
Aalto University

School of Science and Technology

Faculty of Electronics, Communications and Automation

Master’s Programme in Communications Engineering

Cheng Luo

Design and Implement Voice Application

over Ad Hoc Networks Using UPnP

ESPOO, May 2010.

Thesis submitted in partial fulfilment of the requirements of the

degree of Master of Science in Technology.

Supervisor: Prof. Jörg Ott

Instructor: Dr. Jose Costa-Requena

Department of Communications and Networking

Espoo 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

This Master’s thesis has been written during my study in Networking Labo-

ratory at Helsinki University of Technology under the supervision of Professor

Jörg Ott.

I would like to express my gratitude to Professor Jörg Ott for his guidance

and support. Without him, I would not get this far. Dr. Jose Costa-Requena

has reviewed and provided a lot of valuable comments on my thesis. I want

to give my special thanks to him for many weekends that he spent on reading

my thesis.

Finally, I would like to give my deepest gratitude to my wife Tong, my daughter

Niuniu and specially to my parents for their endless support throughout my

studies.

Otaniemi, May 2010

Cheng Luo

ii

AALTO UNIVERSITY ABSTRACT OF

MASTER’S THESIS

Faculty of Electronics, Communications and Automation

- Master’s Programme in Communications Engineering-

Author: Cheng Luo
Title of thesis:
Design and Implement Voice Application over Ad Hoc Networks
Using UPnP
Date: May 21st 2010 Pages: 11 + 65
Professorship: Networking Laboratory Code: S-38
Supervisor: Prof. Jörg Ott
Instructor: Dr. Jose M. Costa Requena

The traditional voice service was based on circuit-switched network archi-
tecture. It has been deployed on the packet-switched based network since
Session Initial Protocol (SIP) became the de facto standard for Voice over
IP (VoIP) in 1999. Since then voice service has become simple and flexible.

Another important technology driving voice service more popularity is mo-
bile Ad Hoc networks (MANET). Most of internet applications or services
such as VoIP or instant messaging (IM) are designed with client/server
architecture. This design requires the initiator of communication sessions
to know the address of counterpart prior to building a connection. With
Ad Hoc networks, there is no such requirement at all.

In this thesis, we will design an Ad Hoc architecture using Universal Plug
and Play (UPnP) protocol, and implement a simple voice application over
such network. By definition infrastructure is unavailable in Ad Hoc net-
work, we will also present the solution of how to enable SIP-based session
setup on Ad Hoc network.

This thesis consists of two parts. The first part is the theoretical part. In
this part, we will review the technologies related to our design and imple-
mentation. The second part is the system implementation and validation
part. We will test our implementation with the Nokia Internet Tablet
N810/N800s for various scenarios.

Keywords: Ad Hoc, MANET, SIP, UPnP, peer-to-peer,
Language: English

iii

List of Abbreviations

AMRoute Ad hoc Multicast Routing protocol

AMRIS Ad hoc Multicast Routing protocol utilizing In-
creasing id-numberS

API Application Programming Interface

ARP Address Resolution Protocol

CAMP Core Assisted Mesh Protocol

DDM Differential Destination Multicast

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSDV Destination-Sequenced Distance Vector

FGMP-RA Forwarding Group Multicast Protocol-Receiver
Advertising)

FGMP-SA Forwarding Group Multicast Protocol-Sender
Advertising)

FXPP Flexible XML Processing Profile

GENA General Event Notification Architecture

HTML HyperText Markup Language

HTTPMU HTTP Multicast over UDP

HTTPU HTTP Unicast over UDP

LAM Lightweight Adaptive Multicast

LGT-based Location Guided Tree

MAODV Multicast Ad hoc On-demand Distance Vector
protocol

MCEDAR Multicast Core-Extraction Distributed Ad hoc
Routing

iv

ODMRP On-Demand Multicast Routing Protocol

RTT Round Trip Time

SOAP Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

SIP Session Initiation Protocol

UPC Universal Product Code

UPnP Universal Plug and Play

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

USN Unique Service Name

UUID Universally Unique Identifier

Wi-Fi Wireless Fidelity

XML Extensible Markup Language

v

Contents

List of Abbreviations iv

1 Introduction 1

1.1 Problems . 3

1.2 Objective and Scope . 4

1.3 Structure . 5

2 SIP and Ad Hoc Network 6

2.1 Overview of SIP . 6

2.1.1 SIP Entities . 7

2.1.2 SIP Message . 9

2.1.3 SIP Transactions . 10

2.2 Overview of MANET . 11

2.2.1 History of Ad Hoc Networks 12

2.2.2 Ad Hoc Networks Routing 13

2.2.3 Multicasting in MANET 16

2.3 SIP over MANET . 17

2.4 Summary . 19

3 Peer Discovery and Service Discovery 20

3.1 Peer Discovery . 20

3.2 Service Discovery . 21

3.2.1 Service Location Protocol 22

vi

3.2.2 Jini . 22

3.2.3 Bluetooth Service Discovery 23

3.3 Universal Plug and Play protocol 23

3.3.1 Overview of UPnP . 23

3.3.2 Addressing . 25

3.3.3 Discovery . 26

3.4 Summary . 29

4 Technology Background 30

4.1 Sofia SIP . 30

4.1.1 Common Runtime Libraries 31

4.1.2 Signaling Module . 31

4.2 Cybergarage UPnP Implementation 32

4.3 GTK+ 2.0 and Hildon-2.0 . 32

4.4 Development on Maemo . 33

4.4.1 D-BUS . 33

4.4.2 LibOSSO . 34

5 System Architecture 35

5.1 System Overview . 35

5.1.1 VoIP Application . 36

5.1.2 SIP UA . 36

5.1.3 UPnP Stack . 37

5.2 Test Scenarios . 39

5.2.1 Scenario 1: An Ad Hoc node to another Ad Hoc node . . 40

5.2.2 Scenario 2: An Ad Hoc node to a fixed node 42

5.2.3 Scenario 3: A fixed node to an Ad Hoc node 44

5.3 System Implementation . 45

5.3.1 VoIP Components . 46

5.3.2 Sofia SIP Components 46

vii

5.3.3 UPnP Components . 48

5.4 Summary . 50

6 Testing and Analysis 51

6.1 Demonstration Setup . 51

6.2 Results Analysis . 53

6.2.1 Scenario 1 . 53

6.2.2 Scenario 2 . 54

6.2.3 Scenario 3 . 54

7 Conclusion and Future work 57

A Key APIs 63

viii

List of Figures

1.1 World Internet Users . 2

1.2 Growth of VoIP usage . 3

2.1 SIP server in the role of INVITE and REGISTER 8

2.2 Example of SDP session description 11

2.3 Simple SIP transactions . 12

2.4 Categorization of Ad Hoc routing protocols 13

2.5 AODV route discovery . 14

2.6 OLSR multipoint relays and regular nodes 15

3.1 Hop-by-hop Peer discovery in IP layer and End-to-end Service

discovery in Application layer 21

3.2 UPnP protocol stack . 24

3.3 UPnP architecture . 24

3.4 Example SSDP header fields 26

3.5 Example of Unicast M-SEARCH message 28

3.6 Example of Multicast M-SEARCH message 28

3.7 Example of 200 OK Response message 29

4.1 Example of D-BUS Service File 34

5.1 System Architecture . 35

5.2 Voice Application Main Window 36

5.3 Scenario 1: Ad Hoc node to Ad Hoc node 40

5.4 System Flow Chart: Ad Hoc node to Ad Hoc node 41

ix

5.5 Example of 200 OK message 42

5.6 Scenario 2: Ad Hoc nodes to fixed nodes 42

5.7 System Flow Chart: Ad Hoc node to fixed node 43

5.8 System Flow Chart: Fixed node to Ad Hoc node 45

5.9 Example of forwarding REGISTER request 46

5.10 Application Module Structure Overview 47

5.11 SIP Structure Overview . 48

5.12 SIP parser example: BYE message 49

5.13 UPnP Module Structure Overview 50

6.1 Voice Application UPnP Search Window 52

6.2 UPnP Search Results Window 52

6.3 SSDP vs. SIP packets . 53

6.4 STUN binding message . 55

6.5 SIP REGISTER message . 56

x

List of Tables

2.1 SIP status code and response class 10

2.2 SIP status code and response class 10

2.3 SDP parameters and meanings 11

2.4 Comparison of Ad Hoc multicast protocols 16

6.1 Test Environment . 51

6.2 Scenario 1 . 53

6.3 Call Setup Delay in Scenario 1 54

6.4 Scenario 2 . 54

6.5 Call Setup Delay in Scenario 2 54

6.6 Scenario 3 . 55

6.7 Call Setup Delay in Scenario 3 55

xi

Chapter 1

Introduction

The purpose of this chapter is to give a brief introduction of voice over Internet

Protocol (VoIP) technology. We will focus on the VoIP service that is deployed

over mobile Ad Hoc networks (MANET) and peer-to-peer (P2P) networks. In

this chapter, we will firstly give the background of mobile VoIP technologies.

Then we will present the problems of implementing voice service on mobile

networks. At the end of this chapter, we outline the structure of this thesis.

VoIP uses the Internet Protocol (IP) for voice transmissions. The analog voice

signal is converted into digital signal, compressed, and segmented into series of

data packages. The idea of VoIP has been discussed since early 1970s. And it

was commercialized in mid-1990s. It has several advantages compared with the

traditional telephony system. Calls using VoIP are much cheaper than using

traditional telephony system. In most cases it is free when the caller and the

callee are both connected to the Internet. Moreover, VoIP allows use to have

video conversation or IM services. Along with the increasing of the Internet

accessibility in public and private, VoIP is overtaking the traditional telephony

service and becoming the first option for the long distance communications.

According to the report [1] made by TeleGeography, the increasing rate of the

VoIP usage is faster than the usage of using the traditional circuit-switched

technology such as time-division multiplexing (TDM) shown in Figure 1.2.

With the growth of smartphone and netbook usage, the mobile Internet usage

is increasing rapidly. According to the latest report [2] made by Morgan Stan-

ley Research on the Internet trends, the mobile internet users will be bigger

than the desktop internet in 5 years shown in Figure 1.1. VoIP becomes even

more popular on wireless networks than wired networks.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: World Internet Users

Wireless networks differ significantly from wired neworks. The addressable

unit also known as station (STA) is mobile in the wireless network. The IEEE

standard 802.11 defines two modes: infrastructure mode and Ad Hoc mode.

In the infrastructure mode, the wireless network consists of at least one access

point (AP) connected to the wired network infrastructure and a set of STAs.

This configuration is called a Basic Service Set (BSS). An Extended Service

Set (ESS) is a set of two or more BSSs. The Ad Hoc mode (also called peer-

to-peer mode or an Independent Basic Service Set, or IBSS) is simply a set

of 802.11 wireless STAs that communicate directly with one another without

using an access point or any connection to a wired network. This mode is

useful for quickly and easily setting up a wireless network anywhere that a

wireless infrastructure does not exist or is not required for services. MANET

provides an alternative network for the VoIP. And it is free to use.

From the figures, we can conclude that the pattern of the voice communication

from user perspective trends to the free and flexible usage. The biggest rea-

son is that VoIP provides cheaper and affordable price compared with public

switched telephone networks (PSTN) as we mentioned early. The P2P and

MANET based VoIP telephony is threatening traditional telephony providers

and mobile network operators (MNO) because it requires less or no infrastruc-

ture from internet service providers (ISPs) or MNOs. If VoIP service provider

Skype were a carrier, it would be the largest carrier in the world.

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Growth of VoIP usage

1.1 Problems

However, VoIP is born with limitations because it is tightly coupled with

the Internet access. The Internet is not designed for voice communications.

Unlike circuit switched networks, IP networks have unpredictable packet lost

and delay. When the VoIP service runs over wireless networks, the situation

is even worse. There are several specific issues that implementation must deal

with:

1) Efficient peer discovery protocols

The Ad Hoc network which we are presenting here works as a purely dis-

tributed network. So to implement an application on a peer-to-peer network,

an efficient peer discovery mechanism is always a key issue. The peer discov-

ery algorithm for peer-to-peer network is an active researching area nowadays.

There are several widely used protocols, such as Chord [3], Distributed Hash

Table (DHT) and Pastry [3]. There are no clear findings that determine which

one has better stability, scalability and latency.

2) Using SIP in a de-centralizied network

VoIP normally use the Session Initiation Protocol (SIP) as its signalling pro-

tocol. But SIP is designed to rely on centralized components. It is difficult

to deploy such components on a de-centralized Ad hoc network. To set up a

normal SIP session on the Ad hoc network is a challenge.

3) Traverse between private networks and public networks

When using VoIP service on a private network, the network address translator

(NAT) blocks the requests from the public network because it can not map the

IP address at the application layer (e.g. SIP via header or contact header).

CHAPTER 1. INTRODUCTION 4

4) Security

There are also security problems which we have not dealt with in this imple-

mentation. But we should bear in mind that security problems are a highly

discussed area of UPnP technology and also Ad Hoc network. As the na-

ture of Ad Hoc network is to broadcast the notifying message, there are many

drawbacks for such networks.

1.2 Objective and Scope

The objective of this thesis is to design and implement a VoWLAN service

on an Ad Hoc network and study the connectivity between Ad Hoc and fixed

network. The voice client (SIP client) registers to the server (SIP registrar)

when the interconnection is detected. After the implementation, we will do

the following analysis and evaluation:

Measure the traffic load of UPnP module and SIP module to the whole Ad

Hoc network

- Scenario of communications between nodes in the Ad Hoc network

- Scenario of communications between node in the Ad Hoc network and

nodes in the fixed network

- Scenario of frequently join and leave nodes in the Ad Hoc network

Evaluate the scalability of such service based on the Ad Hoc network.

Quality of service (QoS) of VoIP application

- Time of voice connection setting up

- Testing environment of office building (end-to-end delay)

After the analysis and measurement, we wish to find a trade-off point for

our VoWLAN using UPnP. We aim to identity the proper announcement and

notify UPnP packets frequency and the timeout of device notify packets.

CHAPTER 1. INTRODUCTION 5

1.3 Structure

This thesis is divided into 7 chapters. In Chapter 2, the technologies of Ad Hoc

network and SIP are introduced. The Service discovery and UPnP protocol

are unfolded in Chapter 3. Chapter 4 and 5 are devoted to the system design

and implementation. Chapter 6 reports the measurement results and the per-

formance analysis of the VoIP application. In the last chapter, we conclude

the findings from our tests and give some suggestions for the future work.

Chapter 2

SIP and Ad Hoc Network

In Chapter 1 we have introduced the background of mobile VoIP communica-

tions and its drawbacks. In this chapter, we will unfold the SIP protocol and

the mobile Ad Hoc network (MANET) routing protocols. As we will design

an alternative way of using SIP in MANET, this chapter will go through the

theoretical part of SIP protocol and MANET which are the two interesting

areas in the multimedia P2P applications. Apparently we are not the first one

to design a decentralized P2P SIP solutions.

2.1 Overview of SIP

SIP basically is a signalling protocol for creating, modifying and terminating

multimedia sessions between two or more participants over Internet. It pro-

vides similar functions to ISDN User Part (ISUP) for Public Switch Telephony

Network (PSTN). It makes telephone calls possible on Internet comparable

to the legacy PSTN. According to RFC 3261[19], “SIP supports five facets of

establishing and terminating multimedia communications:

- User location: determination of the end system to be used for commu-

nication;

- User availability: determination of the willingness of the called party

to engage in communication;

- User capability: determination of the media and media parameters to

be used;

6

CHAPTER 2. SIP AND AD HOC NETWORK 7

- Session setup: ‘ringing’, establishment of session parameters at both

called and calling party;

- Session management: including transfer and termination of sessions,

modifying session parameters, and invoking services.” [19]

In this section, we will review some of the related SIP functionalities, such as

user location, user availability and session setup, which are used for our voice

application.

A user agent represents an end system. SIP defines two types of user agent

in each single SIP transaction: User Agent Client (UAC) which generates the

requests, and User Agent Server (UAS) which responds to them. Each SIP

transaction is initalized by a UAC sending a request to a UAS, and is alway

ended by the UAS response to the request. But if the UAS decides to redirect

the request for the next transaction, it becomes the UAC. So the role of UAC

and UAS, as well as proxy and redirect servers, are defined on a transaction-

by-transaction basis.

2.1.1 SIP Entities

As mentioned above, user agent is the basic entry of SIP. Besides user agent,

SIP also defines registrar, proxy server and redirect server. In SIP usage, some

user agents are computers, some user agents could be laptops, PDAs or SIP

phones. In some situations SIP transaction could be very complicated. In Fig-

ure 2.1, user agent (Alice) could carry multiple SIP devices, and use them at

different places in different time. It is impossible for the caller (Bob) to know

before hand which SIP device Alice is using now. So in this case, we need the

proxy server (or redirect server) to get Alice’s current SIP address-of-record

(AOR) from location service. A location server can always get the AOR from

registrar when an endpoint registers its AOR to it.

Proxy Server

For locating prospective session participants, and for making the routing dec-

sions, SIP enables an entry within SIP infrastructure called proxy servers

shown in Figure 2.1. Proxy server decides to which user agents it can send reg-

istrations, invitations to sessions, and other requests in behalf of the requestor.

In most of case, proxy server is associated with SIP transaction between two

CHAPTER 2. SIP AND AD HOC NETWORK 8

Figure 2.1: SIP server in the role of INVITE and REGISTER

different domains. The tkk.fi proxy server locates the proxy server at do-

main.mobi, possibly by performing a particular type of DNS(Domain Name

Service) lookup to find the SIP server that serves the domain.mobi domain.

In addition to DNS and location service lookups shown in Figure 2.1, proxy

servers can make flexible “routing decision” to decide where to send a request.

For example, if Alice’s SIP phone returned a 486 (Busy Here) response, the

domain.mobi proxy server could proxy the INVITE to Alice’s voicemail server.

A proxy server can also send an INVITE to several SIP devices at the same

time, for example the phone in living room and phone in kitchen. This type

of parallel search is known as forking.

Redirect Server

Redirect server is a user agent that generates 3xx responses to the requester.

Compared to proxy server, it does not generate any request by its own. Redi-

rect server responds to the client with new location information. In Figure

2.1, redirect server is getting the new AOR of Alice from location service, and

adds it to the Contact header of 302 Moved Temporarily. Another important

functionality of redirect server is to reduce the processing load on proxy server,

which improves signalling path robustness.

Registrar

Registrar is another important entity in SIP architecture. SIP offers a discov-

ery capability. SIP is using endpoint contact address for discovery. A binding

is established by the client sending REGISTER request to registrar, and regis-

trar stores the address-of-record URI from the Contact header of REGISTER

CHAPTER 2. SIP AND AD HOC NETWORK 9

message as client current address. Once a client has established bindings at

a registrar, it may send subsequent registrations containing new bindings or

modifications to existing bindings as necessary.

Location service

As defined in [19], location service(or server) is the database that contains a

list of bindings of address-of-record keys to zero or more contact addresses.

It is used by proxy server or redirect server to obtain information of callee’s

possible locations. It works as DNS in SIP networks, but does not respond to

or generate any requests.

2.1.2 SIP Message

Now we know all the entities in SIP networks. In this section, we will introduce

the characters of SIP message itself. SIP is layered protocol. It defines different

layers for the whole protocol. There are four defined layer in RFC3261 [19] for

SIP. The first layer is syntax and encoding layer which is the lowest layer. It is

responsible for message parsing. The second layer is transport layer which is

responsible for sending and receiving messages. The third layer is transaction

layer. It handles the request and retransmission. And the forth and also

highest layer is transaction user layer. It creates and processes sessions, such

as audio, video or text.

SIP is a text-based (UTF-8 encoding) protocol. It uses the same syntax defined

by Backus-Naur Form grammar(BNF) [20] as HTTP 1.1. The advantage of

text-based protocol is that it is simple and easy to understand. But it also

increases the packet size. In [21], it recommends methods to compress SIP

message headers. SIP messages can be generally divided into SIP requests

and SIP responses. SIP responses are distinguished from requests by having a

Status-Line as their start-line, shown as Table 2.1.

The start line in requests is referred to as the request line. It consists of a

method name, the request URI, and the protocol version. Table 2.2 lists all

SIP methods currently defined in [19]

As we state in the begin of this section, SIP is layered protocol, and it relies on

many underlying protocols such as Session Description Protocol (SDP), User

Data Protocol(UDP) and Stream Control Transmission Protocol(SCTP). SDP

CHAPTER 2. SIP AND AD HOC NETWORK 10

Status code range Meaning
100 - 199 Provisional(also called informational)
200 - 299 Success
300 - 399 Redirection
400 - 499 Client error
500 - 599 Server error
600 - 699 Global failure

Table 2.1: SIP status code and response class

Methods Meaning
ACK Provisional(also called informational)
BYE Success
CANCEL Redirection
INFO Client error
INVITE Server error
NOTIFY Global failure
OPTIONS Queries a server about its capabilities
PRACK Acknowledges the reception of a provisional response
PUBLISH Uploads information to a server
REGISTER Maps a public URI with the current location of the user
SUBSCRIBE Requests to be notified about a particular event
UPDATE Modifies some characteristics of a session
MESSAGE Carries an instant message
REFER Instructs a server to send a request

Table 2.2: SIP status code and response class

is one of the most commonly used protocol by SIP. SIP uses SDP to describe

its multimedia sessions, shown as Figure 2.2.

These parameters are explained in RFC 2327 [22]. Basically they describe the

properties of multimedia sessions. More parameters can be found in Table 2.3:

2.1.3 SIP Transactions

A SIP transaction consists of a single request and any responses to that re-

quest, which include zero or more provisional responses and one or more final

responses. A typical SIP transaction is described in Figure 2.3.

In the case of a transaction where the request was an INVITE (known as

an INVITE transaction), the transaction includes the ACK only if the final

response was not a 2xx response. If the response was a 2xx, the ACK is not

considered part of the transaction. So in the example we shown in Figure 2.3,

CHAPTER 2. SIP AND AD HOC NETWORK 11

v=0

o=bob 2890844526 2890844526 IN IP4 10.0.0.1

c=IN IP4 10.0.0.1

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

Figure 2.2: Example of SDP session description

Session description
v= protocol version
o= owner/creator and session identifier
s= session name
a= zero or more session attribute lines
Time description
t= time the session is active
r= zero or more repeat times
Media description
m= media name and transport address

Table 2.3: SDP parameters and meanings

ACK is not included in INVITE transaction because final response 200 OK is

received by requester. 100 Trying and 180 Ringing are the provisional responses

here. As we present in last section, provisional responses are providing the

information to the client. 100 Trying response indicates that the request has

been received and processed by the UAS. It stops the UAC to retransmit

INVITE to the UAS. 100 (Trying) response is different from other provisional

responses, in that it is never forwarded upstream by a stateful proxy.1

A transaction is always driven from a client side to a server side. The client

side is known as Client Transaction, and the server side is known as Server

Transaction.

2.2 Overview of MANET

In recent decade, Ad Hoc network has evolved from its military background

into a promised next generation network technology. The advantages of Ad Hoc

network, such as cost efficiency, fast setup time, fault tolerance and possible

better performance attracted intensive researches and studies.

1Stateful proxy and stateless proxy is not discussed in this thesis

CHAPTER 2. SIP AND AD HOC NETWORK 12

Figure 2.3: Simple SIP transactions

In 1997, the Internet Engineering Task Force (IETF) formed a working group

in routing area -MANET. The study of Ad Hoc network becomes more stan-

dardised and specified.

2.2.1 History of Ad Hoc Networks

An Ad Hoc network is a (possible mobile) collection of communications devices

that wish to communicate, but have no fixed infrastructure available, and have

no pre-determined organization of available link [10]. The history of Ad Hoc

network can be traced back of 1972 and the Department of Defence U.S. (DoD)

sponsored Packet Radio Network (PRNET), which evolved into the Survivable

Adaptive Radio Networks (SURAN) program in the early 1980’s. The project

aims to provide packet switching network to mobile battlefield elements. The

PRNET used a combination of ALOHA and CSMA protocols for media access,

and kind of distance-vector protocol for routing. The next version of PRNET,

SURAN is improved in radio devices, scalability of algorithms, and resilience to

electronic attacks. Its routing protocols are changed to hierarchical link-state

protocols.

Again, DoD continued funding the program in projects such as the Global Mo-

bile Information Systems (GloMo), and the Near-term Digital Radio (NTDR).

With the improvements, GloMo networks can provide Ethernet-type multime-

dia connection anytime, anywhere with the handhelds in the office environ-

ment. NTDR used clustering and link-state routing, and self-organized into a

two-tier Ad Hoc network. Both of GloMo and NTDR are the early stages of

Ad Hoc networks.

CHAPTER 2. SIP AND AD HOC NETWORK 13

As wireless devices are equipped with more powerful processor and larger bat-

tery capacity, the utilization of Ad Hoc network becomes easier for civilian use.

Many open issues of Ad Hoc network are being researched and standardized.

2.2.2 Ad Hoc Networks Routing

Routing protocol is the most active researching area in Ad Hoc network. There

are many Internet drafts and RFCs been proposed by MANET, such as Dy-

namic Source Routing (DSR) [11], Optimized Link State Routing Protocol

(OLSR) [12], Ad Hoc On-demand Distance Vector (AODV) [13] routing and

etc. According to the nature of routing protocols, Ad Hoc mobile routing pro-

tocols can be categorized into table-driven or proactive, and on-demand-driven

or reactive protocols shown as Figure 2.4

Figure 2.4: Categorization of Ad Hoc routing protocols

Within these variable routing protocols, AODV and OLSR are the most im-

portant MANET routing protocols and widely implemented on real routers.

AODV

AODV is developed from DSDV by minimizing the number of required broad-

casts. The route is only created on demand instead of maintaining a complete

list of routes as in the DSDV algorithm. AODV is a pure on-demand route

acquisition system. The node which is not selected for the routing does not

maintain routing information or participate in the routing table update. So

this reduces the broadcast load for the Ad Hoc network.

When a source node wants to contact some destination node and does not

have a valid route in its routing table, it will initiates a route discovery process

CHAPTER 2. SIP AND AD HOC NETWORK 14

by broadcasting a route request packet (RREQ). The source node broadcasts

RREQ packet to its neighbours shown as Figure 2.5(a), and this process is

repeated till an intermediate node is reached that has recent route information

to the destination or till it reaches the destination. AODV uses destination

sequence numbers to ensure that all routes are loop-free and contain the most

recent route information. The intermediate nodes only reply (RREP) to route

requests with latest information. Each node maintains its own sequence num-

ber, as well as a broadcast ID. The broadcast ID is incremented for each RREQ

the node initiates, and together with the node’s IP address, uniquely identifies

an RREQ. Along with its own sequence number and broadcast ID, the source

node includes in the RREQ the most recent sequence number it has for the

destination [14]. Figure 2.5(b) represents the forward path setup as the RREP

travels from the destination to the source node.

Figure 2.5: AODV route discovery

In AODV, routes are maintained as following scenarios: If a source node moves,

it has to reinitiate the route discovery protocol to find a new route to the

destination. If an intermediate node moves, its upstream neighbour notices

CHAPTER 2. SIP AND AD HOC NETWORK 15

the move and propagates a link failure notification message (an RREP with

an infinity metric) to each of its active upstream neighbours to inform them

of the erasure of that part of the route [15].

OLSR

The mechanism of OLSR is different from AODV. It operates as a table driven,

proactive protocol, i.e., exchanges topology information with other nodes of the

network regularly. Each node selects a set of its neighbour nodes as “multipoint

relays”(MPR) (N1 and N6 in Figure 2.6). In OLSR, only nodes selected as

MPRs, are responsible for forwarding control traffic, intended for diffusion

into the entire network. MPRs provide an efficient mechanism for flooding

control traffic by reducing the number of transmissions required.

Nodes, selected as MPRs, also have a special responsibility when declaring

link state information in the network. Indeed, the only requirement for OLSR

to provide shortest path routes to all destinations is that MPR nodes declare

link-state information for their MPR selectors. Additional available link-state

information may be utilized, e.g., for redundancy.

Each node in the network, for example node N2, selected a few neighbour

nodes in the network. These nodes will send node N2-packets. These selected

nodes, N1 and N6 are called MPR nodes of N2. N2 selects its MPR to cover

all the nodes that are exactly two hops away from it. In our example: N7, N8,

N9 and N4. A node which is not a Multipoint Relay can read the packet sent

from N2 but cannot forward it.

Figure 2.6: OLSR multipoint relays and regular nodes

CHAPTER 2. SIP AND AD HOC NETWORK 16

2.2.3 Multicasting in MANET

The challenge of multicasting in Ad Hoc network is the frequent node move-

ment and maintenance of group state information. The conventional tree based

multicast protocols do not work well in Ad Hoc network because they cause

excessive signalling overhead and frequent loss of packets. The tree organiza-

tion activities in MANET are more frequent compared to wired network since

the multicast protocols have to respond to the node movement in addition to

the group.

There are many multicast protocols that have been proposed for Ad Hoc net-

works. Most of them are extensions version of static multicast network routing

algorithms, such as flooding, Center Based Tree (CBT), Protocol Independent

Multicast (PIM) and Reverse Path Forwarding (RPF). Table 2.4 is a compar-

ison of different multicast protocols in Ad Hoc networks. Among them, Mul-

ticast Ad Hoc On-Demand Distance Vector (MAODV) [16] and On-demand

Multicast Routing Protocol (ODMRP) [17] are the most widely implemented

protocols.

Protocols Topology Loop-free Unicasting Periodic Flooding
Packet

Flooding Mesh Yes No No Yes
AMRoute Hybrid No Yes Yes Yes
AMRIS Tree Yes No Yes Yes
MAODV Tree Yes Yes Yes Yes
LAM Tree Yes Yes No No
LGT-based Tree Yes No Yes No
ODMRP Mesh Yes No Yes Yes
CAMP Mesh Yes Yes Yes Yes
DDM Stateless Tree Yes No Yes No
FGMP-RA Mesh Yes Yes Yes Yes
FGMP-SA Mesh Yes No Yes Yes
MCEDAR Hybrid Yes Yes Yes Yes

Table 2.4: Comparison of Ad Hoc multicast protocols

MAODV is associated with AODV. MAODV discovers multicast routes using

a broadcast route discovery mechanism . A group leader (mobile node) is asso-

ciated with each multicast group, and is responsible to initialize and maintain

the multicast group sequence number. Periodically broadcast Group Hello

(GRPH) messages are sent by group leader across the multicast group. The

multicast route discovery begins either when a node wishes to join a multicast

CHAPTER 2. SIP AND AD HOC NETWORK 17

group or when it wants to send the data to a multicast group which it does

have a route to.[18] When a node wants to join the multicast group, it sets the

‘J’ flag in the RREQ packet, and the destination IP address is always set to the

multicast group address and that contains the multicast group’s last known

sequence number. Then the node broadcasts the RREQ to its neighbors as the

normal AODV procedure. For the join request, a route is determined when

the RREQ reaches a node that is already a member of the multicast tree, and

the multicast group sequence number in this node’s multicast route table is as

great as the sequence number in the RREQ. Once the source node received the

RREP packet within the RREP_WAIT_TIME, it selects the shortest route to

the multicast tree and unicast the next hop a Multciast Activations (MACT)

message along that route.

Another situation is the node want to send data to the multicast group. In

this case, the flag of RREP packet will not be set. And if the node knows the

group leader of multicast group and has a route to it, it may unicast RREP

message with the group leader’s IP address in the Multicast Group Leader

extension.

ODMRP is mesh based routing protocol using a forward group concept. For-

warding group is a set of nodes responsible for forwarding multicast data, and

to build a forwarding mesh for each multicast group. Thanks to the mesh

topology and soft state approach, advantages of ODMRP can be found from

its simplicity, low channel and storage overhead, usage of up-to-date short-

est routes, reliable construction of routes and forwarding group, robustness to

host mobility, maintenance and exploitation of muliple redundant paths, ex-

ploitation of the broadcast nature of wireless environments and unicast routing

capability.

2.3 SIP over MANET

There is much related work [4, 5, 6, 7] that has been carried out on decentral-

ized peer-to-peer SIP networks. The most important works are SOSIMPLE

[4] and [7]. In [4], the authors use DHT based on Chord to organize the

nodes. Each node is assigned a node ID which is the hash value of its real IP

address. Ad Hoc nodes maintain a small number of finger table entries asso-

ciated with SIP REGISTER message to pass the overlay information between

nodes. When a new node join the overlay, it send a REGISTER message with

CHAPTER 2. SIP AND AD HOC NETWORK 18

its Node-ID to the bootstrap node to obtain the finger table information. If

the bootstrap node is not the node currently responsible for this region, it will

send a 302 redirect message with information about the nodes it knows nearest

to where the joining node will be placed in the overly.

Chang et al. combined UPnP and SIP in a single hop Ad hoc network in [5].

UPnP protocol is used to collect all nodes information of this network, such as

IP address and user corresponding name. SIP is used for signalling after the

node discovery has been done. Each node in the network functions as both

the control point and the device. It uses SUBSCRIBE message to request the

state of remote nodes with an assigned period. But it does not cover the SIP

session initialed from outside of the Ad hoc network. There is also no clear

solution for SIP session between the public network and the private Ad hoc

network.

Above two work are different with each other in two areas:

1) How to collect necessary information during the starts up time

2) How to initiate and manage the node joining and leaving

There are a lot of similarities between the peer-to-peer network and the ad

hoc network: (1) both have a flat and frequently changing topology, caused by

node join and leave in P2P overlays and MANETs and additionally terminal

mobility of the nodes in MANETs; and (2) both use hop-by-hop connection

establishment. Per-hop connections in P2P are typically via TCP links with

physically unlimited range, whereas per-hop connections in MANETs are via

wireless links, limited by the radio transmission range.[8]

In [6], Simone et al. defined an architecture for full decentralized Ad hoc SIP

networks. The architecture consists of two major parts: Service Discovery

frameworks and Session Management. The service discovery frameworks can

be implemented by Service Location Protocol (SLP), Jini, UPnP 1, Bluetooth

Service Discovery and Salutation.

Very similar to the work described in [6], the SIPHoc architecture in [9] is based

on four components: MANET SLP layer, SIPHoc Proxy, Gateway Provider

and Connection Provider. All components are running as independent pro-

cesses within a node in MANET. The MANET SLP module clearly defined

1UPnP will be introduced in Chapter 3

CHAPTER 2. SIP AND AD HOC NETWORK 19

the service registration and lookup process in MANET using SLP. It uses

routing handler for receiving the raw routing packets and generating altered

packets that include the piggybacked service information. This makes SIPHoc

does not require any modification on the routing protocols.

2.4 Summary

In this chapter, we started with the overview of SIP and MANET technologies.

Then we examined the work that is carried on SIP over P2P or MANET. We

found the similarities between these work, such as they all defined two steps in

their solutions: First step is to manage the peer discovery that is related with

the routing protocols and underlaying networks. Second step is to manage the

service discovery that is required to set up SIP sessions. In the next chapter,

we will start to introduce the peer discovery and service discovery.

Chapter 3

Peer Discovery and Service

Discovery

In previous chapter, we have described separately how Ad Hoc network rout-

ing and conventional SIP works. And we know due to the characters of SIP

protocol, it is challenging to deploy such an infrastructure-based application

layer protocol directly to Ad Hoc networks, specially on MANET. SIP is de-

signed for a primarily “fixed” and relatively static network environment where

communication links are stable and exhibit fairly uniform communication char-

acteristics [23]. SIP endpoint discovery in an Ad Hoc network is semantically

similar to the service or peer discovery process in P2P networks. To overcome

node mobility challenges, we need to answer two important questions:

- Where are SIP endpoints and services allocated?

- How to find them?

In this chapter, we will try to answer the two questions, and introduce the peer
1 and service discovery frameworks in Ad Hoc networks. And finally focus on

UPnP protocol which is used in our implementation.

3.1 Peer Discovery

Peer discovery refers to discovery of mobile node in MANET at network layer

and below, shown in Figure 3.1. As we mentioned in Chapter 1, Chord and

1Here we use the term “peer” to refer both the mobile node in Ad Hoc networks (or
endpoint in SIP sessions) and peer node in P2P networks

20

CHAPTER 3. PEER DISCOVERY AND SERVICE DISCOVERY 21

Pastry are the most common algorithms chosen as peer lookup algorithms in

P2P networks. There are some similar features for both P2P networks and Ad

Hoc networks. (a) There is no peer in either networks that acts as a server. (b)

The major challenges in both networks are how to efficiently find the requested

data or route. (c) The topology of both networks changes frequently.

But there are also big differences between P2P networks and Ad Hoc networks.

(a) a P2P network is basically an application network, it refers to the appli-

cation layer in the network stacks, while MANET focuses on the network and

lower layers. (b) The peer in MANET is restricted to limited computing power,

bandwidth and battery life, but peer of P2P network does not necessary have

these limitations. (c) For the routing process, a P2P network only generates

the key ID table based on peer’s existing IP address, while MANET requires

the real-time routing and IP address allocating.

Figure 3.1: Hop-by-hop Peer discovery in IP layer and End-to-end Service
discovery in Application layer

3.2 Service Discovery

We briefly described in previous chapter about related works on decentrialized

SIP on Ad Hoc networks. In [7], SIP user agents supports more functionalities

as they were only supported by SIP server in conventional SIP networks. As the

result, the intermediate node in MANET is acting as proxy server itself during

the session initial stage. And after the media session is set up, intermediate

CHAPTER 3. PEER DISCOVERY AND SERVICE DISCOVERY 22

node receives and forwards the media data packets. The problem here is that

not all MANET nodes are SIP capable or voice service enabled. So we need a

mechanism to find the proper intermediate nodes which is enabled with SIP or

voice service. The potential service discovery protocols that can be used are

SLP [24], Jini [25], UPnP [26], Bluetooth Service Discovery [27] and Salutation.

In this section, we introduce some of the important service discovery protocols.

There are many other protocols used for service discovery, we only focus on

standardized ones. Specifically the scope is set to use UPnP.

3.2.1 Service Location Protocol

“SLP provides a flexible and scalable framework for providing hosts with access

to information about the existence, location, and configuration of networked

services” [24]. It defines three entries within the framework: User Client

(UA), Server Agent (SA)and Directory Agent (DA).The way of communica-

tions between each other is very flexible. (a) UA can directly multicast the

service request (SrvRqst) message to SAs, and receive a unicasting service re-

ply (SrvRply) message from the SA who has the required service. In this case,

it is very like M-SEARCH message in UPnP networks. (b) If DA is present in

the network, both UA can send unicast SrvRqst message to DA, and SA can

send unicast service register (SrvReg) message to DA. UA or SA discovers DA

in a bootstrapping mechanism. DA or SA sends multicasting SrvRqst message

to the network and receives a unicast DA Advertisement (DAAdvert) message

from DA. Another possible way for DA discovery is DA infrequently sends

multicasting DAAdvert message to the entire network. So practically in both

cases, DA is acting as a centerlized entry in SLP protocol.

3.2.2 Jini

Jini protocol is a service discovery framework that defines a programming

model which exploits and extends Java technology to enable the construction

of secure, distributed systems consisting of federations of well-behaved net-

work services and clients [25]. It is developed by Sun Microsystems. The key

concept is a lookup service is responsible for finding and resolving the service.

Every service consists of a service object and service attributes. The commu-

nications between client service and lookup service is based on Java Remote

Method Invocation (RMI) which is a Java native interface for Java’s remote

process call (RPC) mechanism. So it highly depends on Java enabled devices.

CHAPTER 3. PEER DISCOVERY AND SERVICE DISCOVERY 23

3.2.3 Bluetooth Service Discovery

Bluetooth special interest group (SIG) defines its own stack for data transport.

It consists of physical layer and logical layer. Bluetooth service discovery proto-

col (SDP) is based on Logical Link Control and Adaptation Protocol (L2CAP)

which is laid on top of Bluetooth logical layer. SDP involves communication

between an SDP server and an SDP client. The services (service record) main-

tained by SDP server is uniquely identified by universally unique identifier

(UUID). “There is a maximum of one SDP server per Bluetooth device. (If

a Bluetooth device acts only as a client, it needs no SDP server.) A single

Bluetooth device may function both as an SDP server and as an SDP client. If

multiple applications on a device provide services, an SDP server may act on

behalf of those service providers to handle requests for information about the

services that they provide.” [27] The information exchange between client and

server is dynamically based on the RF proximity of the servers to the client.

Whenever a server is available, the clients within the Bluetooth RF reachabil-

ity range must be notified. The logic of Bluetooth SDP is very similar to SLP

but in a reactive way.

3.3 Universal Plug and Play protocol

In above section, we briefly explained SLP, Jini and Bluetooth SDP protocols.

And we know both Jini and Bluetooth SDP are highly dependent on their

underlying technologies. This limitation makes them not easy to deploy on

Ad Hoc networks. Although SLP is a more generic protocol, it is designed in

a centralized manner. So after simple evaluation, UPnP is a simpler protocol

which can be easily adapted to MANET without modification the protocol

itself.

3.3.1 Overview of UPnP

“UPnP technology defines an architecture for pervasive P2P network connec-

tivity of intelligent home appliances, wireless devices, and PCs of all form

factors. It is designed to bring easy-to-use, flexible, standards-based connec-

tivity to Ad Hoc or unmanaged networks whether in the home, in a small

business, public spaces, or attached to the Internet.” [26] The primary mission

of UPnP Forum is to develop device control protocol that describe standard

CHAPTER 3. PEER DISCOVERY AND SERVICE DISCOVERY 24

methods for device interaction. UPnP protocol stack consists of a set of stan-

dard protocols such as UDP, HTTP, HTTPU, HTTPMU, SSDP, GENA and

SOAP illustrated in Figure 3.2 taken from [28]. It makes UPnP working

seamless with other technologies such as TCP/IP and web.

Figure 3.2: UPnP protocol stack

UPnP device specification defines three logical elements for UPnP networks:

service, devices and control points showing as Figure 3.3.

Figure 3.3: UPnP architecture

Every UPnP device is simply organized by device, service and control point.

Extensible Markup Language (XML) is used as a core part in UPnP for de-

scribing device, service, control point. The specification also specifies six steps

of interaction between above three elements:

- Step 0 Addressing indicates how control points and devices get an IP

address

CHAPTER 3. PEER DISCOVERY AND SERVICE DISCOVERY 25

- Step 1 Discovery where control points become aware of the existence of

devices

- Step 2 Description where control points learn details about devices and

services

- Step 3 Control where control points send command to devices

- Step 4 Eventing where control points listen to state changing of devices

- Step 5 Presentation where devices display a user interface for devices

In following sections, we will briefly introduce the things that related to our

implementation .

3.3.2 Addressing

The foundation of UPnP networking is IP addressing. There are two methods

for UPnP control points and devices to get IP addresses, either by Dynamic

Host Configuration Protocol (DHCP) or by automatic IP addressing (Auto-

IP). Each UPnP control point or devices must have a DHCP client imple-

mented if it is not implemented as DHCP server. Control points or devices

first send a DHCPDISCOVER message, if a DHCPOFFER is received during

the defined period, control points or devices must continue to obtain IP ad-

dresses from DHCP server accordingly. If no DHCPOFFER is received, they

must use Auto-IP [29]instead. Auto-IP defines how control points or devices

get proper IP address from link-local range (169.251.0.0/16) in UPnP networks

when DHCP server is not available. This IP address assignment method en-

ables more flexibility as control points and devices move between managed

network and Ad Hoc network.

Upon successful selection of a link-local IP address, it has to be tested within

the entire UPnP network. Control points or devices uses an Address Resolution

Protocol (APR) [30] probe to determine whether the chosen IP is already in

use.

An ARP probe request contains four critical fields SHA, SPA, THA, TPA3 to

determine IP collision. The broadcasting probe request sets SHA to UPnP

3Sender Hardware Address (SHA), Sender Protocol Address(SPA), Target Hardware Ad-
dress(THA) and Target Protocol Address(TPA)

CHAPTER 3. PEER DISCOVERY AND SERVICE DISCOVERY 26

control point or device’s hardware address, SPA to all zeros, THA to all zeros

and TPA to the link-local IP address which it chooses. During the pre-defined

period (PROBE_MAX minus PROBE_MIN seconds), (a) if the sender re-

ceives any ARP packet on the interface where the probe is being performed

where the packet’s SPA is the IP address being probed for, (b) or if the sender

receives any ARP packet with TPA set as the same IP address being probed

for, then the sender must treat this address as being in use by some other

host [29] and it has to choose another IP address.

UPnP also allows universal resource location (URL) type of name for device’s

IP address. So it can be located and referenced on the network through that

address. But the limitation of link-local IP address is that it does not support

subnetworks. So UPnP network is a pure flat network.

3.3.3 Discovery

Discovery mechanism in UPnP network is very similar to SLP. Both of them

use multicasting requests for discovery of interested service, and unicast reply

is sent by matched device or client. The difference is there is no centralized

component acting as DA in UPnP networks.

In UPnP networks, there are several situations involving discovery. (a)When a

device joins or leaves the network, (b)When a control point joins or leaves the

network, (c)When a control point wants to find device or service of interest.

In situation (a) and (b), device and control point needs to advertise the entire

network with NOTIFY message, shown as Figure 3.4.

Figure 3.4: Example SSDP header fields

Each message must have exactly one start-line and several header fields. In

this case the start-line is NOTIFY * HTTP/1.1. The HOST request-header

CHAPTER 3. PEER DISCOVERY AND SERVICE DISCOVERY 27

field specifies the Internet host and port number of the resource being re-

quested. In above example, it specifies a well-known local scope multicast IP

address 239.255.0.0/16 [31]. And the port 1900 is uniquely used by SSDP.

The CACHE-CONTROL general-header field is used to specify directives that

must be obeyed by all caching mechanisms along the request/response chain.

UPnP uses the max-age directive to specify the live time (in seconds) of ad-

vertisement message. The value of max-age directive must be greater than or

equal to 1800 seconds. LOCATION header gives the URL to UPnP descrip-

tion of the root device. SERVER header is defined for product tokens. Syntax

of the three headers are defined in HTTP protocol.

UPnP advertisement also includes headers defined by SSDP. Notification Type

(NT) contains a single URI indicating whether the notification is for root

device, embedded device or service. Notification Sub Type (NTS) defines the

purpose of notification. Such as notifying when:

- device or control point becomes alive (NTS:ssdp:alive)

- device or control point is unavailable(NTS:ssdp:byebye)

- device or control point is updated (NTS:ssdp:update)

Unique Service Name (USN) also uses a single URI to identify a unique in-

stance of a device or service. Some other headers from discovery advertise-

ment are defined by UPnP Forum. Such as BOOTID.UPNP.ORG, CON-

FIGID.UPNP.ORG, SEARCHID.UPNP.ORG and NEXTBOOTID.UPNP.ORG.

In situation (c), the control point needs to send either a multicast or unicast M-

SEARCH message. M-SEARCH message contains Mandatory (MAN) header,

Maximum wait time (MX) header , Search Target (ST) header and USER-

AGENT header. MAN, MX and USER-AGENT headers are defined in HTTP

Extension frameworks.

MX header defines the time devices should respond tomulticast M-SEARCH

shown as Figure 3.6. Devices should wait a random time between 0 seconds

and number of seconds specified in the MX field value of the search request

before responding. The purpose for doing this is to avoid flooding the request-

ing control point with search responses from multiple devices especially in our

Ad Hoc networks. For unicast M-SEARCH shown as Figure3.5, in case the

CHAPTER 3. PEER DISCOVERY AND SERVICE DISCOVERY 28

control point has the cached IP address of target device, any device should

respond within 1 second.

ST header specifies which type of services or devices that control point searches

for. The value of ST header uses a single URI to indicate the search target.

Search target can be one from following list:

- ssdp:all

- upnp:rootdevice

- uuid:device-UID

- urn:schema-upnp-org:device:deviceType:version

- urn:schema-upnp-org:service:serviceType:version

- urn:domian-name:device:deviceType:version

- urn:domian-name:service:serviceType:version

Figure 3.5: Example of Unicast M-SEARCH message

Figure 3.6: Example of Multicast M-SEARCH message

Upon a successful search, HTTP 1.1/200 OK 3.7 replies will be send from tar-

get devices. In the responding message, CACHE-CONTROL header specifies

how long the advertisement is valid in the network in seconds. And LOCA-

TION header contains a URL to the UPnP description file of the root device.

Normally it is presented in literal IP address rather than a domain name in

unmanaged networks.

CHAPTER 3. PEER DISCOVERY AND SERVICE DISCOVERY 29

Figure 3.7: Example of 200 OK Response message

3.4 Summary

In this chapter, we first explained the difference between the peer discovery

and the service discovery. The hop-by-hop peer discovery is referred as the

node discovery in the network layer. While the end-to-end service discovery is

referred as the overlay in the application layer. Secondly we explained some

service discovery protocols in Section 3.2. Finally we focused on UPnP specif-

ically because it would be used in our application design in the next chapter.

Chapter 4

Technology Background

In this chapter we will present some of the open source software (OSS) and

technologies that have been used in our implementation. In Section 1, we

will introduce open source library called Sofia SIP, a SIP user agent library

compliant with RFC3261 [19] specifications. In Section 4.2, we will introduce

another open source library called CyberLinkC UPnP library which is used by

our service discovery part of implementation. And in Section 3, we will briefly

explain how GTK+ and Hildon-2.0 libraries works on Nokia Maemo platform

[32].

From Section 4, we start to explain the technologies and devices that have

been used in our development and implementation. So in Section 4, we will

introduce Nokia Internet Tablet device. And in Section 5, we will give a brief

explanation about how to work on Maemo platform with Scratchbox [33].

4.1 Sofia SIP

Sofia SIP is based on RFC3261 and other RFCs used by SIP. It is developed by

Nokia Research Center and has been widely used by many voice applications

such as Telepathy, Gaim, and Far Sight. The reason for choosing Sofia SIP is

because it supports major SIP standards and is under active development to

track RFC changes. It provides better interoperability and extensibility to our

application if other developer wants to extened the functionality of our SIP

module.

Sofia SIP consists of different modules such as common runtime library, SIP

signalling, HTTP subsystem and SDP processing in order to support full SIP

30

CHAPTER 4. TECHNOLOGY BACKGROUND 31

functionalities. The modules used in our implementation are common runtime

libarary and SIP signalling module called NUA (SIP User Agent Library).

4.1.1 Common Runtime Libraries

Common runtime libraries provided by Sofia SIP include sofia utility library

(su), asynchronous DNS resolver (sresolv) and IP Telephony utility library

(ipt). Utility library defined tags used in SIP message. The structure of Sofia

SIP message is organized by different tags. Utility library also provides some

APIs such as time, message digest 5 algorithm (MD5), thread handling, mem-

ory allocation, debugging and logging. Asynchronous DNS resolver library

provides the interface for communicating with DNS server. IP Telephony li-

brary contains some useful routines for telephony applications, such as Base64

(charactors from A-Z, a-z, 0-9, + and \) encoding and decoding and HTTP

header tokens encoding.

4.1.2 Signaling Module

One of Sofia SIP signalling modules we used is the user agent model (NUA).

It is the primary API for SIP enabled applications. It gives the high-level

application programmer transparent and full control to the SIP protocol engine

below it (e.g. SIP transaction engine called nta). With NUA it is possible

to create different kind of SIP user agents, like SIP terminals, gateways and

multipoint conferencing unit (MCU).

Other libraries of signaling module include SIP event API, HTTP and SIP

authentication API, SIP transaction engine, generic transport protocols API,

SIP message parser, MIME header parser and URL parser.

The Sofia software suite is based on certain basic ideas and concepts that are

used in all levels of Sofia software. We will describe some of the concepts that

a user of NUA library has to understand to create a working application.

The NUA uses the reactor pattern for its event driven programming model.

According to this model, the program can ask that the event loop invokes

a callback function when a certain event occurs. An application using NUA

services must create a root object and the callback routine to handle NUA

events. The root object can be created by using su_root_creat() function

and register the callback function by using nua_creat().

CHAPTER 4. TECHNOLOGY BACKGROUND 32

4.2 Cybergarage UPnP Implementation

There are various UPnP reference implementations available from UPnP Fo-

rum website. The UPnP stack in our voice application is built on CyberLinkC

library. The reason why we choose CyberLinkC is that it is a simple library

based on C. It is small (binaries size less than 2Mb) and easy to be deployed

on embedded Linux devices, such as PDA with limited memory. Also it is a

native UPnP library for Nokia Internet Table device.

CyberLinkC library implements the functionalities of control points and de-

vices defined in UPnP standard document [26]. CyberLinkC also provides

simple SOAP message parser, HTTP server and SSDP server. As discussed

in previous chapter, they are responsible for handling UPnP control and dis-

covery events. Some more utility functions are also provided by CyberLinkC

library including XML parsing functions, string functions and thread functions

specifically used by UPnP.

An application implemented as UPnP device must define its description file

as a string first. then simply use cg_upnp_device_new() to create the in-

stance. But this API only initiates UPnP device without start the thread. So

cg_upnp_device_start() has to be called to start the device, and cg_upnp_de

vice_stop() to stop the device. The same mechanism for UPnP embedded

devices, control points and services. It is also possible to configure control

point and device to listen specific type of package, such as HTTP response

listener and SSDP response listener by setting up callback functions for listen-

ers. The callback functions are very critical for the application to respond the

event requests, and programer has to set listeners before start the device or

control point.

4.3 GTK+ 2.0 and Hildon-2.0

The GIMP Toolkit (GTK) was originally designed for a raster graphics editor

called the GNU Image Manipulation Program (GIMP). It was originally used

on the Linux operating system. GTK+2 is the second stable release cycle of

GTK+. There are a few new features introduced since GTK+2, such as font-

rendering engine called Pango and new enhanced theme engine. GTK+2 is

not compatible with old GTK+1 branch since a lot of changes are introduced

to GTK+2, and API compatibility is broken.

CHAPTER 4. TECHNOLOGY BACKGROUND 33

Hildon is an application framework introduced a new desktop environment

for handheld devices. It was originally from Psion user interface code named

Hildon after the bottled water. The current Hildon running on Nokia Linux-

based tablet is an open source GTK based user interface toolkit. It comprises

a lightweight desktop, a set of widgets optimized for handheld devices, a set

of theming tools and other complementary libraries and applications [34]. It

is adopted by Nokia Maemo graphic framework and handles Maemo specific

features of applications, such as look and feel (colors, fonts and borders etc.),

and menu in the title bar area instead of windows area, and hibernation feature.

A typical Hildon layouts consists of Task Navigation area, Titlebar area, and

Application area and three areas of inactive skin graphic. All views could be

manipulated by using GTK+ container widgets (e.g. GtkHbox, GtkVbox and

GtkLabel).

4.4 Development on Maemo

Maemo is a customized Linux desktop distribution running on Nokia Internet

Tablet devices. It is very similar with Debian distribution. Maemo mainly uses

open desktop frameworks which includes GTK+ toolkit, Hildon, C program-

ming language, and Scratchbox cross-compiler toolkit to enable easy software

portability and familiarity. Maemo also uses Debian package management

system (dpkg) for installing, removing and providing information about appli-

cations.

C and C++ language are the native programming language for Maemo. Any-

one familiar with C and C++ will feel easy and comfortable with development

on Maemo. Most of common used C libraries are supported by Maemo and

can be installed by using dpkg tool. And Maemo uses message bus system

(D-BUS) service and LibOSSO combination for managing remote procedure

call (RPC) on Maemo platform.

4.4.1 D-BUS

D-BUS is a system for interprocess communication (IPC) widely used in many

systems. D-BUS is designed for two specific cases:

- Communication between desktop applications in the same desktop ses-

sion

CHAPTER 4. TECHNOLOGY BACKGROUND 34

[D-BUS Service]

Name=org.maemo.example_app

Exec=/usr/bin/example_app

Figure 4.1: Example of D-BUS Service File

- Communication between desktop session and the operating system

On Maemo platform, D-BUS is used for system notification message, separat-

ing UI application and service engine and launching applications from Task

Navigator. Any application wants to be visible from Task Navigator has to

have a service file. D-BUS service file is needed to be able to launch the Maemo

application and connect it to D-BUS services. All applications have to register

to D-BUS daemon and the service file is installed on /usr/share/dbus-1/services/.

A sample service file example_app.service is shown as Figure 4.1

4.4.2 LibOSSO

LibOSSO is a wrapper library for user application for platform specific and

frequently used D-BUS services. The purpose is to avoid D-BUS details from

Maemo platform specific D-BUS services. Any process will be killed by D-

BUS from the desktop environment if it is launched from Task Navigator but

not registered to D-BUS services. LibOSSO can protect this process from

terminating by D-BUS.

Chapter 5

System Architecture

In the previous chapter we introduced the technologies used in our implemen-

tation. In this chapter we will explain in detail how the system is designed.

Firstly we will give an overview of Ad Hoc VoIP system. Secondly we will

demonstrate different scenarios of communication between Ad Hoc nodes and

fixed nodes. Finally, we will present our implementation and performance

analysis.

5.1 System Overview

Our system consists of three modules UPnP stack, SIP UA and VoIP applica-

tion shown in Figure 5.1.

Figure 5.1: System Architecture

VoIP is the module that interacts with end users. SIP UA is the module

responsible for handling SIP messages and initialization of SIP connections.

UPnP stack works as the module for service discovery and collecting necessary

information for SIP UA. We discuss each module in following sections in detail.

35

CHAPTER 5. SYSTEM ARCHITECTURE 36

5.1.1 VoIP Application

The VoIP module is the user interface for our application. End users directly

interact with this module to use the functions such as placing and terminating

phone calls, sending and receiving text messages, searching UPnP devices and

services. The VoIP module also provides the interface for end users to configure

their SIP and UPnP profiles, such as SIP AOR, UPnP friendly name, device

SSDP response repeat times etc.

The graphic user interface (GUI) of our application is based on the Maemo

platform. It is implemented with GTK+ and Hildon. Figure 5.2 shows the

main window of VoIP application. Under the SIP operation tab, SIP call, SIP

messaging and SIP contacts refresh and delete icons are located in the toolbar

area.

Figure 5.2: Voice Application Main Window

5.1.2 SIP UA

Below the VoIP module, we define another middle layer called SIP UA module.

It directly communicates with the underlying UPnP module. The SIP UA

module is equivalent to presentation and session layers of OSI standard. The

major function of this module is to set up the media connection between two

nodes. Ad Hoc nodes can function as UA, proxy server or redirect server in

our system according to different scenarios. We will explain in more detail in

Communication Scenarios section.

As we mentioned in the previous chapter, SIP UA module is implemented with

Sofia SIP libraries and the Sofia SIP client example called Sofsip-cli.

CHAPTER 5. SYSTEM ARCHITECTURE 37

5.1.3 UPnP Stack

UPnP stack is the lowest module in our system. In order to enable commu-

nications between mobile nodes without a centralized server, all mobile nodes

are implemented as both the control point (controller) and the root device. Ac-

cording to the UPnP device architecture document, each node has two XML

files to present the properties of the UPnP root device and UPnP services.

Listing 5.1: Example Device Description

<?xml version=" 1 .0 "?>
<root xmlns="urn:schemas−upnp−o rg :dev i c e −1−0" con f i g Id="

con f i gu r a t i on ␣number">
<specVers ion>

<major>1</major>
<minor>1</minor>

</ specVers ion>
<dev i ce>

<deviceType>urn:schemas−upnp−org :device :PDA:1</
deviceType>

<friendlyName>N810</ friendlyName>
<manufacturer>Nokia</manufacturer>
<manufacturerURL>www. nokia . com</manufacturerURL>
<modelDescr ipt ion>PDA</modelDescr ipt ion>
<modelName>In t e rn e t Tablet</modelName>
<modelNumber>N810</modelNumber>
<modelURL>ht tp : //www. forum . nokia . com/ dev i c e s /N810/</

modelURL>
<serialNumber>00 : 1 9 : 4 f : 9 4 : a 5 : 9 0</ serialNumber>
<UDN>uuid:nokian810</UDN>
<UPC>123456789012</UPC>
<iconL i s t>

<icon>
<mimetype>image/ g i f</mimetype>
<width>48</width>
<height>32</ he ight>
<depth>8</depth>
<ur l>icon . g i f</ u r l>

</ icon>
</ i conL i s t>
<s e r v i c e L i s t>

<s e r v i c e>
<serv iceType>urn:schemas−upnp−o r g : s e r v i c e : s i p : 1

</ serv iceType>
<se r v i c e I d>urn:upnp−

CHAPTER 5. SYSTEM ARCHITECTURE 38

o r g : s e r v i c e I d : s i p : c l u o@ i p t e l . org</ s e r v i c e I d>
<SCPDURL>/ s e r v i c e / s i p / audio_descr ipt ion . xml</

SCPDURL>
<controlURL>/ s e r v i c e / s i p / con t r o l</controlURL>
<eventSubURL>/ s e r v i c e / s i p /eventSub</eventSubURL

>
</ s e r v i c e>

</ s e r v i c e L i s t>
<dev i c eL i s t>
</ dev i c eL i s t>
<presentationURL>/ pr e s en t a t i on</presentationURL>

</dev i ce>
</ root>

An example of the device description file is shown in List 5.1. A device de-

scription file provides information about the root device, embedded devices

and available services of a UPnP device. This example device description file

shows that the root device type is a PDA with friendly name N810, and service

type is defined as SIP. The value of the service ID tag contains the SIP AOR

information. We use the service ID to identity the SIP end-points.

Listing 5.2: Example Service Description

<?xml version=" 1 .0 "?>
<scpd xmlns="urn:schemas−upnp−o r g : s e r v i c e −1−0">
<specVers ion>

<major>1</major>
<minor>0</minor>

</ specVers ion>
<ac t i o nL i s t>

<act i on>
<name>getPre sence s</name>
<argumentList>

<argument>
<name>newPresence</name>
<re l a t edS t a t eVa r i ab l e>Presence</

r e l a t edS t a t eVa r i ab l e>
<d i r e c t i o n>in</ d i r e c t i o n>

</argument>
<argument>

<name>Result</name>
<re l a t edS t a t eVa r i ab l e>Result</

r e l a t edS t a t eVa r i ab l e>
<d i r e c t i o n>out</ d i r e c t i o n>

</argument>

CHAPTER 5. SYSTEM ARCHITECTURE 39

</argumentList>
</ act i on>
<act i on>

<name>setPre sence</name>
<argumentList>

<argument>
<name>CurrentPresence</name>
<re l a t edS t a t eVa r i ab l e>Presence</

r e l a t edS t a t eVa r i ab l e>
<d i r e c t i o n>out</ d i r e c t i o n>

</argument>
</argumentList>

</ act i on>
</ a c t i o nL i s t>
<se rv i c eS t a t eTab l e>

<sta t eVa r i ab l e sendEvents="yes " mul t i ca s t="yes ">
<name>Presence</name>
<dataType>s t r i n g</dataType>
<defau l tVa lue>O f f l i n e</ defau l tVa lue>

</ s t a t eVa r i ab l e>
<sta t eVa r i ab l e sendEvents="no">

<name>Result</name>
<dataType>s t r i n g</dataType>

</ s t a t eVa r i ab l e>
</ se r v i c eS t a t eTab l e>
</scpd>

The other XML file is the service description file, shown in List 5.2, that

describes the details of the UPnP service. In this XML file, we defined two

types of action which allow the control point to get or set SIP presences of

the device. In fact, each Ad Hoc node in the network is a control point, so

the node can query SIP presences from other nodes. The presence service is

normally provided by the SIP registra server in the centralized network.

5.2 Test Scenarios

In Section 5.1, we explained the basic functions of each module. In this section,

we will further explain different test scenarios when using this application to

make SIP calls. To better understand our application usage in real situations,

we defined three different scenarios of communication between two nodes: 1)

Communication initialized by an Ad Hoc node to another Ad Hoc node; 2)

CHAPTER 5. SYSTEM ARCHITECTURE 40

communication initialized by an Ad Hoc node to another fixed node; 3) com-

munication initiated by a fixed node to another Ad Hoc node. We will go

through each scenario individually later.

5.2.1 Scenario 1: An Ad Hoc node to another Ad Hoc

node

The simplest scenario for our VoIP application is that the initiator and des-

tination of SIP call are both located within the same Ad Hoc network. The

network architecture is shown in Figure 5.3.

Figure 5.3: Scenario 1: Ad Hoc node to Ad Hoc node

In this scenario, there is no registrar server or redirect server needed for sig-

nalling. The service discovery is done by the UPnP module, and the VoIP

connection is established by the SIP UA module. The flow chart of UPnP

message and SIP signalling is shown in Figure 5.4.

We define the three different states for the call setup process, shown on the

left side of Figure 5.4. The right side shows steps of UPnP. When a new node

joins the UPnP network, it multicasts NOTIFY and M-SEARCH messages to

the entire network. Ad Hoc nodes can search UPnP devices either by device

type or service type as we described in Chapter 3. In our system, Ad Hoc

nodes use service type for the search target because we are only interested in

nodes capable with SIP service.

The Initialization state is the state that the new joining node collects the

network information and caches the SIP routing table for the future use. The

CHAPTER 5. SYSTEM ARCHITECTURE 41

Figure 5.4: System Flow Chart: Ad Hoc node to Ad Hoc node

SIP sessions state is where SIP transactions are happened. The service update

state is an option state for the nodes who wants to update and share the

presence information.

Meanwhile every Ad Hoc node has SSDP response package listeners set up to

be able to parse SSDP responses from other nodes. Figure 5.5 shows an exam-

ple of 200 OK message responding to the M-SEARCH message. By sending

a multicast M-SEARCH message, Node1 will randomly get 200OK responses

from all devices. But using the randomly received SSDP responses is not possi-

ble to build SIP AOR and IP address bindings for the node. The LOCATION

header of the 200 OK message only contains the primitive IP address of the SIP

enabled node (e.g. Node2). So Node1 has to send a HTTP GET message to

CHAPTER 5. SYSTEM ARCHITECTURE 42

Figure 5.5: Example of 200 OK message

the URL provided in Node2’s SSDP response to get its description file. Within

the device description file, Node1 will get Node2’s SIP AOR information from

service ID. Up to now, Node1 successfully builds up the binding of Node2’s IP

address and SIP AOR. Node1 can now call Node2 with its IP address.

5.2.2 Scenario 2: An Ad Hoc node to a fixed node

Figure 5.6: Scenario 2: Ad Hoc nodes to fixed nodes

Another common scenario is that an Ad Hoc node wants to contact a SIP

client which is not available in the Ad Hoc network. Figure 5.6 shows the

network architecture of this scenario. The Ad Hoc node is located in an Ad

Hoc network, and the fixed node is located in a public IP network.

The flow chart of Scenario 2 is shown in Figure 5.7. Similar to Scenario 1,

Node1 sends M-SEARCH messages and receives NOTIFY messages to collect

as much as information it can. Once Node1 finishes the initialization stage, it is

aware which devices have SIP services available. When Node1 wants to call SIP

client with SIP AOR (e.g. sip:alice@example.com), it sends M-SEARCH mes-

sage with service type defined as SIP. After a timeout, if Node1 has not received

CHAPTER 5. SYSTEM ARCHITECTURE 43

Figure 5.7: System Flow Chart: Ad Hoc node to fixed node

the SSDP response with destination SIP AOR (e.g. sip:alice@example.com),

Node1 will send an INVITE message to an Ad Hoc node which has gateway

service enabled. Once the Ad Hoc gateway node receives the INVITE message,

it forwards the INVITE message to a SIP proxy server located in the public

network. The SIP proxy should allocate the current location of the destination

SIP client by sending a query message to a SIP registrar or location server.

Upon a successful response from the SIP registrar or location server, the SIP

proxy forwards the INVITE message to the destination SIP client.

CHAPTER 5. SYSTEM ARCHITECTURE 44

In this scenario, we introduce an Ad Hoc node acts as a gateway. In our Ad hoc

network, there is only one node acting as the gateway. It has the connections

both to the current Ad Hoc network and the public Internet. The gateway

node is also acting as a standard SIP proxy server.

5.2.3 Scenario 3: A fixed node to an Ad Hoc node

The network architecture of scenario 3 is similar to scenario 2 which is shown in

Figure 5.6. But the caller and callee are located vice versa, and the behaviour

of Ad Hoc gateway is quite different from scenario 2. The challenge is how

the SIP client finds the IP address of a node inside an Ad Hoc network. To

solve this issue, we design an Ad Hoc node acting as SIP proxy between the

Ad Hoc domain and the public domain. Registration creates bindings in a

location service for a particular domain that associates an address-of-record

UIR with one or more contact addresses. So an Ad Hoc node which intends

to be reachable from outside Ad Hoc network has to register itself first.

Figure 5.8 illustrates the message flow chart of scenario 3. When Node1 intends

to be contacted from outside Ad Hoc network, it searches for the Ad Hoc

gateway node first, and sends a REGISTER message to the Ad Hoc gateway

node. The Ad Hoc gateway inserts a “Via” header with its public IP address,

then forwards the REGISTER message to a SIP registrar which is designated

as the registrar server. An example of a REGISTER message is shown in

Figure 5.9. The binding of Ad Hoc gateway’s public IP address and Node1’s

current SIP URI is added to the location service.

When a SIP client from the public network wants to call Node1, the SIP

registrar sends back the location of Ad Hoc gateway. The SIP proxy server

will forward the INVITE message to the Ad Hoc gateway additonally. Once

the Ad Hoc gateway receives any INVITE messages from the public network,

it checks whether the destination SIP URI of the INVITE message matches

its own URI. If it does not match, the Ad Hoc gateway sends an M-SEARCH

message to the Ad Hoc network and searches for all the SIP enabled nodes to

see whether any of them match this SIP AOR. If Node1 is found, the Ad Hoc

gateway forwards the INVITE message to Node1. From now on, Node1 send

the 200OK message to the Ad Hoc gateway. The Ad Hoc gateway acts like

a SIP proxy server when forwarding SIP messages between the local link IP

addresses to the public IP address.

CHAPTER 5. SYSTEM ARCHITECTURE 45

Figure 5.8: System Flow Chart: Fixed node to Ad Hoc node

5.3 System Implementation

In this section, we explain the high level design of the voice application imple-

mentation. As we described in the System Overview section, our application

CHAPTER 5. SYSTEM ARCHITECTURE 46

REGISTER sip:iptel.org SIP/2.0

Via: SIP/2.0/UDP 90.217.187.147:5060;

branch=z9hG4bKjy8hGfv

Via: SIP/2.0/UDP 169.254.0.3:5060;

branch=z9hG4bKnashds7;received =3ffe:501:ffff:1::1

Max-Forwards: 69

From: Node1 <sip:chengluo@iptel.org>;tag=a73kszlfl

To: Node1 <sip:chengluo@iptel.org>

Call-ID: 1j9FpLxk3uxtm8tn@iptel.org

CSeq: 1 REGISTER

Contact: <sip:chengluo@pda.iptel.org>

Expires: 3600

Content-Length: 0

Figure 5.9: Example of forwarding REGISTER request

can be subdivided into three modules. The VoIP module contains GUI com-

ponents implemented by GTK+ and Hildon; SIP UA module contains SIP

parser and proxy components available from Sofia SIP library; UPnP module

is based on CybergarageC UPnP reference implementation.

5.3.1 VoIP Components

VoIP components are top level components of entire application. A structure

view of the VoIP module is shown in Figure 5.10. The top level data struct

AppUIData contains both UI data and application data. AppData is the C

global struct holding all the data needed in our application. Member variables

programe, osso, and window are variables for initializing a GUI programme

on Maemo platform as we introduced in previous chapter. ctrl_point and

root_device are handlers for UPnP activities. sip_cli is variable for han-

dling SIP messaging and phone call. routing_table is the linked list data

structure for caching the SIP routing information.

5.3.2 Sofia SIP Components

We use the Sofia SIP library for our SIP user agent implementation. The

structure view is show in Figure 5.11. Sofia SIP is written in C language. It

does not strictly follow the object oriented model. The class diagram just gives

a big picture of relationship between Sofia data structures. Sofia SIP provides

CHAPTER 5. SYSTEM ARCHITECTURE 47

Figure 5.10: Application Module Structure Overview

a simple tag based SIP parser. Figure 5.12 shows how Sofia SIP generate and

parses BYE message.

CHAPTER 5. SYSTEM ARCHITECTURE 48

Figure 5.11: SIP Structure Overview

5.3.3 UPnP Components

As we mentioned in the previous section, each Ad Hoc node acts as both a

control point and a device. The purpose of this is to handle UPnP activities in

an unmanaged network. We defined a initialization stage when mobile nodes

join in the network. UPnP mobile nodes automatically send multiple NOTIFY

and M-SEARCH messages to the UPnP network, and collects necessary infor-

mation needed by SIP UA. The purpose of doing this is to provide shorter

start up time.

CybergarageC provide a set of APIs: cg_upnp_controlpoint_getdevices()

and cg_upnp_device_getservices() to get the device list and service list.

From these APIs we can retrieve the available UPnP devices and services.

Figure 5.13 demonstrates the class view of CybergarageC libraries. Similarly to

Sofia SIP, CybergarageC is also written in C. The class diagram just illustrates

CHAPTER 5. SYSTEM ARCHITECTURE 49

Figure 5.12: SIP parser example: BYE message

the relationship between different C data structures. CgUpnpControlPoint is

the top level data structure and contains most of the other types of data. By

setting up different type of listeners, we can parse information from different

packets. As shown in the class diagram, we can get the LOCATION header

from SSDP Responses by setting up SSDPResponseListener for the control

point.

Another important piece of information for our application is the ServiceID of

the device. To get the ServiceID, we use the internal methods of the UPnP

control point to access the member variables of CgUpnpControlPoint.

CHAPTER 5. SYSTEM ARCHITECTURE 50

Figure 5.13: UPnP Module Structure Overview

5.4 Summary

In this chapter, firstly we have described the system architecture of our VoIP

application. It consists of three modules: Application/UI module, SIP UA

module and UPnP module. Secondly we have explained the functionality

of each module in difference scenarios. At the end, we have presented the

relationships between each modules. in the next chapter, we will start to test

each scenarios based on our implementations.

Chapter 6

Testing and Analysis

This chapter focuses on the testing and operation of our application. The

chapter is divided into two sections: The first section explains how to set up

the test environment. The second section analyses results from the different

test scenarios that were described in Chapter 5.

6.1 Demonstration Setup

In our demonstration, we are not using any underlying Ad Hoc routing proto-

cols for the multi-hop communication. For simplicity, we only test our appli-

cation on the single hop Ad Hoc network shown in Figure 5.3. The network

architecture of demonstration is shown in Figure 5.3. The real network con-

sists of three Nokia Internet Tablets represented as Node1, Node2 and Node3,

and one laptop. Table 6.1 shows the settings of different devices. Using the

wireless utility tool (connection-switcher) provided by Maemo repository, we

can set the static Ad Hoc IP address for each tablets, set the subnet mask to

255.255.255.0, and default gateway to 192.168.4.15. There is no Ad Hoc rout-

ing protocol implemented in our test bed, all tests are based on broadcasting

nature.

Entry SIP AOR IP

N800-1 sip:n800-1@example.com 192.168.4.1
N800-2 sip:n800-2@example.com 192.168.4.2
N810 sip:n810@example.com 192.168.4.3
Laptop sip:cluo@iptel.org 192.168.4.4

Table 6.1: Test Environment

51

CHAPTER 6. TESTING AND ANALYSIS 52

Figure 6.1 shows the dialog of sending M-SEARCH messages. The MX value

indicates the waiting time that control points will wait for responses from

UPnP devices. By setting different values to the MX header, we can measure

the overhead of UPnP messages in the network traffic.

We can also specify the Search Target. The example in Figure 6.1 shows that

control point searches any UPnP devices without specifying the device type

or service type. In our testing, we set the ST header to urn:schemas-upnp-

org:service:sip:1 because we are only interested in devices which provide SIP

services.

Figure 6.1: Voice Application UPnP Search Window

Figure 6.2: UPnP Search Results Window

In Figure 6.2, the search results dialog presents found devices and services in

a multi-column table. The top level is root devices, and lower level is services.

The first column shows the friendly name of the found devices, and the second

column shows the serviceID of the found services from particular device.

CHAPTER 6. TESTING AND ANALYSIS 53

6.2 Results Analysis

6.2.1 Scenario 1

Figure 6.3 shows the comparison between UPnP traffic and SIP traffic. In this

scenario, there are only 2 nodes set up in the Ad Hoc network. In Table 6.2,

we can see that 98% of traffic occurs from SSDP packets. The reason is that

UPnP is using multicast NOTIFY ssdp:alive message to announce its services.

Our application is also designed to use multiple M-SEARCH message at a time

when searching for other devices. It increases the chance to reach devices, but

brings the burden of network traffic. The end-to-end delay in this scenario is

mainly contributed by the UPnP discovery time.

Figure 6.3: SSDP vs. SIP packets

We use formula 6.1 to calculate the total delay of establishing SIP call in Ad

Hoc networks. DUPnP is the delay for discovery callee using UPnP, and DSIP

is the delay for SIP signalling, and the result of total call setup delay (CSD)

is shown in table 6.3.

CSD =
∑

(DUPnP + DSIP) (6.1)

Traffic SSDP/UPnP SIP Total

Packets 60 3 63
Bytes 15112 1226 15338
Avg. pkt size(bytes) 235.199 613.000 247.387

Table 6.2: Scenario 1

CHAPTER 6. TESTING AND ANALYSIS 54

DUPnP DSIP Dtimeout Total

Delay (sec) 10.387 0.089 0 10.476

Table 6.3: Call Setup Delay in Scenario 1

6.2.2 Scenario 2

In this scenario, we tested the SIP call initialed by an Ad Hoc node to a SIP

node allocated in a public network. The Ad Hoc node of laptop is configured

to use a STUN server (e.g. stunserver.org) to bind the port behind NAT. This

can be done by setting the environment variable in Linux terminal . Figure

6.4 shows the STUN binding request and the STUN binding response message

caught by Wireshark. It indicates the SIP invite messages traverse between

the Ad Hoc network and the public network. In this scenario, the laptop is

functioning as the gateway for the Ad Hoc network to public network.

To calculate the call setup delay for this scenario, we need to add the delay

caused by the timeout value Dtimeout. The formula is shown in 6.2. In this

scenario, we have the 20.5 seconds delay in total shown in Table 6.5.

CSD =
∑

(DUPnP + DSIP + DT imeout) (6.2)

Traffic SSDP/UPnP SIP Total

Packets 60 3 63
Bytes 15112 1226 15338
Avg. pkt size(bytes) 235.199 613.000 247.387

Table 6.4: Scenario 2

DUPnP DSIP Dtimeout Total

Delay(sec) 11.072 8.887 10 29.959

Table 6.5: Call Setup Delay in Scenario 2

From the results, we notice the end-to-end delay from SIP signals is increased

because the STUN server is involved in the signalling path.

6.2.3 Scenario 3

The last scenario is making call from the public network to our private Ad Hoc

network. The callee allocated in the Ad Hoc network is required to register

CHAPTER 6. TESTING AND ANALYSIS 55

Figure 6.4: STUN binding message

itself before the call. From the packets shown in Figure 6.5, we can see the

REGISTER messages along with UPnP messages. The results in Table 6.6

indicates the end-to-end delay from SIP packets have increased. Also, the

number of packets are increasing. In this case we use the same formula 6.1 to

calculate the end-to-end delay.

Traffic SSDP/UPnP SIP Total

Packets 59 12 71
Bytes 16274 6902 23176
Avg. pkt size(bytes) 275.830 575.167 326.423

Table 6.6: Scenario 3

DUPnP DSIP Dtimeout Total

Delay(sec) 13.869 19.765 0 33.634

Table 6.7: Call Setup Delay in Scenario 3

CHAPTER 6. TESTING AND ANALYSIS 56

Figure 6.5: SIP REGISTER message

Chapter 7

Conclusion and Future work

In this thesis, we have designed and implemented a modularized system for the

Ad hoc VoIP application. We use UPnP as both the peer discovery protocol

and the service discovery protocol. To be able to achieve better interoper-

ability, our design does not require any modifications on SIP messages nor

dependencies on the underlaying routing protocols. We also defined different

scenarios of making SIP calls using our application. And we explained the

functionality of each modules in different scenarios. Finally, we tested our

implementations on three Nokia Internet Tablets.

From description in Chapter 6, we found there were several facts that have an

effect on the performance of UPnP service discovery performance, such as MX

value, number of repeat SSDP announcements, and number of devices in the

network.

The most important fact is the number of devices because the devices are

constantly multicasting ssdp:alive message to the network, and it dramatically

increases the overhead of network traffic. But in small scope networks, such

as home or office networks, the traffic load caused by UPnP is not noticeable

compared with the RTP traffic of media session. Regarding the end-to-end

delay of establishing SIP call, UPnP service discovery and peer discovery is

steady and does not increase dramatically. But the delay contributed by SIP

signalling varies in different situations. From this observation, we can con-

clude that UPnP is suitable for peer-to-peer application in small scope home

networks or office networks.

As we mentioned in Chapter 1, we have not considered security issues when we

designed our application. It is highly recommended to encrypt conversations

between mobile nodes. Due to the limitation of resources, we cannot test this

57

CHAPTER 7. CONCLUSION AND FUTURE WORK 58

application on a large number of real devices. Possible future work can be

performed on these two areas.

Bibliography

[1] TeleGeography Research. Telegeography report executive summary, 2008.

http://www.telegeography.com/products/tg/telegeography_samples.zip.

[2] Morgan Stanley Research. Internet trends, 2010.

http://www.morganstanley.com/institutional/ techresearch/pdfs/In-

ternet_Trends_041210.pdf.

[3] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari

Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet

applications. In Proceedings of the ACM SIGCOMM ’01 Conference, San

Diego, California, August 2001.

[4] D.A. Bryan, B.B. Lowekamp, and C. Jennings. Sosimple: A serverless,

standards-based, p2p sip communication system. Advanced Architectures

and Algorithms for Internet Delivery and Applications, 2005. AAA-IDEA

2005. First International Workshop on, pages 42–49, June 2005.

[5] Chang Lin-huang, Chuang Ping-da, and Chen Yu-Jen. An ad-hoc voip

system implementation using upnp. In International Computer Sympo-

sium, December 2004.

[6] S. Leggio, J. Manner, A. Hulkkonen, and K. Raatikainen. Session initia-

tion protocol deployment in ad-hoc networks: a decentralized approach.

In 2nd International Workshop on Wireless Ad-hoc Networks (IWWAN),

May 2005.

[7] Kundan Singh and Henning Schulzrinne. Peer-to-peer internet telephony

using sip. In NOSSDAV ’05: Proceedings of the international workshop on

Network and operating systems support for digital audio and video, pages

63–68, New York, NY, USA, 2005. ACM.

59

BIBLIOGRAPHY 60

[8] Y. Charlie Hu, Saumitra M. Das, and Himabindu Pucha. Peer-to-peer

overlay abstractions in manets. CRC Press, 2005.

[9] Patrick Stuedi, Marcel Bihr, Alain Remund, and Gustavo Alonso. Siphoc:

Efficient sip middleware for ad hoc networks, 2007. available as. Techni-

cal report, In Proceedings of the 8th ACM/IFIP/USENIX International

Middleware Conference, 2007.

[10] R. Ramanathan and J. Redi. A brief overview of ad hoc networks: chal-

lenges and directions. Communications Magazine, IEEE, 40(5):20–22,

May 2002.

[11] D. Johnson, Y. Hu, and D. Maltz. The Dynamic Source Routing Protocol

(DSR) for Mobile Ad Hoc Networks for IPv4. RFC 4728 (Experimental),

February 2007.

[12] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol

(OLSR). RFC 3626 (Experimental), October 2003.

[13] C. Perkins, E. Belding-Royer, and S. Das. Ad hoc On-Demand Distance

Vector (AODV) Routing. RFC 3561 (Experimental), July 2003.

[14] C.K. K Toh. Ad Hoc Wireless Networks: Protocols and Systems. Prentice

Hall PTR, Upper Saddle River, NJ, USA, 2001.

[15] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance

vector routing. In In Proceedings of the 2nd IEEE Workshop on Mobile

Computing Systems and Applications, pages 90–100, 1999.

[16] E. Royer and C. Perkins. Multicast Ad hoc on-Demand Distance Vector

(MAODV) Routing. IETF Internet-Draft draft-ietf-manet-maodv-00.txt,

July 2000.

[17] Sung-Ju Lee, William Su, and Mario Gerla. On-Demand Multicast Rout-

ing Protocol (ODMRP) for Ad Hoc Networks. IETF Internet-Draft draft-

ietf-manet-odmrp-02.txt, January 2000.

[18] Charles E. Perkins and Charles Perkins. Ad Hoc Networking. Addison-

Wesley Professional, December 2000.

BIBLIOGRAPHY 61

[19] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,

R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.

RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265,

3853, 4320, 4916, 5393.

[20] D. Crocker and P. Overell. Augmented BNF for Syntax Specifications:

ABNF. RFC 2234 (Proposed Standard), November 1997. Obsoleted by

RFC 4234.

[21] M. Garcia-Martin, C. Bormann, J. Ott, R. Price, and A. B. Roach. The

Session Initiation Protocol (SIP) and Session Description Protocol (SDP)

Static Dictionary for Signaling Compression (SigComp). RFC 3485 (Pro-

posed Standard), February 2003. Updated by RFC 4896.

[22] M. Handley and V. Jacobson. SDP: Session Description Protocol. RFC

2327 (Proposed Standard), April 1998. Obsoleted by RFC 4566, updated

by RFC 3266.

[23] Jörg Ott. Application protocol design considerations for a mobile internet.

In MobiArch ’06: Proceedings of first ACM/IEEE international workshop

on Mobility in the evolving internet architecture, pages 75–80, New York,

NY, USA, 2006. ACM.

[24] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Pro-

tocol, Version 2. RFC 2608 (Proposed Standard), June 1999. Updated by

RFC 3224.

[25] Sun Mircosystem. Jini architecture specification.

http://www.jini.org/wiki/jini_architecture_specification#key_concepts.

[26] Universal Plug and Play Forum. Upnp TMdevice architecture, October

2008.

[27] Bluetooth SIG. Specification of the bluetooth system.

http://www.bluetooth.com/bluetooth/technology/building/ specifi-

cations/default.htm.

[28] Universal Plug and Play Forum. Understanding universal plug and

play. http://www.upnp.org/download/UPnP_UnderstandingUPNP.doc,

2000.

BIBLIOGRAPHY 62

[29] S. Cheshire, B. Aboba, and E. Guttman. Dynamic Configuration of IPv4

Link-Local Addresses. RFC 3927 (Proposed Standard), May 2005.

[30] D. Plummer. Ethernet Address Resolution Protocol: Or Converting Net-

work Protocol Addresses to 48.bit Ethernet Address for Transmission on

Ethernet Hardware. RFC 826 (Standard), November 1982. Updated by

RFC 5227.

[31] D. Meyer. Administratively Scoped IP Multicast. RFC 2365 (Best Current

Practice), July 1998.

[32] Nokia maemo platform. http://www.maemo.org.

[33] Scratchbox. http://www.scratchbox.org.

[34] GNOME ORG. Hildon project homepage. http://maemo.org.

Appendix A

Key APIs

Listing A.1: API Sending HTTP GET

1 // This method sends HTTP GET message to the g iven IP
// address , por t number and URI from the SSDP response

3 // message r e c e i v e d from UPnP network

5 char ∗SendHttpGet (char ∗ ipaddr , int port , char ∗ ur i ,
PtrToXMLParserFunc ca l lback_func)

{
7 CgHttpRequest ∗httpReq ;
CgHttpResponse ∗httpRes ;

9 char ∗ content ;
long content l eng th ;

11

httpReq = cg_http_request_new () ;
13 cg_http_request_setmethod (httpReq , CG_HTTP_GET) ;

cg_http_request_seturi (httpReq , u r i) ;
15 cg_http_request_setcontent length (httpReq , 0) ;

httpRes = cg_http_request_post (httpReq , ipaddr , port) ;
17

// send HTTP GET f a i l e d
19 i f (! cg_http_response_issuccess fu l (httpRes))

{
21 cg_http_request_delete (httpReq) ;

return NULL;
23 }

content = cg_http_response_getcontent (httpRes) ;
25 content l eng th = cg_http_response_getcontent length (

httpRes) ;
return ca l lback_func (content , cont ent l eng th) ;

27 }

63

APPENDIX A. KEY APIS 64

Listing A.2: SSDP Response Listener

1 // SSDP Not i f y L i s t ene r
void SSDPNotifyListner (CgUpnpSSDPPacket ∗ ssdpPkt)

3 {
i f (cg_upnp_ssdp_packet_isdiscover (ssdpPkt) == TRUE)

5 {
cg_upnp_ssdp_packet_print (ssdpPkt) ;

7 }
else i f (cg_upnp_ssdp_packet_isalive (ssdpPkt) == TRUE)

9 {
i f (! strcmp (cg_upnp_ssdp_packet_getnt (ssdpPkt) ,

11 "urn : schemas−upnp−org : s e r v i c e : s i p : 1 "))
{

13 char ∗ ip = NULL;
int port = 0 ;

15 char ∗ ur i = NULL;
char ∗ sip_aor = NULL;

17 char ∗ s e rv i c e_ id = NULL;

19 PtrToXMLParserFunc ca l lback_func =
GetServiceIdFromXML_N ;

ip=get_ip_from_url_N(cg_upnp_ssdp_packet_getlocation (
ssdpPkt)) ;

21 port=get_port_from_url (cg_upnp_ssdp_packet_getlocation (
ssdpPkt)) ;

u r i=get_uri_from_url_N(cg_upnp_ssdp_packet_getlocation (
ssdpPkt)) ;

23 s e rv i c e_ id=SendHttpGet (ip , port , ur i , ca l lback_func) ;

25 sip_aor = find_token (serv ice_id , " : " , " s e r v i c e I d ") ;
main_view−>data−>rout ing_table = rout ingtable_update (

main_view−>data−>rout ing_table , ip , sip_aor , ONLINE
) ;

27 }
else

29 {
p r i n t f ("xxxxxxx␣non−s i p ␣ s e r v i c e ! \ n") ;

31 }
}

33 else i f (cg_upnp_ssdp_packet_isbyebye (ssdpPkt) == TRUE)
{

35 char ∗ ip = NULL;
int port = 0 ;

37 i f (strcmp (cg_upnp_ssdp_packet_getnt (ssdpPkt) ,
"urn : schemas−upnp−org : s e r v i c e : s i p : 1 ") ==

APPENDIX A. KEY APIS 65

0)
39 {

ip = cg_upnp_ssdp_packet_getremoteaddress (ssdpPkt) ;
41 port = cg_upnp_ssdp_packet_getremoteport (ssdpPkt) ;

main_view−>data−>rout ing_table = rout ingtable_update
(main_view−>data−>rout ing_table , ip , NULL,
OFFLINE) ;

43 }
else

45 {
p r i n t f ("xxxxxxx ␣non−s i p ␣ s e r v i c e ! \ n") ;

47 }
}

49 }

