

ConfigCpuTimer(&CpuTimer2, 60, 1000000);

// To ensure precise timing, use write-only instructions to write

// to the entire register. Therefore, if any

// of the configuration bits are changed in ConfigCpuTimer and

// InitCpuTimers (in DSP2803x_CpuTimers.h), the

// below settings must also be updated.

CpuTimer0Regs.TCR.all = 0x4001;

CpuTimer1Regs.TCR.all = 0x4001;

CpuTimer2Regs.TCR.all = 0x4001;

#if (MEM_TYPE == USE_FLASH)

// Flash setup and other specified code to RAM

// The RamfuncsLoadStart, RamfuncsLoadEnd, and RamfuncsRunStart

// symbols are created by the linker. Refer to the F28035.cmd

// file.

MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart);

Appendix A: Code Content with F28035 60

// Call Flash Initialization to setup flash waitstates

// This function must reside in RAM so the memory copy from flash

// to RAM must be before this function call.

InitFlash();

#endif

// Step 6. IDLE loop. Just sit and loop forever (optional):

while(1)

{

//---

// Benchmark arithmetics: measurement when called once

//---

START_COUNT()

arithm_bm();

STOP_COUNT()

bm_count_arithm = final_count;

//---

// Benchmark logic: measurement when called once

//---

START_COUNT()

logic_bm();

STOP_COUNT()

bm_count_logic = final_count;

}

}

Appendix B: Code Content with ARM-devices 61

APPENDIX B: CODE CONTENT WITH ARM-DEVICES

//--

// DEFINITIONS

//--

//--

// Cycle counting macros

//--

#define START_COUNT() systick_before = *STCVR;

#define STOP_COUNT() systick_after = *STCVR;

//--

// Data types

//--

#define UWORD32 unsigned long // 32 bits unsigned

//--

// VARIABLES

//--

UWORD32 bm_count_arithm; // Cycle count of arithm_bm()

UWORD32 bm_count_logic; // Cycle count of logic_bm

UWORD32 systick_before; // Timer value before counting

UWORD32 systick_after; // Timer value after counting

//--

// EXTERNAL FUNCTIONS

//--

extern void arithm_bm(void);

extern "C" {extern void logic_bm(void);}

//--

// MAIN FUNCTION

//--

int main(void)

{

// Initialize SysTick core timer to run free

int *STCSR = (int *)0xE000E010;

int *STRVR = (int *)0xE000E014;

int *STCVR = (int *)0xE000E018;

*STRVR = 0xFFFFFF; // max count

*STCVR = 0; // force a re-load of the counter value register

*STCSR = 5; // enable FCLK count without interrupt

//

// Loop forever while the timer run.

//

while (1)

{

// CALCULATE bm_count_arithm

START_COUNT()

arithm_bm();

STOP_COUNT()

bm_count_arithm = systick_before - systick_after;

// CALCULATE bm_count_logic

START_COUNT()

logic_bm();

STOP_COUNT()

bm_count_logic = systick_before - systick_after;

}

}

Appendix C: Code Content with MC56F8257 62

APPENDIX C: CODE CONTENT WITH MC56F8257

//--

// DEFINITIONS

//--

//--

// Cycle counting macros

//--

#define READ_TIMER() timer_value = TMRA1_CNTR;

#define START_COUNT() setReg(TMRA1_CNTR, 0x00);

#define STOP_COUNT() READ_TIMER(); final_count = timer_value;

//--

// Data types

//--

#define UWORD32 unsigned long // 32 bits unsigned

//--

// VARIABLES

//--

UWORD32 final_count = 456;

UWORD32 timer_value = 666;

UWORD32 bm_count_arithm = 0; // Cycle count of arithm_bm function

UWORD32 bm_count_logic = 0; // Cycle count of logic_bm function

//--

// EXTERNAL FUNCTIONS

//--

extern void arithm_bm(void);

extern void logic_bm(void);

//--

// FUNCTIONS

//--

void Timer_Init(void)

{

// TMRA1_CTRL: CM=0,PCS=8,SCS=0,ONCE=0,LENGTH=0,DIR=0,Co_INIT=0,OM=0

setReg(TMRA1_CTRL,0x1000);

// TMRA1_SCTRL: TCF=0,TCFIE=0,TOF=0,TOFIE=0,IEF=0,IEFIE=0,IPS=0,

// INPUT=0,Capture_Mode=0,MSTR=0,EEOF=0,VAL=0,FORCE=0,OPS=0,OEN=0

setReg(TMRA1_SCTRL,0x0000);

setReg(TMRA1_CNTR,0x0000);

setReg(TMRA1_CMPLD1,0x0000);

setRegBitGroup(TMRA1_CTRL,CM,1); /* Run counter */

}

//--

// MAIN FUNCTION

//--

void main(void)

{

// Initialize Timer

Timer_Init();

while (1)

{

//---

// Benchmark arithmetics: measurement when called once

//---

START_COUNT() // In reality resets the counter

arithm_bm();

STOP_COUNT()

bm_count_arithm = final_count;

Appendix C: Code Content with MC56F8257 63

//---

// Benchmark logic: measurement when called once

//---

START_COUNT()

logic_bm();

STOP_COUNT()

bm_count_logic = final_count;

}

}

