
AALTO UNIVERSITY
SCHOOL OF SCIENCE AND TECHNOLOGY
Faculty of Electronics, Communications and Automation

Ville Viskari

Improving the architecture of a content management system with
Seam

Master´s thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Technology in the Degree Programme in Communications
Engineering.

Espoo, 17.4.2010
Supervisor: Professor Heikki Saikkonen
Instructor: Professor Heikki Saikkonen

i

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702278?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AALTO YLIOPISTO Diplomityön tiivistelmä
TEKNILLINEN KORKEAKOULU
Tekijä: Viskari, Ville
Työn nimi: Sisällönhallintajärjestelmän arkkitehtuurin parantaminen Seamin avulla
Päivämäärä: Huhtikuu 2010
Sivumäärä: 57 sivua
Pääaine: Ohjelmistojärjestelmät
Työn valvoja: Professori Heikki Saikkonen
Työn ohjaaja: Professori Heikki Saikkonen
Avainsanat: JSF, Seam, arkkitehtuuri, sisällönhallintajärjestelmä, verkkosovellus

Tässä diplomityössä tutkitaan, kuinka sisällönhallintajärjestelmän arkkitehtuuria
voidaan parantaa Java-pohjaisella sovelluskehyksellä. Sisällönhallintajärjestelmänä
on Ambientia Oy:n kehittämä Content Manager ja sovelluskehyksenä on J2EE-
tekniikkaan ja JSF standardiin perustuva JBoss Seam. Työn päätavoitteena on
lyhentää asiakasprojektien läpimenoaikaa ja toisaalta helpottaa sivupohjien
ohjelmointityötä.
Sisällönhallintajärjestelmiä on kehitetty, jotta asiakas voisi muokata verkkosivustonsa
sisältöä helposti itse sen sijaan, että muutoksia täytyisi pyytää sivustoa ylläpitävältä
yritykseltä. Sisällönhallintajärjestelmä koostuu julkisesta puolesta, joka näyttää
sivuston loppukäyttäjille, ja hallintasovelluksesta, jonka kautta julkisen puolen
sisältöä hallinnoidaan.
Ambientia Oy käyttää talon sisällä kehitettyä modulaarista
sisällönhallintajärjestelmää, joka on monen vuoden kehitystyön tulos. Sovellus
perustuu Java Servletteihin, ja sivupohjat on toteutettu Apache Velocity -tekniikalla.
Tässä työssä toteutettiin osa olemassa olevan sisällönhallintajärjestelmän julkisen
puolen toiminnallisuudesta Seam sovelluskehyksen avulla. Järjestelmä listaa
sisällönhallintajärjestelmän navigaatiopuun ja näyttää ilmoitustaulumodulin viestit
verkkosivulla.
Työssä huomattiin, että Seam ei sovellu ajateltuun tarkoitukseen. Ongelmaksi
muodostuivat järjestelmien arkkitehtuurissa havaitut suuret erot: Seam on J2EE-
lähtöinen malli, kun taas sisällönhallintajärjestelmän komponentit eivät tarjoa J2EE-
arkkitehtuurin vaatimia rajapintoja tarpeeksi. Lisäksi, sivupohjien toteuttaminen
Seamin tarjoamilla työkaluilla on monimutkaista.

ii

AALTO UNIVERSITY Abstract of Master’s Thesis
SCHOOL OF SCIENCE AND TECHNOLOGY
Author: Viskari, Ville
Title: Improving the architecture of a content management system with Seam
Date: April 2010
Faculty: Faculty of Electronics, Communications and Automation
Pages: 57 pages
Major: Software systems
Supervisor: Professor Heikki Saikkonen
Instructor: Professor Heikki Saikkonen
Keywords: JSF, Seam, architecture, content management system, web application

This thesis is a case study on improving the architecture of a content management
system with a Java application framework. The content management system in
question is an in-house developed Content Manager made by Ambentia Ltd, and the
framework is JBoss Seam J2EE application framework which is based on the JSF
standard. The primary goals in this study were to reduce the time spent in customer
projects and to ease the development of Web page templates.
A content management systems have been created so that the customer is able to
modify the contents of their web pages without the need to request these changes
from the service providing company. A content management system has a public side
which contains the public web site, and an administration application from which the
public content is modified.
Ambientia Ltd is using a modular content management system, which is the result of
many years of in-house development. The application is implemented using Java
Servlets and the page templates are written using Apache Velocity templating engine.
In this Thesis a part of the content management system's public application
functionality was implemented using Seam framework. The system lists the
navigation tree and displays the messages of a bulletin board module on the page.
It was concluded that Seam does not suit the desired purpose. Main problem was the
large architectural differences of the old CMS system and Seam. Seam is a J2EE
based system, while the CMS application does not provide the interfaces required to
be used in an enterprise environment. In addition, the implementation of page
templates using the components provided by Seam was found to be too complicated.

iii

FOREWORDS

This Master’s Thesis is written in Helsinki University of Technology for the Faculty of
Electronics, Communications and Automation. The writing of this Thesis took place
mainly during the winter and spring of 2010 in few intensive sessions.
I'd like to thank Ambientia Ltd. for giving me this opportunity. Especially my thanks
goes to Tero Tielinen and Jari Saukkonen who gave me invaluable guidance during
the practical phase of the project. Jari introduced me to the technology that was
required and Tero explained me their internal processes and how they relate to the
work done by me.
I appreciate the feedback and critique given by my supervisor Heikki Saikkonen.
Without the critique this work could have taken a whole new direction. With he's
guidance I started to understand the requirements of this thesis. He gave me good
advice on how to get started with the writing process.
I'd like to thank my wife Pauliina and the rest of my family for supporting me during
this period. For several years they have encouraged me to finally graduate.

Espoo 27.4.2010,

Ville Viskari

iv

TABLE OF CONTENTS

 1. Introduction...1

 1.1.Objectives of the thesis..2

 2. Java WEB-application techniques..4

 2.1.Java Servlet..5

 2.2.JSP and JSTL...10

 2.3. Web container..12

 2.4.Execution scopes...13

 3. Web application frameworks...15

 3.1.Motivation...15

 3.2.MVC framework components..17

 3.3.Spring...19

 3.4.Hibernate...23

 3.5.Ajax..26

 3.6.Java Server Faces...30

 3.7.Seam..33

 4. Content Manager...36

 4.1.Background..36

 4.2.Current design...36

 4.3.Problems with current design..39

 5. Using Seam with content manager..41

 5.1.Scope of the thesis...41

 5.2.Development environment..42

 5.3.Implemented components..42

 5.4.Functional description...44

 6.Architectural analysis and results...50

 6.1.Architectural analysis...50

 6.2.Results...52

 7. Conclusion...54

v

 8. References...56

vi

TERMS AND ABBREVIATIONS

AJAX

Asynchronous Javascript And XML

API

Application Programming Interface

CMS

Content Management System

Cookie

Small amount of data that is stored in the client browser and sent back to

the server with every request.

DOM

Document Object Model

EJB

Enterprise Java Bean

Hibernate

ORM library for Java applications

HTML

HyperText Markup Language

HTTP

HyperText Transfer Protocol

IoC

Inversion of Control, dependency injection

vii

Java Bean

A simple Java class which contains private properties and exposes read

and/or write methods for manipulating them.

J2EE

Java 2 Platform Enterprise Edition. Currently known as Java EE (since

version 5).

JSF

Java Server Faces. A standard web application framework.

JSP

Java Server Pages

JSTL

Java Server Pages Standard Tag Library

MVC

Model View Controller. A common design pattern used with user interface

implementations.

ORM

Object Relational Mapping

POJO

Plain Old Java Object.

Servlet

Java class that executes inside an web application and responds to HTTP

requests.

URI

Universal Resource Identifier

URL

Universal Resource Locator

viii

XML

eXtensible Markup Language

ix

 1. INTRODUCTION

This thesis is a case study on improving the architecture of a content management

system with a Java application framework. The content management system in

question is an in-house developed Content Manager made by Ambentia Ltd, and the

framework is JBoss Seam J2EE application framework which is based on the JSF

standard. The primary goals in this study were to reduce the time spent in customer

projects and to ease the development of Web page templates.

Traditionally web pages have been developed in a way that the site implementing

company is also responsible for the content that is displayed on the pages. The

customer has not been able to update the text and images on the pages or create a

new page within the navigation structure. Every time a change is required, the

customer has to issue a change request with the service providing company. This is

costly for both sides. Customer has to pay for the updates usually in a form of

maintenance fee. The providing company has to tie up resources to implement these

kinds of most trivial changes. Instead it would be more productive for everyone if the

service providing company could concentrate on the development of their core

business software.

A content management systems have been created so that this whole process can

be handed to the customer. With a content management system the customer is able

to create new web pages, change the navigational structure and edit the content on

the pages without the need to request these changes from the service providing

company every time. There are several advantages in this solution. First there are

the cost savings. Secondly the system is less prone to human errors and the

customer is able to correct any errors by itself immediately. In the traditional process

the message can be altered and misunderstood while it passes through the

bureaucracy from the customer to the final implementing developer.

1

A content management system consists of the public side that will display the web

pages that are visible to the end users. Second part of the system is an

administration application that is used to manage the content that is displayed on the

public side. Additional functionality can and usually is implemented in the system

along with these basic features. The most common features are user management

and user roles, web form submission and functionality to process the received data

and some form of file management. Additional features can be implemented based

on customer needs. Depending on the original system, the implementation of custom

functionality can be either easy and fast or difficult or time consuming.

This thesis is done for a company named Ambientia Ltd. They have developed a

content management system (Content Manager) that is used with several customer

projects to design and implement the public web pages for the client. This application

was developed originally in a time when there was no alternatives offered in public

domain. The application contains all the common functionality of a CMS and this can

be extended with modules that provide additional features like form management,

news letters and bulletin board messages. There is always a need to customize the

basic functionality of the application by designing new modules that are required to

meet the customer's needs. The changes affect both the administration side of the

application and the page templates on the public side.

 1.1.Objectives of the thesis

This Thesis will evaluate if Seam web application framework is suitable future

platform for the Content Manager. This evaluation is performed by implementing

some features of the public side of Content Manager using the components and tools

provided by Seam. The motivation for the evaluation comes from within the company

and the effects of the possible changes in the underlying technology would be

virtually invisible for the clients that use Content Manager and to the end users that

access the public web pages. The administration application of the system is left

untouched. The Seam application will run along the side of the old Content Manager

as a separate application. After the selected functions are implemented, they are

reviewed against the following objectives.

2

The main objective of this thesis is to decrease the time spent in the customization

projects when developing new functionality to the Content Manager based on

customer needs. This can be accomplished with modular component design. These

components can be added and combined together and moved easily between

different projects.

Second objective is to make the implementation phase easier for the developers.

This can be accomplished with simple and effective tags that can be used on the

pages with no need for additional coding effort by the developer. The development of

the tags themselves should be simple and fast so that it is possible to react to

changed or new requirements.

The nature of the code and the excessive amount of work that has been invested to

existing code base in Content Manager implies that the work done in this thesis has

to use existing code for the main business functionality as much as possible. This

work forms the foundation for future developments that build on the knowledge

gathered here.

This Thesis is structured as follows. Chapter 2 introduces the basic techniques used

in a Java web application. Chapter 3 will discuss the more advanced techniques and

frameworks used in a more modern web application. Ambientia Content Manager is

explained in Chapter 4. Chapter 5 will explain the implementation details and the

results are analyzed in chapter 6. Chapter 7 makes the conclusion.

3

 2. JAVA WEB-APPLICATION TECHNIQUES

This chapter will introduce the basics of Java Web application. The information

presented in this chapter is based on the J2EE 1.4 Tutorial by Sun ([20], chapter 11).

The purpose of a Web application is to render dynamic content to a Web page.

Dynamic content here means that the contents on a displayed web page changes

dynamically based on the user interactions with the web site. The opposite of this is a

static web site, which contains only a set of HTML pages. Here the contents of a

displayed web page will not change unless the source HTML files are modified

manually by the site administrator. The most simple Java Web application is a single

Servlet that executes in a Web container inside an application server. The server

receives a HTTP request and directs the request to the Web application for

processing. The application will direct the request to the correct Servlet for execution.

The Servlet will return a response based on the information in the request. The

contents of the response may be for example a HTML web page.

The Java Servlet API defines the interfaces that are used in a Java Web application.

The package name for Java Servlet API is javax.servlet. The basic interfaces defined

in this package include Servlet, ServletRequest, ServletResponse and Filter. A sub

package called javax.servlet.http introduces a HttpSession interface which enables

the application to store some data across several requests which is associated with

the clients. The HTTP package also provides a Cookie class which enables the

Servlet to send and store HTTP cookies to the client browser.

A Java application container is responsible for the life cycle management of Servlets

and provides specific services that may be used by the Servlets that live inside the

container.

4

 2.1.Java Servlet

The presentation of the basic classes and interfaces of Java Servlet API is based on

my professional knowledge and the J2EE 1.4 Tutorial by Sun ([20], chapter 11).

Java Servlet is a class that implements a Servlet interface defined in a Java Servlet

API. Usually the more specific HttpServlet interface is used in conjunction with HTTP

requests. Later a class that implements a HttpServlet interface is simply referred to

as Servlet. It receives a HttpServletRequest (Request) and writes the contents of the

response to a HttpServletResponse (Response). The contents of the response are

generated based on the information received in the request.

 2.1.1.HttpServlet

HttpServlet class overrides a service() method from Servlet class and implements

several new methods, one for each HTTP method[18]. In the service() method the

request is directed to the corresponding HTTP request specific method. These

methods include doGet(HttpServletRequest, HttpServletResponse) which is called

when the client issues a HTTP GET request. doPost() method is called when the

client issues a HTTP POST method. Similar servlet methods exist for HEAD, PUT,

DELETE, OPTIONS and TRACE requests. The implementations of these methods in

HttpServlet class do not have any functionality. The developer will extend this class

and creates a subclass of HttpServlet. Then some of the previously mentioned

methods are overridden and the actual functionality is written to the overridden

methods. Usually only either doGet() and/or doPost() method is implemented in the

subclasses and other methods are not touched. It is possible to override the service()

method after which all requests are processed by the same code for all HTTP

request methods.

 2.1.2.HttpServletRequest

The received HTTP request is parsed by the Web container and it constructs a class

that implements a HttpServletRequest interface[18]. This class is passed to the

Servlet in the method call and it can read information about the request using this

5

class. Depending on the information in the request, the Servlet will render different

output to the response. Information that is available in the request include the

requested path inside the application, the HTTP request headers and the HTTP

request parameters. Along with this information, the request provides information

about the client and the receiving server.

The request parameters are read from the HTTP request and they are put in to a

Map by the container. The name of the parameter is the key in the Map and the value

is a String array of the parameter values. Since HTTP request may contain multiple

values with same name, the map value entry is of String array type. The request

class provides methods to access these parameters. There is one method for getting

the whole parameter map, one that returns the array of values of a request

parameter and one convenience method which returns only a single String value of a

parameter. In case the parameter name had multiple values associated to it, only the

first one is returned by this method.

There are several methods for reading the request path information. These methods

can be used to return the complete URL that the client requested, the request URI

without host information, the context path, the Servlet path without context path or

the query string. Complete URL is the URL that the client used when issuing the

request complete with protocol, host and port information and the Servlet path. Any

HTTP request parameters are not returned in this path. Request URI is the same as

URL, but protocol, server and port information are not returned. Context path is the

part of the path that maps to the current web application. Web server may contain

several web applications and each of them is mapped to a specific path inside the

server. All requests that are received under the specific path are directed to the

respective web application. The Servlet path is the part that points to the executing

Servlet in the application. A Servlet is mapped under a specific path in the container

to serve requests. The Servlet path contains the path information after the context

path to the part that points to the executing Servlet. A query string is the part of HTTP

GET request that contains the request parameters. This section of the URL comes

after all path sections and is separated from the rest of the path with a question mark

character.

6

Request headers are sent by the client Web browser where it explains what kind of

content it expects and accepts with the response. This information is available in the

HttpServletRequest. The methods for reading this information are similar in

functionality to the methods used for reading request parameters.

Another way to pass information in the request is through the use of HTTP Cookies.

A HttpServletRequest method named getCookies() returns an array of Cookie

classes if any cookies were associated with the request. The cookies may be stored

by the browser persistently or they may be used only for the current browsing

session.

 2.1.3.HttpSession

A browser session is a concept that ties together all requests and responses sent by

the client and server in a single session. The session begins with the first request of

the client and ends when the client browser exits, explicitly clears its session cookie

cache or the session timeouts in the server. A HttpSession provides means to store

information between several browser requests[18]. The servlet container will create a

new HttpSession object the first time it is requested by the underlying components.

Usually it is the Servlet that will request a session through the HttpServletRequest

interface. The returned HttpSession object is basically a map that persists over

several browser requests. Usually the information stored to the session is related to

the requesting client's identity, or has something to do with the business logic of the

application. An example could be a shopping cart application where the items of the

users shopping cart are stored in the session.

The HttpSession object is stored solely by the web application. No information about

the contents in the session is passed to the calling client. Only the session identifier

is passed between the client and the server. The identifier is sent to the client and

received by the server for each request. This way the application is able to identify

the incoming request and attach the associated session with the request. This

happens before the execution is passed to the Servlet.

There are two ways to pass the session identifiers between the client and server.

First and generally preferable is the use of a session Cookie. The application will

7

generate a session identifier and stores it in a cookie. This cookie is then sent back to

the calling client with the first response. Client browser will store this cookie for the

duration of the session and sends it back to the server along with each request. This

scheme works when the client browser accepts cookies. Some users have denied

their browsers to store cookies and in this case the session identifier would get lost

with every request. The server would have to recreate a new session for each

request.

The second scheme solves this problem. The application will filter the contents of a

returned response before the contents are sent to the client. If the response is a

HTML page, the application will render the session identifier as a HTTP request

parameter to every link that is returned in the response. This way the client will pass

the session identifier as one of the request parameters and application is able to

fetch the corresponding session from the store and attach it to the request. The

received HTTP session parameter is removed from the map of request parameters

and it is not passed to the underlying Servlet.

Usually HttpSessions are stored in memory by the application container. Every

HttpSession will consume application memory depending on the amount and type of

objects that are stored in the session. To prevent the application server from crashing

due to running out of memory, the sessions have a specific timeout configured in the

application container. After the session times out the container will remove it from the

storage and deletes the associated objects along with it freeing the used memory.

 2.1.4.HttpServletResponse

The Servlet will send the response to client using a class which implements the

HttpServletResponse interface. This class is passed to the Servlet in the method call.

Through this class the Servlet is able to set the HTTP response status, the response

headers and cookies and write the contents of the response. Text responses are

written using a Writer class and binary data is written using a ServletOutputStream

class. A reference to these classes is obtained from the HttpServletResponse class.

The servlet can not use both of these classes in the same response. A HTTP

response type is always either text or binary, not both. An attempt to use both classes

8

(Writer and OutputStream) for the same response results in an error.

HttpServletResponse contains a buffer for the written data. The response data is

written to the buffer and it is flushed periodically to the client. The Servlet may flush

the buffer explicitly if needed. Also the Servlet may reset the buffer and clear the data

written to it before it is flushed. Data that already has been flushed and written to the

client can not be recovered and cleared.

In some cases the Servlet decides that the request has to be redirected to another

location. It will then call the sendRedirect(String url) method in the response. This will

issue a HTTP 302 response to the client and it will move to the redirected address.

After the Servlet calls the redirection method, it is unable to write any further data to

the response or it will result in an error.

 2.1.5. Filter

A servlet filter is a class that is executed by the container before the request is

passed to the servlet[18]. A filter is mapped to a URL pattern or specifically to some

servlet. The container decides which filters are applied to the current request and

composes a FilterChain in which the filters are executed one after each other. The

executing filter is able to modify the incoming request and insert information to the

request object or modify the response after the servlet execution has completed. An

example code of two filters is presented in Table 1. First filter modifies the request

and the second will modify the resulting response.

9

1. import javax.servlet.*;
2.
3. // Filter that is executed first by the container
4. public class Filter1 implements Filter {
5. public void destroy(){}
6. public void init(FilterConfig filterConfig){}
7. public void doFilter(ServletRequest req, ServletResponse res, FilterChain chain){
8. // modify the incoming request
9. req.setAttribute(”key”, ”value”);
10. chain.doFilter(req,res);
11. }
12. }
13.
14. // Filter that is executed after filter1
15. public class Filter2 implements Filter {
16. public void destroy(){}
17. public void init(FilterConfig filterConfig){}
18. public void doFilter(ServletRequest req, ServletResponse res, FilterChain chain){
19. chain.doFilter(req,res);
20. // Modify the resulting response after servlet has executed.
21. ((HttpServletResponse)res).addHeader(”headerName”, ”headerValue”);
22. }
23. }
24.

Table 1: Example code for two filters
A filter is able to block the request processing by not passing the execution further in

the filter chain.

 2.2.JSP and JSTL

Java Server Pages is a technique that will ease the development of web pages that

render dynamic content. JSP is a higher level abstraction of Java Servlets. According

to J2EE Tutorial, “a JSP page is a text document that contains two types of text:

static data, which can be expressed in any text-based format (such as HTML, SVG,

WML, and XML), and JSP elements, which construct dynamic content” [20]. The

pages are interpreted by a JSP compiler. The JSP compiler will compile the JSP

page to a Java Servlet which is then compiled by standard Java compiler to bytecode

and executed by the JVM. So, JSP pages are in fact standard Java Servlets, but the

actual Servlet class is hidden by the developer. Formally, a JSP page implements a

JspPage interface which in turn extends the Servlet interface ([18], package

javax.servlet.jsp). An example JSP page is presented in Table 2 and it's based on

J2EE Tutorial ([20], chapters 12, 14 and 16).

10

1. <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
2. <%@ page import="com.some.company" %>
3. <%!
4. // Code written here initializes instance variables
5. // so it is available in the page context.
6. String instanceVariable = “Hello World!”;
7. %>
8. <%
9. // Code written here is written to the executing method
10. // so it is available for the current request.
11. int localVariable = 2;
12. %>
13. <html>
14. <head>
15. <title>A simple JSP page</title>
16. </head>
17. <body>
18. <h1>This is a simple JSP page</h1>
19. <p>
20. Below is the contents of the instance variable:

21. <%= instanceVariable %>
22. <%--
23. This is a JSP comment.
24. Below JSTL tag c:if is used to test a condition of a variable.
25. --%>
26. <c:if test="${localVariable == 1}">
27. This text is written if localVariable equals 1.
28. </c:if>
29. </body>
30. </html>

Table 2: JSP page example
Based on my experience, the main advantage of JSP pages is that the page is more

readable compared to a Servlet. With standard Servlets the contents of the HTML

page needs to be written to response using a Writer that is called in between the

source code. This leads to a situation where the resulting code is cluttered with

println() method calls to the writer. Second advantage of JSP pages is the ability to

split the JSP page into different sections and put each section to its own file. These

parts can then be included to the main page into the desired positions or some

sections can be skipped altogether. Usually the splitting is done so that there is a

separate header and footer JSP template which are included to every page. This way

the changes made in the header template are effective in all pages at once and there

is no need to replicate the changes for each JSP file.

JSP tags are predefined tags recognized by the JSP compiler and they perform some

specific task. A tag may be a logical branch tag, iterator tag or it may read and print

out a value of a Java bean. The Java Server Pages Standard Tag Library (JSTL)

provides tags for the most common tasks. This library is defined in the JSTL

specification [17]. Using these tags reduces the need of embedded Java code on the

page and makes the page more readable and maintainable.

11

It is possible to create custom JSP tags that perform some desired functionality.

J2EE API defines a set of interfaces for this in package javax.servlet.jsp.tagext. By

implementing one of these interfaces or extending one of the predefined base

classes it is possible to create a new tag. The newly created tag has to be compiled

and packaged to the web application and a tag definition file needs to be created.

This definition file states the name and namespace of the tag after which it will be

available on the JSP pages.

 2.3. Web container

According to J2EE spec, “containers provide the runtime support for J2EE application

components” [19]. A web container manages the execution of JSP pages and

Servlets and other components deployed in the J2EE web application. Also it

provides services that are defined in the J2EE specification ([19], chapter J2EE.2

Platform Overview). These services include the life cycle management, transaction

management, concurrency, security and JNDI lookup services. The container will

perform the lookup and binding of data sources, EJB remote references and JMS

queues to the application context so that they are available to the executing

components when they are initialized.

The container implementations are supplied by the application server provider. The

developer needs to just implement the components that run inside the container and

write an XML deployment descriptor file which registers the components in the

application.

According to J2EE Tutorial ([20], chapter 11), the Servlet life cycle is controlled by the

web container in which the Servlet has been deployed. When a request is mapped to

a Servlet, the container performs the following steps. If an instance of the Servlet

does not exist the container will load the Servlet class, creates a new instance of it,

and initializes it by calling the init() method. When the Servlet class exists, the

container will call its service() method passing it the Request and Response objects.

J2EE specification states that the server implementation must transparently support

transactional runtime environment ([19], chapter J2EE.4 Transaction Management).

12

This means that when a component creates a JDBC connection to access the data

store, all queries that it makes during the request processing are wrapped inside a

transaction by a transaction manager. In case any of these queries fail, the

underlying database structure will not be modified. All modifications made by the

queries will be committed to the database only after the request processing has

completed successfully.

 2.4.Execution scopes

The web components need to share information with each others during the

application life cycle. It is possible via objects that are maintained as attributes of four

scope objects ([20], chapter 11). These scopes are application, session, request and

page. Each of these scope objects have setAttribute() and getAttribute() methods

that are used to access these shared objects. The difference in these scopes is the

visibility and lifetime of the stored information ([2], chapter 10). The general idea

about how these scopes relate to each other is presented in Figure 1.

An application scope exists as long as the application executes. There is only one

13

Figure 1: Shared object scopes

application scope in the web application and all information stored in there is seen by

any component that executes in the same application.

Session scope is bound to the current request's session. There is one session for

each client that accesses the application. Objects that are stored in session scope

are only seen by requests that belong to the same session. Requests that belong to

another session do not see that information and it is not possible to pass information

between sessions directly. Information in the session scope exists as long as the

session is valid. The information is destroyed when the session times out in the

application or the application exits, though some application servers support

persistent sessions where the information state is maintained even over server

restarts.

Objects in the page scope are similar to instance variables of a Servlet. A page scope

is associated with JSP pages and each page has its own scope. Information stored to

the page scope is visible only inside the associated JSP page. The scope exists as

long as the JSP page instance itself.

Request scope is associated with the currently executing request. The objects are

stored to the request instance as attributes and they are available to all components

along the path of the request execution. The request scope exists only for the current

request and all objects stored in it are removed after the execution is finished.

14

 3. WEB APPLICATION FRAMEWORKS

 3.1.Motivation

According to DocForge ([5]), “a web application framework is a type of framework, or

foundation, specifically designed to help developers build web applications. These

frameworks typically provide core functionality common to most web applications,

such as user session management, data persistence, and templating systems. By

using an appropriate framework, a developer can often save a significant amount of

time building a web site”. Based on my professional experience and the knowledge

presented in the DocForge page (and its related pages), using a web application

framework as the basis when developing an application has the following

advantages.

The developer doesn't have to implement and test each functionality every time but

can count on the components delivered by the framework that they are working and

have been tested.

Implementing a web application using only JSP pages very soon leads to code that is

hard to read and maintain. Accessing databases directly from the pages or using

some other classes that implement some business logic means that the JSP page

will be cluttered with Java code. Instead it makes sense to divide the business logic

and view rendering layers from each others.

The web application framework has been developed by a large group of people. This

has at least following advantages. The framework has gone through several stages

of testing before it is released. Errors in the framework are found earlier since it is

used by large amount of developers. Developers working with the same framework

can help out each others in problematic situations even if they are not working in the

15

same company or even on the same continent.

A web application will display dynamic content on the web pages. This information is

stored in a database. A framework can assist in this task by providing an API that can

be used to access the underlying storage in a controlled manner. It can validate the

inserted data automatically so that all mandatory fields are filled and that the required

relations between different tables exist. A framework could provide an automated

mechanism that maps rows in the database tables to Java entity classes so that the

developer does not need to write any or minimal amount of code that access the

database. This sort of functionality is called ORM, Object Relational Mapping.

A framework provides some way to manage the security of the application. There can

be a common way to set up user authentication and user management. A framework

usually already implements the logic that handles user logins and developer only

needs to create the login page itself. Also integrating the user management with

some external system like LDAP directory is usually easy using the provided

components. The application may have public pages that are available to everyone

and there may be sections which require authentication. Detecting the need to direct

the user to the authentication page is normally handled automatically by the

framework.

A framework can have an effect on the application performance. The web page

contents can be cached which increases the request throughput with most commonly

accessed pages. The underlying database accesses can be cached and fewer

database queries go all the way through to the database itself.

A framework supports a templating engine. Usually the framework supports some

specific engine directly but can be set up to work with some other template engine as

well if the developer desires to use another one.

Finally, the way the framework should be used usually encourages the developer to

implement code that is reusable and easy to maintain. The business logic is clearly

separated from the page templates.

16

 3.2.MVC framework components

Model-view-controller is a common design pattern used with user interfaces in all

kinds of applications. It is not restricted to web applications only. It enforces the

developer to implement the application in a way that clearly separates the business

logic of the application (in this case Java classes) from the view layer (the page

templates). The business logic is backed up by the model which is a representation

of the data that is stored in the system. Usually the data of the model is stored in a

relational database. Information presented here is partly based on my professional

knowledge and partly on [16], chapter 11.

Practically all web frameworks have been designed to be or include a part that is a

model-view-controller. MVC pattern divides the whole application logic strictly into

three parts: model, view and the controller. An MVC application is request driven

component framework that maps the incoming request to a set of controllers. These

controllers access the data storage which is called the model. The controller then

gives this data to a template called the view. The view will render the final web page

using the data given to it by the controller. The basic stages of the request processing

is presented in Figure 2.

First stage in MVC application is to map the incoming request to the correct

controller. There are several schemes how this is done. Usually a part of the request

URI is mapped directly to some controller in an XML configuration file that is

framework specific. The controller can forward the execution to another controller.

This way the controllers can be chained together and each of them performs some

small part of the processing. A controller may include some other controllers data to

the request. This way the main controller will be in charge of which controllers to

apply to the request.

17

The controller will read the information from the request and based on that

information it will access the model. Usually the model is a relational database and

the controller will read the data stored in the database tables and constructs objects

that represent that data. These objects are stored to a map as key-value pairs. The

key is a known predefined value that is recognized by the view and the type of the

object that is stored as the value needs to match the type expected by the template.

This map containing the model objects is added to the request scope.

18

Figure 2: Basic stages of Model View Controller

1. // Example controller code based on Spring MVC.
2. public class ExampleController extends AbstractController {
3.
4. @Override
5. protected ModelAndView handleRequestInternal(HttpServletRequest request,
6. HttpServletResponse response) throws Exception {
7.
8. ModelAccessClass model = ModelAccessClass.getInstance();
9. String parameterValue = request.getParameter(“parameterName”);
10. List<MyEntityBean> results = model.list(parameterValue);
11. ModelAndView mv = new ModelAndView(“exampleView.jsp”);
12. mv.addObject(“results”, results);
13. return mv;
14. }
15.
16. }

Table 3: Controller example
Finally the controller will forward the execution of the request to the view layer. The

view is a template file (for example a JSP page) which will read the expected values

from the request scope and writes the contents of the model objects onto the page.

The template contains static content and the dynamic model objects are inserted

between the static content.

1. <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
2. <html>
3. <head>
4. <title>A simple JSP page</title>
5. </head>
6. <body>
7. <h1>This is a simple JSP page</h1>
8. <p>
9. Below are the results

10. <table>
11. <c:forEach var=”myEntity” items=”${results}”>
12. <tr>
13. <td>Name:</td><td>${myEntity.name}</td>
14. <td>Phone:</td><td>${myEntity.phone}</td>
15. <td>Address:</td><td>${myEntity.addess}</td>
16. </tr>
17. </c:forEach>
18. </table>
19. </body>
20. </html>

Table 4: View example
Strictly speaking, as presented in [16] chapter 11, in MVC pattern, the View will

access the Model after a Controller has updated the Model's state based on the

request. But generally, as far as I have experienced, the workflow resembles more

the one described in the above paragraphs.

 3.3.Spring

Spring is an open-source J2EE application framework. It was created to address the

19

complexity of enterprise application development. Spring is a lightweight inversion of

control (IoC) and aspect oriented container framework. It is made up of seven

modules that each provides a strict set of functionality ([21], chapter 1).

Core module defines how beans are created, configured and managed. Other

modules build on top of the core module and these modules are: Application Context

Module, AOP Module, JDBC and DAO Module, Object/relational Mapping Module,

Web Module and The Spring MVC Framework. These modules provide everything

that is needed to build J2EE applications on top of Spring.

Most of the Spring modules are left out of scope of this thesis but the Spring MVC is

of most interest. As are the two principles of Spring framework, IoC and AOP.

In Spring it is possible to work with plain Java beans or POJOs (Plain Old Java

Objects) where previously it was necessary to use EJBs and other enterprise Java

specific objects. Spring objects are configured in XML files where the Java beans and

their relationships are defined outside the Java source code. Developer just creates

these basic beans in Java code and then their creation and relations are configured

in the XML files ([21], chapter 2).

 3.3.1. Inversion of Control

According to Rinat Abdullin[1], “Inversion of Control (IoC) is an approach in software

development that favors removing sealed dependencies between classes in order to

make code more simple and flexible. We push control of dependency creation

outside of the class, while making this dependency explicit. Usage of Inversion of

Control generally allows to create applications that are more flexible, unit-testable,

simple and maintainable in the long run.”

Quote from [21], chapter 1.4, “Applying IoC, objects are given their dependencies at

creation time by some external entity that coordinates each object in the system. That

is, dependencies are injected into objects. So, IoC means an inversion of

responsibility with regard to how an object obtains references to collaborating

objects”.

In fact, Inversion of Control is more commonly called dependency injection. Both of

20

these terms are used and they mean the same thing. Personally I have first heard the

term dependency injection.

Based on my professional knowledge, IoC works basically as follows. Normally a

class will create or find its dependencies by itself when it is created. This means that

in the class constructor there is code that will create other classes or will look up a

reference to some other class in the system. This leads to hardwired code where

class names are hardcoded in the class constructor. Since the class in hardwired to

some specific classes in the system, it makes it less portable and reusable. IoC will

reverse this thinking. Instead of the class being responsible for creating and finding

the dependencies, they are given to it when it is created.

1. public class TraditionalClass {
2. private SomeService service;
3. private SomeBean bean;
4.
5. public TraditionalClass() {
6. service = SomeService.getInstance();
7. bean = service.createNewBean();
8. }
9. }
10.
11. public class MyIoCClass {
12. private SomeService service;
13. private SomeBean bean;
14.
15. public MyIoCClass(){
16. }
17.
18. public void setSomeService(SomeService s) {
19. this.service = s;
20. }
21.
22. public void setSomeBean(SomeBean b) {
23. this.bean = b;
24. }
25. }

Table 5: Example of Inversion of Control
In the code sample presented in Table 5, the basic idea of IoC is clearly

demonstrated. The traditional class will create its dependencies by itself. It has to

know where to look for the service and how to create the bean. In the second class

the dependencies are injected in to the class with setter methods. The class itself

doesn't know anything about where the service and the bean instances come from.

This is now the responsibility of the external manager that resolves these

dependencies.

In Spring these dependencies are configured in XML files. Below is an example

which creates the classes introduced in Table 5 (based on an example in [11],

21

chapter 3).

1. <?xml version="1.0" encoding="UTF-8"?>
2. <beans xmlns="http://www.springframework.org/schema/beans"
3. xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
4. xsi:schemaLocation="http://www.springframework.org/schema/beans
5. http://www.springframework.org/schema/beans/spring-beans-2.5.xsd">
6.
7. <bean id="someBean" class="com.some.company.SomeBean" />
8.
9. <bean id="someService" class="com.some.company.SomeService" />
10.
11. <bean id="myIoCBean" class="com.some.company.MyIoCClass">
12. <property name="someService">
13. <idref bean="someService" />
14. </property>
15. <property name="someBean">
16. <idref bean="someBean" />
17. </property>
18. </bean>
19.
20. </beans>

Table 6: Example of XML-based bean configuration

 3.3.2. Aspect-oriented Programming

Quote from [21], chapter 1: “Aspect-oriented programming (AOP) is often defined as

a programming technique that promotes separation of concerns within a software

system. Systems are composed of several components, each responsible for a

specific piece of functionality. Often these components also carry additional

responsibilities beyond their core functionality such as logging, transaction

management and security”.

As a result, the component contains a lot of code that is related to managing these

responsibilities and which is not part of the component's core business logic. This

leads to two problems on the code level: the code that implements these additional

tasks is replicated throughout the application. Each component needs to call the

logging component to print a message to system logs by themselves. If the logging

component changes, the changes propagate to every place where the logging

component is called. Second problem is the fact that the component contains a lot of

code that doesn't belong there in the first place.

Based on an information found in [21], chapter 1, aspect-oriented programming

addresses this problem by modularizing these additional services and then applying

them to the components that need them. The AOP services that wrap the application

component will intercept the method calls to the component. They will perform their

22

specific tasks before or after the application component's method is executed. The

presence of these AOP services is completely transparent to the application

component. It will perform its functions as before without knowing that these AOP

services are involved in the process. In Figure 3 the situation is presented when an

application component is wrapped with a logger and security manager AOP services.

By wrapping all components with the needed AOP services it is easy to change the

functionality of some service. The changes are automatically effective in every part of

the application since the same service is used with all components. There is no need

to modify the actual component in any way.

 3.4.Hibernate

Hibernate is an object-relational mapping (ORM) library for Java applications.

Hibernate project was started in 2001 by Gavin King [8]. Hibernate's main feature is

mapping Java POJO classes to database tables and from Java data types to SQL

data types. Mapping Java classes to database tables is done using XML

configuration files and Java annotations [22]. Hibernate also provides a query

language (HQL) that resembles SQL but is fully object-oriented. As of 2010 Hibernate

3 is a certified implementation of the Java Persistence API (JPA) specification [22]. In

addition to the features defined in JPA, Hibernate provides an nonstandard set of

features and extensions through annotations that are specific to Hibernate [8].

Following information is based on my personal experience and thoughts. Storing an

23

Figure 3: Application component wrapped
with AOP services

object to a relational database table in the traditional way requires that the data from

the object's fields is read and inserted to a database table using an SQL query. When

reading an object from the database the opposite happens: the object is created

based on the data read from an SQL query result. The resulting code contains

functionality that is replicated in many places. Transforming primitive Java types to

SQL data types in the source code easily leads to run-time errors due to insufficient

type checking or incorrect conversion. And because these errors occur only in run-

time, they are often fatal to the system stability. ORM solves all of these problems.

Because the application source code does not contain the direct SQL language

anymore, changing the underlying database engine has no effect on the application

code. Usually different SQL engines may in some circumstances require some

tweaks in the executed queries. These small changes (like hints and such) are

specific for the one SQL engine and are not supported in another. ORM resolves this

problem by implementing support for several common SQL engines. The developer

just needs to configure the ORM library to match the underlying database and the

application code will run without any changes.

 3.4.1.Object-relational mapping

Following information is based on my personal experience with JPA and Hibernate

and partly the information and samples obtained from [13], chapter 1 and [3], chapter

1.

Object-relational mapping basically means that an object can be stored to a relational

database without writing and filling the values of an SQL query. Correspondingly the

read operation does not necessarily require an SQL query and the resulting object

instance with the correct values is created and returned by the ORM library. An object

instance that is mapped to set of data in the database is called an entity. In order that

the mapping would work, the ORM library needs to know how to map the Java

classes to the correct database tables. This is achieved with either an XML

configuration file or direct annotations in the Java source code. An example of an

XML configuration is shown in Table 7. The same can be achieved with annotating

the source code directly. An example of an annotated Java class is shown in Table 8.

24

1. <!-- Example based on Hibernate Reference Documentation -->
2. <hibernate-mapping package="com.some.company">
3. <class name="MyItem" table="ITEM">
4. <id name="id" column="ITEM_ID">
5. <generator class="native"/>
6. </id>
7. <property name="name"/>
8. <property name="description"/>
9. </class>
10. </hibernate-mapping>

Table 7: Sample Hibernate XML mapping
1. /* Example based on Hibernate Annotations Reference Guide */
2. package com.some.company;
3.
4. import javax.persistence.*;
5.
6. @Entity
7. @Table(name=”ITEM”)
8. public class MyItem {
9.
10. @Id
11. @GeneratedValue
12. private Long id;
13.
14. private String name;
15.
16. private String description;
17.
18. public MyItem() {}
19.
20. // public accessor methods for name and description
21. // private setter for id
22. }

Table 8: Sample entity class with JPA annotations
In Hibernate these entities are managed through a Session interface. The

corresponding interface in JPA is EntityManager. The Session interface provides

methods for storing, updating, reading and removing entities to and from the

database. Searching the database for entities can be performed in several ways. A

session provides a simple get() method for querying a single entity. Second option is

to use Criteria objects which perform the search and restrict the result set as desired.

Third option is to use a HQL query and finally it is possible to use a plain SQL query.

Examples of entity queries are shown in Table 9.

1. // get an item with id 2
2. Item anItem = session.get(MyItem.class, 2);
3.
4. // list items that have a description starting with White
5. List items = session.createCriteria(MyItem.class)
6. .add(Restrictions.like("description", "White%"));
7.
8. // same with HQL
9. Item anItem = session.createQuery(
10. “from Item i where i.description like 'White%' ”).list();

Table 9: Example Hibernate queries

25

 3.5.Ajax

Ajax is shorthand for Asynchronous Javascript And XML. The term Ajax was first

introduced in 2005 by Jesse James Garrett[7]. Normally in a web application model

the client browser issues a HTTP request to the server and starts to wait for the

server to respond. Server starts to process the received request and after a while it

will send the data back to the client in a response. During the time of request

processing added with time taken in the data transmission the client browser is

blocked and only displays an indication to the user that the requested page is

loading.

An Ajax application eliminates the start-stop-start-stop nature of interaction on the

Web by introducing an intermediary — an Ajax engine — between the user and the

server. Instead of loading a web page, at the start of the session, the browser loads

an Ajax engine — written in JavaScript and usually tucked away in a hidden frame.

This engine is responsible for both rendering the interface the user sees and

communicating with the server on the user’s behalf. The Ajax engine allows the

user’s interaction with the application to happen asynchronously — independent of

communication with the server[7].

26

Figure 4: Classic web application model

Following is based on my personal experience. The images were inspired by the

article in [7].

In a classic web application model (synchronous model) the client browser will send

a HTTP request and starts to wait for the response. This is illustrated in Figure 4. The

client is not able to perform any other activity while waiting for the response. The

whole web page (or frame) is redrawn with each request-response cycle. When the

web page is complex and contains many different sections each containing a set of

information, this means that the server will have to process all of those sections for

each request. This will lead in increased server load. The server will have to

reprocess each section of the page even if it is not necessary.

An example of this could be a web store application. The sections on the page in this

example are the navigation tree containing the product categories, the user's

shopping cart and the list of items in the selected category. User selects a link on the

product list in order to view some detailed information about the product. The request

is then processed by the server. It has to read the categories from the database (or

from memory if they are cached) and print the navigation tree on the page. Next it

has to fetch the user's shopping cart from the session scope and print the contents of

the cart. Finally it will read the product information from the storage and prints the

information of the product on the page on the same position that previously contained

the product listing.

In fact two out of three steps illustrated above are unnecessary. The position in the

navigation tree has not changed in any way. The contents in the navigation section of

the page are the same as before. Also, the user has not added anything in to the

shopping cart so the contents of the cart have not changed. All the work that has

been done to print these sections on the page is redundant.

In an Ajax web application model (asynchronous model) clicking on an element on

the page issues a Javascript event which is processed by the Ajax engine. The

engine will construct a HTTP request and sends it to the server in the background.

This is illustrated in Figure 5. The control is returned to the browser page practically

immediately and this will go unnoticed by the end user. The Ajax engine will bind a

callback function on the HTTP request so that when the server returns the response,

27

that callback method is executed. The function call contains the response contents as

a parameter. In the callback function a part of the current web page is replaced with

the contents of the response. Rest of the current page is left untouched.

Referring to the previous web shop example, in this case only the section that

previously contained the product listing is now replaced with the details of the

selected product. The web server had to only perform the last step out of three in the

previous example. This will reduce the server load significantly when the number of

simultaneous requests increases. Second advantage in this model is that the user

interface feels more responsive to the end user. Each click on the web page will not

issue a complete refresh of the page and the user does not need to wait for the

response. Instead, the user is now free to click some other element on the page

which would then trigger a new Ajax call and would be processed by the Ajax engine

concurrently with the other ones. For example the user could first select an element

to view some product details and while that request is still being processed, in the

meantime could empty the shopping cart. Both of these requests would update their

respective sections on the page after the response is received independently of each

28

Figure 5: Ajax web application model

other.

 3.5.1. An Ajax example

In practice the updating of different sections of the web page is usually based on the

id-attributes of the related HTML elements or the relational position of the elements in

the document object model (DOM) tree.

1. <div id=”mainContent”>
2. <div id=”productList”>
3.
4. <li onclick=”showItem(1);”>item1
5. <li onclick=”showItem(2);”>item2
6. <li onclick=”showItem(3);”>item3
7.
8. </div>
9. </div>

Table 10: Product listing section
The product listing HTML source for the example that was discussed above is listed

in Table 10. The page contains a div-element with an id attribute mainContent. The

elements in the product list have an onclick event handler and clicking on one of the

elements will call the showItem() function.

1. function showItem(id) {
2. new Ajax.Updater('mainContent', '/path/to/showProduct?id='+id, { method: 'get' });
3. }

Table 11: Ajax function
The source of the showItem() function is listed in Table 11. In this example a

Javascript library Prototype[14] is being used. There are many other Ajax-enabled

Javascript libraries but Prototype was selected just as an example. All the showItem()

function does is that it defines which HTML element to update (here it's the element

with id mainContent) and an URI where the request should be sent to. The Ajax

engine will send the request to the defined address and after receiving the response,

updates the contents of the defined element.

1. <div id=”productDetails”>
2.
3. item name
4. item description
5. item price
6.
7. </div>

Table 12: Ajax response
The contents of the Ajax response is listed in Table 12. The response contains only

29

the part of the page that goes inside the element that is being updated.

 3.6.Java Server Faces

As defined in JSR 314, “JavaServer Faces (JSF) is a user interface (UI) framework

for Java web applications. It is designed to significantly ease the burden of writing

and maintaining applications that run on a Java application server and render their

UIs back to a target client” ([4], chapter 1).

JSF is unlike other web frameworks because it's not a library, but rather a

specification for a library. It's developed in the Java Community Process (JCP) and

included in the Java EE platform of specifications. Currently, it's being worked on as

Java Specification Request (JSR) 314, though the foundation was laid for JSF in JSR

127 and later improved on in JSR 252[10].

Compared to other common web UI frameworks, JSF is an event driven model.

Developing a JSF application resembles more the traditional application UI

development than the request-response model used with other frameworks. The JSF

components emit events based on user actions. These events are processed by

components that have registered themselves as the event listeners. JSF contains a

set of basic user interface components and it allows the creation of new components

by application developers.

 3.6.1.Request life cycle

Following is based on the information in [9], chapter 1 and [4], chapter 2.

The request lifecycle in a JSF application differs from the usual request-response life

cycle seen with common web applications. The JSF specification defines six distinct

phases in the life cycle. These phases are shown in Figure 6.

Restore View phase retrieves the component tree for the requested page. If they do

not exist, they are created. If the page has been requested before by the same client,

all components are set to their prior state. This way JSF application will retain

information of forms and other web components. If the request has no query data,

the execution will skip directly to Render Request phase. Otherwise, Apply Request

30

Values phase is executed. Here the request data values are stored to the

components where they belong. In Process Validations phase the previously

assigned request values are validated and converted. The validation phase uses

converters to convert the incoming string values to the correct field values and

validators to check the sanity of desired fields. For example the validators could

check if an email field or a phone number contains a valid value. If validation fails the

execution will skip to Render Response phase. In Update Model Values the

converted and validated values are set in the beans that are wired to the

components. Next the Invoke Application phase will execute the core business logic

of the application. This is where the real work is performed. The corresponding

components action() method is called. Finally the response is rendered in the Render

Response phase by a JSP page.

 3.6.2.Managed beans

All data that is accessible for from the page is done through beans. Beans are the

bridge between the display layer and the business logic. All data that is printed on the

page is read from a bean and all data that is sent back to the server is bound to a

bean. These beans are connected to the JSF application components. The beans are

defined in faces-config.xml file. When calling the value of such bean on the page

using a page component, the bean instance is automatically injected (and created if

doesn't exist) to the component. An example of reading and writing the value of a

bean is presented in Table 13 ([9], chapter 2).

31

Figure 6: JSF phases

1. <!-- This will print out the value from user.firstName property -->
2. <h:outputText value=”#{user.firstName}”/>
3.
4. <!--
5. This example prints a HTML input field where the initial value is
6. read from the user.firstName property and stored to that same property
7. when the form is submitted
8. -->
9. <h:inputText value=”#{user.firstName}”/>

Table 13: Manipulating a bean property
The binding of a submitted value is automatically performed by the JSF framework

during the Update Model Values phase.

 3.6.3.Navigation rules

JSF navigation rules are specified in the faces-config.xml file. This file defines the

view names and the transitions between different views. An example of the file is

shown in Table 14 ([9], chapter 3).

1. <?xml version=”1.0”?>
2. <!DOCTYPE faces-config PUBLIC
3. "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
4. "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">
5. <faces-config xmlns="http://java.sun.com/JSF/Configuration">
6.
7. <navigation-rule>
8. <from-view-id>/login.jsp</from-view-id>
9. <navigation-case>
10. <from-outcome>Success</from-outcome>
11. <to-view-id>/welcome.jsp</to-view-id>
12. </navigation-case>
13. <navigation-case>
14. <from-outcome>Error</from-outcome>
15. <to-view-id>/login-fail.jsp</to-view-id>
16. </navigation-case>
17. </navigation-rule>
18. <navigation-rule>
19. <from-view-id>/welcome.jsp</from-view-id>
20. <navigation-case>
21. <from-outcome>Logout</from-outcome>
22. <to-view-id>/login.jsp</to-view-id>
23. </navigation-case>
24. </navigation-rule>
25. …
26. <managed-bean>
27. <managed-bean-name>user</managed-bean-name/>
28. <managed-bean-class>com.some.company.User</managed-bean-class>
29. </managed-bean>
30. </faces-config>

Table 14: Sample navigation rules
Here is shown a simple mapping between the login page and the welcome page. As

can be seen, the configuration file for just this small example is quite long and editing

the configuration manually becomes complicated soon after only a few views are

added.

32

 3.7.Seam

Seam is a powerful open source development platform for building rich Internet

applications in Java. Seam is developed by the JBoss community. “Seam integrates

technologies such as Asynchronous JavaScript and XML (AJAX), JavaServer Faces

(JSF), Java Persistence (JPA), Enterprise Java Beans (EJB 3.0) and Business

Process Management (BPM) into a unified full-stack solution, complete with

sophisticated tooling” [15]. It is another web application framework that combines

several other frameworks together and it attempts to simplify the development of a

JSF application.

 3.7.1.Entity beans as managed beans

Seam makes it possible to use EJB3 beans directly as managed beans on the

pages. With plain JSF it was necessary to create the code that glues the EJB3

persistent beans to the backing beans since the managed beans are configured in

the faces-config.xml file and created by the JSF framework. That is why they can not

be directly the entity bean instances. With Seam the EJB3 bean class can be

annotated so that it is recognized by the Seam framework and it is available on the

page without the additional wrapper code. A sample entity bean with Seam

annotation is presented in Table 15 ([6], chapter 3).

1. @Entity
2. @Table(name=”USERS”)
3. @Name(“user”)
4. public class User implements Serializable {
5. private String username;
6. private String password;
7.
8. public void setUsername(String s) { username = s; }
9. public String getUsername(){ return username; }
10. public void setPassword(String s) { password = s; }
11. public String getPassword(){ return password; }
12. }

Table 15: Sample Seam entity bean.

 3.7.2.Conversations

In normal Java web application there are five different scopes available as described

33

in Chapter 2.4. Seam adds a new scope called Conversation scope. A conversation

will group together several requests in a session. Each session may have several

concurrent conversations running, and a conversions can be nested inside each

others. This enables the web store application to have for example two different

shopping carts and processes for the same user. The user may switch between the

carts independently of each other and the state of the cart is maintained while user is

managing the other. The relation between the session and requests and

conversations is shown in Figure 7 ([6], chapter 4).

 3.7.3.Bijection

Several frameworks (like Spring) make use of a concept called dependency injection.

It automatically inserts the property values of a bean. Seam's bijection model

expands on this basic injection concept in a few ways. It supports the normal

injection as well as what Seam calls an outjection. This means that a component may

export its value out to the surrounding context and insert to another bean. Second

difference is that usually the injection happens only once, before the component is

invoked. In Seam the bijection is done on each invocation of the component. This

allows the components to be stateful and their state can change during the process.

A bijection sample is displayed in Table 16 ([6], chapter 3).

34

Figure 7: Relation between session, conversation
and request

1. @Stateless
2. @Name(“userBean”)
3. public class CustomerBean implements ICustomerBean {
4.
5. @In(value=”Customer”, required=false)
6. @Out(value=”#{order.customer}”, required=false)
7. private Customer customer;
8.
9. newCustomer(){
10. …
11. }
12. }

Table 16: Bijection example
In the above example the EJB method newCustomer() creates a new customer

instance. After it is created the value of the newly created customer is outjected as a

value in order bean's customer property.

35

 4. CONTENT MANAGER

 4.1.Background

Ambientia Content Manager is an in-house developed CMS application. It has been

actively developed for over 8 years while the basic technology on which it is based

has not changed. New techniques have been introduced to some parts of the

application (like Hibernate) during these years, but on the whole the basic technology

has remained. It has been implemented using Java Servlets with Apache Velocity

and JSP page templates. The application has not been completely rewritten during its

lifetime. Instead, a new version has always been developed from the previous one in

an iterative process. This application is offered to clients as a licensed application

and it comes as a part of the deal including support and maintenance contracts.

There is always a customization project involved and as a result the client gets a

modified version of the application which contains the desired additional functionality.

Due to the customizations made in project teams to the main product, a later upgrade

to new CM version may not be a drop-in replacement but requires a new project

altogether.

New stable version of the application is released internally after a development cycle.

Major releases are scheduled once every one or two years and minor patch releases

are introduced as required.

 4.2.Current design

Content Manager contains two main Servlets. Administration Servlet is called the

Core and public web-page Servlet is called the FrontEnd. The basic functionality is

the same for both of these Servlets. They manage the authorization, navigation and

36

data model and pass the execution to the Velocity templates which render the final

web page.

Content Manager Servlets handle the basic request processing. The main business

functionality is implemented using customizable modules. Each page in the

navigation is handled by some module. For example there is a module for basic

single column page (where the text contents of the page is displayed in one column)

and another for a page with multiple columns. Form Designer module is used to

design simple web-forms and it handles the submitted data of these forms. Bulletin

Manager maintains a set of bulletin areas which contain a number of bulletin

messages.

37

Figure 8: Content Manager core functionality

All these modules can be enabled or disabled from the system using the

administration application. Each module provides its own administration views and

public views. A module basically reads information from the database according to

request parameters and inserts the resulting objects into request context with

specific keys. These objects are then available to the Velocity templates that render

the resulting page.

Most modules in Content Manager implement a CommandModule interface. This is a

module framework that is used as a base for several built-in and custom modules.

Basic idea is that the request contains a parameter named command. This parameter

is mapped to a command class that is managed by the module. This allows the

module to have all of the commands cleanly implemented in separate classes. This

way the size of the actual module class is minimized. The only code required is the

part where all available commands are registered to the CommandModule base

class.

After the module has inserted the required objects to the request context the request

execution passed to the module specific Velocity template. All page templates use a

common layout template which includes a header and a footer sections on the final

page. The module specific template inserts its output to the middle of the page to a

predefined position.

38

Figure 9: CommandModule
structure

 4.3.Problems with current design

Current Content Manager is difficult to maintain and develop since the code it is

based on is old. The system has never been completely rewritten and new features

have been added on top of old functionality. The two main Servlets handle many

tasks from authorization to navigation handling among other request preprosessing

before the execution is passed to the modules that implement the page specific

tasks. Second major drawback in the current system is the old database

management code. Most of it is concentrated in one DataProvider class which

executes all database queries and returns their results. The database accessing

code is written specifically for MySQL database. Moving to a different database

engine is quite impossible since the amount of code in the DataProvider alone is

enormous. The DataProvider class has over 3000 lines of code in tens of methods.

The whole product is heavily based on this one class and its functionality.

Some of the modules, especially newer ones, use Hibernate to abstract the database

procedures from the business logic and therefore they are database engine

independent.

In each customer project there is a need to customize the base product. These

changes include the page templates, customizing an existing module or creating a

39

Figure 10: Velocity page template
structure

completely new module.

The lack of general interfaces in the core of the product leads in to a situation where

it is necessary to modify the core directly in customization projects. As a result each

customization project and the resulting system is strictly bound to a specific version

of the product. Upgrading the base product is not possible without setting up a whole

new upgrade project. Depending on the amount of features and the level of

customizations done previously, it may be too expensive for the client to upgrade.

From business point of view, this may lead to short spanned client relationships with

several of the small customers. Bigger clients have larger budgets and may well

accept the cost of upgrade.

Since the customized code is bound to a specific version of the base product, the

code is not portable. Custom code developed for some client may not fit directly to

some other project even if the base product versions are the same. Time is wasted

when making the same changes to the base product over and over again. Project

throughput is lower when compared to a situation where the code could be reused

directly across different projects.

40

 5. USING SEAM WITH CONTENT MANAGER

 5.1.Scope of the thesis

Work done in this thesis consists of design and implementation of functionality listed

below. The result is a working service which will not be ready for use in production

systems, but will be a proof of concept and it will be evaluated whether it is a viable

alternative for further development.

The first part of the work is to create the components necessary to enable category

navigation within a Seam application. The category hierarchy is managed and

maintained by Content Manager administration application and resides in a

database. Seam application needs to read that information from the database and

print it on the displayed page. The navigation needs to be fully functional i.e. the links

in the navigation tree need to be live links rendered by the service and they should

reflect the state of the hierarchy in the administration application. Externally the links

generated by the service should reflect the navigation path inside the service. The

links should contain all parts of the path in clearly readable format just like in the

existing system.

The second part of the work is to use some pre-existing code from Content Manager

in the new Seam application. Here a Bulletin Manager 2 (BM2) module was selected

because it is quite new, well packaged and uses Hibernate object-relational-mapping

technology for the persistence functions. The Seam application needs to list the

headlines of BM2 messages on the page. From the displayed list it should be

possible to select any message and the contents of that message should then be

displayed on the page.

The third part of the work is to include Ajax features on the page so that the message

41

list is continuously displayed on the page while different messages can be selected

and viewed on the other part of the page. The message should be loaded on the

display area asynchronously using the Ajax features provided by Seam and related

components.

Fourth part is to implement a tag with given tools (Facelets). The tag should

implement some generic task. The tag code must not have relations to any external

components but has to be reusable and portable. Here the specific task is to render

HTML Meta tag elements to the resulting page. The tag will print out the name and

value of the given tag attributes or key-value pairs of a given map.

Fifth part is to come up with a solution so that these components can be used easily

in the development process of a customer project. There should be no need for any

low level coding as the developer might not be familiar with all the technologies

involved in the process. Here the solution was to use Eclipse IDE snippets definitions

to include specific code sections with configurable attributes on the resulting page. All

the developer needs to know is what the section does and the possible values of its

attributes.

 5.2.Development environment

The development tools and application servers that were used in the project were:

•JBoss AS 4.2.2 application server

•Seam 2.0.0 JSF framework

•Elipse Europa version 3.3.1.1 integrated development environment

•JBoss Tools plugins for Eclipse IDE

 5.3.Implemented components

The Seam application will resolve the correct navigation category based on the

information contained in the request. The matching navigation path is searched from

the database category structure and the request is forwarded to a page which will

42

render the contents of that category. On the page the category structure is printed as

a list of links that represent the navigation tree in the system. The bulletin message

that match the selected category is searched from the database and the contents of

the message are displayed on the page after the navigation tree. The components

that implement this set of functionality are introduced in this section. The detailed

inner workings of the system is explained in the next section.

net.ambientia.seamspike.webapp.SeamPathFilter
SeamPathFilter is responsible for translating the external URI representation to

internal URI and forward the execution to Seam framework. The filter will search for a

category in the navigation database that matches the requested URI path and based

on that category the execution is forwarded to the correct page.

This filter has similar methods as a standard Servlet filter (as defined in

javax.servlet.Filter interface) but is not managed by the underlying Servlet container.

It is created and managed by Seam framework. The filter is not configured in

standard web.xml definition file, but the configuration is given as annotations in the

class source file. Seam recognizes these annotations and loads the filter as part of

the filter chain at application startup.

If the filter was implemented as a standard ServletFilter Hibernate could not be used

since the Hibernate transaction does not exist at that stage.

net.ambientia.seamspike.webapp.NavigationBean
NavigationBean handles the loading of navigation hierarchy tree from the database

using Hibernate. This bean is used to fetch the root category from the service and

using that root it is possible to print out the whole category tree on to the page. This

bean will return an instance of CategoryBean. The NavigationBean will cache the

contents of the database for one minute so changes made to the navigation structure

with the administration application are delayed up to one minute until they are visible

in the Seam application.

One bean instance is initialized at startup by Seam and it will reside in APPLICATON

scope throughout the whole application life cycle.

net.ambientia.seamspike.webapp.CategoryBean
This is a wrapper class for CMCategory entity bean. This bean will provide methods

for creating external navigation link paths that are displayed on the page. This class

43

is used by the SeamPathFilter for resolving the correct path where the execution

should be forwarded. All bean instances hold a reference to their parent category

(except root which has no parent) and to all their child categories thus enabling

category traversal to all directions from any category.

net.ambientia.seamspike.entity.CMCategory
This is an entity bean which represents one entry in the navigation database table.

Here only the relevant columns from the database table are gathered as values of

the bean. Only a read-only access is provided for the fields so all modifications are

performed through the administration application and write operations are denied.

net.ambientia.seamspike.session.BulletinMessageList
This is a Seam specific manager bean class which is responsible for listing Bulletin

Manager 2 messages from the persistent storage. The list of messages is searched

with EJBQL query. A CategoryBean instance is injected into this bean by Seam and

the resulting message list is narrowed with the id of that bean. Only messages that

are related to a specific category are returned.

net.ambientia.seamspike.session.BulletinMessageHome
A Seam specific manager bean that will fetch one Message entity bean instance from

the database. This class is used when displaying the contents of a message on the

page. ID of the selected message is injected into this class by Seam from a request

parameter.

net.ambientia.seamspike.webapp.tag.MetaTag
This tag will print out HTML META elements given a map of key-value pairs or two

attributes where the first one is the key and second is the value.

 5.4.Functional description

This section will describe the different stages when processing a request in the

service. The request processing sequence is illustrated in Figure 11. Here only the

components relevant to this project are included and the inner workings of Seam,

JSF and Hibernate are described only on general level. The figure illustrates a

request when the request does not contain a message ID but only lists the navigation

tree and message headlines on to the page.

44

SeamPathFilter
This filter will receive a request that contains a request URI of form /path/to/category.

This is called the external navigation path. The filter will search for a matching

category from the database and it is inserted to REQUEST context. The category is a

CategoryBean instance. The request URI is then modified by the CategoryBean

instance so that the request processing is forwarded to the correct page. In this case

all requests are forwarded to URI /bulletinList.seam which will make Seam execute a

page called bulletinList.xhtml. It is possible to execute different pages for different

types of categories by changing the functionality in CategoryBean, but here it is

sufficient to forward all requests to the aforementioned page.

Session beans
Session beans extend the classes provided by Seam framework and most of the

functionality is handled by the super classes. These bean override only appropriate

methods in order to gain control of the returned object types. Some fields in these

beans take advantage of the injection properties of Seam framework where Seam

will inject a value of a request parameter or instance of bean directly as a value of an

instance variable. This functionality is controlled in the class source files with

annotations.

Database
This application uses directly the database of ContentManager to read the navigation

45

Figure 11: Sequence diagram of request processing

hierarcy and Bulletin Manager 2 messages. Care has been taken to provide only

read-only access to the database since all modifications are made with the

administration application. Also due to the structure of category table in the database,

there are columns that are not relevant to this project and are not read.

The database connection is configured in JBoss application server and the

connection is wrapped as a Datasource. This is all done by the application server.

Then Hibernate is configured to use that data source. Also Hibernate is pointed to

use the entity bean configuration found ready in Bulletin Manager 2 libraries.

Hibernate is said to have a persistence unit after these are set. Seam needs an

EntityManager that uses an EntityManagerFactory that uses the above persistence

unit configured in Hibernate. The above process is illustrated in Figure 12.

46

Page templates
Page templates are implemented using Facelets technology. It is the standard layout

language distributed with Seam. Seam provides many JSF tag libraries and they are

introduced at the start of the template with xmlns declarations. There is one template

file which contains the general page layout. That template file is included to the final

page by other templates.

In this project there is only one main template called bulletinMessage.xhtml. It will

47

Figure 12: Database connection stack

print out the navigation tree and message headlines. Also the selected message is

displayed by this page.

Navigation
Navigation tree is rendered recursively on the template file starting from the root

element which is got from NavigationBean. The rendering is performed by Tree-tag,

one of tags provided by RichFaces tag library.

Displaying a message
When a link is selected from navigation tree, a request is sent to the server. The

request contains the ID of the selected category as a parameter and that value is

injected to BulletinMessageList manager bean. List of message headlines that

belong to the selected category is printed on the page using the list method in the

manager bean.

Selecting a message headline from the list of messages, a request is sent to the

server. It contains the ID of the selected message and the value is injected to

BulletinMessageHome manager bean. Then the message object is available on the

page template by calling the method in the above bean.

AJAX features
The provided RichFaces and Ajax4jsf tag libraries provide AJAX functionality out of

the box. There is no need to write any JavaScript code on the client and no code on

the server to support these asynchronous calls. All this is handled automatically by

the libraries. The functionality is controlled simply by adding the appropriate tags to

the page template.

In this project the selected message contents are displayed on the page with Ajax

enabled elements. Selecting a message from the headline list triggers an Ajax

request on to the server and the response contains the XHTML markup snippet

which is inserted as a value on the page element.

Tags
Custom tag was created which will print simple HTML META tags on the page. The

implementation of such tag was complicated. First the tag identifier is written on the

page by the developer. In this case the tag name was meta under the ss namespace,

hence ss:meta. Then the matching class Metatag is called which will insert the given

attributes to the related component UIMetatag. Then a MetatagRenderer is used to

48

print the values of the component out to the resulting page. In addition to this

complicated class interdependency the component and the renderer have to be

defined in faces-config.xml file and the tag class has to be defined in the taglib.tld file

and also in a taglib.xml file where the component type is introduced to the Facelet

engine. Three classes and three configuration files have to be created or modified for

each new tag that is created. Seam does not help in this task and everything is JSF,

JSP and Facelet specific and standard way to implement tags.

49

Figure 13: Class structure of a custom tag

 6.ARCHITECTURAL ANALYSIS AND RESULTS

 6.1.Architectural analysis

The architecture of the implemented application will be analyzed using ATAM,

Architectural Tradeoff Analysis Method. The method is used by creating a scenario

that has some effect on the architectural environment. The response of the

architecture for this effect is analyzed. After this a risk analysis and an estimation

about the cost of moving to this architecture are made. Information in this chapter is

based on [12].

First step in ATAM is to generate a Quality Attribute Utility Tree. This tree is

represented in table form below.

Quality attribute

requirement

Scenario Importance/
Difficulty

(high/
medium/
low)

Solution Risk analysis

Ease of
development

Implement multisite
feature

H/M Implement a multisite
service.

Risk: Changes to different components
depend on each other. This makes the code
hard to maintain.

Cost of
development

Move existing
customer case to
new application.

H/H Use old custom code
with new platform

Risk: Technology is completely new inside
company. Developers are inexperienced with
this and can not perform the task. Cost of
training 20+ developers to new technology is
too high. Only a few developers are suited to
this task. Workload on these developers
would be too high.

In this analysis an assumption is made that the whole ContentManager is already

implemented using Seam. The scenarios are based on two different quality attributes.

One is the ease of development. The company's business is based on customer

cases and the ease to implement new functionality on top of existing code is a key

50

attribute.

Second quality attribute is the cost of development. This includes the cost of training

and time spent on customer development projects. Hiring new more experienced

developers that can manage these techniques can be seen as a development cost

too.

 6.1.1.Implementing a multisite feature

Multisite feature means that the same application will serve multiple websites from

the same database. The navigational structure in the application is divided for each

multisite so that each site has its own section in the structure. The request is directed

to the correct site based on the incoming request's Host-header.

This creates changes to the navigation parsing filters. The request processing bean

may need to know which site it is serving in the multisite environment. This may

affect the localization information that the module needs to attach to the request

context. The page templates need to know under which site they operate for the

current request. The template file itself is the same for each site and it may be

necessary for the page to render some page elements in different order for different

site. This creates changes to the data model that is passed to the page template.

Solution to this would be a Multisite Service that will manage this information in a

centralized way and different parts of the application may access this service

separately.

Due to the amount of changes that are required to different parts of the application, it

makes the code hard to maintain. The changes depend on each other and later

changing one part of this feature, will affect all other parts of the code as well. The

components involved are a Filter, a Module and a Facelet template. Code-wise these

components have nothing in common.

Later development of Multisite Service will propagate changes to all components in

the application.

51

 6.1.2.Move existing customer case to new application

It is extremely important to be able to transfer existing customers application and its

customized functionality to the new platform. Otherwise the customer relationship

would end and company would not be able to make further business with the hard

earned customer. This longevity in customer relations is a key factor in company's

success. The company will make profit if the price paid by customer for an application

exceeds the development costs of such application. The development cost is a key

requirement when evaluating the architecture.

Moving existing customer case to new application involves implementing all the

features made in the old application on top of the new one. There are several risks

that can be identified in this case. Only few of the current developers are able to do it.

Training all developers to be experts in this technology is almost impossible.

Recruiting new developers could be a solution, if there was any to be found.

Assigning these tasks to the few current developers will lead to increased work loads

and ultimately will risk losing them altogether after they decide to leave the company.

 6.2.Results

As a result of the implementation phase, the system was able to read the navigation

hierarchy from Content Manager database and display it on the page using a

dedicated Tag. The page was managed by Bulletin Manager module. The selected

Bulletin Area was displayed along with the messages that belong to that area. The

message titles were displayed as a list and clicking on those links opened the

message body below on the same page using AJAX. Finally some Eclipse IDE code

snippets were created to experiment with easy code insertion to an existing page

template.

The implementation was reviewed by the supervising developer from Ambientia. The

overall concept was reviewed by company management. They decided that the

technological effort in this case was too much for standard developers to adopt. The

system is not overall very flexible and relies heavily on XML configuration and

definition files. Maintaining these files is hard for inexperienced employees.

52

The amount of new technology is enormous in this case. Switching from a simple

MVC pattern to JSF is hard even for experienced developers not to mention more

inexperienced ones. Company of this size can not afford the cost to educate all

employees to be experts in this kind of technology. Furthermore it is hard, if not

impossible, to find anyone who has enough knowledge about these techniques to be

qualified to educate others in the first place. The ease of coding did not meet

demands. Creating a simple Facelet tag required several Java source files and

multiple XML definition files. In this case only one single Content Manager module

was ported under Seam framework. The work was left for several other modules, all

of which are at least as demanding to implement than the Bulletin Manager module.

Several older modules rely heavily on the core code in the system and are not as

easily extracted and ported to other systems.

Also work was left to integrate all other core functionality to the Seam version. These

include user authentication, authorization. Even if the missing functionality was

integrated to the Seam version, this would lead to a situation where resources are

needed to maintain two separate systems. When ever new features would be

implemented to the administration side of the system (old Content Manager), the

changes propagate to the new Seam public side. All this is extra work and the

process is prone to errors. Amount of testing required is doubled.

Eclipse snippets were not accepted as a working solution to easy code insertion

mechanism. It was judged as being too clumsy. Also it is not possible to manage the

snippets in SVN repository and automatically deploy changes made in the repository

version to all employees local environment. The changes have to be inserted

manually to the system. This leads to a situation where the developers have different

versions of the snippet library on their local machines and may interfere with each

other.

53

 7. CONCLUSION

Seam is not the solution when trying to simplify development with Content Manager.

It relies too heavily on enterprise Java frameworks. Since the existing Content

Manager does not contain for example any EJB3 beans, it is not feasible to start

porting existing code to support any of those. The resulting system would be just split

in to two completely separate systems that still would depend on each other.

JSF framework is hard to adopt for persons that are accustomed to simple MVC

pattern frameworks. The underlying request life cycle has to be understood before

any coding takes place. The amount of XML configuration files is too large. It was

never clear to me where JSF ends and Seam starts. Facelet page templates did not

provide any additional value compared to current Velocity pages in terms of

simplicity. Velocity macros accomplish the same as Facelet tags, but require no extra

Java source code and there is only one file where the macro is defined.

The world of Java web application frameworks is moving fast. There are tens of

different frameworks that are actively developed. Most of them are licensed under

open source licensing. They differ from each others in that some are more mature

than others. Massive amount of work would be required in order to evaluate them all.

There is a risk involved when changing technology on which the company's product

is based on. Prototyping and evaluating these platforms is required in order to

determine if a specific framework or technique is appropriate for the given situation.

In this thesis Jboss Seam framework was evaluated if it could be used to speed up

the development of customer projects that are based on in-house Content Manager

product. After implementing a simple application which used existing code base from

the Content Manager and reviewing the results, the conclusions were made that

Seam does not suit the current system.

Company management will evaluate the options regarding ContentManager and its

54

future. These options are to determine if further evaluations with other frameworks is

required. The choice of the framework candidate is made by the lead developers of

the core product. One option is to maintain current Content Manager development as

before. This will tie up company resources for each iteration when new functionality is

developed for the new version. Also this requires new testing rounds for the whole

product. Current customers' product upgrades is another time consuming process.

Another option is to stop active development of the in-house product and start using

some third-party software in future projects. Due to the large amount of support and

maintenance contracts with existing clients, it is not possible to completely drop the

old Content Manager but the focus could be moved away from it. Problem in this

scenario is that the alternative platform has not been found. It should be cheap,

preferably open source, customizable and well documented so that it could be taken

in to wide scale use throughout the company.

55

 8. REFERENCES

[1] Rinat Abdullin, Inversion of Control – IoC, http://abdullin.com/wiki/inversion-of-

control-ioc.html , 10.3.2010

[2] Subrahmanyam Allamaraju, Daniel O´connor et. al., Java Server Programming

J2EE 1.3 Edition, 2001, 1-861005-37-7

[3] Emmanuel Bernard, Hibernate Annotations, Reference Guide,

http://docs.jboss.org/hibernate/stable/annotations/reference/en/html/index.html,

15.4.2010

[4] Ed Burns, Roger Kitain, JavaServer™ Faces Specification, Version 2.0, JSR-

314, 2009

[5] DocForge, An Open Wiki For Software,

http://docforge.com/wiki/Web_application_framework , 5.3.2010

[6] Jim Farley, Practical JBoss Seam Projects, 2007, 1-59059-863-6

[7] Jesse James Garrett, Ajax: A New Approach to Web Applications,

http://www.adaptivepath.com/ideas/essays/archives/000385.php , 5.3.2010

[8] Hibernate.org, http://www.hibernate.org/ , 15.4.2010

[9] Cay S. Horstmann, David Geary, Core JavaServer Faces, 2007, 978-

0131463059

[10] JavaServer Faces.org, http://www.javaserverfaces.org/ , 17.4.2010

[11] Rod Johnson, Arjen Poutsma et. al., Spring Framework – Reference Manual v.

2.5.6, http://static.springsource.org/spring/docs/2.5.x/reference/index.html ,

10.3.2010

[12] Kazman, Klein, Clements, ATAM:Method for Acrhitecture Evaluation, 2000

56

[13] Gavin King et. al., Hibernate Reference Documentation,

http://docs.jboss.org/hibernate/stable/core/reference/en/html/, 15.4.2010

[14] Sam Stephenson, Prototype JavaScript Framework,

http://www.prototypejs.org/ , 5.3.2010

[15] SeamFramework.org, http://www.seamframework.org/ , 17.4.2010

[16] Inderjeet Singh, Beth Stearns, Mark Johnson, and the Enterprise Team,

Designing Enterprise Applications with the J2EE Platform, Second Edition,

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/

, 5.3.2010

[17] Sun Microsystems, JavaServer Pages™ Standard Tag Library, version 1.0,

http://www.jcp.org/aboutJava/communityprocess/final/jsr052/, 20.5.2010

[18] Sun Microsystems, J2EE 1.4 API Specification,

http://java.sun.com/j2ee/1.4/docs/api/ , 10.3.2010

[19] Sun Microsystems, J2EE 1.4 Specification, http://java.sun.com/j2ee/j2ee-1_4-

fr-spec.pdf , 10.3.2010

[20] Sun Microsystems, The J2EE 1.4 Tutorial, 2005,

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html , 10.3.2010

[21] Walls, Breidenbach, Spring in Action, 2005, 1-932394-35-4

[22] Wikipedia.org, Hibernate (Java),

http://en.wikipedia.org/wiki/Hibernate_(Java) , 15.4.2010

57

	 1. Introduction
	 1.1. Objectives of the thesis

	 2. Java WEB-application techniques
	 2.1. Java Servlet
	 2.1.1. HttpServlet
	 2.1.2. HttpServletRequest
	 2.1.3. HttpSession
	 2.1.4. HttpServletResponse
	 2.1.5. Filter

	 2.2. JSP and JSTL
	 2.3. Web container
	 2.4. Execution scopes

	 3. Web application frameworks
	 3.1. Motivation
	 3.2. MVC framework components
	 3.3. Spring
	 3.3.1. Inversion of Control
	 3.3.2. Aspect-oriented Programming

	 3.4. Hibernate
	 3.4.1. Object-relational mapping

	 3.5. Ajax
	 3.5.1. An Ajax example

	 3.6. Java Server Faces
	 3.6.1. Request life cycle
	 3.6.2. Managed beans
	 3.6.3. Navigation rules

	 3.7. Seam
	 3.7.1. Entity beans as managed beans
	 3.7.2. Conversations
	 3.7.3. Bijection

	 4. Content Manager
	 4.1. Background
	 4.2. Current design
	 4.3. Problems with current design

	 5. Using Seam with content manager
	 5.1. Scope of the thesis
	 5.2. Development environment
	 5.3. Implemented components
	net.ambientia.seamspike.webapp.SeamPathFilter
	net.ambientia.seamspike.webapp.NavigationBean
	net.ambientia.seamspike.webapp.CategoryBean
	net.ambientia.seamspike.entity.CMCategory
	net.ambientia.seamspike.session.BulletinMessageList
	net.ambientia.seamspike.session.BulletinMessageHome
	net.ambientia.seamspike.webapp.tag.MetaTag

	 5.4. Functional description
	SeamPathFilter
	Session beans
	Database
	Page templates
	Navigation
	Displaying a message
	AJAX features
	Tags

	 6. Architectural analysis and results
	 6.1. Architectural analysis
	 6.1.1. Implementing a multisite feature
	 6.1.2. Move existing customer case to new application

	 6.2. Results

	 7. Conclusion
	 8. References

