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Emerging wireless systems demand more frequency bands in order to provide high data

rate services. Most of the licensed frequency bands are underutilized, because of the

rigid spectrum allocation. Cognitive radios aim to relieve the situation by identifying

and exploiting the underutilized radio spectrum. A key taskof the cognitive radio is

spectrum sensing, which is intended to detect unoccupied frequency slots and licensed

spectrum user transmissions.

This thesis presents an implementation of an autocorrelation-based feature detector

for orthogonal frequency-division multiplexing (OFDM) based primary user signals.

The autocorrelation-based detection algorithm is optimized in order to achieve power

and area efficient hardware realization. The VHDL implementation is presented in de-

tail and verified by simulations. After verification, the algorithm is implemented in a

field-programmable gate array (FPGA) evaluation environment, and the performance

is verified with measurements. An application-specific integrated circuit (ASIC) im-

plementation is also realized in order to obtain comparabledata of power consumption

and area.

The algorithm implementation with DC offset compensation performed as predicted

by simulations. The FPGA implementation requires 987 LUT flip-flop units, and the

dynamic power consumption is 3.69 mW. The ASIC circuit implemented with 65 nm

CMOS process occupies an area of 0.26mm2, and has power consumption of 1.02

mW.
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Nykyiset ja tulevat langattomat järjestelmät tarvitsevatyhä enemmän taajuuskaistoja

uusille palveluille. Lähes koko käytettävissä oleva radiospektri on lisensoitu, mutta

suurinta osaa lisensoiduista taajuuskaistoista ei hyödynnetä tehokkaasti tiukkojen käyt-

töehtojen vuoksi. Kognitiiviset radiot voivat helpottaa tätä ongelmaa, tunnistamalla

vajaasti käytetyn kaistan ja ottamalla sen käyttöön häiritsemättä kaistan lisensoinutta

käyttäjää. Kognitiivisten radioiden tärkein ominaisuus on löytää vapaat spektrin alueet

sekä tunnistaa lisensoitujen käyttäjien lähetykset.

Tässä diplomityössä esitetään autokorrelaatioon perustuvan spektrinhavainnointialgo-

ritmin suunnittelu ja toteutus. Algoritmi tunnistaa OFDM-signaaleihin perustuvia jär-

jestelmiä. Toteutuksessa algoritmia on muokattu, ja laskentaa yksinkertaistettu tarvit-

tavan pinta-alan ja tehonkulutuksen pienentämiseksi.

Implementaatio ja VHDL kuvaukset verifioidaan simulaatioilla. Algoritmi on toteu-

tettu FPGA kehitysalustalle, ja sen toiminta on varmennettu mittauksilla. Algoritmi

toteutettiin myös ASIC-piirinä tehonkulutus- ja pinta-alatietojen saamiseksi.

FPGA-toteutus tarvitsee 987 LUT flip-flop paria, ja sen tehonkulutus oli 3.69 mW.

ASIC:na piiri toteutettiin 65 nm CMOS prosessilla pinta-alanollesssa 0.26mm2 ja

tehonkulutuksen 1.02 mW.

Avainsanat: kognitiivinen radio, spektrin havainnointi, autokorrelaatio
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Chapter 1

Introduction

Today’s wireless services have advanced significantly since the roll out of the conventional

cellular systems. The demand for various kinds of mobile services have increased and higher

data-rates are needed to meet users’ requirements. However, there are no free frequency

bands available as the whole spectrum is tightly allocated to existing systems. The radio

spectrum is assigned to primary users by local authorities who restrict the spectrum users

to specific bands of the spectrum, while prohibiting the usage by others. These frequency

bands are even more limited by usage when they are divided into channels that use specific

encoding and modulation schemes to prevent interference between users. The regulations

on spectrum usage might work effectively for certain spectrum bands, but mostly they are

only legacies of telecommunication history, where the spectrum has been allocated to the

first comers, with television and radio broadcasts having the most preferable bands.

Primary users do not always use the spectrum reserved for them or it might be used in-

efficiently. Hence, the spectrum is underutilized, and yet,there is no free spectrum available

for new users. A few spectrum bands have been released for newapplications, as analog

television broadcasts have been discontinued in various countries, but this will not solve the

problem as a whole. According to extensive measurement campaigns, radio resources are

utilized from 15 percent up to 85 percent depending on location, frequency band, and time

of day [1]. Underutilized spectrum introduces fascinatingpossibilities for opportunistic us-

age. Cognitive radios, first introduced by Mitola [2], are proposed to solve the problem by

exploiting this underutilized spectrum. In the United States, the unused broadcast television

spectrum was opened for unlicensed use. However, in most countries the regulations on

spectrum usage have to be altered in order to allow cognitiveradio operation.

The cognitive type of radios are aware of their location, their network, and spectral envi-

ronment. In addition, they can adapt to their environment tosupport more efficient spectrum

utilization. Cognitive radios will be surveyed in more detail in Section 2.3. A key task of

cognitive radios is to sense the spectrum, and then opportunistically exploit the free resources

found. Several spectrum sensing techniques are introducedin Section 2.4.

In the work described in this thesis, an autocorrelation-based orthogonal frequency-
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division multiplexing (OFDM) signal detection algorithm,based on prior work by Chaudhari

et al. [3], is implemented in a field-programmable gate array(FPGA) evaluation environ-

ment. OFDM-based signals are currently used in many currentand emerging communica-

tion systems (e.g., WLAN, DVB-T, LTE, WiMAX, IMT-A), thus enabling the detection of

OFDM signals is highly relevant. The WLAN stands for wirelesslocal area network and

is widely used by personal computers and smart phones for data transfer. The DVB-T is

digital video broadcasting-terrestrial used in broadcasting the digital television signal on air.

The LTE stands for long term evolution which is a project namefor new high performance

cellular mobile communication systems working as a stepping stone for fourth generation of

radio technologies. WiMAX, meaning worldwide interoperability for microwave access, is a

telecommunications technology providing wireless data transmission. IMT-A, international

mobile telecommunications advanced, is the fourth generation of cellular wireless standards.

It is the successor to 2G and 3G standards providing a wide range of data rates up to gigabit-

speed.

The Chapter 2 is begun with mathematical derivation of commontheory related to spec-

trum sensing algorithms. Then OFDM signaling system and cognitive radios itself are eval-

uated. Next the spectrum sensing challenge is considered, and common spectrum sensing

algorithms are viewed. In the end of chapter 2 the design of digital implementation is in-

troduced. The sensing algorithm itself and few modifications are presented in Chapter 3.

The algorithm verification process is also described. Chapter 4 describes the sensing algo-

rithm implementation, hardware description verification process, and implementation for an

FPGA and an application-specific integrated circuit (ASIC).Finally, experimental measure-

ments and results are shown in Chapter 5. In the end, whole workand results are concluded.
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Chapter 2

Background

This chapter introduces the theory behind the detection algorithm, and derives equations

needed to go further in the algorithm implementation. The algorithm is implemented in a

field-programmable gate array (FPGA) development board, therefore digital design is cov-

ered in Section 2.1. Next, in Section 2.3, the concept of cognitive radio is introduced. Fol-

lowing this, the key challenge and topic of this work, the spectrum sensing is described in

Section 2.4. The main issues and challenges that need to be considered in this work and in

cognitive radios are presented in Section 2.3.2.

2.1 Digital implementation platforms used in this work

2.1.1 Field-programmable gate array

Field-programmable gate array (FPGA) is a programmable logic device that enables imple-

mentation of large logic circuits [4]. The general structure of FPGAs contains three main

types of resources: configurable logic blocks (CLBs), input/output (I/O) blocks, and inter-

connection wires and switches. The logic blocks are arranged in a matrix, where intercon-

nection wires are used as routing channels horizontally andvertically between rows and

columns of CLBs. These routing channels contain wires and switches, thus allowing nu-

merous ways to connect the CLBs. The I/O blocks enable connections between CLBs and

pins of the package. Connections between interconnection wires and I/O blocks are also

programmable.

Each configurable logic block in an FPGA contains digital logic, inputs, and outputs.

The amount of logic used varies between manufacturers. The most commonly used CLB is

a lookup table (LUT), which contains storage cells used to implement a small logic function.

Each storage cell can hold a single logic value, either 0 or 1.This value can be obtained as

an output of the logic cell. Many different sizes of LUTs can be used, where the amount

of inputs determines the amount of variables used in a logic function. Figure 2.1(a) shows

how a logic valuef is obtained in a two-input LUT using input variablesx1 andx2 as the

multiplexer control signals.
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In order to implement a design on the FPGA, the CLBs are individually configured and

interconnection wires and switches are configured to connect or disconnect CLBs. The con-

figurable logic block used in Xilinx Virtex-5 FPGAs containsa 6-input LUT, associated with

muxes, logic, and a flip-flop, shown in Figure 2.1(b) [5]. Modern FPGAs can contain up to

hundreds of thousands CLBs. Sophisticated development software is needed to configure the

FPGAs. The manufacturer specific development software takelogic design as an input and

then output a bitstream for configuring the FPGA.

0/1

0/1

0/1

0/1

x1

2x

f

(a)

(b)

Figure 2.1: (a) Circuit for a two-input LUT (b) Xilinx Virtex-5 FPGA configurable logic
block including a 6-input LUT associated with additional logic [5].

2.1.2 Application-specific integrated circuit

A digital application-specific integrated circuits (ASICs)consist of rows of logic gates con-

nected by wires. The connecting wires are located between logic gate rows in specific routing

channels. ASICs are commonly used for a full-custom design, where the circuit is created

for a specific purpose and can be designed in a more detailed manner.

Various kind of logic gates can be used in the ASIC. They are pre-designed and collected

in a library available to the designer. Standard cells are commonly used in situations where

the designer does not need complete flexibility for the layout of each individual transistor, as

part of the design effort can be avoided by using standard cells.
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2.1.3 ASIC versus FPGA

Both ASIC and FPGA designs have their advantages and depending on the final product

either one can be more suitable. FPGAs commonly have a fastertime-to-market, as no

layout, mask processing or other manufacturing steps are needed. Their design cycle is

simpler due to the software that handles much of the routing,placement, and timing. FPGAs

are reprogrammable, therefore, they can be reprogrammed onthe field, if needed.

ASICs have full-custom capabilities as the devise is manufactured to design specifica-

tions. Accordingly, smaller form factor and higher internal clock speeds, compared to FP-

GAs, can be obtained. Additionally, lower unit costs can be obtained with very high volume

designs.

2.1.4 Digital design flow

The digital design flow is similar for both an ASIC, and an FPGA,but the resulting circuit

structures are different, and different tools are used for implementation. In this work, a Xilinx

FPGA is used, and therefore, only Xilinx FPGA tools are discussed. A typical digital design

flow, and the tools used in it are represented in Figure 2.2. The design process contains four

main steps; problem defining, VHDL entry, synthesis, and layout. First, the designer defines

the problem, and considers what operations the circuit needs to perform. The initial design

process to characterize the problem, is the most important part of the design. The next step

is to create a VHDL description of the circuit based on the theoretical design in the first step.

Once the VHDL descriptions are ready, they need to be verifiedby simulations. Mentor

Graphics’ Modelsim is used in this work for simulating the VHDL descriptions. Onwards

from this design phase, the ASIC and FPGA implementations branch off from each other.

Let us first consider the ASIC implementation. After verifying that the VHDL descrip-

tions are functioning properly, they can be synthesized. VHDL descriptions are entered into

Synopsys Design Compiler, as well as, design constraints forarea, speed, and operating con-

ditions. Operating conditions include used supply voltagelevels and temperature conditions

that both affect the speed of the circuit. The synthesis toolwill generates a gate-level netlist

of the circuit, using the logic cell library supplied by the process vendor. The netlist describes

the connections between different cells to accomplish the desired functionality.

Subsequent to each process step, it is important to verify that the design functions as it

was originally intended and that the design constraints aremet. Functional and timing verifi-

cation can be performed dynamically by simulating the synthesized netlist either statistically

or with an estimated delay data or with means of static timinganalysis. In static timing

analysis, included in Design Compiler, the propagation delays for each path in the circuit are

computed, and the path delays are compared to the given timing constraints. More advanced

static timing analysis can be done using Synopsys Primetime. Static verification of function-

ality can be performed using Synopsys Formality, which compares the logical functionality

of two netlists. Often static verification is considered to have better verification coverage

5
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Figure 2.2: A digital design flow.

compared to verification based on simulation, because the result of simulation depends on

the simulation input, whereas the static functionality verification ensures logical equivalence.

After the synthesized circuit has passed the verification tests, it is ready for layout syn-

thesis. The layout is generated using Synopsys Astro as the layout synthesizer tool. In this

phase, the clock tree is generated. In clock tree generationthe input clock signal is buffered

in order to balance the clock delays for different blocks. The layout tool provides more accu-

rate estimates of path delays compared to the logic synthesizer, because the load of the wires

connecting the cells is known. This knowledge enables creating a clock tree with balanced

delays that ensures accurate synchronization of synchronous logic elements. After the layout

is completed, the obtained functionality and performance has to be verified. At this phase, a

design rule check (DRC) should be performed. After the successful tests, the circuit is ready

to be submitted to the circuit manufacturer.

In the FPGA approach, a netlist is generated by the Xilinx ISEsynthesis tool. The netlist

describes various logic gates and interconnections between them. The implementation tool

maps logic gates and interconnections suitable for FPGA implementation. This is known
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as a mapping tool which combines the logic gates into groups fitting the lookup tables in

the FPGA, and then generates the LUTs. The place and route is performed to assign the

LUTs into specific CLBs and to program all the switches using routing matrices to connect

the CLBs. Finally, the implementation process is complete, and the tool generates routing

matrices describing the final status of switches. The routing matrices are used to generate an

FPGA configuration bitstream, defining the ones and zeros corresponding to the closed and

opened switches. This bitstream is used to configure the FPGAeither by directly program-

ming the FPGA through a connecting cable or by downloading the bitstream into a PROM

which configures the FPGA. The FPGA is now ready to perform theoperations specified in

the design entry.

2.2 Mathematical theory related to autocorrelation-based

sensing

A fast Fourier transform (FFT) algorithm and an autocorrelation function are covered in this

section. Both are commonly used in digital signal processing applications.

2.2.1 Fast Fourier transform

The FFT algorithms are known as efficient algorithms to compute the discrete Fourier trans-

form (DFT) by exploiting symmetry and periodicity properties of the phase factor [6]. The

DFT is important algorithm used in many applications of digital signal processing, including

linear filtering, correlation analysis, and spectrum analysis. The discrete Fourier transform

of a sequencex(n) of length N is calculated as

X(k) =
N−1
∑

n=0

x(n)e−
2πi
N

nk, k = 0,1, . . . , N − 1. (2.1)

The DFT can also be calculated using a correlation method or by solving simultaneous

linear equations but they are significantly slower approaches. The discrete Fourier transform

separates a sequence of values in time into components of different frequencies. This opera-

tion is useful in different areas but computing it directly from the original definition is slow

and impractical. Therefore, the FFT is used to compute the same result more efficiently.

One of the common FFT algorithms was introduced by Cooley and Tukey [7]. It is

a recursive algorithm that breaks the DFT of size N into smaller DFTs of sizesN1 and

N2. The simplest form of the algorithm, where the DFT is dividedinto two interleaved

DFTs of sizeN/2 that are Fourier transforms computed from the even-indexedsamples

x2m(x0,x2, . . . ,xN−2) and odd-indexed samplesx2m+1(x1,x3, . . . ,xN−1). These two results

are combined to produce the Fourier transform of the entire sequence. The calculation of the
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FFT is expressed as

X(k) =

N
2
−1

∑

m=0

x2me−
2πi
N

(2m)k +

N
2
−1

∑

m=0

x2m+1e
−

2πi
N

(2m+1)k. (2.2)

Using the original definition, calculating the DFT of N samples takesO(N2) arithmetical

operations, while the FFT can compute the same result in onlyO(NlogN) operations. This

results in substantial speed gains, especially, when long data sequences are used as N can be

thousands or millions. In such cases, it is possible to reduce the computation time by several

orders of magnitude, and the improvement is nearly proportional toN/log(N).

2.2.2 Autocorrelation

Autocorrelation of a random signal is described as correlation between values of the same

signal at different points in time. Therefore, autocorrelation can be used to distinguish re-

peating patterns in signals. A quite basic application of autocorrelation is determining tempo

for musical beat or pitch detection.

Mathematically the autocorrelation can be described usinga continuous autocorrelation

function. The continuous autocorrelation functionRff (τ) is a cross-correlation of function

f(t) with itself, at lagτ is shown in Equation 2.3.

Rff (τ) = f ∗(−τ) ⊗ f(τ) =

∞
∫

−∞

f(t + τ)f ∗(t)dt (2.3)

in whichf ∗ represents the complex conjugate and⊗ represents convolution.

For a discrete process the autocorrelation function can be estimated as shown in equa-

tion 2.4.

R̂(k) =
1

(n − k)σ2

n−k
∑

t=1

[Xt − µ][Xt+k − µ] k < n (2.4)

in whichµ andσ2 are the mean and the variance, respectively.

2.2.3 Orthogonal frequency-division multiplexing

Orthogonal frequency-division multiplexing (OFDM) is widely used for digital communi-

cation systems. The best known OFDM-based systems are IEEE 802.11 Wireless LAN,

DVB-T, LTE and WiMAX. The key advantages of OFDM is that it enables high data rates

over frequency selective communication channels of low complexity. Most common appli-

cations include wireless networking, broadband internet access, digital television and audio

broadcasting.

OFDM is based on frequency-division multiplexing (FDM) as adigital multicarrier mod-

ulation. It enables data transfers to use multiple frequency channels simultaneously without
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mutual interference. It is accomplished by using closely-spaced orthogonal sub-carriers to

carry the data. The data is divided in parallel data streams that are assigned to different

sub-carriers.

The OFDM signal is created by insertingTd symbols to an inverse fast Fourier trans-

form (IFFT). If C(0),C(1), . . . ,C(Td − 1) areTd complex quadrature amplitude modulation

(QAM) or phase shift keying (PSK) symbols, then the outputs of the IFFT are

c(n) =
1√
Td

Td−1
∑

k=0

C(k)e
j2πnk

Td , n = 0, . . . ,Td − 1, (2.5)

wheren is a discrete time index, andk is a discrete frequency index. In consequence,Td also

denotes the number of symbols in an OFDM data block. LetTc be the number of symbols in

CP, nowTc symbolsc(Td − Tc), . . . ,c(Td − 1) are added in front of the block as CP and thus

we have a complete OFDM block. There can be several OFDM blocks in one transmitted

OFDM frame. The baseband OFDM signal is described in Equation 2.6.

v(n) =
N−1
∑

k=0

Xke
j2πkn/T , 0 ≤ n < T (2.6)

whereN is the amount of sub-carriers, which are modulated usingM alternative symbols,

Xk are the data symbols of the sub-carriers andT is the OFDM symbol time. Individual

sub-carrier is modulated using phase-shift keying (PSK) orquadrature amplitude modulation

(QAM) at low symbol rates. In this way, it is possible to maintain equal data-rates compared

to single-carrier modulation in the same bandwidth.

Multicarrier systems have robust performance against severe channel conditions. Sin-

gle carrier systems are sensitive to attenuation on long transfer wires, narrowband interfer-

ence and multipath fading. These non-idealities can be partially compensated with complex

equalization filters. Because OFDM uses low symbol sample rate, a guard interval between

symbols is affordable, therefore, intersymbol interference (ISI) can be averted. Also chan-

nel equalization is simpler as OFDM consists of many slowly-modulated narrowband signal

compared to one rapidly-modulated wideband signal in single carrier case.

Intersymbol interference is avoided by adding a guard interval of lengthTc between the

OFDM blocks as illustrated in Figure 2.3(a). During this guard interval a cyclic prefix (CP),

usually the length ofTc, is transmitted. CP is a repeat of the end of the OFDM symbol that

is copied in front of the OFDM block as shown in Figure 2.3(b).This property of OFDM

signals is quite convenient for detection algorithms and itis taken advantage of, for example,

in cyclostationary feature detection [8].
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Figure 2.3: OFDM data blocks: (a) A guard interval is in between of OFDM data blocks to
prevent ISI. (b) OFDM data block, in which a cyclic prefixTc copied from the end of the
block is transmitted during the guard interval

2.3 Cognitive radio concept

Cognitive radio concept is developed to solve the problem of underutilization of almost com-

pletely allocated frequency space. This concept was introduced at 1999 by Mitola [2].

Cognitive radios are intended to have self-awareness and simple intelligence. A generic

cognitive radio architecture is presented in Section 2.3.1. Cognitive radios are supposed to

change their operating band, if the currently used band becomes too occupied or the primary

user (PU) takes the band into use. The most important featureof the cognitive radios is the

ability to sense the spectrum and find out, if some portion is left underutilized. After the

spectrum is sensed, they can make an independent decision based on detection statistics [9]

whether to take a certain band into use or not. Since cognitive radios are not the primary users

or licensed users, they must ensure not to interfere with PUs’ signals. This sets stringent

sensitivity requirements for the spectrum sensing of cognitive radios.

Cognitive radios are not tied to certain signaling protocolsand can adapt to their environ-

ment by changing their transmitter parameters [8] to different signaling systems. Depending

on the network and cooperation with other cognitive devices, they can exchange informa-

tion about their location and environment [10]. Cognitive radios can cooperate with other

cognitive radios and share information between each other.

Prior to the introduction of cognitive radios, reconfigurability was used in radio develop-

ment. A common radio communication system is implemented inhardware. In a software-

defined radio most of the required hardware and required transmitter and receiver algorithms

are implemented in software, thus high reconfigurability isachieved [11]. Cognitive radio is

the next step where simple intelligence is added by allowingthe radio to sense its environ-

ment, track changes and react upon its findings.
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2.3.1 Hardware of cognitive radio

The architecture for a generic cognitive radio transceiveris shown in Figure 2.4(a) [8]. The

cognitive radio transceiver unit consists of the radio frequency (RF) front-end and the base-

band processing unit. A control bus is used in controlling each component to make the radio

adaptive to the RF environment. The RF front-end first amplifies the received signal, then

mixes it to a lower band and, finally, the analog signal is converted to a digital signal. The

baseband processing unit modulates or demodulates and encodes or decodes the signal de-

pending on whether a signal is transmitted or received. The baseband signal processing unit

is similar to common transceivers, but the RF front-end is specifically designed to suit the

need of the cognitive radio.

Cognitive radio transceiver is required to be capable of sensing over a wide spectrum

range and preferably in real time. The wide spectrum range isaccomplished by using RF

hardware technologies like wideband antennas, power amplifiers, and adaptive filters [12].

The RF hardware is needed to be able to tune in to any part of thefrequency spectrum. The

main components of the cognitive radio RF front-end are shown in Figure 2.4(b) [8] and are

as follows:

• RF filter: The RF filter selects the desired operating band by bandpassfiltering the

received RF signal.

• Low noise amplifier: The LNA amplifies the received signal without adding remark-

able amount of noise.

• Mixer: The mixer is used to mix the received signal with locally generated RF fre-

quency and then convert it to the baseband or the intermediate frequency (IF).

• Voltage-controlled oscillator (VCO): The VCO generates a signal at a specific fre-

quency depending on the control voltage. The generated signal is then used to convert

the incoming signal frequency to the baseband or intermediate frequency.

• Phase locked loop (PLL): The PLL makes sure that the signal of VCO is locked accu-

rately on the specific reference frequency.

• Channel selection filter: The channel selection filter selects the desired channel and

rejects adjacent channels.

• Automatic gain control (AGC): The AGC is used to keep the gain or output power level

of an amplifier constant over a wide range of input signal levels.

• Analog-to-digital converter (ADC): The ADC converts the analog input signal to a

digital signal.
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Figure 2.4: Physical architecture of the cognitive radio [8]: (a) Cognitive radio transceiver
and (b) wideband RF/analog front-end architecture.

2.3.2 Cognitive radio challenges

Common receivers are capable of processing narrowband signals with low complexity and

low power processors for digital signal processing. In order to utilize any opportunity, the

cognitive radio terminals need to process significantly wider bands. PUs are entitled to

claim their frequency bands anytime when cognitive radio isoperating at that band. In order

to prevent interference to and from PUs, cognitive radio needs to identify the presence of

a PU as quickly as possible and vacate the spectrum immediately. Consequently, detection

algorithms need to sense the PU during a certain time period.This sets stringent requirement

for the sensing method, forming a design challenge for cognitive radios.

Challenges of cognitive radio can be listed as follows:

• designing an efficient spectrum sensing algorithm

• implementation complexity as cognitive radio has requirement of frequency and sys-

tem flexibility

• operation in multiple secondary user environment to not compromise the signaling

channel

• multipath fading and shadowing of user signals
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• designing a resource efficient cooperative scheme for spectrum sensing and informa-

tion sharing between cognitive radios

• robustness

• power consumption

2.4 Spectrum sensing theory

Cognitive radios have to sense the spectrum to detect opportunities, and reliably find out if

PU signals are present. The spectrum has to be sensed accurately to find out even weaker

primary user signals. At the same time, cognitive radios have to respect the needs of the

PUs and not to interfere with them. Therefore, the spectrum sensing method has to be very

sensitive and distinguish PU signals below the noise floor.

Many different spectrum sensing methods have been introduced [13]. Some methods

work for specific signals while others are more generic. Depending on the knowledge of

the signal under detection, better performance is usually obtained when detecting specific

signals while more generic methods are good for rough estimates on channel usage.

One of the more generic spectrum sensing methods is the energy detection. Energy de-

tectors have been introduced nearly half a century ago by Urkowitz [14], yet they are still

researched and new ways to enhance their efficiency are published. Energy detectors do

not need any information about the signal under detection, therefore they are able to de-

tect wide variety of signals. However, they can not differentiate primary users’ signals from

noise. Other signal detection method exploits the statistical properties of PU signals to detect

them [15]. One of these methods is cyclostationary spectrumsensing [16]. Cyclostationary

feature detectors can differentiate noise from primary users’ signals. Algorithms sensing

even more specific signals by matched filtering have been studied from the 1960s, and Mid-

dleton introduced a generalized matched filter[17]. Matched filters deliver optimal detection

performance, however, each signal under detections needs aspecific matched filter. For this

reason, matched filter is not widely used. Other way to enhance the detection probability is

the cooperation between cognitive radios [18][19].

2.4.1 Spectrum sensing challenges

Reliable spectrum sensing has several issues that need to betaken into consideration. Some

of the main problems include high hardware requirements needed to operate efficiently with

large bandwidths and high resolution. Also signal propagation issues need to considered such

as shadowing and severe multipath fading. Depending on the cognitive network in use, there

can be weak PUs that may not be detected properly. This is known as a hidden node problem.

The hidden node problem is depicted in Figure 2.5, it shows how node A is not aware of node

C and vice versa. In consequence, nodes A and C might transmitsimultaneously, and node
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B would receive corrupt signal. Cooperation improves detection performance for users who

are far away from each other, as the other secondary user (SU)might have a better chance of

detecting the PU transmission than the other, since a singlesensor might suffer from different

kinds of interference. In addition, the primary users transmitting a spread spectrum signal or

using frequency hopping, where the power of PU signal is distributed over a wide frequency,

are difficult to detect.

BA C

Figure 2.5: Hidden node problem.

The OFDM signal is very resistive against single channel fading, because multiple chan-

nels are used to transmit the signal. However, the fading caused by shadowing due to ob-

stacles in the signal path affects the wave propagation. It has an effect on both primary user

signals, which makes it harder to detect PU signals. As a solution, it is proposed to use mul-

tiple user cooperative cognitive radio networks [20] that can also alleviate the hidden node

problem. Also high speed signal processors are needed for performing computationally de-

manding signal processing tasks with relatively low delay to minimize interference caused

to PUs.

2.4.2 Statistical modeling of the signal

In order to make the decision whether a PU user is using the spectrum or not, a statistical

model is needed for the PU signal for the detection, and then consider the situation without

PU. Let us assume a simple received signal is modeled as

y(n) = s(n) + w(n), (2.7)

wheres(n) is the signal under detection,w(n) is the additive white Gaussian noise (AWGN)

sample, andn is the sample index. When there is no PU signal presents(n) = 0. Detection

algorithms calculate a detection statistic to be compared with a detection threshold:

ρx > λX (2.8)
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in whichρx andλX are the detection statistic and detection threshold, respectively. Now we

can make a decision of the spectrum usage by comparingρx to a fixed threshold valueλX

depending on the detection scheme in use. This can be expressed as a hypotheses comparison

H0 : y(n) = w(n), (2.9)

H1 : y(n) = s(n) + w(n), (2.10)

where hypothesisH0 denotes that no PU is present and hypothesisH1 that there is PU

present.

The detection performance can be expressed with two probabilities: probability of de-

tectionPd and false alarm ratePfa. Pd means the probability of detecting a signal on a

spectrum band when it really exists. Therefore, a higherPd equals better performance.Pd

can be obtained as

Pd = Pr(ρX > λX |H1). (2.11)

Pfa is the probability for the test to falsely indicate that the spectrum is in use when it really

is not.Pfa can be expressed as

Pfa = Pr(ρX > λX |H0). (2.12)

Pfa should be kept as low as possible to prevent underutilization of spectrum.

2.4.3 Energy detection

Energy detector is simple to design and facilitates the use of low complexity hardware. It is a

very generic sensing method as it does not need any knowledgeon the primary users’ signal.

The signal is detected by comparing the output of the energy detector with a threshold de-

fined by noise energy [14]. The energy detector can detect power levels at certain frequency

bands, however it has no means to distinguish between signals from different systems or

differentiate interference from a primary user signal and noise. It can only tell whether an

energy on a signal band exceeds an estimate of noise energy. To achieve good detection

performance, the noise power level has to be known accurately a priori which is difficult to

achieve in practice.

Energy detectors do not work efficiently when detecting spread spectrum signals [21].

However, energy detectors are most suitable for making coarse estimates on channel usage

or working side by side with other more advanced detection methods [22].

Using the model introduced in Equation 2.7, a decision metric for the energy detector

can be expressed as

M =
N

∑

n=0

|y(n)|2. (2.13)

The AWGN can be modeled as a zero-mean Gaussian random variable with varianceσ2
w,
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i.e. w(n) = N (0,σ2
w), and the signal, as a zero-mean Gaussian variables(n) = N (0,σ2

s).

Under these assumptions, the decision metricM follows chi-squareχ2 distribution with2N

degrees freedomχ2
2N and therefore, it can be modeled as

H0 : M =
σ2

w

2
χ2

2N , (2.14)

H1 : M =
σ2

w + σ2
s

2
χ2

2N . (2.15)

Now the detection probabilitiesPfa andPd for energy detector can be calculated as

Pfa = 1 − Γ

(

LfLt,
λE

σ2
w

)

, (2.16)

Pd = 1 − Γ

(

LfLt,
λE

σ2
w + σ2

s

)

, (2.17)

whereλE is the decision threshold, andΓ(a,x) is the incomplete gamma function as given

in [23](see Section 6.5). The threshold in energy detector-based sensing algorithms depends

on the noise variance, and even small noise estimation errors can cause significant perfor-

mance loss [24].

2.4.4 Cyclostationary feature detection

Cyclostationary feature detectors [16] exploit periodicity in the signal or it’s statistics like

mean and autocorrelation or they can be intentionally induced to assist in spectrum sensing.

These periodicities are called cyclostationary features.The cyclostationary feature detectors

use a cyclic autocorrelation function to detect the signals. They can differentiate between

different signaling systems and can also operate well on lowSNR signals. The cyclosta-

tionary feature detectors’ good performance makes them more attractive, but they are more

complex to implement in hardware and require more computingthan energy detectors.

Let us consider a cyclostationary processx(t). It is second-order if its mean and autocor-

relation are periodic in time [25]. For a cyclostationary process, the cyclic autocorrelation

function (CAF) is nonzero for a set of cyclic frequenciesalpha 6= 0. OFDM signal exhibits

conjugate cyclostationarity, thus we can use the conjugatecyclic autocorrelation function at

cyclic frequencyα that is calculated as

Rα
x =

1

M

M−1
∑

n=0

x(n)x∗(n − τ)e
−j2παn

M , (2.18)

in which,τ is the lag, andM is the sample length.
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2.4.5 Matched filter detection

Matched filter detection is an optimum method for spectrum sensing [26]. When a matched

filter has an impulse response matched to the input signal, itmaximizes the output SNR

and it does not matter if the input signal is corrupted with additive white Gaussian noise

(AWGN). The main advantage is the short time needed to achievecertain probability of a

false alarm. However, the matched filter input signal has to be demodulated. Therefore,

complete knowledge of the primary user signal characteristics such as bandwidth, operating

frequency, modulation type and order, pulse shaping, and frame format. The main draw-

back is the need for different receivers for different signal types, therefore, cognitive radio

implementation is not feasible as the complexity of the sensing unit would be impractically

large [21].

2.4.6 Autocorrelation-based detection

Detection is based on the value of the autocorrelation coefficient of the received signal. In

this detection method, the system is identified by the time delay value (Td), which should

provide a nonzero autocorrelation value, if the received signal is from a particular radio

system and about 0, if the received signal is noise. The decision making is based on the

knowledge of statistical distribution of the autocorrelation coefficient. Once the value of the

autocorrelation coefficient is computed, the decision can be performed so that a pre-defined

false alarm rate specification of detection is fulfilled.

Autocorrelation-based detection can effectively detect PU signals under the noise floor,

and is able to identify specific OFDM-based signaling systems. The implementation is rel-

atively simple, since no FFT is done to the input signal. Thislimits the detection to the

baseband frequency, but resource gain from omitting a FFT issignificant for a low power

implementation. This detection method was chosen for implementation, and is described in

more detail in Section 3.1.

2.4.7 Cooperative detection

A single cognitive radio can obtain decent channel usage information by itself. However, in

order to increase detection performance, cognitive radioscan also share sensing information

with each other. This is called cooperative detection. Cooperation alleviates problems due

to noise uncertainty, fading and shadowing. It is also a way to alleviate the hidden node

problem. There are three scenarios for cooperative sensing: centralized sensing, distributed

sensing and external sensing.

In centralized sensing, a central unit collects all the sensing information from the cog-

nitive radios. Then it analyzes the data and identifies the available spectrum. Finally, the

unit sends the information to the cognitive radios or controls the cognitive traffic directly.

Depending on the central unit, the data can be collected as hard or soft decisions. The hard
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decision is a binary result that tells whether a PU is presentor not. The soft decision is a

more accurate test statistic depending on the sensing algorithm in use. When a large number

of users is collaborating, the transmitted soft decisions can require significant portion of the

bandwidth. Therefore, it has to be chosen to use either hard decisions [27] or limit the soft

decision accuracy accordingly to reduce the bandwidth required to transmit the decisions

between cooperating radios.

In distributed sensing, cognitive radios share the sensinginformation among each other

but they can still make independent decisions whether to utilize a spectrum band or not.

Compared to centralized sensing this method is easier in practice since no central infrastruc-

ture is required. Several network topologies are proposed for cooperative sensing [28]. Two

user cooperation is compared by Ganesan and Li in [18] and in [20], cooperation extended

to multiple users is discussed. The benefits of cooperative sensing to shorter detection time

and agility are shown in [29].

In the case of external sensing, external network performs spectrum sensing and then

shares the spectrum occupancy information with the cognitive radios. The external sensor

network solves the hidden primary user problem and reduces the performance loss due to

fading and shadowing [30]. Various sensor network architectures can be used. The sensor

network does not need to be mobile, reducing problems with power consumption. Also

the sensor network, or a single sensor, could sense the spectrum continuously compared to

a cognitive radio, which can only sense the spectrum for a short while between the data

transmissions.
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Chapter 3

Algorithm verification

This chapter introduces the autocorrelation-based algorithm used in OFDM signal detection.

The algorithm is based on [3], and modified in order to obtain better suitability for hardware

implementation. Correspondence of the original algorithm and modified version is verified

by simulations.

The original algorithm has a few calculations, which can be simplified, in order to obtain

a more efficient implementation in terms of area and power. Various simulations are made

with varying detection times (M), varying time delays (Td) and by using decimation. The

algorithm is very vulnerable to the DC offset, and it’s effects were simulated, and also a

method of compensating the DC offset is developed. Results are presented in Section 3.6.

Word length tests for integrators are executed in Section 4.2.3.

3.1 Detection algorithm for implementation

The algorithm is based on the maximum likelihood estimate ofthe autocorrelation coeffi-

cient of OFDM signals. The autocorrelation coefficient is calculated by correlating the input

signal with a delayed version of itself. Presence of a cyclicprefix (CP) of OFDM signals

results in autocorrelation coefficients at delaysτ = ±Td, whereTd is the number of samples

corresponding to useful symbol length in an OFDM block. The autocorrelation coefficients

corresponding to lagsτ = ±Td, are shown to be the log likelihood ratio test (LLRT) statis-

tic in the low signal-to-noise ratio (SNR) regime. By determining the distributions of these

decision statistics under both hypotheses, the specified performance of the detector in terms

of false alarm and detection probabilities can be achieved.In this work, Neyman-Pearson

detectors are employed [31].

The maximum likelihood estimate of the autocorrelation coefficient is defined as

ρ̂ML =

1
2M

M−1
∑

t=0

ℜ{x(t)x∗(t + Td)}

σ̂2
, (3.1)

wherex(t) represents observations over several OFDM symbols.x(t) has real and complex
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partsxr(t) andxi(t). ℜ denotes the real part of a complex number, and M is the detection

time. The variance of̂ρML can be calculated as

σ̂2 =
1

2M + Td

M+Td−1
∑

t=0

|x(t)|2. (3.2)

In order to decide whether a signal is present or not, the detection statistic is compared to a

threshold value calculated as

ηl =
1√
M

· erfc−1(2α) (3.3)

in which erfc(.) is the complementary error function andα the constant false alarm rate.

In simulations the detection ratio is shown as a function of SNR. The input signal used in

this simulation is an OFDM-signal with 32 subcarriers, which are modulated with 16-QAM.

The size of the FFT is 32 and, therefore,Td is set to 32 and in this case the cyclic prefix

Tc = Td/4 = 8. The amount of samples taken from the OFDM-signal is 4000. The false

alarm rate (Pfa) is set to 0.05. The simulation results are shown in Figure 3.1.

The Figure 3.1 shows how the detection probability increases as a function of SNR.

Detection rate tends toPFA when SNR is low enough. As SNR grows high the detection

rate reaches 1. The number of samples affects the detection performance and is discussed in

Section 3.3
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Figure 3.1: Probability of detection with the original algorithm, Pfa=0.05.
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3.2 Approximations in algorithm

In order to attain the best implementation performance and support technology independent

implementation, an approximation and a modification are applied to the detection algorithm.

An estimate of the covariance is calculated overM signal samples instead of (M + Td) [3].

AssumingM ≫ Td, in implementation the number of samples varies from 512 samples to

4096 samples. Therefore, the change in the estimate of covariance is negligible. As a result,

both autocorrelation and estimate of the covariance are summed over the identical number

of samples and thus the factors in front of the summations cancel out thus eliminating one

division computing unit. Another benefit is the equal signalpath length for both autocorre-

lation and variance estimates, because no timing corrections are needed for proper hardware

operation.

The approximated equation for the most likelihood estimateis

ρ̂ML =

M−1
∑

t=0

ℜ{x(t)x∗(t + Td)}
M−1
∑

t=0

|x(t)|2
, (3.4)

the obtained equation is simpler than their original equations represented in Equations 3.1

and 3.2, because there are no factors in front of autocorrelation and variance estimates.

Following modification is done, the places of absolute valueoperation and squaring of

signal sample are switched, in order to simplify the DC offset calculation. We have an

identity

|x2| = |x|2. (3.5)

This identity is obtained by having a complex number

x = a + bj, (3.6)

wherea andb are real numbers andj is the imaginary unit, defined byj2 = −1. Then the

complex value is squared

x2 = a2 + 2abj − b2. (3.7)

Next, the absolute value of the complex equation is calculated by calculating a square root

of the the complex number multiplied with its complex conjugate, and thus, we obtain

|x2| =
√

(a2 + 2abj − b2)(a2 − 2abj − b2) (3.8)

=
√

a4 + 2a2b2 + b4

=
√

(a2 + b2)2 = |x|2.

This modification simplifies implementing as taking the absolute value before squaring

the signal sample is straightforward in hardware and is donewith a multiplier, but implement-
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ing it in a reverse manner would require implementing a square root computation unit [32].

Calculating the square root would be as hardware consuming asimplementing a division

computation unit, see Section 4.2.4. Another method to calculate the absolute value is to

use a coordinate rotation digital computer (CORDIC) [33] thatcan be implemented with

multiple registers and adder/subtractors. However, both of these consume more resources

compared to a complex multiplier.

3.3 Varying detection times

The detection time is an important factor for the performance and energy consumption of

the implementation. The detection time is presented as a sample length is discrete systems.

In order to attain reliable information about detection performance with certain hardware

cost, the detection performance is simulated with varying sample lengths. Longer detection

time increases detection performance, but a compromise hasto formed between detection

performance and time. The sample length has a direct impact on power consumption as the

amount of data that needs to be processed is highly dependenton sample length. Therefore,

sample length is an important factor for optimizing performance and power consumption.

Variance in sample length is simulated with MATLAB. The input signal models the

802.11g WLAN standard, which is an OFDM-signal with 64 subcarriers. The size of the

IFFT is 64 and thusTd is set to 64 and, in the case of a WLAN signal, the cyclic prefix

Tc = Td/4 = 16. The sample length varies from 128 to 32768. The false alarm rate (Pfa)

is set to 0.05. Figure 3.2 presents how much the detection performance varies with different

sample lengths as a function of SNR.
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Figure 3.2: Probability of detection as sample length varies from 128 to 32768,Pfa=0.05.
Probability of detection is higher with longer sample lengths.
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3.4 Variance in autocorrelation time delay

Other important parameter of the detection algorithm is theautocorrelation time delay (Td).

The autocorrelation time delay is the factor used to identify the system. Incorrect time delays

may result from timing or signal processing faults in the transmitting or receiving end.
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Figure 3.3: Probability of detection when autocorrelationtime delay (Td) used in the detec-
tion varies from 59 to 66,Pfa=0.05. The algorithm easily distinguishes the correct signal
(Td=64) from the other signals.
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Figure 3.4: Spectrum of the signal with time delay of 64 samples: (a) Signal spectrum at
SNR of -20dB and (b) signal spectrum at SNR of 10dB.
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The algorithm behavior was simulated with the same input signal as in Section 3.3. With

varying the autocorrelation time delay used in the detectorwas changed to find out how

difference to correct time delays affect detection performance. The detection performance,

shown in Figure 3.3, demonstrates how the algorithm detectssignals with a difference of

one, but with a greater difference the performance tends toPfa as desired. However, the real

signal is detected 10dB earlier compared to the false signal. One interesting feature is how

all the curves depicting false signals do not tend to the set false alarm rate of 0.05, instead

many of them tend to zero. It is due to the Neyman-Pearson testhypothesis [31], in which,

the noise is estimated as AWGN. However, when the signal is stronger compared to noise

the test fails as the signal does not have white noise characteristics. Figure 3.4(a) shows the

spectrum of a signal with SNR of -20dB and the noise is AWGN. In Figure 3.4(b), the SNR

is 10dB and the noise is not AWGN as there are a few zero sub-carriers in the signal.

3.5 The effect of DC offset

The DC offset is a typical front-end imperfection in direct-conversion receivers (DCR) af-

fecting the received signal [34]. Direct conversion is the common approach to down con-

vert a signal from RF to baseband. A DCR translates a specific band of interest directly to

zero frequency, hence high offset voltages can corrupt the signal and saturate the following

stages [12]. Other RF front-end imperfections include I/Q mismatch, even-order distortion,

and flicker noise, but the DC offset affects to the algorithm’s detection performance most

severely. Therefore, it’s effects on the signal path must becompensated. Otherwise, it may

significantly degrade the performance of the detection algorithm as is shown in Figure 3.5.

In the simulation the DC offset is added to the signal relative to noise power in dB. For ex-

ample, we have a signal with signal-to-noise ratio of -5dB, and then, a significantly weaker

DC offset of -18dB compared to signal noise level is added to the signal. The detection

performance deteriorates even at DC offset levels of -21dB relative to noise power.

3.6 DC offset compensation

There are numerous methods to compensate the DC offset [34].The DC offset can be mea-

sured, and then compensated with feedback loop. In certain cases, it can be removed by

capacitive coupling. More feasible in our case is to modify the algorithm to be tolerant to

the DC offset.

The DC offset can be compensated by calculating the mean value estimate from the

input signal, and then removing it’s squared value from boththe dividend and divider. The

approximate maximum likelihood estimate with DC compensation ready for implementation
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Figure 3.5: DC offset has a considerable effect on detectionprobability.

is as follows

ρ̂ML =

M−1
∑

t=0

ℜ{x(t)x∗(t + Td)} − µ̂2

M−1
∑

t=0

|x(t)|2 − µ̂2

, (3.9)
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DC offset compensation performance is simulated in similarmanner as in Section 3.5.

The DC offset was added to the input signal relative to noise power in dB. The DC offset

compensation is evaluated in Figure 3.6, where two signal curves have an added DC offset of

-18 dB power level relative to noise power in dB, and the thirdcurve has only AWGN noise.

Figure 3.6 presents how the DC offset compensation cancels the effect of DC offset.

3.7 Decimation

Decimation is a technique commonly used to reduce the numberof samples in discrete sig-

nals. Decimation is a useful method to create more power-efficient implementation as the

processed sample rate is lower and consumes less power. Since the sampling rate is reduced

by downsampling, the resulting signal would be an aliased version of the original signal [6].

Therefore, the input signal bandwidth must be limited according to Nyquist sampling theo-

rem. Decimation is accomplished by low-pass filtering the signal with an anti-aliasing filter

prior to downsampling.
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Figure 3.6: DC offset can be compensated without any effect on detection probability.

It was planned to use decimation in the algorithm implementation. In simulations, deci-

mation improved detection probability similar to increasing the detection time. Simulations

pointed out no clear advantage in using decimation, in addition, we are already using inte-

grators to reduce the effects of the DC offset, shown in Section 3.6. As decimation employs

a low pass filter that is equal to a more sophisticated integrator, it is too complicated to

implement without any real benefit. In the end, it was not implemented in this work.
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Chapter 4

Implementation of the algorithm

4.1 Introduction to implementation

The autocorrelation-based detection algorithm was implemented with simple blocks using

standard logic in order to support platform independency and enabling a straightforward de-

velopment process. As the implementation is hardware oriented, modifications to the algo-

rithm were performed to produce a hardware efficient implementation. Section 4.2 describes

the most fundamental blocks of the implementation including multiplication, multiplication

with delay, integration, DC offset compensation, division, and control.

All the implementation blocks are described in VHDL (VHSIC hardware description

language; VHSIC: very-high-speed integrated circuit) source code. VHDL codes describing

the implementation are simulated and discussed in Section 4.4. After the verification of the

VHDL codes, they are synthesized for both a field-programmable gate array (FPGA) and

an application-specific integrated circuit (ASIC). These are described in Section 4.5. The

FPGA implementation is verified with measurements in Chapter5.

4.2 Fundamental design blocks

The final implementation consists of three main signal paths; autocorrelation, variance,

and the DC offset compensation value calculations. The block diagram is shown in Fig-

ure 4.1[35]. The middle path calculates the autocorrelation estimate, and the lowest path

the variance estimate. The top path calculates the DC offsetcompensation value that will

be subtracted from the autocorrelation and variance estimates, before they are supplied to

the division block. Following sections will describe the fundamental blocks: multiplication,

multiplication with delay, integration, division, DC offset compensation and control logic.
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Figure 4.1: Final detection algorithm implementation.

4.2.1 Multiplication

A multiplication block simply multiplies two input values with each other. The simple struc-

ture consist of two complex multipliers and an adder. The structure of the multiplication

block is shown in Figure 4.2.

The realRe(x) and complexIm(x) inputs depict the I- and Q-branches of the input radio

signal. These input signals are squared, and the results areadded together. The result is the

squared absolute value of the input signalx(n) sample. Afterwards this block’s results are

accumulated in the integrator described in Section 4.2.3. Finally, the obtained sum is the

divider input for the division block that is shown in Figure 4.7.

In the implementation the input word length is 12 bits, therefore the word length after

both multipliers is 24 bits. In order to prevent overflow, theoutput word length after final

adder is 25 bits.

12

12

12

12

25

24

24

Re{x}

Re{x}

Im{x}

Im{x}

2
|x(n)|

Figure 4.2: Multiplication.
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4.2.2 Multiplication with delay

Multiplication with delay block is used for calculating theautocorrelation estimate. The out-

put of this block is averaged and then used as the dividend forthe algorithm. Multiplication

with delay is primarily the same as the basic multiplicationblock introduced in Section 4.2.1.

The main difference is that this block uses a dual-port random access memory (RAM)

to delay the values of the input signals in order to calculatethe autocorrelation. When the

detection cycle starts, the RAM writes the input values in the memory addresses. After the

memory has values for the delay, the multiplication block reads the input values from the

memory starting with the first address. Thus, we have both thepresent and delayed input

values in the multiplier. The memory addressing withTd is depicted in Figure 4.3.

The autocorrelation time delay is implemented with 8 bits, therefore the delay used in

detection varies from 0 to 255 samples. Thus, 1.5 kbits of memory is required to implement

delay of 255 samples. Word lengths in this block are equal to word lengths in the multiplica-

tion block. The delay could be implemented in a simple way with a register chain. A small

fixed delay value is appropriate to implement with register chain, however implementing pro-

grammable delay with register chain and multiplexer would be a waste of resources. In ad-

dition, a more flexible implementation with a dual-port random access memory is achieved.

Td

Td
samples

Td

First stored
value

....

0
1
2

Td−3
Td−2
Td−1

12 bits

Value stored

samples
after       −1

after       −1
Value read

samples

Figure 4.3: Td samples are stored into RAM.

4.2.3 Integration

Integration in hardware is equal to calculating a cumulative sum. The integration block is

used several times in implementing the algorithm. It is usedin the calculation of variance,

autocorrelation, and squared mean estimates. The integrator is a quite simple block, but due

to the word lengths needed, it consumes a considerable amount of resources.
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Figure 4.5 presents the integrator block, which is comprised of an adder and two n-bit

registers. The other n-bit register has an enable port. The first register updates it’s value

constantly until an enable signal input in inputted. At thattime, the second register places

the current value after the adder to the output port. At the same time, the first register is reset,

thus starting a new detection cycle.

E

Sum{x(n)}x(n)

R

Figure 4.5: Integration.

The input word length for the integrators is 25 bits that is the same as the output word

length of multiplication block. Determining the output word length of the integrator is im-

portant part of the implementation. Figure 4.6 shows how tooshort word length ruin the

detection performance as the detection curve of 4096 samples never reaches the false alarm

rate of 5 percent. The opposite case of too large integrator value guarantees detection perfor-

mance, but consumes resources power and area wise. In addition, the attainable implemen-

tation operating clock frequency is lower when longer word lengths have to be processed at

each following step.

The worst case estimate for integrator output word lengths is obtained when full dynamic

scale signal is averaged for the sample length. In the worst case, for 4096 sample length an

overhead of 13 bits is required. Thus, in the worst case the output word length would be 38

bits. However, with optimal word length fitting, power consumption and area requirements

can be optimized without performance loss.

The optimal integrator word lengths were determined by executing simulations with var-
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Figure 4.6: Incorrect integrator word lengths results in deteriorated performance.

ious word lengths used in the integrators. The word lengths required for various sample

lengths were determined by simulations and the theoreticalmaximum value is calculated

from the worst case assumption. The required amount of overhead bits are shown for vari-

ous sample lengths in Table 4.1. Considerable amount of resources can be saved by utilizing

only the required word lengths instead of theoretical maximum values. Table 4.1 shows how

the variance and DC offset calculations need longer word lengths compared to autocorrela-

tion. The values required for the sample length of 4096 samples with one extra bit will be

used in the implementation.

4.2.4 Division

Division is an operation that is not well suited for binary calculations. In this design, the

division is the most complex block of the implementation andhas to be implemented as

efficiently as possible. Good accuracy is important as the detection statistic relies on the

quotient of division. Various division algorithms are reviewed in [36]. Division algorithms

differ by the hardware operations used in their implementation, and are divided into five

classes: digit recurrence, functional iteration, very high radix, table look-up, and variable

latency.

The digit recurrence algorithms calculate a fixed number of bits of the quotient at a single

iteration. It is simple to implement and utilizes small area, however, it has a relatively large

latency. The latency can be reduced by using larger radices,but it results in increased com-

plexity. In functional iteration, multiplication is the fundamental operation. Multiplications

are used to converge to a result quadratically. Functional iteration has less latency compared

to digit recurrence based algorithms, but in order to obtainaccurate results, the number of
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Table 4.1: Overhead bit requirements for integrators used in autocorrelation, variance, and
DC offset calculations.

Autocorrelation sum
Sample length bits required bits theor. max.

512 3 10
1024 4 11
2048 5 12
4096 6 13

Variance sum
Sample length bits required bits theor. max.

512 4 10
1024 5 11
2048 6 12
4096 7 13

DC offset
Sample length bits required bits theor. max.

512 4 10
1024 5 11
2048 6 12
4096 7 13

iterations and a rounding operation must be considered thoroughly. Both the functional iter-

ation and digit recurrence with high radices can benefit fromthe use of look-up tables. They

can be used to obtain a sufficiently accurate initial approximation. Look-up tables are fast

as no arithmetic calculations are needed, however a trade-off exists between the precision

of the table and its size. Variable latency algorithms introduce improvements to previous

algorithms by exploiting the fact that the computation for certain operands can be completed

sooner than others, or reused from a previous computation. Therefore, the overall system

performance can be enhanced, as the result can be provided assoon as it is ready.[36]

In this design, the calculation of the division is performedwith an algorithm based on

the digit recurrence. Since the division is calculated concurrent to the integrators already

processing the following detection, even large latencies are acceptable. Although the latency

is large, it is only 10 percent of the shortest sample length in the implementation. The

division algorithm and a more compact version are presentedin [37].

The idea in division is that while the dividend and divider could be large, we know that

the ratio is always small, or the large values are irrelevantin our case. Then the outcome can

be presented with small number of bits. If the ratio is largerthan can be presented with output

bits, overflow is detected and maximum value, vector of 1’s, is outputted. Second error in

division can occur when the divider is zero, it is also detected by the overflow detection and

handled in same manner.

To begin with the division, 32-bit words are assumed. 64-bitremainder register’s left
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half is initialized with the dividend, and then a 32-bit divisor register is initialized with the

divisor. The algorithm starts by subtracting the divisor from the left half of the remainder

and placing the result in left half of the remainder. Now the sign of the remainder is tested.

If it is negative, the original value is restored to the remainder by adding the divisor to it.

The remainder is then shifted left, and the least significantbit is set to 0. When the result is

positive the remainder is shifted left, and the rightmost bit is set to 1. This cycle is repeated

33 times, and at the end the quotient is in the right half of theremainder register. This

division algorithm needs two registers, a subtractor, three multiplexers and control logic.

The division hardware is shown in Figure 4.7.

test
Control

Divisor

Remainder Shift left
Shift right

Write

ALU

Figure 4.7: Implementation of division.

4.2.5 DC offset compensation

The detection algorithm is sensitive to the DC offset so a block to compensate for the DC

offset is needed. The DC compensation value is obtained froma squared mean value cal-

culated from both I and Q input signals, and it is subtracted from the dividend and divider

values prior to division.

Both I and Q inputs are integrated and the integrators’ outputs are then squared. The

squared signals are then accumulated for the sample length,and the sum is then divided by

the sample length to create the estimate of squared mean value used in DC compensation.

In this case, the division can be done with a shift operation as the sample length is a power

of two. DC offset compensation can be implemented in hardware with two integrators, two

multipliers, an adder and a shift operation. The implemented block is shown in Figure 4.8.

The DC offset compensation can be disabled. The measured performance is presented

in Chapter 5. The disable feature was implemented with a multiplexer, and therefore, even

if the DC offset compensation is turned off, the DC offset compensation value is calculated

normally, but the result is not subtracted from the autocorrelation and variance estimates.
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Figure 4.8: Implementation of DC offset compensation.

4.2.6 Control logic

Precise timing is needed to obtain correct operation throughout the implementation. Control

logic is implemented in an own logic block monitoring and controlling the other blocks’

event signals.

To achieve correct timing, a counter is used to count rising clock edges. Counter size

is an open synthesis parameter based on the maximum sample length used in the detection.

When the detection cycle is started, an active low reset is pulled high and the counter starts

counting. It resets integrators calculating autocorrelation, variance and DC offset sums. Af-

ter the counter attains the appropriate sample length value, a new detection cycle is started,

and the current values in the integrators’s registers are passed onward to the division block.

Before division is started, the DC offset values are subtracted from the autocorrelation and

variance, the autocorrelation value is divided by varianceand the detection statistic is ob-

tained. The division block sends the statistic value to the output port, and also sends an event

to the control logic. The control logic is implemented with acounter. The flip-flops are used

to delay event signals to time the event signals correctly toeach block.

4.3 Detection time

Time consumed for a single detection is the detection time, and it depends on the sample

length, autocorrelation time delay, and sample rate. The number of clock cycles needed for

the detection, can be calculated as

clock cycles= M + Td, (4.1)

whereM is the sample length andTd is the autocorrelation time delay. Detection time can

be expressed as

detection time=
M + Td

fs,in

, (4.2)
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wherefs,in is the input sampling frequency.

The final implementation uses four specific detection times:512, 1024, 2048, and 4096

samples. For example, a system using a 20 MHz sampling frequency, the detection time used

in a single detection varies from 28.8µs to 208µs.

4.4 VHDL description verification

The algorithm is implemented using VHDL description. Various tests and simulations are

performed in order to verify that the algorithm works as desired and all exceptions are con-

sidered. Especially possible overflows and exceptions in the multiplication and division

operations need to be handled. It is very important to implement the division block with an

exception control to make sure the division does not result in undefined states, for instance,

division by zero. To ensure the functionality of the design,timing and functional simulations

are essential.

4.4.1 Functional and timing verification

In order to ensure functionality, the design blocks were verified with functional and timing

simulations. The design was verified with waveform simulations in Modelsim. In the wave-

form simulation, a test input is fed in the block and the innersignals are monitored by the

simulator.

Figure 4.9 shows a waveform window from Modelsim. In Figure 4.9 the vertical line

shows where the first detection cycle has just ended, and a detection statistic is placed in the

output. By monitoring pulse widths, signal rise and fall times, as well as signal arrival times,

optimal performance can be achieved. By functional simulations, timing errors and glitches

can be discovered. In a similar manner, the main blocks have been verified to function

properly.

Figure 4.9: Top-level simulation with Modelsim. The vertical line points to the end first
detection cycle.
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4.4.2 VHDL simulations various detection times

The VHDL description are simulated with functional simulations to verify performance, and

that no timing or other errors exist that might degrade detection performance. Functional

simulations are performed with a test bench in Modelsim. Thesimulation itself is similar to

the detection time simulation used with algorithm verification, in contrast to MATLAB sim-

ulations, the word length limitations are considered in VHDL descriptions. Therefore, new

kind of problems may occur. The VHDL simulations were executed with detection times

varying from 512 to 4096 samples withTd = 64. Due to memory limitations in the simu-

lation environment, the results, shown in Figure 4.10, are averaged over 400 measurements.
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Figure 4.10: VHDL description simulation when detection time varies from 512 to 4096
samples,Pfa=0.05.

4.5 Implementation for FPGA and ASIC

The VHDL descriptions verified by functional simulations are ready to be implemented on

hardware. In this section, an implementation for both an FPGA and an ASIC is performed.

The implementation for FPGA is done on a Xilinx Virtex-5 evaluation board. Xilinx ISE

software is used in the synthesis and layout.

The implementation for an ASIC is done using Synopsys DesignCompiler for synthesis

and Synopsys Astro for layout design. The VHDL descriptionsare platform-independent,

and the same implementation can be synthesized to ASIC and FPGA. Naturally, the ASIC

implementation would be more resource efficient if RAM memory was used instead of flip-

flops. Now the implementation uses registers to store the delayed input values in the autocor-
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relation calculation, and it consumes more power and area compared to an efficient memory

block.

4.5.1 FPGA Synthesis and Layout

The target board for implementation is a Xilinx Virtex-5 LX50 evaluation board. The Virtex-

5 FPGA uses a FF676 package and the speed grade is -1. The speedgrade determines the

switching characteristics of the FPGA, a higher value equals faster operation. The 802.11g

WLAN standard uses a sampling frequency of 20 MHz, and it was used as a timing constraint

for the design. The Xilinx ISE software tools are used to perform synthesis and layout of the

design, based on the supplied FPGA details and timing constraints.

Due to the FPGA logic structure, synthesizing the design, and generating the layout for

FPGA only takes a fraction of time compared to creating an ASIC circuit. Xilinx tools

perform the necessary timing verification and design rule checks, but the functionality tests

are left for the user. The layout generated by Xilinx tools utilizes 987 LUT flip-flop pairs.

For comparison, a 64-point FFT processor was implemented in[38], and it used 33961

LUT flip-flop pairs in a Virtex-5 FPGA. The hierarchical layout complexity is presented

in Table 4.2. The resource usage is presented by the number ofLUT flip-flop pairs used.

Single LUT flip-flop pair is shown in Figure 2.1(b). It can be noted that calculating the

division, and compensating the DC offset consume most of thelogic resources. The DC

offset compensation resource usage is due to the long word lengths used in the multiply and

integration calculations.

Table 4.2: Hierarchical resource usage of the FPGA implementation.

Hierarchical resource usage (Number of LUT flip-flop pairs used)
Block LUTs used %

Division 307 31.1
DC offset compensation 297 30.1

Autocorrelation (dividend value) 158 16.0
Variance (divider value) 100 10.1

Control logic 92 9.3
Miscellaneous 33 3.4

Total 987 100

The maximum operating frequency reported by Xilinx tools was 95.3 MHz, but the ob-

tained maximum frequency depends highly on the used word lengths. The 802.11g WLAN

standard’s sample frequency is 20 MHz, therefore, the obtained maximum operating fre-

quency is more than sufficient.

Power consumption of the FPGA implementation was analyzed by a Xilinx XPower

analyzer, and the dynamic power consumption is presented inTable 4.3. As expected, the

power consumption of the main blocks is quite similar to resource usage, as the largest blocks
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commonly contain more active signals and registers changing state. In contrast to resource

usage, the division block consumes only a fraction of total power, because it is only active

over the time period calculating the result, and is idle the rest of the time.

Table 4.3: Power consumption of the FPGA implementation.

Hierarchical power consumption
Block mW %

Autocorrelation 1.30 35.2
DC offset compensation 1.22 33.1

Detector (top level) 0.61 16.5
Variance 0.35 9.5
Division 0.13 3.5

Control logic 0.08 2.2
Total 3.69 100

4.5.2 ASIC Synthesis and Layout

ASIC synthesis is done using a ST 65 nm CMOS design kit. The nominal voltage is 1.0 V

and the nominal temperature is 25◦C. The standard-cell library is designed for low power

and high threshold voltage. The high threshold voltage results in decreased leakage, but the

circuit will function slower. The synthesis was performed in a worst case scenario with a

voltage of 0.9 V and a temperature of 105◦C. The 802.11g standard WLAN signal with 20

MHz sampling frequency is used as a timing constraint for design and clock tree generation.

The design was synthesized with Synopsys Design Compiler.

Subsequent to synthesis, both area, and power estimations were obtained. The hierar-

chical area distribution of the main cells from synthesis report is shown in Table 4.4. The

autocorrelation multiply cell consumes most of the area, because the delay was implemented

with logic instead of memory, thus the area estimate will be lower when memory elements

are used in the synthesis.

The power consumption estimate considers switching, internal cell, and leakage power.

Switching power is dissipated when charging and discharging the load capacitance at the

cell output. The load capacitance is composed of the interconnect capacitance and gate

capacitances the net is connected to. Switching power consumption depends greatly on

switching activity, and thus, is related to the operating frequency of the cell. Internal power

is consumed withing a cell for charging and discharging internal cell capacitances. It also

includes short-circuit power, as over logic transitions both P and N type transistors are both

on simultaneously, thus causing a direct connection from the supply voltage to the ground

voltage for a short time. Leakage power is consumed by sub threshold currents and by

reverse biased diodes in a CMOS transistor. It does not dependon input transitions or load
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Table 4.4: Hierarchical area distribution of the ASIC implementation after synthesis.

Hierarchical cell Cell area %
[µm2]

Autcor. multiply 85959.3203 73.1
DC offset calculation 19399.4453 16.5
Divider 4984.6909 4.2
Variance multiply 3903.6387 3.3
Ctrl counter 1317.6818 1.1
Variance integrator 1003.0789 0.9
Autcor. integrator 1000.9989 0.9
Total 117596.8672 100

capacitance, hence it is constant for a logic cell. The powerconsumption of the synthesized

circuit is presented in Table 4.5.

Table 4.5: Power consumption of the ASIC implementation after synthesis.

Switching Internal Leakage Total
Hierarchical cell Power Power Power Power %

[mW] [mW] [mW] [mW]
Autcor. multiply 71.9e-03 0.713 2.78e-03 0.787 82.5
DC offset calculation 8.11e-03 47.9e-03 0.584e-03 56.6e-03 5.9
Variance multiply 14.6e-03 31.8e-03 0.123e-03 46.5e-03 4.9
Divider 0.894e-03 34.0e-03 0.163e-03 35.1e-03 3.7
Ctrl counter 0.982e-03 12.0e-03 43.5e-06 13.0e-03 1.4
Variance integrator 0.813e-03 6.38e-03 36.4e-06 7.23e-03 0.8
Autcor. integrator 0.527e-03 5.42e-03 37.9e-06 5.98e-03 0.6
Total 0.100 0.850 3.77e-03 0.954 100.0

After synthesis was verified successfully, the layout was generated with Synopsys Astro.

The final version was also verified with functional and timingsimulations. Area consumption

and a more precise estimate of power consumption were obtained from layout. The obtained

estimates for area and power consumption are presented in Table 4.6. The layout picture

extracted from Synopsys Astro is shown in Figure A.1.

Table 4.6: Final area and power consumption of the ASIC implementation.

Final ASIC implementation values
Total area 0.254mm2

Power consumption 1.019 mW
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Chapter 5

Experimental measurements

FPGA is an optimal platform for algorithm performance evaluations, since it can be pro-

grammed multiple times, it is possible to debug the design bydoing small updates at a time.

In order to verify the results obtained in simulations, the algorithm is implemented on FPGA

to obtain the measured results. The measurement configuration and necessary equipment

will be described in Section 5.1. Measurements of the FPGA implementation are similar to

VHDL description simulations because no analog signals areused. Therefore, the measure-

ment results should be equal to the VHDL simulations.

The implementation was designed to use various detection times, and they are measured

in Section 5.2. As expressed prior to algorithm implementation, the algorithm is sensitive to

DC offset. Therefore, the effectiveness of DC offset compensation is evaluated with mea-

surements in Section 5.3.

5.1 Measurement configuration

The FPGA implementation was measured using a simple configuration setup shown in Fig-

ure 5.1. The signal was generated with MATLAB modeling the 802.11g standard. The input

signal is supplied to a pattern generator. The pattern generator transmits the input signal to

the programmed FPGA. The input signal consist of I- and Q-branches both using 12 bits,

hence the signal is transferred with 24 wires. An external waveform generator supplies the

clock signal to both the pattern generator and the FPGA. After a detection cycle is done, the

FPGA sends a detection done and detection statistic signalsto the logic analyzer. The detec-

tion done signal is a single bit, which functions as a clock signal for the logic analyzer. This

signal was also measured by a digital oscilloscope to verifycorrect operation of the detector.

The detection statistic signal is a 16 bit signal represented in 2’s complement format. When

measurement has ended the data from the logic analyzer is analyzed in MATLAB.
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Figure 5.1: Measurement configuration.

Following FPGA and measurement equipment were used in the measurements:

• Avnet Xilinx Virtex-5 LX50 evaluation kit with expansion modules

– EXP-to-P160 adapter module: Converts EXP style expansion slot to a P160 for-

mat

– P160 analog module: Composed of four independent analog channels, two sup-

porting analog inputs and two supporting analog outputs

∗ Two Texas Instruments ADS807 12-bit, 53 Msps A/D converter

∗ Two Texas Instruments DAC902 12-bit, 165 Msps D/A converter

• Tektronix TLA 720 Logic Analyzer with two modules

– TLA 7N2: 68 Channel logic analyzer module with MagniVu acquisition

– TLA 7PG2: 64 Channel pattern generator module

• Agilent 33250A

– 80 MHz Function/Arbitrary Waveform Generator

• HP/Agilent 54825A infiniium Oscilloscope

– 4 Channels, 500 MHz, 2 GSa/s

The expansion modules enable the usage of an analog input signal, although only digital

input signals are used in the measurements to verify correctoperation of the FPGA. The

clock signal was supplied from the waveform generator to theFPGA through the analog

expansion module, and it will be used to convert analog signals to digital in future work.

The FPGA evaluation board with expansion modules is shown inFigure 5.2. In addition, the

digital oscilloscope was used to verify correct detection times when various detection times

were used, as well as for signal waveform verification.
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Figure 5.2: Avnet Xilinx Virtex-5 LX50 evaluation board with expansion modules.

5.2 Measurements with various detection times

To verify correct operation of the FPGA implementation, theimplementation is measured

using various detection times. The input signal generated with MATLAB consists of se-

quential detections. Due to the input vector size limit of the pattern generator, only 250

sequential detections are measured at a single point. The detection time of a single detection

curve in this measurement varies from 512 to 4096 samples. The measured curves are repre-

sented in Figure 5.3. The results are effectively similar tothe detection time simulation with

the MATLAB and VHDL description simulations. The results verify that autocorrelation-

based spectrum sensing algorithm is capable of sensing the primary user signal at 90 percent

probability on SNRs as low as -7 dB, if a detection time of 4096samples is used.

5.3 Measurements with and without DC offset compensa-

tion

The DC offset degrades the performance of the detection algorithm, therefore, it is important

to compensate for its effects. The DC offset compensation performance is measured with

three measurement sets, thus obtaining three specific curves. In the DC offset measurements,

the DC offset is added to the generated signal relative to noise power. A DC offset of -18 dB

relative to noise power was added to the second and third input signal curves, and the first

curve is without any added DC offset. The DC offset compensation is turned off in the first

two measurements, where in the first measurement no DC offsetis added, and in the second,

a DC offset of -18dB is added. In the third measurement the DC offset of -18dB is added,
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Figure 5.3: Measured probability of detection with detection time varying from 521 to 4096
samples, Pfa=0.05. Performance of the implementation is as effective assuggested by sim-
ulations.

and the DC offset compensation is enabled. The measured results are shown in Figure 5.4.

The resulting curves clearly show the performance of the DC offset compensation. DC

offset compensation effectively compensates for the DC offset, but does not degrade detec-

tion performance. Actually, the performance seems to increase when DC offset is added

but, on the contrary, due to the false detections initiated by the DC offset, the probability of

detection does not tend to the theoretical constant false alarm rate of 5%. Therefore, the algo-

rithm falsely assumes that the primary user is present when it actually is not, and significant

amount of spectral opportunities are lost.

The DC offset compensation consumes a high percentage of implementation’s total re-

sources, but no DC offset cancellation is required from the analog hardware. Therefore,

implementing DC offset compensation in the algorithm simplifies the hardware design of

the cognitive radio, as the sensing algorithm is not affected by the DC offset.
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With compensation, the effect of DC offset is completely removed.
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Discussion

As stated in the beginning of this thesis, the latest applications demand higher and higher

data rates. Unfortunately, the spectrum is almost completely allocated, and only a few bands

have been released for new applications, such as analog television broadcasts that have been

discontinued in various countries. To solve the problem, cognitive radios were introduced.

Cognitive radios are able to adapt to their environment, and can opportunistically take under-

utilized spectrum for their own use, when licensed spectrumusers are not present. Cognitive

radio requirements and challenges were introduced to understand the difficulties which need

to be addressed in cognitive radio development.

Spectrum sensing is the key task enabling cognitive radio operation. Common sens-

ing algorithms were examined, and their requirements and feasibility for implementation

were reviewed. The autocorrelation-based sensing algorithm was chosen for implementa-

tion. Simulations showed the performance of the algorithm.The algorithm is able to distin-

guish the signal under detection effectively under the noise floor. It has a relatively simple

implementation compared to the most advanced sensing methods, yet it has high detection

performance. Simulations also revealed how sensitive the algorithm was to the DC offset,

therefore it’s effects had to be compensated. The algorithmwas modified to compensate for

the DC offset, and simulations verified that the DC offset waseffectively eliminated without

performance degradation. Although, additional hardware is required to implement the DC

offset compensation.

The autocorrelation-based spectrum sensing algorithm with DC offset compensation was

implemented, and the building blocks were reviewed thoroughly. Subsequent to verification

steps, the implementation blocks were described with VHDL descriptions, and they were

simulated by functional and timing simulations. A few blocks needed high level adjustments

to obtain exact timing. Nevertheless, the implementation functioned properly after specific

fixes. The final VHDL descriptions were used to implement the design on an FPGA evalu-

ation board to verify the performance with measurements. The measurements validated the

performance suggested by the simulations, and DC offset compensation functioned effec-

tively.

The implemented algorithm might be used as a part of the sensor node in a sensor net-

work, therefore it was synthesized to an ASIC to obtain comparable data on area require-

ments and power consumption. The final ASIC circuit proved tobe power efficient. Al-

though, no special design aspects to minimize power consumption were used.
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Appendix A

Implementation layout

Figure A.1: IC implementation with 65 nm CMOS process. Layoutsize is 0.254 mm2, and
power consumption 1.019 mW.
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