
AALTO UNIVERSITY
School of Science and Technology
Faculty of Information and Natural Sciences
Degree Programme of Computer Science and Engineering

Eemeli Kantola

Synchronizing data between a social networking
service and an RDF store via publish/subscribe

Master’s Thesis
Helsinki, 3 June 2010

Supervisor: Professor Heikki Saikkonen, Aalto University

Instructor: Mikko Vihonen, M.Sc.(Tech.), Futurice Ltd.

AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF SCIENCE AND TECHNOLOGY MASTER’S THESIS
Author: Eemeli Kantola

Thesis title: Synchronizing data between a social networking service
and an RDF store via publish/subscribe

Date: 3 June 2010 Number of pages: 68

Faculty: Information and Natural Sciences

Degree Programme: Computer Science and Engineering

Laboratory: Laboratory of Software Technology

Supervisor: Prof. Heikki Saikkonen

Instructor: Mikko Vihonen, M.Sc.(Tech.)

This Thesis presents a publish/subscribe mediator application for synchronizing data
between an RDF-based personal Smart Space, provided by Nokia Smart-M3, and Aalto
Social Interface (ASI), a Google OpenSocial inspired RESTful Web Service.

As useful information is scattered over a multitude of different internet resources, ag-
gregating data to enable accessing them through a single interface becomes essential.
The Semantic Web technologies provide a dynamically extensible platform for build-
ing composite services. However, currently there is a lack of necessary tools to enable
sharing data between semantic databases and traditional Web Services in practice.

This problem was approached by first conducting a literature study about the current
technologies. The results were used in implementing a synchronization agent between
Smart-M3 and ASI, which provides existing user data. Python was chosen as the pro-
gramming language for its flexibility and the provided Smart-M3 Python knowledge
processor library. Functions for mapping ASI’s hierarchical ontology and data to an
RDF graph were written, and both sides were connected with the mediator agent ap-
plication. Finally, the application’s functionality and performance were evaluated.

The main result of this Thesis is a fault-tolerant agent software for synchronizing be-
tween Smart-M3 and ASI, and an evaluation of the software and its future possibilities.
The agent can be used as such, and it also provides a basis for implementing further
agents that connect other Aalto services to Smart-M3 or some other semantic database.
This will facilitate wider adoption of the personal Smart Space concept as a framework
for intelligently and non-intrusively sharing data between existing internet resources.

Keywords: Smart Spaces, RDF, RDF store, Smart-M3, ASI, REST, social networks

ii

AALTO-YLIOPISTO DIPLOMITYÖN TIIVISTELMÄ
TEKNILLINEN KORKEAKOULU
Tekijä: Eemeli Kantola

Työn nimi: Tiedon synkronointi sosiaalisen verkostopalvelun ja
RDF-varaston välillä käyttäen julkaisu/tilaus -viestintää

Päivämäärä: 3.6.2010 Sivuja: 68

Tiedekunta: Informaatio ja luonnontieteet

Koulutusohjelma: Tietotekniikan koulutusohjelma

Laboratorio: Ohjelmistotekniikan laboratorio

Työn valvoja: Prof. Heikki Saikkonen

Työn ohjaaja: DI Mikko Vihonen

Tämä diplomityö esittelee julkaisu/tilaus -välittäjäsovelluksen tiedon synkronointiin
Nokia Smart-M3:n, RDF-pohjaisen henkilökohtaisen Smart Space:n ja Aalto Social In-
terfacen (ASI), Googlen OpenSocial -tyylisen REST-pohjaisen web servicen välillä.

Hyödyllinen tieto on usein hajallaan monen eri internet-resurssin takana, jolloin tiedon
yhteen kokoaminen ja tarjoaminen yhteisen rajapinnan kautta on oleellista. Semanttisen
webin teknologiat tarjoavat dynaamisesti laajennettavan alustan yhdisteltyjen palvelu-
jen tarjoamiseen. Tällä hetkellä kuitenkin tarvittavien työkalujen puute hankaloittaa
tiedon jakamista semanttisten tietokantojen ja perinteisten web-palvelujen välillä.

Tätä ongelmaa lähestyttiin ensin kirjallisuustutkimuksella nykyisistä teknologioista. Tu-
loksia hyödynnettiin synkronointiagentin toteuttamisessa Smart-M3:n ja ASI:n välille,
joista jälkimmäinen sisältää olemassaolevaa käyttäjädataa. Python valittiin ohjelmoin-
tikieleksi sen monipuolisuuden ja Smart-M3:n tarjoaman kirjastotuen takia. Funktiot
kirjoitettiin ASI:n hierarkkisen ontologian muuntamiseen RDF-verkoksi, ja molemmat
osapuolet yhdistettiin välittäjäagenttisovelluksella. Lopuksi sovelluksen toiminnallisuut-
ta ja suorituskykyä arvioitiin.

Tämän työn päätuloksena syntyi Smart-M3:n ja ASI:n välillä synkronointia varten vir-
heensietokykyinen agenttisovellus, sekä sen arviointi. Sovellusta voi käyttää sellaisenaan,
ja se tarjoaa myös pohjan uusien Aalto-palveluita hyödyntävien agenttien yhdistämiseen
Smart-M3:een tai muuhun semanttiseen tietokantaan. Tämä helpottaa henkilökohtaisen
Smart Space -käsitteen hyödyntämistä älykkääseen ja tiedon jakamiseen olemassaole-
vien internet-resurssien välillä, vaatimatta muutoksia niiden toteutukseen.

Avainsanat: Smart Spaces, RDF, RDF store, Smart-M3, ASI, REST, social networks

iii

Acknowledgements

Writing this Master’s Thesis has been an enlightening experience. I have learned a
lot about writing and the technologies involved. All of this could not have happened
without help from other people, however.

I want to especially thank my professor Heikki Saikkonen and instructor Mikko
Vihonen for providing ideas, high level guidance, and asking the right questions;
Olli Tyrkkö and Ian Oliver from Nokia Research Center for providing motivation
and financial support for the project; Jukka Honkola and Hannu Laine for Smart-
M3 technical support; Seppo Törmä and Esko Nuutila for helping me with ASI,
synchronizing, Thesis writing, references, and proof reading; and Harri Hälikkä for
providing continuous peer support and proof reading help throughout the project.

I would also like to thank Jari Heikkilä, Taina Hyppölä, Aleksi Hänninen, Juho
Makkonen, Teemu Moisala, Vihtori Mäntylä, Henri Pihkala, Jukka Salminen, Timo
Tuominen, Timo Töyry, Janne Vanhala, Mikko Viikari, many colleagues at Futurice
Ltd., and the Python community for guidance, tips, fixes, and other forms of support
during the project.

Special mentions go to my mom Leena Kontunen and current employer Futurice for
flexibility, mental and material support, and Sampo Hämäläinen who arranged the
project for this Thesis in the first place.

Helsinki, 3 June 2010

Eemeli Kantola

iv

Contents

Abbreviations viii

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Synchronization Challenges . 2

1.2 Goals for This Thesis . 3

1.3 Research Methods . 3

1.4 Structural Summary . 3

2 Distributed Systems 4

2.1 Fundamentals . 4

2.1.1 Definition . 4

2.1.2 Challenges . 4

2.1.3 Design Requirements . 5

2.2 Architecture Models . 6

2.2.1 Architecture Layers . 6

2.2.2 System Architectures . 7

2.3 Fundamental Models . 9

2.3.1 Interaction Model . 9

2.3.2 Failure Model . 10

2.3.3 Security Model . 11

2.4 Interprocess Communication . 12

2.4.1 Time, States, and Coordination 12

v

2.4.2 Marshalling . 13

2.4.3 Publish/Subscribe . 15

3 Web Services 17

3.1 Definitions . 17

3.1.1 Web Service Categorization 18

3.2 Web Technologies . 18

3.2.1 Uniform Resource Identifier 19

3.2.2 Hypertext Transfer Protocol 19

3.2.3 Representation formats . 20

3.3 Representational State Transfer . 20

3.3.1 Resource-Oriented Architectures 20

3.4 Aalto Social Interface . 22

4 Semantic Web 25

4.1 Concepts . 25

4.1.1 Resource Description Framework 25

4.1.2 Ontologies . 26

4.1.3 Agents . 28

4.2 Smart Spaces . 28

4.2.1 Nokia Smart-M3 . 28

4.2.2 Semantic Information Broker 29

5 Implementation 30

5.1 Overview . 30

5.2 Platform Architecture . 31

5.2.1 Python Terminology and Tools 32

5.3 Synchronization Agent . 33

5.3.1 ASI Library, asilib . 34

5.3.2 SIB Knowledge Processor Wrapper Library, kpwrapper 34

5.3.3 ASI-SIB Synchronization Agent, asibsync 37

6 Analysis 46

6.1 Synchronizing Between ASI and Smart-M3 46

6.1.1 ASI to Smart-M3 . 46

vi

6.1.2 Smart-M3 to ASI . 47

6.1.3 Fault Tolerance . 48

6.1.4 Performance . 53

6.1.5 Further Notes . 55

6.2 Smart-M3’s Knowledge Processor Library 56

6.3 Non-Intrusive Publish/Subscribe Mediator for ASI 58

6.4 Overcoming Distributed System Challenges in asibsync 59

7 Conclusions 60

7.1 Summary About the Results . 60

7.1.1 Synchronization Challenges Revisited 61

7.2 Problems Encountered . 61

7.3 Future Research and Applications . 62

A Performance Test Results 67

vii

Abbreviations

API Application Programming Interface

ASI Aalto Social Interface

BOSH Bidirectional-streams Over Synchronous HTTP

COS Common Services (the old name for ASI)

CRUDS Create, Read, Update, Delete, Subscribe

DIEM Devices and Interoperability Ecosystem

FOAF Friend of a Friend

GPS Global Positioning System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

JSON JavaScript Object Notation

KP Knowledge Processor

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

MIDE Multidisciplinary Institute of Digitalisation and Energy

NTP Network Time Protocol

pubsub Publish/Subscribe

OWL Web Ontology Language

viii

QoS Quality of Service

RDF Resource Description Framework

RDFS Resource Description Framework Schema

REST Representational State Transfer

RFC Request for Comments (a memorandum published by the Internet
Engineering Task Force)

ROA Resource-Oriented Architecture

RPC Remote Procedure Call

SIB Semantic Information Broker

SIOC Semantically-Interlinked Online Communities

SOAP Simple Object Access Protocol

SSAP Smart Space Access Protocol

SSL Secure Socket Layer

TCP Transmission Control Protocol

TLS Transport Layer Security

UDDI Universal Description, Discovery and Integration

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

W3C World Wide Web Consortium

WAP Wireless Application Protocol

WBXML WAP Binary XML

WebDAV Web-based Distributed Authoring and Versioning

WQL Wilbur Query Language (or WilburQL)

WSDL Web Services Description Language

WWW World Wide Web

ix

XML Extensible Markup Language

XHTML Extensible Hypertext Markup Language

XMPP Extensible Messaging and Presence Protocol (formerly known as
Jabber)

YAML YAML Ain’t Markup Language

x

List of Figures

2.1 Distribute system’s architecture layers 7

2.2 Client-server architecture . 8

3.1 OtaSizzle architecture . 23

4.1 RDF sample graph . 26

4.2 Smart-M3 architecture . 29

5.1 General asibsync architecture . 31

5.2 asibsync architecture and data flow 37

5.3 ASIAgent poll cycle flowchart . 40

5.4 Sample ASI data as an RDF graph 41

xi

List of Tables

6.1 Summary of asibsync performance measurements 54

A.1 Performance measurements: no existing data in SIB 67

A.2 Performance measurements: synchronized once to SIB 68

xii

Chapter 1

Introduction

There is a large number of different internet services that the users may want to follow
and update. Aggregating the relevant information can be done by mashing it up in a
single database (Ankolekar et al. , 2010); on the other hand, overlapping information
should be kept synchronized between services. Building and maintaining individual
links between the services does not scale up well when increasing the number of
services, and thus introducing a more centralized approach might be necessary.

Nokia Smart-M3 provides a suitable information sharing infrastructure, based on
the Semantic Web technologies. Smart-M3 builds upon a semantic database that
provides a publish/subscribe capable interface for updating information and getting
notified of changes in the subscriber’s areas of interest.

Battle & Benson (2008) have studied how the Web could be enhanced to enable
querying essentially non-semantic information with Semantic Web tools. However,
updating data back to the Web still needs work, let alone keeping information syn-
chronized between multiple services.

This Thesis approaches the issue from a different angle by providing and analyzing a
concrete piece of software for synchronizing data between a RESTful Web Service and
Semantic Web, with the future possibility of supporting other Web Service endpoints
for keeping data in separate real-world services synchronized. Aalto Social Interface1

(ASI) will be used as a sample RESTful Web Service endpoint for synchronization.
ASI provides existing user data for testing the integration with Smart-M3.

The results of this thesis can be utilized for improving the semantic interoperability
1http://cos.sizl.org (referred 5 Apr 2010)

1

http://cos.sizl.org

CHAPTER 1. INTRODUCTION 2

of REST-based services. The key paradigms are non-intrusively enhancing existing
Web Services to offer server push capabilities with publish/subscribe messaging, and
Resource Description Framework (RDF) for a flexible and extensible information
storage model. This brings the benefits of loose coupling and allows for dynamically
introducing new services to the system, and enabling modifications to the existing
configurations.

1.1 Synchronization Challenges

Retrieving and combining information poses a number of problems. First, a problem
arises from fetching and combining data represented in different formats by the
information sources (Oliver & Honkola, 2009) that can not be directly controlled.
The terminologies, or ontologies, must be shared semantically between services to
enable combining and sharing information intelligently.

Another question is how to detect changes in data in the external sources. Many of
the existing internet services do not provide any way to automatically get a notifica-
tion of the changes in data. When no inherent notification support is available, it is
necessary to resort to polling, or client pull, for simulating subscription to changes.
In any case, a method for loading only the relevant changes would be necessary for
performance reasons.

Thirdly, data synchronization has to be managed in a proper way. Conflicts may arise
in two-way synchronization of non-monotonically changing data. Sensible conflict
resolution strategies need to be developed to manage different cases.

Finally, scalability needs to be taken into account. Even though the amount of data
in localized Semantic Webs may not be an issue, support for monitoring changes in
several different external information sources would be needed. The sources may not
scale up for handling a large number of simultaneous update requests, and potentially
an even larger number of subscriptions for information changes. In case of polling,
the network and processor usage increases proportionally to the number of monitored
pieces of information. If the updates occur frequently, the amount of data needed
for synchronizing can also become an issue.

CHAPTER 1. INTRODUCTION 3

1.2 Goals for This Thesis

There are three primary goals in this Thesis:

1. designing and implementing a solution to synchronize data between Google
OpenSocial-based ASI REST interface and Smart-M3’s semantic database;

2. testing and using Smart-M3 and its Python knowledge processor interface li-
brary by writing a working application on top of it; and

3. implementing and evaluating an external, non-intrusive adapter that mediates
between a traditional Web Service and a service using the publish/subscribe
messaging paradigm.

1.3 Research Methods

The research was conducted by implementing a knowledge processor (KP) agent in
the Python programming language for synchronizing data between the ASI interface
and Smart-M3. ASI’s hierarchical data structure had to be mapped onto a graph-like
ontology, as required by the Resource Description Framework (RDF) representation
in Smart-M3. The agent functionality was demonstrated with ASI’s person structure
and sample person data. Finally the application was analyzed qualitatively and
quantitatively considering the original goals and perceived challenges.

1.4 Structural Summary

First this Thesis presents the existing research related to distributed systems and
publish/subscribe, Web Services, and Semantic Web technologies including Smart
Spaces. Then the implementation details are discussed at an architectural level,
after which the results are analyzed. Lastly the conclusions and proposals for future
studies are presented.

Chapter 2

Distributed Systems

2.1 Fundamentals

2.1.1 Definition

Ghosh (2006) characterizes distributed systems to consist of multiple, independent
processes with disjoint address spaces, communicating via message passing and hav-
ing a collective goal.

Distributed systems were originally developed to enable efficient resource sharing and
thus decreasing costs. Later on the sharing of information across a large audience
has increased greatly in importance, e.g. in the form of the internet, which itself is
a huge distributed system. (Coulouris et al. , 2005, chap. 1)

2.1.2 Challenges

Distributing a system has the consequences of concurrent program execution, lack of
global clock, and the components being susceptible of failing independently, without
the others getting directly informed about failure states. The challenges regarding
distributed systems are categorized as follows by Coulouris et al. :

• Heterogeneity of components. The different types of networks, hardware, op-
erating systems, programming languages, and multiple developers across the
system introduce complexity.

• Openness for extension through public, documented interfaces. Offering the

4

CHAPTER 2. DISTRIBUTED SYSTEMS 5

possibility for creating new components by different developers also adds com-
plexity to the system design.

• Security concerns. Publishing the resources to be easily available introduces
additional value to the users, but also potentially new ways for unauthorized
parties to gain access to sensitive information.

• Scalability requirements. Being able to increase the system’s resources and
number of users significantly while still remaining effective requires additional
measures.

• Failure handling. The problems lie first in detecting failures and then masking,
tolerating or recovering from them to keep the system as highly available as
possible.

• Concurrency in resource access. Allowing only a single client to access a re-
source at a particular time would severely limit throughput in many cases.
Increasing concurrency requires additional synchronization techniques to main-
tain data consistency.

• Transparency or concealing the individual details behind a common interface.
The user of a distributed system should not need to know the internal imple-
mentation details in order to use it. Examples include accessing the system
interfaces without knowing the system’s physical location, or transient error
conditions.

The complex nature of the distributed systems suggest that a systematic approach
be useful in tackling the problems involved (Coulouris et al. , 2005).

2.1.3 Design Requirements

When designing a distributed system, several non-functional requirements need to
be taken into account. The main requirements that are relevant for most distributed
systems, according to Coulouris et al. (2005), are described below.

Performance

The system’s performance has to remain at sufficient levels also with high levels of
concurrency and load. The delay between an external interaction and the consequent

CHAPTER 2. DISTRIBUTED SYSTEMS 6

response from the system should be small enough and consistent. For instance, when
loading a page with a web browser, long response times have a negative impact on
the user experience.

Quality of Service

The perceived quality of service (QoS) is affected by several factors, of which the
main ones are reliability, security and performance. Also adaptability for change can
be a major factor if the system is to be deployed in a dynamic environment or faces
several changing requirements.

Use of Caching and Replication

In many cases, a major factor helping satisfy the performance requirements is the
introduction of caching temporary snapshots of a representation that has been built
using dynamic data. Furthermore, replicating data is useful for reducing bottlenecks
in the distribution channel.

Dependability

Dependability is comprised of program correctness, security aspects, and fault tol-
erance; i.e. how much the system can be relied on. Dependability is of high priority
in business-critical systems.

2.2 Architecture Models

Several different style architecture models can be defined for distributed systems.
An architecture model describes how the different parts of a system are placed in
relation to each other, and how they interact (Coulouris et al. , 2005).

2.2.1 Architecture Layers

The distributed system architecture can be broken down into three main horizontal
layers, in the increasing order of abstraction: platform, middleware, and applica-
tion/service layers, as shown in Figure 2.1.

CHAPTER 2. DISTRIBUTED SYSTEMS 7

Figure 2.1: Distributed system’s horizontal architecture layers

Platform Layer

Platform is the system’s lowest level layer, consisting of the hardware computer and
network hardware components and the operating systems running on top of them.

Middleware Layer

Middleware provides an abstraction of the platform layer, aiming at masking the
heterogeneity of the underlying systems.

Application and Service Layer

This is the layer for software and services aimed at the end users, which may be
either humans or other systems.

2.2.2 System Architectures

The two basic distributed architecture models according to Coulouris et al. (2005,
chap. 2) are the client-server and peer-to-peer models. The client-server model
consists of two different types of running programs, or processes:

CHAPTER 2. DISTRIBUTED SYSTEMS 8

[!h]

Figure 2.2: Sample client-server architecture

• servers that passively offer services by listening to service requests, then re-
spond to them in trying to fulfill them in a specified way, and

• clients that actively initiate requests to the servers in order to send or get
information, or a required operation to be performed; i.e. invokes an operation.

The same process can be a client and a server at the same time: in many cases, servers
make use of other servers when fulfilling the requests. The terminology “client” and
“server” is often clear in single request-reply pair’s context where only the requesting
and serving sides are involved. When referring to clients and servers in the system
architecture’s context, however, a clear distinction between client and server systems
can usually be defined, even though many server processes also act as clients to other
servers. Figure 2.2 depicts a sample client-server architecture.

Peer-to-peer systems are composed of processes that have no clear distinction be-
tween client or server processes, but the peer processes interact cooperatively and
act as either clients or servers when needed.

Other useful system architecture models exist that are composed of the two basic
models, such as proxy, load balancer, and distributed hash table.

CHAPTER 2. DISTRIBUTED SYSTEMS 9

2.3 Fundamental Models

The fundamental models for distributed system according to Coulouris et al. (2005),
namely interaction, failure, and security, describe the common characteristics of com-
ponents from which systems are constructed. This Section discusses the fundamental
models in more detail.

2.3.1 Interaction Model

There are two main properties that have an effect on the process interaction in
a distributed system: communication performance and the notion of time across
different parts.

Communication performance is affected by delays or latency, channel bandwidth,
and the variation of delay in delivering messages, i.e. jitter. These have to be taken
into consideration when designing systems.

Clocks and timing is an issue because it is impossible to have the clocks of different
components of a distributed system maintain the exactly same value over time, i.e.
the clocks drift from perfect time. This problem can be mitigated, however, by
using a common external time source such as a time server or Global Positioning
System1 (GPS) data to keep the clocks synchronized. Even this can only have the
time synchronized to a certain degree.

The variations in timing have lead to different interaction models of distributed
systems. Hadzilacos & Toueg (1994) define a synchronous distributed system to be
one that:

• has lower and upper bounds for executing process steps,

• receives transmitted messages inside a known bounded time, and

• has a local clock with a drift rate that has a known bound regarding the real
time.

An asynchronous system does not have any known bounds on these properties.
Partially synchronous systems have bounds on some but not all of the properties.
(Coulouris et al. , 2005, chap. 2 & 12)

1http://tycho.usno.navy.mil/gpsinfo.html (referred 29 Apr 2010)

CHAPTER 2. DISTRIBUTED SYSTEMS 10

2.3.2 Failure Model

Distributed systems introduce several different points of failures, compared to non-
distributed systems. Failures can occur in processes, communication channels, or
timing. Additionally arbitrary (“Byzantine”) failures are also possible. Failure de-
tection and management is of high importance in distributed systems in order to
ensure correct functionality. (Coulouris et al. , 2005, chap. 2)

Process failures are failures that happen inside individual software processes across
the distributed system. A process failure may cause the process to crash, i.e. com-
pletely stop functioning, or exhibit erroneous behavior such as outputting error mes-
sages.

Many transient error conditions can be detected and handled appropriately before
letting the software crash. To prevent process failures in general from affecting the
whole system’s functionality, process monitoring can be set up to detect crashes or
error conditions. The monitor can then trigger corrective measures like restarting
the defunct process or escalating the failure condition to a higher level, for exam-
ple causing a failure notification message to be sent to the party responsible for
maintaining the process.

Communication Channel can fail in several different ways. The information
sent may be corrupted during transfer, either not ever reach its destination or reach
very slowly, or be duplicated. The reasons for communication failures can be faulty
network hardware, network congestion and breakages.

Communication channel failures can be reduced by using a fault-tolerant data trans-
mission protocol such as the Transmission Control Protocol (TCP; Postel, 1981) that
introduces checksums to detect data corruption, timeouts and retransmission model
to account for lost or corrupted data packets, and packet sequence number based ac-
counting to detect duplicated or missing data packets. Also architecture models exist
for supporting graceful communication failure handling, such as retransmitting mes-
sages in case of safe and idempotent operations in Resource-Oriented Architectures
described later in Subection 3.3.1.

Timing failures mean wrong or non-uniform perceived ordering or timestamps of
events affecting a distributed system or messages that are sent between the system’s

CHAPTER 2. DISTRIBUTED SYSTEMS 11

components. Timing can fail because of unpredictable delays in communication
channels or clock skew, i.e. time difference of clocks between the system components.
Using TCP on the transport level may introduce more delays since the protocol is
optimized for accurate rather than timely delivery.

Timing failures can be reduced by or in some cases eliminated for all practical pur-
poses by using a predictable communication channel and keeping the clocks synchro-
nized (see 2.4.1 below). When this is impossible and more accuracy is needed, using
algorithms such as the vector clock (Fidge, 1988; Mattern, 1989) can be utilized
to determine message and event ordering to a degree, or detect situations where
ordering is not possible, after which a selected conflict resolution strategy can be
applied.

Arbitrary (Byzantine) failures are situations where components of the system fail
by processing requests incorrectly, corrupting data, and/or providing erroneous or
inconsistent output that looks otherwise valid as opposed to explicit error messages
that result from detectable process failures. After a Byzantine failure, the system
may respond in an arbitrary way. Byzantine failure causes include faulty hardware,
human error, or malicious attacks.

Arbitrary failures are the most difficult to detect and correct. In many classic agree-
ment problems, Byzantine fault tolerant (BFT) algorithms can ensure correct op-
eration only if fewer than one third of the processes are faulty. Practically feasible
algorithms exist, however, as first shown by Castro & Liskov (2002) and later imple-
mented in the form of various protocols and frameworks, such as UpRight2.

2.3.3 Security Model

Modular and open distributed systems expose themselves for external and internal
threats. The security model describes the forms of the attacks, providing a founda-
tion for analysing and designing system security.

Security can be analyzed by considering resource protection, processes and inter-
actions (message passing), or evaluating different threats from the enemy, such as
threats to the processes, communication channels, or the effectiveness of a denial-of-
service attack.

2http://code.google.com/p/upright (referred 5 Apr 2010)

http://code.google.com/p/upright

CHAPTER 2. DISTRIBUTED SYSTEMS 12

Communication channels can be secured by using cryptography and secret keys
shared between the communicating processes. Authentication, i.e. methods for
verifying if the other end is the one it is supposed to be, can be utilized whenever
the information source needs to be trustworthy.

Denial-of-service attacks are more difficult to counter, as the messages to be used
for such could be formally valid, albeit otherwise meaningless.

Threats can be modeled by composing a list about different forms of attacks, and
then evaluating risks associated with them.

2.4 Interprocess Communication

Coordinating activities between processes requires communication between them.
This poses a number of problems, such as:

• What is the whole system’s state at a given time?

• Which process was the first to act?

• How do the processes communicate and understand each other?

• How are the communication channels constructed using standard web tech-
nologies?

The interaction and failure models presented in Section 2.3 provide several means
for approaching the first two questions, which are also discussed in more detail in the
following subsection 2.4.1. Furthermore, the last two problems are elaborated in the
rest of this Section by introducing the marshalling and publish/subscribe concepts;
the following Chapters 3 and 4 delve deeper into these questions in the context of
Web Services and Semantic Web.

2.4.1 Time, States, and Coordination

The concept of time is problematic in distributed systems, because it is even the-
oretically impossible to keep clocks perfectly synchronized across the system. This
has several important consequences related to timestamping and ordering of events.
(Coulouris et al. , 2005, chap. 11)

CHAPTER 2. DISTRIBUTED SYSTEMS 13

First, it is not possible to assign event timestamps that would be agreeable to all parts
of the distributed system. If an event that occurs in a system component is made
known to another receiving component, the exact time on which the event affects
the both components is necessarily different because of communication delays. On
the other hand, even if the event would be appropriately timestamped in the original
source component, this timestamp could in some cases denote a later time than the
receiving component’s perception of time because of clock skew, i.e. the difference
in time shown by the clocks. The event would seem to have happened in the future,
which contradicts causality.

Other difficulties arise from the perception of system state. If an event occurs that
would modify the whole system’s state, this information should be updated all over
the system. This update will not be instantaneous, however. Additionally, problem
arises when the system state is modified nearly simultaneously but in conflicting
ways in different parts of the system. The conflict situation would need to be re-
solved. Otherwise the system will be left in an inconsistent state, which could have
detrimental, far-reaching effects e.g. in case of financial applications.

Several measures have been devised to manage the coordination. Timing issues can
be alleviated by using logical clocks (Lamport, 1978) for event ordering, and for
time synchronization e.g. Network Time Protocol (NTP) (Mills, 1995), to maintain
the clocks approximately synchronized. For managing system state, message-passing
based election solutions exist for eventually achieving consensus (Coulouris et al. ,
2005, chap. 12).

2.4.2 Marshalling

Marshalling is the process of converting data items in memory into a representation
form suitable for storage or transmission as a message. The opposite process is called
unmarshalling. (Coulouris et al. , 2005, chap. 4)

Marshalling is applied before sending the data in messages between distributed sys-
tems. There are several possible representation formats for marshalled data, such as
the human-readable XML, JSON and YAML formats (see below for details), along
with the binary Hessian3, WAP Binary XML4 (WBXML), and Java’s serialized
forms, among others. In this Thesis, XML and JSON are the two representations

3http://hessian.caucho.com (referred 1 Jun 2010)
4http://www.w3.org/TR/wbxml (referred 1 Jun 2010)

http://hessian.caucho.com
http://www.w3.org/TR/wbxml

CHAPTER 2. DISTRIBUTED SYSTEMS 14

used, and are described below in more detail.

Marshalling is considered synonymous to serialization by Python’s marshal mod-
ule5. However, RFC 27136 gives the distinction that marshalling records the object’s
source code, whereas serialization does not. For the purposes of this Thesis, Python’s
definition will be used, i.e. only the object’s state and not code is considered.

XML

XML (Extensible Markup Language) defines a textual format for structured data.
The World Wide Web Consortium (W3C) defines XML as follows (Bray et al. ,
2008):

XML documents are made up of storage units called entities, which con-
tain either parsed or unparsed data. Parsed data is made up of charac-
ters, some of which form character data, and some of which form markup.
Markup encodes a description of the document’s storage layout and log-
ical structure. XML provides a mechanism to impose constraints on the
storage layout and logical structure.

XML’s design focuses on documents, but it is widely used in representing arbitrary
data structures, for example in Web Services (see Chapter 3).

JSON

JSON (JavaScript Object Notation) is a lightweight, text-based, human-readable
data structure format, originally specified by Crockford (2006) in RFC 4627. Despite
its name and syntax that reflect the ECMAScript Programming Language Standard,
JSON is language-independent.

JSON can represent the primitives string, number, boolean, and null, and addition-
ally the structured types object and array. Being specifically a data interchange
format, JSON is syntactically simpler and smaller in size compared to the general-
purpose XML.

5http://www.python.org/doc/lib/module-marshal.html (referred 14 Mar 2010)
6Schema for Representing Java(tm) Objects in an LDAP Directory, http://tools.ietf.org/html/

rfc2713 (referred 14 Mar 2010)

http://www.python.org/doc/lib/module-marshal.html
http://tools.ietf.org/html/rfc2713
http://tools.ietf.org/html/rfc2713

CHAPTER 2. DISTRIBUTED SYSTEMS 15

The simplistic JSON lacks support for relations inside a document, extensibility,
and the easier human readable block syntax format that JSON’s superset YAML7

provides.

2.4.3 Publish/Subscribe

Publish/subscribe (pubsub) is an asynchronous messaging paradigm that enables
loosely coupled interaction in dynamic applications. Subscribers express their inter-
est to specific events, which the publishers generate and notify about. The subscrip-
tions have different variants, such as topic-based, content-based, or type-based. The
event-based interaction fully decouples the systems in time, space, and synchroniza-
tion. (Eugster et al. , 2003)

Pubsub model relies on server push technology where the server is capable of initi-
ating communication with clients. Methods for introducing push capabilities on the
Web include:

• HTTP server push (or HTTP streaming) where connection is kept open for
more updates after the normal request-response sequence. This approach is
problematic when serving web browsers, since not all of them support HTTP
server push in the same way. However, enabling technologies like Server-Sent
Events8 or Web Sockets9 are being standardized as a part of HTML5.

• Long polling which emulates server push with standard polling. The server
keeps the response to the original request pending and sends response only
after new updates are available, after which the client sends a new request
immediately. For instance, the draft standard BOSH 10 from XMPP Standards
Foundation11 employs long polling for providing server push support.

Pubsub-Mediators

Mediator design pattern (Gamma et al. , 1994) is about encapsulating communi-
cation between objects with an additional mediator object. It aims in reducing

7YAML Ain’t Markup Language (YAML™) Version 1.2, http://yaml.org/spec/1.2/spec.html
(referred 14 Mar 2010)

8http://dev.w3.org/html5/eventsource (referred 27 Apr 2010)
9http://dev.w3.org/html5/websockets (referred 29 Apr 2010)

10XEP-0124: Bidirectional-streams Over Synchronous HTTP, http://xmpp.org/extensions/
xep-0124.html (referred 29 Apr 2010)

11http://xmpp.org (referred 29 Apr 2010)

http://yaml.org/spec/1.2/spec.html
http://dev.w3.org/html5/eventsource
http://dev.w3.org/html5/websockets
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org/extensions/xep-0124.html
http://xmpp.org

CHAPTER 2. DISTRIBUTED SYSTEMS 16

dependencies between the communicating parties, thus lowering coupling across the
system.

Pubsub-mediators are mediators between a pubsub-capable interface and other ser-
vices. Pubsub middleware components as an integration point facilitate building
composite services. The mediators interact with the non-pubsub-capable compo-
nent services and communicate with the pubsub middleware.

The advantage of the pubsub mediators is that they can add pubsub capabilities to
a non-pubsub-aware service in a dynamic manner, without requiring changes to that
service’s implementation. Monitoring updates in this kind of services might require
client pull, or polling, where the client actively checks for data updates on the service
at regular intervals.

Chapter 3

Web Services

3.1 Definitions

The World Wide Web (WWW), commonly known as the Web, is a system of inter-
linked hypertext documents on the Internet. WWW has been designed with flexi-
bility and a non-centralized architecture in mind, and the chosen base technologies,
to be described below, support these properties. (Berners-Lee, 1996)

Web Services commonly refer to clients and servers that communicate over the Hy-
pertext Transfer Protocol (HTTP) used on the Web. Contrast this with web services
(without capitalization), which could refer to, for instance, any non-internet service
advertised via WWW. The term Web Services is, however, ambiguous with several
different uses and definitions.

The World Wide Web Consortium (W3C) provides the following definition1:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically WSDL). Other sys-
tems interact with the Web service in a manner prescribed by its de-
scription using SOAP-messages, typically conveyed using HTTP with an
XML serialization in conjunction with other Web-related standards.

Alonso et al. (2004) refer to the following Universal Description, Discovery and
Integration (UDDI) consortium’s definition.

1Web Services Glossary, http://www.w3.org/TR/ws-gloss (referred 21 Feb 2010)

17

http://www.w3.org/TR/ws-gloss

CHAPTER 3. WEB SERVICES 18

Web services are self-contained, modular business applications that have
open, internet-oriented, standards-based interfaces.

Richardson & Ruby (2007) define the Web Services to be simply applications on
the WWW, i.e. clients and servers that communicate over the HTTP protocol.
This definition is henceforth considered when referring to the term Web Services
throughout this Thesis.

3.1.1 Web Service Categorization

Richardson & Ruby divide Web Services into two categories:

• Big Web Services use the traditional WS-* stack, referring to e.g. WSDL,
SOAP, and WS-Security standards2 and often resorting to remote procedure
calls (RPC). Big Web Services are versatile and provide powerful abstractions,
but bring a large amount of additional complexity to service adaptation, scal-
ing, and maintenance.

• RESTful Web Services emphasize simplicity and build on the existing, well-
known Web technologies URI and HTTP. The benefit of utilizing RESTful web
services is existing software and internet infrastructure support. Furthermore,
RESTful services are more easily scalable because of avoiding the need to
maintain and, in case of distributed Web Services, synchronize the user session
information in the servers.

In this Thesis, the Big Web Services are not considered in more detail, but are
mentioned here for completeness. The following Sections concentrate on elaborating
the RESTful Web Service technologies.

3.2 Web Technologies

The Web technologies relevant for Web Services are HTTP as the communication
protocol between servers and clients, URLs with the “http” scheme to locate inter-
net resources, and common representation formats, which the following Subsections
discuss in more detail.

2See Web Services Architecture, http://www.w3.org/TR/ws-arch (referred 22 Apr 2010), for an
overview

http://www.w3.org/TR/ws-arch

CHAPTER 3. WEB SERVICES 19

3.2.1 Uniform Resource Identifier

A Uniform Resource Identifier (URI) is a compact sequence of characters that iden-
tifies an abstract or physical resource.

Uniformity means that URIs can denote different kinds of resources with a consis-
tent semantic interpretation, enables extending the URI space without interfering
with the existing ones, and permits new applications or protocols to build on the
existing set of URIs. Resource can be an abstract or concrete concept, and the URI
specification does not limit the scope of what a resources should be. An identifier
distinguishes a resource that is being identified from other identifiable resources.
(Berners-Lee et al. , 2005)

The generic URI syntax defines URI character sequence to consist of a scheme des-
ignator string and a scheme-specific identifier which are separated by a semicolon:
scheme : scheme-specific-identifier. A URI can refer to an absolute or a relative
identity.

A URI can be further classified as a locator (URL), which is a common concept in
WWW, or other subclasses such as a name (URN), used for identification.

Uniform Resource Locator is a compact string representation for a resource available
via the Internet (Berners-Lee et al. , 1994). URLs are a subset of the more general
URI specification. For Web Services, “http” and “https” are the most commonly used
schemes for accessing resources.

3.2.2 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for dis-
tributed, collaborative, hypermedia information systems. It is a generic, extensible,
and stateless protocol, and has also many uses beyond hypertext. HTTP provides
support for negotiating data representation formats. The current HTTP version in
wide use is 1.1. (Fielding et al. , 1999)

HTTP communication is based on requests sent by clients, and responses sent back
by servers. The main component of a HTTP request is the request line with method
and resource descriptions, which is followed by request headers and an optional
request body. The resources to be accessed are identified by URLs with the “http”
scheme. An HTTP response contains one of the HTTP response codes, followed by

CHAPTER 3. WEB SERVICES 20

response headers and possibly a body.

HTTP protocol does not inherently provide encryption, which is however attainable
by using the Hypertext Transfer Protocol Secure (HTTPS; Rescorla, 2000). HTTPS
utilizes the Transport Layer Security (TLS) protocol and its predecessor, Secure
Socket Layer (SSL), to encrypt the communication channel. HTTPS URIs are de-
noted by the “https” scheme.

3.2.3 Representation formats

The information stored in the Web needs to be accessible for the consumers, be it
humans or computer programs. The data representation format plays an important
role in making the information contained available. Human-readable Web pages
are predominantly formatted in one of the HyperText Markup Language (HTML)
variants3. On the other hand, Web Services typically utilize marshalling information
to be able to communicate with more rigidly structured formats such as XML and
JSON, described earlier in Subsection 2.4.2.

3.3 Representational State Transfer

Representational State Transfer (REST) is a style of software architecture for dis-
tributed hypermedia systems such as the World Wide Web. The term REST was
coined by Fielding (2000) in his doctoral dissertation.

REST is the lightweight alternative to the Big Web Services, largely relying on
existing web technologies, HTTP and URI. REST defines six constraints: client-
server model, statelessness, cacheability support, uniform interface, system layering,
and the optional code-on-demand constraint (Fielding, 2000, chap. 5). A service
conforming to the REST constraints is referred to as being RESTful.

3.3.1 Resource-Oriented Architectures

REST is not an architecture per se, but a set of design criteria that leaves a lot
of room for interpretation; for instance, a REST-RPC hybrid architecture could

3Most commonly HTML 4.01, XHTML, or the upcoming HTML 5 – see http://www.w3.org/
TR/html401, http://www.w3.org/TR/xhtml1, and http://www.w3.org/html/wg/html5/ (referred
22 Apr 2010)

http://www.w3.org/TR/html401
http://www.w3.org/TR/html401
http://www.w3.org/TR/xhtml1
http://www.w3.org/html/wg/html5/

CHAPTER 3. WEB SERVICES 21

conform to REST’s requirements. Resource-Oriented Architectures (ROA) clarifies
the concept by defining the architecture and providing additional constraints for it.
(Richardson & Ruby, 2007, chap. 4)

The main elements ROA involves in are resources, names, representations, and links,
on which the architecture builds. The architecture also defines the following prop-
erties that need to hold in order to conform to ROA.

• Addressability. The resources need to be identifiable by distinct addresses,
such as URIs.

• Statelessness. The application state remains only on client and may not be
stored on the server. A request contain all the information that is needed for
carrying it out. HTTP requests happen completely isolated from each other.
Note that the statelessness concept refers to only not storing client’s state on
server side. The server and client can always have a state (resource state and
application state), but the distinction is that the client knows its whole state
and sends it to the server on every request.

• Representation. The representation format, if selectable, is to be requested e.g.
in the URIs (by appending “?lang=en”) or in HTTP “Accept” headers. The
server then decides the appropriate representation format, taking the client
preferences into account.

• Connectedness. The resources have to be linkable, e.g. using URIs. A simple
Web analogue of the connectedness property would be a search engine result
page, with links containing all the information required for retrieving the search
results.

The Uniform Interface

Moreover, HTTP protocol leaves some room for interpretation regarding the different
HTTP methods, which ROA aims to reduce. Especially HTTP POST has previously
been problematic because it’s definition doesn’t give clear constraints for usage,
unlike the other methods. The usage of HTTP methods defined by ROA is the
following (Richardson & Ruby, 2007):

• Retrieve a representation without modifying resources: GET;

CHAPTER 3. WEB SERVICES 22

• Create a resource: PUT in case of a new but known URI, POST if creating a
resource without knowing the new URI beforehand – this separation is widely
misunderstood;

• Modify a resource: PUT to an existing URI;

• Delete an existing resource: DELETE.

Additionally, the HEAD (retrieve metadata) and OPTIONS (check what operations
are allowed) methods are allowed by ROA.

Other methods, such as the MOVE, COPY, and SEARCH of the WebDAV4 exten-
sion, are allowed by HTTP but not considered part of ROA as defined by Richardson
& Ruby.

Safety and Idempotence

Because of ROA’s additional definitions, two useful properties can be defined for the
ROA operations. An operation is:

• safe if it does not cause modifications to any resources; and

• idempotent if no subsequent invocation after the first one cause modifications
to the resources.

Therefore it can be maintained that GET, HEAD and OPTIONS are safe, and PUT
and DELETE in addition to the safe operations are idempotent in ROA. POST
is neither safe nor idempotent. This observation brings additional freedom with
ROA applications when dealing with safe and idempotent operations, since they can
be repeated without endangering data integrity even when connection failures are
possible.

3.4 Aalto Social Interface

Aalto Social Interface5 (ASI) is a RESTful platform for social media applications.
ASI is a part of the OtaSizzle research project6 whose goal is to develop an open

4http://www.ietf.org/rfc/rfc4918.txt (referred 23 Apr 2010)
5http://cos.sizl.org (referred 5 Apr 2010)
6http://mide.tkk.fi/en/OtaSizzle (referred 5 Apr 2010))

http://www.ietf.org/rfc/rfc4918.txt
http://cos.sizl.org
http://mide.tkk.fi/en/OtaSizzle

CHAPTER 3. WEB SERVICES 23

© 2010 OtaSizzle (MIDE/TKK); source:
http://www.sizzlelab.org/content/otasizzle-overview (referred 11 Apr 2010)

Figure 3.1: ASI in OtaSizzle’s high level architecture

experimentation environment for testing mobile social media services. ASI has been
previously known as Common Services (COS). Figure 3.1 shows OtaSizzle’s high
level architecture and how ASI positions itself in it.

ASI provides some but not all of the features specified in OpenSocial, a set of APIs for
distributed social applications Google (2009). There are several differences, though:
for instance, the updated field for a person object is called updated_at in ASI. ASI
also uses HTTP cookie based sessions for authenticating clients, whereas OpenSocial
requires OAuth7. Nevertheless, ASI can be regarded as a ROA application except
perhaps regarding the session handling.

Internally, ASI has been built using the Ruby on Rails8 web application framework.

There are several applications built on top of ASI, such as Kassi9, a social market-
7http://oauth.net (referred 5 Apr 2010))
8http://rubyonrails.org (referred 30 Apr 2010)
9http://kassi.sizl.org?locale=en (referred 5 Apr 2010)

http://www.sizzlelab.org/content/otasizzle-overview
http://oauth.net
http://rubyonrails.org
http://kassi.sizl.org?locale=en

CHAPTER 3. WEB SERVICES 24

place for items and favors.

Chapter 4

Semantic Web

4.1 Concepts

Semantic Web is a web of information with meaning, allowing for the interoper-
ability of the systems by logically connecting different terms to each other. The
Semantic Web is also a non-centralized knowledge representation system, utilizing
XML (described earlier in Subsection 2.4.2) for structuring information, and Re-
source Description Framework (RDF) for expressing meaning. (Berners-Lee et al. ,
2001)

As noted by Shadbolt et al. (2006), the Semantic Web had not experienced large-
scale deployment. There exist, however, several specific encouraging applications
such as applying Semantic Web technologies to government and aviation sector data
(Alani et al. , 2008). On the other hand, enhancing the Web with semantic features,
e.g. by taking advantage of HTML5 Microdata draft specification1, could prove
useful if adopted by the Web community.

4.1.1 Resource Description Framework

The Resource Description Framework (RDF) is a collection of World Wide Web
Consortium2 (W3C) specifications. RDF defines a general-purpose language for
modeling concepts and representing information in the Web.

1http://whatwg.org/specs/web-apps/current-work/multipage/links.html#microdata (referred
24 May 2010)

2http://www.w3.org (referred 21 Apr 2010)

25

http://whatwg.org/specs/web-apps/current-work/multipage/links.html#microdata
http://www.w3.org

CHAPTER 4. SEMANTIC WEB 26

© 2008 Ian Oliver and Jukka Honkola; source: Oliver & Honkola (2008)

Figure 4.1: RDF sample graph

RDF encodes meaning in sets of triples, containing a subject, a predicate (verb),
and an object. This can be used as a natural way of describing most of the machine-
processable information. The possible types for subject are URI (see 3.2.1) and blank
node or “anonymous resource”. Predicate can be a URI or blank node, and object
can additionally contain a literal value.

An RDF model represents a labeled, directed multi-graph that enables evolutionally
developable datasets. Being able to extend the data model becomes necessary, when
it is difficult or impossible to define it in advance at a sufficient level.

Figure 4.1 shows a sample RDF graph.

RDF can be represented in several ways, such as RDF/XML (Beckett & McBride,
2004), the better human-readable Notation33, or RDFa4 (“RDF in XHTML: Syntax
and Processing”, W3C working draft) for HTML5 integration.

The storage for RDF triples is called a triplestore.

4.1.2 Ontologies

An ontology is a description of what types of things exist. This can include a taxon-
omy description and inference rules between different entities. Taxonomy is used for
defining hierarchical data structures, composed of object classes and their relations.
Furthermore, inference can be used to deduce relations not directly expressed by the
taxonomy, such as if object A is of type B and B is of type C, then A must also be
of type C.

3http://www.w3.org/DesignIssues/Notation3.html (referred 21 Apr 2010)
4http://www.w3.org/TR/rdfa-in-html (referred 24 May 2010)

http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/TR/rdfa-in-html

CHAPTER 4. SEMANTIC WEB 27

Several ontologies have been standardized, such as the social networking related
Friend of a Friend5 (FOAF), part of W3C’s Semantic Web project6, and Semantically-
Interlinked Online Communities7 8 (SIOC).

RDF Schema

RDF Schema is an extensible knowledge representation language, with elements for
describing ontologies in RDF. The current RDF Schema specification9 has been
released by W3C in 2004.

RDF Schema defines several URIs to be used in describing ontologies, such as:

• Classes (rdfs:Class) and subclasses (rdfs:subClassOf)

• Properties (rdfs:property, rdfs:domain, rdfs:range, rdfs:subPropertyOf)

• Utility properties (rdfs:seeAlso, rdfs:isDefinedBy)

A simple example of RDF Schema usage would be to define a class, and then an
object to be of the class (in Notation3 syntax):

@prefix : <http://some.uri#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

:SomeType rdf:type rdfs:Class .

:thing rdf:type :SomeType .

This indicates that http://some.uri#SomeType defines a class of objects, and
http://some.uri#thing belongs to that class.

Web Ontology Language

Web Ontology Language (OWL) is a knowledge representation language for publish-
ing and sharing ontologies on the World Wide Web. It is a vocabulary extension

5http://www.foaf-project.org (referred 16 May 2010)
6http://www.w3.org/2001/sw (referred 16 May 2010)
7http://sioc-project.org (referred 16 May 2010)
8http://rdfs.org/sioc/spec (referred 16 May 2010)
9http://www.w3.org/TR/rdf-schema (referred 21 Apr 2010)

http://www.foaf-project.org
http://www.w3.org/2001/sw
http://sioc-project.org
http://rdfs.org/sioc/spec
http://www.w3.org/TR/rdf-schema

CHAPTER 4. SEMANTIC WEB 28

to RDF. The current version is OWL 210 that is backwards compatible with earlier
specifications.

4.1.3 Agents

In the context of Semantic Web, agents, also known as knowledge processors, are
pieces of programs that consume and produce semantic information. Agents provide
the means for actually taking advantage of the information contained in Semantic
Web.

Examples of agents include reasoners that produce more data based on existing se-
mantic information, end user applications built on top of Semantic Web, or mediators
that supply and adapt information to and from other sources.

4.2 Smart Spaces

Global ontology for the Semantic Web seems difficult if not impossible to create, and
an anarchistic model could be more realistic. Oliver (2009) maintains that the future
of Semantic Web lies in local, personal and individually evolving information spaces,
and not so much in its global forms earlier envisioned by Berners-Lee et al. (2001).
The Semantic Web is most succesful in specific, small-scale, domain-restricted situ-
ations, and this would be the main future direction of development.

The more localized nature of Semantic Web has given rise to concepts such as Smart
Spaces, studied e.g. at Nokia Research Center11. Smart Spaces is an umbrella con-
cept involving in context-aware communication and interoperability between devices
and people. Some of the recent research include device interoperability (Lappeteläi-
nen et al. , 2008), space-based computing (Oliver & Boldyrev, 2009) and their ap-
plications (Honkola et al. , 2009).

4.2.1 Nokia Smart-M3

Smart-M3 12 is an open source software project for Semantic Web based, distributed
information sharing infrastructure. Smart-M3 provides a pubsub-capable interface

10http://www.w3.org/TR/owl2-overview (referred 21 Apr 2010)
11http://research.nokia.com/research/labs/nrc_smart_spaces_laboratory (referred 22 Apr

2010)
12http://smart-m3.sourceforge.net (referred 22 Apr 2010)

http://www.w3.org/TR/owl2-overview
http://research.nokia.com/research/labs/nrc_smart_spaces_laboratory
http://smart-m3.sourceforge.net

CHAPTER 4. SEMANTIC WEB 29

Figure 4.2: Smart-M3 architecture overview

for subscribing to and manipulating information stored as RDF triples. Smart-M3
has formerly been also known as Sedvice, M3, or Nokia M3.

Smart-M3’s Smart Space consists of one or more Semantic Information Brokers
(SIB) that communicate with external agent nodes using Smart Space Access Protocol
(SSAP). See Figure 4.2 for a Smart-M3 architecture overview.

An example of Smart-M3 usage in a business meeting environment is presented by
Oliver et al. (2009).

4.2.2 Semantic Information Broker

Semantic Information Broker (SIB) is one kind of a triplestore for storing, sharing
and governing the information stored within it as RDF triples. For communicating
with the data users, SIB provides an interface supporting Smart Space Access Pro-
tocol (SSAP), an XML-based communication protocol enabling the use of pubsub
messaging paradigm.

SIB supports CRUDS (Create, Read, Update, Delete, Subscribe) operations, called
insert, query, update, delete, and subscribe by Smart-M3. The creating, updating and
deleting functionality relies on RDF triples as the data units, whereas queries and
subscriptions can also utilize the more expressiveWilbur Query Language (WilburQL
or WQL), discussed e.g. by Lassila (2007).

Smart-M3 with agents could be regarded as a kind of middleware (see 2.2.1) that
masks the heterogeneity of the connected data components by aggregating them into
a single semantic database.

Chapter 5

Implementation

5.1 Overview

The goals of this Thesis, namely creating a synchronizing mediator agent between
ASI and Smart-M3 and then evaluating it from different aspects, were approached
by first implementing the software. The implementation consists of a platform and
a middleware layer, as introduced in Subsection 2.2.1. There are no components in
the application layer, since the implementation is mainly focused on unifying the
underlying data structures, to be then used by the actual end user applications that
are to be provided separately. The actual applications and services would be built
on top of ASI, and possibly SIB.

The following Sections in this Chapter describe and justify the software’s architecture
choices and then implementation concerns in more detail. First the platform choices
are elaborated, and then the actual synchronization agent’s external and internal
architecture and detailed logic are discussed.

Notational conventions

In this Chapter, the following conventions are adhered to:

• Emphasized text is always used for program code library names, such as asib-
sync; also when introducing new concepts and terms for the first time.

• Typewriter font is used for commands, files in filesystem, class, function or

30

CHAPTER 5. IMPLEMENTATION 31

Figure 5.1: Overview of the platform and middleware architecture for the test setup

variable names in program code, and Python modules or packages; examples
of the different uses include sib-tcp, setup.py, ASIAgent, and asi_agent,
respectively.

5.2 Platform Architecture

Figure 5.1 gives an architectural overview of the platform and middleware level setup,
which is described below in more detail.

The SIB knowledge processor library exists both as a C and a Python implementa-
tion. Of these two choices, Python was chosen because it was deemed more produc-
tive, as suggested by Prechelt (2000), and because using C for performance gains
was not deemed necessary in this context. Python was also used for all other code
for consistency and to avoid unnecessary extra interfaces between different modules

CHAPTER 5. IMPLEMENTATION 32

in several programming languages.

Smart-M3 release version 0.9.2 was used for the implementation.

The Smart-M3 SIB daemon (sibd) and the accompanying SSAP over TCP interface
(sib-tcp), both written in C, were compiled and run on Ubuntu 9.04 i386 desktop1

installation, since Ubuntu is one of the operation systems Smart-M3 is advertised
to be tested on according to the setup documentation2. SIB debug messages were
turned on when compiling. The Ubuntu installation was running inside a VMware
Fusion 3.0.2 virtual machine environment3.

Rest of the used program code, solely consisting of Python libraries and applications,
were run on Mac OS X 10.6.3 and Python 2.6.1 shipped with the operating system.
The connection to SIB running under Ubuntu was made via a virtual local area
network (LAN) interface provided by VMware.

Eclipse4 IDE (Integrated Development Environment) with Aptana5 PyDev6 plugin
were chosen as the development environment.

5.2.1 Python Terminology and Tools

In this Thesis, Python is the programming language of choice. Therefore a short
introduction is in order to the basic Python terminology, necessary tools, and web
resources to better understand the subsequent architectural choices and descriptions.

A piece of Python code, or script, is normally stored inside .py files in the filesys-
tem. A single Python source file is called a module, and can contain any number
of variables, functions and classes. Modules can be fully or partially imported in
other modules and scripts, i.e. loaded from outside them, to take advantage of their
functionality and resources.

Individual modules can be further structured into Python packages. They are fun-
damentally filesystem directories that contain at least a module called __init__.py,
which can be an empty file. Packages are a convenient way for organizing modules
into hierarchies and namespaces. Python keeps track of a system path for locat-

1http://releases.ubuntu.com/9.04 (referred 5 Apr 2010)
2http://sourceforge.net/projects/smart-m3/files (referred 5 Apr 2010)
3http://www.vmware.com/products/fusion (referred 5 Apr 2010)
4http://www.eclipse.com (referred 20 Apr 2010)
5http://www.aptana.com (referred 20 Apr 2010)
6http://pydev.org (referred 20 Apr 2010)

http://releases.ubuntu.com/9.04
http://sourceforge.net/projects/smart-m3/files
http://www.vmware.com/products/fusion
http://www.eclipse.com
http://www.aptana.com
http://pydev.org

CHAPTER 5. IMPLEMENTATION 33

ing modules and packages. This path can be influenced e.g. via the PYTHONPATH

environment variable.

See e.g. the Python tutorial’s Modules chapter7 for more insight into the modules
and packages.

Python modules and packages can be distributed in egg format8 that is a compressed
archive accompanied with metadata describing its dependencies and code within.
Python eggs can be managed by Python’s standard Distutils library9 and installed
by invoking the setup.py contained. This process can be further automated. The
different alternatives include easy_install from the setuptools10 package, which is
considered deprecated by some11, or the replacements Distribute12 or pip13. In more
complicated setups where managing multiple eggs and version dependencies in iso-
lation regarding other applications is necessary, build management and automation
tools such as Buildout14 can be utilized.

The unified way for distributing Python eggs to the community is to use Python
Package Index, or PyPI 15. The Distutils system provides a way to easily publish
new and updated egg versions to PyPI through the setup.py script.

5.3 Synchronization Agent

The synchronization agent consists of three main components: the ASI client library
(asilib), SIB knowledge processor library (python-kp) with a wrapper (kpwrapper)
on top of it, and the actual ASI-SIB synchronization agent module (asibsync) that
uses the client library stacks for interacting with ASI and SIB, respectively.

Additionally, two small command line helper libraries, kpconsole and asiconsole,
were written for interactive testing and managing low level data in both ASI and
SIB. Both utilize the IPython16 library for providing a developer-friendly interactive
console.

7http://docs.python.org/tutorial/modules.html (referred 5 Apr 2010)
8http://peak.telecommunity.com/DevCenter/PythonEggs (referred 5 Apr 2010)
9http://docs.python.org/library/distutils.html (referred 5 Apr 2010)

10http://pypi.python.org/pypi/setuptools (referred 5 Apr 2010)
11http://www.b-list.org/weblog/2008/dec/14/packaging (referred 5 Apr 2010)
12http://pypi.python.org/pypi/distribute (referred 5 Apr 2010)
13http://pypi.python.org/pypi/pip (referred 5 Apr 2010)
14http://pypi.python.org/pypi/zc.buildout (referred 5 Apr 2010)
15http://pypi.python.org/pypi (referred 5 Apr 2010)
16http://ipython.scipy.org (referred 5 Apr 2010)

http://docs.python.org/tutorial/modules.html
http://peak.telecommunity.com/DevCenter/PythonEggs
http://docs.python.org/library/distutils.html
http://pypi.python.org/pypi/setuptools
http://www.b-list.org/weblog/2008/dec/14/packaging
http://pypi.python.org/pypi/distribute
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/zc.buildout
http://pypi.python.org/pypi
http://ipython.scipy.org

CHAPTER 5. IMPLEMENTATION 34

All the three main components and two helpers are packaged as Python eggs. The
code written for this Thesis has been open-sourced under a BSD-like license17 and
made available through a SourceForge repository, http://asibsync.sourceforge.net,
and individual libraries in Python Package Index. A single buildout consisting of
all the components is provided in the SourceForge code repository. Unit tests have
been written for the most relevant algorithms.

More detailed description of the components follows.

5.3.1 ASI Library, asilib

The ASI interface library, asilib, was designed to be simple and easy to use also for
interactive debugging, to facilitate developing the actual sync agent. asilib’s external
interface consists of one class, ASIConnection, that has methods for generating
ASI REST requests and returning the results as Python lists, dictionaries, or a
combination thereof. See Program 1 for a short sample code that uses asilib.

asilib is a relatively thin wrapper on top of Python’s existing urllib2 18, a collection
of helper functions and classes for opening URLs (mainly HTTP). As urllib2 can not
handle all the HTTP methods as required by the ASI’s REST interface, such as PUT
and DELETE, support for these was added. Asilib also uses Python’s cookielib19 for
managing ASI’s HTTP sessions cookies. This is one of the aspects that differentiate
the ASI interface from Google OpenSocial specification (see 3.4).

httplib2 20 was also considered instead of urllib2 because of its better support for
various HTTP methods, but was dropped because of the lacking cookie support.

5.3.2 SIB Knowledge Processor Wrapper Library, kpwrapper

The Smart-M3’s Python knowledge processor library, or python-kp, is a relatively
low level SIB interface library. It provides CRUDS transaction support and mar-
shalling/unmarshalling tuple-based RDF representations to and from SSAP. How-
ever, python-kp lacks necessary abstraction that facilitate programming applications.
To enable readable, easier-to-write code and interactive testing reasonably, a wrapper

17For a BSD license template, see http://www.opensource.org/licenses/bsd-license.php (referred
29 Apr 2010)

18http://docs.python.org/library/urllib2.html (referred 5 Apr 2010)
19http://docs.python.org/library/cookielib.html (referred 5 Apr 2010)
20http://code.google.com/p/httplib2 (referred 5 Apr 2010)

http://asibsync.sourceforge.net
http://www.opensource.org/licenses/bsd-license.php
http://docs.python.org/library/urllib2.html
http://docs.python.org/library/cookielib.html
http://code.google.com/p/httplib2

CHAPTER 5. IMPLEMENTATION 35

Program 1 Sample program using the asilib (included in asilib sources,
examples/asilib_sample.py)
from asilib import ASIConnection

conf = {
’base_url’: ’https://cos.alpha.sizl.org’,
’app_name’: ’myapp’,
’app_password’: ’secret’,
’username’: ’joeuser’,
’password’: ’hidden’,

}

uid = ’12345678’
with ASIConnection(**conf) as uc:

user = uc.get_user(uid)
friends = uc.get_friends(uid)
print(’User %s has %i friends’ % (user.username, len(friends)))

library, kpwrapper, was written on top of python-kp.

kpwrapper adds support for reading the SIB connection configuration from a file,
better RDF Triple abstraction for python-kp’s Python tuple representation, and ab-
stracts the connection with a SIBConnection class that adds convenience methods
to implicitly open transactions for the SIB’s basic CRUDS operations (see 4.2.1).

kpwrapper ’s main package, kpwrapper, has the init module, kpwrapper/__init__,
whose main components are the SIBConnection manager interface class (elaborated
below) and Triple for abstracting the RDF triple handling and conversions. In
addition, there are helper classes such as uri, literal, and bnode for handling RDF
type information, TransactionWrapper for managing python-kp’s SIB transactions,
and various internal helper methods.

Program 2 provides a simple demonstration of how the interface could be used in
applications.

SIBConnection

The SIBConnection class acts as the main interface for SIB, which can be seen
in action by looking at the examples in Program 2. SIBConnection wraps the
python-kp’s transactions and tuples inside more manageable objects.

CHAPTER 5. IMPLEMENTATION 36

Program 2 Sample program using the kpwrapper library (included in kpwrapper
sources, examples/kpwrapper_sample.py)
from kpwrapper import SIBConnection, Triple

if __name__ == ’__main__’:
with SIBConnection(’SIB console’, ’preconfigured’) as sc:

results = sc.query(Triple(’Space’, ’has’, None))
contents = [triple.object for triple in results]
print(’Space has %s’ % contents)
prints "Space has []"

sc.insert(Triple(’Space’, ’has’, ’space_junk’))

results = sc.query(Triple(’Space’, ’has’, None))
new_contents = [triple.object for triple in results]
print(’Now space has %s’ % new_contents)
prints "Now space has [literal(’space_junk’)]"

sc.remove([Triple(’Space’, ’has’, x) for x in new_contents])
results = sc.query(Triple(’Space’, ’has’, None))
contents = [triple.object for triple in results]
print(’Extra junk removed, now Space has again %s’ % contents)
prints "Extra junk removed, now Space has again []"

CHAPTER 5. IMPLEMENTATION 37

Figure 5.2: asibsync internal architecture and data flow diagram

5.3.3 ASI-SIB Synchronization Agent, asibsync

For synchronizing data between ASI and SIB, an agent application was written
that utilizes asilib and kpwrapper. The agent, called asibsync, consists of three
modules: asi_agent containing ASI polling functionality, sib_agent providing SIB
connectivity, and the main asibsync/__init__ controller module that starts up and
connects both agents when run. The more detailed asibsync architecture is depicted
in Figure 5.2.

The current implementation supports synchronizing one ASI’s person object with
a given identifier, for demonstrational purposes. Support for a larger number or
a greater variety of objects would not be difficult because of the automatic data
structure conversion functions (see the description of sib_agent below for more
details).

asibsync can be started up by having all the dependency libraries in PYTHONPATH and
running the program by executing “python asibsync”. “python asibsync help”
gives an overview of possible startup options.

CHAPTER 5. IMPLEMENTATION 38

asibsync Controller Module

asibsync controller contains a simple function that creates an instance of both
ASIAgent and SIBAgent classes, makes them aware of each other and starts both of
them by calling their start methods, respectively. The main work is then carried
out inside the respective asi_agent and sib_agent modules, which are described in
more detail hereafter.

When a user requests a synchronization stop by sending a termination signal to
asibsync, e.g. by pressing Ctrl-C key combination in the console window, the
agents’ stop methods are called and the whole process ends.

Replacing one or the other of the agents connected to asibsync should be possible,
as long as the new agent provides a compatible interface and understands the Python
structures that are currently used.

asi_agent

The asi_agent module contains a single class, ASIAgent, that takes care of mon-
itoring for and acting upon the updates in relevant ASI objects, and provides an
interface for sending updates back to ASI. Marshalling and unmarshalling between
JSON strings and Python structures are done with Python 2.6’s standard json li-
brary21.

As ASI is not currently capable of pushing the updates to clients, polling needs
to be resorted to in the monitoring implementation. When the start method is
invoked, the ASIAgent thread is started to run the main loop, where the ASI object
to be monitored is retrieved at regular intervals and examined for possible update
timestamp changes. In case of an update, the entire object where the change occurred
is sent to the SIBAgent instance connected to ASIAgent.

ASIAgent also provides an interface for receiving updates from the other end, in
this case SIBAgent. The updates received from SIB will be pushed onto an up-
date stack, pending_sib_updates, which will be examined at every monitor in-
terval. If the update stack is nonempty and there were no changes on ASI side,
pending_sib_updates values will be propagated to ASI.

To prevent timing failures, asi_agent polling process, implemented in _poll func-
21http://docs.python.org/library/json.html (referred 5 Apr 2010)

http://docs.python.org/library/json.html

CHAPTER 5. IMPLEMENTATION 39

tion, was designed to behave consistently in case of simultaneous or conflicting up-
dates. If ASI was changed, the entire update stack will be discarded. Effectively this
means that ASI changes will override any near-simultaneous changes at the other
end.

Connection failures and potentially some other transient software are taken into
account by handling exceptions in the ASIAgent main loop, unless explicitly disabled
e.g. for debugging purposes. When an exception is caught from ASIAgent._poll

or the other functions it calls, it is printed out but otherwise ignored, and the poll
loop continues. This ensures that the operation continues even after connection
errors. Retrying ASI operations on the next poll cycle should always be possible,
since all the operations used are either safe (e.g. HTTP GET in get_user) or at
least idempotent (HTTP PUT in update_user); see the discussion under Subsection
3.3.1.

asi_agent polls for changes every ASIAgent.POLL_INTERVAL seconds. This polling
functionality exists in the ASIAgent._poll method. Whenever _poll is called, it
acquires the update stack lock for the duration of the poll processing to prevent
simultaneous updates on the SIB side from taking effect until next _poll invocation
at the earliest.

Inside _poll, the ASI user is retrieved and its timestamp compared to the last stored
timestamp, asi_last_updated. The actions taken depend on this comparison:

1. If the retrieved timestamp denotes a time after the stored one, an update to SIB
is needed. The retrieved user is sent to sib_agent and its timestamp stored
in asi_last_updated. Because asi_agent has to win in case of conflicts, the
possible values in pending_sib_updates queue are discarded.

2. If no update to SIB is needed, check pending_sib_updates. If it contains
new updated values, send them to ASI and store the updated_at value in
asi_last_updated in order to prevent a useless and possibly harmful SIB
update.

Figure 5.3 visualizes the different possible cases in the form of a flowchart.

CHAPTER 5. IMPLEMENTATION 40

Figure 5.3: ASIAgent poll cycle flowchart

CHAPTER 5. IMPLEMENTATION 41

Figure 5.4: Sample ASI data structure’s subset mapped to an RDF graph

sib_agent

The sib_agent module contains SIBAgent class for subscribing to and processing
changes on the SIB side, and also for sending updates from the other end back to
SIB, in a similar way that the ASIAgent does.

An additional problem in synchronization was converting data to and from the nested
Python dictionary structure that is used in asi_agent: extracting an RDF ontology
as triples, converting the Python struct to a list of RDF instance triples and vice
versa. The methods for converting between data structures are also located in the
sib_agent module. An example of a dataset mapped from ASI to SIB is visualized
in Program 3 and Figure 5.4.

SIB provides an interface for subscribing to changes that match a given query. This
led to a callback handler that is relatively simple compared to the ASIAgent’s added

CHAPTER 5. IMPLEMENTATION 42

Program 3 Python structure to RDF ontology and instance map-
ping sample. This data can be generated from asibsync unit tests,
asibsync/tests/sib_agent_test.py)
Python structure

{’address’: {’postal_code’: ’3GGS1’,
’street_address’: ’Camelot 1’},

’avatar’: {’link’: {’href’: ’http://python.org/favicon.ico’,
’rel’: ’self’},

’status’: ’set’},
’favorite_food’: ’eggs’,
’id’: ’1234’,
’name’: ’Eric’}

RDF ontology

[Triple(uri(’https://cos.alpha.sizl.org/people#Person’),
uri(’rdf:type’), uri(’rdfs:Class’)),

Triple(uri(’https://cos.alpha.sizl.org/people#Address’),
uri(’rdf:type’), uri(’rdfs:Class’)),

Triple(uri(’https://cos.alpha.sizl.org/people#Avatar’),
uri(’rdf:type’), uri(’rdfs:Class’)),

Triple(uri(’https://cos.alpha.sizl.org/people#Link’),
uri(’rdf:type’), uri(’rdfs:Class’))]

RDF instance (truncated)

[Triple(uri(’https://cos.alpha.sizl.org/people/ID#1234’),
uri(’rdf:type’),
uri(’https://cos.alpha.sizl.org/people#Person’)),

Triple(uri(’https://cos.alpha.sizl.org/people/ID#1234’),
uri(’https://cos.alpha.sizl.org/people#name’),
literal(’Eric’)),

Triple(uri(’https://cos.alpha.sizl.org/people/ID#1234’),
uri(’https://cos.alpha.sizl.org/people#favorite_food’),
literal(’eggs’)),

Triple(uri(’https://cos.alpha.sizl.org/people/ID#1234’),
uri(’https://cos.alpha.sizl.org/people#address’),
uri(’https://cos.alpha.sizl.org/people#1’)),

Triple(uri(’https://cos.alpha.sizl.org/people/ID#1234’),
uri(’https://cos.alpha.sizl.org/people#avatar’),
uri(’https://cos.alpha.sizl.org/people#2’)),

Triple(uri(’https://cos.alpha.sizl.org/people#1’),
uri(’rdf:type’),
uri(’https://cos.alpha.sizl.org/people#Address’)),

...]

CHAPTER 5. IMPLEMENTATION 43

complexity of explicit polling and detecting updated data.

Synchronizing data from SIB back to ASI proved more problematic. The first issue
arises from the fact that subscribing to changes in a specific user’s data with RDF
queries is complicated. Considering the sample ASI dataset mapped as triples in
Program 3, it is obvious that when using a simple catch-all wildcard RDF subscrip-
tion, a single user can not be completely monitored, unless all other changes in SIB
are.

The solution implemented here is to initiate multiple RDF subscriptions after ASI
data has been synchronized the first time to SIB. In the case of Program 3’s sample
data structure, a total of four separate RDF subscriptions would be required, one
for every non-leaf node (i.e. Python dict, or a pair of curly braces in the textual
representation) in the original ASI data hierarchy tree. See Program 4 for an outline
of what this would look like on the code level. For the actual ASI person, a total
number of six subscriptions are needed.

Using WQL, the path query language supported by Smart-M3, could be studied to
help reducing the number of subscriptions required for monitoring changes of person
structures in SIB.

Program 4 RDF subscriptions that are required for monitoring all possible changes
in Program 3’s data structure (assuming #1, #2 and #3 are the SIB identifiers of the
person’s address, avatar, and avatar’s link, respectively)

sc = SIBConnection(...)
sc.subscribe(Triple(uri(’https://cos.alpha.sizl.org/people/ID#1234’),

None, None), callback_function) # Person
sc.subscribe(Triple(uri(’https://cos.alpha.sizl.org/people#1’),

None, None), callback_function) # address
sc.subscribe(Triple(uri(’https://cos.alpha.sizl.org/people#2’),

None, None), callback_function) # avatar
sc.subscribe(Triple(uri(’https://cos.alpha.sizl.org/people#3’),

None, None), callback_function) # avatar_link

Another problem was mapping the graph data structure from Smart-M3 back to
ASI’s hierarchical format. Converting the graph back to a tree structure is doable in
this case because the structure was originally converted from ASI. However, travers-
ing the graph back to the Person object is needed, which involves extra logic and
queries to deduce the original ASI data structure.

For instance, assume that an agent has subscribed to changes in a person’s avatar

CHAPTER 5. IMPLEMENTATION 44

link with the query shown in Program 5. When the specific avatar link is updated,
following steps will take place:

1. callback_function is called with the updated triple. Inside the callback, a
subject URI that looks like person structure identifier (ending in people#3) is
detected.

2. Triples with object people#3 are searched, and people#2 is found. The match-
ing triple’s predicate is investigated and the type ’link’ is noted.

3. Triples with object people#2 are searched, and people/ID#1234 is found. This
is the hierarchy root. Matching triple’s predicate is investigated and the type
’avatar’ is noted.

4. Now we know that the triple updated was person ID 1234’s avatar’s link, and
the corresponding ASI update request can be crafted.

Similarly to ASIAgent, SIBAgent offers a method for receiving updates from the other
end and transmitting them to SIB. The data, however, is stored as RDF/RDFS in
SIB, which means that the ontology may not exist on the SIB side prior to updating
data. This case is handled by the receive method on the first run by generating
a matching RDFS ontology from the received structure and updating it to SIB if
needed.

CHAPTER 5. IMPLEMENTATION 45

Program 5 Sample data for mapping from RDF triples to ASI structure
Query for subscribing to avatar’s link (see RDF below)

sc = SIBConnection(...)
sc.subscribe(Triple(uri(’https://cos.alpha.sizl.org/people#3’),

None, None), callback_function)

RDF structure as triples

[...
Triple(uri(’https://cos.alpha.sizl.org/people#2’),

uri(’rdf:type’),
uri(’https://cos.alpha.sizl.org/people#Avatar’)),

Triple(uri(’https://cos.alpha.sizl.org/people#2’),
uri(’https://cos.alpha.sizl.org/people#link’),
uri(’https://cos.alpha.sizl.org/people#3’)),

Triple(uri(’https://cos.alpha.sizl.org/people#2’),
uri(’https://cos.alpha.sizl.org/people#status’),
literal(’set’)),

Triple(uri(’https://cos.alpha.sizl.org/people#3’),
uri(’rdf:type’),
uri(’https://cos.alpha.sizl.org/people#Link’)),

Triple(uri(’https://cos.alpha.sizl.org/people#3’),
uri(’https://cos.alpha.sizl.org/people#href’),
literal(’http://python.org/favicon.ico’)),

Triple(uri(’https://cos.alpha.sizl.org/people#3’),
uri(’https://cos.alpha.sizl.org/people#rel’),
literal(’Eric’))]

Update statement. Note: only object part is updated:

sc.update(Triple(uri(’https://cos.alpha.sizl.org/people#3’),
uri(’https://cos.alpha.sizl.org/people#href’),
literal(’http://python.org/favicon.ico’)),

Triple(uri(’https://cos.alpha.sizl.org/people#3’),
uri(’https://cos.alpha.sizl.org/people#href’),
literal(’http://kassi.sizl.org/favicon.ico’)))

Generated Python structure:

{’avatar’: {’link’: {’href’: ’Eric’,
’rel’: ’http://kassi.sizl.org/favicon.ico’’}},

’id’: ’1234’}

Chapter 6

Analysis

In this Chapter the software implementation is evaluated in light of the original
goals, namely synchronizing between ASI and Smart-M3, evaluating Smart-M3’s
knowledge processor library, and a publish/subscribe mediator for a traditional web
service.

6.1 Synchronizing Between ASI and Smart-M3

This Section first discusses the actual synchronization implementation for synchro-
nizing in two directions, and then evaluates the software’s fault tolerance and per-
formance.

6.1.1 ASI to Smart-M3

ASI contains existing user data to be utilized in synchronizing to Smart-M3. This
was taken advantage of when implementing the data structure and content synchro-
nization functions, and consequently synchronizing was shown to work well at least
in the case of a relatively simple user data structure.

Currently asi_agent is limited to synchronizing ASI’s person data structures only.
Other types of data can also be supported with small changes to the code, but for
more general support asi_agent should be enhanced to parse the synchronization
options and definitions of the data structures from e.g. a configuration file.

Also, as the whole ASI person is retrieved and pushed to SIB every time there was an

46

CHAPTER 6. ANALYSIS 47

update, possible non-conflicting updates in SIB are discarded. Solving the problem
would need more sophisticated algorithms for tracking changes on ASI’s side and
detecting ASI-SIB conflicts.

Additionally it should be noted that sib_agent does not remove old values from SIB
but they are left there as a kind of a history. However, the history will be unsorted
and the most recent versions of ASI object properties remain indistinguishable from
the historical values.

6.1.2 Smart-M3 to ASI

Synchronizing in the other direction proved more problematic, even in case of data
originally synchronized from ASI. This was doable, however, with two additional
measures:

• by storing references to the triples that represent different nodes in the original
tree, and subscribing to changes to them; and

• by having the RDF data structure contain enough information to be mappable
back to ASI’s tree structure, and traversing the RDF graph back to the original
tree structure’s root.

Synchronizing from Smart-M3 (or, more generally, any other source of free-form,
graph-structured information) without having the data mapped first from ASI would
require manual mapping in general case. In theory, it could be possible to automate
the process if the data structures to be mapped were specified and properly format-
ted.

In the current implementation, performance problems will arise with deeper struc-
tures because traversing the whole graph path back to the root node is needed. This
could be circumvented by introducing an indexing directory, either stored as RDF in
Smart-M3 or cached locally in asibsync, to map the descendant node URIs directly
to the original tree root in graph.

The current asibsync controller implementation has the data type hardcoded to
handle ASI person mapping only. The type could be easily changed in code, however.
In general case, support of mapping information from Smart-M3 to ASI could be
added by enhancing the current URI parsing based implementation to take other
ASI cases into account. Investigating all the relevant use cases would be needed,

CHAPTER 6. ANALYSIS 48

and it should be noted that this would potentially involve in syntactic improvements
to the current URI formatting conventions.

6.1.3 Fault Tolerance

asibsync’s fault tolerance was analyzed by first running the program in normal con-
ditions, and then artificially introducing network errors to SIB and ASI before and
after starting up to find out how asibsync can recover from them. The test environ-
ment was the same as described in Section 5.2, with the ASI to SIB synchronization
having already taken place at least once to ensure that ontology exists in SIB.

The induced network error in ASI’s case was entirely disconnecting the test host from
the network by pulling off the Ethernet cable. On the other hand, the procedure for
disconnecting SIB was to temporarily shut down the sib-tcp connector program,
as the SIB was easily controllable in this test setup.

After introducing connection errors and recovering from them, a verification test
was conducted to ensure proper functioning after testing. The test procedure was
following:

1. Update user’s email address in SIB

2. Verify that the updated address was propagated to ASI

3. Change the email address back to the original value in ASI

4. Verify that the original address was propagated back to SIB

Normal Conditions

Initially, synchronization was started and carried out by running asibsync without
added network problems. The output produced can be seen in Program 6 listing.
First asibsync successfully sets up ASIAgent and then SIBAgent that open ASI and
SIB connections, respectively. After that, the initial synchronization is carried out,
RDF subscriptions are set up and ASIAgent polling starts.

When running under normal conditions, the verification test passed without prob-
lems.

CHAPTER 6. ANALYSIS 49

Program 6 asibsync behavior when started with “python asibsync -de” and run
under normal conditions
[2010-04-19 01:43:35.810962] ASIAgent: Debug mode enabled
[2010-04-19 01:43:37.669614] SIBAgent: Debug mode enabled
[2010-04-19 01:43:37.669821] kpwrapper: Preconfigured discovery using
config from /Users/ekan/.kprc
[2010-04-19 01:43:37.670010] kpwrapper: Got params: (’x’, (’TCP’,
(’192.168.216.10’, 10010)))
Press enter to request sync stop.
[2010-04-19 01:43:37.670510] ASIAgent: Configuration has been done,
starting.
[2010-04-19 01:43:37.792370] ASIAgent: Updating SIB
(2010-04-18T21:49:59Z > None)
[2010-04-19 01:43:37.792425] SIBAgent: receive called
[2010-04-19 01:43:37.792481] SIBAgent: Generating ontology
[2010-04-19 01:43:37.871707] SIBAgent: Ontology seems to be up to date
[2010-04-19 01:43:37.871748] SIBAgent.generate_ontology processed in
0.079274 s
[2010-04-19 01:43:37.871823] SIBAgent: Received {u’username’: ... }
[2010-04-19 01:43:37.872860] SIBAgent: Inserting [Triple(...), ...)]
[2010-04-19 01:43:37.917712] SIBAgent: Subscribing to changes
[2010-04-19 01:43:37.993242] SIBAgent: Subscribed to Triple(uri(’http:
//cos.alpha.sizl.org/people/ID#bGbllAMtur3QUbaaWPEYjL’), None, None)
[2010-04-19 01:43:38.018801] SIBAgent: Subscribed to Triple(uri(’http:
//cos.alpha.sizl.org/people#00fee017-482a-4cd4-a97f-958aa9bb0d5d’),
None, None)
...
[2010-04-19 01:43:38.178269] SIBAgent.subscribe processed in
0.260573 s
[2010-04-19 01:43:38.178323] SIBAgent.receive processed in 0.385904 s
[2010-04-19 01:43:38.178356] ASIAgent._poll processed in 0.507799 s
[2010-04-19 01:43:45.030070] ASIAgent: No need to update SIB
(2010-04-18T21:49:59Z <= 2010-04-18T21:49:59Z)
[2010-04-19 01:43:45.030127] ASIAgent._poll processed in 1.720626 s
[2010-04-19 01:43:52.320692] ASIAgent: No need to update SIB
(2010-04-18T21:49:59Z <= 2010-04-18T21:49:59Z)
[2010-04-19 01:43:52.320746] ASIAgent._poll processed in 2.291834 s
...

CHAPTER 6. ANALYSIS 50

Connection Down Before Startup

In the second phase of tests, connection first to SIB and then to ASI was inten-
tionally broken before starting up asibsync, and then restored after ten seconds of
running unconnected. Programs 7 and 8 list the relevant asibsync output in these
cases. These listings show that the connection errors are handled gracefully, with the
program being able to recover and continue operating normally after the connections
start functioning properly.

With asibsync running after recovering from the initial connection problem, the
verification test passed without problems.

Connection Error While Running

Lastly, connections were broken after the startup phase and at least one initial
synchronization cycle had successfully taken place. asibsync outputs from the tests
can be seen in Programs 9 and 10. In SIB’s case, the subscribe transactions crash
with a KeyError from the python-kp library.

After having recovered from the ASI connection error, the verification test completed
without problems. However, after SIB connection error updating the email address
in SIB did not produce any effect on ASI side, indicating an unrecoverable error.

Summary of fault tolerance

To summarize the tests that were conducted, the synchronization agent can re-
cover from many communication failures such as ASI connection errors that oc-
cur after starting up the agent is finished, and also many other transient errors
in ASIAgent._poll or the methods that it calls directly and indirectly, namely
SIBAgent.receive and other calls within it. Non-recurring process failures are also
likely to be recoverable to a degree in the methods mentioned, although verifying
this would require more studies.

However, currently SIB connection errors are not handled so well, as can be seen
in Program 9 output. The subscribe transactions rely on the TCP socket to be
connected all the time, and if not, the subscriptions stop functioning even if the con-
nection could later be restored. This is a shortcoming of the underlying Smart-M3
python-kp library, and would require either support for automatic reconnecting on

CHAPTER 6. ANALYSIS 51

Program 7 asibsync behavior when started with “python asibsync -de” and the
connection to SIB is down for a while at startup
[2010-04-19 01:50:33.316625] ASIAgent: Debug mode enabled
[2010-04-19 01:50:33.431941] SIBAgent: Debug mode enabled
[2010-04-19 01:50:33.432172] kpwrapper: Preconfigured discovery using
config from /Users/ekan/.kprc
[2010-04-19 01:50:33.432450] kpwrapper: Got params: (’x’, (’TCP’,
(’192.168.216.10’, 10010)))
[2010-04-19 01:50:33.432791] ASIAgent: Configuration has been done,
starting.
Press enter to request sync stop.
[2010-04-19 01:50:33.558423] ASIAgent: Updating SIB
(2010-04-18T21:49:59Z > None)
[2010-04-19 01:50:33.558479] SIBAgent: receive called
[2010-04-19 01:50:33.558503] SIBAgent: Generating ontology
[2010-04-19 01:50:33.559148] ASIAgent: Caught exception: [Errno 61]
Connection refused
[2010-04-19 01:50:38.655534] ASIAgent: Updating SIB
(2010-04-18T21:49:59Z > None)
[2010-04-19 01:50:38.655591] SIBAgent: receive called
[2010-04-19 01:50:38.655616] SIBAgent: Generating ontology
[2010-04-19 01:50:38.656236] ASIAgent: Caught exception: [Errno 61]
Connection refused
[2010-04-19 01:50:43.754045] ASIAgent: Updating SIB
(2010-04-18T21:49:59Z > None)
[2010-04-19 01:50:43.754104] SIBAgent: receive called
[2010-04-19 01:50:43.754129] SIBAgent: Generating ontology
[2010-04-19 01:50:43.988245] SIBAgent: Ontology seems to be up to date
[2010-04-19 01:50:43.988426] SIBAgent.generate_ontology processed in
0.234302 s
[2010-04-19 01:50:43.993895] SIBAgent: Received {u’username’: ... }
...

CHAPTER 6. ANALYSIS 52

Program 8 asibsync behavior when started with “python asibsync -de” and the
connection to ASI is down for a while at startup
[2010-04-19 02:02:16.608501] ASIAgent: Debug mode enabled
[2010-04-19 02:02:16.722711] ASIAgent: Caught exception: <urlopen
error [Errno 8] nodename nor servname provided, or not known>
[2010-04-19 02:02:21.823955] ASIAgent: Caught exception: <urlopen
error [Errno 8] nodename nor servname provided, or not known>
[2010-04-19 02:02:27.255409] SIBAgent: Debug mode enabled
[2010-04-19 02:02:27.255630] kpwrapper: Preconfigured discovery using
config from /Users/ekan/.kprc
[2010-04-19 02:02:27.255808] kpwrapper: Got params: (’x’, (’TCP’,
(’192.168.216.10’, 10010)))
[2010-04-19 02:02:27.256220] ASIAgent: Configuration has been done,
starting.
Press enter to request sync stop.
...

Program 9 asibsync behavior when started with “python asibsync -de” and the
connection to SIB breaks after starting up
...
[2010-04-19 02:43:46.583516] ASIAgent: No need to update SIB
(2010-04-18T21:49:59Z <= 2010-04-18T21:49:59Z)
[2010-04-19 02:43:46.583765] ASIAgent._poll processed in 0.096184 s
Exception in thread Thread-2:
Traceback (most recent call last):

File "/System/Library/Frameworks/Python.framework/Versions/2.6/lib/
python2.6/threading.py", line 522, in __bootstrap_inner

self.run()
File "/Users/ekan/workspace/asibsync/eggs/smart_m3_pythonKP-0.9.0-

py2.6.egg/smart_m3/Node.py", line 1155, in run
if msg["transaction_type"] == "SUBSCRIBE":

KeyError: ’transaction_type’

Exception in thread Thread-3:
...
[2010-04-19 02:43:55.437505] ASIAgent: No need to update SIB
(2010-04-18T21:49:59Z <= 2010-04-18T21:49:59Z)
[2010-04-19 02:43:55.437555] ASIAgent._poll processed in 3.854900 s
...

CHAPTER 6. ANALYSIS 53

Program 10 asibsync behavior when started with “python asibsync -de” and the
connection to ASI breaks after starting up
...
[2010-04-19 02:46:51.274109] ASIAgent: No need to update SIB
(2010-04-18T21:49:59Z <= 2010-04-18T21:49:59Z)
[2010-04-19 02:46:51.274167] ASIAgent._poll processed in 1.120647 s
[2010-04-19 02:46:56.309477] ASIAgent: Caught exception: <urlopen
error [Errno 8] nodename nor servname provided, or not known>
[2010-04-19 02:47:01.310633] ASIAgent: Caught exception: <urlopen
error [Errno 8] nodename nor servname provided, or not known>
[2010-04-19 02:47:08.030070] ASIAgent: No need to update SIB
(2010-04-18T21:49:59Z <= 2010-04-18T21:49:59Z)
[2010-04-19 02:47:08.030127] ASIAgent._poll processed in 1.720626 s
...

python-kp’s side, or somehow working around the issue on asibsync side by mon-
itoring the subscribe transaction threads and reopening them when this becomes
possible.

Studying timing failures was not concentrated on, as the asibsync architectural de-
sign described in Subsection 5.3.3 renders them largely irrelevant. Arbitrary failure
recovery was not taken into account in design nor studies.

6.1.4 Performance

Synchronization performance was tested using a single person object from ASI. The
same test person from ASI was used throughout the process. Platform setup was
the same as described in Section 5.2. A single test run was carried out by running
“python asibsync -de” and observing the runtimes of interesting functions from
the debug output.

Before starting the actual measured tests, the test were dry-run three times to ensure
operating system had cached program code and libraries to memory as far as possible,
thus minimizing the effects of extra filesystem operations. The test was repeated
ten times for both cases to obtain rough estimates of where the synchronization
bottlenecks could be.

There were two different scenarios that were tested: empty database on SIB side,
which was achieved by deleting the database file and restarting SIB before the test;
and SIB with a database to which the ASI person had been already synchronized

CHAPTER 6. ANALYSIS 54

Table 6.1: Summary of the performance measurements for ten repetitions. First
column displays the function name to be measured, the second and third contain
their average running times with standard deviations in parenthesis for empty and
nonempty databases, respectively.

Function Empty avg (stdev) Nonempty avg (stdev)

tp _poll 1.3 s (0.090 s) 0.92 s (0.062 s)

tr SIBAgent.receive 0.84 s (0.066 s) 0.51 s (0.066 s)

tg generate_ontology 0.35 s (0.029 s) 0.084 s (0.0098 s)

t′p tp − tr − tg 0.087 s (0.032 s) 0.33 s (0.015 s)

t′r tr − tg 0.49 s (0.055 s) 0.42 s (0.063 s)

once.

Three different cases were measured:

1. SIBAgent.generate_ontology

2. ASIAgent._poll

3. SIBAgent.receive

Before the first actual measurement run, the test was run three times to minimize
the effect of possible disk usage.

Table 6.1 summarizes the results of measured runtimes of _poll, generate_ontology,
and SIBAgent.receive. The full results are listed in Appendix A. Additionally
ASIAgent._poll internally calls generate_ontology and SIBAgent.receive, hence
the added fourth row in the table with _poll runtime excluding generate_ontology
and SIBAgent.receive.

Overall, the measured times were highly predictable across different test runs, as can
be noted by examining the standard deviations which were an order of magnitude
below the respective averages measured (not including t′p and t′r).

SIBAgent.generate_ontology executes quickly when there is no need to update
the ontology. In this case, generate_ontology performs six queries in SIB, but
no updates. On the other hand, when creating ontology was needed, the runtime
average is several times higher than when no update was needed. Creating involves

CHAPTER 6. ANALYSIS 55

in inserting six RDF triples to SIB. This suggests that the insert operations are
significantly more expensive than queries.

The initial conclusion of the tests is that updating SIB (i.e. creating triples) is
slow. While confirming this would need more in-depth studies, these preliminary
results indicate that Smart-M3 performance may become a bottleneck even with a
few near-simultaneous updates.

6.1.5 Further Notes

Synchronizing between two endpoints, as is the case here, is fairly straightforward
when one end can be defined as the primary authority that overrides in case of
conflicting updates. However, it is noteworthy that should asibsync be modified
for synchronizing to Smart-M3 or equivalent from several data sources, then more
sophisticated algorithms need to be introduced.

The different types of reasonable modifications would be as follows.

• Changing from ASI to a different Web Service would involve in obtaining or
writing a library for interfacing with the new Web Service, and implementing
a new agent, say new_web_service_agent, to connect to sib_agent. This
new_web_service_agent would need to be able to cope with the JSON-like
Python data structure used in sib_agent’s interface. The asilib implementa-
tion could be used as an example implementation, however, or even extended
to support the new Web Service at least if a RESTful service similar to ASI
would be in question.

• Changing from Smart-M3 to a different Smart Space would need a library for
managing the other Smart Space and agent, say new_smart_space_wrapper, to
connect to asi_agent. new_smart_space_wrapper should, if possible, conform
to the kpwrapper library interface, such as Triple abstraction and transactions,
to avoid duplicating the work already done.

• When changing both ASI and SIB, more work would be involved. Although
the main asibsync module and possibly a large part of kpwrapper could be
reused, at least most of asi_agent would need to be replaced. In any case,
the existing implementation could be used as an example for supporting other
endpoints, if not extended and generalized at least to some degree.

CHAPTER 6. ANALYSIS 56

Another point of improvement could be enhancing the RDF data model to better
support hierarchical data with similarly named nodes. This is not a problem with
the ASI person structure used in the current implementation, but could be an issue
with some different data types. For instance, link could be used for other links
in addition to avatar’s, such as a new fictitious homepage property, in which case
both avatar’s and homepage’s links would result in the exactly same RDF class
description,

Triple(uri(’https://cos.alpha.sizl.org/people#Link’),

uri(’rdf:type’), uri(’rdfs:Class’))]

One way to alleviate this problem would be to construct the RDF class subject URIs
to contain the full hierarchy information:

Triple(uri(’https://cos.alpha.sizl.org/people#Avatar/Link’),

uri(’rdf:type’), uri(’rdfs:Class’))]

Triple(uri(’https://cos.alpha.sizl.org/people#Homepage/Link’),

uri(’rdf:type’), uri(’rdfs:Class’))]

6.2 Smart-M3’s Knowledge Processor Library

One of the original goals of this Thesis was using and evaluating Smart-M3’s knowl-
edge processor library, python-kp, from a developer’s point of view. This Section
summarizes the qualitative analysis of the library.

The knowledge processor library was found partly unstable, particularly in case of
unexpected inputs. This lead to a number of workarounds in the kpwrapper library,
such as not actually closing the underlying SIB connection when it would result in a
program crash. Also for some reason the SIB daemon (sibd) always crashes in the
test setup if sib_agent uses triple URIs starting with https:// instead of http://.
A workaround exists in asibsync.__init__ where the RDF base URI is initially
set.

The library interface was found difficult to use for the common case concerning soft-
ware developed for this Thesis. Thus a simplifying wrapper library was written on
top of the knowledge processor library. Program 11 demonstrates how kpwrapper

CHAPTER 6. ANALYSIS 57

simplifies subscription handling for the programmer compared to using the underly-
ing python-kp library directly. The required amount of program code is significantly
smaller using kpwrapper.

Program 11 Comparing python-kp and kpwrapper with opening and managing
subscriptions. Both program code snippets are roughly functionally equivalent.
(a) Subscribing to changes with python-kp

class CallbackHandler:
def handle(self, added, removed):

try:
for triple in added:

do_something_with(added[0]) # subject
...

except Exception, e:
Don’t let possible exceptions crash python-kp
print(’CallbackHandler.handle: Caught exception %s’ % e)

kp = ParticipantNode(’Node’)
ss = (’X’, (TCPConnector, (’127.0.0.1’, 10010)))
if not kp.join(handle):

raise Exception(’Join failed’)

t = ((’https://cos.alpha.sizl.org/people/ID#1234’, None, None),
’uri’, ’literal’)

sub_tx = kp.CreateSubscribeTransaction(ss)
sub_tx.subscribe_rdf([t], CallbackHandler(), True)

raw_input(’Press enter to stop listening to changes’)
sub_tx.close()

(b) Subscribing to changes with kpwrapper

def callback_handler(added, removed):
for triple in added:

do_something_with(added.subject)
...

with SIBConnection(method=’preconfigured’) as sc:
t = Triple(’https://cos.alpha.sizl.org/people/ID#1234’, None, None)
sc.subscribe(t, callback_handler)
raw_input(’Press enter to stop listening to changes’)

Other problems as a developer arose from the relatively complicated nature of the

CHAPTER 6. ANALYSIS 58

Semantic Web technologies, at least in Smart-M3’s context. kpwrapper hides the
libraries’ technical complexity to some degree, but figuring out the exact RDF struc-
ture for different kinds of mapped data could provide problematic for typical web
developers as the technologies are not common in web application or Web Service
development.

Authentication and authorization are not currently taken into account in SIB or
python-kp. Taking security into account would be required in order to facilitate the
adoption of Smart-M3 in real world applications. However, the problem is mitigated
if asibsync and SIB are to run on the same host with firewalling and other standard
security measures in place.

6.3 Non-Intrusive Publish/Subscribe Mediator for ASI

This Section briefly evaluates asibsync’s ability to act as a non-intrusive pubsub
mediator for ASI, and discusses the potential problems.

With the current polling interval of five seconds, thousands of subscribers implying
hundreds of additional requests per second may not be a sustainable solution from the
server’s scalability point of view. At least further performance studies and polling
interval optimization should be conducted in order to determine ASI’s scalability
properties.

For subscriptions with infrequent updates, utilizing server push techniques such as
long polling on ASI’s side should be considered. For providing high scalability with a
large number of pending requests, employing a solution like the Juggernaut1 plugin
for Ruby on Rails could be considered.

These notes apply more generally to any equivalent service to be adapted to support
publish/subscribe under similar update frequency requirements. Thus adapting ser-
vices incapable of scalable server push could not be considered non-intrusive when
higher loads are to be expected.

1http://juggernaut.rubyforge.org (referred 30 Apr 2010)

http://juggernaut.rubyforge.org

CHAPTER 6. ANALYSIS 59

6.4 Overcoming Distributed System Challenges in asib-

sync

There exist several challenges for distributed systems, as introduced in Subsection
2.1.2. This Section revisits the challenges and summarizes the results of this Chapter.

Heterogeneity is one of the challenges that Smart-M3 in combination with asibsync
are designed to mask. By synchronizing ASI data structures via asibsync to Smart-
M3, it becomes possible to map data to structures imported from other services.

Openness and the added complexity of having ASI’s and SIB’s interfaces publicly
available for use by external developers is less of a problem on ASI’s side because of
the RESTful architectural choices. Smart-M3 with the Semantic Web technologies
provide a framework designed for extensions. On the other hand, Smart-M3 is facing
challenges in providing a simple, clean and working interface to external developers.

Security between ASI and the asibsync is ensured by HTTPS and HTTP cook-
ies with a hashed session id. This is secure enough for most practical purposes.
Smart-M3, on the other hand, does not currently incorporate any authentication
mechanisms and should not be used for applications with security requirements.

Scalability of SIB seems problematic, considering the performance test results.
ASI scalability was found sufficient for this Thesis’ purposes, but having to resort
to polling might pose problems. In any case more studies would be required, as
evaluating the system’s scalability was not the main focus of this Thesis.

Failure handling of asibsync can mask connection-related and possibly many tran-
sient software failures, except regarding SIB subscriptions after starting up. Updates
on SIB side will not be propagated to ASI after a SIB connection problem or crash,
and will currently require asibsync restart.

Concurrency, or in this case concurrent and conflicting updates from both end-
points, has been handled in asibsync for the two-endpoint case studied in this Thesis.
For future applications and aggregating data in Smart-M3 from several other ser-
vices, the algorithms should be revised and possibly improved.

Transparency is promoted by asibsync by hiding a part of a connected Web Ser-
vice’s, i.e. ASI’s, implementation details. This is enabled by Smart-M3 for storing
information and facilitating the combining of ASI’s data with other information in
the future.

Chapter 7

Conclusions

7.1 Summary About the Results

The three primary goals for this Thesis were to connect ASI REST interface with
Smart-M3 for synchronizing data, to use Smart-M3’s knowledge processor library in
a realistic setup, and to implement and evaluate a publish/subscribe mediator for a
traditional web service.

The first goal, synchronizing between ASI and Smart-M3, was achieved. Synchroniz-
ing from ASI to Smart-M3 works as expected, with no limitations in theory and little
so in practice. The synchronization agent can recover from several connection prob-
lems, with some limitations regarding Smart-M3’s knowledge processor library. The
agent could also be enhanced to recover from transient software crashes. However,
synchronizing from Smart-M3 to ASI is more problematic because of the challenges
involved in monitoring updates. This Thesis shows that it is possible at least in
a single ASI person’s case, but more studies would be needed to confirm if this is
possible and practically feasible with more data and complex datasets.

The second goal of using Smart-M3’s knowledge processor library for producing a
working application was fully achieved. However, as the library interface was found
difficult to use for the common case concerning software developed for this Thesis,
a simplifying wrapper library was written on top of the knowledge processor library.
This also has the additional advantage of reducing the number of changes needed to
replace Smart-M3 as the other endpoint, should that be necessary.

Thirdly, a non-intrusive publish/subscribe mediator for a traditional RESTful web

60

CHAPTER 7. CONCLUSIONS 61

service, ASI, was implemented. This mediator was used in the synchronization
agent to subscribe to and monitor changes in ASI’s end. Polling at regular intervals
is needed for monitoring changes, though, which may affect ASI’s performance if
updates need to be checked frequently by many simultaneous subscriptions from
different sources.

7.1.1 Synchronization Challenges Revisited

An evaluation of how the challenges presented in Section 1.1 were handled in this
Thesis follows.

First, the incompatible data format challenge was overcome by writing conversion
functions and devising a special URI convention for storing data as RDF triples.
There are still issues to be considered when mapping between a hierarchical structure
to a graph, but overall this seems achievable even on a general level as long as tree-like
structures are involved.

Next, detecting data changes in ASI was made possible by polling to simulate sub-
scriptions and further to implement a publish/subscribe mediator. Loading and
updating only relevant changes would need further studies, however.

Thirdly, data synchronization management was implemented inside the asi_agent

module’s polling cycle. This was relatively straightforward in the current setup
with two synchronization endpoints, but could become a greater challenge when
synchronization with multiple endpoints is required.

The last synchronization challenge, scalability, was analyzed but not yet solved at
a sufficient level for large-scale deployments. The solutions suggested include intro-
ducing better publish/subscribe support for ASI and performance improvements for
Smart-M3, especially regarding data updates.

7.2 Problems Encountered

Two major issues arose during constructing the software that need further attention.
Firstly, Smart-M3 is relatively difficult to use in an integrator’s point of view. The
Python interface provided is not very intuitive for a typical Python programmer,
which was in this case circumvented by writing a wrapper library. Secondly, the
RDF-based data model is not well-known to typical web developers and, although

CHAPTER 7. CONCLUSIONS 62

powerful and flexible, would require extra learning effort for those used to the hi-
erarchical structures commonly used in internet services. These problems are likely
to hinder Smart-M3’s adoption for data aggregation platform. Improved developer
tool support would be needed to help overcome the steep learning curve.

A few other issues encountered were Smart-M3’s performance and privacy protec-
tion, which were found lacking. For instance, updating Smart-M3 SIB was found to
last much longer than would be expected in the preliminary studies. This implies
that performance could become a problem even in case of a few simultaneous data
updating agents. The performance properties on the SIB’s end should be examined
thoroughly before Smart-M3 were to be relied on in more serious use.

As for the security, starting SIB will open a TCP port accessible for anyone if a
firewall has not been properly set up to prevent requests from outside. In a multi-
user environment, this would be a more difficult problem since firewalling does not
prevent other users accessing the SIB. The privacy protection issues would need fur-
ther attention even regarding strictly personal Smart Spaces, if aggregating sensitive
personal data.

ASI’s suitability for synchronizing data was generally found sufficient, as no major
problems were encountered during development and testing. However, synchronizing
could be made more efficient if the interface could provide a way to subscribe to
changes instead of resorting to polling. Also, it could also be possible to only receive
the parts of data that were updated instead of a complete data object, which would
decrease the traffic between ASI and the synchronization agent. These may become
issues in case of a large number of synchronization agents.

7.3 Future Research and Applications

Synchronizing between Smart-M3 and ASI raises numerous possible directions for
future research.

As noted earlier in this Chapter, ASI’s and Smart-M3’s scalability should be studied
in more detail. This includes considering server push and publish/subscribe support
for ASI, and Smart-M3 performance especially with data updates. Furthermore,
Smart-M3’s security and stability should be studied and improved before wider de-
ployment.

In order to facilitate Smart-M3’s adoption among developers, developing an interface

CHAPTER 7. CONCLUSIONS 63

for the knowledge processor agents to enable quick integration to external services
is essential. Currently generating and mapping the ontology requires manual work
with technical insight into the mapping procedures, and programming interface to
the external services needs to be constructed separately.

As for the applications, one possible use case would be combining friend informa-
tion to a personal Smart Space from other social networking services, in addition to
ASI. This friend information could be then propagated back to the other participant
services, keeping information up to date across the relevant social networks. Syn-
chronizing multiple services via Smart-M3 would need to be studied in more detail,
however.

Showing news concerning the places of my friends’ residence is another noteworthy
use case. The relevant locations would first be gathered and combined to a personal
Smart Space, and then used for generating a list of interesting places. Then the
news articles concerning these locations could be filtered, either by using location
metadata provided along the news items, or using e.g. data mining techniques.

The numeric and semantic accuracy of a user’s location information could be in-
creased by weighting or prioritizing information combined from e.g. a user’s posi-
tioning from a GPS-enabled handheld device, textual location information from a
social networking service, and the geolocation information of the user’s last assigned
internet address.

More generally, Smart Spaces could be used for aggregating and taking advantage
of users’ context information. A practical example would be combining the restau-
rant menus near a certain location, its accuracy and the user’s history to produce
suggestions for lunch restaurants, a scenario suggested by Hälikkä (2010).

Bibliography

Alani H., Chandler P., Hall W., O’Hara K., Shadbolt N., & Szomszor M. 2008.
Building a Pragmatic Semantic Web. IEEE Intelligent Systems, 23(3), 61–68.

Alonso G., Casati F., Kuno H., & Machiraju V. 2004. Web services: concepts,
architectures and applications. Springer Verlag.

Ankolekar A., Krötzsch M., Tran T., & Vrandecic D. 2010. The two cultures: Mash-
ing up Web 2.0 and the Semantic Web. Page 834 of: Proceedings of the 16th
international conference on World Wide Web. ACM.

Battle R., & Benson E. 2008. Bridging the semantic Web and Web 2.0 with Repre-
sentational State Transfer (REST). Web Semantics: Science, Services and Agents
on the World Wide Web, 6(1), 61 – 69. Semantic Web and Web 2.0.

Beckett D., & McBride B. 2004. RDF/XML Syntax Specification (Revised), W3C
Recommendation 10 February 2004. Tech. rept. World Wide Web Consortium.

Berners-Lee T. 1996. WWW: Past, Present, and Future. IEEE Computer, 29(10),
69–77.

Berners-Lee T., Masinter L., & McCahill M. 1994. RFC 1738: Uniform Resource
Locators (URL). Tech. rept. IETF.

Berners-Lee T., Hendler J., & Lassila O. 2001. The semantic web. Scientific Amer-
ican, 284(5), 34–43.

Berners-Lee T., Fielding R., & Masinter L. 2005. RFC 3986: Uniform resource
identifier (uri): Generic syntax. Tech. rept. The Internet Society.

Bray T., Paoli J., Sperberg-McQueen C. M., Maler E., & Yergeay F. 2008 (Novem-
ber). Extensible Markup Language (XML) 1.0 (Fifth Edition). Tech. rept. World
Wide Web Consortium. Recommendation REC-xml-20081126.

64

BIBLIOGRAPHY 65

Castro M., & Liskov B. 2002. Practical Byzantine fault tolerance and proactive
recovery. ACM Transactions on Computer Systems (TOCS), 20(4), 398–461.

Coulouris G.F., Dollimore J., & Kindberg T. 2005. Distributed systems: concepts
and design. Addison-Wesley Longman.

Crockford D. 2006. RFC 4627: Javascript object notation. Tech. rept. The Internet
Society.

Eugster P.T., Felber P.A., Guerraoui R., & Kermarrec A.M. 2003. The many faces
of publish/subscribe. ACM Computing Surveys (CSUR), 35(2), 131.

Fidge C.J. 1988. Timestamps in message-passing systems that preserve the partial
ordering. Pages 56–66 of: Proceedings of the 11th Australian Computer Science
Conference, vol. 10.

Fielding R. 2000. Architectural styles and the design of network-based software ar-
chitectures. Ph.D. thesis, University of California, Irvine.

Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P., & Berners-Lee
T. 1999. RFC 2616: Hypertext Transfer Protocol–HTTP/1.1. Tech. rept. The
Internet Society.

Gamma E., Helm R., Johnson R., & Vlissides J.M. 1994. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional.

Ghosh S. 2006. Distributed systems: an algorithmic approach. CRC press.

Google. 2009 (March). OpenSocial Specification 1.0. Tech. rept. OpenSocial and
Gadgets Specification Group.

Hadzilacos V., & Toueg S. 1994. A Modular Approach to Fault-tolerant Broad-
casts and Related Problems. Tech. rept. Dept of Computer Science, University of
Toronto.

Honkola J., Laine H., Brown R., & Oliver I. 2009. Cross-Domain Interoperability: a
Case Study. 2nd Russian Conference on Smart Spaces, ruSMART 2009.

Hälikkä H. 2010. Developing context-aware mobile widgets with S60 Web Runtime.
M.Sc.Tech. thesis, Aalto University.

Lamport Leslie. 1978. Time, clocks, and the ordering of events in a distributed
system. Commun.ACM, 21(7), 558–565.

BIBLIOGRAPHY 66

Lappeteläinen A., Tuupola JM, Palin A., & Eriksson T. 2008. Networked systems,
services and information, The ultimate digital convergence. In: 1st International
NoTA conference, Helsinki, Finland.

Lassila O. 2007 (November). Programming Semantic Web Applications: A Synthesis
of Knowledge Representation and Semi-Structured Data. Ph.D. thesis, Helsinki
University of Technology.

Mattern F. 1989. Virtual time and global states of distributed systems. Parallel and
Distributed Algorithms, 215–226.

Mills D.L. 1995. Improved algorithms for synchronizing computer network clocks.
IEEE/ACM Transactions on Networking (TON), 3(3), 245–254.

Oliver I. 2009. Information Spaces As A Basis for Personalising The Semantic Web.
Interational Conference on Enterprise Information Systems (ICEIS’09).

Oliver I., & Boldyrev S. 2009 (May). Operations on Spaces of Information. Tech.
rept. Nokia Research Center, Helsinki, Finland.

Oliver I., & Honkola J. 2008. Personal Semantic Web Through A Space Based
Computing Environment. Middleware for Semantic Web 08 at ICSC’08, Santa
Clara, CA, USA, August.

Oliver I., & Honkola J. 2009. A Base-line Semantic Computation Environment for
Local Information Spaces. International Journal of Semantic Computing, April 7.

Oliver I., Törmä S., & Nuutila E. 2009. Context Gathering in Meetings: Business
Processes Meet Agents and The Semantic Web. The 4th International Workshop
on Technologies for Context-Aware Business Process Management (TCoB 2009).

Postel J. 1981. RFC 793: Transmission control protocol. Tech. rept. Defense Ad-
vanced Research Projects Agency.

Prechelt L. 2000. An empirical comparison of C, C++, Java, Perl, Python, Rexx
and Tcl. IEEE Computer, 33(10), 23–29.

Rescorla E. 2000. RFC 2818: HTTP Over TLS. Tech. rept. The Internet Engineering
Task Force (IETF).

Richardson L., & Ruby S. 2007. Restful web services. O’Reilly.

Shadbolt N., Hall W., & Berners-Lee T. 2006. The semantic web revisited. IEEE
intelligent systems, 21(3), 96–101.

Appendix A

Performance Test Results

_poll

_poll - receive receive

gen_ontology receive (1st run) - gen_ont - gen_ont

Run 1 0,311895 0,795161 1,201739 0,094683 0,483266

Run 2 0,369565 0,920296 1,356698 0,066837 0,550731

Run 3 0,342146 0,778134 1,176526 0,056246 0,435988

Run 4 0,357959 0,788692 1,192466 0,045815 0,430733

Run 5 0,367875 0,815357 1,261488 0,078256 0,447482

Run 6 0,294905 0,867308 1,257144 0,094931 0,572403

Run 7 0,396050 0,873393 1,299802 0,030359 0,477343

Run 8 0,409502 1,035527 1,631453 0,186424 0,626025

Run 9 0,321362 0,782214 1,194077 0,090501 0,460852

Run 10 0,335739 0,765437 1,228414 0,127238 0,429698

Summary

min 0,294905 0,765437 1,176526 0,030359 0,429698

max 0,409502 1,035527 1,631453 0,186424 0,626025

avg 0,350700 0,842152 1,279981 0,087129 0,491452

stddev 0,029490 0,065583 0,089602 0,031626 0,054961

Table A.1: Performance measurement results for nonexistent SIB ontology, no exist-
ing SIB data

67

APPENDIX A. PERFORMANCE TEST RESULTS 68

_poll

_poll - receive receive

gen_ontology receive (1st run) - gen_ont - gen_ont

Run 1 0,076645 0,442714 0,913044 0,393685 0,366069

Run 2 0,077467 0,452535 0,864829 0,334827 0,375068

Run 3 0,074299 0,390243 0,790818 0,326276 0,315944

Run 4 0,088509 0,570928 0,983291 0,323854 0,482419

Run 5 0,076495 0,502495 0,916916 0,337926 0,426000

Run 6 0,081643 0,459060 0,854966 0,314263 0,377417

Run 7 0,103022 0,477673 0,892701 0,312006 0,374651

Run 8 0,109858 0,554070 0,978595 0,314667 0,444212

Run 9 0,076887 0,611877 1,012287 0,323523 0,534990

Run 10 0,075595 0,626847 1,032169 0,329727 0,551252

Summary

min 0,074299 0,390243 0,790818 0,312006 0,315944

max 0,109858 0,626847 1,032169 0,393685 0,551252

avg 0,084042 0,508844 0,923962 0,331075 0,424802

stddev 0,009853 0,065669 0,062099 0,014642 0,062972

Table A.2: Performance measurement results for up-to-date SIB ontology, existing
SIB data, no ASI data updates

	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Synchronization Challenges
	Goals for This Thesis
	Research Methods
	Structural Summary

	Distributed Systems
	Fundamentals
	Definition
	Challenges
	Design Requirements

	Architecture Models
	Architecture Layers
	System Architectures

	Fundamental Models
	Interaction Model
	Failure Model
	Security Model

	Interprocess Communication
	Time, States, and Coordination
	Marshalling
	Publish/Subscribe

	Web Services
	Definitions
	Web Service Categorization

	Web Technologies
	Uniform Resource Identifier
	Hypertext Transfer Protocol
	Representation formats

	Representational State Transfer
	Resource-Oriented Architectures

	Aalto Social Interface

	Semantic Web
	Concepts
	Resource Description Framework
	Ontologies
	Agents

	Smart Spaces
	Nokia Smart-M3
	Semantic Information Broker

	Implementation
	Overview
	Platform Architecture
	Python Terminology and Tools

	Synchronization Agent
	ASI Library, asilib
	SIB Knowledge Processor Wrapper Library, kpwrapper
	ASI-SIB Synchronization Agent, asibsync

	Analysis
	Synchronizing Between ASI and Smart-M3
	ASI to Smart-M3
	Smart-M3 to ASI
	Fault Tolerance
	Performance
	Further Notes

	Smart-M3's Knowledge Processor Library
	Non-Intrusive Publish/Subscribe Mediator for ASI
	Overcoming Distributed System Challenges in asibsync

	Conclusions
	Summary About the Results
	Synchronization Challenges Revisited

	Problems Encountered
	Future Research and Applications

	Performance Test Results

