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A mobile hand-held may contain nowadays many different radio devices, typically one for each
of the radio protocols it supports. Each of these makes an additional cost and takes space on
the device. As small cost and device size are important design factors for a mobile hand-held,
any chance for reducing the number and size of needed components is warmly welcomed.
Digital basebands can be seen to be mergeable to one generic processor due to increase in
current processor speeds. A generic baseband processor is able to handle baseband processing
for multiple radio connections concurrently, but it is yet to be seen how much integration can
be done to the RF parts. With currently available technologies, we cannot get rid of all of the
parallelism.
The merged components require control different from their predecessors. Merged components
should still contain the functionality of the preceding components, but be more flexibly control-
lable, as the callers are more diverse than before. Ultimately we would want to end up to a very
few, fully flexible components, usable by any radio protocol or radio system. Cognitive Radio
and Software Defined Radio are the aims the radio related research now strives for.
In this thesis, we present a high-level system model of part of a futuristic RF radio, including
controller software for a futuristic RF radio transceiver. The system models controller software
for RF transceiver, whose sub-parts are concurrently usable by any radio protocol, instead of
dedicated RF parts for each radio protocol or radio system. In the model, the control function-
ality that connects protocol-level commands to RF parts was modelled.
The model is based on two interfaces. These are the Lyra model of the radio device interface,
and an interface for a generic RF transceiver module. The model was made with SystemC.
As the result, our model shows that a generic multiradio RF transceiver can be made controllable
by several concurrently running radio protocols. The constructed model may be further used as
a model for more accurate model-based radio system designs.
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Mobiililaitteessa voi nykyään olla useita radiolaitteita, tyypillisesti yksi tuettua radioprotokollaa kohti. Kukin ra-
dio lisää kustannuksia ja vie laitteesta tilaa. Koska halpa hinta ja pieni koko ovat usein tärkeitä mobiililait-
teen suunnittelukriteerejä, kaikki mahdollisuudet tarvittavien komponenttien vähentämiseksi ja niiden koon
pienentämiseksi otetaan innolla vastaan.
Radiojen digitaalisten kantataajuuskomponenttien toiminnot voidaan parhaimmillaan yhdistellä yhden, riittävän
nopean, yleiskäyttöisen prosessorin tehtäväksi. Tämä on nykyisin mahdollista, koska nykyisin on saatavil-
la riittävän nopeita prosessoreja. Yleiskäyttöinen prosessori pystyy nopeutensa vuoksi käsittelemään useiden
samanaikaisten radioyhteyksien kantataajuiset datat. Sen sijaan radiotaajuuksia käsittelevien komponenttien
osalta yhdistelymahdollisuudet ovat vielä pitkälti selvittämättä. Nykyisillä teknologioilla kaikesta komponent-
tien rinnakkaisuudesta ei vielä päästä eroon.
Yhdistellyt komponentit tarvitsevat edeltäjistään poikkeavan ohjauksen. Yhdistelystä huolimatta komponenttien
tulee edelleen tarjota sama toiminnallisuus kuin edeltäjiensä, mutta niiden täytyy olla joustavampia, sillä yhdis-
teltyjen komponenttien käyttäjät ovat vaihtelevampia kuin edeltäjien. Pitkän tähtäimen päämääränä komponen-
tit halutaan karsia lukumääräisesti vähäisiksi, mutta toiminnoiltaan täysin joustaviksi, siten, että satunnainen
radiojärjestelmä tai -protokolla voisi käyttää niitä. Kognitiivinen radio ja softaradio (Software Defined Radio,
SDR) ovat joustavia radiojärjestelmiä, joihin radioihin liittyvä tutkimus tähtää.
Tässä työssä rakensimme korkean tason simulaattorimallin futuristisen radiotaajuuksia käsittelevän
lähetinvastaanottimen osasta, erityiseseti sen kontrolleriohjelmistosta. Ohjelmisto mallintaa perinteisen, aina yhtä
radiojärjestelmää vastaavan yhden signaalipolun sijaan radiotaajuuskomponentteja kontrolloivan ohjelmiston
toiminnallisuutta sellaiselle radiolaitteelle, jossa kaikki radion osat ovat samanaikaisesti kaikkien radioprotokol-
lien käytettävissä. Ohjelmisto mallintaa kontrollia protokollatasolta radiotaajuuskomponenttien digitaaliseen ra-
japintaan saakka.
Simulaattori rakentuu kahden annetun rajapinnan varaan. Nämä ovat Lyra-metodilla tehty radiolaitteen rajapin-
ta sekä yleiskäyttöisen radiotaajuuslähetinvastaanottimen rajapinta. Simulaattori rakennettiin SystemC-kirjastoa
käyttäen.
Mallin perusteella näyttää siltä, että protokollasta riippumaton, yleiskäyttöinen multiradiolähetinvastaanotin
voidaan todella rakentaa siten, että useat samanaikaisesti aktiivisena olevat radioprotokollat voivat käyttää
yleiskäyttöistä radiotaajuuslähetinvasaanotinta samanaikaisesti. Rakennettua mallia voidaan käyttää tarkempien
radiomallien suunnittelun pohjana.

Avainsanat: radiojärjestelmä, ohjain, RF, malli, SystemC
Kieli: Englanti
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Chapter 1

Introduction

In this thesis, we present a high-level model of a multiradio device, and a model

of controller software at functional level for a Radio Frequency (RF) transceiver.

The model represents controller software functionality that could be found in a

futuristic radio device.

With the model, we can see what we can learn about radio control software re-

quirements, what structures are needed by the radio controller, and are there

similarities to already matured controller software technology, operating systems.

Usage of a set of generic radio interface functions is simulated. The interface

functions are of a kind that controller of a futuristic radio device could offer. The

interface functions are to be generic in a way that they could be used by any radio

system, that is, independent of the radio protocol using them, in a platform where

multiple radio systems could use the same radio hardware concurrently. With our

simulator, we put the interface functions to a test, to see if they really can be used

to control a generic radio device by multiple radio protocols concurrently.

1.1 Motivation

A mobile hand-held may contain nowadays many different radio devices embed-

ded in them. For example, Nokia model N97 supports GSM850/900/1800/1900,

Bluetooth, WLAN, HSDPA, WCDMA, GPRS, and GPS systems[25].

1



1.1. MOTIVATION CHAPTER 1. INTRODUCTION

Previously, each of the radio protocols have typically had dedicated radio tube(s)1

including digital baseband and RF chips [28]. Each of these makes an additional

cost and takes space on the device.

Small cost and device size are typically important design factors for embedded

systems in general. The same goes for mobile hand-helds [19, 17], which also

need to be as energy efficient as possible. As the number of the radio systems

integrated into a single device has increased, and the number of the possible radio

systems has grown, a need has emerged to make the usage of the growing number

of radio tubes more efficient. Any chances for reducing the number and size of

the needed components are warmly welcomed, as well as ways to minimize energy

consumption. These have brought up a question about possibilities to merge at

least some parts of some radio tubes.

Possibilities to reduce the number of RF components come from increasing the

flexibility of components, either hardware or software ones [38].

When component integration increases in radio devices, the applicability of the

integrated radio tubes change, changing their usage at several levels of the system.

Both the design process and the way the resulting platform is used at each layer,

change from the traditionally used.

Would there become changes to the hardware side, the software layers controlling

the radio must change, too. Though the number of the layers of control might

stay the same as in the previous approach, the information content sent through

the layers would have to change, at least.

The traditional way of controlling a radio tube has been as seen in Figure 1.1a.

The radio can be thought of as a peripheral device inside the “main” device.

The application needing the radio device uses the device through a driver of that

particular radio. The driver may be used either directly, or through an operat-

ing system of the main device. The radio driver then commands the radio tube

through Hardware Abstraction Layer (HAL). Commands given to the radio tube

would most probably be writings into simple hardware registers. As the radio

tube is constructed for a particular radio standard, the tube handles the given

data automatically according to the protocol it knows.

1Radio tube stands coarsely to the path the radio signal takes when propagating
through the radio. Digital baseband may or may not be included, depending on who
is speaking.

2



1.1. MOTIVATION CHAPTER 1. INTRODUCTION

Figure 1.1: Radio control layers. Dedicated tube vs. multiradio tube.

Now, when the radio tube changes to one with flexible components, becoming able

to accomplish the tasks of more than one radio standard or radio protocol, things

change, as seen in Figure 1.1b. The way to use the tube changes in several parts of

the system. We still have an application, wanting to use the radio. It still uses the

radio functionality either through an operating system, or directly. However now,

as the radio tube is not dedicated to a single radio protocol any more, we must

take some parts of protocol-level information up in the stack, to be able to tell the

radio components, how they should behave with the given data or signal, instead

of telling them simply to process the data (the only way they know). Instead of a

radio driver, we can say we now have a protocol driver.

We could say, simplifying things a bit, that the digital baseband and RF parts

made up a First In, First Out (FIFO) radio tube formerly. The signal or the data

was put in, and data or signal came out as a result. This changes with multiradio,

a radio tube able to serve multiple radio systems concurrently, and/or parallelly.

The timely usage of the digital baseband and RF parts becomes only loosely linked.

As the protocol is the one to know what to do and when, it is up to it to tell the

baseband and the RF modules when to act. The control commands thus come

from the protocol layer, now outside of the tube, instead of the tube knowing on

3



1.2. RESEARCH PROBLEM CHAPTER 1. INTRODUCTION

its own what to do and when.

1.2 Research problem

Within this thesis, we are interested in the control of a multiradio device. In

a multiradio device, there will be some controller software for the blocks of the

device. But what kind of software would there be, within the controllers controlling

the usage of the flexible multiradio tube parts? How complex software structures

are needed there, and what is the functionality laying between the radio protocols,

and the digital baseband, and RF hardware?

The questions relate to the research of Software Defined Radio (SDR), and

Cognitive Radio (CR), yet futuristic systems for implementing and organizing

radio devices, and the usage of frequency of the radio systems. Much has been

studied already, but there is still a long way to go until we have them available

in our every day customer products. Multiple In, Multiple Out (MIMO) radio

techniques, radio hardware integration, and multiradios (available as various defi-

nitions), are all examples about steps towards SDR, and CR.

Previously, generic desktop processing units have been shown to be fast enough

to be able to implement some computing intensive functionality formerly imple-

mented by fixed dedicated analog hardware[16]. This shows that processing power

of some affordable general processing devices is already sufficient to cope with

current radio system needs, though we supposedly must still wait for some years

before we have alike processors for mobile devices available.

A SDR has been fully implemented as a low-frequency radio [38]. This shows the

idea of SDR being eligible. Small in size low power radio front-end capable of

frequencies between 174 MHz and 6 GHz is implemented by IMEC [15], showing

that generic, flexible RF components are within reach.

High-level multiradio functionality has been considered and taken into functional

blocks in [4]. Control protocols for multiradios have been considered e.g., in [36] for

link-layer protocol for multiple WLAN Network Interface Cards (NICs), and in [2]

for network router nodes. Control software for a digital baseband of a multiradio

has been considered in [29], including a hardware implementation.

We took into consideration the control for the RF part of a multiradio, as this was

4



1.3. RESULTS CHAPTER 1. INTRODUCTION

not found to have been studied.

1.3 Results

This thesis presents a high-level functional model of a radio device, and controller

software for a futuristic RF radio transceiver, which is referred here as “the radio

simulator”. The radio simulator models the control of a generic RF module that is

concurrently usable by any radio protocol. The RF module is seen as being fully

independent of the digital baseband of the multiradio, what comes into controlling

them.

The radio simulator models the control functionality that connects protocol-level

commands to RF parts. It is made with SystemC, and it is based on two given

interfaces. The interfaces are the Lyra model of a radio device interface, and an

interface for a generic RF transceiver module.

A hardware implementation of the RF radio was not available, but a software

model of a generic RF transceiver was got instead, to test the control software

functionality with. The radio simulator models parts of the control traffic needed

to command a generic RF front-end hardware device through a dedicated interface.

1.4 Thesis’ structure

This thesis is divided into six chapters.

In this chapter, the topic has been introduced.

Chapter 2 sets background for this work, looking at mobile hand-helds (our target

platform for an embedded radio device), operating systems (much studied and

tested in the context of control software), peripheral devices (which are the devices

to control) and control in general.

Chapter 3 provides a general description of our particular peripheral device to

control, the RF radio transceiver. In Section 3.5, SDR and CR are introduced,

concepts that widely motivate and guide the radio device research today, including

this work.

5



1.4. THESIS’ STRUCTURE CHAPTER 1. INTRODUCTION

Chapter 4 contains a brief look into system modelling. Also, the modelling tools

relating to this work are introduced, Lyra modelling technique in Section 4.2, and

SystemC in Section 4.5. The two radio models we used as the base for this work

are introduced, too. Nokia SDR model is introduced in Section 4.6, and radio

hardware model of the RF part in Section 4.7.

Chapter 5 introduces the radio control simulator built. We look at simulator

structure, and skim through some code examples.

Chapter 6 wraps up the work.

6



Chapter 2

Background

In this chapter, we gather up some basics needed in order to understand periph-

eral controller modelling. Peripheral control usually differs from complex system

control somewhat. Usually, we do not need a full sized operating system in a

peripheral device, let alone in an embedded system with just one or a few clearly

defined, quite simple, repeating tasks.

We begin our background review by looking into the structure of mobile hand-

helds, which are typical devices to contain multiple radio devices.

We look into operating systems, and peripheral devices. Operating systems are

a much studied and already matured branch of control software, and peripheral

devices a way to think about the device to control to.

Last, we look into what kind of structures the control software consists of, and how

the structures typically evolve, as the software gets more mature. Some control is

found at various levels in a device, from the lowest physical levels to the level of an

application. Standards and regulations state still something more, for the single

device as well as for the surrounding network environment. We do not have space

to consider these here more closely, but some related information can be found in,

e.g., [22] for embedded systems design, [30] for RF electronics control, and [12] for

mobile protocols.
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2.1 Mobile hand-helds

Mobile hand-helds have started their triumph at 90’s from analog hand-held wire-

less telephones, devices that had microphone, speakers, a modulator and a radio

frequency engine[26]. Since then, mobile hand-helds have developed much. Analog

mobile phones have changed to digital ones, and one-purpose devices have evolved

to multi-purpose devices. Nowadays, you may use your mobile hand-held to take

pictures or videos, to browse the web, to make a call, to play games, and to check

your location with GPS, only to mention a few.

A mobile hand-held of today is a miniaturized, low-power optimized computing

system, with the main processor chip and several peripheral chips for various

purposes integrated on the same board.

Mobile hand-helds are also a major genre of embedded systems today. Embedded

systems are systems that have hardware and controller software together in a single

device. This controller software is also called firmware. The user of the device with

firmware does not even need to know that there is software inside the device1.

A mobile hand-held has an operating system in it, taking care of the management

of the functionality of the device, and access to its peripherals, and offering the user

the handle to the part of the software the user is aware of, a (usually graphical) user

interface. The operating systems of mobile devices are typically not as complex as

those found on a full-sized personal computer, but simpler software to control the

device, fitted to be able to accomplish just enough to make the system run.

The peripherals inside the mobile hand-held may have some firmware of their own,

too, or why not even an operating system, if the required functionality is complex.

The whole functionality of a peripheral accomplishing some tasks may consist of

plain firmware running on a general purpose chip. There is often no more tech-

nological reasons for having fixed circuits to accomplish jobs, but manufacturing

costs, design traditions, and partial re-usability may still be good enough reasons

to not yet move into full software implementation.

Despite the vast growth of their complexity, the mobile hand-helds have had a

tendency to get smaller. Mobile hand-held being a device that needs a screen and

1E.g. the washing machines and cars of today typically are embedded systems contain-
ing at least some firmware.
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an input system, the useful minimum size for them has generally been reached.

Still, the miniaturization continues, as growing amount of features is now wanted

to fit in the same space. The current evolution goes on the one hand towards inte-

grating many subsystems into the same board or even chip, but on the other hand

towards some dedicated hardware acceleration modules, where e.g. the processing

speed or power resistance of the system would not be sufficient enough otherwise

[26].

2.2 Operating systems and peripheral de-

vices

Operating systems technology has already matured, as it has history of some

decades, from 1950’s [32]. In the arrangements of control of operating systems,

we can probably find useful hints about how to arrange the control of our device,

what ever that would be.

Figure 2.1: Logical placement of an operating system.
Figure from: http://en.wikipedia.org/wiki/Operating system, licensed under the Creative
Commons Attribution-Share Alike 3.0 Unported license.
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An Operating System (OS) is software made to control and abstract the resources

the computing device has to offer. Logically it resides between the hardware and

the application program (see Figure 2.1). It usually aims to simplify the usage

of the underlying hardware, seen by the application programmer. An operating

system hides much of the low-level details crucial for system functionality, usability,

and extendability, but not directly relating to the functionality of the end user

application itself.

OSs typically handle tasks like scheduling of the processes, threads or tasks, mem-

ory space allocation, regulating the usage of different system parts or peripheral

devices, and handling user accounts to provide the multiple users the feeling of us-

ing the device alone. An OS also typically offers abstracted interfaces for different

types of devices, taking much of the burden of device specific functionality coding

away from an application programmer.

In this section, we look briefly at OSs, and how they relate to peripheral devices.

If more detail is needed, the reader may familiarize with suitable textbooks (e.g.,

[14, 32, 34]).

2.2.1 General purpose operating systems

General-purpose Operating Systems are the most familiar ones for the majority

of the people. These are systems called Linux, Microsoft XP, Vista, MacOS,

Unix variants, or the like. Each of these has further distributions tailored for

slightly different user profiles and various platforms. In following, we look at some

functionality typical of these operating systems.

Nowadays any advanced OSs offers a way to run multiple programs concurrently.

The user might want to e.g. write an email, listen to music, download a file and run

a virus scanner at the same time. This is possible because the OS allows driving

multiple processes seemingly at the same time, that is, concurrently. Concurrency

is independent of the number of available processors. Software structures related

to accomplishing concurrency safely and fluently include e.g. scheduler, processes,

threads, locks, and interrupts.

General purpose OSs provides an application program with a way to use the mem-

ory address space of the computing device in isolation from other applications.
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Every application sees only its own isolated memory sandbox where it is allowed

to play freely. This makes the whole computer system more stable. As the pro-

grams are not allowed to use other memory space directly, it becomes much harder

for them to corrupt the memory spaces of the other programs, let it be intentional

or not. Common functionality usable by all applications, offered by the OS, is

accessed through traps to the so called kernel code. The kernel can be thought

of as the core to an OS. Unlike application program code, the kernel code may

be executed in kernel mode, having full access to the whole memory space of the

device.

OSs regulate the usage of permanent memory devices such as hard disks or flash

sticks, and provide a file system to use them a structured way. This makes the

storage usage easier, by offering the user tools to keep her files in order and keeping

them from corrupting each other. Permanent memory devices can also be used for

virtual memory. Virtual memory is an OS functionality used to extend available

memory space beyond physical memory limits.

The OSs offer abstraction layers for peripheral device usage. An OS usually offers

generic device interfaces for various different peripheral devices, to be used by

the application programmer. The peripherals might be pointing devices, typing

devices, printers, monitors, sound devices, network devices, graphic processing

devices, measuring devices etc. There are uniform interfaces at least for the most

often used peripheral device types available, letting the application programmer

free from the details each peripheral device would need to its operation. The device

specific control code is then placed in a device driver, residing logically between

the abstraction layer the operating system offers, and the device itself.

2.2.2 Operating systems for different purposes

There are different OSs for different devices, made to answer the various needs of

the different gadgets.

In the complex end of OS family, there are OSs built for generic systems which

might have multiple users operating at the same time, having various needs for

the usage of the system, and wide extendability.

Mobile hand-helds and other devices with less computing power or reduced means
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of use have usually simplified OSs offering a subset of the functionality of that of

a full-sized OS.

In a real-time system, where acting at certain points of time, or fast reacting times

are important, a Real-Time OS (RTOS) could take extra care of correct timings.

A factory robot might utilize a RTOS, as well as a radio transceiver. Both of these

usually require precise timings.

There are also simple controller programs for simple systems, which may offer only

a few fixed things to do. This kind of software, that you may also think of as a

very reduced OS, can be found usually in an embedded system, e.g. a washing

machine.

2.2.3 Peripheral devices

Peripheral devices are attached to the main computer, to widen its abilities. Pe-

ripheral devices typically add some functionality to the device, such that the main

computer in itself is not capable of accomplishing, or they may increase the com-

puting power of the device. Peripheral devices include e.g. screens, keyboards and

other input devices, radio devices, sound devices, graphic devices and external

storage.

A peripheral device consists of the hardware doing the dirty job, and wirings

connecting it to the main device and to the power source. The peripheral may

have a controller chip or a few in it where needed. Usually a dedicated driver, and

in some cases a user application, is shipped with the device, to allow and ease its

usage and configuration.

Formerly, the hardware for most of the peripherals has been implemented as

Application Specific Integrated Circuits (ASICs), whose functionality is fixed at

the factory[37]. Technological advancements have enabled electronic systems, also

peripheral devices, to move from fixed hardware to more flexible solutions. These

include everything from reconfigurable Field Programmable Gate Array (FPGA)

hardware to general-purpose processor chips with a suitable software stack, all

of which enable configurating or programming the system later. This allows the

manufacturers to fix bugs, configure, and to introduce new functionality to the

product later through firmware updates, even after the product launch.

12



2.2. OS AND PERIPHERALS CHAPTER 2. BACKGROUND

Peripherals must be connected to a main computer in order to be of any use. Con-

necting is done through what are called buses. Buses consist of wirings, and control

arrangements to manage the data transfers. Wirings have previously consisted of

control traffic lines, address lines, and data lines, and control arrangements have

handled timings and buffering of the data. Newer bus architectures are becoming

conceptually close to networks. They prefer flexibility at least when it comes to

bus speeds, physical connectivity, or the types of devices able to connect to the

bus.

Peripheral hardware is often used and/or configured simply by setting values at

hardware registers, which often have the width of one to some bytes or words2.

The states of the registers may define the operation of the hardware directly, or

there might be an interpreter inside the peripheral, interpreting the register values

into action statements.

2.2.4 Control software of peripheral devices

Operating System is software intended to control and abstract the usage of the

resources the device offers. Depending on the device, the needed constructs vary

widely. A device may not need a full size OS, but some control software is for

good. A simple loop of control may suffice if the system is a simple one. More

mature methods are used when needed.

There are various ways to make a relatively simple control software for relatively

simple devices[5]. When the system to be controlled grows larger and more com-

plex, more functionality must be put into the operating system so it can meet the

requirements.

Control loops could be named as the simplest type of control software. Anything

they do, they do within a single program loop. The program loop takes turns to

visit all the functions of the system, one after another, within the certain program

loop. Usually, the systems that use control-loop must have no strict timing re-

quirements. They are generally poor when it comes to responsiveness, as they just

do their loop, but do not prioritize or respond to much to anything. Cooperative

multitasking can be seen as a more developed version of control loops.

2Typical widths: byte = 8 bits, word = 16, 32 or 64 bits.
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Interrupt-based control software works best at the systems whose functionality

consists mostly of responses to service requests. An interrupt controlled system has

a way to notice and react sufficiently fast to interrupts that tell there is something

to react to. The tasks are executed mainly as responses to interrupt requests.

Pre-emptive multitasking control software introduces time based interrupts,

and low-level code for switching between the running threads. Thus, it allows sev-

eral threads to really run concurrently, unlike all the previously presented control

schemes. Pre-emptively multitasking systems are that complex, that they can be

thought to have an operating system.

Microkernels are stripped down kernels that take care of multitasking and mem-

ory allocation, but no other OS tasks.

A RTOSs is used in a device which needs precise timing. A RTOS must have

sufficiently accurate knowledge about time, and they must complete the given

tasks within certain time limits. In systems where a RTOS is needed, the tasks

must be completed within time limits, or doing it is of no use no more. RTOSs

are further divided to soft RTOSs and hard RTOSs.

With the soft RTOSs, the timing is important, but the given time-limits are still

somewhat flexible. The missed time limit does not make the completion of the

task useless immediately, but the usefulness of the computation result degrades

fast when the given time limit has passed.

Hard RTOSs need to complete their tasks in a precise time, or at the latest at given

time, otherwise the result of the computation is just a waste of computing power.

As an example, take a factory robot hand, designed to operate with products

moving on the factory line. If the robot hand is late with its function, it fails to

operate on the product which already went further on the line. There is no use to

do anything late - operating on the empty space instead of the product is of no

use.

2.3 Modelling control

In a peripheral communication device, control is all about making electric signals

flow the wanted ways. There are transmission lines to get the signals from a place

to another. At the end of each transmission line, there is a way to catch the signal.
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At the end point of a simple transmission line, the way may be just the detection

of a signal state, when there is one wire. In a more complex transmission lines

specialized devices can be used to handle the usage of the line.

At the software level, control is all about commands or instructions given within

the system in order to get the device to function properly as wanted. It is about

making choices about what is done next, according to the available knowledge.

Control propagates through interfaces, using data structures and algorithms on

the way.

Data structures are the format of the data, telling how the data is arranged.

E.g., arrays, objects, and class definitions are data structures.

Algorithms tell how the given data is handled.

Interfaces make using the algorithms and data structures easier and regulate the

usage. Interfaces hide low-level details of the sub-system from the developer.

Control paths are code structures that pass information from one interface to

another. They usually appear as execution paths or function call chains.

When modelling the control, these aforementioned are the structures that are

modelled. The modelling tool must be able to present these as clearly as possible.

Modelling methodology and model structures must highlight these, and make them

clear. In Section 4, we look at these in more details.

Control, or controller software, in the context of this thesis, is about hardware

management according to protocol based information. Manageable things include

decisions about when to act (time), if there are alternative traits of acting, what

to do, and in some cases, if the system is flexible enough, how to do it as well.

A controller needs to get the system parts work together, usually following some

kind of protocol. At the software level, controller software is sending messages

flowing through interfaces, using appropriate data structures on the way. Near to

physical hardware in the control stack, the data structures may be simple hardware

registers to set. When higher in the software stack, the used data structures are

usually more complex, and they may have more advanced access routines.

A typical controller consists of a processor together with auxiliary control logic,

connected to the controllable hardware. The processor takes commands from out-

side (e.g., from Central Processing Unit (CPU)) and interprets them to instructions
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of how to use the hardware. Other way said, the processor of the controller listens

to the commands given to it, executes the control logic software, and command

the hardware by the logic it uses.

Aim of this work is in getting understanding about embedded controllers, by gener-

ating a high-level model of a radio controller. A high-level model can not accurately

describe a fully functional, readily manufactured product but depending on the

model it could be used, e.g., to decide what system parts to put into the product,

and how to arrange the control, (ways to use model-based computing[11]) or to

build a more accurate model based on it (Model-Based Design (MBD)[27]).

2.3.1 Typical control software evolution

Whatever gadget we have, the control is usually implemented first more or less ad-

hoc. That is, on what ever way, to provide just enough control for what we have.

How the control is organized, depends on the people creating it, their abilities and

preferences.

If the system evolution goes on, the control structures evolve. Typically more is

wanted from them. Someone needs to get a new number out of the system. The

system is needed to be faster. Maybe there is emerging a bunch of new systems

for similar usage, where using the same controlling system, or at least parts of it,

would be beneficial.

Through experience, it becomes better known what it is what is to be controlled,

what the things are needed from the control. What the things are, need to be

told by the user or by outside of the controller. This leads to simplifying and

streamlining the system, driven by the need to hide the huge amount of details

the developers should otherwise know in order to be able to make things work. As

details are hidden, control gets modularized, layered, and structured. Relatively

rigid interfaces of some kind are formed, since usage is easier through a fixed, hope-

fully well documented interface, than through a random bunch of ever changing

functionality.
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2.4 Summary

Operating systems technology offers tools for concurrent processing. However,

the usage of the most powerful technologies in mobile devices is limited by the

restricted computing power and energy available with the mobile devices. The

processors available for mobile devices are not as powerful as their desktop cousins,

and the processor speed is usually set to be just adequate, partly because of the

cost, partly because the slower pace usually means longer battery life.

The platform the control is made for, naturally affects much the organization of

the control. Complex systems usually need more control than simple ones. In

order to be manageable, complex systems usually need better structuring, clearer

interfaces and more modularization than simple ones. The reasons are diverse.

Better structured, and well layered control is usually simpler to use by a soft-

ware developer, and makes only the needed part of the control directly available,

lessening the possibilities of data corruption due to programming errors.
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Chapter 3

Radio

This section is about the functionality and control of a radio device. We first look

at the generic functionality needed in order to have a working radio device. We

look, how the data is transferred into radio waves and vice versa, and what kind

of modules does an implemented transceiver tend to have. As we are particularly

interested in modelling the control near the antenna end of the transceiver, we take

the Radio Frequency engine front-end (RF-FE) functionality under more detailed

examination. Futuristic radio systems, CR and SDR are briefed at the end of the

chapter. These are simplified presentations about these subjects, see [13, 30, 6] for

more.

3.1 Radio device

A radio device is one that uses radio waves1 to communicate. A radio device may

be able to transmit or receive, or both. A radio device which can both transmit and

receive is called a transceiver. For examples, FM radio systems only need powerful

transmitters at antenna towers, and a receiver only at consumer radio devices.

Any radio system designed for two-way communication, e.g. Global System for

Mobile Communications (GSM) or Wireless LAN (WLAN), has transceivers in

both ends of the communications channel.
1Radio waves are electromagnetic radiation with wavelengths longer than those of vis-

ible light, that is, of lower frequency than light.
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At the dawn of radio technology, the radios were all analog, and the sent data was

all analog signal - most often human speech. The receivers and transmitters were

separate devices, only later were they packed into a transceiver form, containing

both. Usage of the radio frequencies was much unregulated, as there were just a

few users.

Since then, digital technology has advanced, and radio communication has become

more popular. Nowadays, vast majority of the radio traffic is digital, and the usage

of the radio frequencies has become strictly controlled subject, leaving only a few

“free” frequency bands for experimental devices to use.

The typical radio device is no more a simple analog device with a tangent to press,

when wanting to speak. The typical radio device of today is a complex system

having a probably complex antenna subsystem, the still yet analog RF front-end,

the Analog to Digital (AD) and Digital to Analog (DA) converters, some baseband

processing chips in order to get the digital information out of the analog signal,

a software protocol stack for the device to know when and how to transmit or

receive, and on the top of it all, some kind of a user interface to let the end user

use this all, preferably with a few button pushes and an informative monitor to

look at.

Radio devices nowadays usually reside in a portable handheld device. They may

be embedded in computer devices such as GPS navigator or a mobile phone, or in

something with less functionality, such as car keys with which you may remotely

open the car doors. Radio devices may as well be peripheral devices for personal

computers, e.g. WLAN cards.

3.2 Data path

The job of a radio transmitter is to convert the data to the stream of bits, and

further into an analog radio frequency signal in the transmitter. Correspondingly,

the receiver must convert the analog signal to the digital stream of bits, and further,

the data must be extracted from the bits.

In Figure 3.1, we have block-level description of a radio device offering this data

format transformation service, and in Figure 3.2 we have a brief description of the

stages the data goes through when is gets transferred from bits to signal. In the
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Figure 3.1: Radio gadget block structure.

following, we take a look into these stepwise - what happens to the data on a radio

device, and what are the blocks that do the transformation.

3.2.1 Memory and application data

To be able to transmit any data, we must first have the data somewhere2. In a

digital system, the data is always first stored in a memory device of some kind.

From the memory, it is transferrable to the radio device when needed. When

transmitting with a radio, from the memory the data is sent to a digital baseband,

or more generically speaking, to a vector processing engine.

3.2.2 Digital baseband and data modulation

Digital baseband handles applying the modulations to the data. Modulations are

the way to code the data into the electromagnetic signal. The simplest modulations

would be Amplitude Modulation (AM) or Frequency Modulation (FM), but most

radio standards nowadays use more complex modulations. They are more complex

to implement, but are used due to more efficient frequency band usage, better

power efficiency, or for they are less prone to transfer errors due to an unideal

2It may be a file saved to the device, a user may type the data it in, or it might be
collected from microphone input.
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Figure 3.2: Transfer from data bits to RF signal. Modulation resembles that
of two-bit AM.
As radio architectures very a lot, the presented stages are for reference only.
E.g., placement of ADC/DAC depends heavily on the architecture.
Orange texts pick some funcionalities the radio gadget parts typically do.
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channel. E.g. GSM standard requires Quarature Phase Shift Keying (QPSK) mod-

ulation to be used, and Bluetooth uses Gaussian frequency-shift keying (GFSK)

[13, 9].

Baseband processing may also contain e.g. some checksum calculations, error

correction, or bit (de-)interleaving for the protocol [8, 31]. In the digital baseband,

the data bits may be upsampled3, turned around, re-organized, or what ever is

needed to implement the modulation scheme.

3.2.3 ADC/DAC

Analog to Digital and Digital to Analog converters (ADC/DAC) are there to trans-

form digital bits to analog signals, or vice versa.[18] In different radio implementa-

tions, position of ADC/DAC may vary. The previously mentioned digital baseband

could be implemented as an analog one, or ADC/DAC could be pushed yet closer

to the antennae.

In DA conversion, the bits are just mapped to a signal, one or a few bits at a time.

Bits or bit groups are encoded as certain voltage levels. There are several possible

encodings for doing this. AD conversion, made during reception, is trickier than

DA conversion. In AD conversion, used when receiving, we first collect samples

out of the arriving signal. This is done at higher frequency than the wanted signal.

The samples are then averaged to get out the data at correct rate. Averaging is

to cancel out some noise. It reduces effects of high frequency noise. Our sampled

stream of bits may still contain erroneously received bits due to the noise added

to the original signal both in the transmit channel4, and due to the noise our own

receiver makes, intentionally or not.

3.2.4 Analog baseband processing

Analog baseband is the part of the radio where the data flows in format of an

analog baseband frequency signal. That is, where the signal is a data rate signal.

Analog baseband may contain e.g. some filterings for the signal, to keep the signal

from leaking from the wanted frequency band.

3that is, bits multiplied
4The transmit channel is usually air

22



3.3. RF FRONT-END CHAPTER 3. RADIO

3.2.5 RF front-end

RF-FE is the part of the radio near antenna, where the signal is at carrier fre-

quency. Next we look into RF-FE functionality in more details.

3.3 RF front-end

The role of an RF front-end in a radio transceiver is to transfer the signal at

base frequency5 to the wanted intermediate or carrier frequency band(s) or vice

versa. Within the RF-FE, the signals handled are all analog. The information

carried within the signal mediated through RF-FE in might be ultimately digital

or analog, but that is all the same for the RF front-end. To get the transmitted

and received signals out of the RF-FE correctly, various filterings must be done.

RF-FE takes care that the signal keeps in the frequency band intended, and that

it does not leak the signal to unwanted frequencies. [13]

Other functionality the RF-FE does, is power control. The correct power levels

for transmissions and receptions are set in RF-FE.

As technology advances, the ADC/DAC are taken closer and closer to the antenna,

but for now, we still have analog RF front-ends. Ultimately, the signal that enters

the air is analog any way – in the air, we have zeros or ones no more, but only the

signal flowing in time.

To be able to complete the frequency transformation, the RF front-end has a bunch

of things to be taken care of.

The transmitter must be able to send the signal at the carrier frequency band.

The transmitter takes care that the signal emitted is strong enough, so that it

can be heard. The transmitter must not distort the signal too much in any way,

so the information is still understandable at the receiver end of the radio channel

when caught. Also the transmission must not leak to the surrounding frequencies,

which usually are strictly regulated by national or international laws or authori-

ties. E.g., in Finland, the radio frequencies (from 0HZ to 400GHz) are regulated

by the Finnish Communications Regulatory Authority’s (FICORA). Frequency

5Base frequency is that of the transmitted data bit stream. That is, how much data
bits are flowing through the RF-FE.
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allocations are publicly available from their site, [10].

The receiver must be able to pick the signal from carrier frequency. There is

usually need for gain control so that the amplitudes for the received signal are

proper to give forward to the rest of the radio. A too weak signal can not be

detected at the end, and with a signal too strong, information is lost due to signal

cutting off at the high amplitudes. Signal to noise ratio must be kept good enough

in order to be able to decode the signal properly.

3.3.1 RF front-end building blocks

The tasks of an analog radio front-end of a radio transceiver are implemented by

various mixers, filters and amplifiers. Usually there is an Automatic Gain Control

(AGC) block in addition, to adjust the gain in reception. AGC can be implemented

in hardware, but is today often implemented Digital Signal Processing (DSP)

software. In Figure 3.3, we have an example of a radio transceiver structure,

including RF-FE blocks.

Mixers are there to add the carrier frequency with the base frequency signal

when transmitting, or to take the two apart when receiving. Until recently, the

mixing of the signals in transceivers has been made in two or more steps due to

technological challenges. Theses so called superheterodyne transceivers use one or

more intermediate frequencies between the base frequency signal and the signal at

the carrier frequency. As technology has advanced, it has become possible to do the

transfer in one step. These transceivers are called direct conversion transceivers.

[13, 1]

A synthesizer is required to get the carrier frequencies in to the radio. The

frequency oscillations of the synthesizer are formed e.g. with crystals vibrating at

their natural resonance frequencies. The frequencies the crystals produce, are not

exact, but they tend to jitter. A Phase Locked Loop (PLL) is a technique and

construct to lock a crystal frequency to a wanted frequency. The frequency can be

altered this way, as well as kept more constant than the one the oscillator would

be able to produce on its own.

Filters restrict the frequency bands the transceiver uses. They are there to restrict

the transmitted signal to the band we want to use, so that our transmission does
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Figure 3.3: Example of radio transceiver structure.
Block diagram of low IF receiver and superheterodyne transmitter.
Figure based on: [13], p. 174

not disturb the other users of the radio path. There are also filters on the receiver

side of the radio. Filters help in selecting the needed information from the wanted

band, and in suppressing the signals at the frequencies not needed at the moment.

Amplifiers are needed in various stages of both the transmission and reception.

As the signal arrives at the receiver, it might be very weak already, and not

amplifying it would mean an immediate data loss. With Low Noise Amplifiers

(LNAs), the signal is amplified as much as needed (within certain limits) without

much loss in the signal to noise ratio. Also, when the signal proceeds through

various stages of the transceiver, in many stages there is some energy loss, which

lowers the signal amplitude. In order to keep the signal strong enough, it is

amplified where needed.

A Power Amplifier (PA) is used at the antenna end of the transceiver Front-

end (FE), or in the antenna system, ensuring enough power for the outgoing
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transmission.

Automatic Gain Control, unlike the previously introduced hardware blocks, is

usually a acDSP block. It is used to control the strength of the received signal.

AGC strengthens very weak signals and suppressess very strong signals adaptively

during the communication in order to maintain an appropriate level of the received

signal.

3.4 Controlling RF transceivers

A plain RF transceiver is conventionally controlled simply by changing some reg-

isters values. Register values then control directly whatever functionality needed

to twitch - PA gain, filter settings, Local Oscillator (LO) frequency, and so forth.

While the registers might be commanded straight from the application, some driver

functionality is usually written to map the register twitchings into more abstract

commands. This makes the usage of the RF engine more straightforward.

This far, a single RF transceiver has usually been used by a single radio system

only. Therefore the control schemes used within a product have been widely known

in advance. Even while still at the manufacturing state, the control interface may

have been constructed as a quite straightforward mapping of protocol defined

channels to register mappings. “Put the GSM radio on at channel 43, use power

setting 4.”

As there become more radio standards that utilize the same freely usable (or

otherwise utilizable) frequency resources6, and different data encoding techniques,

simply mapping the protocol commands into register values is no more sane. Some

control layers to abstract the usage of the RF engine would help to use the same

hardware for different uses.

It would be useful, if any radio system could ask to use all the applicable radio

parts. Digital baseband systems can already be implemented as more generic

processors, usable by several radio systems, but by now, RF hardware has still

been dedicated to a single radio system only. In the future, it could be possible

for the radio system to say “Use any RF transceiver capable of transmitting at

6At the moment, there are a few freely usable frequency bands. Most commonly used
is the one at 2,4GHz, used e.g. by Bluetooth and WLAN.

26



3.5. FUTURE RADIOS CHAPTER 3. RADIO

frequency 2,045GHz with 200kHz bandwidth, 100ms from now”7 - and get its job

done.

3.4.1 Protocols

All the widely used radio systems have been standardized to some extent, and

each of them offer some sort of protocol to be followed. The radio system defini-

tions vary much, as different systems have been planned for different contexts and

environments, and so have their protocols.

Though any protocol answers questions about how to send the data and how to

receive it, there is much variance in what they define. There are, anyhow, some

things they all define. A radio protocol knows answers to the following questions:

To whom, and how to listen to, when to listen, to whom, and how to transmit to,

and when. What carrier frequencies and frequency bands are to be used, what is

the used modulation, and what timing schemas are used.

3.5 Future radios

Until these days, each RF transmitter has been dedicated to a single radio system.

Today, radio research is striving for Software Defined Radio (SDR) and Cognitive

Radio (CR). SDR and CR are futuristic ways to build a radio system, both still

under research. The original ideas of SDR and CR are described in [23, 24].

SDR in its purest form would be a generic processor with a software module

attached directly to ADC/DAC conversion modules, which would be attached

directly to the antenna system. With an SDR, any radio system could be imple-

mented, by just picking up the wanted frequency and processing it with suitable

software.

CR is a concept going still further than SDR. It has various definitions, or other

way said, there are many different expectations to it. CR would be an ’intelligent’

radio system able to adapt to its current environment on the fly on its own, detect-

ing the changes in its environment, changing its operation accordingly to best suit

7Artificial numbers in the example. Just to show the difference in the way to command
the radio.
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the current needs, whatever they are. The CR could take advantage of the white

spectrum8 found in the environment. With CR, a mobile device could switch to

another way of communication, another communication channel or communication

protocol, when it ever saw a way better one than that currently in use. A cheaper

connection, a connection with better quality, a connection with higher speed, or

how ever we would want to define the goodness of a connection. SDR is usually

seen as a suitable platform for CR.

Yet we do not have either of them, though MIMO techniques, (relatively) freely

usable frequency bands made available, advances in RF and antenna technology,

and the increase in the available computing power, for examples, these all bring

SDR and CR closer to us. Still, there are many open questions to solve.

Many possibilities are offered by the increase in available processing power. The

available processing power for a mobile device is growing due to more efficient data

processing chips and better batteries. More of the signal processing can thus be

moved from the traditional fixed printed circuits to more flexible FPGA chips, or

even to general data processing chips.

The digital basebands of different radio systems can be seen to be mergeable to one

generic processor. This is due to increase in current processor speeds, and relatively

similar tasks the radio protocols require from the baseband. A sufficiently powerful

generic processor for baseband functionality is able to handle baseband processing

for multiple radio connections for several radio protocols concurrently. [26]

We will see, if the ADC/DACs can be taken next to the antenna system in the

future for an every day products, but in the meanwhile, we may concentrate on

looking the possibilities to reduce and re-use the components in current systems.

Possibilities of merging digital basebands are known, but it is yet to be seen how

much integration can be done to the RF parts. At least with currently available

technologies, we can not get rid of all of the parallelism, but something can be

done. One way is using programmable RF ICs [26], (or more generally by using

software,) where there has previously been hardware (usually as fixed circuits).

Another way to reduce parallelism in RF circuits would be some technological

advancements, which would offer possibilities to make the analog radio components

more widely tunable[38], offering e.g., virtually unlimited ranges of frequencies and

8the RF spectrum not in use at that particular moment.
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bandwidths, without considerable losses in signal quality, and without much extra

power needed.

3.6 Summary

Different radio devices in one main device have until now been implemented as

separate radio tubes. Evolution goes slowly towards systems where all the radios

are implemented as one. Technologies include analog hardware development and

utilizing generic processor speedup and more complex software.

However, the basic functionality of the radio stays the same. The data must be

sent out as signals at wanted radio frequencies. To accomplish this, the same basic

functionality must be implemented into the radio, be that in analog or digital form

within the device.
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Chapter 4

Modelling & used models

In this chapter, we look into modelling and simulation, and introduce both the

modelling tools, and radio models utilized within this work.

We start by defining some basic concepts relating to modelling and simulation.

Then we introduce Lyra, which is a modelling technique for communication sys-

tems. Lyra was used to build one of the models we got as a starting point for our

work. We continue into world of model-based analysis, and specifically discrete-

event simulations. We introduce SystemC, a C++ library, that allows discrete-

event, or transaction level modelling, which we chose for the toolkit for our sim-

ulator. We end this chapter by introducing the two models we had as the base

for this work, Software Defined Radio functional architecture model (SDR model)

and RF hardware model.

General modelling sections of this chapter (4.1, 4.3, 4.4) lean on [20].

4.1 Systems

A system is a bunch of entities enacting together to reach a collective goal. An

entity can be anything, depending on the particular system. It could be e.g. a

human, a city, a valve, an ant, a processor.

A state of the system can be described by a collection of variables needed to catch

the relevant information of the situation the system is currently in.
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Systems can be categorized into continuous and discrete systems. In a continu-

ous system, the state changes happen gradually and all the time. In a discrete

system instead, the state changes are happening only at certain points of time,

and they may contain however big changes in the state - and meanwhile, the state

of the system stays constant. Of most of the systems both continuous and dis-

crete attributes can be found, but usually either one is dominant, thus making the

categorization still eligible.

4.2 Lyra modelling technique

Lyra is service oriented1, four phased top-down modelling technique developed for

modelling communication systems[21]. Lyra has been developed and utilized at

Nokia. It aims in supporting the parallel development of software and hardware,

and working as a verifying tool that may be used to formally verify the correct

functionality of the system throughout the design process.

In principle, Lyra is language and tool independent technique, stating just some

phases of the modelling, telling what kinds of things are to be thought of at each

design stage. In practice, Unified Markup Language (UML) 2.0 and Telelogic Tau

have been used with success as tools in various phases.

4.2.1 Lyra phases

Lyra modelling technique consists of four design phases that may be thought of

as recursive modelling steps. The phases are called Service Specification, Service

Decomposition, Service Distribution and Service Implementation. In Lyra, the

high-level functionality is defined first. In later phases, it is sliced to smaller

pieces, defining the functionality at ever more accurate level, ultimately reaching

the implementable system.

Service Specification

In service specification phase, the task at hand is to define the services the whole

system offers to the outside of the system. This is accomplished by specifying

1“service” is used within Lyra a bit unconventionally. That is, there are no servers of-
fering services and reacting to requests. Instead, the offered functionality is called services.
Thus, “service” must be thought of as “function” or “functionality” in this scope.
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services as Computation Independent Model (CIM). Aim of the specification phase

is to define, what the system should be able to accomplish. Particularly, it tells

only what, but it does not tell how to do that.

Service Decomposition

In Service Decomposition phase, the internal architecture and implementation of

the services are specified. This is formulated as Platform Independent Model

(PIM). After this phase, the logical architecture of the system-level services should

be clear. This should be done by decomposing the services to system components.

These may use some external services, Used Service Access Points (USAPs), to

implement the required functionality. Services defined at Service Specification

phase are left untouched - this is all about defining them more precisely.

Service Distribution

In Service Distribution phase, the distribution of the services to a given plat-

form is made. The services are implemented as Platform Specific Model (PSM).

This phase is done bottom-up. Hardware (HW)-Software (SW)-partitioning is

done at this stage, as well as choosing between different possible implementa-

tion techniques, e.g. direct conversion vs. superheterodyne transceiver in RF-

FE, or between a DSP processor, and a FPGA implementation of an Intellectual

Property (IP) block.

Service Implementation

In Service Implementation phase, the planned structural elements are integrated

to the target environment. This is the phase for the things like routing and data

encoding.

4.2.2 Lyra usage in this work

SDR model we used as the starting point for our radio simulator (described in

Section 4.6) is made as Lyra model of phases Service Specification / Service De-

composition [3]. One of the interfaces we built the simulator on, was taken directly

from SDR model. The presentation formats used by the SDR model - interface

function definitions, and the structures of the code implied by them - were adopted

and used in our simulator, where seen applicable.
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4.3 Modelling

We have several ways to study a system. The most relevant way depends on the

system at hand.

If we have an actual system, we are able to experiment it, and if experimenting is

seen feasible - that is, cheap and fast enough - we usually want to do so.

In many cases, this is not so. Experimenting with the system may be too costly,

or we might have not an actual system. If, in spite of these, we want to study that

particular system, we may make a model of it, and experiment with the model

instead of the real one.

A model can be made to a coarse grained one, or an accurate one. The model may

take into account only a part of the bigger system, or try to grab on the whole

system.

Models try to somehow represent the system they model. But however the model

is made, it is always worth to ask, whether the model correctly represents the

system in the aspects we want to study, and how well.

Models may be further divided into physical models and mathematical ones. For

information processing systems, the physical models are not usually of much use.

They can visualise the structures needed, but usually can not tell much about how

the system operates. Mathematical models instead, can always be manipulated

and tested to see how the system does react.

Simple enough mathematical models can be represented as equations, such as

E = mc2. However, in many cases, there is no way to stumble on a simple enough

mathematical model, to be able to study it so that we would get an analytic

solution for it. In this case, we may still take the model and simulate it running.

Simulating is a way to gather information about systems that are so complex, that

we can not find an analytic solution for them. Either making a realistic model of

the system would be impossible, or running it would not give us any answers, at

least not within reasonable time limits. Simulating is done by testing the model

with some (often numerical) input, and studying how the system does react to it,

that is, what we do get as output.

Simulation models may be further divided into dynamic vs. static, These differen-
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tiate systems by whether the time plays a role in the model or not, whether there

is some randomness or probabilistic components built in the model or not, and

whether the system changes happen continuously or only at certain points of time.

Our protocol-initiated radio system under research can be seen mainly as static,

deterministic, and discrete-time system. Protocol initiates commands that then

traverse discretely through the system. The state of the system does not change

outside of the events, all is digitally static and deterministic. Static model means

absence of gradual changes, and determinism absence of stochastic modelling, but

for the discrete-event simulation computer model, we can state a typical structure.

The next subsection describes this briefly.

4.4 Discrete-event simulation model

A discrete-event simulation model contains typically at least the following parts,

if it is based on approach where the simulation advances directly to the next event

in simulation time (adapted from [20]):

System state - a collection of variables needed to describe the system.

Simulation clock - variable keeping track of current simulation time.

Event list - list of events with information about when they will occur.

Statistical counters - variables storing statistical information about system perfor-

mance.

Initialization routine - a subprogram for initializing the simulation model.

Timing routine - a subprogram choosing the next event from the event list and

advancing simulation clock correspondingly.

Event routine - a subprogram changing the sytem state after a particular event.

Library routines - a set of subprograms making random observations from proba-

bility distributions seen as part of the simulator.

Report generator - computes estimates of the wanted measures and produces a

report.

Main program - a subprogram running timing routine and event routines.
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4.5 SystemC

SystemC is an extension of C++ programming language. It is a combination of

simulation kernel and library functions. It is a tool for making discrete-event simu-

lations. Intended use for it is electronic system-level modelling, design and verifica-

tion of an electronic system. It can be used to model projects from a very abstract

system functionality down to VHSIC Hardware Description Language (VHDL)-

like hardware-level implementation. SystemC is an open source project lead by

the Open SystemC Initiative (OSCI). For further information about SystemC be-

yond this section, see [33], and [7].

SystemC simulation kernel (later ”kernel”) offers the tools for running parts of

the code virtually in parallel. That is, it offers a kind of threading system for the

developer. The kernel has also an internal simulation clock, tracking the passing

of simulated time.

With SystemC, you create subsystem parts that are intended to run parallel to

each others, connect them with the kernel, put some timing functionality to the

code if needed, and then let the kernel handle the running of the parallel system

parts for you.

The kernel has a process queue, and a round-robin scheduler. The processes are ex-

ecuted in zero simulation time, and are thus not ever interrupted by the scheduler.

Any timing information must be explicitly built in the process subroutines.

4.5.1 SystemC simulation kernel functionality and us-

age

The kernel requires the subsystems and functions of the subsystems that are to

be driven by it to register with it. Each subsystem is basically just a C++ class,

and the registration is done by wrapping them inside a macro that comes with

SystemC.

The functionality of the subsystems may be freely constructed within the limits

of C++. After registration, the subsystems are commandable by the kernel. In

addition to kernel registration, the subsystems must be connected to each other

via one or more SystemC ports or other SystemC channels where needed, and
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the subsystems must be told to react to wanted events, in order to any kernel

functionality to take effect. There are two kinds of events the subsystems may

react to. These are actions happening through the pipes, and the simulation clock

events.

When using SystemC for building a simulator, sc main2 function is to be imple-

mented instead of the normal C/C++ main function3. The constructed sc main

is called by the real main function, which is embedded within the kernel. The

sc main is used to build the whole simulator with all its subsystems, and to finally

to pass the command to the kernel. The pipes and their connections are created in

sc main, and the real main function makes the final connecting of the subsystems

before starting the simulation with the model.

The kernel keeps track of internal simulated time with the simulator clock. At ker-

nel start, kernel runs once all such functions registered to it that are not explicitly

set to not to start at startup. Functions are run one at a time, in undetermined or-

der. A function runs until the end of it, or until a SystemC wait function4 is called,

whichever comes first. Now the control is handed back to the kernel, which selects

another function into execution. When all the functions to start at a startup (and

those triggered to start at the same time by the other functions) have run, the

kernel picks up the next moment in the simulation time when something is going

to happen at the registered subsystems. Kernel then runs all the functions to be

waken at this SystemC time step - one at a time, and at undetermined order. A

function is waking either from a sleep5, or because it got an event to its port to

react to. This way, the functions are run at the needed SystemC times, and those

only, up to the SystemC time limit that has been set at start, or up to when there

is nothing to run anymore.

2int sc main(int argc, char* argv[])
3int main(int argc, char* argv[])
4sc wait(...)
5wherever sc wait(...) was set to wait for a limited time
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4.6 Starting point: SDR model

Software Defined Radio functional architecture model discussed in [3, 4] was used

as a starting point for the radio control simulator. SDR model describes the

wanted functionality but leaves architecture and timings undefined. SDR model is

made as a Lyra Service Specification / Service Decomposition model. It describes

functionality of a radio platform. The platform offers the possibility to use multiple

radio systems at the same time; at the same time both in a sense of concurrently

used radio tube and of parallel execution in multiple tubes.

A radio system stands for the functionality and/or protocols which define a way

to use the radio hardware. Frequency and timely usage of the resources, data

encoding schemes, and some minimum requirements for the radio device are often

defined in standards. For example GSM, WLAN and Bluetooth (BT), are radio

systems.

Our aim, considering the SDR model, was to get a proof of concept for part of

refined functionality for a Lyra Service Decomposition phase modelled Devices

block (see Figure 4.1). Thus, we were to find whether the functionality description

offered by the Devices model is adequate and given at suitable accuracy.

The functionality offered by any block in a Lyra model is referred to as services.

For this work, we got a set of these services for Devices block to implement. These

included services about e.g. timing issues, data access, and radio system initiation.

4.6.1 SDR model blocks

Figure 4.1 shows the SDR model building blocks. In the following, we give short

descriptions about the most important parts of SDR model, as seen by our radio

simulator.

Devices

Devices is the block whose inner organs we were interested in within this work,

and whose inside we were to model. This block contains radio baseband and

RF functionalities, plus the probably needed controller functionality. RF engine

hardware resides logically within Devices, too.
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Figure 4.1: SDR functional architecture. Adapted from [35]. Courtesy of
Nokia.

Protocols

Protocols is a logical block taking care of radio system specific functionality. An

instance of Protocols knows about timing and frequency-related behavior of a radio

system. Protocols gives Devices the orders for transmissions and receptions, after

asking, and getting permission from MRC.

Multi Radio Controller

Multi Radio Controller (MRC), is responsible for fine-grained resource managing.

MRC decides if a radio system may use the radio frequency hardware or other

resources at the requested time. MRC handles scheduling of the different radio

system transmissions and receptions with its own, dedicated time concept. Time
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concept is used to relate the different radio system times to each other.

Resource Manager

Resource Manager (RM) is responsible for coarse grained resource managing. RM

decides, e.g., whether a new radio system can be put run at the same time with

already running ones, and whether a radio system may be granted certain amount

of the resources. Resources of a single radio device might be under control of a

distinct device specific sub-RM.

Antenna

Antenna is connected to the RF hardware of the device. It provides the way to

access the medium. Controlling the antenna was not considered within this work.

Other blocks

The rest of the functional blocks are not directly connected to the Devices, and

are thus unimportant within this work.

4.7 Starting point: RF transceiver model

The interface between SDR blocks Devices and Protocols was the starting point for

the work, and the most important interface for our simulator. The other interface

the simulator utilizes, faces RF. We did not have a physical concrete functional

radio platform as our RF hardware within this work, to test our software with.

Instead, we got a transaction-level model of the RF transceiver hardware (the “RF

model”), one whose interface was still evolving while constructing the simulator.

The RF model we got is constructed with SystemC. It functions as a sink and

source, or more precisely as a loopback, for the modelled radio traffic going through

the SDR Devices.

The RF model consists of transmitter (TX) receiver (RX) clock circuit (SX) AD-

C/DAC parts. These parts of the RF model further consist of functional models

of radio blocks. E.g. amplifiers, power switches, mixers, and AGC functionality

can be found.

The RF model models changes in the physical features of the radio signal format

that occur when the signal traverses through the radio pipe. At the antenna end

of the receiver, the data signal is described with transmission frequency range and
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some tracking information about the modeled data signal. Timely information is

encoded into the model, too, though it is hardly seen in the signal model itself. At

the ADC/DAC end of the RF model, the data is no more described as a signal,

but instead as the description of a data frame, with information about the number

of bits carried, and some state information about whether the frame is intact or

corrupted by noise (if receiving).

4.7.1 RF interface

The RF model offers us an interface that has services (methods) for setting the ra-

dio transceiver power states, carrier frequencies, frequency bands, and ADC/DAC

resolution and clock frequency.

This level of hardware abstraction was seen as a good compromise between generic

radio transceiver usability through simple unified interface, and possibility to con-

trol the radio transceiver as directly as possible. This abstraction level leaves some

things to be done on the RF side of the radio interface. Examples of functionality

left out of our controller simulator are e.g. AGC6, and accurate radio specific

power control schemas7.

At the SDR Devices block level, we want to be able to command the RF hardware

at unified way, instead of twitching the multiple different implementation depen-

dent variations of the hardware. It is preferred that the gain control just works

so that no receivable bit gets lost due to incorrectly set gain level, but in such

a way that any upper level controller does not need to take care about different

gain levels. Also, it is preferred that the power is saved as much as possible, but

that the RF is still ready to work whenever needed, without the Device needing

to know the explicit implementation of the hardware power saving schemas.

6AGC is usually made as firmware in a simple software loop that controls gain settings.
These settings are individual for each RF implementation. A generic radio controller does
not want to touch these.

7For power control, any radio transceiver offers at least two states, on and off. However,
there might be many more, letting different parts of the radio to go to sleep independently.
Deciding how to manage these is left for the transceiver to do on its own, as a higher level
software does not want to know about tens of different variants of the same functionality.
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4.8 Summary

Modelling is the way to examine systems that are too complex, or otherwise hard

or impossible to examine directly. Characteristics of the still yet unimplemented

system may be approximated this way as well.

Computer systems, running on a clock, are typically discrete systems. Discrete-

event models suit well for examining them. This case is no exception.

We got two different models to deal with within this work. The SDR model is

a Lyra model of a radio system, and the starting point for this work. The RF

transceiver model is a RF radio model playing the hardware for us.

Our radio simulator model is a discrete event model, having its roots in a Lyra

model of a radio system. It is implemented by SystemC. SystemC kernel readily

offers us parts of a typical discrete-event simulation model, namely simulation

clock, initialization routine, timing routine, and the fixed part of the functionality

of the main program.

41



Chapter 5

Radio control simulator

In this chapter, we describe the radio control simulator implemented.

We state the questions we aimed to answer with the simulator, and after this,

we look at the structure of the constructed simulator, look in its architectural

decisions, and see some excerpts from the implementation.

5.1 Simulator scoping

The simulator implementation is constructed on two cornerstones, both introduced

in Chapter 4. These are the the SDR model and the RF model, or particularly

their interfaces - the SDR Devices interface implementation in the SDR model,

and the generic RF radio hardware interface in the RF model.

Studying and understanding these models was a considerable part of this work.

These two models set the framework for our simulator, stating what is to be

modelled and what left out the simulator.

The SDR model gives us an interface to be implemented. The functionality of-

fered by the interface is however, complex, and only parts of it were chosen to be

implemented within our simulator. A complete implementation of SDR Devices

interface would take care of loading used radio systems in and out, handling link

synchronization with the base stations (if required by the radio system), and han-

dling receptions and transmissions. Implementing recepting and transmitting was
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considered a large enough piece of work alone, and thus the other parts of the

functionality were left out from the simulator where possible.

The RF hardware interface we got, on the other hand, must be fully implemented,

if the RF is to do anything correctly. The given interface offers us just functions

that take in numeric arguments resembling physical quantities, e.g. frequency, of

the radio signals that are wanted to use. Frequencies as well as other physical

quantities must all be set correctly before the signal can correctly pass the RF

hardware.

What was left as our simulator scope, is basically two things. The first thing

is translating given transmission or reception related commands (given by SDR

Devices interface) into a form that the RF engine understands. The second thing is

giving the orders to RF engine at correct enough timings, so that it can accomplish

its job.

5.2 Implementation framework

For our simulator, we searched for tools that allow us model the control at suitable

level of abstraction, and to connect us with the provided RF model.

The implementation framework was chosen amongst Telelogic Tau with UML,

Java, and C++ with SystemC. SystemC was chosen.

Telelogic Tau with UML was used for the SDR model construction. These would

allow the modelling of the SDR Devices block based directly on the SDR model

already constructed. On the other hand, Tau was an unknown tool, probably

needing much effort to familiarize with. Also, connecting the Tau model (one with

a very high abstraction level) to other available, probably low-level models, was

considered hard, if directly possible at all.

Java is a language that would allow probably shorter development times than

C++-based SystemC, partly because the language structure, and partly because

is was already a familiar tool. On the other hand, as far as we know, Java lacks

connections to suitable low-level modelling tools. Also, Java does not support

low-level coding, would that have been required.

SystemC is a C++ library designed to make system simulations, and it offers a
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readily built simulation kernel aiding with the simulator construction. Also, there

are means to connect the SystemC code to various levels of code, from C++ code

to VHDL-level modelled code. SystemC was an unknown library for us. However,

it has fairly good documentation available, and it is C++ library, a library of

already familiar language.

We chose SystemC as the implementation framework for the simulator. Integrating

the control side of the simulator with the RF hardware model is easy enough with

SystemC, independent of the abstraction level of the RF HW model we have1.

As SystemC is a C++ library, high-level or abstract models made with System-

C/C++ are easily attachable with it. But also some signal-level modelling tools

offer us a readily made SystemC interface, allowing us to attach our high-level

model of the controller software to a low-level model of the RF hardware easily,

would that be required.

5.3 Implementation

The created simulator model is characteristically a SystemC model. Much of the

modelling made with SystemC is about creating the subparts of the system, called

modules, and ports with suitable functionality, and connecting these together. Our

simulator consists of several modules representing different functional parts of the

system.

Our modules have quite a simple structures inside them in addition to ports and

connecting them. That is, most of the functionality is built within ports. In

our implementation, a SystemC ports function either as handles to the module

functionality, or as buffers for data or commands - or both.

Structures for radio system dependant functionality are very complex if fully im-

plemented. They would require e.g. data link models to really work. Due to scope

of this thesis, radio system structures were stripped down to amount of information

just enough to run the simulator with the fixed input.

The remaining data structures used in the implementation are mostly various

1Before getting the transaction-level model we now have for the RF hardware, a lower
level (or a more detailed, or a hardware oriented, or a logic port level) model of RF
hardware was considered by our partners.
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tables. These contain much of the translation information, needed to translate

e.g. from time format to another, or from radio channel information to frequency

information.

Implemented algorithms are typically mappings from values to others, finally lead-

ing either to setting of some physical properties of the radio tube, or to launching

a certain event at the wanted time. Logic in the algorithms is mostly at the level of

if clauses, like “If port A gives you value X, put value Y in the port B”. Somewhat

more complex algorithms are found when dealing with time concepts. Time trans-

lations from device system time to radio system (base station) times are mainly

linear translations, maybe added with some resets of the clock counters.

The commands are arriving at the SDR Devices in order of execution, as the

operating schedule for the RF HW is made outside of SDR Devices. As this results

in using translation tables for the given arguments, and in some time calculations,

but not in complex or long-lasting calculations, there seem to be no reasons for

using scheduler, or processes, or the like more complex concurrency handling.

Interrupts may be needed, depending on the actual real implementation. In the

simulator, the event-based functionality of SystemC simulates interrupts.

The commands are executed in order, and are in a basic case no longer needed

after usage2. This states, that a filesystem functionality is not required for the

functionality, but simple buffers3 will be required at the borders of the modules.

What is needed, is some kind of accurate enough latcher that passes the translated

commands for the RF at just correct time. If the RF HW itself has a buffer big

enough4, the RF could be able to handle the latching correctly on its own.

5.3.1 Simulator block structure

In the following, we briefly look at the structure of the simulator. Figure 5.1

presents the block structure of the simulator.

System

System “is” the simulator, being the only block needed to call to construct the

2a more advanced system might re-use the commands e.g. in periodically utilized
systems such as GSM.

3circular or other FIFOs will do
4“big enough” does not to be that big really, some bytes should be enough
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whole simulator. It is a container and connector of more detailed blocks.

Figure 5.1: Simulator block structure and control and data paths. Control
flow is presented as blue line, data flow as green line.

System connects DeviceUser and Device blocks, which represent the protocols and

all the upper level functionality as needed, and the peripheral device, respectively.

DeviceUser and Device communicate using service requests and responses defined

by SDR Devices. These are mapped into the Device if interface, which consists of

two interface classes, one for each caller.

DeviceUser

DeviceUser is a construct simulating any parts of the SDR model that commu-

nicate with the SDR Devices. The parts of SDR model which use SDR Devices

services are SDR Protocols and SDR Multi Radio Controller.
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The DeviceUser functions as a fixed load generator of the simulator. Since

simulating any particular radio protocol was not at the bullseye for this work,

it contains no generator algorithms, but just pre-defined command lists that are

then fed to the Device. DeviceUser sends GSM and WLAN related commands for

the Device.

Device

Device block is a container for SDR Devices implementation. It contains RF and

baseband parts of the radio device, as well as controller structures needed to

translate SDR Devices requests to the format the further contained blocks can

understand.

The control structures of the Device save information about the radio systems

that are in use, and the algorithms for translating the commands from the

Protocols to the format the Radio understands. In addition to giving commands

from User to Radio, some commands must be given to the Modem, too, so that

the data gets flowing.

Modem

Modem stands for a digital baseband, or similar functionality. It is a skeleton

model of a device that could do e.g. framing of the data, and calculating and

addition of the error correction bits to the data frames. Functionality offered by

our Modem is minimal. The “data” flowing through it is simply some numeric

descriptions about what would there be, were the real data there. Modem does

quite simple type conversions for the data it gets, reflecting the processes there

would be in a real situation.

Modem was initially thought to be fully left out of this work, as it was seen to be

out of the scope of this work. However, including it was finally seen as a must,

since we were required to validate the radio control by driving at least some

dummy data frames through the system. In the end, what we want the radio to

do, is to get some data flowing in and/or out. A control that fails to provide a

connection to the radio network for the user, for DeviceUser in our case, is of no use.

Radio

Radio block is a container for the signal handling RF front-end plus ADC/DAC
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functionality. RF front-end further contains the hardware for the RF front-end,

and the software logic for the radio to translate the given generic radio commands

for the hardware.

Radio is accessed through a generic radio interface. This may be thought of as

a HAL to group up some control events given to the RF-FE that are repeatedly

called as certain patterns.

Radio Logic (RF SW)

Radio logic translates the generic radio usage commands given by the Device logic

into the form the RF HW understands.

Radio logic handles things like translating generic radio commands such as

“transmit on” and “use band 2,014 to 2,034 GHz” to the correct functional-

ity of the RF HW. A simple generic radio interface command may translate

to e.g. setting some registers to states that correspond to the wanted functionality.

Radio Hardware (RF HW)

RF HW, described in 4.7, is the radio hardware we ultimately wish to control,

letting the radio user connect to the radio network, transmitting and receiving

the messages to and from the network as radio signals.

The interface offered by this external module was used “as is”. A control logic

programmer takes the RF HW as a black box, just using the offered interface.

ADC/DAC functionality (not seen in the figure) was added to the given analog

RF hardware model for simplicity of usage and for a bit of modelling accuracy.

5.3.2 Example: sc module construction

In Figures 5.2 and 5.3 we have an excerpt of code about typical usage of SystemC,

used to create a SystemC module.

In Figure 5.2, we have the header file of a module.

SystemC functionality is first made accessible by including systemc.h at line 2.

Starting at line 10, we have a definition of a class inheriting SystemC module class

sc module. This makes our class connectible to SystemC kernel.

At lines 13-15, we have the subsystems of our System, namely Device, DeviceUser,
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1 ///// System . hh /////
2 #inc lude <systemc . h>
3

4 namespace s imu la tor {
5

6 // forward d e c l a r a t i o n s f o r p o i n t e r s
7 c l a s s DeviceUser ;
8 c l a s s Device ;
9

10 c l a s s System : pub l i c sc module {
11

12 /// System par t s ///
13 DeviceUser ∗ user ; // System out s ide o f SDR Devices
14 Device∗ dev i c e ; // SDR Devices implementation
15 Radio channel ∗ channel ; // ‘ ‘ a i r ’ ’
16

17 // Connections between system part s
18 s c f i f o <Data frame> f i f o u s e r 2 d e v ;
19 s c f i f o <Data frame> f i f o d e v 2 u s e r ;
20 s c s i g n a l <RF frame l i s t > dev2channel ; // Contains RF frames
21

22 SC HAS PROCESS( System ) ; // Inform SystemC kerne l
23 // about t h i s module
24 pub l i c :
25 System ( sc module name name ) ;
26 ˜System ( ) ;
27

28 } ;
29

30 } // namespace s imu la tor

Figure 5.2: Typical SystemC module code, header file.

and Radio channel. These are all SystemC module inheritors. They are defined as

pointers for faster compiling and possibility to change modules on the fly, without

the need to compile the whole system again. The classes are forward declared at

lines 5-6 to avoid compile time notifications about non-declared data structures5.

5In a real life implementation situation, a module could be an IP block, made by some
other implementor, and not yet available. However, it is often enough for us only to know
the interface it uses, and thus the functionality it must implement. Our parts of the
program can still be compiled, without the exact implementation available.
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1 ///// System . cpp /////
2 System : : System ( sc module name name) : sc module (name) {
3

4 user = new DeviceUser (” user ” ) ;
5 dev i c e = new Device (” dev i ce ” ) ;
6 channel = new Radio channel (” channel1 ” ) ;
7

8 user−>make connect ions ( device , f i f o d e v 2 u s e r , f i f o u s e r 2 d e v ) ;
9 device−>make connect ions ( user , f i f o u s e r 2 d e v , f i f o d e v 2 u s e r ) ;

10 device−>to channe l ( dev2channel ) ;
11 channel−>inOwnTx( dev2channel ) ;
12 }

Figure 5.3: SystemC module code, .cpp file.
Example of module creation and sc interface connecting.
Namespace and includes (systemc.h, and header classes for the
submodules) are left out for simplicity.

After the modules we define the channels that are to be connect our subsystem

modules together. This is done at lines 18-21.

At line 22, we register our module with SystemC kernel. SC HAS PROCESS(...)

is SystemC defined macro that makes the connecting for us, and the argument

given to it is the name of the connected class.

The constructor in the format seen at line 25, taking argument sc module name,

is required by SystemC. The destructor at line 26 is required for destructing sub-

modules when they are not needed anymore.

In Figure 5.3, we see an excerpt of the module implementation file.

The constructor of the inherited sc module is called at line 2. At lines 4-6, the

submodule constructors are called, and so do the pointers to the submodules get

their contents. At lines 8-11, the modules are connected together. Lines 10-11

represent the common way to connect the modules (to channel and inOwnTx being

ports), while lines 8-9 represent a self created, custom way to connect multiple

ports with a single function. Each submodule, if containing further submodules,

takes care of connecting them on its own.

By creating an instance, we have a module connected to SystemC kernel, ready to

be used.
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5.3.3 Example: sc interface usage

In Figures 5.3 (familiar from the previous example), 5.4, and 5.5, we have code

excerpts about the usage of sc interfaces in this simulator.

1 ///// D e v i c e i f . hh /////
2 c l a s s i f d e v i c e : v i r t u a l pub l i c s c i n t e r f a c e {
3 pub l i c :
4 s c por t <i f d e v i c e U s e r > U i f ;
5 . . .
6 v i r t u a l void
7 make connect ions ( i f d e v i c e U s e r ∗ user , . . . ) = 0 ;
8 void reqFunct ion ( Param a &p ) ;
9 . . .

10 }
11

12 ///// Device . hh /////
13 c l a s s Device : pub l i c sc module , pub l i c i f d e v i c e , . . . {
14 . . .
15 } ;
16

17 ///// Device . cpp /////
18 void Device : : make connect ions ( i f d e v i c e U s e r ∗ user , . . . ) {
19 th i s−>U i f (∗ user ) ;
20 . . .
21 }
22

23 void Device : : reqFunct ion ( Param a &p) {
24 Param b p (p . getParamPart ( ) ) ;
25 U if−>doSomething ( p ) ;
26 }

Figure 5.4: sc interface usage example (1/2).

We have Device and DeviceUser modules, that are connected to each other through

sc interfaces. Both of them have an interface they implement, and a port to attach

the other module to.

Connecting is initiated at System module, calling make connections functions at

lines 8-9 in Figure 5.3. make connections is a function declared in an interface
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class, as in figure 5.4 at line 7 in Device if.hh, and implemented correspondingly

in Device.cpp (line 16 in the same figure). Within make connections, SystemC

port(s), also defined in the interface, are connected to the ports given as arguments.

Interface ports are ports that are used to call the communications partner, and

ports are given as pointers to the communication partner. In this extract, we have

an sc port of type if deviceUser defined in if device, and correspondingly if device

typed port in if deviceUser. Device and DeviceUser then connect the ports in

make connections. The real connection mechanism in itself resides in readily made

SystemC libraries, in sc port.

Interface usage in itself is then easy. The interface functions are called for the port

the communications partner is connected to, as in line 17 in Figure 5.3 and in line

25 in Figure 5.5.

The rest of the Figures 5.4, and 5.5 are presented for required inheritances for the

code to work with SystemC kernel.

1 ///// DeviceUser . hh /////
2 c l a s s DeviceUser : pub l i c sc module , pub l i c i f d e v i c e U s e r {
3 void make connect ions ( i f d e v i c e ∗ device , . . . ) {
4 D i f (∗ dev i c e ) ;
5 . . .
6 }
7 void ackFunction ( Param b &p){ . . . }
8 } ; // c l a s s DeviceUser
9

10 ///// DeviceUser . cpp /////
11 DeviceUser : : DeviceUser ( sc module name name)
12 : sc module (name ) , . . .{
13 SC THREAD( aFunction ) ;
14 }
15

16 void DeviceUser : : c a l l i n g F u n c t i o n ( ){
17 c Param p ( ) ;
18 D if−>reqFunction (p ) ;
19 }

Figure 5.5: sc interface usage example (2/2).
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5.4 Simulation propagation

The simulator can be run by calling the binary from the command line. The length

of the simulated time period can be given to the simulator as an argument, if there

is need to restrict it.

The simulation run starts at SystemC kernel code, where the main function resides.

After the initialization of the simulator, SystemC kernel runs the simulator mod-

ules, feeding them radio protocol commands, until there is nothing to do anymore,

or until the given simulation time limit has been reached, and then returns.

In the following, we look more closely into the details of the simulator run.

5.4.1 Initialization

Simulator initialization starts in sc main function. The simulator parts are created

and connected, and connections checked.

Start at sc main

The simulator initialization starts by SystemC kernel calling the user generated

starting function, sc main. It is up to this function to register the simulator com-

ponents into SystemC. (Subcomponents can connect their further subcomponents

on their own.) When the sc main returns, the execution continues at SystemC

kernel code, starting the simulation with the registered components.

In Figure 5.6, we have the required parts of our sc main function. Our sc main

creates our simulator container module System, and after it calls the sc start,

which initiates the simulation of all of the modules at SystemC kernel. Simulation

time limit is also handled within this function, if set.

1 i n t sc main ( i n t argc , char ∗ argv [ ] ) {
2 . . . // check arguments f o r the s imu la t i on t ime
3 s imu la tor : : System ras (” System ” ) ;
4 s c s t a r t ( s imu la t i on t ime ) ;
5 }

Figure 5.6: Starting the simulator.
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System creation

System module “is” the simulator in a sense that it gathers up all the simulator

specific data structures and functionality. All of the submodules are created re-

cursively by the System creation (Figure 5.6, line 3). Within each module, the

module structures (class structures) are created just as in a traditional C++ class.

Due to SystemC, there is also something else to be done. The module itself is to be

registered to SystemC kernel, and so are the interfacing functions that are either

to be attached to ports, or to be initiated by the SystemC kernel6. Submodule

ports are also connected at module instantiation.

Connectivity check

Once SystemC kernel has got the instruction to start the simulation (sc start at

line 4 of Figure 5.6), it begins driving the modules given to it. A check is made to

see that all the ports of the modules are connected. An unconnected port typically

stands for a design flaw, and any of these must be corrected before the simulation

run is started. SystemC kernel prints an error message and refuses to proceed,

if unconnected ports are found. When port check is passed, the simulation may

starts.

5.4.2 Simulation

The simulation is controlled by SystemC kernel. The SystemC kernel has a simple

scheduler in it, and it also keeps track of simulation time.

Kernel schedules the methods and threads given to it to run, finding the one with

the earliest starting time and letting it run. The methods and threads given to

the kernel either have a time stamp for when to run, or are started by an event

happening at a port. Events occurring at the same moment in simulation time

are run in undefined order. Once a method or thread is started, it is run until

it stops executing. This is done either by leaving wait until a certain simulation

time, or until reaching the end of its code. Whatever happens within the method

or thread, is considered happening in zero time, so the timely proceeding, if any,

must be built within the system if needed.

6Functions attached to ports are implemented as SC METHOD. Kernel initiated func-
tions are run only once, often at te system startup, and are implemented as SC THREAD.
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5.4.3 Control

Control commands of the simulator are given by DeviceUser to Device through

the Device if interface. They always contain a way to identify the radio system

that the command is for. What other information is given in addition to the

identification information, depends on the service used.

Operations service is responsible for recepting and transmitting data signals. Prop-

agation of control for this service is given as an example.

Subservices of Operations commands carry with them a notion of time and the

channel of the radio system which is to be used as arguments. The time is there

to tell when the command is to ultimately make something flow out of or into the

Radio. The channel contains the information about the frquencies that are to be

used. The command must lead to a correct transmission or reception in the RF

engine.

Inside the Device, device controller software looks into its inner states to see what

does the given radio system identifier mean. It looks if there is such a system at

all, if it is ready to use, or must it be initialized first.

Some kind of a time conversion takes place here, too. The different radio systems

have their own notions of time, and ways to structure and arrange all the com-

munication taking place. The point in time given through Device if is given as a

generic device system time, in a generic time format, used for any radio system

residing in this particular physical device. Now the Device control software must

decide, what this does mean in reference clock cycles, to be able to command the

radio engines at the correct times.

The channel information, given in the service request, must also be dug from the

radio system specific inner structures of the control logic of the Device block. As

it is not a thing for the RF engine to know what the particular channel means, the

channel information is translated to frequency related knowledge, e.g. to carrier

frequency and bandwidth.

All the translated information the Device logic now has, is then given to the

Radio, particularly to RF SW. Radio translates the frequency information further

to suitable register values, saves them and stays waiting to another command

which tells it to turn the hardware (either transmitter or receiver) on (and later
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off), according to these saved settings. The timely information is not given to the

Radio as a value to process anymore, but the Radio just proceeds immediately

doing what it is commanded to do, at its own pace7.

5.4.4 Data propagation & Data models

Study of data propagation was not aimed at within this work, but it was given

some attention in order to understand the other functionality needed by the control

in the Device.

Any real data is not required in order to validate the control. It is enough that we

get some notion about our “data” passing some control points. In this work, the

data is described as objects that contain some information about the format the

data currently has within the data pipe, and some information about the chain of

steps the data has flown through.

In TX direction, data propagates from DeviceUser to modem, from Modem to

Radio, and inside the Radio from DAC to RF HW.

We call the objects representing data the DeviceUser sends to the Modem (or

vice versa) DataFrames. These objects represent the plain data stream, where

packaging or framing, is omitted.

Data objects that exit the Modem in order to enter Radio are called SampleFrames.

SampleFrames are to track and describe the changes the Modem makes to the data.

The data packets may be e.g. interleaved, or they may have error correction bits

added to them.

SampleFrame continues its journey towards the RF HW inside the Radio. In the

ADC/DAC it gets transformed into the form of RF-Frame. RF-frame is model for

a data signal, transformed into analog format in DA converter. The data stops

being a digital data frame, saveable in a memory, but starts being a signal.

The same data path and data formats are used at RX, but naturally to the reversed

direction.
7This is an architectural decision leading to a requirement that the speeds of the Radio

being able to tune itself, or to switch itself on or off, must be known at the Device logic
level.
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5.5 Output & Results

Program output has the appearance of Message Sequence Charts (MSCs). From

these, we can track down the propagation of the control commands running

through the simulator.

From the runs, we see that the control is able to reach the RF HW, and give it

commands that make it transmit and/or receive the signal at the frequency we

wanted. Control travels from DeviceUser8 through the Device interface to Device

controller software, and further into Modem and Radio.

As the result, we find that the control interfaces given to us, namely SDR Device

interface and RF hardware interface, seem to be sufficient to drive the generic

radio hardware model. Differing protocol skeletons, those of GSM and WLAN,

were used to drive the RF model. This shows us that the interfaces do work well

for a generic multiradio.

5.6 Summary

Radio controller simulator described here is based on two external models, Software

Defined Radio functional architecture model (SDR model) and RF transceiver

model. It is implemented with SystemC. SystemC was chosen due to co-design

reasons.

The simulator size is about 6000 lines of code9. Simulation runs, including simu-

lator initialization with SystemC kernel, take a few seconds for the test sequences

we have.

The simulator consists largely of SystemC structures, as is typical of SystemC sim-

ulators. There are modules that implement the functionality, and ports (channels)

that connect the modules together. The modules coarsely represent chips on a

device, but more at the level of thought than that of a real implementation. The

simulator is too simple to be used for model-based computing, but it can be used

as an aid for further development of the radio model, that is, it can be used to

model-based design.

8representing SDR Protocols and SDR MRC
9The RF hardware implementation excluded
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We ended up with a simulator that has hierarchical module structure, describ-

ing coarsely the chips on a board. Modules are constructed as SystemC classes,

classes that inherit basic module class of SystemC, sc module. Module hierarchy is

there both to help understand the functionality the Devices block implements, and

encouraged by SystemC, which readily offers threading system for the modules.

There are practically no operating systems like structures, but this is more due

to the high abstraction level of the simulator, and simplifications, than due to

that the system would not require such. Some buffers and timers/latchers were

required, but implemented almost implicitly with SystemC. With a more complete

implementation, some basic memory space allocation schemes would be required.

If the radio system loading into the device would have been implemented, some

way to allocate memory from the controller memory space safely would probably

have been required. Loading a new radio system into the device was out of our

scope for us, so we did not need memory space control either.

Abstraction level of the given radio interface seem to be wisely chosen. They

could indeed serve both of the tested (though simplified) radio protocols, GSM

and WLAN. Based on this experiment, they could be used as interfaces for a

generic multiradio.
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Conclusions

In this work, we were to create a simulator model of a generic radio device (RF

device) controller. The simulator was to test given generic radio interface functions

for their usability at controlling a generic RF transceiver. We were also to see,

what kind of control software would there be in a radio controller, and if there is

any match for the operating systems technology.

The abstraction level of the implemented simulator was lifted up during the

project, when the complexity of the system was revealed. Abstraction level of

the simulator is too high for us to make much conclusions about the similarities

between the generic radio controller software technology and operating systems

technology. Not much operating systems technology was required for the simpli-

fied functionality of SDR Devices now implemented. The most complex structures

required were buffers, timers and latchers. This implementation can not, how-

ever, state whether more sophisticated system structures would be preferred or

required. E.g., realistic schedules with even approximate execution times are not

implemented here, unlike planned at the beginning, making it hard to say anything

about required concurrency related software.

The constructed simulator can be used further for model-based design of a more

accurate model of the multiradio system, continuing the development according to

Lyra or other modelling technologies.

Controlling the RF engine through the given SDR Devices interface was shown

to be possible for concurrently running radio systems with the given RF engine
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model, and RF hardware interface. That is, the SDR devices interface offered

the required functionality for RF radio usage, and RF hardware interface using

physical quantities is seen to be as generic as possible, leaving implementation

dependent functionality for the RF harware block to implement.

The SDR model sets some requirements for the implementing software platform.

SDR Devices block1 must have either built-in knowledge about the radio system

functionality it runs, or a way to get the radio system related data loaded inside

it, and time concepts of each radio system must be translated into a uniform time

format that ticks the time of a common, system wide, clock. RF engine functions

must be executed on that time.

6.1 Future work

The implemented simulator is a functional model only, concentrating on configur-

ing the states of the RF engine correctly. The next step would be to implement

the time information into it. Tackling the timing issues is crucial for a system

that has to be in correct time in a margin of a few microseconds. With a fully

implemented timely behavior, it could be seen, whether there are any issues re-

quiring some modifications to the interface, for multiple concurrently functioning

radio systems.

Time handling was originally meant to be implemented into the simulator during

the project, as handling the multiple time concepts of each radio system and

integrating these into the simulator was thought to be, though not trivial, but

doable part of the SDR Devices implementation. Implementing the time into the

model was first started, but later it was left for future work, as it became clear

that this is a larger task than expexted2.

A model simulating the SDR Devices services on a real hardware platform as a

place to run the control code for the radio would be the ultimate proof of concept

for the SDR model.
1In our implementation, Device module resembles SDR Devices
2Besides us needing to construct the SystemC model differently, proper modelling would

have required link models, more exact protocol models, and knowledge about typical
hardware timings, for examples.
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Control inside the RF engine itself would be worth to study as well. There are

interesting questions about e.g. power control and component selection to study,

left to be done on the other side of the RF hardware interface. Power controlling

schemas and power usage optimization relate to the durability of a battery. Deci-

sions about component usage, in case of multiple radio components being able to

perform the same transmissions or receptions, relates to performance the gadget

offers for concurrent operations.
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