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For good quality speech recognition, the ability of the recognition system to adapt it-

self to each speaker’s voice and speaking style is more than necessary. Most of speech

recognition systems are developed for very specific purposes for a linguistically homoge-

nous group. However, as user groups are formed out of people from differing linguistic

backgrounds, there is an ever-growing demand for efficient multi-lingual speech tech-

nology that takes into account not only varying dialects and accents but also different

languages.

This thesis investigated how the acoustic models for English and Finnish can be effi-

ciently combined to create a multilingual speech recognition system. Also how these

combined systems perform speaker adaptation within languages and across languages

using data from one language to improve recognition of the same speaker speaking

another language was investigated. Recognition systems were trained based on large

Finnish and English corpora, and tested both on monolingual and bilingual material.

This study shows that the thresholds for safe merging of the model sets of Finnish and

English are so low that the merging can hardly be motivated from the point of view of

efficieny.

Also it was found out that the recognition of native Finnish can be improved with the

use of English speech data from the same speaker. This only works one-way, as the

foreign English recognition could not be significantly improved with the help of Finnish

speech data.

Keywords: automatic speech recognition, multi-lingual acoustic modelling, acoustic
model adaptation, cross-lingual speaker adaptation
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Laadukas puheentunnistus vaatii tunnistussysteemiltä kykyä mukautua puhujan ääneen

ja puhetapaan. Suurin osa puheentunnistusjärjestelmistä on rakennettu kielellisesti yh-

tenäisten ryhmien käyttöön. Kun erilaisista kielellisistä taustoista tulevat ihmiset muo-

dostavat enemmän ja enemmän käyttäjäryhmiä, tarve lisääntyy tehokkaalle monikieli-

selle puheentunnistukselle, joka ottaa huomioon murteiden ja painotusten lisäksi myös

eri kielet.

Tässä työssä tutkittiin, miten englannin ja suomen puheen akustisia malleja voidaan

yhdistellä ja näin rakentaa monikielinen puheentunnistin. Työssä tutkittiin myös miten

puhuja-adaptaatio toimii näissä järjestelmissä kielten sisällä ja kielirajan yli niin, että

yhden kielen puhedataa käytetään adaptaatioon toisella kielellä. Puheentunnistimia

rakennettiin suurilla suomen- ja englanninkielisillä puhekorpuksilla ja testattiin sekä

yksi- että kaksikielisellä aineistolla.

Tulosten perusteella voidaan todeta, että englannin ja suomen akustisten mallien yh-

distelemisessä turvallisen klusteroinnin raja on niin alhaalla, että yhdistely ei juurikaan

kannata tunnistimen tehokkuuden parantamiseksi.

Tuloksista nähdään myös, että äidinkielenä puhutun suomen tunnistamista voitiin pa-

rantaa käyttämällä vieraana kielenä puhutun englannin dataa. Tämä mekanismi toimi

vain yksisuuntaisesti: Vieraana kielenä puhutun englannin tunnistusta ei voinut paran-

taa äidinkielenä puhutun suomen datan avulla.

Avainsanat: Puheentunnistus, monikielinen akustinen mallinnus, akustisten mallien
adaptaatio, kielten yli tapahtuva puhuja-adaptaatio
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Chapter 1

Introduction

Applications of speech recognition are increasing as speech recognition technology is

slowly growing mature. Already telephone number enquiries, taxi ordering or simple

banking operations can be made using a speech recognition system via a telephone.

Some consumer electronic products like mobile phones and computers can be set up

to respond to voice commands.

This thesis covers some aspects of speech recognition in multiple languages and is

one in a long line of theses written at the the Faculty of Information and Computer

sciences in Aalto University School of Science and Technology.

Speech recognition research at Aalto university

Starting with Jalanko, 1980, the Faculty of Information and Computer sciences has

been developing Finnish speech recognition technologies. In the last years, research

in large-vocabulary speech recognition has been bountiful.

One of the biggest obstacle to prevalence of speech recognition technology in

user interfaces of consumer products is the wildly varying way that languages are

spoken. Some people speak fast, some slowly; The tone and pitch of speech varies

according to physical attributes and emotional state of the speaker. Beside personal

differences, also regional differences cause problems to speech recognisers. American

English speech recognition systems do not work sufficiently well on British English.

Local dialects create small problems for a foreign tourists and huge problems for a

speech recogniser. Even though numerous advanced techniques exist, the question

how a recogniser can adapt itself to various speakers’ voice qualities and speaking

style is a question that is not yet fully solved.

To overcome the problems of speaker variety, Varjokallio, 2007 investigated sub-

1



CHAPTER 1. INTRODUCTION 2

space methods to improve the robustness of acoustic modelling and Remes, 2007

and Mansikkaniemi, 2010 investigated speaker adaptation techniques.

Speech recognisers are often quite vulnerable to background noise. Similar tech-

niques to speaker voice adaptation are used to improve recognition in noisy condi-

tions. Additionally, an ever-growing number of techniques are developed specifically

to counter the problem of background noise.

Kallasjoki, 2009 and Keronen, 2009 developed methods to improve recognition of

noisy speech, the former with a new spectral enveloping method for feature extrac-

tion and the latter with parallel model combination for noise removal.

Another restriction is the computation power required by the more complex speech

recognisers. If the interaction of the user and the device is not highly restricted with

the help of specific questions, as it is in a taxi or banking service, the vocabulary

and grammatic knowledge of the recogniser need to be very large. Therefore proper

recognisers for dictation tasks are rare and need to be custom-made for the task.

An example of a complex recogniser with complex grammar is a dictation device for

medical doctors, to be used to produce the minutes of a patient visit.

Creutz, 2006 investigated automatic morphological analysis of large text corpora,

and Siivola, 2007 and Hirsimäki, 2009 applied these principles to improve language

modelling in morphologically complex languages, leading to a better performance of

large vocabulary Finnish speech recognisers.

All in all, the TKK recogniser is a formidable research tool and performs very

well by international standards. However, the TKK recogniser is not used in this

thesis. Instead, the HTK speech recognition toolkit (Young et al. , 2006) is used.

This is due to the demands in compatibility and collaboration in the project that

funded this thesis. The HTK toolkit does not include refined methods for noise-

robust recognition and is rather clumsy with the large language models required by

morph-based speech recognition. What HTK can offer is an internationally known

standard platform for HMM-based recognition and optimised performance in some

of the training and testing tasks.

The EMIME project

This thesis is a part of the European Union funded research project Effective Mul-

tilingual Interaction in Mobile Environments, EMIME.

The EMIME project is a collaborative research project between the University of

Edinburgh (UEDIN), University of Cambridge (UCAM), Aalto University school of

science and technology / Helsinki University of Technology (Aalto / TKK), Nagoya
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Figure 1.1: The EMIME system, pictured below, changes the ”colour” of the syn-
thesised voice to match the current user. An improvement over the old systems,
above, that always use the same synthesised voice. From Mainichi Newspaper, May
20th 2008.
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illustrated in Figure 1.2.

To help understand the objective better, I will quickly introduce the reader to the

basic concepts of speech and speech recognition and give a little insight in the inner

workings of a speech recognition system in chapters 2 and 3. In Chapter 4 I will

explain the common standards used to describe the quality of a speech recognition

system. Those more familiar with the subject are invited to skip these.

In chapters 5 and 6, I continue the introduction to speech recognition by examining

in more detail two particular areas of interest in speech recognition: Multilingual

recognition and speaker adaptation. These are meant for the main audience of this

thesis (the supervisor and the reviewing board), who are already familiar with the

terminology and theory. If the reader is not familiar with the field, it is perfectly

all right to not to understand too much of these.

Finally, I will present my test set-up in Chapter 7, and give a detailed explanation

of my tests and results in Chapter 8. The impatient reader can skip straight to

Chapter 9, where I present my conclusions.



Chapter 2

Basics of speech production and

perception

Spoken language consists of uttered sentences. The sentences consist of words and

the words consist of groups of ”sounds”. These utterances are caught by the recip-

ient's ears and after some neural processing the message carried by the utterance is

understood by the recipient.

This is everyday knowledge, and is enough for a casual conversation about com-

munication, but a scientific approach to speech requires that the terminology used

by the researchers is well defined. In this chapter I will quickly go through some

essential terms and after that introduce the basic ideas on how speech is formed and

how it is heard.

2.1 Terminology of utterances

The sounds that make up spoken speech are, in linguist’s terms, called phones.

Whereas in most western writing systems a written word is made of letters from left

to right, the spoken word is made from phones that follow each other in time. If

there is a need, as there is in this thesis, to describe a spoken word in written form,

the individual phones that make up the word are written down, usually again from

left to right. This is called transcription.

To be exact, a phone is only a realisation of a phoneme. A phoneme is a low level

unit of spoken language. It is the smallest unit that carries meaning. This means

that changing a phoneme in an utterance can change the meaning of the utterance.

The phoneme is a somewhat abstract concept, as it is not seen as itself, but only by

its representative phones. Just like every hand-written letter is different from other

6
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Figure 2.1: Communication channel according to Shannon, from Shannon, 2001.

Figure 2.2: The speech chain, from Denes et al. , 1970.

hand-written letters, so are phones unique, but they are always representations of a

phoneme like the hand-written letter is a representation of the “ideal” letter.

The way the phones are marked on paper must of course be standardised in order

for linguists to exchange their ideas. The International Phonetic Association has

produced a standard set of characters for phonetic transcriptions. This is called

the International Phonetic Alphabet (IPA). In the IPA alphabet, phones are rep-

resented by letters that are most familiar to people who are used to the Roman

alphabet. Especially in the case of phonetic languages, where the way a word is

pronounced can be seen from the way it is written, care must be taken not to con-

fuse the concepts of letters and phones. Transcriptions of phones are often, including

in this text, marked by slashes on both sides, like this: /a/.

When discussing speech recognition, we mainly talk about phones. Or rather, we

are talking about mapping phones into phonemes, that can be used to recognise

what words are being uttered.

For the engineer, notorious for not caring about the subtleties of terminology or

the finer theories and just sprinting to a practical, technical solution; questions about

the true nature of speech are irrelevant. An engineer sees speech as a communication
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on the physiological level deals with the creation of the speech signal. On this

level, the speaker controls the articulatory system of the body.

Speech as an acoustic waveform is formed by the air flow pushed out from the

lungs through the vocal folds. The fluctuation of the vocal folds is the source of

voiced speech. When speaking, the vocal folds create a simple monotonous sound,

called the glottal excitation signal. The excitation signal is filtered ( i.e. some

of the signal’s frequencies are amplified and some are dampened ) by the vocal tract

to create more colourful sounds. The vocal tract consists of parts of the throat and

the mouth, and sometimes the nasal cavity, as shown in Figure 2.3.

The basic sound of Vowels like /a/ or /e/ is produced by the vocal folds rapidly

opening and closing rhythmically while air is pushed through them. This opening

and closing causes the air to come out from the lungs in quick, forceful bursts. The

speed of opening and closing is typically around 80-130 times per second (Hz), which

in music terms would mean around 4800-7800 beats per minute. The single impulses

making the sound cannot be heard - instead we hear a tone.

The different sounds of different vowels are formed when the air pulses coming

from vocal cords push through the mouth and lips (and sometimes the nasal cavity)

unobstructed but altered by different ”bottlenecks” formed by the position of the

tongue, lips and other parts of the vocal tract. The reader is invited to try out how

moving the tongue and lips changes the sound of a vowel. This is easy to try, since

it is easy to continue pronouncing a single vowel.

As opposed to vowels, forming consonants requires that the vocal tract is blocked.

There are many ways to do this and sometimes the results resemble vowels.

Fricatives are formed when the air flow is obstructed so lightly, that the tur-

bulence of the air flow creates ”hissing” sounds like /s/. One of the subgroups of

fricatives are tremulants, where turbulence creates a rhythmic tapping of some

part of the vocal tract creating sounds like /R/. Nasals like /m/ and /n/ use the

nasal cavity to form ”humming” sounds when the lips stop air from escaping through

the mouth. In approximants like /l/ the flow of the air is not really blocked - there

remains a very small passage where the sound is formed.

Stop consonants or plosives are formed by the vocal cords closing, building pres-

sure and releasing it all of a sudden. Because this process requires the build-up and

a sudden burst, it is not possible to keep on pronouncing a clusil like /k/ or /t/.

Figure 2.4 shows the utterance ”koko” by a Finnish female speaker. Here the plosive

/k/’s show as almost blanks, whereas the vowel /o/-vowels create a waveform with

a comparatively high amplitude.

To sum up the previous paragraphs: air coming from the lungs through the vocal
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Figure 2.4: Waveform of utterance by a Finnish female speaker on various levels of
detail. On the top there is the waveform of the whole sentence. Looking at a few
words (middle), it is easy to see how hardly any boundaries exist between words in
spoken language: words are glued together almost seamlessly. On the bottom there
are waveforms for a typical vowel (/o/) with its regular, repetitive pattern and a
clusil (/k/) with its short break before a noise burst. The bottom image also shows
phones analysed in 10ms units and segmented into a beginning, middle and end
part. This is explained in section 3.6.1.



CHAPTER 2. BASICS OF SPEECH PRODUCTION AND PERCEPTION 11

cords makes explosive sounds, like: BOOM BOOM BOOM, but so fast that if we

were to hear it unaltered, we would hear a simple tone. This sound is altered by

our tongue, lips, nasal cavity etc. to produce most of the different sounds we make

when we speak. We engineers like to call this alteration process filtering. In the

case of stop consonants, the vocal tracts close for a while. Therefore there is a small

silence before a few bigger booms and then the BOOM BOOM BOOM pulse train

continues again.

2.3 Speech waveform and the ear

On the physiological level, the listener is much more passive than the speaker. Using

the ears does not require active effort. The earlobe directs the sound waveform onto

the tympanic membrane (better known as the eardrum) that directs the energy of

the signal further to the inner ear.

As I have described above, speech consists mostly of the pulse train that is shaped

by the vocal tract. As a result, if we were to investigate the acoustic signal as a

waveform, we notice regular repetitive patterns. In Figure 2.4, a very good example

of a regular pattern can be seen on the bottom image, during the pronunciation of

the vowel /o/, on the left side of the waveform diagram.

Knowing that this pattern is from around 8-13 milliseconds (ms) long depending

on the speaker's vocal tract's physical properties, and that a majority of phones

have a duration between 50 ms and 150 ms (Pols et al. , 1996), we can see that the

acoustic wave pattern is repeated a good few times during the pronunciation of a

single vowel.

This means that the signal can be broken down into frequency components. This

is exactly what the ear does. Inside the ear, after the eardrum and its magnificent

bones Malleus, Incus and Stapes, there is a narrowing tube called the cochlea. The

cochlea is a relatively long tube, narrowing towards its end, and curled into a spiral.

It can be seen on the right-hand side in the figure 2.5.

The resonations caused by the acoustic signal on the eardrum is transmitted to the

cochlea by the aforementioned bones. The cochlea is filled with a jelly-like substance

that resonates in tune with the rhythm of the acoustic signal. Depending on the

frequencies of the acoustic signal, the resonation will be stronger in some parts of

the cochlea. The cochlea is lined with small, hair-like neural receptor cells, that

are activated when they are moved - hence the resonation caused by the acoustic

signal will cause a sensation of hearing a certain frequency. If the resonation is too

powerful, the neural receptors can be damaged. Damaged receptors can temporarily
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Figure 2.5: Diagram of the ear. Some vibration points in the cochlea are shown. By
Chittka & Brockmann, 2005, available from Wikimedia commons.

or permanently raise the hearing threshold and can lead to Tinnitus.

Now we step on to the linguistic level of the recipient. The neural receptors

are connected to the vast neural network of the brain. The nerves collect receptor

information from different frequencies and combine and process this information to

create the sensation of hearing and ultimately the understanding of the content of

the speech. How this is done is outside the scope of this thesis, but the interested

reader can read more about this in Goldstein, 2001.

The hearing system has a lot of redundancy. A lot can be left out of the acoustic

signal and still the listener can understand the original sentence. This is mostly due

to the neural processing, and is investigated by the field of psychoacoustics. Knowl-

edge on what aspects of the signal are most important for the hearing sensation can

be used as a guideline for manipulating speech signal before the actual recognition

process. The parts of the signal that are important for hearing and understanding

can be emphasised. The less important parts can be left out of the recognition

process in order to reduce the complexity of the speech recogniser and thus speed

up the process.



Chapter 3

Speech recognition for the

uninitiated

In this chapter we will go through the basic principles of speech recognition and

try to describe the various parts of a speech recognition system. Mathematical

discussion is avoided as much as possible, but a background in physics and statistics

might be required to understand the various models.

3.1 What is speech recognition

If you ask an engineer what a speech recogniser is, the answer might be something

like this: The term “speech recogniser” could be applied to a system that takes

speech as input and gives corresponding text strings as output, whether straight to

the user or to the next software component. A straightforward example of the pre-

vious type is a speech-to-text system, that transforms spoken speech into written

text output, as shown in Figure 3.1

In the words of a a non-engineer, this would be an electronic secretary, that

performs dictation tasks.

As part of a larger system, a speech recogniser is a small input component in the

device. Consider the devices in Figure 3.2: Speech recognition is only a very small

part of far more complex systems that bind meaning to the recognised words and

react accordingly.

For the purposes of this thesis, I will use the term 'speech recogniser' only in

reference to a speech-to-text system.

13
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3.2 Speech recognition as pattern recognition

What we call pattern recognition should in the case of computer programs be called

classification. Classification is basically just the task of sorting observations into

predefined boxes. These boxes are often called classes. As a concept, this is not

rocket science. Some of the formulas might scare the less mathematically enthusi-

astic readers, but the reader can be assured that the principle is simple, even when

the mechanism is not.

The ability of humans to recognise various objects with incomplete information

is based largely on context and previous experience. Similarly, for a computer

program to recognise an object, the computer needs prior information about it.

Machine learning techniques are used in the shaping of the boxes. Machine

learning techniques do have their limitations – They can be effective in refining a

system, but until the unforeseeable future, human initiative and careful planning is

required to build the basis of the system.

A probabilistic speech recogniser calculates the probability that any one obser-

vation belons to one of the different classes known to the system. The observation

is then assigned to the most probable class. The calculation requires heavy prepro-

cessing of the data, which is explained in more detail in section 7.5. The sequence

of classes then gives the recognition result.

3.3 Structure of a typical speech recogniser

A typical speech recognitions system consists of a decoder, that matches acoustic

models onto a preprocessed input signal, according to a language model, as

shown in Figure 3.3. We’ll go through the parts of the speech recogniser in as gentle

and non-technical manner as possible.

3.4 Preprocessing

The aim of signal preprocessing is to bring the recognisable data into a form that can

be easily evaluated by the computer and to compress the data as much as possible

to bring down the computational cost of analysing it.

The speech recognition process is an example of classification task. In order to

classify properly, we need to define the objects of classification. We will use uniform

length segments of the speech signal. Classifying waveforms would be problematic,

because the waveform shape is very different depending on the sample start time.
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Figure 3.3: A block diagram of a typical HMM-based speech recogniser.
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So we will first transfer the signal to frequency domain, where the short-time signal

will have a similar form no matter where the sampling started. This transform is

usually done with a Fourier transform.

We will then use further mathematical operations to reduce the amount of re-

dundant signal data. We will reduce the amount of data radically by using Mel-

scaled filter banks - these attempt to model the current ideas about the sensitivity

thresholds for different frequencies in the human ear - and compress this even more

with a cosine-transform, that will reduce the correlation between the samples. The

cosine-transformed spectrum is usually called cepstrum, and the final samples are

Mel-Frequency Cepstral Coefficients (MFCC). Other preprocessing methods exist,

the most popular being Perceptual Linear Prediction (PLP) analysis. An endless

amount of variations for these two feature extraction processes also exist.

As a result of preprocessing the utterance to be recognised is converted into a

stack of vectors, which consist of a dozen or so coefficient values. To avoid missing

any essential information, the samples overlap each other. In this work, there is one

vector for each 10ms of acoustic data, and each vector covers 25ms. This means

that all samples will be shared by several vectors.

With this 10ms timestep, one second of speech is represented with 100 vectors of

13 dimensions and thus by 1300 numerical values.

When running the recogniser, also the change rate of features is modelled, and the

change rate of the change. So the models are built to recognise 13 feature values,

13 delta values and 13 delta-delta values giving a total of 39 dimensions for each

feature vector.

3.5 Decoding and recognition tasks

The heart of the speech recognition system is the software component that calculates

and keeps track of probabilities of different recognition hypotheses for the data to

be recognised. This is the decoder.

3.5.1 Token-pass decoder

The decoder goes through every part of the speech segment and calculates the

probability that given sample belonging to each of the possible models. The possible

phone models and phone combinations are listed in the recogniser's lexicon,. The

lexicon is a dictionary that has all the words that the recogniser “knows” and their

associated phonetic transcriptions i.e. pronunciations.
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Theoretically this would be everything needed for recognition: acoustic models, a

lexicon and some data to be recognised. This however quickly leads to either quality

or computational difficulties.

A token-pass decoder constrains the search-space via the use of tokens to keep

track of possible recognition hypotheses. This is illustrated by a simplified example,

where phone duration is not taken into account.

The recognition starts at the beginning of the data and proceeds one time-step

at the time. As it goes through the recognition data, the decoder keeps in the com-

puter’s memory a list of most probable paths. At each time-step, every hypothesis

in the recognition hypothesis stack emits tokens to all possible models that might

continue the hypothesis.

At first, the hypothesis stack is empty and the list of possible paths is a list of all

models of phonemes that can be at the start of a word. Tokens are then emitted to

all these models:

Once the tokens are passed, the probability of the acoustic features of that time-

step belonging to the relevant model is calculated and added to the probability count

of the path (not shown). Then the most probable hypotheses are kept and others

are dropped to conserve memory and processing time.

So, the best N hypotheses are saved - shown in brackets here - and then every

hypothesis passes tokens to all possible models:

If a path has a phone sequence corresponding to a possible word, like the words
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“I”, “eye” and “ein” in the following diagram, the word is saved into the path and

the recognition of models continues:

As the recognition progresses, the tokens carry longer and longer paths. At some

points, the paths of the remaining tokens might merge and more memory can be

saved. The token-pass algorithm is intended to have control on the search space size

- and thus on memory consumption and required computation time.

We will shortly see why the decoder places a higher probability on “I” rather tha

“eye” for the first word.

When the decoder reaches the end of the recognition data, the most probable

path is taken as the strongest hypothesis and thus the end result of the recognition

process.

The main constraining parameters are the maximum hypothesis stack size, and

the beam width. If the probability of a path falls below the probability of the most

probable hypothesis by more than the beam width, then that path is discarded from

the stack.

A very important part of decoding is to have an efficient method of constrain-

ing the search space for possible models. Typical decoders like the HTK or TKK

decoders (Pylkkönen, 2005) create a hierarchy of model networks, with a HMM sub-

phone models at the bottom, a phone network at the middle and a word network at

the top.

The network should always be created according to the task the recogniser has



CHAPTER 3. SPEECH RECOGNITION FOR THE UNINITIATED 20

Utterance start

@

a b d e f g h i j k l m n o p r s t u v ä ö

@

Utterance end

Figure 3.4: An example of a recognition network used by a Finnish phone recogniser.
The @-boxes represent empty nodes, that are used only to clarify the network
diagram. Without these null nodes, there would have to be arrows from every letter
going back to every other letter.

to perform. We will now have a quick look at different recognition tasks and their

associated higher-level networks.

3.5.2 Phone recognition

A very basic task is phone recognition. The constricting framework is a list of

possible phones, like in Figure 3.4. The recogniser matches each part of the spoken

speech signal to a predefined list of phones and looks for the best match. No word-

level network is needed.

With languages like Finnish, where there is a strong correlation between written

letters and spoken phones, we could recognise a sentence as a sequence of phones,

by allowing sequences of phones as in the recognition. We could then hopefully be

able to infer what word could be hidden in the resulting output phone sequence.

For example, the utterance

se on aika raskas proseduuri että

recognised using a simple phone recogniser gives us:

tseoavaraskasb posedurötä,

which, at least in the eye of a Finnish-speaker, has a slight resemblance to the

original utterance, but does not really make sense.

3.5.3 Isolated word recognition

Another basic task is isolated word recognition. The recogniser matches the

spoken speech signal to a predefined list of words and looks for the best match. This
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Sen tence  s t a r t

Good We’re currently flying at We’re expected to arrive

morning af te rnoon evening

ladies  and gent lemendear  passengers

This isI  am 

your captain

List of first names

List of last names

Sen tence  end

for this flight

s e v e n eight nine t e n t w e n t y

kilometers

aboveover

thousand  fee t

t w o foursix eight

List of places

a t  our  des t ina t ion

on t ime

a b o u t

an  hour

fifteen fortyfive half

la te

minu tes

Figure 3.5: An example of finite-state grammar network.

requires a lexicon (pronunciation dictionary) which is a list of mappings between

letters and phones that tells which phones appear after each other in a given word.

An application could be a telephone service, where the user is asked for short

and specific input from a predefined list. The list of possible choices might be too

numerous to be listed out by the service, but nevertheless the choices are limited in

a way that is understood by the user.

For example, a ASR bus timetable service could ask the user to speak the desired

bus stop name or bus line number and then tell the user when the next avaialable

bus comes.

3.5.4 Finite-state grammar speech recognition

The captain of an aeroplane never seems to have a decent microphone, but still the

passengers somehow make sense of what the obligatory mid-flight speech is about.

Using the same principle, the most prevalent task for ASR systems deployed to

consumer use is finite-state grammar speech recognition, where the recognition
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is done with a strictly limited network of possible word combinations. This grammar

is a finite-state network that represents rules regarding which words can appear

after each other.

A speech recogniser trained to recognise flight captain's cabin speech might have

a grammar network like shown in Figure 3.5. This kind of system could recognise

easily utterances like

Good evening ladies and gentlemen, this is your captain for this flight

Johanna Johannasdottir. We are flying at 8 kilometres over Reykjavik.

We're expected to arrive at our destination on time.

and

Good morning passengers. I am your captain Johan Johansson. We're

flying at 24000 feet above the Arctic Sea. We're expected to arrive at

our destination around 15 minutes late.

A finite-state grammar recogniser has a list of internal states, and in each state it

will wait for a certain type of input. An ASR telephone banking system might first

be in a state, where it asks for the customer to give some kind of information. This

might be given in various forms, including name or customer identification number,

uttered in a sentence like “hello, this is ... calling” or “here is customer number ...”.

After establishing the identity, the recogniser might be in state, where it waits for

the customer to declare the banking operation, like “What is my account’s balance”

or “I’d like to transfer $600 to the account ...”.

At first, it might look like the number of possible sentences the speech recogniser

has to be able to recognise is very large. And actually it is. But it is very small

compared to free-form speech. Consider, for example, if the captain of the aero-

plane took the bad microphone and started reading theatre reviews from old 1920’s

newspapers - how many of the passengers would understand it completely?

3.5.5 Large vocabulary continuous speech recognition

The most advanced task is large vocabulary continuous speech recognition

(LVCSR). These kinds of recognisers have a vocabulary ranging from a few thousand

to a few hundred thousand words. The recogniser tries to recognise whole sentences

within a huge lattice of possible word combinations. The best of these systems, like

the one in Figure 3.6, are capable of transcribing very complex utterances from a

range of speakers.
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A huge model with as many words as the reader can imagine poses a problem

of memory consumption and recognition results with minor errors are more likely.

Smaller models have a higher probability of making the right recognition, but at the

cost of getting very bad results when a spoken word is not included in the vocabulary

of the model.

Large vocabularies and inflectional languages

In English language, a selection of a few thousand words should be enough to cover

one specialised subject area and a few hundred thousand enough to cover most of

everyday speech.

However, in languages like Finnish or Estonian, the words are inflected according

to their grammtic role, and all nouns and verbs can have up to thousands of different

forms. As listing all the forms of the recognisable words is not computationally

feasible, another technique is used to process morphologically rich languages.

Creutz, 2006 suggested splitting words into smaller units called morphs automat-

ically in a way that optimises the number and the information value of the morphs.

In this way long and uncommon words are split more than short and common words.

What is common and what is not depends of course on the material used to train the

morphing algorhithm. A morphing algorhithm trained on a collection of newspaper

text would make the following division of the sentence “Lopullisessa muodossaan

sen hyväksyy kirkolliskokous”:

lopu | llisessa | muodo | ssaan | sen | hyväksy | y | kirkollis | kokous

As shown by Hirsimäki, 2009, using morphs improves the recognition of inflec-

tional languages, as long as the order of the language models is high enough to cover

the increased number of units.

3.6 Acoustic modelling

We will now have a quick look at the last, but maybe the most fundamental part

of speech recognisers, the acoustic models. The acoustic models try to describe the

sounds of speech in the most (statistically speaking) accurate way.

Previously, we considered speech recognition as pattern recognition, and as a

classification task. The acoustic models are the ”boxes” into which the observations

are sorted. Each phone has its own acoustic model, and this model tries to cover as

many different ways of pronouncing this phone as the task requires, but not more.
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that describe the acoustic signal of various parts of the phone, typically the begin-

ning, middle and end part. The time-step is typically 5-15 ms - in this work it is

10ms, the same as the time-step of feature generation as mentioned in Section 3.4.

The transition table tells the probability of skipping to the next state of the

phone at each time-step. The bottom image in Figure 2.4 shows a the sub-phone

state segmentation using HMMs. Every 10ms the system investigates the new part

of the acoustic signal, and knowing the state of the last 10ms, decides if the system

should a) stay in the same state of the same phone, b) change to a new state of the

same phone or c) change to the starting state of a new phone, if the transitions of

the previous phone allow it.

The interested readers should satisfy their thirst for further knowledge on HMMs

with Rabiner, 1989.

3.6.2 Phonetic context

If we recognise phones with no interest in their pronunciation context, we are recog-

nising monophones. This would be all we need, if human articulatory system

wasn’t so dynamic. So far, we have observed in 3.6.1 that the acoustic signal of

a phone is different at different times in the phone’s lifetime. A second aspect of

change arises from the relative slowness of the tongue and the lips – It takes a little

bit of time to change the position of articulatory organs from the position required

by one phone to a position required by another one. Using the knowledge – or at

least educated guesses – about the previous and following phones, we can prepare

for these changes and increase the accuracy of the recogniser. A model that takes

into account one previous ('left') and one following ('right') phone is called a tri-

phone. A model that looks at the two previous and two following phones is called

a quinphone.

Taking the example sentence from 3.5.2, and running it through a large-vocabulary

continuous speech recogniser, which uses simple acoustic models with no context,

we get

se on varas kaspace dureta.

Finally, using a large language model and simple acoustic models that take into

account the left and right phonetic contexts, we get

se aika raskas roseduuri että.

When using acoustic context, we have have two possible problems. First, we might

have very little or no training data for some context-dependent phones that would
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Figure 3.8: An example of a phonetic decision tree.

appear in the recognisable data. Secondly, we might end up with a very complex

recogniser with so many parameters, that the recognition becomes slow.

3.6.3 Phonetic Decision Trees

The first problem can be broken down to two subproblems, and both are solved in

a similar manner. With the help of a list of questions about the phonetic nature of

the previous or following phones, we can form groups of similar context-dependent

phones. For example, we want to be able to recognise the following triphones:

• o-s+k - not enough training data

• o-s+t - not enough training data

• o-s+o - no training data

• u-s+k - enough training data

• u-s+o - enough training data

Our list of questions has the following questions:

• Is the previous context phone a plosive?

• Is the following context phone a plosive?

• Is the following context phone /o/?
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• Is the previous context phone /o/?

• Is the following context phone /t/?

• Is the previous context phone /t/?

With these we can build a decision tree, as shown in figure 3.8.

This list of questions is prefabricated by human hand according to previous pho-

netic knowledge. A full list, as shown in Table 3.1, has many questions dealing

with known phonetic classifications. Our simple example pales in comparison, but

hopefully yields some insight into the matter.

The tree is built to split with maximum information gain. Basically, each question

on the tree should split the data into two subgroups, that should be as equal in size

as possible. This is naturally done by the computer.

At the bottom of the tree, when no more questions are left to ask, are the phones

themselves.

By looking at the tree, we can then see, which phones are supposedly phonetically

similar. Then by traversing the tree from phones that are missing in the training

data (like o-s+o) or have very little data (like o-s+k and o-s+t) we can use the tree

to find suitable ”partners” for these phones. So, the recogniser will use the model

for u-s+o to recognise o-s+o. Also o-s+t and o-s+k are grouped. Together they

might have enough training data, and share one model between them. If there still

is not enough data, they would be grouped with u-s+k, and the three would use one

model, trained with the data of all of the three phones.

3.6.4 Mixture modelling

Up until now we have avoided the question of the nature of acoustic models. A

Gaussian Mixture Model (GMM)-based recogniser models the phones as sets of

Gaussians. The most widely known Gaussian is the bell-curve function of the normal

distribution. Each phone HMM’s state has its own set of Gaussians to model the

acoustic qualities of the spoken sound.

A gentle introduction to statistical modelling

A model in the sense of statistics is a simplified representation of data. It allows us

to describe vast quantities of data with a few parameters. Of course, individualness

is lost when describing the general properties of a larger population.

A very simple example of everyday use of statistical modelling is the use of average

values. For example, to say that 1,5 million children younger than 5 years old die
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Continuent men, nen, ngen, fen, ven, then, dhen, sen, zen, shen,
zhen, hhen, len, ren, yen, wen, mfi, nfi, ffi, vfi, sfi,
hfi, lfi, rfi, jfi

IVowel ihen, iyen, ifi

C-Central ten, den, nen, sen, zen, zhen, then, dhen, len, ren,
tfi, dfi, nfi, sfi

Back-Stop ken, gen, kfi, gfi

RoundFront yfi, oefi

Dental ten, den, nen, tfi, dfi, nfi

Front pen, ben, men, fen, ven, wen, iyen, ihen, eyen, ehen,
pfi, bfi, mfi, vfi, tfi, efi, ifi, yfi, aefi, oefi

Front-Fricative fen, ven, ffi, vfi

EVowel eyen, ehen, efi, oefi

Voiced-cons jhen, ben, den, dhen, gen, yen, len, men, nen, ngen,
ren, ven, wen, zen, bfi, dfi, gfi, nfi, mfi

Voiced-Stop ben, den, gen, bfi, dfi, gfi

NonCoronal pen, ben, men, ken, gen, ngen, fen, ven, hhen, yen,
wen, pfi, bfi, mfi, kfi, gfi, ffi, vfi, hfi, jfi

NonStrident fen, ven, then, dhen, hhen, ffi, vfi, hfi

OU ofi, ufi

KeskiEtu eyen, ehen, oefi, efi

Unvoiced-cons pen, ten, ken, sen, shen, fen, then, hhen, chen, pfi,
tfi, kfi, sfi, hfi

Palatal ken, gen, ngen, kfi, gfi

Long iyen, owen, awen, aoen, uwen

Syllabic eren, rfi

Medium eyen, eren, ahen, owen, ehen, efi, oefi, ofi

UnStrident pen, ben, men, ten, den, nen, ken, gen, ngen, len,
ren, yen, wen, pfi, bfi, mfi, tfi, dfi, nfi, kfi, gfi, lfi,
rfi, jfi

Table 3.1: Examples phonetic questions used in the system. The questions are asked
for every phone twice, for preceding and following phones. The group of phones, for
which the answer is yes, are given on the right side. The phones used in the systems
are described in the table 7.3.
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of diarrhoea every year1 is a statistical interpretation of a very large number of

single cases happening over larger time span. It is considered true even if on some

years only 1,4 billion die and on some years more than 1,6 billion die. So, our

one-parameter model describes the phenomenon in enough detail to comprehend it,

although not quite accurately enough to trigger desperately needed political action

to stop it.

In speech recognition the models require more parameters in order to be effective.

The speech sample data are represented in feature vectors, a list of parameters as

described in the section 3.4. These vectors are simple ordered groups of numbers,

often some dozens of numbers long. In the same way, a tailor’s customer could be

described according to a list of parameters: height (in cm), weight (in kg), waistline

length (in inches), foot size (Continental standard) , etc. The result might be like

[180.0, 75.3, 32.4, 43, ... ].

Sometimes we can find more or less well defined groups in this kind of represen-

tation - maybe we could find correlations between some properties, and make crude

predictions that we could sometimes make based on our everyday experience, like:

If a person has a beard length of more than 0, the person is probably male.

Gaussian distributions and simple classification Given a large enough group

of people, properties like height and weight are normally distributed - In large pop-

ulations their distributions approach the normal distribution, which is a Gaussian

distribution with the bell-shaped curve familiar to all of us.

The Gaussian distribution is defined by two variables that are easy to calculate

from samples: mean and variance. The bell-shaped curve of the normal distribution

is the probability density function (PDF). It shows how the probability mass

is distributed across the observation space. Given that there are enough samples

and that the phenomenon we are describing truly is normally distributed, the PDF

shows the proportion of samples at a certain value interval related to the total mass

of samples. Simple visual inspection shows that most samples are near the mean

point of the distribution.

When we have several classes of samples, as an example 13-year old boys and

13-year old girls, and the distribution of their weights in kg2, we can make a crude

whether a new 13-year old of unknown sex is a boy or a girl, depending on the

measured weight.

1From: Black Robert E, Morris Saul S, & Bryce Jennifer. 2003. Where and why are 10 million
children dying every year? The Lancet, 361(9376), 2226 - 2234.

2From: Cynthia L. Ogden, Cheryl D. Fryar, Margaret D. Carroll, Katherine M. Flegal: Mean
body weight, height, and body mass index, United States 1960 - 2002.
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Figure 3.9: Weight distributions of 13-year olds. By drawing the probability dis-
tribution functions, we can see the point where they meet. Below this point, an
unknown observation is more likely to be a boy, and above it, a girl.
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Figure 3.10: Height and weight of some Marvel super-heroes.

We can plot the PDF of the weights, and by comparing the values at the observed

point, we can say which is the more probable class for the observation. This is

illustrated in Figure 3.9.

Multi-variate Gaussian distributions Now, as an example, we will plot the

heights and weights of 129 Marvel Comics’ super-heroes and villains into one graph

- including males, females and aliens3. This is shown in Figure 3.10.

We are interested in the powers of statistical modelling in classification problems.

In order to classify observations, we start by modelling the previous observations.

3This is inspired by http://www.karenhealey.com/papers/comparative-sex-specific-body-mass-
index-in-the-marvel-universe-and-the-real-world/. Data from the above and Marvel.com wiki.
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We will fit one distribution to each of the three classes (Aliens, females and males),

assuming that their properties are normally distributed. We will now try out differ-

ent approaches to the models.

In the first case, we assume, that height and weight are independent variables,

a distribution like this is described by its height and weight averages and their

variances.

With the distributions fitted on to all the data classes, we can compare the proba-

bility density functions of the distributions. As mentioned earlier, the PDF describes

how the probability mass is distributed across the observation space. The most prob-

able classification is the one that gives the best probability for this observation point

in its distribution i.e. When we compare the classes at a certain weight and height

point, the most probable class is the one that has the greatest value in its PDF at

that point. In Figure 3.11, all three PDFs have been drawn, and at the bottom are

the original observations and the lines along which classification is done.

Looking at the classification boundaries in Figure 3.11, we can see that this model

predicts that any super-hero weighing more than 80 kg and less than 120 kg is male.

Heavier super-heroes are aliens, and the only interesting classification boundaries are

at the 40-80 kg range, where height also plays a part in the prediction of super-hero

type.

The model did not take into account the possibility of height and weight being

dependent on each other - Often tall people weight more than short people. Maybe

we should allow for this dependence to show. Thus, we will include in the model

parameters the covariance of the variables. Having covariance between height and

weight, we get the PDFs and classification borders as shown in Figure 3.12.

In this case both height and weight are important in guessing the super-hero

type. A 140 cm super-hero weighing 150 kg would be alien, whereas a 210 cm 150

kg super-hero would be male.

This clearly gives a more accurate description of the data. However, another

problem arises in practical applications: In a feature space with a large amount

of dimensions, heavy calculation is required and a lot of parameters need to be

estimated in order to build a robust model with full covariance. If there is no

covariance, the term often used is “diagonal covariance”, as the covariance is usually

shown in matrix form where the variances are on the diagonal.

To ease the calculation but still maintaining the ability to describe the data ade-

quately, we will create each distribution from several Gaussians, which we will call

components. The system compromising of several Gaussians is a Gaussian mix-

ture model, balanced so that they describe the phenomenon as well as possible
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Figure 3.11: Example of multivariate diagonal covariance Gaussian probability
distribution function. The distribution funtions have been drawn on top of each
other, so that the color shown on the upper part of the figure is that of the most
probable distribution.
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while their combined probability mass stays the same. These balancing factors are

called mixture weights.

So now we have inside all the super-hero classes separate model for short and

light super-heroes and a separate for tall and heavy - Or whatever the groupings are

that our learning algorithm will pick out. The upper part of Figure 3.13 shows all

the newly generated mixture models. All the models consist of 2 Gaussians. This

models very well the existing super-heroes, and is very efficient in predicting the

classification of similar data.

However, the female class is dangerously compact compared to the other classes.

We could spread the distribution of female heroes a bit to make the model generalise

better. This we can do by setting a variance floor, which indicates the minimum

acceptable variance. Any variance component that is estimated below this value

would be replaced with the minimum floor value. However, this could also be a sign

that all Marvel’s female super-heroes are very similar in build and thus flooring the

variance would lead to unoptimal model.

By expanding the mixture model further by adding 1 Gaussian to the female

model and 2 Gaussians to the male model, we get a pdf illustrated at the bottom

of Figure 3.13. Now we have very complex classification boundaries, and this is

maybe more an example of over-fitting the model on the data. Overfitting occurs

when there is not enough training data to train all the model parameters properly.

Normally, we would like to avoid too complex and too specialised models like this.

Using a-priori information If we know something before investigating the ob-

servation, this knowledge is “a priori”. In this case we know that the observed

super-hero comes from the same population as the heroes used to train the models.

So, to further increase the accuracy of the classification, we can investigate the pro-

portions of the classes in training material. Looking at the numbers, we calculate

that 15% of the heroes were alien, 54% male and 31 % female. If we had to make

a wild guess about the nature of the new super-hero, the best bet would be on it

being male.

By balancing the PDFs of the three classes by these proportions, we’ll end up

with a slightly differing division of classes that places more bias on males and less

on aliens.

This simple example tried to illustrate that with statistical knowledge, we can

create ‘”boxes” for classifying new observations. Given the weight and height of a

new super-hero, we can make a prediction whether the super-hero is male, female or

alien. Similarly, in our 39-dimensional observation space for speech, a new observed
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model with 2 Gaussians per class (above) and an overfitted model with 2,3 and 4
Gaussians per class (below).



CHAPTER 3. SPEECH RECOGNITION FOR THE UNINITIATED 36

and preprocessed sound datum can be categorised into one of the several thousands

of classes that we have taught from large corpus of spoken data. Instead of adjusting

the classification by simple a-priori information, we use language models or finite-

state grammars to improve the classification.

The acoustic models in this work are diagonal covariance Gaussian Mixtures.

The mixture approach is a simple and efficient way of increasing the performance of

acoustic models. The above example from 3.6.2, recognised with a Mixture model

of 2 Gaussians per state gives:

se on aika raskas roseduuri että

Semi-tied covariance transforms

One of the objectives of feature extraction is to create feature vectors where each

item is independent of all others. This is very hard to accomplish, and thus there

remains a problem of covariance modelling.

One possibility to model the covariance with a light computational load is to

rotate the feature space with a transformation matrix. This rotation can be either

class-specific or a general one. The classes can be quite arbitrarily defined - they

can be individual states, phones or phone groups.

One approach to this is to create class-specific transforms for covariance matri-

ces, Semi-tied Covariance Transforms (STCs). Thus, every model will have its

own diagonal covariance matrix, and beside that, a class-specific transform is cal-

culated so that the mismatch between transformed diagonal covariance model and

full covariance model is decreased. For a detailed explanation, see Gales, 1999.

For the purpose of training STCs, a full covariance model set needs to be trained,

and this is memory and processing time intensive but very rewarding when viewing

recognition performance. The STCs used in this work are centre-phone-specific - for

each centre-phone, there is one STC.



Chapter 4

Recogniser performance

measurement

In this chapter we will quickly go through properties that can be used to compare

the performance of different speech recognition systems.

As with any other technical tool, the “goodness” of a speech recognition system

is evaluated by its performance in a given task. This can be compensated by con-

sidering the resources consumed by the system – an adequately performing cheap

solution might sometimes be rated better than a system that performs very well but

is too expensive, be it in Euros, Rupees or computation time, to ever be widely and

effectively used.

The performance is generally measured with a predefined test set of sentences,

words or sounds to be recognised. A scoring program is used to compare the recogni-

tion results (sometimes referred to as hypothesis) with the reference transcrip-

tions. The reference transcriptions (sometimes referred to as reference labels) are

usually generated by humans who write down what the test utterances contain, or

if they are computer-generated, they have been checked by humans.

4.1 Recognition accuracy

Sometimes when we review several speech recognition systems, none of them can

recognise the test utterances perfectly. For this case we need some kind of metric

to compare which one does the job best. We’ll review some of the more often used

measurement methods, starting with accuracy.

Put simply, recognition accuracy tells us what proportion of recognition tests were

successful.

37
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Accuracy =
H

N
∗ 100

where H is the number of correct units in the hypothesis and N is the total

number of units in the reference labels. This is a perfectly good way of measuring

the performance of recognition of single words or phones - word accuracy or phone

accuracy, and is normally not used for recognition of sentences or other continuous

speech.

4.2 Word, letter and other error rates

For continuous speech, a better measurement method is to calculate the recognition

errors rather than the aforementioned count of correct words.

The usual error comparison metric is based on the Levenshtein distance (Lev-

enshtein, 1966). This is based on the minimum amount of editing operations nec-

essary to change the correcr reference string into the erroneous recognition string.

The operations are insertion, deletion and substitution. Once we have done the

more complex calculation of the required operations, the calculation of the error is

straightforward enough using the formula

Errorrate =
S + D + I

Nr

where S is the number of substitutions, D is the number of deletions, and I is the

number of insertions that have to be made in order to reach the hypothesis from

the reference. N is the number of units in the reference transcriptions.

We can calculate the error with different units depending on the language. Word

error rate (WER) is a good measure for the English language, and is the de facto

standard for comparing speech recognisers of most European languages.

WER is a simple and effective metric for languages where compound words are not

very common and the mapping from words to phoneme sequences is not straight-

forward. In all cases it is not always ideal. For example, the recognition of an

unknown word “Phosphorescent” as “flows for a stand” gives 1 substitution error

and 3 insertion errors:

id: (rhpsi_ena06)

Scores: (#C #S #D #I) 7 1 0 3

REF: so this is what it sounds like ***** *** * PHOSPHORESCENT

HYP: so this is what it sounds like FLOWS FOR A STAND
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Eval: I I I S

From a human point of view, maybe this should be regarded as a single error, as

it is only the absence of one word in the recognition vocabulary that has caused the

erroneous transcription. However, word matching is a simple operation for a com-

puter, whereas evaluating the similarity of word strings such as “phosphorescent”

and “flows for a stand” is not.

Beside the clusters of errors caused by unknown words, a big problem is that

mumbling and stuttering, sighing and laughing might be interpreted as words. The

example output of a recogniser struggling with an utterance with some stuttering

gives an idea of what might happen at worst:

id: (rhape_ena07)

Scores: (#C #S #D #I) 3 7 0 9

REF: i READ YOUR *** ** ** WEBSITE that **** ******* ******

HYP: i HAVEN’T SEEN ONE A. M. AND that THEY HAVEN’T SIGNED

Eval: S S I I I S I I I

... *** ********* YOU ARE TWENTY SEVEN so **

... AND SATELLITE THAT THE SYSTEM AND so ON

... I I S S S S I

For the 10 words of the original label, there is a total of 16 errors and thus an error

rate of 160%. What exactly does an error rate above 100% mean? The recognition

is not even 100% wrong in the eyes of a human reviewer - 3 words are recognised

correctly. As an error rate this tells us only that for every word in the original

sentence, 1.6 errors are made in the recognition process.

For short utterances and compound words, the case is even more extreme. Take for

example the Finnish pronunciation for “1600”, “tuhatkuusisataa”. If the recogniser

interprets this utterance as two separate words we have:

REF: tuhatkuusisataa **********

HYP: tuhat kuusisataa

Eval: S I

From 1 substitution error, 1 insertion error and 1 word in reference, we get a word

error rate (WER) of:

1 + 1

1
∗ 100% = 200%
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This seems a bit unfair - the recogniser made a small error that many people

also make. Alternatively, we can break the sentence into single letters, using single

characters instead of words as the base for calculating the errors, and then we’ll

have:

REF: t u h a t * k u u s i s a t a a

HYP: t u h a t _ k u u s i s a t a a

Eval: I

From 1 deletion and 15 letters in reference we get a letter error rate (LER) of:

1

15
∗ 100% = 6, 6%

This seems to be a fairer measure for the error rate. LER is however not applicable

to all languages. It requires a straightforward mapping between phones and letters,

such as in the Finnish language.

For Asiatic languages, Character Error Rate (CER) is used instead of LER. For

any language, it is also possible to use Phone Error Rate, as long as we keep track

of recognised phonemes.

4.2.1 A few words about alternate hypotheses

It is not easy to define the ”goodness” of even the perfect speech recognition system.

Given a system that gives a 100% correct mapping of any speaker's spoken utterances

to text in minimal time, the user might be slightly disappointed seeing the screen

of the computer filled with the normal mumbling and stuttering associated with

informal speech. To give an example, a hand-made transcription of the sentence

used in the paragraph above, with as much of the acoustic information transcribed

as possible:

umm I I read your web web website that you are twenty seven or so.

A more useful transcription would be a proofread version of the above:

I read your website that you are twenty seven.

However, as the original sentence clearly has human-audible extra words, we could

allow the computer to hear these also. Various scoring software allow alternate

transcriptions to be marked for each sentence. An example of this is the trn -format
1 where possible correct word sequences are marked inside brackets, separated with

slashes:
1http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/infmts.htm#trn fmt name 0
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{ah / umm / @ } i { i / @} read your { web / @ } { web / @ } website

that you are twenty seven { or / @} { so / @ }

The scoring program can expand this rather confusing looking sequence to a group

of all possible sentences, and finds the best match for the original sentence. The

@-character represents the empty word. If it is present inside the curly brackets,

that means that this alternate can be left out completely if it fits the recognition

result better. For example, both

ummm I read your website that you are twenty seven

and

I I read your web website that you are twenty seven so

are considered correct when using this method of alternative transcriptions.

4.2.2 Statistical significance

As speech recognition is an artful blend of signal processing and statistical math-

ematics, we are always concerned with unideal components in the signal and its

processing, both when training and evaluating speech recognition systems. We call

these unideal components noise, whether they are results of data recording problems

or the sum of rounding errors and approximations in the computational operations.

Therefore we must, when comparing two results that are very close to each other,

ask if the difference is statistically significant or just a result of random fluctuation.

Matched pair test

The criterion for statistical significance depends on the test set size and type. Gillick

& Cox, 1989, recommend to use a matched-pairs test to see whether the two recog-

nition results are statistically significantly different.

The test runs as follows: First, the evaluation utterances are recognised by both

the recognition systems A and B. For each utterance i in the n utterances in the

evaluation set, NAi is the error score by the recognition system A, and NBi is the

error score made by the recognition system B. The error score is WER, calculated

as described in section 4.2. The test variable is the difference of the error counts

in each utterance i, defined as Zi = NAi − NBi, i = 1, 2, ..., n. An estimate of the

variance of Z is
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σ̂2
z =

1

n − 1

n∑
i=1

(Zi − µ̂z)
2 (4.1)

where µ̂z =
∑n

i=1 Zi/n. If we define

W =
µ̂z

σ̂z/
√

n
, (4.2)

and have n > 50, W can be considered as normally distributed, and we can de-

termine statistically significant differences in two different recognition results of the

same sentences by a standard P -test on W .

4.3 Language Identification performance

A multilingual recogniser can be used for language identification, especially when

using combined language models as in Weng et al. , 1997. This could be one tool for

evaluating a system, that needs to know the language spoken by the user in order to

generate output in the corresponding language. In this thesis, this is not considered

relevant.

4.4 Performance in a task

A speech recognition system deployed for consumer use is evaluated simply by its

success rate in the task it is given. These metrics are very task specific. Some

examples could be:

• An ASR telephone meteorologist would be judged by its ability to give the

correct weather forecast to the dialling customer.

• A telephone banking ASR, that has a zero margin for error and double-checks

every input from the user, could be rated by the time it requires to make the

correct banking transaction.

4.4.1 Keyword recognition

A speech recogniser can be used to index audio data of radio and TV programs,

lectures, speeches etc. in order to do quick information retrieval. Instead of recog-

nising all sentences correctly in the data, it is more important to find the relevant

keywords that the users might be interested in. In this case, evaluation methodology

of information retrieval systems should be used for evaluating the system.
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Figure 4.1: A speech recogniser user interface in the dark future of Mega-City One.
Its usability depends very highly on its ability to pick keywords from the user’s
speech. From: 2000 AD, issue 9, published by IPC Magazines.

This kind of performance metric is necessary for various user interface tasks. A

voice-controlled kitchen lighting system or the system in Figure 4.1, should only

respond to specific keywords, not to small-talk or general chatter.

4.5 Other factors

Sometimes the raw result numbers from tests are not quite enough to guide us when

deciding which recogniser is the best for our use. The results depend heavily on

the quality of test data, the computational power of the test system and the overall

complexity of the test tasks.

4.5.1 Real-time Factor

All of the phases of the recognition require some kind of optimisation between speed

and accuracy. Brute force is unfortunately not always a real possibility. Scientific

research systems might not be time-critical, but recognisers aimed as user-interface

tools for consumer use need to respond to input very quickly.

The real-time factor is a ratio between the computation time required to process

an utterance and the length of the utterance.

This naturally varies according to the computing system used to run the recog-

niser. If a recognition system has a real-time factor of 1.0 when running on su-

percomputer, but is to be deployed on a small mobile device, some performance

problems are to be expected.
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The RT factors in this work range from 5 to 20, depending on the complexity of

the used language models.

4.5.2 Acoustic scalability

All people have slightly differing voices. Some people have very unique ways of

speaking. Children sound different from adults, men different from women. This is

also an important factor in noise robustness. The microphone might be bad or far

away. The background noise can vary by time.

Also there is a question of how accurately we want to recognise the nuances of the

voice. We could have more parameters in the acoustic models to recognise lexical

stress, but the more models we have, the greater the risk of confusing one sound with

another. The fine analysis of different sounds is rarely necessary, computationally

heavy and must be accompanied by a very highly refined language model. This

would make the whole system slow and might lead to more errors.

4.5.3 Vocabulary size and utterance complexity

Depending on the purpose of the speech recognition system, the vocabulary and

complexity of the recognition tasks can vary enormously. Recognising a few simple

utterances like

lights on

and

lights off

from a list of a dozen commands is computationally much simpler than recognising

dictated sentences that are grammatically complex and consist of comparatively rare

words, like the English sentence:

New York City’s Fresh Kills landfill on Staten Island for one dumps four

million gallons of toxic liquid into nearby freshwater streams every day
2

or the Finnish sentence:

jiddisiä puhuva rabbi ei ollut aiemmin maistanut jaffaa.3

2From the WSJ0 corpus
3From the Speecon corpus.
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In the case of the language model, the most important choice the builder of a

speech recogniser has to make is the size of the vocabulary. The more words, the

better the result for rare words, but the worse the recognition rate of the most

common words.

Obviously, these two extreme examples require different properties from the speech

recognition systems. The language model component especially needs to be fit for

the task. An idea of the aptness of the language model in the task of recognising

a particular set of sentences is given by the perplexity of the model calculated over

the reference text.

The perplexity is a metric for describing how well the set of labels fits the lan-

guage model. It is based on how well a language model can predict the words in

recognisable sentences. Perplexity is calculated by

PP = P̂ (w1, w2, ..wm)−
1

m (4.3)

where P̂ (w1, w2, ..wm) is the probability of the word sequence w1, w2, ..wm (a sen-

tence with a length of m) according to the language model.

Perplexity helps to explain why our results are better or worse than would be

expected considering the quality of our acoustic models.

A more critical and even more obvious consideration is the question whether all

the words to be recognised are included in the recogniser’s dictionary. The number

of out-of-vocabulary (OOV) words gives a lower limit for the recognition error.

Consider the example sentences in Section 4.2. As our recogniser does not have the

word “Phosphorecent” in its vocabulary, the recogniser is bound to make at least

one error. This is only the lower bound, and in our example the recogniser makes 4

errors while struggling with the word.

4.5.4 Utilitarian value

No engineering science is completely cut off from the world, and therefore it is good

to contemplate on the effects of speech recognition innovations on general human

happiness.

In the footsteps of Mill, 1861, we might ask how much this or this speech recog-

nition system will have positive impact on lives of humans.

First, considering the experiences of consumers, we might claim that any increase

of performance in speech technology leads to an improvement of the lives of the

people already using speech technology.

Often a speech recognition system might be added to a telephone service system
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for two reasons: It saves costs and increases capacity – Less wages, shorter queues.

So advances in speech technology lead to call-centre wage-slaves becoming redun-

dant and thus having to start job-hunting again. This might be a real problem for

the older generations, just a few years from their deserved pensions. On the other

hand, it might be seen that technology frees these people from the shackles of a

tedious job. Thus the effects of speech technology in the lives of the ex-employees of

a telephone service depend on the possibility of attaining a better way of life after

an honourable discharge from service at the company.

For the user, who will confront a computer rather than a human in the other end

of the telephone line, the experience might improve or degrade. The computer will

never tire and will never make human errors. A bad system can be hopeless to use

and will decrease the happiness of the user.

Impacts like these should be pondered upon when deploying systems that will

replace employees.

4.6 Conclusions

Speaker-independent large vocabulary continuous speech recognition is the Cham-

pions' League of speech recognition. With a large vocabulary, free-form grammar

and considerable acoustic variation in test speakers, the error rates will be higher

than with systems with a reduced number of users and strictly defined test tasks.

For this thesis, I will build different speaker-independent recognisers and com-

pare them to existing ones. For English, measuring the word error gives the best

comparison independent of the task. For Finnish, I will use letter error.



Chapter 5

Multilingual Speech recognition

In this chapter, we will familiarise ourselves with the basics of multilingual speech

recognition and go through some selected results in this field.

5.1 Basic concepts

The goal of multilingual speech recognition research is to create speech recogni-

tion systems that can be used to recognise speech from several languages without

retraining or changing the system in between when switching languages.

A multilingual system can either be a combination of several language-specific

systems or a single system capable of recognising all the input languages. For the

acoustic models this means either selecting the proper model set at recognition time

or building model sets that can recognise two or more languages.

In this chapter and some of the following, I will give examples of relationships of

phonemes of one language to phonemes of another language. Underscore abbrevia-

tions are used to indicate the language to which a phone belongs. Thus a marking

/ahA/ describes the phoneme /ah/ as being present in language A.

5.2 Recogniser porting

Before delving into the question of multilingual recognition, a practical trick to train

a new speech recogniser in a new language has to be mentioned.

In order to create an initial acoustic model set for a new language, we can use the

acoustic models of a recogniser meant for another language to create preliminary

phonetic labelling for training data, and therefore evade flat-starting the models

from scratch.

47
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Figure 5.1: Different approaches to combining data across languages in acoustic
models. From left to right: ML-Sep, ML-mix and ML-tag. From Schultz & Kirch-
hoff, 2006.

Sometimes, for languages that are “similar enough”, a cost-effective way to build

an acoustic model set for a new language is to use an existing model set of a recog-

niser of a similar language as a basis. As building a robust speaker-independent

recogniser requires hundreds of hours of accurately transcribed speech, whereas port-

ing an existing recogniser to a new language requires only some dozens of hours, the

decision should be easy enough from an economic perspective.

Multilingual recognition can then be done using the new and old recognition

systems as one combined system in the ML-sep way, as will be explained in the next

section.

5.3 Parameter sharing

To enable true multilingualism in a single recogniser, the acoustic models of the

involved languages have to be somehow merged or trained together. The depth

of sharing acoustic models can vary from including two or more sets of language-

dependent acoustic models in the same model set to sharing most of the phone

models between phones of two languages. As defined by Schultz & Kirchhoff, 2006,

we can identify three different approaches to parameter sharing: ML-sep, ML-tag

and ML-mix, as shown in 5.1.

5.3.1 ML-sep: Separate models for different languages

When we need to use acoustic models from several languages in a single recogniser,

the simplest approach is to load all the trained models into the recogniser as separate

entities but to handle them as one.
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What these model sets have in common is the preprocessing process of the data.

If dimensionality reducing transforms (LDA, HLDA) are used, all the models must

be considered in its calculation.

5.3.2 ML-mix: Phone sharing

In ML-mix approach, the phones of different languages that are assumed to represent

the same “universal” phone, are pooled together for training, and for all computa-

tional considerations, their lingual origin is forgotten. In context-clustering, it is

considered to be a member of all the languages where it appears.

Supposing, for example, that the ASR system builders considered both /afi/ and

/ahen/ as a representation of the IPA phone a. In a ML-mix system, there would be

a single /a/-model shared by both languages, When recognising the Finnish word

“Akuutti” with its pronunciation

Akuutti /afi/ /kfi/ /ufi/ /ufi/ /tfi/ /tfi/ /ifi/

or English word “acute” with its pronunciation

Acute /ahen/ /ken/ /yen/ /uwen/ /ten/ .

both words would have the same /a/ in their pronunciation dictionary form:

Akuutti /a/ /kfi/ /ufi/ /ufi/ /tfi/ /tfi/ /ifi/

Acute /a/ /ken/ /yen/ /uwen/ /ten/.

Up to which extent the phones are shared has to be carefully thought. A careless

unification of sound units across languages degrades performance, as evident in the

test results presented in Chapter 8.

5.3.3 ML-tag: Gaussian sharing

One interest in sharing acoustic models in a Gaussian mixture system is to reduce

the number of Gaussians in the system, and thus reduce computational complexity

at runtime.

The number of Gaussians per state has a profound effect on the recognition re-

sult as well as computation time. When the models of two languages are brought

together, the natural question to ask is, are some of the Gaussians similar enough

to be shared among the systems?
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The ML-tag parameter sharing scheme uses the same Gaussian components across

languages for the same phone. However, the mixture weights are not shared across

languages. Instead, the weights are trained separately for each phone in each lan-

guage.

5.3.4 Rule-based and data-driven combinations

The mentioned approaches require some sort of rule for combining phones across

languages. An abundance of combination approaches are available, but basically all

are based on some kind of clustering in the feature-space, sometimes complemented

by phonetic rules. The phonetic rules are often based on the IPA classifications of

phones of each language.

5.3.5 Phone combination metrics

Clustering of phones requires a distance measure. When this calculation is done

in feature-space, the Gaussian representations of the emitting HMM states can be

used as a basis. A number of distance metrics are available, most notably Bhat-

tacharyya and Kullback-Leibler distance, which both take into account variance of

the Gaussians. For a comparison of distance measures, see Sooful & Botha, 2002.

Kullback-Leibler divergence

The similarity metric in this work is always based on the Kullback-Leibler (KL)

divergence. This divergence, as proposed in Kullback & Leibler, 1951 tells how

well one distribution of data corresponds to another. The divergence is calculated

by computing the integral of a supposed probability distribution function (pdf) of

observations over the pdf of a reference distribution:

DKL(P ||Q) =

∞∫

−∞

P (x)log
P (x)

Q(x)
dx (5.1)

where Q is the reference model and P is a model of observations.

In this work there is no reference and observation; both distributions are hypothe-

ses, and as KL divergence is non-symmetric, to get a proper distance metric, we will

simply calculate the distance in both directions and add together:

Distance = DKL(P ||Q) + DKL(Q||P ) (5.2)

In the case of multivariate Gaussian distributions Gp and Gq of d dimensions, the
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KL divergence has an analytical form of:

DKL(Gp||Gq) =
1

2
(loge

|Σq|
|Σp|

+ Tr(Σ−1
q Σp) + (µq − µp)

T Σ−1
q (µq − µp) − d) (5.3)

For a multivariate Gaussian mixture model, there is no analytical solution to the

function. We can estimate the divergence with Monte Carlo method of random

sampling. According to Hershey & Olsen, 2007, with n samples we have:

DMC(Gp||Gq) =
1

n

n∑
i=1

log
Gp(xi)

Gq(xi)
→ DKL(Gp||Gq) (5.4)

as n → ∞. This estimation becomes rather cumbersome for context-dependent

Gaussian mixture models with numerous Gaussians.

5.4 A review of existing systems

Multi-lingual experiments have been done in various scales from single phone recog-

nition to large vocabulary continuous speech.

The first proposal for combination of acoustic models of several languages by

Andersen et al. , 1993, was a data-driven combination of monophone models of

Danish, British English, German and Italian. The similarity measure was based on

phone confusion. The language-independent phoneme recogniser used in their tests

got a 37.6% recognition accuracy, a slight decline to the language-dependent 36.4%

baseline.

An intermediate approach is to share the same pool of Gaussians for the different

languages. This was investigated between English and Swedish in Weng et al. ,

1997. Of the varied array of tests, some yielded better results than the baselines.

One reason for this might be the small amount of training data per language.

Gokcen & Gokcen, 1997, created acoustic models from the phones of US English,

French, and Japanese and tested it on sets of 10-15 words and short phrases by

more than 1000 speakers from each of the following languages: US English, Brazilian

Portuguese, French, German, Japanese, and Spanish. Overall recognition rates were

more than 92% for each language. English recognition improved with the addition

of foreign training data (91% - 92%), Japanese got slightly worse (98% - 96%).

Imperl & Horvat, 1999, combined Slovenian, German and Spanish acoustic models

by a data-driven approach based on confusion, with triphone confusions calculated

by combining the confusion of the three monophones of each triphone. In best case
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System Lngs. Merge Parameter Test type Performance

style 1 reduction 2 change

Andersen et al. , 1993 5 Conf. Mono -33% Word RR -3.2%

Gokcen & Gokcen, 1997 3 Clus. Mono -70% Word RR *

Imperl & Horvat, 1999 3 Clus. Global -64.7% Word RR -3%

Imperl et al. , 2003 3 Clus. Tri -40% Sent./WER -1.67%

Vihola, 2001 5 Clus. Mono -70% Word RR -6.7%

Kumar et al. , 2005 3 Mixed Mono -54% Word RR -0.6...-3.4%

Schultz & Waibel, 1998 5 Mixed Global -60% Sent./WER -1.2... - 5%

Lyu & Lyu, 2008 2 Clus. * Sent./SRR +7.8%

1 Confusion based, Clustering based, Phonetic rules based or Mixed
2 Reduction in percentage of number of monophones, number of triphones or all parameters

Table 5.1: Summary of existing multilingual ASR systems. The table lists the num-
ber of languages, HMM geometry type, parameter merging technique and reduction,
test type and change in performance of best presented system relative to baseline
systems.

they managed to compress the size of acoustic models by 64.7% with less than 3%

decrease of word accuracy rate and 1% decrease of language identification rate.

Later in Imperl et al. , 2003, by using agglomerative clustering, a reduction of

more than 40% in the size of the acoustic models could be reached with a recognition

degradation of only 1.7%.

A combined English, Finnish, German, Italian and Spanish acoustic model was

investigated in Vihola, 2001. The baseline language-dependent recognition systems

had a WRR of 89.0%. With no phone clustering, a system with 105 SAMPA phone

models had an average word recognition rate (WRR) of 84.6%. When this was

reduced to 64 phones, the WRR dropped to 83.1% with Knowledge-based clustering

or 82.2% - 84.4% for data-driven clustering methods.

Kumar et al. , 2005 combined the acoustic models of Tamil, Hindi and American

English, with language-dependent baseline recognition rates of 98.5, 96.6 and 98.6

respectively. An end result of 95.1, 96.0 and 96.4 was reached with an initial hand-

made phonetic division and a following data-driven clustering based on Mahalanobis

distance. The set of 149 phones of the combined three languages was compressed

to a set of 72 phones.

Lyu & Lyu, 2008, investigated combining a large Mandarin and a small Taiwanese

corpus. They demonstrated that a 2-step clustering approach with agglomerative
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hierarchical clustering and delta Bayesian information criteria is a useful data-driven

method to generate data-driven rules to constrain the context-dependent phone clus-

tering in an unbalanced bilingual corpus. From the best baseline systems employing

model complexity selection, with syllable recognition rates (SRR) of 59,7% and

61,3% for language dependent and language independent respectively, they could

reach a recognition rate of 64,4% by optimising the phone set.

In Schultz & Waibel, 1998, a LVCSR system for 5 languages was trained. Com-

pared to the monolingual baseline systems, there was an increase of 20%-30% in

word error rate in the multilingual systems. The phone sharing was done according

to the IPA chart with a set of 82 phones for the multilingual systems.

A summary of the existing systems can be found in Table 5.1.

5.5 Literature conclusions

Based on the literature, the question “ can we enhance the recogniser by combining

acoustic models of several languages?” is relevant only when the languages are simi-

lar and at least one of the training corpora is so small that a monolingual recogniser

would suffer from lack of data.

A drop in accuracy will be inevitable. Therefore a better question to ask is: “will

the combined recogniser still be fit for the task?“



Chapter 6

Adaptive speaker-independent

recognisers

In this chapter I will introduce the concept of adapting acoustic models of a speech

recogniser and then present some techniques for adaptation. Then I will introduce

cross-lingual adaptation.

6.1 Adaptation of acoustic models

The amount of training data is a crucial factor when it comes to creating world-class

speech recognisers.

Training a speaker-dependent (SD) speech recogniser adequately requires some

hours of accurately labelled training data. For obvious reason, this makes it very

difficult to create a new speech recogniser for every customer in a speech-driven

automated service – The reader can spend a moment thinking how it would feel to

repeat sentences for a few hours into a phone number query service's automated

telephone service before being allowed to ask for a number.

Instead of training a speech recogniser for every voice, we can build a generic,

speaker-independent (SI) speech recogniser. We train it with at least a few

dozen hours of spoken data from dozens or hundreds of speakers and average the

results to get a recogniser for the most average of voices. This recogniser works well

for people who do not stand out from the crowd when talking. For those with a

funny or otherwise special voice, it works pretty badly.

The human brain is extremely adaptive to differences between speakers and acous-

tic environments. Children and women speak with a higher tone than men, people

from different parts of the country speak differently. People speak faster, slower,

54
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louder, more quiet, mumbling or clearly. Sometimes they stutter, sometimes shout.

Our natural speech processing systems can cope with quite a bit of speaker varia-

tion, whereas the ASR system with a static model set has desperate time trying to

recognise speech from a speaker with a peculiar way of speaking.

As training a speech recogniser is nothing more than fitting predefined model

geometry to the acoustic features of the training speakers' speech, why not continue

the same way, fit the models with their geometry into the recognisable speech?

We'll create separate adaptation transforms for every speaker or similar group

of speakers, and apply these fitting transforms to the models or the features only

when we recognise that persons speech.

The transform is a predefined mathematical operation that manipulates either

the acoustic models or the features. Different transformations require a different

amount of new parameters to be estimated, and thus increase the complexity of the

recogniser system.

6.2 Speaker, noise and microphone adaptation

Even the speaker-dependent recognisers benefit from an adaptation mechanism.

Adaptation can help against background noise or temporary vocal changes, caused

by, for example, a flu or the previous night spent singing, shouting and drinking.

In an ideal setting, the training data and evaluation data come from a similar

source where the microphone is identical and the recording conditions are similar.

For speech recognition based services aimed for the general public over a cellular

phone networks, the speech submitted to the recogniser might be recorded with any

of the available terminal devices from different manufacturers, and depending on the

network, might be encoded differently depending on the available bandwidth for the

end user. The recording condition might be noisy; maybe the service is used while

walking on a busy street or in a restaurant. The characteristics of the user’s voice

might thus change because of the transmission system and background noise. An

adaptive system will then adjust itself to cover the distortion caused by the noise

and microphone.

All in all, the adaptation not only helps in recognising utterances from new speak-

ers, it also helps to recognise utterances from old, familiar speakers who record

phrases in new conditions.

An interesting question is then, when we encounter a new speaker in new recording

conditions, what part of the possible improvement by adaptation is attributed to

speaker adaptation, what part to microphone adaptation and what part to recording
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conditions adaptation?

In research cases, where the recognition evaluation datasets generally stay the

same, this problem arises when the training and evaluation data sets originate from

different corpora. This problem arises particularly in the test setup in the second

part of this thesis, where recognisers trained with corpora A and/or B are used to

recognise utterances from corpora C.

6.3 Supervised and unsupervised adaptation

Adaptation is similar to training the recogniser. When we know the transcription

of a piece of acoustic data, we use the data to find a transformation that fits the

speech data into the recognition models.

In supervised adaptation we have control over the adaptation procedure, so

that only correct labels are used. In laboratory environment we have prelabelled data

that we use to calculate the transformations for the models. Outside the laboratory,

the same can be accomplished by asking the user to utter a few predefined sentences

in order to “calibrate” the recogniser. Adaptation is then done on the assumption

that the user really said what the application asked.

When it is not possible to use labelled data, unsupervised adaptation is used.

Now the adaptation utterances are first recognised and then the acoustic data and

the generated labels are used to calculate adaptation transforms. This process is

illustrated in Figure 6.1 Obviously, if the recognition goes wrong, adaptation can

also go wrong, but the threshold for this kind of misbehaviour is surprisingly high.

If a system continues to adapt itself, and the amount of data used to calculate the

transformation accumulates, the adaptation usually slowly converges to an optimum.

An example of this can be seen in figure 6.2.

Regarding usability issues, unsupervised adaptation offers a lot more possibilities

than the supervised adaptation procedure.

6.4 Linear Transformations

A linear transformation is a simple matrix multiplication operation. Linear trans-

forms can be computed from small amounts of data and can easily be updated as

more data becomes available. A linear transformation is applied as a

x̂ = Wx (6.1)



CHAPTER 6. ADAPTIVE SPEAKER-INDEPENDENT RECOGNISERS 57

Figure 6.1: Two-pass recognition system using unsupervised adaptation.
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Figure 6.2: An example of the convergence of unsupervised adaptation. The first
few sentences are recognised badly and cause the adapted system to perform worse
than the unadapted speaker-independent system. This is more a special case, Figure
6.3 shows the average case.
SI system is trained from Speecon corpus, SD system from 2000 sentences of a female
non-professional speaker. The utterances used for adaptation are different from the
test utterances.

where the transformed variable x̂ is calculated by multiplying the original variable

x by the adaptation matrix W . This is the same for all linear transformations,

whether transforming the mean vector µ, covariance matrix Σ or the feature vector

ζ.

Given the trained acoustic models and some labelled training data, we can cal-

culate a transformation for the models, so that the model will fit the training data

as well as possible. These transforms that give the best fit to the data are called

Maximum-Likelihood Linear Regression (MLLR) transforms. An MLLR transform

of the mean values is often called MLLRmean, and the transform of covariances is

MLLRcov.

For a linear transform of the mean values of the Gaussians of the acoustic models,

we have the new mean values µ̂ given by a transform A:

µ̂ = Aµ + b = W ξ (6.2)

where ξ is the extended mean vector [1µT ]T . The transformed Covariance matrix Σ̂

is given by the a transform H:

Σ̂ = HΣ + HT (6.3)
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Figure 6.3: A comparison of cMLLR and MLLRmean adaptations, using a varying
amount of sentences for adaptation. The adaptation sentences are included in the
test set. The result is calculated from an average of 40 speakers.

In constrained MLLR (cMLLR) as presented by Gales, 1998 the transformation

applied to the variance corresponds to the transform applied to the mean:

µ̂ = Aµ − b (6.4)

Σ̂ = AΣAT (6.5)

Figure 6.3 shows a test of the two different linear transformations. Here cMLLR

slightly outperforms conventional MLLRmean. The figure also shows how in the av-

erage case the quality of the transform rapidly improves over the first few sentences,

and then improves very slowly.

As Gales, 1998 finds, full MLLR and cMLLR perform similarly. However, cMLLR

adaptation is a simpler procedure than the cascade of MLLRmean and MLLRcov,

and therefore in this work only cMLLR is used.

For those interested in the mathematical formulation of the linear transforms, the

relevant formulas are wonderfully collected together in Young et al. , 2006.

6.5 Regression trees

Applying a simple transform on the whole feature space is simple enough. We can

calculate a transformation matrix that can be applied to each phone model.

A major challenge is to apply different transformations to different phones. As

phones are represented by various Gaussian distributions in different areas of the



CHAPTER 6. ADAPTIVE SPEAKER-INDEPENDENT RECOGNISERS 60

cepstral feature space, we'd like to apply different transformations to different areas

of the feature space. Ideally, we would like to create transformation parameters

individually for each triphone for each speaker.

As this is not technically feasible – the data requirement is simply too high –

we will create clusters of similar triphones that should be affected by the same

transformation. Creating the adaptation transforms thus begins with creating the

adaptation clusters, or rather, a regression tree of adaptation clusters (Gales, 1996).

As we are constantly walking the thin line between over- and under-training, we will

only increase the number of available adaptation clusters as we gather more data

to be used for the adaptation. So, we start with one general adaptation matrix,

and only use several matrices when we have collected a few sentences of adaptation

data.

6.6 Normalisation and adaptation in feature extraction

Feature normalisation means preprocessing speech data so that it appears more

uniform to the training and recognition systems. Some normalisation methods are

very simple, like removal of DC coefficient from the output of a AD-converter.

Another normalisation method, cepstral mean subtraction (CMS) subtracts

a long-time average of each cepstral coefficient channel from all values of that chan-

nel, reducing the effects of any static noise components like microphone distortion

or steady background noise.

Some normalisation methods are done with different parameters to every speaker

and thus can be considered adaptations. An example is vocal tract length nor-

malisation (VTLN), which warps the frequencies in filter bank analysis in order to

compensate for different frequency distributions in the speech of different speakers.

Some of these noise and speaker compensations could be accomplished with

MLLR-based adaptation, and so normalisation and adaptation can be seen as com-

peting techniques. But even though MLLR adaptation becomes relatively less effi-

cient when applied to models trained with more refined features (Pye & Woodland,

1997), it still improves the results and presently there is no reason not to use it

whenever the computational resources allow.

6.7 Limits of adaptation

When using adaptation, depending on the corpus and tasks, some of the speakers

are likely to show degradation in performance levels. Sometimes even 15% of the
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Figure 6.4: Speaker-specific word error in unadapted and adapted Finnish ASR.
For each speaker, the left column shows the unadapted and the right column the
adapted recognition results.
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speakers show a drop in the performance when adding adaptation to the system

(Mandal et al. , 2006). Figure 6.4 shows word error improvement of supervised CM-

LLR adaptations over unadapted system. Adaptation is applied to the 40 speakers

of the Speecon test set. A vast majority of them show considerable improvement

over the unadapted system, but a few - speakers sa158, sa248 and sa460 show slight

degradation for the adapted system.

Also, adaptation is not something that will save the day when even when the

recogniser is badly built. There are major restraints on the effectiveness of simple

adaptation mechanisms. If the adaptation had no such restraints, we would, with

enough data, reach the recognition accuracy of a speaker-dependent recogniser. This

is not possible with the techniques of today. But we can get close enough to be able

to build systems that are good enough for acceptable consumer quality restricted

grammar tasks.

With the standard adaptation algorithms, we are only changing model parame-

ters, not the geometrical frame of the model. So we have a predefined number of

Gaussian mixtures in a predefined vector feature space, and with adaptation we can

only change the form and location of the mixtures, not create new ones or change

mixture weights. Also, we have predefined the triphone set with its phone cluster-

ing dependent on acoustic qualities or availability of data for the average speaker’s

voice.

It is possible that Maximum A Posteriori (MAP) adaptation could improve the

simple adaptation schemes used in this thesis somewhat. Speech synthesis speaker

adaptation techniques, like the one presented by Yamagishi et al. , 2009, use MAP

adaptation to copy voices by adapting an average speech synthesis voice. MAP

adaptation requires more data than MLLR adaptation, and is therefore not as at-

tractive to application in ASR field.

6.8 Cross-lingual adaptation

In this thesis, cross-lingual adaptation means using the speaker's speech in one

language to adapt the recogniser to the same speaker's speech in another language.

Cross-lingual adaptation forms an essential part in speech-to-speech transla-

tion devices, where the synthesised voice output (Text-To-Speech, TTS) of the

device should resemble the voice of the original speaker. In this case, however,

the adaptation is done on the synthesised output voice, based on the input to the

recogniser, rather than the ASR component.

Cross-lingual adaptation for speech recognition is an experiment with seemingly
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little practical value. The situations where the same individual would alternate

between languages while using a speech recognition based user interface are relatively

hard to imagine. Maybe a spying device that listens to your telephone while you

are talking to agents of secret services of different nations, using different languages

while having very short conversations. Short for the reason that a robust MLLR-

based systems needs no more than 3 sentences to generate near-optimum adaptation

transforms, as can be seen in Figure 6.3. This means that if so much data is

available in the actual language to be recognised, the use of cross-lingual ASR model

adaptation can hardly be motivated in consumer applications.

A far-fetched idea would be use several acoustic models to decode speech that

has foreign names. Maybe the utterance “I’d love to visit Versailles before heading

to Charles-De-Gaulle Airport” could be recognised with a mixture of English and

French acoustic models (and a very exotic language model!) and in such a case the

adaptation should be transferrable from one model set to another.

A parallel application that uses similar techniques is the cross-lingual speaker

adaptation of speech synthesis.



Chapter 7

Test setup

After the introduction to multilingual speech recognition and various adaptation

methods, I can now define the tests associated with this thesis with more precision.

I will first define my hypothesis, then the testing arrangements and proceed to

describe the recogniser training resources and methods. Then I’ll continue about

the practicalities of multi-lingual training and present a short analysis of the scope

of multilinguality in the trained systems. Last, I will give recognition results for the

baseline systems used in this work.

7.1 Hypothesis

I will train a set of recognisers, each with a single acoustic model that combines both

Finnish and English language, and investigate their performance in normal recog-

nition tasks and adaptation tasks, of which some are cross-lingual in the following

way:

Data recognised in language LA is used together with acoustic models of LA to

generate speaker-specific CMLLR adaptation transforms for speaker s in language

A, TAs, and these are then used to improve recognition of speaker s’s utterances in

language LB. In a shared acoustic model set LA = LB. This is illustrated in figure

7.1.

The hypothesis is, simply put, that the more of the acoustic models are merged,

the more the overall recognition rate degrades, but at the same time, the more helpful

adaptation data from one language is when used to help recognition of another

language. As of now, there is no hypothesis which merging strategy would be the

most fruitful: Whether it is the monophone combination or the triphone merging,

remains to be seen.

64
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7.2 Test preparation

Before running the tests, the test recognisers have to be trained.

All the recognisers systems used in this thesis are large vocabulary continuous

speech recognisers based on Hidden Markov Models (HMM). They use the HTK

standard mark-up languages for storing the acoustic models and ARPA format for

language modelling.

They are speaker-independent systems and have one general model (average voice)

each.

Each system has a pair of language models: A bigram for generating word lattices

from acoustic data with acoustic models, and a higher-order model for expanding

and rescoring these lattices.

Two-pass recognition is possible with CMLLR adaptations.

7.3 Resources

A selection of corpora were available for training and testing purposes. The Finnish

Speecon and the American English Wall Street Journal 0 corpora were used for

training.

The evaluation sets of the respective corpora were used for the evaluation of the

systems. In addition, a small bilingual corpus was used to compare intra- and

cross-lingual adaptation.

7.3.1 Training corpora

Speecon

The Speecon project, as described in Iskra et al. , 2002, is an international effort

at creating collections of speech samples in a large variety of languages. The aim

is to collect enough material to train speech recognisers for user interfaces. This

means that the aim is to have a good enough representation of speakers to create

true speaker-independent acoustic models.

The corpus includes material from both adult and child speakers. There is an em-

phasis on the phonetic diversity and structured utterances at the cost of neglecting

spontaneous speech. The corpus is collected in several predefined recording environ-

ments, with an array of four microphones and various levels and types of background

noise. The acoustic data is sampled at 16kHz, 16-bit mono PCM.

The Finnish Speecon database includes utterances from 550 speakers each uttering
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around 30 complete, phonetically rich sentences plus a set of utterances including

number sequences, answers to questions and spelling out words. Of these, utter-

ances of 160 speakers are recorded in noisy environments and are left out of this

thesis. 1118 sentences from 40 speakers are used for testing, 1093 sentences another

40 speakers are used to optimise training and recognition parameters, and 17178

utterances from the remaining 310 speakers are used to train the recogniser.

WSJ0

Wall Street Journal 0 corpus of American English as described in Paul & Baker,

1992, is used to train the English acoustic models. The corpus consists of numerous

speakers reading aloud complete sentences from the Wall Street Journal newspaper.

Similarly to Speecon, the recording conditions are carefully specified and the readers

represent a wide enough range of voices to enable training of speaker-independent

speech recognisers.

The default training set for speaker-independent acoustic models includes 83

speakers. With sentences that include out-of-vocabulary words removed, 7736 sen-

tences are used for training. The default test set includes 213 sentences from 10

speakers. The acoustic data is sampled at 16kHz, 16-bit mono PCM.

The WSJ corpora are widely known and therefore among the most popular cor-

pora to be used as test material for new developments in the field of speech recogni-

tion. Furthermore, the corpus distribution includes language models and a scoring

software suite.

Depending on the model alignment, the training set of the Speecon corpus includes

around 6 000 000 frames of spoken speech. The training set of the WSJ0 corpus has

around 17 000 000 frames of speech.

The size differences between the corpora deserve a mention. With the phones sets

used in this work (the CMU set1 for English and the TKK phone set for Finnish)

there are an average of 90 000 frames for each HMM state of each phone in Speecon

and around 150 000 frames for each HMM state of each phone in the WSJ0 phone

corpus. The amount of training data available for each phone can be seen in Figure

7.2. However, as there is a wider selection of phones in the English phone set, there

is only an average 14000 training frames of each context-dependent HMM state

in WSJ0, as opposed to an average 27500 frames for each state of each context-

dependent HMM state in the Speecon corpus.

Because of this and as verified by experiments, the WSJ0 corpus requires a some-

1http://www.speech.cs.cmu.edu/cgi-bin/cmudict#phones
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Figure 7.2: Frame and state distribution of frames in training corpora. Calculated
from final monophone alignments of baseline systems.
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what higher splitting threshold for building triphone tying decision tree. The higher

threshold means less splits, and therefore more data per cluster and so more robust

models.

7.3.2 Evaluation corpora and tasks

Some corpora distributions include predefined test sets to standardise recogniser

evaluation. The WSJ corpus includes carefully defined test sets. These task sets

focus on specific tasks for evaluating various aspects of LVCSR, like adaptation and

speaker generalisation. The corpus also includes previously built ARPA language

models, both bigrams and trigrams of various sizes (5000, 20 000 or 64 000 words,

2-grams and 3-grams) to be used for these tasks.

The main test set for this work is the speaker-independent evaluation test set

with 5000 words vocabulary and no verbalised punctuation (nvp/si et 05). This is

an “easy” test set by any LVCSR testing standards, where similar WERs of 5-7% for

unadapted systems have been reached already 15 years ago (Aubert et al. , 1994).

The Finnish Speecon corpus has been divided into training, development and

evaluation sets. The division is the same as used at TKK where a Finnish recogniser

was previously developed (Hirsimäki et al. , 2006).

The TKK recogniser has reached a LER of 3.3% with ML models (comparable

to “Vanilla” models used in this work). With discriminative training methods, this

has dropped to 3.0% in Pylkkönen, 2009.

Beside these two massive corpora, a collection of sentences recorded in both

Finnish and English was used.

Table 7.2 summarises the properties of the development and test sets used in this

work.

Bilingual EMIME sentences

A collection of 130 sentences in Finnish and 130 sentences in English were recorded

by three Finnish speakers for tests on inter-lingual speaker adaptation in the EMIME

project, with main emphasis being on synthesis. These sentences include:

• 100 phonetically rich Finnish sentences from Speecon corpus prompts

• 100 English news text sentences from the WSJ corpus prompts

• 25 sentences from the European parliament corpus in Finnish

• 25 sentences from the European parliament corpus in English
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• 20 semantically unpredictable sentences in Finnish

• 20 semantically unpredictable sentences in English

The semantically unpredictable sentences are meant for the evaluation of speech

synthesis, and serve no purpose in the evaluation of ASR systems of this work, so

these are taken straight out when preparing the test set. Furthermore, the European

parliament sentences do not fit the language models so well, and are dropped.

Also, sentences with Out-of-vocabulary (OOV) words are taken out of the test

set. Thus, the test sets consist of 300 sentences in Finnish and 258 sentences in

English, with 0 OOV.

The recordings were done in a silent environment with a high-quality microphone

array. In this thesis these sentences are used for cross-lingual adaptation tests. The

data is 16kHz, 16-bit PCM.

7.4 Language modelling

All the systems have 2 different language models. The recogniser setup first needs

a bigram model to create lattices of most probable words. The decoder cannot use

higher order language models, so this step requires a bigram model. A higher-order

n-gram is then required to expand and rescore the lattices, and the final recognition

result is derived by a Viterbi-search from these expanded lattices.

The WSJ language models are included in the corpus distribution. The Finnish

language models are trained identically to the TKK recogniser (Hirsimäki, 2009).

A slight exception is the replacement of word break morph with word breaks glued

to the suffix morphs. This is required by the differing decoding software.

The recognition of the is done with the associated 5k-vocabulary language models

using both the 2-gram and 3-gram language models.

The Finnish EMIME sentences are recognised with the same language model as

the Speecon evaluation sentences. The English EMIME sentences are recognised

with the WSJ 20k-vocabulary language models (2-gram and 3-gram).

Table 7.1 lists the properties of the language models. The language model fit to

the test set data is described by the perplexity of the model on the given data set,

as shown in table 7.2

7.5 Feature extraction

Feature extraction follows the outline presented in Section 3.4.
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Language Vocabulary Gram order Gram count

English 5000 words 2-gram 840 000

5000 words 3-gram 4 300 000

20000 words 2-gram 1 400 000

20000 words 3-gram 6 700 000

Finnish 44000 morphs 2-gram 14 000 000

44000 morphs 10-gram 23 000 000

Table 7.1: Size of language models.

Test / Evaluation sets

Task Sent. LM vocab. Gram OOV Perplexity 2/n-gram

Fi Speecon test 1118 44k morphs 2/10 0 217 / 151

En WSJ0 si-et-05 330 5k words 2/3 0 110 / 57

Fi EMIME set 375 44k morphs 2/10 0 317 / 227

En EMIME set 258 20k words 2/3 0 / 0.11% 316 / 232

Development sets

Task Sent. LM vocab. Gram OOV Perplexities

Fi Speecon devel 1054 44k morphs 2/10 0 210 / 146

En WSJ1 H2 P0 215 5k words 2/3 0.32% 106 / 62

Table 7.2: Perplexities and OOV rates of development and test sets. For the
n-grams in last column, n=3 for English and n=10 for Finnish.

Corpus data is sampled at 16KHz. Features are extracted from 25ms windows

at 10ms intervals. This is more or less de facto standards for feature extraction

in ASR (as used by Zigelboim & Shallom, 2006, Deshmukh et al. , 2002, Kinjo &

Funaki, 2006, Hirsch & Pearce, 2000, ...), and optimising these parameters is outside

the scope of this thesis. The sample edges are smoothed with a Hamming window.

The waveform is then transformed into a frequency representation by taking a

Fourier-transformation of it. This frequency form is then processed with a Mel-

frequency filter-bank, which leads to 22 coefficients.

A cosine transform is used to derive more decorrelated values, cepstral coeffi-

cients. As most of the information is packed into the first coefficients, I.e. lower
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quefrency , only the first 12 of the 22 coefficients are used in the recogniser training

and recognition processes.

Cepstral mean subtraction as explained in Section 6.6 is used as a normali-

sation method to decrease the interference of microphone differences and recording

conditions between the various corpora.

The exact parameters used for feature extraction are listed in table 7.4.

7.6 Acoustic model geometry

The acoustic models are 3-emitting state, left-to-right HMMs with Gaussian

Mixture Model (GMM) emissions. These are explained on more detail in Section

3.6. The HMMs represent context dependent cross-word triphones i.e. the model

depends on the previous and following phones, and context over word break is taken

into account.

All model sets use first and second order derivatives of the features along

the static features.

The silence models for all languages are context-independent long silence /sil/

(counts as a context, but does not take contexts into account itself) and context-

free short silence /sp/ (not used as a context). Table 7.3 lists all the phones.

The careful reader will notice, that the Finnish phone set does not include diph-

thongs and does not make a difference between short and long sounds. In the Finnish

system, long sounds are represented by contexts – in order to recognise a long /a/,

we simply look for a sequence of two phones.

A standard way to describe the context dependent phones is to write the main

phone in the middle, the preceding phone before it separated by a “-”-sign and the

following phone after it, separated by a “+”-sign. I will use a “*”-sign to denote

“any phone”. Also, in triphone context I’m dropping the slashes for in order to

increase readability.

So, in the case of a long Finnish /a/, we look for a “*-a+a” followed by a “a-a+*”,

as in the pronunciation of the Finnish word “Vaara”:

Vaara *-v+a v-a+a a-a+r a-r+a r+a-*

7.7 Acoustic model adaptation methods

A 3-block CMLLR adaptation is used. The large 39 x 39 transformation matrix is

divided into three 13 x 13 matrices (“blocks”) that are on the diagonal matrix.
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English Finnish

Phoneme Example Translation Phoneme Example Translation

AA odd AA D a rotta r o t t a

AE at AE T ae mäyrä m ae y r ae

AH hut HH AH T b bertta b e r t t a

AO ought AO T d daavid d a a v i d

AW cow K AW e eemeli e e m e l i

AY hide HH AY D f faarao f a a r a o

B be B IY g gaselli g a s e l l i

CH cheese CH IY Z h herne h e r n e

D dee D IY i paavi p a a v i

DH thee DH IY j jouhi j o u h i

EH Ed EH D k kala k a l a

ER hurt HH ER T l kala k a l a

EY ate EY T m mäyrä m ae y r ae

F fee F IY n noppa n o p p a

G green G R IY N o rotta r o t t a

HH he HH IY oe yö y oe

IH it IH T p paavi p a a v i

IY eat IY T r rotta r o t t a

JH gee JH IY s sää s ae ae

K key K IY t rotta r o t t a

L lee L IY u ukko u k k o

M me M IY v paavi p a a v i

N knee N IY y mäyrä m ae y r ae

NG ping P IH NG

OW oat OW T

OY toy T OY

P pee P IY

R read R IY D

S sea S IY

SH she SH IY

T tea T IY

TH theta TH EY T AH

UH hood HH UH D

UW two T UW

V vee V IY

W we W IY

Y yield Y IY L D

Z zee Z IY

ZH seizure S IY ZH ER

Table 7.3: The English and Finnish phones used in the monolingual recognition
systems.

One block covers the original MFCC features, the second block the 1st order

derivatives and the final block the 2nd order derivatives of the features. By using 3

distinct blocks instead of one large, we can reduce the computational time required

by matrix multiplication.
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Parameter Value

TARGETRATE 100000.0

WINDOWSIZE 250000.0

USEHAMMING T

PREEMCOEF 0.97

NUMCHANS 26

CEPLIFTER 22

NUMCEPS 12

ZMEANSOURCE T

DELTAWINDOW 2

ACCWINDOW 2

USEPOWER T

ENORMALISE T

Parameter Value

MINVARFLOOR 0.05

HADAPT:MAXXFORMITER 100

HADAPT:MAXSEMITIEDITER 20

Required occupation (triphone tying) 200

Tying threshold (triphone tying) 1000

Required training samples 10

Training beam 350.0

Number of Gaussians per mixture 16

Table 7.4: Fixed parameters for feature extraction (above) and acoustic model train-
ing (below).

7.8 Acoustic model training procedure

The training procedures of the baseline and test recognisers is kept as identical

as possible. The initial training procedure follows that outlined in the HTK book

(Young et al. , 2006), after which single Gaussian models are slowly grown to 16

Gaussian mixtures repeating the procedure of splitting mixtures and retraining,

using 5 iterations of the Baum-Welch embedded training algorithm. The details of

the training algorithms are outside the scope of this thesis, and the interested reader
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Figure 7.3: Training procedure of the baseline and test systems.
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Finnish training data fit to ML-sep models
English training data fit to ML-sep models
Finnish development data fit to ML-sep models
English development data fit to ML-sep models
All training data fit to ML-Mix13 models

a               b                c               d               e                f                g

Figure 7.4: Likelihood increase in training. Note that likelihood is heavily depen-
dent on the model geography, model set size and the data, so the likelihood is really
only comparable with systems of identical model framework and similar data.
The model geometry changes on phases corresponding to training procedure pre-
sented in Section 7.8 are marked on the picture: Monophones are expanded to
triphones at 8, the triphone models are tied at 11, mixtures are incremented on
rounds at 14a-g, and finally and semi-tied transformations are applied at phase 16.
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is referred to the aforementioned piece of HTK documentation.

The different steps in the training procedure are described very shortly below.

Additional details have been added where the system is not consistent with standard

training methods. Figure 7.3 illustrates the training procedure and Figure 7.4 shows

the the likelihood changes in each step.

The fixed parameters used by all of the systems are listed in table 7.4.

1. Create monophone labels with default pronunciations.

This is done separately for each source language in multilingual systems. In

mixed systems that share data, the pooling of phones is defined first.

The training transcriptions are derived from the word-level transliterations of

the prompts. Whenever there are multiple pronunciations for a given word,

the first one in the dictionary is used.

2. Flat start monophones models A prototype model is created from aver-

age properties of the signal with the HTK tool HCompV, using 10% of the

available data. Variance floor is set to global 0.05 (absolute).

3. Retrain models

In every training round, a new set of models is generated by embedded model

re-estimation using the Baum-Welch algorithm implemented in the HERest

tool. This kind of training does not require an accurately timed phone seg-

mentation, instead the change from one phone to another is computed by the

backward/forward probabilities. Every round changes the model set slightly,

and several rounds of retraining - from 3 to 5 - is necessary to reach an ade-

quate model set whenever the geometry of the models is changed.

4. Create short silence and tie into long silence middle state

The short silence model is a tee model, that does not require a physical man-

ifestation. Whenever it appears, it is identical to the centre state of the long

silence model. The middle of the long silence model and the only state of the

short silence are tied together, so that they are tried together whenever one

of them appears. All the model geometry changes are done using the HHEd

tool.

5. Retrain models

6. Realign labels
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As mentioned earlier, the initial training transcriptions do not take into ac-

count different ways of pronouncing words. Whenever realigning the training

labels, the acoustically best fitting pronunciation of available pronunciations

is used in phonetically transcribing each word.

7. Retrain models

8. Copy the monophone models to context-dependent triphone mod-

els: Create some thousands of triphone models from a few dozen monophone

models. Tie transitions of all triphones with same middle states to a single

transition.

9. Retrain models

10. Balance statistics across corpora for decision tree tying

This is actually only for future use in situations where the source corpora are

not of roughly equal size. So we do nothing here for now.

11. Tie triphone models

A phonetic decision tree is used to combine models that do not have adequate

training data and to synthesise previously unseen models.

For the mixed systems this tree is created by combining the phonetic questions

over languages, based on phonetic classifications.

The HHEd commands RO, QS and TB are used to build the trees and perform

the tying. The AU command is used to synthesise previously unseen models

and CO command to compact the list of HMMs by merging duplicates.

12. Retrain models

13. Realign labels

14. Increase the number of Gaussians

The Gaussian count of a model is increased by splitting one or several of the

Gaussians with the highest weight, and moving one Gaussian by 0.2 standard

deviations up and the other down. Because of the splitting procedure, care

must be taken not to increase the number of Gaussians by too many each

round.

The HHEd command MI is used to increase
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15. Retrain models

Repeat the previous step and this one until a desired number of Gaussians is

reached.

The question when to stop training is a very relevant one, and no definite

answer can be given in this work. Generally, there is a desire to have enough

Gaussians to give good coverage to the variations in the training and test

data, but not too many to “over-fit” the training data, thus inhibiting model

generality. Also, the number of Gaussians affects the ideal variance flooring

values, which has a large impact on generality of the models.

Also, more complex Gaussian mixtures require more training data - As a rule

of thumb, ate least 200 frames of data should be used per Gaussian.

Instead of digging into these issues, mixtures of 16 Gaussians are used.

16. Create Semi-tied Covariance (STC) transforms

A semi-tied transform is created as an input transform for each triphone centre

phone, so transforms *-/a/+* is applied to all triphones with /a/ as their

centre phone, *-/b/+* to all triphones with /b/ as their centre phone and so

on.

The plain system has a diagonal covariance matrix. The semi-tied transform

rotates the model’s covariance vector so that the resulting covariance matrix

describes the the variations in the training data better. Thus, a high increase

in acoustic likelihood is inevitable, even though the real performance of the

system does not increase as dramatically.

The centre-phone specific transform is quite robust as there is a substantial

amount of data for the training of each transform.

Some of the systems cannot use a phone-specific transform. These systems

use a single covariance transform. Additionally, tied-mixture systems cannot

use a STC transforms because of the limitations in the training software.

17. Retrain STC models

These training rounds use the newly created transforms.

18. Create transformations for speaker-adaptive training (SAT)

A regression tree is created for the models and a set of CMLLR transforms is

created for each speaker in the training data set.
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19. Retrain STC models with SAT

The last rounds of training are done using the Semi-tied input transform and

the CMLLR transforms for each speaker in order to try to find a model set

more independent of speaker variation.

7.9 Multilingual system training

Following the approaches introduced in Schultz & Kirchhoff, 2006, multilingual sys-

tems of three different types were built. The performance of these systems is eval-

uated in the next chapter.

The goal was to create a unified training procedure that can be applied to any

language combination by simply including new items into the lists of training wave-

forms, training prompts, phonetic question pool and pronunciation dictionary.

Before we delve into these systems, a few words must be written regarding the

risks of blindly combining data.

7.9.1 Sharing acoustic data between corpora

When using several corpora to teach a recognition system, or using a recogniser

trained with one corpus to recognise utterances from another corpus, we have to

spare a thought to the similarity of the corpora and what it means to the evaluation

of the results.

The recording conditions of the corpora vary more or less. Most probably a

different microphone is used to record the sentences, a different sound card is used

to do the AD-transform, a different program is used to post-process the utterances.

In order to proceed with the work, we have to do a little injustice to the finer

aspects of acoustics and make some very strong assumptions that stand on very

dubious ground.

Firstly, we’ll to presume that the corpora are acoustically similar enough. The

inevitable differences in microphone, background noise and sound post-processing

are essentially eliminated by using various normalisation techniques - DC removal

(ZMEANSOURCE = true) , energy normalisation (ENORMALISE = true) and

cepstral mean subtraction ( TARGETKIND = MFCC Z ).

Secondly, we will crudely assume that the phone sets are ideal for the languages

they represent. That means that we should not combine phones within language.

Therefore it is better to leave the phone sets as they are, and only try to find

similarities between them, rather than spend the time trying to find a better phone
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set, that would be better at covering several languages, even with the price of

performing more poorly on a single language case. When making this assumption,

we are actively trying to forget the results of Dines et al. , 2009, showing that there

are phone sets and dictionaries that yield better results for recognising English.

We will now go through the various methods of combining acoustic models in

more detail.

ML-sep: Baseline combination

The ML-sep system is quite a simple one, as far as multilingualism is considered.

The system consists of a combination of separate language models. The bilingual

ML-sep system in this work is thus a copy of the baseline systems, and works as a

baseline for comparing multilingual performance.

ML-mix: Phone combination

Here the training data was put together and was used to train systems. A varying

amount of phones were combined across languages, according to the KL distances

(see Chapter 5.3.5) of single-Gaussian models of the baseline recognisers.

Three different methods were used to combine training data for the models.

ML-mix 0 to 13 In the systems ML-mix0, ML-mix3, ML-mix6, ML-mix9 and ML-

mix13 monophones are combined across languages. The distance between two phone

models was calculated by adding together the distances of the emitting Gaussians

of each respective HMM state of the two models. Single-Gaussian models were used

here. A graphical representation of the monophone distances is shown in Figure 7.5.

In each of the ML-mixn systems, n closest phone pairs were marked as the same

phone across languages. A straightforward mapping was available for 13 phone

pairs, as listed in table 7.5. Combining more phones in a simple way is difficult, as

no more a straightforward 1-to-1 mappings exist. The selection of English phones

is larger than that of the Finnish ones, and for example, the English vowels /ay/,

/aw/ and /ao/ are closer to each other than any of the Finnish vowels.

Triphone expansion is performed without further considerations about the lan-

guage context. Triphones are then tied using a shared decision tree trained using

data from both languages. Phonetic knowledge of both languages is used to group

questions of both languages into a compatible format, combining the questions where

appropriate. Note that the number of triphones in the training data that are truly

shared across languages is less than 20% even for the ML-mix13 system.
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Figure 7.5: Multi-factor dimensionality reduction (MDR) graph of phones of WSJ
and Speecon corpora. Finnish phones (Speecon phone set) are marked with solid cir-
cles and labelled with bold type text, English phones (CMU phone set) are displayed
as circle outlines and labelled with italic type text.
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English Finnish Distance

f f 3.75

n n 4.64

g g 4.83

eh e 4.87

k k 4.95

ow o 5.92

m m 6.90

iy i 6.98

z s 9.84

hh h 10.47

y j 14.92

d d 16.08

aa a 8.15

Table 7.5: Closest monophone pairs between the baseline recognisers. The distance
is a sum of Kullback-Leibler divergence over all states of the respective HMM models.
The average distance of phones calculated this way is 67.98 with a standard deviation
of 41.53, so a distance under 5 should be considered a very close match. For the last
pair, even though acoustic similarity is apparent, the mapping is not straightforward
as /afi/ is also quite similar to /awen/

The number of semi-tied covariance transforms however unifies the phone models

across languages for the STC-model sets.

ML-mix 22 Additionally, ML-mix22 system is built based on knowledge of the

phone sets and the IPA chart. This system is contrary to our second assumption:

Here the English diphtongs have been broken down into two separate phones so that

their vowel slide is represented by context-dependence of the models. Thus, based

on phonetic knowledge, we can reach a system that has 38 phones, of which 1 is

unique to Finnish and 14 are unique to English.

The phone set of this system, which can be at best described as a curiousity, is

shown in table 7.7.
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Combination Mono- States Cov.

System technique phones Total Mixed Fin Eng xforms

Baseline Fin - 23+2 2405 0% 0% 100% 24

Baseline Eng - 39+2 2244 0% 100% 0% 40

ML-sep Separate models 62+4 4649 0% 51.7% 48.3% 64

ML-mix0 Monoph. KLd 62+2 4652 0.1% 51.5% 48.5% 63

ML-mix3 Monoph. KLd 59+2 4659 2.7% 50.2% 47.2% 60

ML-mix6 Monoph. KLd 56+2 4654 6.3% 47.6% 46.1% 57

ML-mix9 Monoph. KLd 53+2 4661 14.2% 40.9% 44.8% 54

ML-mix13 Monoph. KLd 49+2 4660 22.9% 35.4% 41.8% 50

ML-mix22 Monoph. Rules 32+2 4631 65.0% 13.5% 21.4% 33

ML-mix100 Tied state KLd 62+2 4556 2.3% 50.7% 47.0% 1

ML-mix200 Tied state KLd 62+2 4462 4.5% 49.7% 45.8% 1

ML-mix577 Tied state KLd 62+2 4181 13.7% 46.3% 40.0% 1

ML-tag Full tying 62+2 4646 - - - 0

Table 7.6: Phone and Gaussian counts of baseline and test systems. First number
in monophone field is the phone model count, the second silence model count. The
ML-tag system is a tied-mixture system, and has a pool of Gaussians, and the phone
models are list of weights of which of the pooled Gaussians should be used.

ML-mix 100 to 577 In the systems ML-mix100, ML-mix200 and ML-mix577 tri-

phone states are combined across languages. The reason for using a sub-phone level

is the state transition geometry. Transitions are tied across phones (training pro-

cedure part 11) and by merging complete triphones across languages, it would be

necessary to either create a new transition - when there might be little training data

- or to crudely say, that both models use a transition from one language only.

The distance is calculated between the single Gaussian tied-triphone models of

the baseline recognisers. The 2244 tied states of the WSJ0 baseline and the 2405

states of the Speecon baseline give around 5 million distance pairs. Of these, there

are 577 pairs where the mapping is symmetrical. This means that these phones are

the closest neighbours for each other, as opposed to there being a “chain” of closest

neighbours. Figure 7.6 tries to illustrate this.

In each of the ML-mixn systems, n closest states are marked as the same. The
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Phoneme English example and translation Finnish example and translation

A odd A d d rotta r o t t A

ae at ae t mäyrä m ae y r ae

a cow k a u

ah hut h ah t

b be b i bertta b e r t t A

ch cheese ch i i z

d dee d i daavid d A A v I d

dh thee dh i i

E Ed E d

e ate e I t eemeli e e m e l i

f fee f i faarao f A A r A o

g green g r i n gaselli g A s e l l I

h he h i herne h e r n e

i eat i t

I it I t paavi p A A v I

jh gee jh i i

k key k i kala k A l A

l lee l i kala k A l A

m me m i mäyrä m ae y r ae

n knee n i noppa n o p p A

ng ping p i ng aurinko A u r I ng k o

o odd o d rotta r o t t A

oe hurt h oe t yö y oe

O ought O t

p pee p i paavi p A A v I

r read r i i d rotta r o t t A

s sea s i sää s ae ae

sh she sh i i

t tea t i rotta r o t t A

th theta th e i t ah

u two t u

U hood h U d ukko U k k o

v vee v i paavi p A A v I

w we w i

j yield j i l d jouhi j o U h I

z zee z i

zh seizure s i i zh oe

y mäyrä m ae y r ae

Table 7.7: A proposal for a “Finnified” combined phoneme set, where the modelling
of diphthongs as single phones has been replaced with context-dependency. This set
is used in the ML-mix22 system.

distance thresholds are 4.6, 5.7 and 15.3 for the n = 100, n = 200 and n = 577

systems respectively. The average distance of all phone pairs is around 78 with a

standard deviation of about 40.
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System Total Mixed Multiple Finnish English

Base Fin

Different questions 190 0.0% 0.0% 100.0% 0.0%

Questions used 2682 0.0% 0.0% 100.0% 0.0%

Deciding questions 1780 0.0% 0.0% 100.0% 0.0%

Base Eng

Different questions 212 0.0% 0.0% 0.0% 100.0%

Questions used 2661 0.0% 0.0% 0.0% 100.0%

Deciding questions 1816 0.0% 0.0% 0.0% 100.0%

Sep

Different questions 402 0.0% 0.0% 47.3% 42.7%

Questions used 5343 0.0% 0.0% 50.2.0% 49.8%

Deciding questions 3596 0.0% 0.0% 49.5% 50.5%

Mix-0

Different questions 280 0.0% 43.6% 24.3% 32.1%

Questions used 5357 0.0% 64.9% 18.8% 16.4%

Deciding questions 3608 0.0% 59.7% 21.0% 19.3%

Mix-3

Different questions 280 27.1% 22.1% 20.7% 30.0%

Questions used 8042 36.7% 41.3% 11.8% 10.2%

Deciding questions 3644 5.3% 57.4% 19.5% 17.9%

Mix-6

Different questions 280 45.0% 10.7% 17.1% 27.1%

Questions used 8820 46.5% 34.3% 10.7% 8.5%

Deciding questions 3673 12.3% 51.8% 19.9% 16.0%

Mix-9

Different questions 280 53.6% 7.1% 14.3% 25.0%

Questions used 9407 56.3% 28.7% 7.4% 7.6%

Deciding questions 3728 23.9% 46.3% 14.6% 15.2%

Mix-13

Different questions 280 65.7% 2.1% 10.7% 21.4%

Questions used 9879 65.7% 22.0% 5.5% 6.8%

Deciding questions 3763 36.8% 37.4% 11.4% 14.4%

Mix-22

Different questions 268 86.6% 0.0% 0.7% 12.7%

Questions used 10732 83.5% 11.5% 0.4% 4.6%

Deciding questions 3844 66.4% 22.1% 1.1% 10.5%

Table 7.8: Phonetic question usage in triphone tying for various systems. Mixed
means questions that contain (possibly among other) models that are shared across
languages (e.g. +/a/,+/ahen/); Multiple means questions that contain questions of
both Finnish and English (e.g. +/afi/,+/aen/); Finnish and English mean exclu-
sively intra-lingual questions. The middle phone is counted as a question in this
analysis.

often shared contexts are used in phonetic decision trees (see Section 3.6.3). The

questions are used only as an aid for clustering. The real magic is in the euclidean

distance. When a cluster is split, the splitting is done based on the question that

gives the most fitting division for the two new nodes. When a single cluster can no

longer be divided without losing information, the cluster is considered to be a leaf
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Vanilla models STC models

Task 1st pass Adapted 1st pass Adapted

Speecon devel - - 3.3 -

Speecon eval 4.2 3.4 3.7 3.5

EMIME finnish 4.2 2.4 3.4 2.7

WSJ devel (w1 h1 p0) - - 8.7 -

WSJ eval (w0 si et 05) 5.6 3.7 4.8 4.3

EMIME English 41.6 29.6 36.8 31.5

Table 7.9: Baseline performance on English development and evaluation tasks. Error
measurement is WER for WSJ and EMIME English data sets, and LER for Speecon
and EMIME Finnish data sets.

node in the clustering tree, and the question that was used to generate the leaf node

is referred to as a deciding question.

From the high percentage of mixed deciding questions we can see that corpus

specifity is not as deciding as initially feared. Even though mixed corpora questions

are slightly underrepresented in the “decisive” questions leading to the leaf nodes

of the tree, we can clearly see that the usage of mixed questions is high and that

triphone tying across corpora works better and better as more phones are defined

to be the same across corpora.

7.11 Baseline tests and results

A batch of baseline recognisers with different triphone tying parameters was first

trained and tested with the development sets. The best combination of these param-

eters are shown in Table 7.4. The baseline recognisers were then further optimised

by tweaking the language model weight again using the development set. Finally

the evaluation sets were recognised with these baseline recognisers.

All tests were made in an identical fashion. First, word lattices are generated with

the HDecode decoder using a bigram language model, an average beam width (250)

and a loose restrain on the decoder stack size (30000).

These lattices were then expanded and rescored using SRILM lattice-tool and

a higher order ngram. The first round recognition result is the best path through

this lattice.
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Tests using adaptation were made by generating the adaptation transforms using

the output from the first round. First, the HVite decoder was used to align the

first pass labels onto the data. This label data had been lost in the lattice expansion

phase. Then, HHEd is used to create a regression tree of transforms. HERest is

used to train the transformations.

Then a new batch of lattices is created with the HDecode decoder using the

new transformations. The second pass final result is again derived by rescoring the

adapted lattices with an n-gram of a higher order.

The recognition time varies depending on the acoustic models set, ranging from

around 10-15 real-time for lattice generation and less than 0.5 RT for the remaining

operations. The baseline performance results are shown in table 7.9.

For the tied-mixture system, a less optimised Viterbi decoder HVite is used. The

beam had to be set to a low value (180) to constrain decoding times. Due to the

geometry of the models, adaptation did not work quite as well as hoped.



Chapter 8

Tests results

In this chapter we will go through the tests made on the systems that were developed

as described in the previous chapter.

The tests were done in two parts:

1. Performance on recognising Finnish and English sentences. This also includes

tests about intra-lingual adaptation.

2. Performance in cross-lingual adaptation. Here a set of sentences from language

A are used to adapt the recogniser in order to improve recognition performance

for sentences of the same speaker in language B.

8.1 Test setups and result representation

Testing speech recognisers is very straightforward. A test consists of running the

speech recogniser with predefined parameters on a predefined set of utterances, the

evaluation set. The parameters that control the recogniser, for example the beam

width or the stack size, are usually optimised by running the recogniser on a different

set of utterances, the development set.

For speaker-independent, large-vocabulary recognisers, where the test set includes

complete sentences from several speakers, the average word error rate (WER) of

either all the sentences or all the speakers is given.

The scoring program used in this thesis is sclite1, which aligns the recognition

results to the reference labels and gives the amount of errors as well as an average of

error rates of all sentences and the average of the average error rates of all speakers.

These error rates are reported with an accuracy of one decimal.

1From the NIST scoring package, see http://www.icsi.berkeley.edu/Speech/docs/sctk-
1.2/sctk.htm
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Beside the graphs showing absolute differences in errors, I have included charts

that show statistically significant differences between systems. The statistical test

is the matched pair test (see Section 4.2.2) done with the program built for the

purpose, sc stats2. In the charts each element represents a test between the system

indicated by the column and the system indicated by the row. The system that

performs significantly better is indicated by an arrow. These charts are included in

appendix B.

8.2 Tests on combined acoustic models

These tests confirm that all recognisers perform adequately. The results are shown

in Figure 8.1 and in appendix A. Selected statistical significance tests are shown in

tables B.1-B.8 in appendix B.

8.2.1 Test setup

As described in the earlier chapter, a group of recognisers was trained.

First, a combination of two separate system acts as the baseline. This is known

as ML-sep recogniser.

Secondly, a group of ML-mix recognisers was trained. These combine the training

data across languages. These range from mix0, where the data is just pooled, to

mix22, where 22 phones from both languages are marked as the same phone. Variants

of ML-mix with various mixing strategies and thresholds.

Furthermore, a bilingual tied-mixture system was built, and is known as ML-tag.

A basic set of models and a more advances model set with phone-specific semi-tied

covariance transform is trained for each of these recognisers. The first set is called

”vanilla”, the second ”STC”. This yields a set of 16 recognisers. Three tests are

done on each of these:

• Single-pass recognition,

• Two-pass recognition; second pass with a single CMLLR transform and

• Two-pass recognition; second pass with a regression tree CMLLR transform.

2Also from the aforementioned NIST scoring package.
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Figure 8.1: Recognition results of Speecon and WSJ data sets. ML-mix22 and ML-
Tag results are so bad that they have been removed from the figure. They can be
found in appendix A.
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8.3 Cross-lingual adaptation tests

An interesting question with multilingual acoustic modelling is naturally the possi-

bility of using adaptation data over languages. The tests are done using the bilingual

EMIME utterance collection. The results are shown in figures 8.2 and 8.3 and in

appendix A. The significant differences in systems are shown in tables B.9-B.12 in

appendix B.

8.3.1 Test setup

The system description is similar to the earlier tests on adapted systems. The array

of tests for each recognisers is a bit wider. There are sentences in two languages for

each speaker in the corpus. When we want to recognise data in language A, we can

try to use adaptation data generated either from language A or language B.

The list of tests is as follows:

• Single-pass recognition on language A,

• Two-pass recognition; 1st pass on A, 2nd pass with a single CMLLR transform

on A,

• Two-pass recognition; 1st pass on A, 2nd pass with a regression tree CMLLR

transform on A.

• Cross-adapt; 1st pass on B, 2nd pass with a single CMLLR transform on A

• Cross-adapt; 1st pass on B, 2nd pass with a regression tree CMLLR transform

on A

• Phoneloop; 1st pass on B with a phoneme recogniser, 2nd pass with a single

CMLLR transform on A

• Phoneloop; 1st pass on B with a phoneme recogniser, 2nd pass with a regres-

sion tree CMLLR transform on A

The last tests involve phoneme recognisers, as introduce in section 3.5.2. These

tests are included as references to see whether there is any advantage in making the

effort of combining the acoustic models across languages.

Note that the ML-sep system cannot do cross-lingual adaptation.
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Figure 8.2: EMIME data recognition results for Finnish data set. ML-mix22 and
ML-Tag results are so bad that they have been removed from the figure. They can
be found in appendix A.
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Figure 8.3: EMIME data recognition and adaptation results for English set. ML-
Tag results are so bad that they have been removed from the figure. They can be
found in appendix A.
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8.4 Result analysis

First, we notice that ML-mix22 and ML-Tag systems do not perform adequately

- With ML-mix22 this is most likely due to the disproportionate reduction of the

phone set. With ML-Tag the reasons can be an improper training procedure or

problems in the software toolkit regarding this kind of model set - or both.

The next obvious observation is that the recognition of English sentences spoken

by Finnish speakers is quite difficult. The error difference is comparable to the error

increase when American and British English recognisers are used across dialects,

as investigated by Yan & Vaseghi, 2002. Here, the American sentences recognised

with an American recogniser got 8,8 WER, whereas British sentences recognised by

the same yielded 30.6 WER. Therefore the error of around 35 WER for the Finnish

English sentences does not seem so bad, especially as the EMIME sentences have a

much larger vocabulary and thus a more confusion-prone language model is used.

In their work, Schultz & Waibel, 1998 managed to contract the amount of param-

eters for a 5-language recogniser by 60% with only a slight reduction in recognition

performance - An average of 20% reduction per additional language. The merging

of two languages in this work with a 13 % reduction in parameters and no reduction

in accuracy and 22% reduction with slight performance degradation suggests that

the Finnish-English language pair is at least as similar as the set of five languages

Croatian, Japanese, Korean, Turkish and Spanish.

The comparison of adaptation methods with various recognisers gives us a clear

winner: The ML-mix100-system. Unfortunately, its performace edge was not pre-

dicted. The ML-mix100, ML-mix200 and ML-mix577 have a different covariance

transform applied to them, and hypothesis was originally, that therefore they would

perform worse. In fact these three systems did a better job in adaptation that any

of the other systems and therefore a straight comparison to other systems might not

be fair.

However, it is apparent that none of the truly cross-lingual adaptation attempts

with similar STC transform geometry do significantly better than the baseline recog-

niser with its phoneme loop adaptation procedure. This probably has to do more or

less with the fact that the ML-sep system’s unadapted performance is unchallenged

by any of the ML-mix systems.

Looking back at table 7.6, it is apparent that the multi-lingual tying does as it

is supposed to do with ML-mix0: The Gaussian count is identical to the ML-sep

system, as it should be as theoretically nothing has changed. An educated guess

is that the clustering parameters for triphone tying should be tweaked individually
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for each ML-mix system. There might also be something inherently wrong with the

idea of combining phonetic questions across languages, or maybe some flaws in their

grouping.



Chapter 9

Conclusions

From the results presented in the previous chapter we can conclude the following:

• Recognition of native speech (Finnish) can be enhanced with adaptation data

in foreign language (English), whereas recognition of foreign speech (English)

cannot be helped with the adaptation data from native language (Finnish).

• Up to 13 phones may be combined across languages without affecting the

recognition of the native language (Finnish). This is actually the maximum

of straightforward combinations possible using the Kullback-Leibler distance

metric. Further combinations would require a one-to-many-mapping of phones

across languages. The system with a very aggressive knowledge-based merging

strategy, ML-mix22, degrades the performance significantly.

• Overall the best adaptation strategy is to use the baseline recogniser for in-

tralingual adaptation label generation and ML-mix100-STC system for 2nd

pass. For cross-lingual adaptation, ML-mix100-STC and a phoneme loop

should be used to create adaptation matrices and the same system should

be used for the 2nd pass.

There are certain issues that remain to be investigated.

• Generality: The tests were run on the language pair Native Finnish vs.

Foreign English. Are similar results obtainable from other language pairs?

What about including other languages? Test sets were also very small. Are

similar results obtainable with some dozens of speakers? Or hundreds?

• Corpus size balancing: The amount of speech in the English training corpus

is almost thrice the amount of speech in the Finnish training corpus. The

98
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English phone set was around 30% larger than the Finnish set, and the training

set includes 15431 different triphones, whereas the Finnish set only 5806 -

Thus, average data per triphone is almost equal. A more robust recogniser

could be trained by using the WSJ1 and Speecon corpora, but the amount of

English data would overwhelm the Finnish data. How should this be resolved?

One possibility would be to use some kind of information criteria to control

the clustering procedure as presented in Lyu & Lyu, 2008.

• Phone set optimisation: The phone sets of the recognisers were taken as

granted. A further investigation in the properties of individual languages and

the unifications of phone sets of language pairs might reduce the error further.

An alternative is a one-to-many-mapping of phones when combining languages,

where a single phone of a language that has a sparse phone set represents

several phones in a language with a more diverse phone set.

Furthermore, it has been shown that for the English language some pronunci-

ation dictionaries with a larger phone set and restricted distribution perform

better than the free CMU dictionary used in this work (Dines et al. , 2009).

From table 7.6 we notice, that monophone pooling together with shared pho-

netic question trees does not automatically contract the model set.

• Role of the covariance transform geometry: The advantages of ML-

mix100 might come from its different covariance transformation geometry. If

this is the case, it is hardly motivated to create mixed systems, as the the

ML-sep recogniser using a simple phoneme recogniser to create adaptation

transcriptions can do as well as the cross-adapted multilingual recognisers.

• Approach to acoustic modeling and distance metrics: A simple, 16-

Gaussian mixture model was used for all the phone models. An alternate

approach, that could somewhat solve the questions about corpora size, is to

use a fully tied HMM system, better known as tied-mixture system. This

has a separate pool of Gaussian mixtures (codebook), and the phone model is

nothing more than a list of Gaussians which the phone uses and their assosiated

weights.

This approach would give us a very simple distance metric: The (squared)

difference of codebook weights between phones.

• Scrutinous investigation of test system: Speech recognisers are complex

systems, and a research system built for testing a particular problem can be
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a prime example of patchwork, kludging and general inelegancy of software

engineering. The bottom line is that there remains a huge domain for human

errors, and a mistake made in the preliminary preparations can have a terrible

effect on the end results.



Epilogue:

A declaration of disbelief in the foundations of the find-

ings of this thesis

An important thing that deserves a mention in the end: Although the results are

confirmed by statistical significance tests, the main test set consisted of only 3

speakers, whose voices are also somewhat similar.

So I advice the reader to remain sceptical as ever about the results reported in

this thesis.
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Test result error summary

The tables on the following pages show all the results of the tests done with the

recognisers trained for this work.
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Intra-lingual Cross-lingual Phoneloop

CMLLR CMLLR CMLLR

System 1st pass single regtree regtree single regtree single

w
sj

0
si

et
05

Sep Vanilla 5.6 4.1 3.7 - - - -

Sep STC 4.8 4.3 4.3 - - - -

Mix- 0 Vanilla 7.7 4.4 4.4 - - - -

Mix- 0 STC 6.9 4.4 4.4 - - - -

Mix- 3 Vanilla 8.4 4.4 4.5 - - - -

Mix- 3 STC 6.9 4.8 4.7 - - - -

Mix- 6 Vanilla 7.4 4.7 4.2 - - - -

Mix- 6 STC 6.9 4.8 4.5 - - - -

Mix- 9 Vanilla 7.6 4.7 4.6 - - - -

Mix- 9 STC 7.6 5.4 4.9 - - - -

Mix- 13 Vanilla 7.6 4.8 4.7 - - - -

Mix- 13 STC 7.2 5.1 4.7 - - - -

Mix- 22 Vanilla 54 41.9 38.4 - - - -

Mix- 22 STC 49.7 40.6 37.9 - - - -

Mix- 100 Vanilla 6.3 4.4 4.1 - - - -

Mix- 100 STC 6.2 3.5 3.3 - - - -

Mix- 200 Vanilla 6.4 4.0 4.0 - - - -

Mix- 200 STC 6.1 3.6 3.5 - - - -

Mix- 577 Vanilla 6.7 4.2 4.2 - - - -

Mix- 577 STC 6.1 3.4 3.7 - - - -

Tag Vanilla 16.9 - - - - - -

Table A.1: Recognition results from WSJ tests. Error is measured in WER.
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Intra-lingual Cross-lingual Phoneloop

CMLLR CMLLR CMLLR

System 1st pass single regtree regtree single regtree single

E
M

IM
E

E
n
gl

is
h

se
t

Sep Vanilla 41.6 35.3 29.6 - - 35.7 37.7

Sep STC 36.8 34.5 31.5 - - 37.1 35.5

Mix- 0 Vanilla 46.6 38.7 35.9 60.2 57.8 49.3 51.8

Mix- 0 STC 42.4 40.2 37.1 102.5 71.8 74.4 60.4

Mix- 3 Vanilla 47.7 37.9 33.3 56.4 58.2 47.7 51.2

Mix- 3 STC 43.5 39.8 37.3 100.4 72.2 70.3 60.1

Mix- 6 Vanilla 49.3 39.1 34.2 58.4 58.4 48.2 52.9

Mix- 6 STC 42.4 39.6 37.7 97.4 72.7 72.2 60.7

Mix- 9 Vanilla 48.7 37.8 35.3 54.1 55.2 48.1 50.4

Mix- 9 STC 42.4 41.4 36.6 92.2 66.3 72.0 58.1

Mix- 13 Vanilla 48.6 39.1 34.2 54.7 57.9 49.6 51.0

Mix- 13 STC 41.3 39.2 36.4 88.6 67.6 66.4 58.6

Mix- 22 Vanilla 45.8 37.6 34.2 39.9 45.9 43.7 47.2

Mix- 22 STC 40.2 38.1 34.6 56.2 49.9 58.2 50.6

Mix- 100 Vanilla 42.3 34.3 31.0 38.0 39.1 35.7 37.5

Mix- 100 STC 38.3 32.5 29.3 38.9 38.2 35.5 36.0

Mix- 200 Vanilla 42.7 34.8 30.0 38.3 39.3 34.4 36.9

Mix- 200 STC 38.4 34.1 30.2 38.9 39.8 34.7 36.0

Mix- 577 Vanilla 41.8 35.1 30.8 38.7 40.7 35.3 37.5

Mix- 577 STC 38.1 33.7 29.5 37.2 37.3 34.7 35.6

Tag Vanilla 68.7 - - - - - -

Table A.2: Recognition results from English EMIME tests. Error is measured in
WER.
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Intra-lingual Cross-lingual Phoneloop

CMLLR CMLLR CMLLR

System 1st pass single regtree regtree single regtree single

S
p
ee

co
n

ev
al

u
at

io
n

se
t

Sep Vanilla 4.2 3.5 3.4 - - - -

Sep STC 3.7 3.7 3.5 - - - -

Mix- 0 Vanilla 4.1 3.5 3.5 - - - -

Mix- 0 STC 3.7 3.7 3.7 - - - -

Mix- 3 Vanilla 4.2 3.5 3.6 - - - -

Mix- 3 STC 3.8 3.7 3.6 - - - -

Mix- 6 Vanilla 4.3 3.5 3.6 - - - -

Mix- 6 STC 3.7 3.6 3.6 - - - -

Mix- 9 Vanilla 4.3 3.6 3.5 - - - -

Mix- 9 STC 3.7 3.7 3.7 - - - -

Mix- 13 Vanilla 4.1 3.6 3.5 - - - -

Mix- 13 STC 3.7 3.7 3.6 - - - -

Mix- 22 Vanilla 38.4 37.5 37.3 - - - -

Mix- 22 STC 37.6 37.0 36.6 - - - -

Mix- 100 Vanilla 4.2 3.5 3.5 - - - -

Mix- 100 STC 3.7 3.1 3.2 - - - -

Mix- 200 Vanilla 4.3 3.6 3.5 - - - -

Mix- 200 STC 3.8 3.2 3.2 - - - -

Mix- 577 Vanilla 4.3 3.6 3.6 - - - -

Mix- 577 STC 3.9 3.2 3.3 - - - -

Tag Vanilla 6.4 - - - - - -

Table A.3: Recognition results from Speecon tests. Error is measured in LER.
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Intra-lingual Cross-lingual Phoneloop

CMLLR CMLLR CMLLR

System 1st pass single regtree regtree single regtree single

E
M

IM
E

F
in

n
is

h
se

t

Sep Vanilla 4.2 2.7 2.4 2.8 2.9 2.8 2.9

Sep STC 3.4 3.1 2.7 3.9 3.2 3.4 3.1

Mix- 0 Vanilla 4.0 2.9 2.7 4.2 3.3 3.3 3.2

Mix- 0 STC 5.3 2.8 2.3 3.0 3.1 3.1 3.2

Mix- 3 Vanilla 5.2 2.7 2.3 2.9 3.1 2.9 3.1

Mix- 3 STC 3.8 2.8 2.6 4.2 3.4 3.3 3.1

Mix- 6 Vanilla 5.2 2.7 2.2 2.9 3.0 3.0 3.1

Mix- 6 STC 4.1 2.9 2.7 3.8 3.3 3.6 3.2

Mix- 9 Vanilla 5.0 2.6 2.4 2.8 2.9 2.7 3.0

Mix- 9 STC 3.8 2.8 2.7 3.9 3.5 3.7 3.2

Mix- 13 Vanilla 4.6 2.5 2.3 2.6 2.6 2.6 2.8

Mix- 13 STC 3.5 2.9 2.8 3.6 3.1 3.4 2.9

Mix- 22 Vanilla 36.3 34.5 32 31.5 31.8 33.0 32.8

Mix- 22 STC 33.0 34.2 31.7 33.2 31.6 33.7 32.8

Mix- 100 Vanilla 4.3 2.6 2.3 2.6 2.7 2.8 2.7

Mix- 100 STC 3.4 2.3 2.2 2.6 2.4 2.8 2.5

Mix- 200 Vanilla 4.2 2.6 2.4 2.9 2.8 2.9 2.9

Mix- 200 STC 3.6 2.3 2.1 2.6 2.7 2.6 2.6

Mix- 577 Vanilla 4.8 2.8 2.4 2.8 2.9 2.8 2.9

Mix- 577 STC 3.7 2.2 2.1 2.6 2.6 2.7 2.5

Tag Vanilla 6.2 - - - - - -

Table A.4: Recognition results from Finnish EMIME tests. Error is measured in
LER.



Appendix B

Statistical significance test

results

The statistical significance test is done on a pair of recognition result transcriptions.

The tables on the following pages show the most important tests. Each cell in the

table shows a test between the system shown in the first column and a system shown

in the first row of the table. The arrow shows which of the two compared systems

performs better. A star denotes that no significant performance differences can be

claimed

The test used was the matched pair test as described in Section 4.2.2.

The tests are run using the sc stats program.

107
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SP eval set 1st
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sep STC ⇐ * ⇐ * ⇐ * ⇐ * ⇐ * ⇐ * ⇐ ⇐ ⇐ ⇐ ⇐
sep ML ⇑ * ⇑ * ⇑ * ⇑ * ⇑ * ⇑ * ⇑ * ⇑ *

mix0 STC ⇐ * ⇐ * ⇐ * ⇐ * ⇐ * ⇐ * ⇐ * ⇐
mix0 ML ⇑ * ⇑ ⇐ ⇑ * ⇑ * ⇑ * ⇑ ⇐ ⇑ *

mix3 STC ⇐ * ⇐ * ⇐ * ⇐ * ⇐ * ⇐ * ⇐
mix3 ML ⇑ * ⇑ * ⇑ * ⇑ * ⇑ * ⇑ *

mix6 STC ⇐ * ⇐ * ⇐ * ⇐ * ⇐ * ⇐
mix6 ML ⇑ * ⇑ ⇑ ⇑ * ⇑ * ⇑ *

mix9 STC ⇐ * ⇐ * ⇐ * ⇐ * ⇐
mix9 ML ⇑ * ⇑ * ⇑ * ⇑ *

mix13 STC ⇐ * ⇐ * ⇐ * ⇐
mix13 ML ⇑ * ⇑ ⇐ ⇑ *

mix100 STC ⇐ ⇐ ⇐ ⇐ ⇐
mix100 ML ⇑ * ⇑ *

mix200 STC ⇐ * ⇐
mix200 ML ⇑ *

mix577 STC ⇐
mix577 ML

Table B.1: Statistically significant differences of recognition results with all viable
system without adaptation on Speecon evaluation dataset. The arrow shows which
of the two compared systems performs better. A star denotes that no significant
performance differences can be claimed. The best systems have been shaded - These
systems are as good or better than any others.
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SP eval set, CMLLR
adaptation

se
p

M
L

C
M

L
L
R

m
ix

0
S
T

C
C

M
L
L
R

m
ix

0
M

L
C

M
L
L
R

m
ix

3
S
T

C
C

M
L
L
R

m
ix

3
M

L
C

M
L
L
R

m
ix

6
S
T

C
C

M
L
L
R

m
ix

6
M

L
C

M
L
L
R

m
ix

9
S
T

C
C

M
L
L
R

m
ix

9
M

L
C

M
L
L
R

m
ix

1
3

S
T

C
C

M
L
L
R

m
ix

1
3

M
L

C
M

L
L
R

m
ix

1
0
0

S
T

C
C

M
L
L
R

m
ix

1
0
0

M
L

C
M

L
L
R

m
ix

2
0
0

S
T

C
C

M
L
L
R

m
ix

2
0
0

M
L

C
M

L
L
R

m
ix

5
7
7

S
T

C
C

M
L
L
R

m
ix

5
7
7

M
L

C
M

L
L
R

sep STC CMLLR * ⇐ * * * * * ⇐ * * * ⇑ * ⇑ * ⇑ *

sep ML CMLLR ⇐ * ⇐ ⇐ ⇐ ⇐ ⇐ * ⇐ * ⇑ * ⇑ * * ⇐
mix0 STC CMLLR ⇑ * * * * * * * * ⇑ ⇑ ⇑ * ⇑ *

mix0 ML CMLLR * * * * ⇐ * * * ⇑ * ⇑ * ⇑ *

mix3 STC CMLLR * * * * * * * ⇑ * ⇑ * ⇑ *

mix3 ML CMLLR * * * * * * ⇑ * ⇑ * ⇑ *

mix6 STC CMLLR * * * * * ⇑ * ⇑ * ⇑ *

mix6 ML CMLLR * * * * ⇑ * ⇑ * ⇑ *

mix9 STC CMLLR * * * ⇑ ⇑ ⇑ ⇑ ⇑ *

mix9 ML CMLLR * * ⇑ * ⇑ * ⇑ *

mix13 STC CMLLR * ⇑ * ⇑ * ⇑ *

mix13 ML CMLLR ⇑ * ⇑ * ⇑ *

mix100 STC CMLLR ⇐ * ⇐ * ⇐
mix100 ML CMLLR ⇑ * ⇑ *

mix200 STC CMLLR ⇐ * ⇐
mix200 ML CMLLR ⇑ *

mix577 STC CMLLR ⇐
mix577 ML CMLLR

Table B.2: Statistically significant differences of recognition results with all viable
systems and intra-lingual CMLLR adaptation on Speecon evaluation dataset.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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sep STC ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐
sep ML ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ * ⇐ * ⇐ * ⇐
mix0 STC * * ⇐ * * * * * * ⇑ * ⇑ * ⇑ *

mix0 ML ⇑ * ⇑ * * * * * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix3 STC ⇐ * * * * * * ⇑ * ⇑ * ⇑ *

mix3 ML ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix6 STC * * * * * ⇑ * ⇑ * ⇑ *

mix6 ML * * * * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix9 STC * * * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix9 ML * * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix13 STC * ⇑ ⇑ ⇑ ⇑ ⇑ *

mix13 ML ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix100 STC * * * * *

mix100 ML * * * *

mix200 STC * * *

mix200 ML * *

mix577 STC *

mix577 ML

Table B.3: Statistically significant differences of recognition results with all viable
systems without adaptation on the WSJ evaluation set.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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WSJ eval CMLLR
adapted
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sep STC * * * * * * * * * * * ⇑ * ⇑ * ⇑ *

sep ML ⇐ ⇐ ⇐ ⇐ * * ⇐ ⇐ ⇐ ⇐ * * * * * ⇐
mix0 STC * * * * * * * * * ⇑ * ⇑ ⇑ ⇑ *

mix0 ML * * * * * * * * ⇑ * ⇑ * ⇑ *

mix3 STC * * * * * * * ⇑ * ⇑ ⇑ ⇑ *

mix3 ML * * * * * * ⇑ * ⇑ * ⇑ *

mix6 STC * * * * * ⇑ * ⇑ * ⇑ *

mix6 ML * * * * ⇑ * ⇑ * * *

mix9 STC * * * ⇑ ⇑ ⇑ ⇑ ⇑ *

mix9 ML * * ⇑ * ⇑ * ⇑ *

mix13 STC * ⇑ * ⇑ ⇑ ⇑ *

mix13 ML ⇑ * ⇑ ⇑ ⇑ *

mix100 STC ⇐ * ⇐ * ⇐
mix100 ML ⇑ * * *

mix200 STC ⇐ * ⇐
mix200 ML * *

mix577 STC *

mix577 ML

Table B.4: Statistically significant differences of recognition results with all viable
systems with intra-lingual CMLLR adaptation on the WSJ evaluation dataset.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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EMIME English
1st pass
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sep STC ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ * ⇐ * ⇐ * ⇐
sep ML * ⇐ * ⇐ * ⇐ * ⇐ * ⇐ ⇑ * ⇑ * ⇑ *

mix0 STC ⇐ * ⇐ * ⇐ * ⇐ * ⇐ ⇑ * ⇑ * ⇑ *

mix0 ML ⇑ * ⇑ ⇐ ⇑ * ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix3 STC ⇐ * ⇐ * ⇐ * ⇐ ⇑ * ⇑ * ⇑ *

mix3 ML ⇑ * ⇑ * ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix6 STC ⇐ * ⇐ * ⇐ ⇑ * ⇑ * ⇑ *

mix6 ML ⇑ * ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix9 STC ⇐ * ⇐ ⇑ * ⇑ * ⇑ *

mix9 ML ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix13 STC ⇐ ⇑ * * * ⇑ *

mix13 ML ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix100 STC ⇐ * ⇐ * ⇐
mix100 ML ⇑ * ⇑ *

mix200 STC ⇐ * ⇐
mix200 ML ⇑ *

mix577 STC ⇐
mix577 ML

Table B.5: Statistically significant differences in recognition performance with all
viable systems without adaptation and EMIME English dataset.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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EMIME English
with CMLLR
adaptation
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sep STC * ⇐ ⇐ ⇐ * ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇑ * * * ⇑ *

sep ML ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ * * * * * *

mix0 STC * * ⇑ * ⇑ * * * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix0 ML * ⇑ * * * * * * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix3 STC ⇑ * ⇑ * * * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix3 ML ⇐ * ⇐ * ⇐ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix6 STC ⇑ * ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix6 ML * * * * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix9 STC * * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix9 ML * * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix13 STC * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix13 ML ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix100 STC * * * * *

mix100 ML * * * *

mix200 STC * * *

mix200 ML * *

mix577 STC *

mix577 ML

Table B.6: Statistically significant differences of recognition results with all viable
systems and intra-lingual adapation on the English EMIME dataset.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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EMIME Finnish
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sep STC ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ * ⇐ * ⇐ * ⇐ * ⇐ * ⇐
sep ML * ⇐ * ⇐ * ⇐ ⇑ ⇐ ⇑ * ⇑ * ⇑ * ⇑ ⇐
mix0 STC ⇐ * ⇐ * ⇐ * ⇐ ⇑ ⇐ ⇑ * ⇑ * * ⇐
mix0 ML ⇑ * ⇑ * ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix3 STC ⇐ * ⇐ * ⇐ ⇑ ⇐ ⇑ ⇐ * * * ⇐
mix3 ML ⇑ * ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ *

mix6 STC ⇐ ⇑ ⇐ ⇑ ⇐ ⇑ * ⇑ * ⇑ ⇐
mix6 ML ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ *

mix9 STC ⇐ ⇑ ⇐ * ⇐ * ⇐ * ⇐
mix9 ML ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ *

mix13 STC ⇐ * ⇐ * ⇐ * ⇐
mix13 ML ⇑ * ⇑ ⇑ ⇑ *

mix100 STC ⇐ * ⇐ * ⇐
mix100 ML ⇑ * ⇑ *

mix200 STC ⇐ * ⇐
mix200 ML ⇑ ⇐
mix577 STC ⇐
mix577 ML

Table B.7: Statistically significant differences in recognition results with all viable
systems and no adaptation on the Finnish EMIME dataset.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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sep STC ⇑ * ⇑ * ⇑ * ⇑ * ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ *

sep ML * * * * * * * * ⇐ * ⇑ * ⇑ * ⇑ *

mix0 STC ⇑ * ⇑ * ⇑ * ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ *

mix0 ML * * ⇐ * ⇐ * ⇐ * * * * * * *

mix3 STC ⇑ * ⇑ * * * * ⇑ * ⇑ * ⇑ *

mix3 ML ⇐ * ⇐ * ⇐ * * * * * * *

mix6 STC ⇑ * ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ *

mix6 ML ⇐ * ⇐ * * * * * * *

mix9 STC ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ *

mix9 ML ⇐ * * * * * * *

mix13 STC ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix13 ML * * * * * *

mix100 STC * * ⇐ * ⇐
mix100 ML * * * *

mix200 STC ⇐ * ⇐
mix200 ML ⇑ *

mix577 STC ⇐
mix577 ML

Table B.8: Statistically significant differences in recognition results with all viable
systems with intra-lingual adaptation on Finnish EMIME dataset.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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sep STC ⇐ * * * * * ⇐ * * * * * * * *

sep ML ⇑ ⇑ ⇑ ⇑ ⇑ * ⇑ ⇑ ⇑ ⇑ * ⇑ ⇑ ⇑
sep STC pl. rt * * * * ⇐ * * * * * * * *

sep STC pl. 1 * * ⇐ ⇐ * * * * ⇐ ⇐ * ⇐
sep ML pl. rt * ⇐ ⇐ * * * * ⇐ * * ⇐
sep ML pl. 1 * ⇐ * * ⇑ * * * * *

mix100 STC ⇐ ⇑ ⇑ ⇑ * * * * *

mix100 ML ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix100 STC pl. rt * * * ⇐ ⇐ ⇐ ⇐
mix100 STC pl. 1 * * ⇐ ⇐ * ⇐
mix100 ML pl. rt ⇐ ⇐ * ⇐ ⇐
mix100 ML pl. * * * *

mix100 STC cr. rt * * *

mix100 STC cr. 1 * *

mix100 ML cr. rt *

mix100 ML cr. 1

Table B.9: Statistically significant differences in phoneloop (pl.) and cross-lingual
(cr.), full regression tree (rt) or single (1) adaptation with ML-sep and ML-mix100

systems on the English EMIME dataset.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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EMIME Finnish,
ML-sep and ML-
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gual adaptation
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sep STC ⇐ * ⇑ ⇑ ⇑ * ⇐ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
sep ML ⇑ ⇑ ⇑ ⇑ ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
sep STC pl. rt ⇑ ⇑ ⇑ * ⇐ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
sep STC pl. 1 * * * ⇐ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
sep ML pl. rt * ⇐ ⇐ * ⇑ * * * ⇑ * *

sep ML pl. 1 ⇐ ⇐ * ⇑ * * ⇑ ⇑ * *

mix100 STC ⇐ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix100 ML ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix100 STC pl. rt ⇑ * * * ⇑ * *

mix100 STC pl. 1 ⇐ * * * * *

mix100 ML pl. rt * * ⇑ * *

mix100 ML pl. 1 * ⇑ * *

mix100 STC cr. rt * * *

mix100 STC cr. 1 * *

mix100 ML cr. rt *

mix100 ML cr. 1

Table B.10: Statistically significant differences in phoneloop (pl.) and cross-lingual
(cr.), full regression tree (rt) or single (1) adaptation with ML-sep and ML-mix100

systems on the Finnish EMIME dataset.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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EMIME English,
ML-sep and ML-
mix13 cross lin-
gual adaptation
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sep STC ⇐ * * * * ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐
sep ML ⇑ ⇑ ⇑ ⇑ * ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐
sep STC pl. rt * * * ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐
sep STC pl. 1 * * ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐
sep ML pl. rt * ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐
sep ML pl. 1 ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐
mix13 STC ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐ ⇐
mix13 ML ⇐ ⇐ * * ⇐ ⇐ ⇐ ⇐
mix13 STC pl. rt ⇑ ⇑ ⇑ ⇐ * ⇑ ⇑
mix13 STC pl. 1 ⇑ ⇑ ⇐ ⇐ ⇑ *

mix13 ML pl. rt * ⇐ ⇐ ⇐ ⇐
mix13 ML pl. 1 ⇐ ⇐ ⇐ ⇐
mix13 STC cr. rt ⇑ ⇑ ⇑
mix13 STC cr. 1 ⇑ ⇑
mix13 ML cr. rt ⇐
mix13 ML cr. 1

Table B.11: Statistically significant differences in phoneloop (pl.) and cross-lingual
(cr.), full regression tree (rt) or single (1) adaptation with ML-sep and ML-mix13

systems on the English EMIME dataset.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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EMIME Finnish,
ML-sep and ML-
mix13 cross lin-
gual adaptation
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sep STC ⇐ * ⇑ ⇑ ⇑ * ⇐ * ⇑ ⇑ ⇑ * ⇑ ⇑ ⇑
sep ML ⇑ ⇑ ⇑ ⇑ ⇑ * ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
sep STC pl. rt ⇑ ⇑ ⇑ * ⇐ * ⇑ ⇑ ⇑ * * ⇑ ⇑
sep STC pl. 1 * * * ⇐ * * ⇑ * ⇐ * ⇑ ⇑
sep ML pl. rt * ⇐ ⇐ ⇐ * * * ⇐ * * *

sep ML pl. 1 ⇐ ⇐ ⇐ * ⇑ * ⇐ * * *

mix13 STC ⇐ * ⇑ ⇑ ⇑ * ⇑ ⇑ ⇑
mix13 ML ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑ ⇑
mix13 STC pl. rt ⇑ ⇑ ⇑ * ⇑ ⇑ ⇑
mix13 STC pl. 1 ⇑ * ⇐ * * *

mix13 ML pl. rt ⇐ ⇐ ⇐ * *

mix13 ML pl. 1 ⇐ * * *

mix13 STC cr. rt ⇑ ⇑ ⇑
mix13 STC cr. 1 ⇑ ⇑
mix13 ML cr. rt *

mix13 ML cr. 1

Table B.12:

Statistically significant differences in phoneloop (pl.) and cross-lingual (cr.), full
regression tree (rt) or single (1) adaptation with ML-sep and ML-mix13 systems on
the Finnish EMIME dataset.
The arrow shows which of the two compared systems performs better. A star denotes
that no significant performance differences can be claimed. The best systems have
been shaded - These systems are as good or better than any others.
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