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Chapter 1Introdution
1.1 Problem SettingThe typial goal in mahine learning is to build a model for a given set ofdata. Usually these models are spei�ed by a set of parameters, values ofwhih are optimised until the model desribes the data well enough. Manydi�erent optimisation algorithms are used to learn these models, inludingthe EM-algorithm and various diret optimisation algorithms suh as gradientdesent.Most traditional optimisation algorithms assume that this parameter spae is�at. However, in many ases, espeially in statistial problems, the atualgeometry of the problem spae is not �at but a urved Riemannian mani-fold. Taking this property into aount an lead to more e�ient optimisationalgorithms, the most popular example of whih is the natural gradient algo-rithm [3℄.Variational Bayes [9, 35, 37, 11℄, also previously known as Bayesian ensemblelearning, is an e�ient algorithm for approximate Bayesian inferene and it isoften used for statistial learning of probabilisti models. One suh lass ofprobabilisti models is nonlinear state-spae model (NSSM).1.2 Aim of the ThesisThe aim of this thesis has been to develop a more e�ient learning algo-rithm for variational Bayesian learning of NSSMs based on natural gradient6



1.3. Struture and Contributions of the Thesis 7learning. The partiular NSSM used in this work is the nonlinear dynamialfator analysis (NDFA) model developed by Dr. Harri Valpola and Prof. JuhaKarhunen [71℄.The algorithm was implemented by extending the publily available NDFApakage [70℄. The performane of the algorithm was veri�ed by using it tomodel two di�erent syntheti data sets and a real-world speeh data set.Even though state-spae models are used as an example in this work, thepresented algorithm an be applied to almost any probabilisti model wherethe parameter spae is a Riemannian manifold.1.3 Struture and Contributions of the ThesisThis thesis is organised as follows. Chapter 2 gives an introdution to Bayesianlearning in general and variational Bayes in partiular. Information geometryand natural gradient learning are disussed in Chapter 3. Conjugate gradientmethod and its extension to Riemannian manifolds are studied in Chapter 4 asmore e�ient alternatives to gradient desent learning. Chapter 5 introduesnonlinear state-spae models as a ase study for the presented algorithm andintrodues the dynamial model used in the examples and experiments. Thishapter also inludes an overview of implementation details.Experimental results with two syntheti data sets and real world speeh dataare presented and analysed in Chapter 6. The bene�ts and restritions ofthe proposed algorithm and potential future work are disussed in Chapter 7.Finally, overview of the work and some onlusions are presented in Chapter 8.The original idea to use methods based on natural gradient with nonlinear dy-namial fator analysis (NDFA) pakage [70℄ arose from the observation of thepoor performane of the onjugate gradient method with NDFA. Disussionbetween Dr. Antti Honkela, Tapani Raiko, and the author lead to an imple-mentation of a natural gradient method based on a remark in [69℄. The ideato use Riemannian onjugate gradient to further improve the performane isdue to the author. The implementation of both the original natural gradientmethod and the Riemannian onjugate gradient method for NDFA were alsodone by the author. The ode is based on the original nonlinear dynamialfator analysis implementation by Dr. Harri Valpola and Dr. Antti Honkelaand its later extensions by Dr. Antti Honkela. All the experiments presentedin Chapter 6 were done by the author.



Chapter 2Bayesian Inferene
This hapter gives a brief introdution to Bayesian probability theory and in-trodues the variational approximation of the posterior probability density.More detailed desription of the variational Bayesian learning (sometimes re-ferred to as ensemble learning) an be found e.g. in [9, 69, 35, 33, 37, 11℄.A brief introdution to Bayesian statistis is given in Setion 2.1. The im-portant onept of Kullbak-Leibler divergene is introdued in Setion 2.2.Di�erent methods of approximating the typially intratable posterior prob-ability distribution are disussed in Setion 2.3. The variational Bayesianapproximation is disussed in more detail in Setion 2.4. Finally, the popularEM-algorithm is introdued in Setion 2.5.2.1 Introdution to Bayesian InfereneIn the Bayesian approah to probability theory, probability is a subjetivemeasure of degree of belief of an unertain event. In a ontrast to frequentistapproah, any kinds of events an be assigned probabilities, even if the eventitself is ompletely deterministi.It has been shown [14℄ that from some very general assumptions and ompat-ibility with ommon sense these degrees of beliefs must satisfy

p(B|A) + p(¬B|A) = 1 (2.1)and
p(C,B|A) = p(C|B,A)p(B|A), (2.2)8



2.1. Introdution to Bayesian Inferene 9where A, B, and C are propositions and ¬B is the negation of B. The tworules are known as the sum rule and the produt rule, respetively. Fromthese rules it is relatively straightforward to derive the basi laws of Bayesianprobability, namely the Bayes' rule and the marginalisation priniple.2.1.1 Bayes' RuleThe Bayes' rule
p(C|B,A) =

p(B|C,A)p(C|A)

p(B|A)
. (2.3)diretly follows from the produt rule (2.2). Bayes' rule determines how alearning system should update its prior beliefs A after reeiving new informa-tion (observation) B. Under the usual naming onventions, C is known as theproposition of interest, p(B|C,A) is known as the likelihood and p(C|A) is theprior probability. The saled produt p(C|B,A) of the prior probability andthe likelihood is known as the posterior probability [27℄.2.1.2 Marginalisation PrinipleIn addition to Bayes' rule, we an also derive the marginalisation priniplefrom Equations (2.1) and (2.2). Given a set of mutually exlusive propositions

{Ck} whih satisfy
n∑

i=1

p(Ci|A) = 1, (2.4)the marginalisation priniple an be written as
p(B|A) =

n∑

i=1

p(B,Ci|A) =

n∑

i=1

p(B|Ci, A)p(Ci|A) (2.5)for the disrete ase and
p(B|A) =

∫

θ

p(B, θ|A)dθ =

∫

θ

p(B|θ, A)p(θ|A)dθ (2.6)for the ontinuous ase. Whereas Bayes' rule is used to update the beliefs ofthe system, the marginalisation priniple an be used to make preditions andgeneralisations.



2.2. Entropy and Kullbak-Leibler Divergene 102.1.3 Model ComparisonWhile building a model for a set of observations, too simple models tend torepresent the observations poorly. This problem is known as under�tting. Onthe other hand, while very omplex models an represent the observationsaurately, they often generalise poorly. This is known as over�tting. Thisan be used to justify the priniple known as Oam's Razor: the simplestexplanation that adequately desribes the observations is usually the best.Oam's Razor has a straightforward intepretation in statistis. Given a setof observations X and assuming a onstant prior, di�erent models H1, H2, . . .an be diretly ompared by their marginal likelihood
p(X|Hi) =

∫

θ

p(X, θ|Hi)dθ =

∫

θ

p(X|θ,Hi)p(θ|Hi)dθ. (2.7)2.1.4 Conjugate PriorsAn important way to simplify Bayesian inferene is provided by onjugatepriors. Given a lass of likelihood funtion p(X|θ,H), the priors p(θ|H) arealled onjugate if the posteriors p(θ|X,H) belong to the same distributionlass P as the priors.If the lass P has a ommon funtional form, onjugate priors will greatlysimplify inferene. Conjugate priors exist for many important distributionfamilies. For example, all distributions in the exponential family have onju-gate priors [19℄.2.2 Entropy and Kullbak-Leibler DivergeneThe information ontent of a disrete random variable x is given by the entropyof the distribution p(x)
H(x) = −

∑

i

p(xi) log p(xi), (2.8)where the summation is done over all the possible values of xi. The disrete en-tropy H(x) is always non-negative and it gives the lower bound to the numberof bits needed on average to enode the information ontained in x [37, 24, 13℄.



2.3. Posterior Approximations 11It is also possible to generalise the onept of entropy to the ontinuous vari-ables. If the variable x is ontinous, summation is replaed by integration andthe di�erential entropy is given by
h(x) =

∫

R

p(x) log p(x)dx. (2.9)In ontrast to disrete entropy, di�erential entropy has no lower bound and itis typially a�eted by reparametrisation. In the spae of probability distri-butions, the disrete entropy is maximised by the uniform distribution. Forthe partiular ase of �xed ovariane, di�erential entropy is maximised by theGaussian distribution [62, 13, 37℄.2.2.1 Kullbak-Leibler DivergeneThe information di�erene between two di�erent distributions p(x) and q(x)is measured by the relative entropy or Kullbak-Leibler divergene
DKL(q||p) = Eq

{
log

q(x)

p(x)

}
=

∫

R

q(x) log
q(x)

p(x)
dx. (2.10)Kullbak-Leibler divergene is non-negative and it is invariant under invertiblereparameterisations. Even though Kullbak-Leibler an be seen as a measureof distane between two distributions, it is not an atual metri sine it isneither symmetri nor satis�es the triangle inequality [27, 13℄.2.3 Posterior ApproximationsFrom the theoretial point of view, Bayesian statistis provide the tools forperforming optimal inferene. All the required information is ontained in theposterior distribution, whih an in theory be omputed using the relativelysimple tools of Bayesian statistis. Unfortunately, in pratie the exat ompu-tation of the posterior probability distribution is not feasible exept for somesimple speial ases. Typial solutions to overome this problem inlude ap-proximating the exat posterior with point estimates, sampling, or parametriapproximations.



2.3. Posterior Approximations 122.3.1 Point EstimatesExamples of point estimates inlude maximum a posteriori (MAP) estimationand the related maximum likelihood (ML) estimation, whih aim to maximisethe posterior density and the likelihood, respetively. Point estimates are easyto ompute, but unfortunately they are often prone to over�tting. Espeiallyin higher dimensions MAP estimates su�er from the fat that high probabilitydensity does not guarantee the presene of high probability mass. Narrowspikes with high probability density may atually have very little probabilitymass as seen in Figure 2.1 [69℄.

Figure 2.1: Example of probability density in a two dimensional ase. Thespike on the right has the highest probability density even though most of theprobability mass is elsewhere.2.3.2 Sampling MethodsSampling methods are based on drawing samples from the true posterior distri-bution, whih is usually aomplished by onstruting a Markov hain for themodel parameters θ and using the posterior distribution as the stationary dis-tribution of the Markov hain. These samples an then be used to approximate



2.4. Variational Bayes 13omputations suh as integration over the true posterior.The resulting method is known as Markov Chain Monte Carlo (MCMC) andthe most important suh algorithms are the Metropolis-Hastings algorithmand Gibbs sampler. Sampling methods an be applied to a very wide range ofdi�erent problems and with enough samples the results are very aurate androbust against over�tting. Unfortunately, sampling methods sale poorly tohigh dimemsional problems as the number of samples needed grows extremelylarge and in some problems it is also hard to determine when the algorithmhas onverged [46, 37℄.2.3.3 Parametri ApproximationsParametri approximations strike a balane between the point estimates andsampling methods; they an be omputed quite e�iently and yet they aretypially robust against over�tting. This work onentrates on the variationalapproximation, whih is presented in the next setion.2.4 Variational BayesThere exists numerous di�erent parametri approximations, the one onsid-ered in this work is the variational approximation, whih leads to variationalBayesian learning. Variational Bayes [37, 11, 35, 9℄ is a way to approximate theposterior density. For a model with parameters θ and observed data X, vari-ational Bayes tries to maximise a lower bound on the marginal log-likelihood
B(q(θ|ξ)) =

〈
log

p(X, θ)

q(θ|ξ)

〉
= log p(X) −DKL(q(θ|ξ)||p(θ|X)), (2.11)where ξ are the parameters of the approximating distribution. This optimisa-tion problem is equivalent to minimising the mis�t between the exat poste-rior pdf p(θ|X) and its parametri approximation q(θ|ξ) haraterised by theKullbak-Leibler divergene DKL(q||p) between p and q [20, 72℄.The variational approximation has several desirable properties. First of all,the approximation is very robust against over�tting and the density estimatesare relatively fast to evaluate ompared to e.g. sampling methods. In addi-tion, variational approximation provides a ost funtion for omparing di�er-ent models. From the point of view of this work, it is also important to note



2.4. Variational Bayes 14that variational approximation has a straightforward geometri interpretationon urved manifolds as disussed in Setion 3.1.3.Unfortunately, variational Bayes also has some shortomings. First of all, eventhough the estimates are fast to evaluate ompared to sampling methods, theapproximation is in many ases muh slower to evaluate than a point estimate.Additionally, variational Bayes has a tendeny to underestimate the variane ofthe true posterior distribution, whih an lead to problems in some ases. Animportant alternative to variational Bayes is given by expetation propagation(EP) algorithm [41℄, whih an solve some of the problems of the variationalBayes method. Unfortunately, exeptation propagation algorithms are moredi�ult to implement than variational Bayesian alternatives, and the lak ofa simple ost funtion in exeptation propagation also means that it is hardto guarantee the onvergene of the algorithm.2.4.1 FatorisationIn many problems where the posterior dependenies are relatively weak, itis bene�ial to assume that the di�erent model parameters are independent.Under this assumption the posterior approximations an be written as
q(θ) =

∏

i

q(θi). (2.12)This fatorisation will greatly simplify the omputation of the bound B as theequation an be written as a sum of simple terms and the integrals over theposterior approximation beome independent.Experiments by Miskin and MaKay [42℄ with variational Bayes indiate thatin the ase of blind soure separation the di�erene in model quality betweenfull ovariane and fatorial approximation is small while the di�erene inomputational omplexity is signi�ant. However, experiments by Ilin andand Valpola [32℄ suggest that using fully fatorised posterior approximationan lead to very poor results in some ases, and are must be taken whilehoosing the level of fatorisation.Therefore in problems where the posterior dependenies are signi�ant, thefull fatorial approximation annot be used. In many suh problems it is stillsu�ient to model only some of dependenies, and the full ovariane maynot be needed. Example of suh partial fatorial approximation is modelingonly the dependenies between subsequent samples of the same variable in adynamial model, whih is used in nonlinear dynamial fator analysis (NDFA)model presented in Setion 5.2.



2.5. EM Algorithm 152.5 EM AlgorithmTraditionally, the expetation maximisation (EM) algorithm [15℄ and more re-ently its variational Bayesian extension [47℄ have been used to solve a widevariety of mahine learning problems. This work onentrates on diret opti-misation algorithms suh as the onjugate gradient method, but for the sakeof ompleteness, the EM algorithm is shortly introdued as well.The EM algorithm alternates between the E-step, where the posterior distri-bution of the states S is omputed using the urrent estimate of parameters
θt−1:

qt(S) = p(S|X, θt−1,H), (2.13)and the M-step, where the expeted log-likelihood is maximised with respetto the parameters θ:
θt = argmaxθEq(log p(S,X|θ,H)). (2.14)The EM algorithm an be applied to a wide variety of di�erent problems and itis guaranteed to onverge to a loal optimum apart from some speial ases [15,47℄. Unfortunately, in ertain problems the EM algorithm an onverge veryslowly. There exists a number of ways to speed up the onvergene of EMalgorithm. One simple way is to use pattern searh methods [30, 29℄. Anothersolution is given by adaptive overrelaxation [58℄. These methods are easy toimplement, but typially they inrease performane only by a small onstantfator while retaining the linear onvergene of EM algorithm.Another more omplex approah is proposed in [59℄. Based on the fat thatthe perfomane of the EM algorithm is related to the amount of missing in-formation, an algorithm is derived whih approximates this ratio of missinginformation, and based on this information, updates the parameters using ei-ther the EM algorithm or a onjugate gradient based optimization method, inthis ase expetation-onjugate-gradient (ECQ) [59℄.



Chapter 3Information Geometry
Applying di�erential geometry to families of probability distributions is knownas information geometry. This hapter provides only a brief introdution tomany important onepts of information geometry, and is mostly restrited toonepts relevant to this work. More detailed and omprehensive introdutionsan be found e.g. in [44, 1, 5℄.The basi onepts of information geometry are presented in Setion 3.1. InSetion 3.2 the natural gradient is presented, and its exat form is also derivedfor some example distribution families.3.1 Introdution to Information GeometryFor the purposes of this work, we restrit ourselves to manifolds for whihglobal oordinate systems exist. Under this assumption, we an informallyde�ne a manifold as follows. The set S is a (C∞ di�erentiable) n-dimensionalmanifold, if there exists a set of oordinate systems A for S whih satis�es [5℄(i) Eah element φ of A is a one-to-one mapping from S to some open subsetof R

n.(ii) For all ψ ∈ A, given any one-to-one mapping φ from S to R
n, thefollowing holds:

φ ∈ A⇐⇒ φ · ψ−1 is a C∞ di�eomorphism, (3.1)where C∞ di�eomorphism means an invertible funtion from one mani-fold to another manifold, suh that both the funtion and its inverse are16



3.1. Introdution to Information Geometry 17smooth (in�nitely many times di�erentiable).Let S be a manifold with a smoothly varying inner produt <,>p de�ned ateah point p ∈ S for every vetor pair at that point. The mapping g : p 7→<,>pis alled the Riemannian metri tensor and the manifold S with suh a metriis a alled a Riemannian manifold. The exat form of this inner produt isgiven later in this setion in Equation (3.7).For the spae of probability distributions q(θ|ξ), the most popular Riemannianmetri tensor is given by the Fisher information [56, 1℄
Iij(ξ) = gij(ξ) = E

{
∂ ln q(θ|ξ)

∂ξi

∂ ln q(θ|ξ)

∂ξj

}
= E

{
−∂

2 ln q(θ|ξ)

∂ξi∂ξj

}
, (3.2)where the last equality is valid given ertain regularity onditions [44℄. It is alsopossible to de�ne many other Riemannian metris for the spae of probabilitydistributions, e.g. metris based on the onept of observed information, alledyokes [10℄. However, Fisher information is a unique metri for probability dis-tributions in the sense that it is the only metri whih is both invariant undertransformations of the random variables and ovariant under reparametrisa-tions [12, 5℄.Finally, it should be noted that information geometry is losely related to thegeometries used in the general theory of relativity, where the spae-time ismodelled as a four-dimensional manifold with Lorentzian metri and many ofthe onepts presented in this hapter suh as metri onnetions are used,albeit the terminology in general relativity is di�erent [44℄.3.1.1 Tangent Spaes and Vetor FieldsThe straightforward intepretation of vetors as straight lines onneting twodi�erent points in Eulidian spae does not make sense on Riemannian mani-folds. The urvature of the spae means there is no global notion of straight-ness. Beause of this, vetors on Riemannian manifolds are de�ned as tangentvetors, loal entities that are free of the global oordinate system [1℄.The tangent vetor v at a point p ∈ S to a urve γ(t) for whih γ(0) = p isde�ned by

v =
dγ

dt
|t=0. (3.3)The tangent spae Tp ∼ R

n at point p ∈ S is the vetor spae obtained byombining the tangent vetors (i.e. loal linearisations) of all the smooth urves



3.1. Introdution to Information Geometry 18passing through the point. For eah oordinate system φ there exists a speialset of urves {φi} along whih only one oordinate hanges. Suh urves areknown as oordinate urves and the orresponding funtions are known as theoordinate funtions. The tangent vetors of oordinate urves at any givenpoint p form the natural basis of the tangent spae Tp, and any tangent vetor
v ∈ Tp an be written as a linear ombination of the basis vetors [1℄. Theonept of a tangent spae and oordinate urves on Riemannian manifolds isillustrated in Figure 3.1.
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n} with orthonormal oordinate system thesquared length (also known as the Eulidean norm) of a vetor v is given by

‖v‖2 =
∑

i

v2
i = vTv. (3.4)In the ase of urved manifold there exists no orthonormal linear oordinates,and (Equation 3.4) is no longer valid. In Riemannian spae the squared lengthof a tangent vetor v ∈ Tp at point p ∈ S is given by the quadrati form

‖v‖2 =
∑

i,j

gijvivj = vTGv, (3.5)where G = (gij) is the Riemannian metri tensor at point p [44℄.



3.1. Introdution to Information Geometry 19In addition to the norm of a tangent vetor, we an also de�ne an inner produtbetween two vetors v ∈ Tp and u ∈ Tp. In Eulidean orthonormal spae theinner produt is given by
< v,u >= v · u =

∑

i

viui = vTu, (3.6)whih is independent of the point p. In the general ase of Riemannian geom-etry the inner produt is given by
< v,u >p= v · u =

∑

i,j

gijviui = vTGu, (3.7)whih unlike the Eulidian equivalent also depends on the point p. In theEulidian orthonormal ase G = I and Equations 3.5 and 3.7 simplify tothe Equations 3.4 and 3.6, as should be expeted [1℄. Sine inner produt isonjugate symmetri, v · u = u · v for real-valued vetors also in Riemannianspae.In addition to single vetors on manifolds, it also useful to de�ne vetor �elds,i.e. vetor valued funtions. Formally, a vetor �eld A(p) ∈ Tp is a mappingfrom the manifold S to Tp, whih assigns a vetor A(p) ∈ Tp to eah point
p ∈ S.3.1.2 Connetions and Parallel TransportGiven a urve γ : [0, 1] 7→ S, its length d is given by

d =

∫
dt

√√√√
∑

i,j

gij

dφi(γ(t))

dt

dφj(γ(t))

dt
, (3.8)where φi are the oordinate funtions. The minimiser of this distane over allurves onneting two points

dmin = min
γ

∫
dt

√√√√
∑

i,j

gij

dφi(γ(t))

dt

dφj(γ(t))

dt
. (3.9)is the (Riemannian) distane between the two points, and the orrespondingurve γ is a metri onnetion, as disussed later in this setion [44℄.In addition to the simple onept of length, it is often useful to measure therate of hange in vetor �elds along a urve. There is one major omplia-tion, however. In Riemannian spae it is meaningless to diretly ompare two



3.1. Introdution to Information Geometry 20tangent vetors vp and vp′ if the points p and p′ are di�erent, as the basisvetors for the two points are normally not the same. However, it is possibleto derive a linear mapping Φ that allows the omparison of two tangent vetorsfrom di�erent tangent spaes. Let {γµ} be the set of urves passing throughpoint p ∈ S and eµ the tangent vetor of urve γµ at point p. Furthermore,let {p′} be the points near p whih satisfy p′ = γµ(δt) for some urve γµ andsmall δt > 0. Now we an de�ne Φp
µ,δt as the linear mappings from p′ to pwhih redue to identity as δt → 0. Beause of linearity, these mappings aredetermined by their ations on oordinate vetors in points p and p′

Φµ,δt : eµ,δt
ρ 7→ Φν

µ,δt(e
µ,δt
ρ )eν , (3.10)for eah ν = 1 . . . n where {eµ,δt

ρ } and {eν} are the oordinate basis vetorsat points p′ and p, respetively, and Φν
µ,δt is the νth omponent of the linearmapping. Beause of the property that these mappings redue to identity as

δt→ 0, we an also write for small δt
Φµ,δt(e

µ,δt
ν ) − eν = δtΓρ

µνeρ, (3.11)where the onstants Γρ
µν are known as the Christo�el symbols or the oe�ientsof the a�ne onnetion [44, 1℄.Analogous to a salar derivative, we an now de�ne the ovariant derivatives [1℄of eν as

∇µeν = lim
δt→0

Φp
µ,δt(e

µ,δt
ν ) − eν

δt
= Γρ

µνeρ. (3.12)For a salar funtion f , the ovariant derivative is simply the ordinary deriva-tive
∇µf = ∂µf. (3.13)After some manipulation, the ovariant derivative of a vetor �eld A is givenby

∇µA = (∂µA
ρ + Γρ

µνA
ν)eρ. (3.14)Using the de�nition of ovariant derivative, we an now de�ne a proess knownas parallel transport along a urve, whih an be used to ompare vetors fromdi�erent tangent spaes along a urve. Formally, a vetor �eld A(p) ∈ Tp issaid to be parallelly transported along a urve γ with tangent vetor �eld B(p)if

∇BA = 0. (3.15)A urve γ whih parallelly transports tangent vetor �eld to itself is alled ana�ne geodesi. Formally, urve γ is an a�ne geodesi if
∇AA = 0, (3.16)



3.1. Introdution to Information Geometry 21for some parametrisation of the urve for all the points along the urve [1℄.The proess of parallel transport is illustrated in Figure 3.2. In this work aparallelly transported version of vetor v is denoted by τv, where the twotangent spaes are assumed to be de�ned by the ontext.PSfrag replaements
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3.2. Natural Gradient 22these onnetions derives from the fat that the anonial parametrisations ofexponential family and mixture family distributions are �at with respet to e-and m-onnetion, respetively [5℄.3.1.3 Variational Approximation as a Geometri Proje-tionThe variational approximation has a natural interpretation in information ge-ometry. The approximation of the posterior distribution with another tratabledistribution orresponds to �nding an approximation of the true posterior
p ∈ S in a submanifold S0 ⊂ S. Optimal approximation is the projetionof p on S0. In Riemannian spae there are multiple suh projetions, the mostimportant are the e-projetion

qe(θ|ξ) = arg min
q∈S0

DKL(q(θ|ξ)||p(θ|X)) (3.17)and the m-projetion
qm(θ|ξ) = arg min

q∈S0

DKL(p(θ|X)||q(θ|ξ)), (3.18)whih are de�ned by the e- andm-onnetions, respetively. Both of these pro-jetions orrespond to minimising the Kullbak-Leibler divergene, but withthe order of the distributions reversed. The m-projetion is the unbiased maxi-mum likelihood estimator, but unfortunately its omputation involves integra-tion over the posterior and it is therefore intratable in most ases. Variationalapproximation uses the biased e-projetion instead [67, 27℄.3.2 Natural GradientThe problem of optimising a salar funtion arises in many di�erent �elds.In the ase of variational Bayes, the goal is to maximise the lower bound onmarginal log-likelihood (or alternatively, minimise the Kullbak-Leibler diver-gene). A simple solution to this problem is given by the method of steepestdesent. Let F(ξ) be a salar funtion de�ned on the manifold S = {ξ ∈ Rn}.The diretion of steepest desent is de�ned to be the vetor w whih minimises
F(ξ + w) under the onstraint |w|2 = ǫ2 for su�iently small onstant ǫ.In the ase of Eulidian spae, the diretion of steepest desent is equal tonegative gradient, and the method of steepest desent an be written as follows

ξn = ξn−1 − µ∇F(ξn−1), (3.19)



3.2. Natural Gradient 23where ∇F(ξn) is the urrent gradient and µ is the step size, whih an be om-puted with line searh or adaptively adjusted. The iteration is repeated untilsatisfatory onvergene has been reahed. However, in the ase of Rieman-nian geometry, negative gradient is no longer the diretion of steepest desent;it is replaed by natural gradient [3℄
∇̃F(ξ) = G−1(ξ)∇F(ξ), (3.20)where G is the Riemannian metri tensor and ∇F(ξ) is the normal gradient.Therefore, natural gradient desent algorithm is given by
ξn = ξn−1 − µ∇̃F(ξn−1). (3.21)In theory, there are some additional details that should be taken into aount.Most importantly, if line searh is used, it should use the geodesis of theRiemannian manifold instead of the Eulidian straight lines as disussed inSetion 4.3 where Riemannian onjugate gradient method is presented. How-ever, many of the implementations and muh of the theoretial work on naturalgradient ignores these ompliations sine the derivation of the geodesis anbe a very di�ult problem.Natural gradient desent typially onverges muh faster than normal gradientdesent in non-Eulidian spaes. In partiular, natural gradient algorithmis able to avoid many of the plateau phases enountered in normal gradientdesent. It has also been shown that online natural gradient learning is Fisher-e�ient [3, 57, 36℄.3.2.1 E�ient ImplementationThe omputation of the full G matrix is a very involved proess, and in thease of nonlinear state-spae models where the dimensionality of the problemspae an be very high, even the inversion of the full matrix required forthe omputation of the natural gradient an be prohibitively ostly. Lukilywith parametri distributions, parameters assoiated with di�erent variablesare often assumed independent, whih results in a blok diagonal G. Suh amatrix an be inverted e�iently as long as the blok sizes remain relativelysmall.Additionally, it is possible to simply ignore some of the dependenies betweendi�erent parameters while omputing the matrix G. This results in an ap-proximation of G, but in many ases even this approximation an result insigni�ant speedups ompared to gradient desent with very small omputa-tional overhead.



3.2. Natural Gradient 243.2.2 Normal FamilyAs an example, we derive some basi properties of the univariate normal distri-bution in Riemannian geometry. The anonial parametrisation of the normaldistribution is given by
p(θ1, θ2) = exp(x2θ1 + xθ2 −K(θ1, θ2)), (3.22)where θ1 = −1

2σ2 , θ2 = µ

σ2 and K(θ1, θ2) = 1
2
log(−π

θ1

) − θ2

2

4θ1

. Even though theanonial oordinates imposed by this parametrisation have some importantgeometri properties [44℄, we onentrate on the more traditional parametri-sation of the normal distribution
p(x|µ, v) =

1√
2πv

exp

(−(x− µ)2

2v

)
. (3.23)For this parametrisation N [x, µ, v], we have

ln p(x|µ, v) = − 1

2v
(x− µ)2 − 1

2
ln(v) − 1

2
ln(2π). (3.24)Further,

E

{
−∂

2 ln p(x|µ, v)
∂µ2

}
= E

{
1

v

}
=

1

v
, (3.25)

E

{
−∂

2 ln p(x|µ, v)
∂v∂µ

}
= E

{
m− x

v2

}
= 0, (3.26)and

E

{
−∂

2 ln p(x|µ, v)
∂v2

}
= E

{
(x− µ)2

v3
− 1

2v2

}
=

1

2v2
, (3.27)where identity E {(x− µ)2} = v is used.The resulting Fisher information matrix is diagonal and its inverse is givensimply by

G−1 =

(
v 0
0 2v2

)
. (3.28)Another important parametrisation is given by parametrising variane on log-sale. For the repametrisation N [x,m, exp(2v)], we have

ln p(x|m, v) = −1

2
(x−m)2 exp(−2v) − v − 1

2
ln(2π). (3.29)
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(a) (b)
() (d)Figure 3.3: The amount of hange in mean in �gures (a) and (b) and theamount of hange in variane in �gures () and (d) is the same. However, therelative e�et is muh larger when the variane is small as in �gures (a) and() ompared to the ase when variane is high as in �gures (b) and (d) [69℄.and

E

{
−∂

2 ln p(x|m, v)
∂m∂m

}
= E{exp(−2v)} = exp(−2v), (3.30)

E

{
−∂

2 ln p(x|m, v)
∂v∂m

}
= E {2(x−m) exp(−2v)} = 0, (3.31)and

E

{
−∂

2 ln p(x|m, v)
∂v∂v

}
= E

{
2(x−m)2 exp(−2v)

}
= 2. (3.32)For normal distribution with log-sale variane the Fisher information matrixis again diagonal and its inverse is given by

G−1 =

(
exp(−2v) 0

0 2

)
. (3.33)Intuitively, these results an be interpreted as follows. When the variane ofa Gaussian distribution is large, the relative e�et of a hange in the mean issmaller than when the variane is small as shown in Figure 3.3 [69℄. Likewise,when the variane of the Gaussian distribution is large, the relative e�et ofthe hange in the variane is muh smaller than when the variane is small.



3.2. Natural Gradient 26In addition to the Riemannian metri tensor, some other important resultsan also be derived for the normal distribution. Only the results are givenhere, for detailed derivation see e.g. [64℄. For a normal distribution N [x, µ, σ2]the Riemannian distane d(θ1, θ2) between two distributions θ1 = (µ1, σ
2
1) and

θ2 = (µ2, σ
2
2) is given by

d(θ1, θ2) =
√

2 cosh−1(((µ1 − µ2)
2 + 2(σ2

1 + σ2
2))/4σ1σ2). (3.34)The geodesi urve onneting the two distributions is given by

µ(t) = c1 + 2c2 tanh(t/
√

2 + c3)

σ(t) =
√

2c2 cosh−1(t/
√

2 + c3) (3.35)when µ1 6= µ2, where {ci} are onstants that satisfy µ(0) = µ1 and σ(0) =
σ1(0) = σ1 and that for some value of the geodesi length t µ(t) = µ2 and
σ(t) = σ2. Likewise when µ1 = µ2 = µ, the geodesi is given by

µ(t) = µ1

σ(t) = exp(t/
√

2 + c), (3.36)where c is a onstant that satis�es the same onditions [1℄.These results an also be extended to multivariate Gaussian distributions,detailed results and derivations an be found in e.g. [64℄. The presene ofgeodesis in simple analyti form is important for pratial implementation ofoptimisation algorithms. One suh example is explored in Setion 4.3, wherethe Riemannian onjugate gradient is introdued.3.2.3 Related WorkNatural gradient learning has been applied to a wide variety of problems suhas independent omponent analysis (ICA) [4, 3℄ and MLP networks [3℄ aswell as to analyze the properties of general EM [2℄, mean-�eld variationallearning [67℄, and online variational Bayesian EM [60℄. Riemannian onjugategradient has also been applied to a variety of di�erent problems, in partiulardi�erent eigen-like problems [17, 16℄. However, in all these works the geometryis based on the true posterior p(θ|X) whereas this work uses the geometry ofthe approximation of the posterior q(θ|ξ), whih an often result in greatlysimpli�ed omputations.Another alternative to the traditional EM algorithm is expetation-onjugate-gradient (ECG) algorithm [59℄. It is rather interesting that ECG algorithm has



3.2. Natural Gradient 27several similarities with the Riemannian onjugate gradient method presentedin Setion 4.3, even though the theoretial bakground of the two algorithmsis quite di�erent.



Chapter 4Conjugate Gradient Methods
Natural gradient algorithm presented in Setion 3.2 typially onverges muhfaster than the normal gradient desent algorithm. Unfortunately, in high di-mensional problems both algorithms tend to take multiple onseutive steps inalmost the same diretion. Natural gradient algorithm alleviates this problemto some extent, but muh better solution to the problem is given by onjugategradient method. The seminal paper on nonlinear onjugate gradient is [18℄,and textbook introdutions to onjugate gradient method inlude [61, 22℄. Amore intuitive desription of the algorithm an be found in [63℄.This hapter starts by reviewing the onepts of onjugate diretions and theonjugate gradient method in Setion 4.1. Some important implementationdetails are disussed in Setion 4.2. In Setion 4.3 onjugate gradient methodis extended to Riemannian spae resulting in the natural onjugate gradientmethod, also known as the Riemannian onjugate gradient method. Finally,some alternative algorithms with superlinear onvergene are presented in Se-tion 4.4.4.1 Introdution to Conjugate Gradient Algo-rithmEven though the gradient desent and natural gradient desent algorithmspresented in Setion 3.2 an �nd a loal minimum for almost any optimisationproblem, they have some shortomings that make them impratial for manyreal world optimisation problems. First of all, they only make use of the �rstorder information of the funtion f(x), and their onvergene is therefore quite28



4.1. Introdution to Conjugate Gradient Algorithm 29slow ompared to more advaned methods, espeially near the loal minimum.Additionally, gradient desent algorithms often tend to take multiple stepsin almost the same diretion, slowing down the onvergene. The onjugategradient and the Riemannian onjugate gradient methods try to solve boththese problems.The onjugate gradient algorithm [25, 22℄ is the standard tool in numerialoptimisation for solving high dimensional systems of linear equations of theform
Ax = b, (4.1)where b is a known vetor, A is a known square, symmetri, positive-de�nitematrix, and x is the unknown vetor to be solved. For a symmetri posi-tive de�nitive matrix, this problem is equal to the problem of minimising thequadrati form

f(x) =
1

2
xTAx− bTx. (4.2)The onjugate gradient method an also be generalised to nonlinear problemswhere f(x) is no longer quadrati [18℄, but the performane of nonlinear gra-dient methods is typially best when f(x) is lose to quadrati.4.1.1 Conjugate DiretionsGiven a matrixA, two vetors u and v are said to beA-orthogonal or onjugate(with respet to A) if

uTAv = 0 . (4.3)It should be noted that this notion of onjugay has no onnetion to omplexonjugates. Before proeeding to onjugate gradient method itself, the methodof onjugate diretions is explored. Even though there is no way to e�ientlyompute a sequene of orthogonal searh diretions and step sizes, it is possibleto generate a sequene of A-orthogonal searh diretions by a proess knownas Gram-Shmidt onjugation.Given a sequene of n onjugate diretions {pk}, the solution to the Equa-tion (4.1) is simply given by
x =

n∑

i=1

αipi, (4.4)where
αi =

pT
i b

pT
i Api

. (4.5)



4.1. Introdution to Conjugate Gradient Algorithm 304.1.2 Conjugate Gradient MethodThe onjugate gradient method uses a lever way to onstrut a sequene ofonjugate diretions. The urrent searh diretion is generated by onjugationof the residuals. With this hoie the searh diretions form a Krylov subspaeand only the previous searh diretion and the urrent gradient are required forthe onjugation proess, greatly reduing both the time and spae omplexityof the algorithm [48℄.The onjugate gradient method starts out by searhing in the diretion ofthe negative gradient during the �rst iteration. The optimum in the searhdiretion is determined by line searh. On subsequent iterations the searhdiretion pk is determined by
pk = −gk + βpk−1, (4.6)where gk = ∇f(ξk) is the urrent gradient and pk−1 is the searh diretionfrom the previous iteration. For nonlinear onjugate gradient method, thereare several di�erent ways, however, to hoose the multiplier βk. These inludethe Flether-Reeves formula [18℄
βk =

gk · gk

gk−1 · gk−1
(4.7)and the Polak-Ribiére formula [50℄

βk =
(gk − gk−1) · gk

gk−1 · gk

, (4.8)where gk is the urrent gradient and gk−1 is the gradient from the previousiteration. In most problems the performane with Polak-Ribiére formula issuperior to Flether-Reeves formula [48℄, and it is also exlusively used in allthe experiments in this work. There is however a minor ompliation withPolak-Ribiére formula. βk may beome negative and thus the algorithm is notguaranteed to onverge. Lukily, there is a simple solution to this problem.The global onvergene of the algorithm to a loal minimum an be guar-anteed by setting βk = max(βk, 0), whih e�etively means that the searhdiretion is reverted bak to the negative gradient whenever a non-positivevalue of βk is enountered. Another way to ensure the global onvergene ofthe Polak-Ribière onjugate method is to use a line searh algorithm that sat-is�es stronger onditions than the usual Wolfe onditions [23℄, the onditionstypially used to ensure the e�ient onvergene of line searh subroutines.



4.2. Implementation 314.2 ImplementationSome are must be taken while implementing a nonlinear onjugate gradientalgorithm. This setion disusses some potential problems and their solutions.In partiular, the searh diretions tend to lose onjugay after too many itera-tions, whih an signi�antly slow down the onvergene rate of the algorithm.4.2.1 Resetting the Searh DiretionWhen applied to a linear problem and assuming in�nite preision �oating pointarithmeti, onjugate gradient algorithm will onverge in at most n steps,where n is the number of dimensions of the problem [63℄. Unfortunately thisproperty no longer holds when the problem is nonlinear or numeri errorsaused by �nite �oating point preision are taken into aount. In pratiethe algorithm may have to be iterated many more than n times. Over timethe searh diretions tend to lose onjugay and it is therefore reommendedto periodially reset the searh diretion to the negative of the gradient toimprove onvergene. This an done at �xed intervals, values of n or √n aretypially suggested in literature [63℄ depending on the size of the problem.Another solution is to monitor the orthogonality of the subsequent gradientsand adaptively deide when the searh diretion should be reset. This solutionis known as Powell-Beale restarts [51℄ and one suh possible restart onditionis given by
|gk−1 · gk| ≥ 0.2‖gk‖2, (4.9)where gk is the urrent gradient and gk−1 the gradient from the previousiteration.4.2.2 Complex ModelsFor omplex models suh as high dimensional nonlinear state-spae models, itis often bene�ial to update the di�erent types of parameters separately fromeah other, as this is easier to implement and may even speed up onvergenein some ases. Unfortunately, the onjugate gradient method relies on infor-mation from the previous iteration. Unless all the parameters are updated ina single onjugate gradient step, this information is no longer valid, as therehave been hanges to the model between onjugate gradient iterations.The simple solution of updating all the model parameters in a single onjugate



4.3. Riemannian Conjugate Gradient 32gradient iteration an be somewhat problemati however. First of all, thisapproah an even lead to slower overall onvergene aused by saling issuesbetween di�erent parameters. Finally, it may be useful to use more simple oreven exat update formulas for some types of parameters in the model, furtherdisouraging the use of a single onjugate gradient update step. Additionally,if the Riemannian onjugate gradient algorithm presented in Setion 4.3 isused, it an be a rather involved proess to ompute the natural gradients ofall the model parameters.4.3 Riemannian Conjugate GradientUp to this point, natural gradient learning and onjugate gradient method havebeen studied separately. Natural gradient learning works quite well on its own,avoiding most of the shortomings of the normal gradient desent. However,when only approximations of the natural gradient an be omputed, it anbe quite bene�ial to ombine natural gradient and the onjugate gradientmethods, as is later shown experimentally. The resulting �natural onjugategradient� algorithm is known as the Riemannian onjugate gradient [65℄.The Riemannian onjugate gradient uses a similar iteration as the onven-tional onjugate gradient. There are few key di�erenes, however. First ofall, the gradient ∇f(w) must be replaed by the natural gradient ∇̃f(w) =
G−1∇f(w). In addition, the vetor norms and inner produts in Equations (4.8)and (4.9) must be replaed by their generalised ounterparts in Riemannianspae. Finally, line searh must be performed along geodesi urves, whih isdisussed in more detail in the next setion. Many of the formulas used in on-jugate gradient method involve vetors from tangent spaes at di�erent pointsin Riemannian spae. To evaluate these formulas, parallel transport must beused to transform the vetors to the same tangent spae [65℄.In onlusion, the Equations (4.6), (4.8), and (4.9) must be rewritten as follows.The searh diretion pk for Riemannian onjugate gradient method is thereforegiven by

pk = −g̃k + βτpk−1, (4.10)where g̃k = ∇̃f(ξk) is the natural gradient and β in the ase of Polak-Ribiéreformula is given by
βk =

(g̃k − τ g̃k−1) · g̃k

τ g̃k−1 · g̃k

, (4.11)



4.3. Riemannian Conjugate Gradient 33and the Powell-Beale restart ondition by
|τ g̃k−1 · g̃k| ≥ 0.2‖g̃k‖2, (4.12)In all these three equations τ denotes parallel transport of the vetor fromthe previous searh point to the urrent searh point along the geodesi urve.Additionally, all inner produts are taken based on the Riemannian norm. Anillustration of the operation of the Riemannian onjugate gradient algorithman be seen in Figure 4.1 [16, 65℄.PSfrag replaements
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Figure 4.1: Riemannian onjugate gradient algorithm on a urved manifold.Geodesis from two suessive iterations and the urrent gradient g̃k, previoussearh diretion (translated using parallel transport) τpk−1 and the urrentsearh diretion pk are displayed [16, 65℄.4.3.1 Line Searh Along GeodesisFor an exat Riemannian onjugate gradient algorithm, the line searh sub-routine also requires ertain hanges. Even though traditional line searh isused in the experiments of this work, the proess is reviewed for the sakeof ompleteness. As mentioned earlier, the line searh in Riemannian onju-gate gradient algorithm is performed along a geodesi urve, the analogue ofa straight line in Riemannian spae. As long as the geometry of the problemspae is suh that geodesis an be derived in analyti form, this simply meansthat the points used in line searh subroutine are taken along the geodesi [65℄.Unfortunately, even though using geodesis for line searh is simple in theory,in pratie geodesis and parallel transport may be hard to ompute e�ientlyfor many problem spaes. In ertain speial ases suh as normal distribution



4.4. Other Superlinear Algorithms 34with suitable parametrisation there exists relatively simple formulas for bothgeodesis and parallel transport in losed form. However, for more generaldistributions this is often not the ase and various approximations have to beused for implementation.4.3.2 LimitationsRiemannian onjugate gradient method assumes that the Fisher informationmatrix, geodesi urves and parallel transport an be omputed for the Rie-mannian manifold of the problem spae. Unfortunately, for some problemsthese may be very time-onsuming to derive and ompute.Additionally, the superlinear onvergene of Riemannian onjugate gradientalgorithm is only guaranteed when exat line searh is used. In most ases thisis not pratial, sine in general using exat line searh may require in�niteomputation time. Inexat line searh typially leads to good results as well,but suh algorithm may onverge slowly in ertain speial ases [65℄.4.4 Other Superlinear AlgorithmsConjugate gradient methods have been very suessful in solving a large varietyof di�erent problems and they are widely used to solve large sale real worldproblems. However, there are also many other superlinear algorithms thatare better suited to ertain problems. This hapter gives an overview of someompeting superlinear algorithms and ompares their strengths and weaknesseswith the onjugate gradient method. It is also interesting to note that manyof the algorithms presented in this setion have a relatively straightforwardextension to Riemannian manifolds.An overview of the di�erent algorithms disussed in this hapter is presentedin Table 4.1. It is important to note that many of the superlinear optimisationalgorithms require spei� onditions to reah their stated onvergene rate,and may exhibit linear onvergene or fail to onverge entirely when theseonditions are not met. The listed time and spae omplexities are only for eahstep of the algorithm itself, in some ases the omputation of the gradients andHessians an exeed these limits. Finally, when the algorithms are extendedto Riemannian spae, additional omputation is required. This overhead isheavily dependant on the geometry of problem spae.



4.4. Other Superlinear Algorithms 35Table 4.1: Optimisation algorithm summaryMethod Convergene Time omplexity Spae omplexityGradient desent O(n) O(n) O(n)Conjugate gradient O(n2) O(n) O(n)Memory-gradient O(n2) O(n) O(n)Saled onjugate gradient O(n2) O(n) O(n)Quasi-Newton O(n2) O(n2) O(n2)Newton O(n2) O(n3) O(n2)4.4.1 Saled Conjugate GradientThe traditional onjugate gradient algorithm o�ers fast onvergene, but if theomputation of the ost funtion requires signi�ant time, the line searh anbe quite time onsuming. An alternative way to determine the step size is touse a so-alled trust region or Levenberg-Marquardt approah. Suh variantof the onjugate gradient method is known as the saled onjugate gradientmethod. The algorithm itself is rather omplex and introdues some newparameters, full details an be found in [43℄.The Levenberg-Marquardt approah introdues a new sale term λk whihfores the approximation of the Hessian to remain positive de�nite. Afterthe update the quality of the approximation is evaluated, and the parameteris adjusted aordingly. When the λk is zero, the algorithm is equal to thetraditional Conjugate Gradient method.The main bene�t of the Saled Conjugate Gradient method is the fat that itrequires only onstant number of ost funtion and gradient evaluations periteration. In the optimal ase, the line searh in the traditional ConjugateGradient method requires similar run time as the Saled Conjugate Gradi-ent method. In pratie, standard onjugate gradient method with good linesearh subroutine requires two to three times more ost funtion and gradientevaluations ompared to the Saled Conjugate Gradient method.There are some issues with the Saled Conjugate Gradient method, however.First of all, some saled onjugate gradient iterations are spent adjusting thesale parameter without any redution in the ost funtion even though fullgradient and ost funtion evaluations are required for these iterations as well.In addition, the step sizes are less optimal than with line searh, whih leads to



4.4. Other Superlinear Algorithms 36faster loss of onjugay of the searh diretions. Finally, whereas a onjugategradient algorithm is easy to implement, the saled-onjugate gradient algo-rithm is relatively omplex and relies on ertain parameter values that mustbe hosen during the implementation.4.4.2 Memory GradientConjugate gradient algorithm uses information from two iterations to approx-imate the Hessian matrix. It is also possible to store and utilise gradient andsearh diretion information from more than two iterations to better approxi-mate the higher order information of the optimised funtion.Based on this idea, a lass of algorithms has been developed that try to improvethe performane of gradient based algorithms without signi�antly inreasingthe omputational omplexity. These algorithms inlude memory gradient [40℄and the three-term-reurrene algorithm [45℄, both of whih take into aountsearh diretion information from several past iterations.Compared to onjugate gradient methods, these algorithms require more mem-ory overhead, and are more di�ult to implement than the simple onjugategradient. Even though they provide some performane advantages over on-jugate gradient, neither has been studied as widely nor enjoys the same pop-ularity as onjugate gradient method.4.4.3 Newton's MethodThe algorithms presented so far in this hapter do not diretly use the higherorder information of the funtion. There also exists a wide lass of algorithmsthat diretly use this higher order information, however. The most popu-lar of these algorithms are Newton's method and its various approximations,known as quasi-Newton algorithms. All these algorithms provide superlinearonvergene near the loal minimum. Unfortunately, these algorithms oftenhave rather limited region of onvergene, and typially other methods suhas gradient desent are used to initialise the iteration. Another alternative isthe Levenberg-Marquardt method, a robust algorithm that ombines Newton'smethod and gradient desent [38℄.Newton's method has also been generalised to Riemannian manifolds [65, 66,73℄. Newton-like algorithms have one typial problem while solving high-dimensional problems, however. They require matrix operations with n × n



4.4. Other Superlinear Algorithms 37matries, where n is the dimension of the problem spae. In many high-dimensional problems, this is not omputationally feasible, as for example theproblem spae of a NSSM may well have dimensionality of n > 10000. Matrixoperations during eah optimisation step with matries of this size are typiallynot feasible even with state-of-the-art algorithms and hardware.When the dimensionality of the problem spae is slightly smaller, Newton-based algorithms an provide a viable alternative to onjugate gradient meth-ods. Of partiular interest are limited memory Newton algorithms [48℄, whihhave partially replaed onjugate gradient methods in problems with slightlylower dimensionality. Conjugate gradient methods, however, are still the besthoie for very high dimensional problems beause of their modest omputationand memory demands. Conjugate gradient methods are also relatively easy toimplement and more suitable to parallel omputation than many ompetingalgorithms.



Chapter 5Nonlinear State-Spae Models
Nonlinear state-spae models (NSSM) are one partiularly important lass ofprobabilisti models. In this hapter NSSMs are presented as a ase study fornatural gradient learning, and in partiular the NSSM from [71℄ is disussedin more detail.General NSSM struture and the building bloks of the model are disussed inSetion 5.1. The NDFA model from [71℄ is presented as an example of an NSSMin Setion 5.2. Finally, implementation details of the onjugate gradient andRiemannian onjugate gradient methods for the NDFA model are disussed inSetion 5.3.5.1 Model StrutureState-spae models are one popular way to model dynamial systems. Insteadof modelling the dynamis of the observed time-series X = {x(t)} diretly,state-spae models use a set of hidden states S = {s(t)} to model the dynamis.Furthermore, the mapping that maps the states bak to the atual observationsis modelled. The states form a so-alled state-spae, hene the name of themodel.

38



5.1. Model Struture 395.1.1 Linear State-spae ModelThe simplest state-spae model is the linear state-spae model
x(t) = As(t) + n(t), (5.1)
s(t) = Bs(t− 1) + m(t), (5.2)where x(t) are the observations and s(t) are the hidden internal states of thesystem. The vetors m(t) and n(t) are the proess and observation noise,respetively. A and B de�ne the linear observation and dynami mappings.The observations X and the states S are assumed to be real-valued and thetime t is disrete.In pratie, linear model for the dynamis is too restritive. The behaviour ofa linear dynamial system is de�ned by the eigenvalues of the matrix A, andthere is only a very restrited set of possible outomes. This is insu�ient formodelling any but the most basi real-world systems [7℄.5.1.2 Nonlinear modelsIn priniple, it is relatively straightforward to extend a linear state-spae modelinto a nonlinear one. It is simply enough to replae the linear mappings bygeneri nonlinear mappings, resulting in the model

x(t) = f(s(t), θf ) + n(t) (5.3)
s(t) = g(s(t− 1), θg) + m(t), (5.4)where θf and θg are the vetors ontaining the model parameters whih de�nethe mappings f and g, respetively. The dependene of the mappings f and gon the model parameters θ is assumed for the rest of this text, even thoughit is not expliitly shown for reasons of larity. Only the observations x(t)are known beforehand, and both the states s and the mappings f and g arelearned from the data.Assuming that the mappings f and g are modelled in a generi enough way,nonlinear state-spae models are generi enough to model any time-series. Theaddition of nonlinearity an also give rise to haoti e�ets. Over long timeperiods, even small hanges in the states an lead to omplitely di�erent out-omes.



5.1. Model Struture 405.1.3 Modelling NonlinearitiesOne major problem while implementing a nonlinear model is the representationof the nonlinearities. Whereas linear mappings an simply be represented bymatries, there is no suh easy solution for generi nonlinear funtions. Lukily,there exist di�erent funtion approximators that an approximate any funtionto a desired auray given enough parameters. The most well-known of theseare the various series deompositions inluding polynomial approximations andtrigonometri series. Unfortunately, trigonometri series an only be used tomodel periodi funtions and polynomi approximations an be sensitive tovery small parameter hanges, whih makes them a poor hoie for learningpurposes. In addition, high order polynomi approximations tend to generalisevery poorly. Some of these problems an be solved by using splines instead ofhigher order polynomials [24℄.In the �eld of neural networks, two di�erent funtion approximations are widelyused. These are the radial-basis funtion (RBF) and multilayer pereptron(MLP) network. Both of them are universal funtion approximators; givenenough parameters (i.e. neurons), they an at least in theory model any fun-tion to a desired auray [31, 24℄. Sine the NDFA model desribed in Se-tion 5.2 and used in the experiments uses MLP networks, the next setiondesribes them in greater detail.5.1.4 Multilayer PereptronA MLP network onsists of several simple neurons known as pereptrons. Apereptron is a very simple omputation unit that omputes a single outputfrom multiple inputs by applying a nonlinear ativation funtion to a linearombination of the inputs. A pereptron an be presented mathematially bythe equation
y = ϕ(

n∑

i=1

wixi + b) = ϕ(wTx + b), (5.5)where w = [w1 w2 . . . wn]
T is the weight vetor, x are the inputs, b is the biasand ϕ is the ativation funtion [24℄.In neural networks researh, the most ommon ativation funtions are thelogisti sigmoid 1/(1 + e−x) and the hyperboli tangent tanh(x). These twoare losely related and they share the useful property that they exhibit nearlylinear behaviour near the origin but beome saturated quikly farther awayfrom the origin. This property makes them well suited for modelling both



5.1. Model Struture 41strongly and mildly nonlinear funtions [24℄.A single pereptron an only represent very limited linearly separable map-pings. Therefore large networks of pereptrons are used, as seen in Figure 5.1.MLP networks are usually arranged in several layers with at least one so alledhidden layer between the input and the output layers [24℄.

Figure 5.1: MLP network with one hidden layer.The funtional form of a nonlinear state-spae model where nonlinearities aremodelled with MLP networks with one hidden layer is
f(s(t)) = B tanh[As(t) + a] + b (5.6)

g(s(t− 1)) = s(t− 1) + D tanh[Cs(t− 1) + c] + d, (5.7)where A and C are the weight matries for hidden layers, B and D are theweight matries for output layers, and a, c, b, and d are the orrespondingbiases [71℄.MLP networks are most often used in supervised learning tasks, where themost ommonly used learning algorithm is the bak-propagation algorithmwhih iterates between bakward and forward passes [24℄. In addition, it ispossible to derive a nonlinear Kalman �lter known as the Extended KalmanFilter (EKF) [6, 24℄ whih an be used to derive the hidden state-spae if theobservations and the nonlinear mappings are known.The omplete learning of hidden state-spae models requires more omplexalgorithms and is usually muh slower than in the ase of supervised learningtasks. One suh unsupervised learning algorithm is given by Dr. Valpola [71℄.In this work this algorithm is extended to take into aount the non-Eulidiannature of the spae of probability distributions as desribed in Setion 3.2.The algorithm uses MLP networks to model the nonlinearities and is based on



5.2. Nonlinear Dynami Fator Analysis 42variational Bayesian learning, whih is disussed in more detail in Setion 2.4.Other learning algorithms for nonlinear state-spae models inlude the workof Ghahramani and Roweis [21℄, whih uses RBF networks and standard EMalgorithm where EKF is used for the E-step.5.2 Nonlinear Dynami Fator AnalysisAs an example of a NSSM, nonlinear dynami fator analysis (NDFA) [71℄is used. This partiular NSSM uses multilayer pereptron networks with onehidden layer and tanh nonlinearity to model the nonlinear mappings.The weights of the MLP networks and the other model parameters are allassumed to be independent and they are modelled with Gaussian distribu-tions with diagonal ovariane to limit the number of parameters and keepthe omputation e�ient. The state vetors s(t) are also assumed omponent-wise independent. The subsequent state vetors are also assumed independentwith one exeption: the dependene between the orresponding omponentsof s(t− 1) and s(t) is modeled with a linear dependene parameter ŝ(t, t− 1).This orrelation is a realisti minimal assumption for modelling a dynamisystem [71℄. This simple assumption also makes the derivation of a naturalgradient algorithm straightforward.This dynami model for the parameters and the states leads to the approxi-mation
q(S, θ) = q(S)q(θ) (5.8)and
q(θ) =

∏

i

qi(θi), (5.9)and �nally
q(S) =

∏

i

qi(si(t)|si(t− 1)), (5.10)where the approximate density qi(si(t)|si(t − 1)) is parametrised by its mean
si(t), linear dependene ŝi(t, t− 1), and variane s̃i(t).5.3 Riemannian Conjugate GradientThe implementation of the Riemannian onjugate gradient algorithm is basedon the NDFA pakage [70℄ presented in [71℄. There are some key improve-



5.3. Riemannian Conjugate Gradient 43ments, however. First of all, the Taylor approximation used for the nonlin-earities in [71℄ an result in stability problems. This problem an be solvedby replaing the Taylor approximation by Gauss-Hermite quadratures as de-sribed in [26, 28℄. The replaement of Taylor approximations with the moreomplex approximation roughly doubles the omputational ost of the algo-rithm. However, the resulting algorithm tends to onverge faster and and it isalmost entirely free from the stability problems of the original implementation,so this modi�ation is quite justi�ed.Additionally, the heuristi update rules from [71℄ for the states and nonlinearmappings tend to onverge slowly. A signi�ant speedup an be attained byreplaing these update rules with an e�ient diret optimisation algorithm.In this ase, the means of the latent states and all the network weights areupdated simultaneously using the Riemannian onjugate algorithm with somesimplifying assumptions as desribed later in this setion. The loal optimumin the searh diretion is found using a line searh subroutine based on poly-nomi interpolation. The formulas for the gradients of the parameters q(S) and
q(θ) required in the omputation of the natural gradient an be found in [71℄.It is important to note that the natural gradient is omputed based on thegeometry of the approximating distribution q, whereas tradiationally naturalgradient algorithms have been only used for the true posterior distribution.5.3.1 Used ApproximationsTo simplify the implementation of the Riemannian onjugate gradient, ertainapproximations were used. First of all, the omponent-wise dependeny pa-rameter ŝ is updated separately from the means and varianes to simplify thegeometry of the problem spae. Typially this parameter an be updated in asingle step, so the extra omputational ost is not signi�ant.Additionally, natural gradient learning is only used for the network weightsand the soures. The rest of the parameters and hyperparameters are updatedby the algorithms desribed in [71℄. It is unlikely that using Riemannianonjugate gradient for all the parameters would have resulted in a signi�antspeedup ompared to the urrent implementation. Usually only the weightsand the soures require signi�ant amount of iterations to onverge, the otherparameters and hyperparameters typially onverge relatively fast.



5.3. Riemannian Conjugate Gradient 445.3.2 Update OrderIn the urrent implementation of the algorithm, the model parameters andhyperparameters are updated �rst. This is done for two reasons. First of all,parameter updates an be done separately from the feedforward and bakwardpasses of the soures. Additionally, this update order allows taking into a-ount any external modi�ations (suh as pruning away dead neurons) to themodel straight away.The parameter updates are followed by feedforward and feedbak passes, whihalso inlude the omputation of the ost funtion CKL. The gradient informa-tion from the bakward pass is �rst used to update the varianes of the networkweights and soures based on �xed point update rule. This is followed by up-dating the means using a diret update algorithm, in the experiments in thisthesis either onjugate gradient or Riemannian onjugate gradient algorithm.Even though varianes and means an be updated in a single Riemannian on-jugate gradient iteration, updating them separately resulted in a more stablealgorithm.It should be noted that the gradient information is only omputed one, eventhough tehnially it should be reomputed after the varianes have been up-dated. A full feedforward and bakward pass is quite expensive in terms ofomputation time, and thus small loss of auray an be justi�ed here. Intu-itively, the hange in the variane of a parameter has a smaller e�et on thegradient of the mean than vie versa. This was also veri�ed experimentally,thus justifying the hosen update order.5.3.3 Line SearhMany optimisation algorithms alternate between �nding a new searh dire-tion and �nding the optimum in this diretion. The proedure of �nding theoptimum is known as line searh. For linear problems exat line searh is oftenpratial, but for nonlinear problems this is typially not the ase and inexatline searh methods must be used. Therefore the minimum is braketed eitherby using a searh proedure suh as Fibonai or golden setion searh or byusing polynomial interpolation and extrapolation. When the funtion to beminimised is ontinuous, the performane of polynomial interpolation methodsis typially superior to other alternatives [52℄.In quadrati interpolation a seond order polynomial of the form p(α) = aα2 +
bα + c is �tted to the available data points. The extremum of the polynomial



5.3. Riemannian Conjugate Gradient 45an be found at −b
2a
. Given three known data points f(x1), f(x2), and f(x3)this an be rewritten as
xmin =

1

2

β23f(x1) + β31f(x2) + β12f(x3)

γ23f(x1) + γ31f(x2) + γ12f(x3)
, (5.11)where βij = x2

i − x2
j and γij = xi − xj . To ensure that the extremum is aminimum and that interpolation is performed instead of extrapolation, theondition

f(x2) < f(x1) ∧ f(x2) < f(x3) (5.12)must be satis�ed [52℄.Whenever gradient information or more than three funtion evaluations areavailable, ubi interpolation an be used instead of quadrati interpolation.In ubi interpolation a third order polynomial of the form p(α) = aα3 + bα2 +
cα + d is �tted to the available data. The loal extremum of the polynomialare the roots of the equation

3aα2 + 2bα + c = 0 (5.13)and the loal minimum is given by the root with 6aα + 2b > 0 [52℄.Even higher order polynomial interpolation an be used to approximate thefuntion f(x) but the use of higher than third order polynomials often leadsto problems with numerial stability, inreased omputational omplexity, andmay also result in Runge's phenomenon, the osillation of the interpolationpolynomial near the end points of the interpolation interval. This phenomenonis losely related to Gibbs' phenomenon, a similar problem with sinusoidal basisfuntions [52℄.Before the loal minimum has been braketed, the end points must be adjustedso that the ondition (5.12) holds. For a onvex funtion this an be done ina rather simple way by doubling t3 or halving t2 and setting the other pointto the old value of the adjusted point until both parts of the ondition aresatis�ed.To speed up this braketing, a polynomi approximation an be used hereas well. Given the interpolated or extrapolated minimum tmin, we an set
t3 = 2tmin when adjusting the points upwards and t2 = tmin when adjustingthe points downwards. To make the extrapolation more robust, only quadratiextrapolation is used. Additional safeguards are also used to limit the mini-mum and maximum relative hange in the line searh points.



Chapter 6Experiments
In this hapter, the onjugate gradient method and Riemannian onjugategradient method presented in Chapter 4 are applied to three di�erent problems.In eah experiment, the nonlinear state-spae model presented in Setion 5.2is used to learn a di�erent data set.In Setion 6.1, the method is applied to a syntheti data set generated usingrandom MLPs. In Setion 6.2 the method is used to learn the dynamis ofthe inverted pendulum system, an important benhmark in ontrol theory.Finally, in Setion 6.3 the method is applied to the hallenging real world dataset onsisting of human speeh.6.1 Syntheti DataTo ompare the performane of onjugate gradient and Riemannian onjugategradient under di�erent noise levels, the algorithms were applied to multiplerandomly generated syntheti data sets.6.1.1 Data SetThe data sets onsisted of 500 samples, whih were generated using the gener-ative model de�ned in Equations (5.3) and (5.4). The mappings were modelledby MLPs with 10 hidden nodes, and all the weights were randomly generatedfrom a Gaussian distribution. The state spae was three dimensional, and thegenerated data was four dimensional. 46



6.1. Syntheti Data 47Two groups of data sets were generated using this method. For the �rst group,the innovation (proess noise) m(t) variane was kept onstant σ2
m = 10−4 andthe variane of the observation noise n(t) was varied. For the seond group,the innovation proess variane was varied while the observation noise varianewas onstant σ2

n = 10−4.6.1.2 LearningThe NSSMs used in this experiment used the same parameters as the originaldata: three dimensional state-spae and MLP networks with 10 hidden nodes.Initial values of the means of the MLP weights were drawn randomly from thesame distribution as the weights of the MLPs used to generate the data. NSSMstates were initialized to all zeros. For eah di�erent noise level three di�erentinitialisations of the parameters were used and those iterations where di�erentalgorithms onverged to a di�erent loal optimum from the same initialisationwere ignored.Iteration was assumed to have onverged when |Bt − Bt−1| < 10−4 for 200onseutive iterations, where Bt is the bound on the marginal log-likelihood atiteration t.6.1.3 ResultsA omparison of the onvergene speed of onjugate gradient and Riemannianonjugate gradient is presented in the Figure 6.1. The heuristi algorithmfrom [71℄ su�ered from some stability problems with this data set and thereforeit was omitted from the results.At low levels of observation noise n(t) and proess noise m(t) the performaneof regular and Riemannian onjugate gradient algorithms is omparable. Asthe noise levels inrease, the Riemannian algorithm beomes signi�antly fasterwhile the regular onjugate gradient algorithm bene�ts less. Still, the e�etof the noise variane to onvergene speed is sublinear, whereas in theory itwould be linear for the EM [49℄.The speed di�erene in the methods in ases of high noise is aused by the fatthat there will be more unertainty on the values of some parameter. Henethere will be greater variation among the posterior varianes that determinethe inverse Fisher information matrix of Equation (3.28), whih will therefore
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Figure 6.1: The e�ets of variane on the onvergene speed of onjugategradient (dash-dotted line) and Riemannian onjugate gradient (solid line).The plots show onvergene speed with di�erent levels of observation noise
n(t) (left) and onvergene speed with di�erent levels of innovations m(t)(proess noise, right).
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Figure 6.2: The variane of the posterior varianes of the latent states anddi�erent model parameters plotted against observation noise n(t) (left) andinnovation proess m(t) (right). The varianes are shown for the latent states(solid line), input layer weights of the observation mapping f (dash-dotted linewith irles), output layer weights of f (dash-dotted line with rosses), inputlayer weights of the dynamial mapping g (dotted line with irles), and outputlayer weights of g (dotted line with rosses).di�er more from the form of onstant times identity. This is illustrated inthe Figure 6.2, whih shows a lear inrease in the variane of the estimatedposterior varianes in situations where regular onjugate gradient is performingbadly in omparison to the Riemannian variant.



6.2. Inverted Pendulum System 496.2 Inverted Pendulum SystemOne very important problem where nonlinear state-spae models are used issystem identi�ation in the �eld of ontrol. Typially, observed data and ex-ternal inputs are available, and the goal is to learn a model for the system fromthis data. The learned state-spae model an then be used in various di�erentontrol shemes, one popular example is the nonlinear model preditive ontrol(NMPC) method [39℄.The state-spae model desribed in Setion 5.2 does not diretly support on-trol input. However, it is relatively simple to extend the model by augmentingthe state matrix S with the ontrol signals and ensuring that the ontrol statesremain onstant during the learning proess as desribed in [54, 68℄.6.2.1 Data SetThe inverted pendulum system [34℄, also known as the art-pole system, is alassi benhmark for nonlinear ontrol and system identi�ation. The systemonsists of a pole (whih ats as an inverted pendulum) attahed to a art(Figure 6.3). The fore applied to the art an be ontrolled within ertainlimits. Typial ontrol task for this system is to swing the pole to an upwardposition and stabilise it. This must be aomplished without the art rashinginto the walls of the trak.The observed variables of the system are the position of the art s, angle ofthe pole measured from the upward position φ, and their �rst derivatives s′and φ′. Control input is the fore F applied to the art. The dynamis of thesystem are desribed by the following di�erential equations [34℄
θ′′ =

g sin θ + cos θ
(

−F−mlθ′2 sin θ+µcsgn(s′)
M+m

)
− µpθ′

ml

l
(

4
3
− m cos2 θ

M+m

) (6.1)
x′′ =

F +ml(θ′2 sin θ − θ′′ cos θ) − µcsgn(x′)

M +m
, (6.2)where M = 1.0 kg is the mass of the art, m = 0.1 kg is the mass of the pole,

l = 0.5 m is half the length of the pole, g = 9.8 m/s2 is the aeleration ofgravity, and µc = 0.05 and µp = 0.01 are the oe�ients of the frition of theart and the pole respetively.In this experiment the dynamis of the system are assumed unknown, and aNSSM desribing the system is learnt from a set of training data. The data
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PSfrag replaements θ
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sFigure 6.3: The art-pole systemset was generated by simulating a disrete-time system with a time step of
∆t = 0.05 s. Both observation noise and proess noise were Gaussian withvariane σ = 0.001. The possible fore was onstrained between −10 N and
10 N, and the position between −3 m and 3 m.The ontrol signal used to generate the training data set was mostly randomwith some hand-tuned setions to ensure that the entire state-spae was su�-iently represented in the training data set. Two di�erent data sets were used,a larger data set with 2500 samples and a smaller data set whih ontainedthe �rst 500 samples of the full data set.6.2.2 LearningA six dimensional state-spae model was used with the ontrol signal as theseventh state dimension. Both the observation and dynamial mapping weremodelled with MLP networks with 30 neurons. Embedding was used to ini-tialise the soures to meaningful values as desribed in [71℄. The soures wereinitialised to the 6 �rst prinipal omponents of the onatenated data vetor
x̂(t) = [xT (t) xT (t − 1) xT (t − 2) xT (t − 4) xT (t − 8) xT (t − 16)]T , and this24-dimensional embedded data vetor was used for the 200 �rst iterations, atwhih point the data vetor and the observation mapping MLP were pruned.These iterations are not displayed in the results of the next setion.Three di�erent initialisations for the other model parameters inluding MLPweights were used to avoid problems with loal minima. The results in thenext setion are from the initialisation that onverged to the best value of theost funtion.



6.2. Inverted Pendulum System 516.2.3 ResultsThe performane of the Riemannian onjugate gradient, the onjugate gradientand the heuristi algorithm from [71℄ is presented in Figure 6.4.
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Figure 6.4: Comparison of the performane of the di�erent algorithms with theart-pole data set using logarithmi sale for the omputation time. Resultswith the full data set are displayed in the top �gure, results with the smalldata set in the bottom �gure. The ompared algorithms are Riemannian on-jugate gradient (solid line), the heuristi algorithm from [71℄ (dashed line) andonjugate gradient (dash-dotted line).With the large data set, none of the algorithms onverged in reasonable time,but the relative di�erenes between the algorithms are rather large. Rieman-



6.3. Speeh Data 52nian onjugate gradient learly outperformed the other algorithms in this ex-periment, and onjugate gradient method in partiular performed very poorly.Both the model trained with Riemannian onjugate gradient and the modeltrained with the heuristi algorithm have also been suessfully used in a dif-�ult ontrol task with the simulated art-pole system as reported in [54, 68℄.For the smaller data set, the performane di�erenes between the di�erentalgorithms were slightly less pronouned. The performane of Riemannianonjugate gradient remained learly superior to the other methods, but theperformane of the onjugate gradient method and the heuristi algorithmwas quite similar in this experiment. Both Riemannian onjugate gradientand onjugate gradient method onverged to a similar loal minimum with aslightly di�erent values of the ost funtion. However, it took onjugate gradi-ent algorithm more than 10 times longer to onverge. The heuristi algorithmfailed to onverge in reasonable time in this experiment as well.At least in this experiment, the smaller dimensionality of the data set reduesthe performane advantages of the Riemannian onjugate gradient. A possi-ble explanation for the larger performane di�erene between the algorithmswhen the amount of data inreases is given by the intuitive intepretation ofnatural gradient in the spae of Gaussian distributions. With a larger dataset, the di�erenes in the varianes of the parameters will also likely be larger.A gradient based learning algorithm whih assumes �at geometry will try toadjust the parameters with low variane too muh ompared to the variableswith high, and this an signi�antly slow down the overall onvergene as allthe parameters must be updated in parallel. In ontrast, an optimisation algo-rithm that takes into aount the Riemannian nature of the problem spae willorretly sale the step sizes so that on�iting updates are less of a problem.6.3 Speeh DataAs a �nal demonstration of the performane of the algorithm, the Riemannianonjugate gradient method was used to learn a state-spae model for high-dimensional real-world data set with omplex dynamis.6.3.1 Data SetThe data set in this experiment onsisted of 21 dimensional real world speehdata. The data onsisted of mel-saled log power speeh spetra. A 2000 sam-



6.3. Speeh Data 53ple portion of the original data set was used, the sample ontained ontinuoushuman speeh with no signi�ant pauses. This sample size orresponds toroughly 15 seonds of real time.It should be noted that for any reasonable dynamial model of human speeh,a muh larger data set should be used. However, even this relatively smalldata set is useful for demonstrating the onvergene speed of the di�erentalgorithms.6.3.2 LearningIn this problem a NSSM with seven soures was used. Both MLP networks ofthe NSSM had 30 hidden nodes.As with inverted pendulum system, the soures were initialised to the �rstprinipal omponents of the embedded data vetor x̂(t). However, beause ofthe high dimensionality of the problem spae, embedded data was not usedduring the learning. It is likely that this made it more di�ult to learn mean-ingful dynamis for the data. However, sine the main fous of this experimentwas to ompare the onvergene of the di�erent algorithms, this should notsigni�antly alter the results.6.3.3 ResultsThe performane of the original heuristi algorithm presented in [71℄ was om-pared with onventional onjugate gradient learning and Riemannian onju-gate gradient learning. Unfortunately a reasonable omparison with a varia-tional EM algorithm was impossible due to the extended Kalman smoother [6℄being unstable and thus failing the E-step. The results and a part of the dataset an be seen in Figure 6.5. Five di�erent initialisations were used to avoidproblems with poor loal optima. The results presented in Figure 6.5 are fromthe iterations that onverged to the best loal optimum.The results with the speeh data are quite similar to the inverted pendulumsystem results. Riemannian onjugate gradient has a lear performane ad-vantage over the two other algorithms. In partiular, onventional onjugategradient learning onverged very slowly in this problem and regardless of ini-tialisation failed to reah a loal optimum within reasonable time. Riemannianonjugate gradient also outperformed the heuristi algorithm from [71℄ by afator of more than 10.
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Figure 6.5: Top: Part of the speeh spetrum data used in the experiments.Bottom: Comparison of the performane of the di�erent algorithms using loga-rithmi sale for the omputation time. The ompared algorithms are Rieman-nian onjugate gradient (solid line), the heuristi algorithm from [71℄ (dashedline) and onjugate gradient (dash-dotted line).



Chapter 7Disussion
It is important to note that the atual implementation of the Riemannianonjugate gradient method is only an approximation of the exat algorithmpresented in Setion 4.3. However, as the experiments in this thesis show,even this approximation an lead to very signi�ant performane gains.Comparison of the presented algorithm with traditional optimisation algo-rithms suh as EM would provide valuable insight into the appliability ofthe presented algorithm on realisti problems. Unfortunately, there is no ex-at variational EM algorithm for the nonlinear state-spae model used in thiswork, whih makes diret omparison di�ult.In theory, it is possible to use an EM-like algorithm where Kalman �lter basedupdates are used to infer the new states for eah iteration. Unfortunately,some initial testing indiated that iterated extended Kalman �lter (IEKS) [6℄is quite unstable for at least this partiular NSSM. In several simulations theNSSM ended up in suh a state that IEKS did not onverge to any meaningfulstates. One solution to this problem would be to use a �lter that uses more sta-ble methods to approximate the nonlinearity. One example of suh advaned�lter is bakward-smoothing extended Kalman �lter [53℄. However, beause ofrelatively omplex implementation and onerns over inreased omputationalost, no omparison with this method was made.As mentioned earlier, the implementation of Riemannian onjugate gradientmakes use of several simplifying assumptions. Most importantly, geodesiurves were not used for line searh. For manifolds where geodesis are loseto linear, the e�ets of this approximation will likely be limited. It is alsoworth noting that a large part of the earlier work with natural gradient makessimilar assumptions, for example many of the works of Amari [4, 3℄.55



7.1. Other Appliations 56Further experiments are required to determine how muh this approximationa�eted the experimental results in Chapter 6. In the experiments Riemannianonjugate onverged very rapidly in the beginning. However, this onvergenerate tends to slow down, and it is possible that this was at least partiallyaused by the approximations used in the implementation of the Riemannianonjugate gradient.It is also worth noting that superlinear onvergene proofs for Riemannianonjugate gradient involve the use of exat line searh [65℄, whih is not feasiblein pratie exept for some speial ases. Therefore a realisti implementationof the Riemannian onjugate gradient algorithm will already have to make useof at least some approximations. In pratie the restarting ondition in theonjugate gradient algorithm will ensure that the e�ets of the inexat linesearh will not beome too signi�ant.7.1 Other AppliationsEven though nonlinear state-spae models are used as a ase study in thisthesis, the presented algorithms an be used for almost any probabisti modelwhere parametri approximations are used and a suitable ost funtion an bederived.In pratie, there are some limitations of the appliability of the algorithm,however. Most importantly, geometry of ertain problem spaes an be so om-plex that omputation of the natural gradient is not feasible. In addition, evenif the natural gradient an be omputed, the omputation of the inverse Fisherinformation matrix may be too time-onsuming to make the implementationuseful in pratie.7.2 Future WorkThe implementation of the Riemannian onjugate gradient method uses someapproximations suh as using the �at geometry for line searh subroutine,whih may slow down the onvergene of the algorithm, espeially in problemswhere the geometry of the problem spae is far from �at. Comparison of thebasi line searh and line searh along geodesis would provide valuable infor-mation how muh the geometry of the problem spae a�ets the results. Asdisussed earlier in this hapter, it is at least possible that this exat imple-



7.2. Future Work 57mentation would provide further performane gains for the experiments in thiswork as well.Variational EM algorithms have been derived for many other parametri mod-els, and one of these ould be used to ompare the performane of the algo-rithms. One interesting test ase would be mixture-of-Gaussian model, wherediret omparisons ould be made with the EM-based variational Bayesianmixture-of-Gaussians (VB-MOG) model [8℄.In the experiments with the speeh data in Setion 6.3 the data set is so small,that it is impossible to derive any kind of general model for speeh. However,with a muh larger data set, it may be possible to �nd a reasonable state-spae representation for speeh data. Suh a model ould then be used as apreproessing tool by using the state-spae representation of speeh data ine.g. speeh reognition tasks.This kind of appliation requires a fast inferene algorithm for quikly derivingthe state-spae for a given data-set. One suh algorithm is presented in [55℄.Further study is also required to determine how the onept of total derivativespresented in this paper works with natural gradient.



Chapter 8Conlusions
In this thesis, a Riemannian onjugate gradient method for learning proba-bilisti models was presented. Traditionally natural gradient based algorithmshave used the geometry of the true posterior distribution. In this thesis, how-ever, the geometry of the variational approximations is used instead. Thismakes the implementation simple as the spae of the approximating distribu-tions typially has less omplex geometry than the spae of the true posteriordistributions. It is also possible to apply the method to a wide range of di�er-ent models whih use the same variational approximation.As a ase study, the algorithm was used to learn nonlinear state-spae mod-els with multiple di�erent data sets. Riemannian onjugate gradient methodperformed signi�antly better than other ompared algorithms. Compared toa standard onjugate gradient method, the Riemannian onjugate gradientmethod was at least ten times faster with all the data sets.

58



Bibliography
[1℄ S. Amari. Di�erential-Geometrial Methods in Statistis, volume 28 ofLeture Notes in Statistis. Springer-Verlag, 1985.[2℄ S. Amari. Information geometry of the EM and em algorithms for neuralnetworks. Neural Networks, 8(9):1379�1408, 1995.[3℄ S. Amari. Natural gradient works e�iently in learning. Neural Compu-tation, 10(2):251�276, 1998.[4℄ S. Amari, A. Cihoki, and H. Yang. A new learning algorithm for blindsignal separation. In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo,editors, Advanes in Neural Information Proessing Systems 8, pages 757�763. MIT Press, Cambridge, MA, USA, 1996.[5℄ S. Amari and H. Nagaoka. Methods of Information Geometry. AmerianMathematial Soiety and Oxford University Press, Providene, RhodeIsland, 2000.[6℄ B. Anderson and J. Moore. Optimal Filtering. Prentie-Hall, EnglewoodCli�s, NJ, 1979.[7℄ D. K. Arrowsmith and C. M. Plae. An Introdution to Dynamial Sys-tems. Cambridge University Press, Cambridge, 1990.[8℄ H. Attias. A variational Bayesian framework for graphial models. InS. Solla, T. Leen, and K.-R. Müller, editors, Advanes in Neural Informa-tion Proessing Systems 12, pages 209�215. MIT Press, Cambridge, MA,USA, 2000.[9℄ D. Barber and C. Bishop. Ensemble learning in Bayesian neural networks.In C. Bishop, editor, Neural Networks and Mahine Learning, pages 215�237. Springer, Berlin, 1998. 59



BIBLIOGRAPHY 60[10℄ O. E. Barndor�-Nielsen. Likelihood and observed geometries. Ann.Statist., 14:856�873, 1986.[11℄ C. Bishop. Pattern Reognition and Mahine Learning. Springer, Cam-bridge, 2006.[12℄ J. M. Coruera and F. Giummolè. A haraterization of monotone andregular divergenes. Annals of the Institute of Statistial Mathematis,50(3):433�450, 1998.[13℄ T. M. Cover and J. A. Thomas. Elements of Information Theory. J. Wiley,New York, 1991.[14℄ R. T. Cox. Probability, frequeny and reasonable expetation. AmerianJournal of Physis, 14(1):1�13, 1946.[15℄ A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood frominomplete data via the EM algorithm. J. of the Royal Statistial Soiety,Series B (Methodologial), 39(1):1�38, 1977.[16℄ A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithmswith orthogonality onstraints. SIAM Journal on Matrix Analysis andAppliations, 20(2):303�353, 1998.[17℄ A. Edelman and S. T. Smith. On onjugate gradient-like methods foreigen-like problems. BIT Numerial Mathematis, 36(3):494�508, 1996.[18℄ R. Flether and C. M. Reeves. Funtion minimization by onjugate gra-dients. The Computer Journal, 7:149�154, 1964.[19℄ A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis.Chapman & Hall/CRC Press, Boa Raton, Florida, 1995.[20℄ Z. Ghahramani and M. Beal. Propagation algorithms for variationalBayesian learning. In T. Leen, T. Dietterih, and V. Tresp, editors, Ad-vanes in Neural Information Proessing Systems 13, pages 507�513. TheMIT Press, Cambridge, MA, USA, 2001.[21℄ Z. Ghahramani and S. Roweis. Learning nonlinear dynamial systemsusing an EM algorithm. In M. Kearns, S. Solla, and D. Cohn, editors,Advanes in Neural Information Proessing Systems 11, pages 431�437.The MIT Press, Cambridge, MA, USA, 1999.[22℄ G. H. Golub and C. F. V. Loan. Iterative Methods for Linear Systems,hapter 10. Johns Hopkins University Press, Baltimore, 3rd edition, 1996.



BIBLIOGRAPHY 61[23℄ L. Grippo and S. Luidi. A globally onvergent version of the Polak-Ribière onjugate gradient method. Math. Programming, 78:375�391,1997.[24℄ S. Haykin. Neural Networks � A Comprehensive Foundation, 2nd ed.Prentie-Hall, 1999.[25℄ M. R. Hestenes and E. Stiefel. Methods of onjugate gradients for solvinglinear systems. Journal of Researh of the National Bureau of Standards,49:409�436, 1952.[26℄ A. Honkela. Approximating nonlinear transformations of probability dis-tributions for nonlinear independent omponent analysis. In Pro. 2004IEEE Int. Joint Conf. on Neural Networks (IJCNN 2004), pages 2169�2174, Budapest, Hungary, 2004.[27℄ A. Honkela. Advanes in Variational Bayesian Nonlinear Blind SoureSeparation. PhD thesis, Helsinki University of Tehnology, Espoo, Fin-land, 2005.[28℄ A. Honkela and H. Valpola. Unsupervised variational Bayesian learning ofnonlinear models. In L. Saul, Y. Weiss, and L. Bottou, editors, Advanesin Neural Information Proessing Systems 17, pages 593�600. MIT Press,Cambridge, MA, USA, 2005.[29℄ A. Honkela, H. Valpola, and J. Karhunen. Aelerating yli update al-gorithms for parameter estimation by pattern searhes. Neural ProessingLetters, 17(2):191�203, 2003.[30℄ R. Hooke and T. A. Jeeves. `Diret searh' solution of numerial andstatistial problems. J. of the ACM, 8(2):212�229, 1961.[31℄ K. Hornik, M. Stinhombe, and H. White. Multilayer feedforward net-works are universal approximators. Neural Networks, 2(5):359�366, 1989.[32℄ A. Ilin and H. Valpola. On the e�et of the form of the posterior approx-imation in variational learning of ICA models. Neural Proessing Letters,22(2):183�204, 2005.[33℄ M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. An introdution tovariational methods for graphial models. In M. Jordan, editor, Learningin Graphial Models, pages 105�161. The MIT Press, Cambridge, MA,USA, 1999.



BIBLIOGRAPHY 62[34℄ H. Kimura and S. Kobayashi. E�ient non-linear ontrol by ombiningQ-learning with loal linear ontrollers. In Pro. ICML, pages 210�219,1999.[35℄ H. Lappalainen and J. Miskin. Ensemble learning. In M. Girolami, edi-tor, Advanes in Independent Component Analysis, pages 75�92. Springer-Verlag, Berlin, 2000.[36℄ S. Ma, C. Ji, and J. Farmer. An e�ient EM-based training algorithm forfeedforward neural networks. Neural Computation, 10(2):243�256, 1997.[37℄ D. J. C. MaKay. Information Theory, Inferene, and Learning Algo-rithms. Cambridge University Press, 2003.[38℄ D. Marquardt. An algorithm for least-squares estimation of nonlinearparameters. SIAM Journal of Appl. Math., 11:431�441, 1963.[39℄ D. Mayne, J. Rawlings, C. Rao, and P. Sokaert. Constrained model pre-ditive ontrol: Stability and optimality. Automatia, 36:789�814, 2000.[40℄ A. Miele and J. W. Cantrell. Study on memory gradient method for theminimization of funtion. Journal of Optimization Theory and Applia-tion, 3:459�470, 1969.[41℄ T. Minka. Expetation propagation for approximate Bayesian inferene.In Proeedings of the 17th Conferene in Unertainty in Arti�ial Intelli-gene, UAI 2001, pages 362�369, 2001.[42℄ J. Miskin and D. J. C. MaKay. Ensemble learning for blind soure sep-aration. In S. Roberts and R. Everson, editors, Independent ComponentAnalysis: Priniples and Pratie, pages 209�233. Cambridge UniversityPress, 2001.[43℄ M. F. Møller. A saled onjugate gradient algorithm for fast supervisedlearning. Neural Networks, 6:525�533, 1993.[44℄ M. K. Murray and J. W. Rie. Di�erential Geometry and Statistis. Chap-man & Hall, 1993.[45℄ J. L. Nazareth. A onjugate diretion algorithm for unonstrained mini-mization without line searhes. Journal of Optimization Theory and Ap-pliation, 23:373�387, 1977.[46℄ R. M. Neal. Bayesian Learning for Neural Networks, Leture Notes inStatistis No. 118. Springer-Verlag, 1996.



BIBLIOGRAPHY 63[47℄ R. M. Neal and G. E. Hinton. A view of the EM algorithm that justi�esinremental, sparse, and other variants. In M. I. Jordan, editor, Learningin Graphial Models, pages 355�368. The MIT Press, Cambridge, MA,USA, 1999.[48℄ J. Noedal. Theory of algorithms for unonstrained optimization. AtaNumeria, 1:199�242, 1991.[49℄ K. B. Petersen, O. Winther, and L. K. Hansen. On the slow onver-gene of EM and VBEM in low-noise linear models. Neural Computation,17(9):1921�1926, 2005.[50℄ E. Polak and G. Ribière. Note sur la onvergene de méthodes de dire-tions onjugées. Revue Française d'Informatique et de Reherhe Opéra-tionnelle, 16:35�43, 1969.[51℄ M. J. D. Powell. Restart proedures for the onjugate gradient method.Mathematial Programming, 12:241�254, 1977.[52℄ M. J. D. Powell. Approximation Theory and Method, hapter 4. Cam-bridge University Press, Cambridge, 1981.[53℄ M. Psiaki. Bakward-smoothing extended Kalman �lter. Journal of Guid-ane, Control, and Dynamis, 28(5), Sep�Ot 2005.[54℄ T. Raiko and M. Tornio. Learning nonlinear state-spae models for on-trol. In Pro. Int. Joint Conf. on Neural Networks (IJCNN'05), pages815�820, Montreal, Canada, 2005.[55℄ T. Raiko, M. Tornio, A. Honkela, and J. Karhunen. State inferene invariational Bayesian nonlinear state-spae models. In Proeedings of the6th International Conferene on Independent Component Analysis andBlind Soure Separation (ICA 2006), pages 222�229, Charleston, SouthCarolina, USA, Marh 2006.[56℄ C. R. Rao. Information and auray attainable in the estimation ofstatistial paramaters. Bulletin of Calutta Mathematial Soiety, 37:81�91, 1945.[57℄ M. Rattray and D. Saad. Transients and asymptotis of natural gradientlearning. In Pro. of the 8th International Conferene on Arti�ial NeuralNetworks (ICANN 98), pages 183�188, 1998.



BIBLIOGRAPHY 64[58℄ R. Salakhutdinov and S. T. Roweis. Adaptive overrelaxed bound opti-mization methods. In Pro. 20th International Conferene on MahineLearning (ICML 2003), pages 664�671, 2003.[59℄ R. Salakhutdinov, S. T. Roweis, and Z. Ghahramani. Optimization withEM and expetation-onjugate-gradient. In Pro. 20th International Con-ferene on Mahine Learning (ICML 2003), pages 672�679, 2003.[60℄ M. Sato. Online model seletion based on the variational Bayes. NeuralComputation, 13(7):1649�1681, 2001.[61℄ L. E. Sales. Introdution to Non-Linear Optimization. Springer-Verlag,New York, 1985.[62℄ C. E. Shannon. A mathematial theory of ommuniation. The BellSystem Tehnial Journal, 27:379�423 and 623�656, 1948.[63℄ J. R. Shewhuk. An introdution to the onjugate gradient method with-out the agonizing pain. Tehnial Report CMU-CS-94-125, Shool of Com-puter Siene, Carnegie Mellon University, 1994.[64℄ L. T. Skovgaard. A Riemannian geometry of the multivariate Gaussianmodel. Sandinavian Journal of Statistis, 11(4):211�223, 1984.[65℄ S. T. Smith. Geometri Optimization Methods for Adaptive Filtering. PhDthesis, Harvard University, Cambridge, Massahusetts, 1993.[66℄ S. T. Smith. Optimization tehniques on Riemannian manifolds. FieldsInstitute Communiations, pages 113�146, 1994.[67℄ T. Tanaka. Information geometry of mean-�eld approximation. In M. Op-per and D. Saad, editors, Advaned Mean Field Methods: Theory andPratie, pages 259�273. The MIT Press, Cambridge, MA, USA, 2001.[68℄ M. Tornio and T. Raiko. Variational Bayesian approah for nonlinearidenti�ation and ontrol. In Proeedings of the IFAC Workshop on Non-linear Model Preditive Control for Fast Systems, NMPC FS06, pages41�46, Grenoble, Frane, 2006.[69℄ H. Valpola. Bayesian Ensemble Learning for Nonlinear Fator Analysis.PhD thesis, Helsinki University of Tehnology, Espoo, Finland, 2000. Pub-lished in Ata Polytehnia Sandinavia, Mathematis and ComputingSeries No. 108.



BIBLIOGRAPHY 65[70℄ H. Valpola, A. Honkela, and X. Giannakopoulos. Matlab odes forthe NFA and NDFA algorithms. http: // www. is. hut. fi/ projets/bayes/ software/ , 2002.[71℄ H. Valpola and J. Karhunen. An unsupervised ensemble learningmethod for nonlinear dynami state-spae models. Neural Computation,14(11):2647�2692, 2002.[72℄ J. Winn and C. M. Bishop. Variational message passing. Journal ofMahine Learning Researh, 6:661�694, April 2005.[73℄ Y. Yang. Optimization on Riemannian manifold. In Pro. of the 38thConferene on Deision and Control, pages 888�893, 1999.


