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Speech enhancement is needed to improve the quality and intelligibility of speech degraded

by noise. In this thesis, a post-filtering approach for the mobile communication environment

was designed. The purpose of this post-processing scheme was to enhance certain frequency

regions of speech, so that when it was degraded with a very high level of noise, the speech

could still be understood. The post-processing worked by locating the formants of a voiced

speech frame by extracting the peaks of the LP spectrum. After this, the first formant was

attenuated and the second one enhanced. The idea was to move energy to higher frequencies

where the energy level of the noise was lower. The coefficients of the formant filter were

optimized with informal listening tests, and the possible tilt of the filter was compensated with

a first order low-pass filter. The performance of the post-processing algorithm was studied by

analyzing its effects on different voiced sounds and by comparing the filter to other post-filters.

It was concluded that the post-processing worked as intended and improved the intelligibility

of speech. Some unexpected behavior, such as shifted formants, was also encountered and

needs to be further studied. The advantages of this approachare its more adaptive and tunable

structure compared to the other methods used for post-processing in high noise levels.
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Puheen ehostusta tarvitaan kohinaisen puheen laadun ja ymmärrettävyyden parantamisessa.

Tässä työssä suunniteltiin matkapuhelimiin tarkoitettu jälkisuodatusalgoritmi. Tämän jälkipro-

sessoinnin tarkoituksena oli korostaa joitakin taajuusalueita puheessa siten, että sen ymmärtä-

minen olisi edelleen mahdollista hyvin kovassa kohinassa.Jälkiprosessoinnin alussa soinnilli-

sen puhekehyksen formanttitaajuudet haettiin tarkastelemalla sen LP-spektrissä olevia piikke-

jä. Tämän jälkeen ensimmäistä löydettyä formanttia vaimennettiin ja toista vahvistettiin. Idea-

na oli siirtää energiaa korkeammille taajuuksille, jossa kohinan energiataso olisi matalampi.

Formanttisuotimen kertoimet optimoitiin kuuntelukokeenavulla ja sen mahdollinen kallistus

kompensoitiin ensimmäisen asteen alipäästösuotimella. Lopullisen jälkisuotimen suoritusky-

kyä tarkasteltiin sekä tutkimalla sen vaikutusta erilaisiin soinnillisiin äänteisiin että vertailemal-

la suodinta muihin jälkisuotimiin. Saatujen tulosten perusteella voitiin päätellä, että toteutettu

menetelmä toimi halutulla tavalla ja onnistui parantamaanpuheen ymmärrettävyyttä. Tarkaste-

luissa tuli kuitenkin ilmi myös yllättäviä piirteitä, kuten formanttien siirtymisiä, jotka vaativat

lisätutkimusta. Verrattuna muihin jälkisuodatussysteemeihin, jotka on suunniteltu toimimaan

kovassa kohinassa, työssä kehitetyn algoritmin etuna ovatsen adaptiivisuus ja säädettävyys.

Avainsanat: Puheen ehostus, jälkisuodatus, formantti
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Chapter 1

Introduction

Speech is the most important form of human communication. Asthe field of mobile com-

munications is continuously expanding and evolving, the research of speech becomes in-

creasingly important. The invention of thelinear prediction analysis-by-synthesis(LPAS)

codecs brought a possibility of low rate speech with good or excellent quality. Quality has

been even further improved by the implementation of new, wideband codecs which can be

used to compress a wideband speech signal. This means that instead of using the conven-

tional telephone band from 300 Hz to 3.4 kHz, the frequency band ranges from 50 Hz to

7000 Hz.

There is constant background noise in the environment, and in mobile communications

even the channels and processing generate noise. This meansthat quite often the speech

signal that reaches our ears has already been degraded with interfering noise, regardless of

whether the speaker is right next to us or on the other side of the planet. Most of the time

the contents of the message can be understood from context, but that is not always the case.

Especially in mobile communications where environmental noise often affects both ends

of the communication channel, the quality of speech suffersbecause of noise. However,

speech enhancement can be used to minimize the effects of noise.

Speech enhancement covers a wide range of methods which can be used for many dif-

ferent purposes. The most common and obvious application isthe area of mobile commu-

nications, but it can also be used, for example, in hearing aids as well as helping children

in language learning. There is a multitude of different methods which can be roughly di-

vided into two categories based on their basic approach. Thefirst one contains methods

that aim at suppressing the noise in the noisy speech signal.The second category consists

of schemes that try to enhance some perceptual cues in the speech signal in order to make

it stand out more from the noise. Of course, a combination of the two aforementioned ap-

proaches is also possible. The goals of different methods can also vary from intelligibility

1



CHAPTER 1. INTRODUCTION 2

improvement to quality improvement depending on the setting of the processing and the

requirements that the processed speech has to fulfill.

This work focuses on speech enhancement in mobile communications. More specif-

ically, the processing of the speech signal is conducted when it has already reached the

receiver’s mobile terminal and just before it is played to the listener’s ear. This is called

post-processing because it happens at the end of the communication chain after the speech

has been transmitted over the communication channel and decoded. The opposite would be

pre-processing where the speech signal would be modified before encoding at the transmit-

ting device.

The original motivation for this work was to test whether enhancing some of the cues

in speech could be used to improve its intelligibility. There are post-processing algorithms

in use in the current speech coding standards, but they are ineffective in certain situations,

where the noise levels are high. In order to reduce the complexity of the situation to a

manageable level, it was assumed that only the receiver, or in this case the listener, would

be in a noisy environment. This means that the speech in the receiver’s mobile device would

be completely noiseless, and the noise would affect the signal only once it would have left

the phone. The idea was to modify the speech signal in the mobile device, so that the

receiver would be able to hear the processed speech even through the noise.

The thesis is structured as follows: in Chapter 2 the background for the thesis is laid

out. First, the concept of linear prediction is explained inbrief, and after this, the post-

processing of speech and some performance measures are discussed. Chapter 3 consists of

a detailed description of the implemented post-processingalgorithm. The methods and the

results of the subjective tests are presented in Chapter 4, and in Chapter 5 some aspects of

the performance are discussed. Chapter 6 concludes the thesis with a discussion of how

the post-processing algorithm could be implemented in practice, and, finally, some possible

improvements and directions for future research are suggested.



Chapter 2

Background

The purpose of this chapter is to provide the background for the work that was done. First,

the concept of linear prediction will be briefly introduced,and then the ways it can be uti-

lized in locating formant frequencies in speech are explained. After this, some previously

used approaches to adaptive post-filtering and formant enhancement are presented. Finally,

some methods and problems of testing this kind of speech enhancement scenario are dis-

cussed, and the setting of this work is defined.

2.1 Linear prediction

Linear prediction(LP) analysis is used in speech processing to form a filter model of the

combined effects of the vocal tract, the excitation and lip radiation that can be used to

synthesize the sound. This means that the analysis tries to capture the envelope structure of

the speech spectrum which, in turn, has been affected by the placement of the articulators,

such as the tongue and the lips. The amount of details that arecaptured depends on the order

used in the LP analysis. If it is too high, the resulting LP spectrum resembles the original

speech spectrum too much to be of any use. In other words, the effects of the fundamental

frequency can still be seen in the spectrum. On the other hand, when the order is too low,

the LP spectrum cannot capture all of the necessary details,such as all of the formants. In

speech processing the order is generally chosen to be between 10 and 20.

The name linear prediction comes from the fact that we are trying to predict future sam-

ples by taking a linear combinition of past samples and some input [1].

sn = −

p
∑

k=1

aksn−k +Gun (2.1)

In Equation (2.1), sn is the original speech signal, and coefficientsak are the linear predic-

tion coefficients which are obtained through the LP analysis. The order of the prediction is

3



CHAPTER 2. BACKGROUND 4

denoted here byp. This is a so called all-pole model which simply means that the resulting

synthesis filter structure

H(z) =
G

1 +
∑p

k=1 akz
−k

(2.2)

has only poles. To solve the coefficientsak from (2.1), a least squares approach is used.

In this method, the value of the error function is minimized.If the signal is assumed to be

deterministic, the error function is

E =
∑

n

(

sn +

p
∑

k=1

aksn−k

)2

(2.3)

By calculating the derivatives of the error function in Equation (2.3) with respect to each of

the coefficientsak, we getp equations which are called the normal equations. When it is

specified that the error is minimized over the infinite duration,−∞ < n < ∞, they have

the form

p
∑

k=1

akR(i− k) = −R(i), 1 ≤ i ≤ p , whereR(i) =
∞∑

n=−∞

snsn+i (2.4)

This results in the so-called autocorrelation method because the sequenceR(i) is the auto-

correlation of the signalsn. The coefficientsak can then be solved from the Equation (2.4)

by direct matrix calculations or by using theLevinson-Durbin recursion.

The LP coefficients can be transformed to different forms which can be better suited for

different purposes, such as quantization. One of the most often used are theline spectral

pairs (LSPs) which are also sometimes calledline spectral frequencies(LSFs). The LSFs

are the roots of two polynomials,P (z) andQ(z), which are defined in the following way [2]

P (z) = Ap(z) + z−(p+1)Ap(z
−1) (2.5)

Q(z) = Ap(z) − z−(p+1)Ap(z
−1) (2.6)

In Equations (2.5) and (2.6), the LP polynomial of orderp is denoted byAp(z). The roots

of these polynomials,P (z) andQ(z), always lie on the unit circle in the z-plane, and are

interlaced, so that every other root is fromP (z) and the rest fromQ(z). The advantage

of this presentation is that as long as the roots reside on theunit circle and interlace, the

corresponding LP synthesis filter is stable. If the LP coefficients were quantized directly,

the stability of the filter could not be guaranteed, but when using the LSFs only the ordering

of the roots has to be kept constant to ensure stability.

One of the most prominent features of speech are the formants. These are the resonance

frequencies of the vocal tract which can be seen as local maxima in the spectrum of voiced

speech sounds. The placement of the articulators, such as the lips and the tongue, affects
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the formant structure and consequently, the formant frequencies change constantly as the

articulators move. The formant frequencies can be used in separating different vowel sounds

from each other because they all have specific formant structures.

The results of the LP analysis can be used in locating the formants in two different ways.

McCandless calculated the linear prediction spectra from the LP polynomial, and estimated

the frequencies of the first three formants from its peaks [3]. The procedure consisted of

picking all the local maxima in the spectrum for each speech frame and assigning those to

the formants in the most probable way. This means that the continuity of the formant tracks

was taken into account as well as the fact that all of the formants reside in certain frequency

regions. One major problem with this approach is that sometimes two formants that are

close together in frequency produce only one visible peak. On the other hand, all of the local

maxima in the linear prediction spectra are not always necessarily formants. Separating the

correct formant peaks from all of the other local maxima becomes an increasingly more

difficult problem when the order used in the linear prediction grows and more details appear

in the spectrum.

Another way of locating formants with the help of the information obtained through LP

analysis is by solving the roots of the linear prediction polynomial. In theory, a pair of roots

corresponds to a formant peak, but the problem with this method is that not all roots denote

a peak in the spectrum. Another difficulty with this approachis that solving the roots of

even a 10th order polynomial requires a lot of computation. For this reason, it is mostly

used for research purposes where the exact locations of the formants are needed and there

are no strict real-time requirements.

A quite common approach is a combination of these two methods. First, the peaks of

the spectrum are sought. If there are too many or too few of them or the corresponding

frequencies are in frequency regions where formants are notusually found, the roots of the

LP polynomial are solved. The poles can then be used to determine which of the peaks are

actual formants, or if one of the found formant peaks is actually composed of two formants.

2.2 Post-processing of speech

When the topic of discussion is the post-processing of speech, people are usually thinking of

a technical system where the speech is modified in some way after the system has processed

it first. However, here post-processing of speech refers to all methods where the speech is

modified in order to improve it just before being played to thelistener’s ear. This broader

definition includes also all of the methods where a speech sample is taken from storage,

hand-annotated and then some of the perceptually importantcues are enhanced.

The goal of post-processing is to improve the quality or intelligibility of the speech sig-
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nal. This can mean many things. The profile of the degrading noise can be modified or the

speech signal itself can be enhanced or changed in some otherway. Methods such as filter-

ing and noise cancellation can be used after the speech signal has been degraded by noise.

One way of cancelling the noise is spectral subtraction where the noise power spectrum is

estimated and then this estimate is utilized in removing thenoise. In this thesis the main

interest is in methods that can be used to modify a clean speech signal before it has been

corrupted by noise. The idea in this approach is to make the speech more resistant to the

degrading noise. This can be achieved by enhancing some of the cues which the auditory

system of humans exploits to separate different sounds or byboosting frequency regions,

where the energy of the signal is low.

Niederjohn et al. experimented with a method that consistedof first high-pass filtering

and then clipping the speech signal in order to make it more intelligible [4, 5]. They aimed

at enhancing the second formant in relation to the first one, and studied the effects of this

transformation on speech intelligibility. Different values for the filter cutoff frequency and

slope were first tested, and the optimum values were found to be 1100 Hz cutoff and 12

dB/octave slope. An intelligibility score was determined for their method by asking ten

subjects to recognise words, and then calculating the average score as the percentage of

correctly recognized words. When speech processed with thedeveloped method was com-

pared to unprocessed speech, the improvement in intelligibility was found large on almost

all of the testedsignal-to-noise ratio(SNR) values, which ranged from -10 dB to 10 dB.

Hazan et al. used hand-annotated material, and enhanced consonantal regions which

contained high densities of acoustic cues [6]. These regions often have low amplitudes and

are transient by nature. For this reason, they could be made perceptually more prominent by

increasing their amplitudes or durations. Hazan et al. had several approaches for different

categories of phones, and they tested the effects these methods had on intelligibility. They

conducted two intelligibility tests, one withvowel-consonant-vowel(VCV) nonsense words

with 13 subjects and the other withsemantically unpredicatable sentences(SUS) and 32

test subjects. In the first test they achieved an intelligibility improvement of around 10 %

with their methods, and it was noticed that the greatest improvements were achieved by

enhancing the relative amplitudes of the consonantal regions. In the second test the results

did not show clear intelligibility improvements for the sentence materials. Hazan et al.

hypothesized that one of the reasons was the difficulty of enhancing the consonants in more

varied phonetical contexts.

Skowronski et al. imported some of the features of clear and Lombard speech to normal

speech in order to improve its intelligibility [7]. Both types of speech differ from normal

speech in many aspects. Clear speech is often produced by thespeaker when the listener

is hearing-impaired, and is characterized among other things by a slower speaking rate and
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more pronounced acoustic cues. Lombard speech, on the otherhand, is produced when

the speaker is subjected to noise in the speaking environment, and some of its characteris-

tics include larger signal amplitude and energy shift from low frequencies towards higher

frequencies.

Skowronski et al. tested an algorithm called ERVU (Energy Redistribution Voiced/Unvoiced)

which aimed at boosting the consonant-vowel ratio. The algorithm worked by first recog-

nising the unvoiced regions and then amplifying them. Afterthis, the energy of the signal

was calibrated to the level where it was before the processing. This procedure effectively

moved energy from the voiced regions to the unvoiced regions. The performance of ERVU

was tested for intelligibility improvement against simplehigh-pass filtering with listening

tests. The test was a forced two choice test with words from confusable sets and 25 test sub-

jects. A confusable set consists of words that only differ very little and can thus be easily

confused with each other. An example of such a group of words is ”too”, ”two” and ”to”.

Skowronski et al. concluded from the results that both the high-pass filtering and ERVU

improved intelligibility in most cases, and suggested thatcombining the two approaches

could be used in achieving even larger gains in intelligibility.

Hall et al. studied intelligibility enhancement in situations where there is babble noise

in the listener’s end [8]. They experimented with differentiation and formant equalization,

which are both similar to high-pass filtering. In differentiation the processed signalyn was

formed by

yn = xn − 0.995xn−1 , (2.7)

wherexn is the original speech signal. Formant equalization was done by taking the average

formant amplitudes of male speakers and equalizing the speech signal with a filter that had

these amplitudes reversed. This effectively attenuated the first formant and enhanced the

second formant.

Hall et al. first studied the possible intelligibility improvement of the methods with the

diagnostic rhyme test(DRT), and concluded that the processing increased intelligibility in

both cases. After this they conducted acomparison category rating(CCR) test. Thecom-

parison mean opinion scores(CMOS) for the tested methods versus no processing were

positive except with the highest SNR value (6 dB). They concluded that both of the pro-

cessing approaches were preferred over no processing. Out of the two methods, formant

equalization was preferred.

In adaptive post-filtering, we have a filter structure that updates itself based on the changes

in the speech signal. The conventional post-filter structure presented by Chen at al. consists



CHAPTER 2. BACKGROUND 8

of three separate filters in cascade [9].

H(z) = GGl

1 + γz−p

1− λz−p
︸ ︷︷ ︸

=Hl(z)

1− P ( z
β
)

1− P ( z
α
)

︸ ︷︷ ︸

=Hs(z)

(1− µz−1)
︸ ︷︷ ︸

=Ht(z)

(2.8)

In Equation (2.8), Hl(z) is called the long-term post-filter,Hs(z) the short-term post-filter

andHt(z) the tilt filter. The long-term post-filter uses the information about the pitch period

p to emphasize the pitch harmonics. It also attenuates the valleys between pitch harmonic

peaks, and reduces the noise in these frequency regions. Thecoefficientsγ andλ were

determined based on the degree of voicing in the speech segment.

The short-term post-filter is based on the LP coefficients which contain the overall struc-

ture of the speech spectrum, as mentioned before. It is used to enhance the formant peaks,

and to attenuate the valleys between them. This is achieved by moving the poles and zeros

of the short-term post-filter further apart inside the unit circle in the z-plane by changing

the values of the constantsα andβ, so that0 < β < α < 1. The stability of the filter

is always guaranteed as long as the poles stay inside the unitcircle. When the poles are

moved closer to the unit circle, the peaks in the spectrum become sharper and narrower. If

the difference betweenα andβ is large enough, the peaks become more prominent, and are

easier to locate from the spectrum.

After the speech was processed with the post-filter, the power of the speech segment had

to be adjusted to the level where it was before the processingtook place. This was done with

anautomatic gain control(AGC) algorithm that estimated the powers of both the original

and processed speech, and then scaled the filtered speech with a suitable value determined

from the power estimates.

Finally, the processed speech was filtered with the spectraltilt filter which was a simple

high-pass filter. It compensated for the low-pass effect caused by the short-term post-filter,

and reduced the audible muffling in the processed speech. Thewhole filter structure is

called adaptive because it changes with the characteristics of the speech segment that is

being processed. For example, the pitch and the formant structure of the current frame affect

the structure of the post-filter. The constant coefficients used in the filters were determined

by informal listening tests, and their optimal values wereα = 0.8, β = 0.5 andµ = 0.5.

The short-term post-filter and the tilt filter defined in the narrowbandadaptive multi-

rate (AMR) standard [10] have exactly the same structure as in Equation (2.8), only the

constants are different. The values ofα andβ depend on the quality of the channel, so

that when the SNR decreases, the effect of the post-filteringincreases. This means that

the post-filtering becomes stronger as the channel deteriorates. The parameter of the first

degree tilt filter,µ, is made adaptive and depends on the impulse response of the short-term

post-filter. The standard does not use a long-term post-filter, and it should also be noted that
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the LP coefficients that are required in the post-filter are not calculated at the receiver but

transmitted as a quantified version from the transmitting side. Chen et al. do not mention

how these values are obtained in order to keep the discussionas general as possible [9].

The AGC algorithm used in the AMR standard processes each frame of 20 ms in four

subframes with a length of 5 ms, and the calculation of the scaling factor itself is very

similar to the algorithm used with the conventional post-filter. A more detailed description

of this algorithm is given in Chapter 3.

Mustapha et al. estimated the locations and the bandwidths of the formants based on the

roots of the LP polynomial [11]. This information was then used to construct a modified

Yule-Walker filter which was fitted with a least squares approach. Their post-filter had a

flat overall frequency response meaning that no separate tilt filter was needed. It was used

in attenuating the valleys between formants while maintaining the peaks unaltered. The

performance of the post-filter compared to the conventionalpost-filter in [9] was studied

with two types of subjective listening tests. The first test was anabsolute category rating

(ACR) test with 24 listeners and it gave a highermean opinion score(MOS) value to the

new post-filter. The second test that was conducted was a CCR test with 16 listeners. The

new post-filter was again compared to the conventional one with 4 kb/s speech coders.

From the results, Mustapha et al. concluded that on average the subjects preferred the new

post-filter.

Kim et al. used a short-term post-filter that was also designed to compensate for the

spectral tilt [12]. Therefore, a separate tilt filter was no longer needed. Thecoefficients

obtained from LP analysis were used to derive the coefficients of the post-filter along with

the coefficients from the LSP polynomials. Their short-termpost-filter had the following

form

Hs(z) =
PM ( z

α1
)QM ( z

α2
)

AM ( z
2β )

(2.9)

In Equation (2.9), the polynomialsPM (z) andQM (z) represent the LSP polynomials de-

rived from theM th order LP polynomial,AM (z). The values ofα1,α2 andβ were deter-

mined based on subjective listening tests and chosen optimally, so thatα1 + α2 = 2β to

minimize the phase distortion.

Kim et al. studied the perfomance of their filtering scheme with subjective listening

tests. The test was an CCR test against the conventional post-filter with eight listeners.

They concluded that their scheme was able to reach the same quality as the reference post-

filter. However, the advantage was that the order of the theirpost-filter could be lowered,

and no additional tilt filter was needed. These differences might be useful in lowering the

computational complexity of the post-processing algorithm.

Farsi designed a post-filter that was based on factorizing the LP synthesis filter to separate
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cascaded filters, so that the main formant could be processedseparately [13]. The idea was

to make the main formant bandwidth narrower and to maintain other formant information

while attenuating the valley regions between formants. This was achieved by first calcu-

lating the poles of the synthesis filter and then dividing thepoles amongst the formants.

This means that the poles that were affecting the shape of theformant, were assigned to

that formant. Then the poles associated with the main formant were manipulated either by

changing their radii closer to the unit circle or by changingthe angles of the poles closer to

one another. The optimal change was determined by considering the effects it had both on

the other formants and on the valleys between them.

The performance of the post-filter was tested with subjective listening tests. It was com-

pared in a CCR test against the post-filter in the ACELP standard [14] which is similar to

the conventional post-filter. The CMOS value showed that the14 test subjects preferred the

developed post-filter.

Grancharov et al. aimed at improving the performance of the short-term post-filter by

making it adaptive to the statistics of the degrading noise [15]. Their basic idea was to track

thespectral flatnessof the noisy speech signal and to determine the post-filter coefficients

from these values. The correspondence between spectral flatness and the filter parameters

was derived by an offline training algorithm.

For the training they created noisy speech samples with different types of noise and

varying SNR. The optimal post-filtering parameters for eachnoise condition were found by

processing each sample with multiple different parameter combinations and choosing the

one that had the minimum distance from the clean speech sample. The distance measure

was based on a perceptual model presented in [16] by Dau et al. A nonlinear correspondence

was derived between the spectral flatness values and the optimal parameters.

Grancharov et al. compared the performance of the constructed post-filter against the

conventional post-filter in [9] with and without pre-processing noise suppression. They

conducted subjective listening tests and some objective measurements with different noise

types and varying SNR. In the latter,perceptual evaluation of speech quality(PESQ) was

used to approximate the subjective quality of the speech processed with the post-filters.

Another objective measure, based on Dau’s perceptual model, was used to measure the dif-

ference between processed speech with different post-filters and the original speech signal.

Based on the objective measures both the designed post-filter and the conventional post-

filter with noise suppression outperformed the conventional post-filter. However, they were

not able to determine a clear winner. The subjective test wasconducted with a MUSHRA

(multi stimulus with hidden reference and anchor) type setting. In this test eight listeners

were asked to rate the signals on a scale of 0-100. Grancharovet al. concluded from the

average scores that the proposed post-filter was better thaneither of the reference systems.
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Chen et al. proposed a new perceptual post-filter in [17] and [18]. Their idea was to

estimate the gains of the perceptual post-filter with aminimum mean square error(MMSE)

estimator. They usedGaussian mixture models(GMMs) to model theprobability density

function(PDF) of the feature vectors which consisted of informationobtained at the encoder

about the speech frame. The pdf was needed in the MMSE estimation. The parameters

for the GMMs were obtained with training in the encoder, and the actual post-filter was

estimated in the decoder. The performance of the perceptualpost-filter was evaluated with

informal listening tests. The speech was coded with the G.723.1 codec and the new post-

filter was compared against the one defined in the standard [19]. They did not, however,

present any results from these tests, but merely concluded that the proposed post-filter gave

more natural speech, while maintaining intelligibility.

2.3 Performance measures

Some methods for measuring the performance of a post-processing system for speech have

been mentioned earlier in this chapter. Different speech signals can be compared, for exam-

ple, in terms of quality, distortion or intelligibility. Itshould be noted that these measures

are related in many ways. Distortion means here the differences in the time or frequency do-

main signal which are caused by the processing under evaluation. A distortion measure can

be determined in an objective way simply by calculating the distance between the original

and the processed signal. The definition of the distance measure itself can range from simple

Euclidean distanceto the Dau measure mentioned earlier. The problem with thesedistor-

tion measures is the fact that they do not measure audible distortions very well. Even though

two time domain speech signals have a large distance, the difference can go undetected by

human listeners. On the other hand, a small peak at the right place can be extremely annoy-

ing. These effects are due to the complexity of the hearing mechanism. Some fairly simple

objective measures, such aslog-likelihood ratio(LLR), frequency-weighted segmental SNR

and cepstrum distance seem to give some indication of the perceived quality, but only with

a correlation of 0.64 at the highest [20].

A more complex objective measure is the PESQ score [21] which predicts the subjective

quality of a speech signal. It works by first aligning the degraded and the original signals in

the time domain and then calculating their difference with aperceptual model. After this,

the distortion measures are transformed to a MOS score with acognitive model. In [21],

the correlation between the MOS scores obtained from PESQ and the ones obtained from

subjective tests was 0.935. However, in [20] it was found to be only 0.65. The need for

subjective quality tests is still evident.

There are many types of subjective listening tests that can be used in measuring speech
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quality [22]. In ACR tests, the subjects are asked to rate the samples they have heard on a

5-point scale such as in Table2.1(a). The experiment should include at least one reference

signal, so that tests conducted in different locations can be compared to each other. The

average score obtained from combining all the listeners is called the MOS score.

Another type of test is the CCR test which can be used to compare two processing meth-

ods or speech codecs. In the test, two samples are played to the listener succesively, and the

listener is asked to rate the quality of the second sample compared to the first. The scale is

a 7-point scale with adjectives and correponding scores as in Table2.1(b). To remove the

effects of the ordering of the samples from the results, the pairs are ordered randomly, so

that half of them have the reference sample first, and the other half starts with the processed

sample. The total average score obtained from the test is called a CMOS score, and it is

only meaningful when indicated what was used as reference.

A MUSHRA [23] test setting has been primarily intended for measuring thequality of

low quality broadcasting systems, but the same ideas can also be used for evaluating speech.

In the MUSHRA setting, the listener can compare multiple signals to each other and to a

reference signal while adjusting the ratings for the signals. There should be also one hidden

reference and one anchor which can be used to check that the listener is consistent and to

compare the results to those obtained from other similar tests. The rating is similar to the

ACR test, but the scale is continuous and ranges from 0 to 100.

Several approaches exist also for estimating the intelligibility of a speech signal, both

subjective and objective. In a diagnostic rhyme test [24], the subjects are asked to pick

the word that they heard from two rhyming options which are presented in writing. The

percentage of words recognised correctly can be used as an intelligibility score for the

method under testing.

Table 2.1– Rating scales given in ITU-T Rec. P.800 [22].

(a) Absolute category rating.

Quality of the speech Score

Excellent 5

Good 4

Fair 3

Poor 2

Bad 1

(b) Comparison category rating.

The quality of the second com-

pared to the quality of the first

Score

Much better 3

Better 2

Slightly better 1

About the same 0

Slightly worse -1

Worse -2

Much worse -3



CHAPTER 2. BACKGROUND 13

The SUS [25] test was mostly designed for measuring the intelligibility of text-to-speech

systems, but it has also been used in the context of post-processing of speech. The sentences

are constructed from a list of words with the help of certain basic grammatical rules. The

idea is that the sentences are such that individual words cannot be determined from their

context. The intelligibility score can be calculated as thepercentage of the words that the

test subjects recognized correctly.

Thespeech intelligibility index(SII) is an objective method for measuring the intelligibil-

ity of speech [26, 27]. It works by measuring the speech spectrum level, the noisespectrum

level and the hearing threshold level, and then determiningthe band audibility function

based on the results. This function tells the percentage of the speech range which can be

heard on the different frequency bands. The final speech intelligibility index is obtained by

weighting the band audibility function with aband importance function, and then summing

over the whole frequency range. The result should be a value between zero and one where

zero means completely unintelligible and one is perfect intelligibility.

The problem with post-processing of speech is that the actual information signal itself is

often modified to produce better intelligibility, and it canalso have an effect on the quality

of speech. The processed signal can start sounding unnatural and irritating. As a result,

the methods used for post-processing of speech with the goalof improving its intelligibility

should be tested for both intelligibility and quality. It ishard to combine these two types

of test into one, and often just a MOS score or an intelligibility score is determined with

subjective tests. Another approach is conducting two separate tests, one for intelligibility

and one for quality. Both of these methods have been used in the articles presented before

in this chapter.

2.4 Focus of this work

In this thesis the concentration is on refining a short-term post-filter which adapts itself to

changing conditions and is designed to operate in a mobile phone. This means that the

algorithm should be automated and operate with very little delay. Therefore, the necessary

computations have to be quite simple and straightforward, and the speech material cannot be

hand-annotated before processing. In other words, the algorithm has to be able to determine

independently when and what kind of processing should be done.

The speech is processed after it has been encoded and decodedby the AMR narrowband

coder, but before the noise has corrupted the signal. This corresponds to the real life situa-

tion where the listener listens to clean speech through a mobile phone in an extremely noisy

environment. The method was designed to improve the intelligibility of the speech signal

without causing too much distortion or audible artifacts.
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Implementation

The focus of this chapter is the approach to adaptive post-filtering that was formulated

in this thesis. First, the general setting of the problem will be discussed, and then the

actual implementation of the algorithm itself will be presented in greater detail. Finally, the

implementation for the calculation of the speech intelligibility index is introduced. All of

the work was done using the MATLAB software.

3.1 The general setting

The problem setting is similar to the one defined by Sauert et al. in their article on near

end listening enhancement [28]. They also have a situation where the receiver of the speech

signal is affected by serious degrading noise, and the output power of the speaker of the

phone is limited. This means that the listener cannot simplyincrease the volume in order to

overcome the effects of the environmental noise. The setting used in this work is depicted

in Figure3.1.

Figure 3.1– The setting of the problem.

In the figure, there is clean speech coming in to the feature extraction block. In reality,

the speech signal has been quantized, encoded and sent over the communication channel

before decoding it at the receiver’s mobile terminal. It is not the original speech signal, but

14
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it is referred to as clean speech because it is assumed that the speech is not degraded by

noise at the transmitting side and that the channel does not distort the signal.

The feature extraction and the post-filter blocks form the post-processing part. These are

done just before the speech is played out through the loudspeaker. When the signal reaches

open air, it is corrupted by environmental noise, and after this, it is heard by the receiver. In

the figure, there is also a feedback loop marked with dashes. This can be used, for instance,

to adapt the post-processing to the characteristics of the noise.

Before post-processing

As mentioned earlier, in this scenario, the speech signal that reaches the post-processing

block differs from the original that was uttered at the transmitting side. In order to simu-

late this, the speech samples have to go through some processing. The whole sequence is

presented in Figure3.2.

Figure 3.2– Overview of the processing.

First, a clean speech sample is read into MATLAB and resampled, so that its sampling

frequency is 16 kHz. After this, it is filtered with thegsm1 filter which can be found from

the software tool library(STL) provided by ITU-T [29, 30]. The function of this filter is

to mimic the input filtering of a mobile phone. The lower frequencies from 50 to 300 Hz

of the speech signal are suppressed using a high-pass filter with a cut-off frequency around

200 Hz.

After the filtering, the active power level of the speech sample is set to -26 dBov with

the method defined in ITU-T standard P.56 [31]. The power level is defined relative to a

reference power level of 1.0 and the ”ov” refers todigital overload signal level[32]. The
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idea of the algorithm is to seek out the silence intervals from the speech signal and to leave

those out when calculating the speech level. A function for this purpose, calledsv56, can

also be found from the ITU-T STL.

Before the level equalized speech reaches the actual post-processing block, it is twice

encoded and decoded with the AMR narrowband codec [10]. This simulates the use of

a mobile communication channel where the information is sent over the channel in AMR

coded form. The encoding-decoding operation is done twice to take into account the worst

case scenario of tandem coding where the data is sent over thepublic switched telephone

network at some point. This can potentially degrade speech quality even further. The AMR

encoder and decoder functions were obtained from the3rd Generation Partnership Project

(3GPP) ANSI C realization [33], and they were used at the highest bit rate of 12.2 kbit/s.

After post-processing

When the speech signal has passed through the post-processing block, it is at node B in

Figure3.2. First, the beginning and the end of the processed signal is smoothed with half

of a 10 ms long Blackman-Harris window which can be seen in Figure 3.3. If there are

some peaks in the signal during these silent periods, the windowing will suppress them. In

reality, windowing of this kind, which removes breathing noises and other natural sounds,

would not be used. However, here the speech is processed in samples which are parts of a

larger entity instead of having a continuous flow of data.
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Figure 3.3– The Blackman-Harris window used for smoothing the beginning and the end of

the processed samples.

After this, the speech is once again level-equalized to -26 dBov with thesv56 algorithm.

Finally, the noise is added to the speech signal. The noise type in use is car noise which is

very stationary. In other words, the noise profile does not vary much over time. Figure3.4
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presents the spectrum of the noise, and it shows that most of the energy is concentrated on

low frequencies. Before adding the two signals together, the noise signal is scaled, so that

the resulting noisy speech signal will have the desired SNR value.
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Figure 3.4– Car noise magnitude spectrum.

3.2 The post-processing algorithm

In the post-processing block, the speech is processed in frames of 20 ms with a sampling

frequency of 8 kHz. The frames are extracted from the signal using a rectangular window.

The flowchart of the algorithm that is used to process the frames is presented in Figure3.5.

As can be seen from the figure, also information about the nextframe is needed during the

processing, and, therefore, 20 ms of additional delay is introduced.

Before the different blocks in the flowchart are introduced more closely, the basic logic

of the algorithm is presented. At first, the current and the next frame are processed through

the first three blocks in the flowchart. After this, there are four different courses of action

to take depending on whether the frames are classified as voiced or not. If a frame is not

voiced, it means that it is either silent or unvoiced. Here the termunvoicedwill be used to

refer to both cases. The post-filtering is only done on voicedspeech frames and the filter

coefficients are interpolated between consecutive voiced frames. The transition between

unvoiced and voiced frames is smoothed.

If both the current and the next frame are voiced, the algorithm proceeds normally, and

the coefficients of the filters are interpolated linearly between the frames. If neither is

voiced, then nothing is done, and the processing is moved to the next frame. If only the

current frame is voiced, there is no need for interpolation,and the whole frame is filtered

using the same coefficients. If the situation is the exact opposite, meaning that the current

frame is classified as unvoiced while the next frame is voiced, a smoothing period is used.
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This means that part of the current frame is filtered in order to avoid sudden transitions

between the frames.

Figure 3.5– The flowchart of the post-processing algorithm.

Pre-emphasis and windowing

Before anything else, the speech frame is pre-emphasized and windowed for the purposes

of the LP analysis. Pre-emphasis is used because it helps in bringing out more details from

the higher frequency bands more easily in the linear prediction analysis [34]. Windowing,

on the other hand, smoothes the transitions between consecutive frames.



CHAPTER 3. IMPLEMENTATION 19

The pre-emphasis is done using a filter which is defined in the following manner.

H(z) = 1 + a1z
−1 , (3.1)

wherea1 is the first order LP coefficient. For the windowing, a regularHamming window

is used.

Voiced/Unvoiced decision

Energy of the frame is used in separating silent periods fromactive speech. Some of the

unvoiced sounds, namely sibilants, have such low energies that they can also be separated

from voiced sounds with this measure. The energy of the framealone is not enough to

separate between all unvoiced and voiced phones, and therefore other simple features were

looked into. In articles [35] and [36], the authors utilize multiple features, such as thegradi-

ent indexand theframe energy ratio, and a few of these were implemented and tested. Stop

consonants, such as [p], [t] and [k], turned out to be especially difficult to separate with a

simple approach. In the end, the gradient index was chosen asthe other measure. For voiced

sounds, it tends to have a low value whereas unvoiced sounds have higher values [37]. It

can be calculated for framen as in (3.2).

xgi(n) =

∑Nκ−1
κ=1 Ψ(κ) |sκ − sκ−1|
√
∑Nκ−1

κ=0 (sκ)2)
, (3.2)

whereNκ is the frame size,sn is the speech signal andΨ(κ) is defined as

Ψ(κ) =
1

2
|ψ(κ) − ψ(κ− 1))| , ψ(κ) =







−1 , whensκ − sκ−1 < 0

0 , whensκ − sκ−1 = 0

1 , whensκ − sκ−1 > 0

(3.3)

Thus a frame is classified as voiced, if its gradient index value is lower thanGIlimit, and

its energy is above the limit,Elimit. The constants were determined by testing with speech

material, and the values that were chosen for the decision wereGIlimit = 8 andElimit =

2e− 4.

Formant frequency estimation

The most important requirement for the approach to formant frequency estimation was

speed. Because the post-processing algorithm is meant to work in a mobile phone, addi-

tional delays should be avoided. It was also noticed that theexact locations of the formants

were not absolutely necessary because most errors did not affect the audible quality of the

speech. For these reasons, the peak picking approach was chosen.
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First, the LP coefficients of the frame are calculated using tenth order linear prediction.

Normally, the formant frequencies are estimated by pickingthe peaks of the LP spectrum.

Because these peaks are sometimes hard to detect, a conventional post-filter structure based

on the LP coefficients is studied instead. It can be seen as an enhanced LP where the formant

peaks are sharper and more pronounced in the spectrum.

Henh(z) =
1− P

(
z
0.9

)

1− P
(

z
0.99

) (3.4)

In Equation (3.4), P (z) is the LP polynomial. The amplitude response of the post-filter,

Henh(z), is calculated with a 256-sample FFT. The first three peaks are determined, and

their frequencies are compared to the formant locations in the previous frame. The peaks

that are closest to the formants of the previous frame are selected. If none of the found

peaks are close enough, the frequency values from the previous frame are used instead.

The estimated frequencies of the formants are allowed to change at most 50 Hz between

consecutive frames. This value was obtained through experimentation with speech samples.

Post-filter structure

The structure of the filter that is used to modify individual formants is presented in Equa-

tion (3.5).

H(z) =
1− 2r1cos(θ)z

−1 + r21z
−2

1− 2r2cos(θ)z−1 + r22z
−2

(3.5)

The constantθ is the angle of the formant in radians, and the values ofr1 andr2 determine

whether the filter is enhancing or attenuating the formant and by how much. Ifr1 < r2,

then the effect of the post-filter is in fact one of enhancement, but if the opposite is true, the

post-filter will have a dampening effect. If the constants are far apart, the post-filter will be

very wide and two values close to each other will produce a sharper form. Figure3.6shows

three different filters with the same value ofθ, but differentr1 andr2.

In the post-filter structure, the first two formants are manipulated. The complete formant

filter is presented in Equation (3.6).

Hpf (z) =
1− 2 · 0.9cos(θ1)z

−1 + 0.92z−2

1− 2r1cos(θ1)z−1 + r21z
−2

·
1− 2 · 0.9cos(θ2)z

−1 + 0.92z−2

1− 2r2cos(θ2)z−1 + r22z
−2

(3.6)

In order to reduce the amount of possible parameters, the numerator parameters in both

filters were attached to the value 0.9. The two remaining constants are chosen, so that

the first formant is attenuated,r1 ≤ 0.9, and the second formant is enhanced,r2 ≥ 0.9.

This moves some of the energy from the lower frequency bands to the higher frequencies.

When most of the noise energy is in the lower frequencies, this operation enhances vocal

cues thus making the speech easier to understand. The constant parametersr1 andr2 were
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Figure 3.6– Effects of the parameters on the filter amplitude response.

determined by subjective listening tests which are described in detail in the next chapter.

Their final values arer1 = 0.46 andr2 = 0.93.

Tilt compensation

If the first formant is strongly attenuated, the post-filter has an overall structure that resem-

bles a high-pass filter. On one hand, this is a desired effect,but if the higher frequencies

have a strong tilt, the quality and the naturalness of the speech signal are reduced. In order

to completely avoid or at least diminish this effect, a tilt compensation filter was added to

the structure.

Htilt(z) =
1

1− µz−1
(3.7)

In Equation (3.7), the parameterµ is the coefficient of the first order linear prediction of

the post-filterHpf (z). The parameter contains some information on the overall tilt of the

post-filter. The compensation filter can thus adapt to changes in the parametersr1, r2 and

θi. A first order filter cannot completely compensate for the tilt, and for this reason the
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range of the attenuation of the first formant was limited, so thatr1 ≥ 0.27. The amplitude

response of the whole post-filter structure withHpf (z) andHtilt(z) in cascade is derived

in Appendix A.

The effects of the compensation filter can be seen from Figure3.7. It presents the ampli-

tude response of the post-filter with and without compensation. Both cases have the same

parameter values,r1 = 0.3 andr2 = 0.95, and the formant frequencies are selected to be

450 Hz and 2200 Hz. The compensation filter reduces the attenuation of the first formant,

but, most importantly, it lowers the enhancement after the second formant.
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Figure 3.7– The effects of the compensation filter.

Interpolation

In order to avoid artifacts caused by sudden transitions between consecutive voiced frames,

the coefficients of the post-filter are interpolated betweenthe current frame and the next

frame. At first, the interpolation was done on a sample-by-sample basis, so that the best

possible quality would be achieved. It was, however, noticed that there was no audible
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difference when the interpolation was done only every 20th sample. This change also sig-

nificantly reduced the processing delay.

The coefficients of the filters are first transformed to the LSFdomain and then interpo-

lated linearly. The transformation to line spectral frequencies is done to ensure that the filter

remains stable even though its coefficients change. As was discussed earlier in Section 2.1,

the stability of the filter is guaranteed much more easily in the LSF domain. The filter

coefficients for a subframe of 20 samples are obtained in the following manner :

asf (n) =

(

1−
i

N − 1

)

· acf (n) +
i

N − 1
· anf (n) (3.8)

In Equation (3.8), asf denotes the subframe coefficients,acf the coefficients of the current

frame andanf those of the next frame. The length of the frames isN , and the starting

index of the subframe inside the larger frame isi, 0 ≤ i ≤ N − 1. Both the numerator and

denominator coefficients for the subframe filter are interpolated separately.

Smoothing period

When the current frame is classified as unvoiced and the next frame is voiced, a smoothing

period of 5 ms is used to avoid sudden transitions. First, a neutral formant post-filter is

constructed for the current frame, and the delay line of the filter is initialized with zeros.

Hneutr(z) =
1− 2 · 0.9cos(θ1)z

−1 + 0.92z−2

1− 2 · 0.9cos(θ1)z−1 + 0.92z−2
·
1− 2 · 0.9cos(θ2)z

−1 + 0.92z−2

1− 2 · 0.9cos(θ2)z−1 + 0.92z−2
(3.9)

Then, the interpolation is done between the neutral post-filter of Equation (3.9) and the

actual post-filter with the correct values forr1 andr2 of the next frame. This operation has

the advantage of both smoothing the transition as well as updating the memory of the post-

filter to reasonable values. If there is no smoothing period,and the filtering is just suddenly

turned on, the filter memory contains random values or zeros,and this sometimes causes

sudden energy peaks in the speech signal which often result in audible artifacts.

AGC

The adaptive gain control algorithm is used to adjust the energy of the processed signal

to correspond to that of the original speech signal. The speech frames are processed in 5

ms subframes with the same algorithm that is used in the AMR narrowband standard [10].

First, a scaling factor is computed by using the following equation.

γ =

√
∑39

n=0(s(n))
2

∑39
n=0(spf (n))

2
(3.10)
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In Equation (3.10), s(n) is the received signal andspf (n) is the signal that has been post-

filtered. The output of the algorithm is given as

sscaled(n) = β(n)spf (n), where (3.11)

β(n) = 0.9 · β(n− 1) + 0.1 · γ (3.12)

The values ofβ(n) are calculated for every sample, and are used to smooth the changes

between samples.

3.3 SII calculation

The speech intelligibility index of the speech sample is determined just before the noise

is added. The functions that are used for this purpose were obtained from the SII web-

site [38] which has several implementations that follow the requirements defined in the

standard [26]. The MATLAB implementation was slightly modified before use in order to

make the processing faster.

The speech level of the samples is assumed to be 70 dB SPL (Sound Pressure Level)

which is a normal conversational level. The noise level is thus70 − SNR. Both the infor-

mation signal and the noise are converted using a function from the HUTear toolbox [39].

This has to be done because the signals are scaled in MATLAB tolie between +1 and -1. In

order to be able to estimate the intelligibility value, their true levels have to be determined.

Before the intelligibility index is calculated, the silentperiods are removed from the

calibrated speech sample. If this phase was omitted, the SIIvalue would be inaccurate

because the silent periods unnecessarily lower the mean value. Even though these time

regions contain absolutely no speech information, they contribute to the mean value of the

sample. Their intelligibility is zero because they are completely masked by the noise.

The speech intelligibility is calculated in 9.4 ms frames. The actual SII value given to

a particular speech sample is the mean intelligibility overall of the frames. The spectrum

levels for both the speech and noise are calculated in 18 frequency bands which are called

the one-third octave bands. After this, the proportion of speech information available in

each band is determined and given as a number between zero andone. All of the 18 bands

are weighted with a band importance function which can be chosen from seven different

possibilities defined in the standard. These include functions for speech materials which

consist of nonsense syllables or phonetically balanced words, for instance. The option clos-

est to the available speech material was defined as short passages of easy reading material,

and thus this function is used to weight the frequency bands.



Chapter 4

Subjective tests

The purpose of this chapter is to discuss the subjective listening tests that were conducted.

Their motivation was to search for suitable parameter values for the post-processing al-

gorithm. The two parameters to be determined were the denominator parameters of the

formant post-filter,r1 andr2. First, the methods that were used are introduced in detail,and

after this, the results are presented and briefly discussed.Finally, the results are analyzed in

terms of the speech intelligibility index.

4.1 Methods

The main goal of the subjective listening tests was to determine suitable parameter values

for the post-filter instead of evaluating the speech qualitygiven by the algorithm. Be-

cause there are no standards covering this kind of situationthe test had to be designed from

scratch. Questions, such as whether the focus would be on intelligibility or quality and how

the test samples should be chosen, had to be answered in the process.

In the end, the focus of the test was neither on quality or intelligibility, but somewhere

in between. In a formal intelligibility test, each sample isusually heard only once. If the

sentence remains the same, it is hard to overlook a possible learning effect in the results.

This means that once the listener understands the contents of a sentence, even the samples

that were unintelligible before are heard correctly. In this case, since the post-filter shifts

energy to the higher frequencies and thus makes the speech clearer, the learning effect is a

real problem. The neutral reference may be hard to understand at first, but after listening

to some processed samples that are more intelligible, the reference is also heard correctly.

However, the question was about listener preferences. Eventhough the written instructions

given to the listeners guided towards considering all of clarity, quality and naturalness, it

was not guaranteed that the neutral reference would not be preferred.

25
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Another big question was the type of user interface and the amount of different processing

conditions presented to the listeners. Usually in formal listening tests, the samples are pre-

processed and the listener has a finite amount of them to gradeor to choose from. Here

one possible approach could be to form a grid in the two-dimensional parameter space.

Depending on the spacing of the parameters, the listeners would haveM different samples

to listen to, and they would be asked to choose the best one. The spacing of the grid would

in this case have a large effect on the results. With a very sparse parameter grid, the results

would probably show smaller deviation, but the subjects might never hear the sample that

they would otherwise consider the best. With a very frequentspacing, there would be too

many samples that the listeners would have to listen to. In the end, it was decided that the

test subjects could freely choose the parameter values fromthe given ranges,0.27 ≤ r1 ≤

0.9 and0.9 ≤ r2 ≤ 0.99. This approach enables the test subjects to form their own grids,

based on their preferences and on their ability to hear smalldetails and differences. On the

other hand, the results would probably have large deviation.

The graphical user interface that was used in the test is depicted Figure4.1. It consists

of two push buttons, one marked as neutral and the other as next, and a blank, white space

with two axes. The idea is that by clicking the neutral buttonthe listener can play an unpro-

cessed version of the current sample. By clicking somewherein the white area, the sample

processed according to the coordinates is played. The processing of the samples is done in

real-time. This, of course, requires that the delay is very small or otherwise the listeners

would be annoyed by the waiting time. After the processed sample has been played, a red

square will appear on the spot that was clicked on to mark the location. Samples can be

listened to again by clicking on the squares that have appeared on the screen. The red color

always denotes the sample that was last heard while the othermarkers are blue.

In the user interface, the x-axis corresponds to the parameter of the first formant,r1, and

the y-axis to that of the second formant,r2. By moving further away from the neutral point,

the processing naturally becomes more extreme. This means,for example, that in the lower

right corner, the attenuation of the first formant is at maximum. However, the test subjects

were only told that some kind of processing was done and that its effects would grow more

drastic linearly as the distance from the neutral corner would be increased.

Speech material

Six speech samples from six different speakers were used in the subjective test. Three of the

speakers were male and three female. The material was in Finnish and the speakers were

native in the language. The samples chosen for the test came from a set of high quality

recordings where each of the speakers was asked to read the same written text which dealt

with weather forecasts. For the subjective test, a different short sentence was chosen from
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Figure 4.1– The interface used in testing. The square markers on the screen have been added

by the listener.

the material for each speaker in order to cover larger phonetic variance. The test sentences

along with their speakers are contained in Appendix B. In thetest the order of the speakers

was randomized.

Car noise was added to the test samples, so that the resultingSNR of the sentences was -5

dB. The calculation of the signal-to-noise ratio was conducted with the method explained

in Chapter 3. The noise level was chosen on purpose to be very high, and most of the

unprocessed samples were difficult to understand completely the first time they were heard.

Listeners

A total of 18 test subjects took part in the subjective listening test. Seven of them were

female and 11 male, and their ages were between 21 and 45 with an average of 26.8 years.

All of the listeners were naive according to their own evaluation, and 14 of them had a

technical background. The participants were all required to speak and understand Finnish.

The test subjects were not paid for their participation.
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Test situation

The listening test was conducted in a quiet office space with Sennheiser HDA 200 head-

phones which were chosen for the purpose because of their effective insulation. Before the

actual test, the subjects were given a short instruction paper to read through. The original

Finnish text is included in Appendix C. It briefly explains how the interface works and what

the listener is expected to do in the test. After the instructions were read, a one sample demo

was available. The idea of the demo was to familiarize the subjects with the graphical user

interface and to also choose an appropriate volume level forthe test. After and during the

demo the listeners were allowed to ask questions, and the experimenter could also observe

whether they seemed to grasp the idea of the test or if they needed further guidance.

The six sample test took between 20 and 45 minutes depending on the subject. During

this time the supervisor of the test was also able to discreetly observe the listeners’ actions,

and after the test some questions were asked about the test and their observations on what

happened to the samples because of the processing. For each of the six samples, all of

the locations of the subject’s clicks on the screen were stored. One purpose of all of these

measures was to make sure that the test subjects had understood the idea of the test correctly,

and also to weed out possible accidental erroneous choices.The listeners were told that the

red square would also mark their final choice when moving on tothe next sample, but

there were no guarantees that they would always remember this. There was also a distinct

possibility that the inherent logic of the two-dimensionalparameter space would not be

understood. In this case, the reliability of the subject’s results would be under question.

4.2 Results and discussion

Out of the 18 test subjects only one had to be discarded from the final results. By looking at

the subject’s data and the answers that were given to the questions after the test, it became

evident that the subject failed to understand the point of the test. The values that were

chosen were actually not entirely different from the rest, but their motivation was incorrect.

An example of the data from the tests from one of the accepted subjects can be seen in

Appendix D. Most of the listeners had a very similar approachto the test. At first, they

formed some kind of grid, and after locating a good area, the grid was tightened in that

region.

The final results from the 17 other listeners are presented inFigures4.2and4.3by sample

and by speaker gender respectively. In Figure4.2, the first three speakers (HaPu, MaAi and

PaAl) are male and the final three (HeLe, LaLe and VeAl) are female. In both figures the

final choices of the listeners are presented with red markersand the mean of the values with

a blue marker. The standard deviations in both directions are also included. The exact mean
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values for the parameters are also given in the titles after the speaker identities. The grey

circles are outliers that were not taken into account when calculating the mean values. They

were deemed to be outliers because the two processed sampleshave a strong whistling

effect and are therefore extremely irritating to listen to.It was concluded that they were

marked as final choices by accident.

0.9 0.8 0.7 0.6 0.5 0.4 0.3
0.9

0.95

Final choices HaPu ; (0.44,0.93)
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0.95

Final choices MaAi ; (0.52,0.92)
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Final choices PaAl ; (0.43,0.93)
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Final choices VeAl ; (0.43,0.94)

Figure 4.2– Test results by speaker. The red square markers denote the final choices of the

listeners, the blue square markers are the mean values and the grey circles are

outliers.

The preferences of the listeners vary greatly as was expected, but a general tendency

towards the right side of the area can be seen in both Figures4.2 and 4.3. Most of the

listeners characterized the right lower corner as being theclearest and that the speech was

there easier to separate from the noise. Many commented thatthe test sentences gave them

a distinctive news-like feeling and as a result they felt that clarity was the most important

thing to consider. On the other hand, a few listeners said that the naturalness of the voice

was compromized and that the processing on the x-axis made the speaker sound urgent and

nervous. These listeners tended to prefer a very neutral processing that was found in the
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Figure 4.3– Test results by speaker gender. The red square markers denote the final choices of

the listeners, the blue square markers are the mean values and the grey circles are

outliers.

lower left corner.

Another common observation among the test subjects was thata high value on the y-

axis resulted in irritating speech with poor quality. It wascharacterized, for example, as

unpleasant, distorted and metallic. There can also be hearda distinctive whistling effect

which is probably due to the fact that the second formant peakbecomes extremely sharp

whenr2 approaches 0.99. Whistling sounds are characterized by a very narrow peak with

high amplitude in the 500 to 3000 Hz frequency range [40]. On the other hand, some test

subjects who preferred very neutral processing reported that some change in the vertical

direction was less irritable than in the horizontal direction because it did not color the speech

in the same way.

Most of the listeners felt that different samples were affected by the processing in a very

similar way. Although, as can be seen from Figure4.2, there a some differences between

the optimum parameters. Some test subjects noted that the female voices were somehow
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more understandable and easier to separate from the noise even in the unprocessed sample,

and that the processing did not affect them as dramatically as the male voices. The reason

behind this could be that female speakers tend to have higherformant frequencies than

male speakers [41]. This means that a larger proportion of speech informationis already

available before the processing. The effects of the post-processing could also be diminished

because the first formant is higher, and thus the energy is notnecessarily moved from the

frequency band where most of the noise energy is concentrated, but from some frequency

region above that.

In this light, it is interesting to see that the mean parameter values are almost the same

for males and females in Figure4.3. However, the male-female categorization is rather

crude because there can be male speakers with high fundamental frequency and formant

frequencies as well as female speakers with a low F0. It was also quickly tested, whether

the mean values would correlate with the fundamental frequencies of the speakers. The

results indicated that there is no correlation between the two, but it should be remembered

that there is only a small amount of data to test and it has a large variance. It would be

interesting to see, what would happen, if a larger amount of more controlled results could

be analyzed. Based on the test results, the parameters chosen for the formant post-filter

werer1 = 0.46 andr2 = 0.93.

4.3 Speech Intelligibility Index

An additional interest was the behavior of the speech intelligibility index both in general

and compared to the subjective decisions. Figure4.4 presents the speech intelligibility

index contours and the final choices of the test subjects for the male speakers. Figure4.5

contains the same information for the female speakers. Onceagain, the grey circles mark

the samples that were removed as outliers. The numbers associated with the curves in the

figures tell that the value of the speech intelligibility index inside the contours is higher than

this limit. For example, here the samples to the right of a curve have an SII value at least as

high.

The first observation that can be made based on these figures isthat the value of the

speech intelligibility index seems to grow when moving towards the lower right corner.

This was to be expected because in that direction the first formant is attenuated and an

increasing portion of the energy is shifted to higher frequencies, thus making the speech

stand out better from the noise in certain frequency regions. It is also interesting to note

that, according to the contour curves, the enhancement of the second formant actually re-

duces intelligibility after some point. For example, with speaker PaAl the curves start out

as leaning towards the left which means that the SII value is increased by moving in the
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Figure 4.4– The SII contours for the male speakers along with the results from the subjective

test.

direction of either axis. However, when the value on the x-axis goes below 0.7, the contour

curves start excluding some of the highest values on the y-axis. This behavior could be

explained by assuming that in order to have a very sharp peak energy has to be taken from

some other frequency band in the spectrum because the overall energy level is scaled after

the processing. After some point, this energy increase stops benefiting the SII because the

frequency band where the energy is added to has reached its maximum contribution. At

the same time, other frequency regions which could potentially increase intelligibility are

deprived of energy thus further reducing their speech intelligibility value. This assumption

is also supported by the fact that in most of the figures the curves only start presenting this

behavior after the horizontal parameter has been moved. When the first formant is attenu-

ated, the energy is shifted and some of it lands on the frequency band of the second formant.

In this case, the sharpening of the second formant has an evensmaller effect.

The values related with the speech intelligibility index contours are very small. As was

mentioned earlier in Chapter 2, the possible range of SII values is from zero to one, where
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Figure 4.5– The SII contours for the female speakers along with the results from the subjective

test.

zero is completely unintelligible and one denotes perfect intelligibility. In this case, the

values range only from 0.058 to 0.074. This tells that the level of the degrading noise was

indeed very high and that the unprocessed speech was hard to understand. The test subjects

had trouble understanding the unprocessed samples for the first time. However, all of them

did understand the samples completely at least with some of the parameter values. This

raises a question on the quality of the SII measure. How is it possible that a sentence is

understood perfectly when according to the calculated SII value one would imagine that the

speech should be almost completely unintelligible?

When looking at the final choices of the listeners which are marked with black squares,

it is hard to see a clear correlation with the speech intelligibility index contours. Of course,

most of the markers are concentrated in the lower right corner, but they do not seem to

follow any pattern and some of the markers are more spread out. On the other hand, the

differences between the SII values on the figures are small compared to the whole range

of the index. It is possible that they are completely inaudible in which case the listeners’
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choices could not be expected to follow them.

Even though the noise was stationary as required in the standard defining the SII, it is

still unclear whether this type of measurement is suited forthis purpose. Perhaps some sort

of re-calibration of the values should have been done in order to receive more valid and

valuable data. Furthermore, choice of the band-importancefunction has a large effect on

the form of the contours and the magnitude of the values when the differences are so small.

It is impossible to know what kind of results should be given by the SII calculation with-

out conducting a subjective intelligibility test. These results could be used to investigate

the effects of the band-importance function and to determine the most suitable one. An en-

tirely different problem is the effect of language on the speech intelligibility index measure.

There is a possibility that it only gives reasonable resultswhen the material is in English.



Chapter 5

Objective evaluation

The purpose of this chapter is to evaluate some charateristics and behavior of the final post-

filter. Since any type of formal listening tests to assess thepossible quality or intelligibility

improvements of the filter scheme were not yet conducted, thefocus will be on more ob-

jective measures. First, the gains of the general post-filter structure and the effects of the

parameters,r1 andr2, on them will be discussed. After this, its effects on typical voiced

sounds are presented. Finally, some comparisons between the developed post-filter and two

other post-filtering approaches from Chapter 2 will be made.

5.1 Post-filter gains

The decibel gains of the post-filter were evaluated using Equations (5.1) and (5.2) which

were derived in Appendix A.

∣
∣H(ejω)

∣
∣
2
=
f(0.9, θ1;ω)

f(r1, θ1;ω)
·
f(0.9, θ2;ω)

f(r2, θ2;ω)
·

1

1− 2µcos(ω) + µ2
, where (5.1)

f(r, θ;ω) = 1 + r4 + 4r2cos2(θ)− 4rcos(θ)cos(ω)(r2 + 1) + 2r2cos(2ω) (5.2)

In the equations, parametersθ1 andθ2 are the locations of the first two formants,r1 andr2
the filtering constants andµ is derived from the overall tilt of the filter. The angleω denotes

the frequency where the gain is calculated. The parameterr1 was allowed to vary between

0.27 and 0.9 andr2 between 0.9 and 0.99, and the decibel gains were calculated at four

different frequencies over the samples used in the subjective test. These frequencies were 0

Hz and 4000 Hz as well as the frequencies of the first and the second formants. Of course,

the locations of the formants change constantly as the shapeof the vocal tract changes which

also affects the gains. For this reason, the gains were calculated for each voiced frame and

then averaged, so that the results are the average attenuation of the first formant in decibels

and the average enhancement of the second formant in decibels. The contour plots based
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Figure 5.1– The average gains at 0 Hz along with the means from the subjective tests and the

chosen parameter values.

on these data can be seen in Figures5.1(a)- 5.4(b). In each figure, the mean parameter value

for that particular speaker obtained from the subjective tests is marked with a black square.

The blue markers denote the chosen post-filter parameter values. The contour labels refer
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Figure 5.2– The average gains at the first formant frequency along with the means from the

subjective tests and the chosen parameter values.

to the values inside the contour. In other words, the gains inside the curves are larger than

the values on the border.

The contour plots are very similar between the samples in allcases. Of course, the
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Figure 5.3– The average gains at the second formant frequency along with the means from the

subjective tests and the chosen parameter values.

fact that they are averaged over the whole sample further diminishes possible differences

between speakers. The gains at 0 Hz, depicted in Figures5.1(a)and 5.1(b), are mostly

quite small, around -3 dB for the means of the samples as well as the chosen post-filter
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Figure 5.4– The average gains at 4000 Hz along with the means from the subjective tests and

the chosen parameter values.

parameters. As the attenuation of the first formant continues to increase, the amplitude level

at 0 Hz also begins to drop because the frequency locations are so close to one another. The

second parameter,r2, also affects the gain at 0 Hz, but in a different way. As the peak of
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the second formant becomes sharper, the gain reduces.

The average attenuations for the estimated first formants presented in Figures5.2(a)

and5.2(b) reach much larger values as was expected. The gains for the means from the

subjective tests and for the chosen post-filter values are around -11 dB. The change in pa-

rameterr1 has a larger influence on the gain which is only natural because it affects the first

formant directly. Asr1 becomes smaller, the dip on the first formant frequency becomes

larger.

Figure5.3presents the contour plots for the gains at the second formant frequency. The

first thing to notice is that the closer the pole gets to the unit circle in the z-plane, the closer

the contour lines get to each other. In other words, whenr2 approaches 0.99, even a small

change in the value has a large impact on the decibel gain. At the top of the figures, the

average gains reach 20 dB which means that the formant peak has to be extremely sharp.

The strong whistling effect which was earlier discussed in Chapter 4 is probably related

with this. However, the mean values from the subjective tests have gains of only around 4

to 6 dB.

The average gains at 4000 Hz are given in Figure5.4. They are once again very small,

and this is due to the fact that neither of the formant frequencies is nearby, so their effect is

negligible. The gains for the mean values and for the chosen parameter values are around

1.5 dB.

5.2 Typical behavior

In addition to analyzing the gains of the proposed post-filter, its effects on some typical

voiced sounds were studied. Figure5.5 shows the vowel sound [a] uttered by a male

speaker. The image on the left displays the amplitude spectrum of the vowel before and

after processing with the post-filtering algorithm. In order to highlight the main differ-

ences between the amplitude spectra of the two signals, the figure on the right contains the

difference between the amplitude spectra of the processed and the original signals. The

difference of the amplitudes of the two signals is not necessarily the best way to display

information because it tends to have large spikes, but it does give some overall tendencies.

Figure5.6presents the same images for the liquid [l] uttered by the same male speaker. For

comparison, in Figures5.7 and5.8 are the same voiced sounds, but this time spoken by a

female speaker. The approximate formant frequencies as estimated by the algorithm, and

the gains of the post-filter for these phones are given in Tables5.1 and5.2. All of these

examples were extracted from whole words that had first been processed with the post-

filtering scheme. This means that they are also AMR coded, butno noise has been added to

the processed signals.
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Figure 5.5– The effects of the processing on the vowel [a] for a male speaker.
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Figure 5.6– The effects of the processing on the liquid [l] for a male speaker.

Table 5.1– The average gains for typical voiced sounds for male speakers. The frequencies de-

noted with a∼ are the estimated first and second formant frequencies respectively.

(a) The vowel [a].

Frequency Gain

0 Hz -1.5 dB

∼594 Hz -10.9 dB

∼1375 Hz 4.4 dB

4000 Hz 1.3 dB

(b) The liquid [l].

Frequency Gain

0 Hz -2.2 dB

∼562 Hz -11.0 dB

∼1437 Hz 4.8 dB

4000 Hz 1.4 dB
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Figure 5.7– The effects of the processing on the vowel [a] for a female speaker.
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Figure 5.8– The effects of the processing on the liquid [l] for a female speaker.

Table 5.2– The average gains for typical voiced sounds for female speakers. The frequencies

denoted with a∼ are the estimated first and second formant frequencies respec-

tively.

(a) The vowel [a].

Frequency Gain

0 Hz 0.4 dB

∼687 Hz -10.5 dB

∼1344 Hz 3.6 dB

4000 Hz 1.2 dB

(b) The liquid [l].

Frequency Gain

0 Hz -6.7 dB

∼406 Hz -12.4 dB

∼1625 Hz 5.6 dB

4000 Hz 1.5 dB
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Based on the figures, all of these phones seem to be affected inan almost identical way

by the processing. The two signal spectra, the reference andthe processed one, look very

similar to each other in all cases, but some of the main differences can be picked out from the

figures on the right side. Around 500 Hz, there is a frequency region where the difference

of amplitudes is negative. In other words, the amplitudes ofthe original signals are higher

than those of the processed ones in this region. After around1000 Hz, the difference of

amplitudes reaches positive values and they stay that way until approximately 2500 Hz.

This was to be expected as the idea is to move some energy from low frequencies to higher

frequencies. Because the value ofr2 is only 0.93, the second formant is not significantly

sharper than the rest of the peaks.

In some cases, the difference of amplitudes has large positive values below 250 Hz. In

other words, some of the energy from the first formant frequency has been moved to an

even lower frequency, and therefore the processed signal has higher amplitude than the

original signal in that frequency region. This is not a desirable phenomenon since the idea

was to shift energy to higher frequencies where the energy level of the noise is lower. In

Figures5.6and5.7the effect is evident.

In Figure5.8, the reference signal has higher amplitude values than the processed signal

at high frequencies. Whereas in the other cases the difference of the amplitudes is around

zero near 4000 Hz, here the values are clearly negative. Thismeans that the fourth formant

is not enhanced, but in fact attenuated. It could be caused bythe tilt compensation which

actually tries to prevent the post-filter from enhancing thefourth formant too much. The

question is, why is the phone [l] uttered by a female speaker affected more clearly than that

given by the male speaker? Of course, it should not be forgotten that the characteristics of

a phone are also affected by its surroundings. In other words, the spectrum of the liquid [l]

looks different when it is extracted from the Finnish word ”saatavilla” instead of ”avulla”.

The gains presented in Tables5.1 and5.2 are close to each other in all cases. The esti-

mated formant frequencies are the two middle rows in the tables. The estimated frequencies

for the vowel phones [a] are similar to standard values in Finnish so the estimation is known

to be somewhat correct. One thing that jumps out from the tables is the fact that the liquid

[l] uttered by a female speaker also has the widest gap between the two formants. As dis-

cussed earlier, it displayed some unexpected behavior at frequencies near 4000 Hz. Perhaps

this also contributes to the phenomenon.

5.3 Comparison with other post-filters

Naturally, it is interesting to see how the proposed post-filter compares to the other post-

filtering structures that were discussed in Chapter 2. The most obvious choice is to compare
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it to the one in the AMR narrowband standard which is a logicalreference scheme because

it is the current implementation in the standard. This comparison is presented in Figure5.9

which contains the amplitude responses of the two filters on the left side. On the right side,

there are two LP spectra, one for each filter. A vowel sound, [a], has first been processed

with both filters, and then the LP spectra has been calculatedfrom the processed signals.
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(b) The effects of the filters in LP spectra.

Figure 5.9– The proposed post-filter and the AMR post-filter [10].

The filters differ to a great extent based on Figure5.9(a). The standard post-filter has

small gains throughout the spectrum and does not modify the speech signal very much. In

contrast, the designed post-filter has larger gains, and consequently, the speech signal goes

through more dramatic changes. The reason for this difference is that the filters have two

distinctively different design approaches. Whereas the proposed post-filter is meant to work

in severe noise conditions where the signal can be modified more freely, the standard AMR

post-filter tries to avoid changing the signal very much in fear of lowering the audible qual-

ity of the processed speech. Under these circumstances, an objective comparison between

the two is hard to make. However, one noticeable difference is that the AMR post-filter tries

to attenuate the valleys between formants, but the developed post-filter actually enhances

some of them.

Also another post-filter is used for comparison, namely the differentiation filter by Hall et

al. [8] which was presented in Chapter 2. This filter was chosen because the basic idea is the

same in both cases even though the intended application scenarios are a little different. Their

mutual goal is to move more of the energy to higher frequencies using extreme measures.

The post-filters and their effects on the LP-spectra of phone[a] are depicted in Figure5.10.

The differentiation filter is clearly a simple high-pass filter as can be seen from Fig-

ure 5.10(a), and as such requires much less computation than the proposed post-filtering

scheme. It attenuates the lowest frequencies much more drastically than the developed

post-filter. On the other hand, the higher frequencies naturally have a strong tilt, which
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(b) The effects of the filters in LP spectra.

Figure 5.10– The proposed post-filter and the differentiation filter by Hall et al. [8].

is not a desired effect. The proposed post-filter has a much flatter frequency response at

the highest frequency band which helps in making the speech sound more natural. The

strong high-pass effect of the difference filter is also seenin the LP spectra where the fourth

formant is enhanced so that its amplitude becomes larger than that of the third formant.

The differentiation filter also enhances the valleys between some formants, but the effect is

stronger than with the developed post-filter.

One large issue which clearly shows in the previous figures isthat the proposed post-filter

moves the first formant to a lower frequency band as mentionedearlier. It is unclear as to

how this affects the quality of the processed speech signal,if at all, and whether this phe-

nomenon happens with all speakers and voiced phones, or is itrestricted to some subset of

them. Previously, it was noted that the effect was more evident in some phones than in oth-

ers. Part of the problem could be the estimation of the formants, even though the estimated

frequencies earlier seemed to fit the standard frequency ranges. This does not mean that

the estimates are always accurate. Also the post-filter structure itself is problematic since it

enhances or attenuates some other frequency regions close to the actual formants, in spite

of having the correct values ofθi. The difference in frequency is supposedly small, but the

actual analytical solution has not been calculated.



Chapter 6

Conclusion

6.1 The contribution of this work

In this thesis, a new post-processing algorithm for speech enhancement has been proposed.

It is designed to work with speech in difficult noise conditions where the intelligibility of

the speech is seriously compromised. This means that the level of the noise is so high that

it makes the speech hard to understand. The situation is thatthe listener is in the receiving

end of a mobile phone connection, and the post-processing happens at the receiver’s mobile

device. The only noise source is environmental noise at the receiver’s end. In other words,

the speech received from the channel is assumed to be noiseless, and the post-processing is

done before the degrading noise has affected the speech signal.

The post-filter works by shifting energy from a low frequencyband, where the noise is

the strongest, to the higher frequencies, thus increasing the amount of speech information

available to the listener. The reason is that at higher frequency bands, the speech is no

longer masked by the noise. First, the algorithm picks out the voiced frames from speech,

and estimates the locations of the formants in them. Then, the first formant is attenuated

by approximately 10 dB, and the second formant is enhanced byapproximately 5 dB. The

tilt of the formant filter is used to construct another filter with the purpose of preventing an

undesirable high-pass effect in the processed speech. After the filtering, the energy of the

processed signal is equalized to the energy level of the original speech signal.

Two parameters of the post-filter were obtained by conducting an informal subjective

listening test with 18 test subjects. In the test, the listeners were asked to locate their

preferred processing for the samples in a two-dimensional space. The mean values from

their choices were adopted to the final post-filter structure. After this, the behavior of the

developed post-filter was studied with different objectivemethods. In other words, it was

investigated how the post-processing affected common voiced sounds spoken both by male

46
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and female subjects. The post-filter was also compared to some of the post-filter realizations

that have been previously used by other authors.

Based on these evaluations, it was concluded that the post-filter works in the desired way

for the most part. It also presented some unexpected and unwanted behavior which needs

to be further studied to determine its causes and the resulting audible effects on processed

speech. It is difficult to conclude how good the post-filter actually is when there are no

performance results from formal listening tests. However,the proposed post-filter manages

to bring a new, more adaptive method to post-processing in high noise levels. Previously,

this problem has been approached with simple, static filter structures that improve the intel-

ligibility to the detriment of quality. With the developed post-filter it is possible to fine tune

the processing, so that the quality of the speech does not suffer.

6.2 Practical implementation

Since the ultimate goal is to develop a post-filtering schemeworking in real-time in a mo-

bile phone, the requirements and specifics for the practicalimplementation should also be

discussed. For now, everything has been done using MATLAB, and the situation that would

be in an actual mobile device has been simulated carefully. However, some unrealistic as-

sumptions have been made in order to reduce the complexity ofthe situation.

The main difference is that the speech coming in for processing is not necessarily com-

pletely noiseless. Some distortions from the channel can beassumed, and in the worst case

scenario, there is also environmental noise at the transmitting side of the mobile phone con-

nection. The post-processing problem becomes far more difficult when the processed signal

is already noisy because the noise is easily enhanced at the same time with the speech. Also,

the estimation of formants is more demanding especially if the noise is not stationary. If

the speech is affected by environmental noise in both ends ofthe communication channel,

some kind of noise suppression would be needed before the post-processing block.

In the current realization, the post-filter needs information about the current frame as well

as the next frame which means that 40 milliseconds of speech has to be buffered before the

processing can be completed. The most time-consuming part of the post-processing is the

interpolation of the filter coefficients which is done every 20th sample. To speed up the

processing, the interpolation could probably be changed toevery 40th sample without af-

fecting the audible quality of the processed speech much. The problem is that the smoothing

period between unvoiced and voiced frames is only 5 milliseconds long. This means that

the whole subframe taken from the unvoiced frame would be filtered with a neutral filter,

and then, at the beginning of the next voiced frame, the filterwould suddenly change to

the more drastic version. The memory of the post-filter wouldstill be initialized with more
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reasonable values than mere zeros, but the sudden change between frames is likely to cause

some artifacts.

Besides the interpolation, the post-processing algorithmrequires the following opera-

tions. For the pre-emphasis, a first order LP analysis is needed, and the pre-emphasis is

done with a first order FIR filter. In an ideal situation, the decoder block would be able to

pass the linear prediction coefficients of the speech frame to the post-filter. If this is not

the case, a 10th order LP has to be calculated. The LP spectrumof the speech frame is

formed by using a 256-sample FFT. After the formant filter hasbeen formed, a first order

LP is needed to determine the tilt. The final post-filter is a 5th order IIR filter. Of course, in

addition to these, there are several steps, such as peak picking from the LP spectrum, which

require some computations.

6.3 Further research

This section contains some ideas that could be further studied and also some possible im-

provements to the post-processing algorithm. Most of theseideas were invented during the

writing of this thesis and their benefits remain unclear until tested. Also some other changes

and features were overlooked during this phase of the work because the first goal was to

merely get a working processing scheme that would provide positive results in terms of

improved intelligibility at least in some situations.

In the current post-processing scheme, the filter parameters, ri, are constant. Both of the

numerator parameters were chosen to be 0.9 because this offers a good dynamic range for

the filter. This does not necessarily mean that they are optimal, but it was too difficult to use

subjective tests to optimize all four parameters. Initially, some objective measures, such as

the Dau measure mentioned in Chapter 2, were considered for this purpose but the results

were discouraging. The problem is that they do not reflect subjective preferences very

well. Perhaps a combination of different measures or a more carefully defined optimization

criterion could be utilized to achieve more beneficial results.

Even though the parametersri are constant, the filter constantly changes according to

the formant frequencies. This also changes the filter gains,and formants in different fre-

quency locations are enhanced or attenuated differently. In Chapter 5, it was concluded that

the differences in gains are not very large, but it does open up another possible approach.

Instead of defining the filter through the parametersri, it could have been defined through

decibel gains on the first and second formant. The problem with this approach is that the

dependence between the two is a rather complex mathematicalequation. The calculation

of the gains given the values ofri is straightforward, but the other way around requires

more computation. If the dependence could be simplified withan approximation that had a
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relatively small error, the filter could be made more adaptive and intuitively more clear as

decibel gains are much easier to understand than some arbitrary filter coefficients.

A few steps in the post-processing scheme were realized withrather simple and com-

putationally inexpensive methods. They were deemed good enough since the problems in

question, such as locating formant frequencies and separating between voiced and unvoiced

speech frames, are extremely difficult. These parts could befurther developed, not neces-

sarily towards a much more complex realization, but a more accurate one. Of course, some

complexity has to be added in order to improve the algorithms. Also, as mentioned earlier

in Chapter 5, the post-filter actually enhances something near the resolved formants, and it

would be beneficial to calculate the amount of this drift. It could be taken into account in

the post-filtering, thus maybe further improving the results.

The next logical step would be conducting a formal subjective test to obtain some real

measure for the performance of the post-filter. However, as was discussed in Chapter 2, the

difficulty is in deciding whether the focus should be on quality or intelligibility. One simple

solution is to conduct one of each. In a quality test, even a slightly negative result can be

a good thing, if it is accompanied by a positive result on intelligibility. The ideal situation

would be a scheme that improves intelligibility while maintaining or even improving the

quality as well. Also the question of language remains. It isdoubtful that the performance

of the post-filter would be affected by the change of languagefrom Finnish to English very

much, but it would be interesting to see how the speech intelligibility index values discussed

in Chapter 4 would be affected by the switch.

The subjective listening test that was conducted during this work cannot really be used

to draw any kind of further conclusions. This means that since the test was designed solely

for the purpose of optimizing parameter values, it is of little use elsewhere. The data is

very scattered as was predicted, and it is hard to spot correlations between characteristics

of the speakers and the corresponding parameter values. Forthis purpose, much more

test subjects and speakers or a much more structured test would be needed. For example,

two samples processed with different attenuations of the first formant would be given, and

the listeners would be asked to pick their favorite. Once again, there would be a risk of

getting random responses, if the differences between the samples were small and therefore

inaudible to some listeners. But if succesful, this kind of test would produce more structured

data which could be used to test whether the fundamental frequency of the speaker affects

listener preferences and so on. As was discussed in Chapter 4, the correlations between

the parameter values from the current test data and the F0 frequencies of the speakers are

statistically insignificant. Other things that would be interesting to test include the effects of

the first and second formant frequencies on the perceived quality and whether the filtering

should be made adaptive to one or both of them.
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The feedback loop from the noisy speech signal has not been realized yet. The system

could be made adaptive to the level of environmental noise oreven to the type of noise.

In other words, when the SNR of the resulting noisy speech signal would be very low, the

post-processing could be more extreme and then the effects of the post-processing would

gradually decrease as the SNR increases. Or the filter could be turned on only after the

signal-to-noise ratio has decreased past some limit. This way, the quality of the speech

would not be affected if the conditions were good.

Also the noise type or the characteristics of the noise couldhave an effect on the post-

processing. For now, the scheme has only been tested with carnoise and briefly with office

noise, but it can be assumed that it works well with stationary low-pass type noises. How-

ever, there might be some small differences in the optimal setting for separate noise types.

The most difficult problem would probably be adopting the system to work well with babble

noise. This noise type consists of multiple talkers speaking concurrently, and it is difficult

to separate from the desired speech signal. With this type ofnoise the answer may not be in

attenuating the first formant, but it is a good starting place. Hall et al. have already proposed

a similar approach with promising results.

As mentioned earlier in this chapter, it has been constantlyassumed that the speech sig-

nal that reaches the post-processing block is relatively noiseless. If this is not the case,

the problem changes almost completely. Even though, the speech can be degraded to the

point where the extraction of any information is extremely difficult and almost nothing can

be done, the post-processing algorithm should take this kind of situation somehow into ac-

count. If the received speech signal has a very high noise level, then maybe the post-filtering

should be turned completely off in order to avoid further enhancing the noise. If the situa-

tion was not as bad, some kind of noise suppression could be utilized as suggested earlier.

In any case, this should also be further investigated, sincein a real situation a completely

noiseless speech signal is an unlikely occurrence.
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Appendix A

Derivation of the filter amplitude

response

In the following the amplitude response of the post-filter structure is derived step by step.
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Thus, the filters can be treated separately. Both of the formant filters are of the same form:

H(z) =
1− 2r1cosθz

−1 + r21z
−2

1− 2r2cosθz−1 + r22z
−2

Whenz = ejω,

H(ejω) =
1− 2r1cos(θ)cos(ω) + j2r1cos(θ)sin(ω) + r21cos(2ω)− jr21sin(2ω)

1− 2r2cos(θ)cos(ω) + j2r2cos(θ)sin(ω) + r22cos(2ω)− jr22sin(2ω)
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The tilt compensation filter has the form:
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Appendix B

Test sentences

TableB.1 presents the sentences that were used in the subjective listening test. They were

extracted from a longer Finnish text.

# Speaker Gender Sentence

1 HaPu M Vuodenvaihdetta juhlitaan talvisäässä.

2 MaAi M Heinäkuun viimeinen päivä oli äärimmäisen harvinainen.

3 PaAl M Jääkartat ovat nyt päivittäin saatavilla laitoksen verkkosivuilla.

4 HeLe F Sademäärä oli noin 150 millimetriä.

5 LaLe F Kuukauden keskilämpötilat lähestyivät lämpöennätyksiä.

6 VeAl F Tutkimuksen avulla saadaan päätöksentekijöille tietoa ilmanlaadusta.

Table B.1– The Finnish sentences used in the listening test.
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Appendix C

Test instructions

Below are the instructions that were given to the listeners in the subjective listening test.

The instructions are in Finnish.

Kuuntelukoe

Tässä kokeessa kuuntelet lyhyitä lauseita. Koe jakautuu kuuden näytteen kuunteluun,

joista jokaisen kohdalla tehtävänäsi on valita paras käsittely kyseiselle näytteelle.

Kokeessa käytettävä käyttöliittymä on kuvanC.1 mukainen. Valkoisen alueen reunassa

on vaaleansininen ”NEUTRAALI”-nappi, jota klikkaamalla voi kuunnella alkuperäisen ää-

nen. Edettäessä akseleita pitkin kauemmaksi neutraalistanäytteestä äänelle tehtävä käsit-

tely voimistuu. Klikkaamalla valkoista aluetta saadaan kuultavaksi ääni, jota on käsitelty

sen sijaintia vastaavalla tavalla, ja klikattuun kohtaan ilmestyy punainen neliö. Ruudulle

ilmestyneitä neliöitä klikkaamalla voi kuunnella uudelleen vastaavassa kohdassa sijaitse-

van äänen. Punainen neliö kertoo aina viimeksi kuunnellun äänen sijainnin.Tarkoituksena

on hakea valkoiselta alueelta kohta, joka tuottaa mielestäsi mahdollisimman selkeän,

ymmärrettävän ja miellyttävän version äänestä.

”SEURAAVA”-nappia painamalla voi siirtyä eteenpäin seuraavaan näytteeseen. Täl-

löin punaisella neliöllä merkitty ääni tallentuu kuuntelijan valinnaksi ja seuraavan näytteen

arviointi alkaa. Aiempiin näytteisiin palaaminen ei ole mahdollista, joten varmista, että

valintasi mukainen ääni on merkitty punaiseksi, ennen kuinetenet seuraavaan näytteeseen.
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Figure C.1 – Käyttöliittymä.



Appendix D

Example of data from the subjective

tests

FigureD.1 shows the clicks made by one of the test subjects in the subjective listening test.

The order of the samples is the same as their playing order forthat particular subject. The

red marker is the final choice for that sample.
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0.9
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Figure D.1 – Data obtained from the listening tests with subject SaKu.

61


	Table of Contents
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Background
	Linear prediction
	Post-processing of speech
	Performance measures
	Focus of this work

	Implementation
	The general setting
	The post-processing algorithm
	SII calculation

	Subjective tests
	Methods
	Results and discussion
	Speech Intelligibility Index

	Objective evaluation
	Post-filter gains
	Typical behavior
	Comparison with other post-filters

	Conclusion
	The contribution of this work
	Practical implementation
	Further research

	Bibliography
	Derivation of the filter amplitude response
	Test sentences
	Test instructions
	Example of data from the subjective tests

