
Antti Tuomi

Application integration for condition
based maintenance

Faculty of Electronics, Communications and Automation

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 12.5.2010

Thesis supervisor:

Prof. Jukka Manner

Thesis instructor:

Dr.Sc. (Tech.) Ilkka Seilonen

A! Aalto University
School of Science
and Technology

aalto university
school of science and technology

abstract of the
master’s thesis

Author: Antti Tuomi

Title: Application integration for condition monitoring

Date: May 12th, 2010 Number of pages: 8 + 51

Faculty: Faculty of Electronics, Communications and Automation

Department: Department of Communications and Networking

Professorship: S-38 Networking Technology

Supervisor: Prof. Jukka Manner

Instructor: Ilkka Seilonen, Dr.Sc.(Tech.)

Contemporary maintenance processes particulary in condition based maintenance
are very information-intensive. However, the information is usually divided to sev-
eral information systems that are not interconnected. OPC Unified Architecture is
a new protocol expected to bridge the gap between the service-oriented enterprise
IT systems and the automation systems.

This work studies the feasibility of OPC Unified Architecture to enable connec-
tivity of intelligent devices and condition monitoring systems. A test platform,
consisting of a condition monitoring system (Metso FieldCare) and an enterprise
asset management system (CalemEAM), is implemented and a design to connect
the systems is presented. A part of the design is implemented on the test platform
with the .NET framework and the implementation is validated with processes of
condition based maintenance. MIMOSA OSA-EAI and OpenO&M Common In-
teroperability Registry specifications were applied in the implementation.

The results suggest that OPC Unified Architecture and in particular its informa-
tion modelling capabilities offer benefits over the older technologies. However,
the existing information models are insufficient for presenting condition data. If
the information modelling capabilities are not utilised, they remain a source of
unnecessary complexity.

Keywords: application integration, condition based maintenance, OPC UA, SOA,
MIMOSA OSA-EAI

aalto-yliopisto
teknillinen korkeakoulu

diplomityön
tiivistelmä

Tekijä: Antti Tuomi

Työn nimi: Sovellusintegraatio kuntoon perustuvassa kunnossapidossa

Päivämäärä: 12.5.2010 Sivuja: 8 + 51

Tiedekunta: Elektroniikan, tietoliikenteen ja automaation tiedekunta

Laitos: Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: S-38 Tietoverkkotekniikka

Työn valvoja: Prof. Jukka Manner

Työn ohjaaja: TkT Ilkka Seilonen

Nykyaikaiset kunnossapitomenetelmät erityisesti kuntoon perustuvassa kunnos-
sapidossa ovat hyvin tietointensiivisiä. Tieto on kuitenkin usein jaettu tie-
tojärjestelmiin, jotka eivät ole yhteydessä toisiinsa. OPC Unified Architectu-
re on uusi yhteyskäytäntö jonka odotetaan kaventavan palvelukeskeisten tie-
tojärjestelmien ja automaatiojärjestelmien välistä kuilua.

Tämä työ tutkii OPC Unified Architecturen soveltuvuutta älykkäiden toimi-
laitteiden ja kunnonvalvontajärjestelmien yhdistämiseen. Työssä rakennetaan
koeympäristö, joka koostuu kunnonvalvontajärjestelmästä (Metso FieldCare) ja
kunnossapitojärjestelmästä (CalemEAM), ja suunnitelma näiden yhdistämiseen
esitellään. Osa suunnitelmasta toteutetaan .NET sovelluskehyksellä ja toteutus
testataan kuntoon perustuvan kunnossapidon prosesseilla. Toteutuksessa sovel-
letaan MIMOSA OSA-EAI ja OpenO&M Common Interoperability Registry-
spesifikaatioita.

Tulosten perusteella voidaan sanoa, että OPC Unified Architecture ja erityisesti
sen tiedonmallintamisominaisuudet ovat hyödyllisiä verrattuna tämän hetkisiin
tekniikoihin. Olemassaolevat tietomallit eivät kuitenkaan riitä kuntotiedon mal-
lintamiseen. Jos mallintamisominaisuuksia ei käytetä, niiden vaikutus on vain
spesifikaatiota monimutkaistava.

Avainsanat: sovellusintegraatio, kuntoon perustuva kunnossapito, OPC UA,
SOA, MIMOSA OSA-EAI

iv

Preface

This work was done in the Information and Computer systems in Automation re-
search group. I would like to thank my colleagues, my supervisor prof. Manner and
my instructor Dr. Seilonen for their guidance.

Otaniemi, 12.5.2010

Antti Tuomi

v

Contents

Abstract ii

Abstract in finnish iii

Preface iv

Contents v

Abbreviations vii

List of Figures viii

1 Introduction 1

1.1 Objectives, research questions, research methods 1

1.2 Results . 2

1.3 Outline of this thesis . 2

2 Maintenance 3

2.1 Overview . 3

2.1.1 Condition based maintenance 4

2.2 Maintenance operations management 6

2.3 Automation and information systems in maintenance operations man-
agement . 7

2.3.1 Enterprise asset management systems 8

2.3.2 Condition monitoring systems 10

2.4 Summary . 12

3 Application integration in maintenance 13

3.1 Concepts . 13

3.2 Application integration in condition based maintenance 14

3.3 FDT . 15

3.4 OPC UA . 15

3.4.1 Concepts . 16

3.4.2 OPC UA device information model 19

3.4.3 Field Device Integration . 20

vi

3.4.4 Current status and future . 21

3.5 MIMOSA and OpenO&M standards 21

3.5.1 OSA-EAI . 22

3.5.2 OSA-CBM . 23

3.5.3 Common Interoperability Registry (CIR) 24

3.6 Related research . 24

3.7 Summary . 25

4 Design of application integration 26

4.1 Requirements . 26

4.1.1 Use cases . 27

4.2 Structure of the integrated system . 29

4.3 Dynamic behaviour and interactions in the integrated system 31

4.4 Data transformations . 32

4.5 Rationale . 34

4.6 Summary . 35

5 Implementation and testing 36

5.1 Integration research platform . 36

5.1.1 Maintenance operations integration in the platform 38

5.2 Implementation of the design . 40

5.3 Testing . 42

5.3.1 Health assessment use case . 43

5.4 Summary . 45

6 Conclusions and discussion 46

6.1 Conclusions . 46

6.2 Discussion and proposals for future work 47

References 48

vii

Abbreviations

ADI Analyser Device Information model (of OPC UA)

API application programming interface

CBM condition based maintenance

CIR Common Interoperability Registry

CM condition monitoring

CRIS Common Relational Information Schema

DCOM Distributed Component Object Model

DI Device Information model (of OPC UA)

DPWS Devices Profile for Web Services

DTM Device Type Manager (in FDT)

EAM enterprise asset management

EDDL Electronic Device Description Language

ERP enterprise resource planning

FDI Field Device Integration

FDT Field Device Tool

GUID Globally Unique Identifier

MES manufacturing execution system

O&M operations and maintenance

OPC UA OPC Unified Architecture

OSA-CBM Open Systems Architecture for Condition-Based Maintenance

OSA-EAI Open Systems Architecture for Enterprise Application Integration

PCS process control system

PLM product lifecycle management

SDK software development kit

SOA service-oriented architecture

SQL Structured Query Language

UML Unified Modeling Language

WCF Windows Communication Foundation

WSDL Web Service Definition Language

XSL Extensible Stylesheet Language

XSLT XSL Transformations

viii

List of Figures

1 Types of maintenance adapted from [1]. 4

2 P-F curve . 5

3 Condition monitoring process . 5

4 ISA-95 functional hierarchy model, adapted from [2] 6

5 Activity model of maintenance operations management, adapted from
[2] . 7

6 Screenshot of CalemEAM Community Edition 9

7 ISO 13374 data processing blocks, adapted from [3] 10

8 Screenshot of the condition monitoring web interface 11

9 Screenshot of the ND9000PA DTM interface 12

10 WCF architecture. [4, 5] . 14

11 OPC UA address space, object model and services [6]. 17

12 Mapping a C++ class to UA ObjectType, adapted from [6]. 18

13 Layering of OPC UA information models, adapted from [6]. 19

14 FDI concept adapted from [7]. 20

15 OSA-EAI V3.2 architecture, adapted from [8]. 22

16 Use cases enhanced by the integration 28

17 The integrated system as part of SOA architecture 29

18 Components, connectors and interfaces 30

19 Interaction between the systems . 32

20 Flow of data between the systems . 33

21 Mapping an OPC UA Object to a XML document 34

22 Integration research platform . 36

23 Mini Pulp Process (MPP) . 37

24 Maintenance part of the research platform 38

25 Accessing valve condition data over OPC UA 39

26 Implemented system and the maintenance operations in the integra-
tion research platform . 41

27 Interaction between the servers . 43

1

1 Introduction

The highly integrated production processes of contemporary manufacturing depend
on the reliability of the involved assets. Advances in maintenance have enabled the
use of sophisticated data-intensive methods for assessing the health and mainte-
nance need of production equipment. However, the data for this is usually stored
in separate IT systems that do not communicate with each other. Integrating these
data sources could better support the data-intensive maintenance processes.

The service-oriented architecture (SOA) paradigm is commonly used in the domain
of enterprise application integration. However, applying it in the integration of
devices is rare. OPC Unified Architecture (OPC UA) is a new protocol that is ex-
pected to bridge this gap between the service-oriented enterprise IT systems and the
automation and control systems, including intelligent devices. These two technolo-
gies are expected to play a major role in application integration in manufacturing
operations management.

This thesis was written as a part of the POJo-project, which is part of the second
work package of the EffTech research program of Forestcluster Ltd. Integration of IT
systems involved in operations and maintenance was a part of the research project.

1.1 Objectives, research questions, research methods

SOA has already established itself as the dominating enterprise integration paradigm.
OPC UA was designed with this in mind and is thus meant to be applicable in SOA-
based IT architectures. OPC UA and especially its capability to present domain-
specific information models is expected to facilitate the integration of domain-
specific data in a standard manner. However, there has been little research in
applying both OPC UA and SOA in condition based maintenance.

The main research problem of this thesis is to find out a suitable design for the
integration of IT systems involved in condition based maintenance with SOA and
OPC UA. In particular, how does OPC UA facilitate the integration of devices with
SOA-oriented IT systems, what are the properties of the design and what other
standards, if any, are required to implement the design.

These problems are approached by developing an experimental design for the ap-
plication integration. The requirements for the design are drawn by examining the
processes of condition based maintenance. The design is validated with an exper-
imental implementation which is tested with use cases identified in requirements
analysis.

The scope of this thesis is limited to vertical integration in condition based mainte-
nance. Particularly the work focuses on the integration of enterprise asset manage-
ment and condition monitoring systems, even though the test platform contains also
other systems. The test platform is constructed so that it can be used to evaluate
the feasibility of the design, but not its scalability and performance properties.

2

1.2 Results

In this work, a description of a feasible design for integrating OPC UA-based con-
dition monitoring systems to SOA-oriented IT systems is presented. To evaluate
the design, a test platform is constructed using commercial off-the-shelf IT systems.
Because the systems used do not support the interfaces that are to be evaluated,
such interfaces are implemented separately. The test platform that can be used to
evaluate the selected test platforms is described. The design is validated with an
experimental implementation. The implementation is demonstrated to be able to
supply the data necessary to support use cases in the condition based maintenance
process.

1.3 Outline of this thesis

The first two chapters present the application domain by describing the relevant
standards and related research. The second chapter presents the domain of mainte-
nance and its relation to other activities in the enterprise. In addition the IT systems
used to support the maintenance processes, especially condition based maintenance,
are described. The third chapter discusses application integration in maintenance
operations management. Application integration in general is presented following
with an overview of application integration standards (including OPC UA) used in
maintenance.

Chapter 4 describes the requirements and a design that covers them. The chapter
follows the methodology presented in the IEEE 1471 standard. The stakeholders,
their concerns and needs are identified to draw the requirements of the design.
Finally, a design that covers the requirements and its rationale is presented.

The fifth chapter presents the test platform and the experimental implementation for
evaluating the viability of the design. First, the actual IT systems, their capabilities
and implemented extensions of the test platform are described. The description
of the implemented parts of the design follows along with the test cases used to
evaluate the implementation. Finally, the sixth chapter presents the conclusions,
discussion and proposals for future work.

3

2 Maintenance

This chapter presents the domain of maintenance. First, the importance of main-
tenance and the different types of it are presented with a focus on condition based
maintenance. Then, the maintenance activities are positioned in relation to other
activities in a manufacturing enterprise. Finally, the most important IT systems
that support the maintenance processes are presented with two examples.

2.1 Overview

With the highly integrated production processes and tight schedules used in manu-
facturing today, it is essential that equipment is reliable and efficient. Maintenance
keeps the equipment operating at optimal capacity. A more formal, all-encompassing
definition can be found in the European standard EN 13306, where maintenance is
defined as “combination of all technical, administrative and managerial actions dur-
ing the life cycle of an item intended to retain it in, or restore it to, a state in which
it can perform the required function” [1].

Originally maintenance mostly involved lubrication, calibration and cleaning of the
equipment. Equipment was repaired after a failure. Because equipment was usually
designed with larger margins of error, breakdowns were rare. Production equipment
was simple and repairs were easy. Because the production processes were not highly
integrated, a single equipment failure had limited effect on production. [9]

The second world war had a large impact on production processes. To meet the
larger production requirements of war industry, the level of automation was in-
creased and production processes were integrated more tightly. Equipment used in
production were connected to each other to form longer production lines. Because
of these changes, breakdowns started to have more serious consequences. A single
equipment failure could halt the entire production line. Preventive maintenance
processes, mostly scheduled equipment overhauls, started emerging to reduce the
number of breakdowns. [9]

Nowadays production processes are highly integrated, production equipment is ex-
pensive and competition is global. On the other hand, we have better tools for
detecting impending equipment failures. Maintenance processes used in the indus-
try today reflect this change. In addition to the older processes of corrective and
scheduled maintenance, there are new processes in use today. [9]

In EN 13306, the maintenance processes are divided to different categories that are
illustrated in Figure 1. The two main categories are preventive maintenance, which
is done before a fault is detected, and corrective maintenance that is done after-
wards. Preventive maintenance is further divided to condition based maintenance
and predetermined maintenance. Unlike condition based maintenance, predeter-
mined maintenance is done without a previous condition investigation [1]. ISA-95
adds an additional category that includes maintenance that is related to resource
performance and efficiency optimisation [2].

4

Maintenance

Preventive Maintenance Corrective Maintenance

Condition based

Maintenance

Predetermined

Maintenance
Condition based

Maintenance

Predetermined

Maintenance

Figure 1: Types of maintenance adapted from [1].

Preventive maintenance makes it possible to raise the reliability level of the pro-
duction equipment considerably. Also maintenance planning that is enabled by
effective preventive maintenance can have a major economic impact. If the mainte-
nance work can be planned in advance, the production schedule, orders for required
spare parts and so on can all be organised properly. However, the costs of preventive
maintenance rise dramatically if the attempted level of reliability is set too high.
The maintenance organisation should decide what is the optimal level of preventive
maintenance taking into account the effects of equipment failure and the efficiency
of preventive maintenance. [10]

2.1.1 Condition based maintenance

The intent of condition based maintenance is to reduce the probability of failure
and prevent irreversible damage to the equipment [1]. The effects that cause the
equipment failure are called the failure modes and include changes such as material
fractures and leaks. The conditions of the machine that contribute to a failure mode
are called the failure causes. Failure causes include normal wear, improper operation
and defects in the equipment. [11]

In simple equipment, time dependant failure modes dominate. However, more com-
plex equipment have more complex failure modes. It is insufficient to rely on reg-
ularly scheduled equipment overhauls to keep such equipment reliable. Knowing
the failure modes of the equipment and their causes makes it possible to detect
impending failures with methods such as vibration analysis and oil analysis. [11]

The deterioration of the equipment can be visualised with the Potential Failure (P-
F) curve, illustrated in Figure 2. The curve has two important points, the potential
for failure point (P) and the failure point (F). After the point P, the impending
failure can be detected and at the point F, the equipment fails. The time difference
between F and P defines the feasibility of condition based maintenance strategy. If
there is no time to react to the failure, then condition based maintenance can not be
used. With contemporary analysis methods, the impending failure can be detected

5

Potential to detect

impending failure

(P)

Failure (F)

Time to

react

Health

Time

Figure 2: P-F curve

earlier thus increasing the time interval between the detection and failure. Better
analysis methods essentially increase the time to react to the equipment failure. [12]

Condition monitoring process

Identification

of related

assets

Health

assessment

Prognostic

evaluation
Recommendation

Figure 3: Condition monitoring process

The process that starts when an abnormal condition is detected is illustrated in
Figure 3. The process is based on the workflow described by the ISO 13374 standard,
which will be examined in more detail in the section 2.3.2. ISO 13374 is a standard
that defines the data transfers and interfaces of an automated condition monitoring
system. First the maintenance engineer needs to identify what assets are involved
with the abnormal condition. When the assets are known, the engineer assesses
the health of the involved equipment. This process can involve methods such as
lubrication analysis, vibration analysis and thermographic analysis. [3]

When the current health is known, the maintenance engineer creates a prognosis
for the equipment. Prior knowledge about the equipment and assumptions on the
future use are useful for this process. Based on the prognosis, the maintenance
engineer can propose what should be done next, for example should the equipment
be repaired or replaced immediately or is it possible to defer the maintenance work.
[3]

6

2.2 Maintenance operations management

The relation of condition based maintenance to other functions performed by an en-
terprise involved in manufacturing can be understood with the framework provided
by the ISA-95 standard. ISA-95 identifies two domains in a manufacturing enter-
prise and the boundary between them: the enterprise domain and the manufacturing
operations and control domain. These domains are further divided to a hierarchy
of 5 levels, where the lowest level 0 is the actual physical process and the highest
level 4 contains the business-related activities needed to manage a manufacturing
organisation. These levels are illustrated in Figure 4. [13, 2]

Level 1

Sensing

Manipulation

Level 2

Monitoring

Automated Control

Level 3

Dispatching Production

Detailed Production Scheduling

Reliability Assurance

Level 4

Plant Production Scheduling

Operational Management
Business Planning & Logistics

Manufacturing Operations

Management

Batch

Control

Continuous

Control

Discrete

Control

Level 0

Physical process

Figure 4: ISA-95 functional hierarchy model, adapted from [2]

The third level, manufacturing operations management, is divided into 4 main cat-
egories: production operations management, quality operations management, in-
ventory operations management and maintenance operations management. ISA-95
defines maintenance operations management to be “activities within Level 3 of a
manufacturing facility that coordinate, direct, and track the functions that maintain
the equipment, tools, and related assets to ensure their availability for manufacturing
and ensure scheduling for reactive, periodic, preventive or proactive maintenance”
[2].

The definition in ISA-95 can be compared to the definition of maintenance man-
agement in EN 13306, which defines it to be “all activities of the management that
determine the maintenance objectives, strategies, and responsibilities and implement
them by means such as maintenance planning, maintenance control and supervision,
improvement of methods in the organization including economical aspects”[1]. This

7

definition has a broader scope, but is not contradictory to the definition used by
ISA-95 which is used in this work.

The activities in maintenance operations management are illustrated in Figure 5.
Equipment state of health data refers to the data from levels 1 and 2 that indi-
cates the health of the equipment. This data is produced by condition monitoring
processes. ISA-95 refers to ISO 13374 for defining these processes and the involved
data. [2]

Maintenance

resource

management

Detailed

maintenance

scheduling

Maintenance

dispatching

Maintenance

definition

management

Maintenance

execution

management

Maintenance

tracking

Maintenance data

collection

Maintenance

analysis

Maintenance level 1-2 functions

Maintenance

definitions

Maintenance

capability

Maintenance

request

Maintenance

response

Maintenance

commands and

procedures

Maintenance

results

Equipment

state of health

data

Equipment specific

maintenance

procedures

Figure 5: Activity model of maintenance operations management, adapted from [2]

2.3 Automation and information systems in maintenance
operations management

The main information system in maintenance operations management is the Enter-
prise Asset Management (EAM) system, also called the Computerised Maintenance
Management System (CMMS). In condition based maintenance in particular, Con-
dition Monitoring (CM) systems are also important. This section describes the

8

functionality by applying the relevant standards and presents examples of both sys-
tems.

2.3.1 Enterprise asset management systems

Enterprise asset management systems support the activities in maintenance opera-
tions management. These activities are described by the ISA-95 activity model [2].
These descriptions, adapted from [2], are presented next.

Maintenance definition management activity manages the information neces-
sary to complete maintenance tasks, such as documentation about the equip-
ment and maintenance procedures.

Maintenance resource management controls maintenance personnel and their
training and skills, maintenance supplies and spare part inventory.

Detailed maintenance scheduling includes work such as processing the work re-
quests and generating the work orders if necessary. Planning the maintenance
work so that its impact on the production is minimised is a part of this activity.

Maintenance dispatching assigns the work orders to the maintenance resources
identified by the maintenance resource management activity.

Maintenance execution management directs the maintenance work. This ac-
tivity monitors the maintenance work and reports any unexpected events to
the other activities in maintenance operations management.

Maintenance data collection collects and reports the measured data about the
maintenance work, for example the duration of the maintenance work.

Maintenance tracking analyses the maintenance data and produces reports about
the utilisation of resources and effectiveness of the maintenance work.

Maintenance analysis identifies problem areas, such as impending equipment
failures, and areas of improvement. This activity may produce information
that suggests maintenance process improvements, such as where the mainte-
nance work should be focused to improve the reliability of critical equipment.

The functionality between different EAM systems varies. Some of these functionali-
ties can be found in other systems, or they can be unsupported by IT. However, all
of these activities are performed with varying levels of sophistication in a manufac-
turing enterprise [2].

An EAM system can be a part of an Enterprise Resource Planning (ERP) system.
For example, the EAM system of SAP, SAP Plant Maintenance (PM), is a module
of their ERP system [14]. Separate EAM systems include IBM Maximo, Solteq
Artturi, CalemEAM and Infor EAM.

9

The functionality of CalemEAM is presented as an example of a typical EAM system.
Figure 6 illustrates the menu structure and the different functionalities of the system.
CalemEAM is a web-based EAM system, backed by the MySQL relational database
management system. The system has been implemented with the PHP programming
language. There are two editions of the system: community edition that is available
for free, and the enterprise edition that requires a subscription. This description
refers to the community edition. [15]

Figure 6: Screenshot of CalemEAM Community Edition

The information CalemEAM can present about an asset include its identification,
location, current status, purchasing information (warranty, deprecation), the service
history and meter readings. CalemEAM organises the assets into a hierarchy, so
an asset can be a part of another asset. For example, a production plant can be
modelled as an asset, and can include multiple production line assets which consist
of the actual equipment. [15]

CalemEAM organises maintenance information as work orders. The life of a work
order begins when a user of the system creates a work request. Work orders can
also be generated automatically according to the selected preventive maintenance
strategy. The maintenance personnel can check the work request, and if necessary
accept it and schedule it to a maintenance engineer. The user can attach main-
tenance instructions, information about the required spare parts and information
about planned downtime to the work order. When the maintenance work is done,
the information about used spare parts, labor (including possible overtime) and

10

other notes can be added to the work order. CalemEAM can also manage the spare
part inventory. [15]

CalemEAM also includes other functionality such as maintenance personnel informa-
tion management. Personnel work shifts, training and certifications can be tracked
by the system. However, CalemEAM lacks support for IT system integration. It
does not support any specific integration standards. If CalemEAM must be con-
nected to other IT systems, a custom solution must be developed.[15]

2.3.2 Condition monitoring systems

Condition monitoring systems are used to monitor the condition of equipment. Func-
tionality of a condition monitoring system is presented by the ISO 13374 standard,
which presents guidelines for the requirements. The standard divides the equip-
ment condition assessment to 6 blocks of functionality. The blocks are illustrated in
Figure 7. The data acquisition block collects the data in a digital form from the

Data

Acquisition

(DA)

Data

Manipulation

(DM)

State

Detection

(SD)

Health

Assessment

(HA)

Prognostic

Assessment

(PA)

Advisory

Generation

(AG)

Sensor

Technology

specific

Figure 7: ISO 13374 data processing blocks, adapted from [3]

transducers. Data manipulation block analyses the data and produces virtual sen-
sor readings from the measurements produced by the data acquisition block. State
detection block detects abnormal readings and produce warnings and alerts. Health

11

assessment block can rate the current health of the equipment. Prognostic assess-
ment block can predict remaining life of the equipment according the the projected
usage and the data produced by the other blocks. Finally, the advisory generation
block generates actionable information from all this data. [3]

Condition monitoring systems do not always implement all blocks of functionality.
Health assessment, prognosis assessment and advisory generation are often left to
maintenance personnel or to more sophisticated analysis tools. [3]

Figure 8: Screenshot of the condition monitoring web interface

Metso FieldCare is a device management software with an optional condition mon-
itoring module. FieldCare is based on the Field Device Tool (FDT) technology,
which is described in more detail in section 3.3. FieldCare can communicate with
intelligent devices over the FDT interface and present the interface of the device
to the user of the application. The condition monitoring module can additionally
monitor the diagnostics of the device. Figure 8 illustrates the web interface of the
FieldCare condition monitoring module.

Metso FieldCare does not include the advanced prognosis, health assessment and
advisory generation functionalities of the ISO 13374 standard. However, it can be
used as a data collector for a more advanced system that can produce this informa-
tion from the data provided by FieldCare. FieldCare does not produce the data by
itself, but instead can access the data provided by intelligent devices that include
self-diagnosis features. Neles ND9000PA is a valve controller that contains multiple
sensors that can be used to monitor the state and health of the equipment. The

12

Figure 9: Screenshot of the ND9000PA DTM interface

DTM interface of the controller is pictured in Figure 9. The valve controller can
automatically generate warnings and alarms that can be presented by FieldCare or
any other FDT-based application. The condition monitoring module of FieldCare
also supports presenting the valve condition data over different interfaces.

2.4 Summary

In this chapter the condition based maintenance was presented as a type of main-
tenance process. The need for condition based maintenance was motivated by pre-
senting the evolution of the production equipment and processes. The relation of
condition based maintenance to other processes in a manufacturing enterprise were
presented by applying the ISA-95 framework. The ISA-95 framework also provides
description of the activities in the maintenance operations management and these
were presented. The descriptions were used to define the functionality of the most
important IT system in maintenance operations management, the enterprise asset
management (EAM) system. Condition monitoring (CM) systems are important in
condition based maintenance. The functionality of this system and its connection
to the EAM systems was described by applying the ISO 13374 condition monitoring
standard along with the ISA-95 framework.

13

3 Application integration in maintenance

The new maintenance paradigms, such as condition based maintenance and predic-
tive maintenance, are much more information intensive than the old approaches.
Information must be readily available to make these new maintenance processes
viable. To ease the flow of information, IT systems must be connected at both
information and service levels. The process of binding these information sources is
called application integration [16]. In this chapter, the selected technologies, stan-
dards and specifications that are involved in application integration in maintenance
are presented, with a focus on OPC Unified Architecture.

3.1 Concepts

Application integration is a clear trend in the realm of IT, with the Service-oriented
architecture (SOA) paradigm dominating. There are many definitions to the term,
but it is generally agreed that an architecture based on SOA consists of discrete
services that provide functionality described by service contracts and processes that
compose these services to provide new services at higher level of abstraction [17].
It is also commonly agreed that the services should provide functionality that has
some business value, such as invoicing and order placement [18, 19].

SOA is commonly implemented using a technology stack based on SOAP and Web
Services Description Language (WSDL) extended with a set of WS-* specifications
[18]. SOAP, which used to abbreviate Simple Object Access Protocol, is a messaging
format for XML documents. This technology stack is commonly called the Web
Services stack. SOAP messages can be sent over different transport channels, but
most are sent over HTTP. WSDL is used to describe services, including the data
types used and the addressing information of the service. A web service technology
stack can use the WSDL description to discover how it should format its SOAP
messages to communicate with a given service. WS-* specifications can be used to
implement additional features such as encryption or transactions. [18]

The most popular platforms used in enterprise IT are the Java platform and the
.NET platform. In the Java platform, Web Services can be implemented with the
Java API for XML Web Services (JAX-WS). The Microsoft counterpart, Windows
Communication Foundation (WCF), has a broader scope. It can be used to com-
municate using not only Web Services, but also other communication protocols.
[4]

Windows Communication Foundation is a framework for building connected appli-
cations using services. An application can use WCF to expose its functionality as
services or it can use WCF to access services provided by others. The applica-
tions communicate with each other using messages. WCF framework encodes these
messages and sends them to the recipient using the correct protocol. [4]

The WCF architecture is illustrated in Figure 10. If a client wants to use a remote
service, it calls the service using methods provided by the WCF service framework.

14

Service Framework Service Framework

Transaction Protocols

Reliable Messaging

Protocols

Security Protocols

Transport Protocol

Message Encoder

Channel stack

Transaction Protocols

Reliable Messaging

Protocols

Security Protocols

Transport Protocol

Message Encoder

Channel stack

Message(s) Message(s)

Client application Server application

Method calls Method calls

WS-*, POX/HTTP, REST...

Figure 10: WCF architecture. [4, 5]

The framework then converts this method call to a SOAP message and passes the
message to the WCF channel stack. The stack adds necessary metadata to the
SOAP message header to implement features such as encryption, transactions and
so on. Finally the message is received by the final element in the channel stack:
the transport protocol message encoder which transforms the SOAP message to the
protocol-specific wire format. This wire format can be based on SOAP but can also
be something completely different. [4, 5]

3.2 Application integration in condition based maintenance

The most important applications to be integrated in condition monitoring are the
Condition Monitoring (CM) and Enterprise Asset Management (EAM) systems [20].
These IT systems handle device data differently. Field Device Tool (FDT) and
Electronic Device Description Language (EDDL) are two important technologies
that facilitate device integration [7]. OPC UA is a new technology that has been
proposed for device integration. OPC UA can also be applied to other integration

15

scenarios. Condition monitoring data interfaces have been defined by the MIMOSA
OSA-CBM standard, but it has not been adopted as successfully as FDT and EDDL
have.

Enterprise asset management systems usually use protocols based on the Web Ser-
vices technology stack. These specifications are usually vendor-specific; proposed
standardisation efforts such as MIMOSA OSA-EAI have not been widely adopted.
Solutions based on MIMOSA OSA-EAI still need custom vendor-specific adapters
to connect to EAM systems [21].

The interface standards used in automation IT differ greatly from the standards
used in higher level IT systems. Devices communicate their condition data over
fieldbus protocols which are usually not based on the IP stack. Unlike protocols
based on the IP stack, fieldbus protocols must guarantee a bounded response time
[22]. In this work the simulated valves of the research platform use the PROFIBUS
PA fieldbus protocol. Features of PROFIBUS PA include its electrical properties
that allow it to be used in hazardous areas, the ability to support power to field
devices and its capability to transfer diagnostic data from devices along with the
control data [23].

3.3 FDT

FDT is an interface specification that allows communication with devices over a
generic interface. Developers can use the FDT interface to communicate with field
devices without implementing fieldbus-specific functionality. In the FDT concept
the device vendors deliver a device-specific software component called the Device
Type Manager (DTM) that is used by a FDT frame application to provide a user
interface for the device. DTM components can also provide access to different field-
bus networks. The DTM component implements the ActiveX interfaces specified by
the FDT specification. ActiveX is a feature of Microsoft Windows which makes FDT
dependant on the Windows platform. An example of an FDT frame application was
presented in section 2.3.2. [24]

The FDT concept allows device vendors to implement complex DTM components
that provide rich functionality. The inner workings of DTM component are left un-
specified by the FDT specification, which concentrates on the interfaces. This means
that the interpretation of device data is left to the closed DTM components. Using
solely the FDT interface it is not possible to implement vendor-independent condi-
tion monitoring software, because the FDT interface cannot identify the necessary
data. The scope of the FDT concept is limited to the engineering and commissioning
of field devices. [24]

3.4 OPC UA

OPC Unified Architecture (OPC UA) is the successor of OPC, which is an older
set of communication standards used in industrial automation. The most important

16

specification of OPC is the Data Access (OPC DA) specification, which is used to
move real-time data from control devices to other systems. OPC standards also
include specifications for historical data access (OPC HDA) and alarms and events
(OPC A&E). OPC standards were implemented using Distributed Component Ob-
ject Model (DCOM) which is a proprietary technology by Microsoft. This effectively
made the OPC standards unportable. Traversing firewalls with classic OPC was also
difficult [25]. DCOM is considered to be obsolete and is being replaced by Web Ser-
vices [26].

In addition to the problems mentioned earlier, OPC vendors and collaborating or-
ganisations needed a way to move data at a higher level of abstraction. The original
OPC also had different standards for different data models, which was seen as a prob-
lem. The new specification is called OPC Unified Architecture (OPC UA). OPC
UA unifies the functionality of the classic OPC standards under a single technology
framework. Unlike the classic OPC, the framework does not depend on proprietary
technologies such as DCOM and can thus be implemented on different platforms.
OPC UA provides a rich set of tools to model data on a higher level of abstraction
compared to classic OPC. UA also has more robust set of security features, a fun-
damental requirement of a protocol used over insecure networks. Because of these
features, OPC UA can be used in situations where the classic OPC could not. [6]

3.4.1 Concepts

The set of information that an OPC UA server presents to its clients is called the
address space of the server. The address space consists of nodes, references and
attributes of the nodes. Node is the fundamental component of an address space.
Attributes define the characteristics of the node. All nodes are identified by their
id attribute. References are pointers from one node to another. All references are
defined by reference types. An example of a reference type would be “Contains”.
Such a reference from node A to node B denotes a relation “A contains B”. [27]

Some but not all references are hierarchical. Hierarchical references can be used to
construct a node hierarchy in the address space in the form of a tree. In general,
the address space of an OPC UA server is a mesh network. The entry point to this
mesh network is called the root node, and is defined by the OPC UA specification.
[27]

On top of the mesh network, the specification defines a object model called OPC
UA Object Model. The model defines how OPC UA objects should be defined
in terms of nodes, attributes and references. OPC UA objects support member
variables, methods, events and references to other objects. The primary objective
of the OPC UA address space is to represent such objects with the basic concepts
of nodes, references and attributes. The relation of OPC UA Object Model and
address space is illustrated in Figure 11. [27]

An important attribute of an OPC UA object node is BrowseName. The intent is
that object types in the address space define the browse names of the members of

17

OPC UA Address Space

View

Node

Node

Node
Node

Node

Node

M
a

p
p

e
d

 t
o

Services Clients

OPC UA Object Model
ObjectType: ValveType

Identification

Configuration

SerialNumber

Model

Object: Valve V101

Identification

Configuration

SerialNumber

Model

Object: Valve V102

Identification

Configuration

SerialNumber

Model

HasTypeDefinition

Figure 11: OPC UA address space, object model and services [6].

18

class Address {
public:
 std::string s; // street
 std::string c; // city
};

AddressType

Street

BrowseName = ”s”

City

BrowseName = ”c”

Figure 12: Mapping a C++ class to UA ObjectType, adapted from [6].

objects of that type. These browse names can then be used to access the members
of any object with that same object type, or any of its subtypes. The browse name
of the object in an object type definition can be compared to the variable name of a
class member in object oriented programming languges, as illustrated in Figure 12.
[6]

OPC UA Services are an abstract set of interfaces which define how clients can
access the address space of the server. Important services to access the data in OPC
UA address space include the Read service, which is used to read attribute values
of nodes, and TranslateBrowsePathsToNodeIds, which is used to find out members
of an object if its object type is known. If a client wants to read the contents of
an object, then it first uses the TranslateBrowsePathsToNodeIds service to find out
the node id values of all nodes related to the object, and then the Read service to
read the attribute values of the nodes. [28]

The abstract services are mapped to concrete implementations by an OPC UA stack.
This mapping process is defined by the Service Mappings part of the OPC UA
specification [29]. The OPC Foundation provides stack implementations and their
intent is that typical UA application designers do not need to concern themselves
with the message representations on the wire. Currently, the OPC UA services can
be mapped to a Web Service or a custom binary TCP protocol binding. The OPC
Foundation provides a C# SDK implementation that supports both bindings and
stack implementations in Java and C that only support the binary TCP protocol
[30].

OPC UA information models define how data should be represented in the address
space as OPC UA objects, nodes, attributes and references. OPC Foundation de-
fines a few basic information models for common use cases. The most important
information model is the data access (DA) information model, which defines how to
represent and use automation data. The base UA specification also has information
models for alarms and conditions (AC), historical data access (HA), aggregate values
and long-running programs. On top of these information models more specialised
information models can be built. [6]

The base OPC UA specifications are considered to only provide the basic infras-
tructure for information modelling [6]. At the time of writing, there exists two
information models that have been defined outside the base specification. The OPC

19

UA device information model (DI) defines how field devices should be represented in
the address space [31]. Built on top of this model is the analyser device information
model (ADI) which has more detailed rules on how to model analyser devices [32].

Using these information models, vendors can present their data in a standard data
model which makes it easier for clients to consume their data. The layering of in-
formation models is illustrated in Figure 13. The OPC Foundation expects other
domain-specific models from other industry organisations[6]. The PLCopen infor-
mation model has already reached the release candidate status [33].

OPC UA Base Services

CMDsHDAA&EDA

Vendor Information Model

Information Model Specifications

OPC UA Information Model

IEC, ISA, MIMOSA...

ABB, Neles, Metso...

Figure 13: Layering of OPC UA information models, adapted from [6].

3.4.2 OPC UA device information model

OPC Foundation has released a companion specification that describes how devices
should be presented in the OPC UA address space. The specification mostly de-
scribes general rules on how to organise parameters and methods of devices in the
address space and has very light requirements on what parameters should be present.
It is assumed that more domain-specific information models, such as the analyzer
device information model (ADI), have more detailed descriptions on the semantics.
[31]

The fundamental object type of this information model is the TopologyElement-
Type. All configurable elements in the device topology are instances of this type
or its subtypes. Instances of TopologyElementType may contain parameters and
methods. They are respectively contained in objects ParameterSet and MethodSet
as a flat list.[31]

Parameters and methods can optionally be organised under different functional
groups to mirror the structure of the TopologyElement. Functional groups are pre-
sented as instances of FunctionalGroupType, which is a subtype of FolderType.
There is one mandatory functional group called Identification, which is used to
organise parameters used for identification of the topology element. TopologyEle-
mentType is abstract, so it is not possible to create instances of it. [31]

The most important subtype of TopologyElementType is DeviceType, which is used
to represent devices. In addition to the Identification functional group defined in its
supertype, DeviceType also defines properties that are used to further describe the

20

device. These include properties that define the model, manufacturer, version and
serial number of the device. DeviceType is also abstract, which means that vendors
must inherit this type if they want to present their devices in the address space. [31]

3.4.3 Field Device Integration

There is currently a new standard in development related to OPC UA device inte-
gration called Field Device Integration (FDI). The aim of the standard is to combine
the advantages of EDDL and FDT under a single technology framework. The stan-
dard is not yet finished nor there are any draft versions available, but one presented
concept is to separate the device model into two parts. [7]

In the concept, the two parts are called the Device Information Model (DIM) and
Device Operation Model (DOM). The Device Information Model (DIM), described in
EDDL, includes basic functionality and the device data and state. A device always
has one Device Information Model, but can also have Device Operation Models
(DOM) that can define more advanced business logic functionality, graphical user
interfaces and so on. The DOM concept is comparable to the DTM concept in FDT.
[7]

The Device Information Model is mapped to OPC UA server address space so that
the device data can be accessed using ordinary OPC UA clients. The concept also
stores the Device Operation Models in the address space, but it is only handled by
the server in terms of server side storage so that customised clients can load the
DOM when more complex functionality is required. This FDI concept is illustrated
in Figure 14. [7]

OPC UA Client OPC UA Client

Load Read / Write / Invoke

OPC UA Server

Information Model

DIM
DIMDIMDOM

Device Description

DIMDIMDOM

DIM

Figure 14: FDI concept adapted from [7].

The status of FDI is currently unclear. Information regarding the state of the FDI
specification, which is scheduled for summer of 2010 [34], is scarce. However, it is
expected that the end result will somehow involve OPC UA [6].

21

3.4.4 Current status and future

At the time of writing the OPC UA base specifications are almost complete - part
9, describing alarms and events, has not yet reached 1.00 but a release candidate
is already available. The utility specifications, Aggregates and Discovery, are still
missing [30]. The specifications are in the IEC standardisation process, and will be
known as IEC 62541 standards [6].

At the time of writing, numerous SDKs and stack implementations are available
from third-party developers. OPC Foundation also provides SDKs and stack imple-
mentations to its corporate members. However, end-user products using OPC UA
are still relatively rare. OPC Foundation is still working on a certification process
for OPC UA products and it is expected that it becomes available in the early 2010.
OPC Foundation also arranges interoperability workshops where vendors can test
their implementations with other products. [35]

OPC UA has a strong emphasis on information modelling, but domain specific
information models are still very rare. The device information model is very generic
and adds little semantic information, mostly related to the identification of the
element in device topology [31]. The analyser device information model builds on
the device information model, and is much more specific in its domain [32]. Similar
models for other device types are needed to fully reap the benefits of OPC UA. The
FDI specification can have a large impact on the device modelling domain. [7]

In other domains, PLCopen is working on a information model that defines how
function blocks and data structures of IEC 61131-3 should be presented in an OPC
UA address space [33]. OPC Foundation has also identified candidates such as ISA
S95, S88, OAGiS and MIMOSA for companion specifications [30].

3.5 MIMOSA and OpenO&M standards

MIMOSA is a trade association that is involved with the development of infor-
mation integration standards for operations and maintenance. MIMOSA consists
of operations and maintenance (O&M) solution providers and end-user companies.
The most important specifications published by MIMOSA are the Open Systems
Architecture for Enterprise Application Integration (OSA-EAI) and Open Systems
Architecture for Condition-Based Maintenance (OSA-CBM). OSA-EAI is a standard
that describes how to integrate asset management information such as reliability,
diagnosis and identification. OSA-CBM specifies how to transfer information in a
condition-based maintenance system.

OpenO&M is an organisation with a similar mission. OpenO&M tries to har-
monise the standards used for application integration in operations and mainte-
nance. The OpenO&M initiative is organised into industry-specific Joint Working
Groups (JWG). There exists a manufacturing JWG, a military JWG and a facilities
JWG. Manufacturing JWG members are MIMOSA, the OPC Foundation, ISA88,
ISA95, The Organization for Production Technology (WBF) and the Open Appli-

22

cations Group (OAGi). The manufacturing JWG has presented two technologies
that can be used to connect information systems in the manufacturing domain: The
OpenO&M Information Service Bus, which provides the infrastructure for informa-
tion transfers and Common Interoperability Registry (CIR), which is used to link
local names of entities in separate systems together. [36]

3.5.1 OSA-EAI

OSA-EAI Terminology Dictionary

Common Conceptual Object Model (CCOM)

Common Relational Information Schema (CRIS)

CRIS Reference Data Library

Tech-Doc CRIS

XML Schema

Tech-CDE Aggregate

CRIS XML Transaction

Client & Server Schema

Tech-XML Atomic

CRIS XML Transaction

Client & Server Schema

Tech-Doc

Producer & Consumer

XML Stream or File

Tech-CDE

Client & Server

XML Stream or File

Tech-XML

Client & Server

XML Stream or File

Tech-CDE-Services

SOAP

Tech-

XML-Web

HTTP

Tech-

XML-

Services

SOAP

SOA Application Definitions

Application Service Definitions

Metadata Taxonomy

Implementation Model

Semantic Definitions

Conceptual Model

XML Content Definition

Figure 15: OSA-EAI V3.2 architecture, adapted from [8].

OSA-EAI is a specification that defines how to model data used in operations and
maintenance and how to transfer it between systems. The architecture is illustrated
in Figure 15. OSA-EAI defines its conceptual model with the technology-neutral
Common Conceptual Object Model (CCOM), specified using UML notation. The
implementation of this object model in a relational database management system
is defined by the Common Relational Information Schema (CRIS). CRIS is defined
to support installations where the data is distributed to many separate databases.
OSA-EAI specification includes a reference data library which is used to classify the
most common entities. [8]

Data stored in a CRIS-compliant database can be exported from the database in the
XML format using Tech-* schemas defined by OSA-EAI. These schemas are Tech-
Doc (Document), Tech-CDE (Compound Document Exchange) and Tech-XML. A
Tech-Doc document can contain unlimited amount of CRIS-compliant data. Tech-
CDE is used for aggregate sets of CRIS data and can be used to implement query
services in the server. Tech-XML is used to transfer small packets of atomic CRIS
data. Because Tech-XML is more limited compared to the other technologies, it can

23

be used more easily in systems that do not store their data in a CRIS-compliant
database. Tech-CDE and Tech-XML have a SOAP binding available, so they can
be used with the Web Service technology stack. [8]

These specifications (Tech-Doc, Tech-CDE and Tech-XML) are further divided into
nine technology types. These technology types are listed in Table 1. It is not neces-
sary to implement all these technology types to be OSA-EAI conformant. Vertical
applications can only choose a subset that makes sense in their domain and thus do
not need to implement the whole CRIS schema. When transferring simple condition
monitoring data, the REG and TREND technology types are most important. [8]

Table 1: OSA-EAI Technology Types [8]

Technology Type Functionality

REG Registry Management

REL Reliability

WORK Work Management

DIAG Diagnosis / Prognostics / Health Assessment

DYN Dynamic Vibration / Sound Condition Monitoring

TREND Static ”Trendable” Condition Monitoring

SAMPLE Oil / Fluid / Gas / Solid Tests Condition Monitoring

BLOB Binary Data / Thermography Condition Monitoring

TRACK Physical Geospatial Tracking

Tech-XML includes a a specification called the Tech-XML-Services Client & Server
Specification, which is a SOAP binding for Tech-XML data. The interfaces are
defined using WSDL files with the message contents used in the operations defined
in separate XSD schema files. The operations accept these messages as input data,
add their response to the message and then finally return the message containing
both the request and the response to the client. Tech-XML-Services defines what
operations must be supported to be compliant with a given OSA-EAI Technology
Type. For example, to be compliant with REG Technology Type, over 50 operations
must be implemented. [37]

3.5.2 OSA-CBM

OSA-CBM is a specification that defines how to move condition-based maintenance
data between systems. It is an implementation of the ISO 13374 functional specifi-
cation, which divides the functionality of a CBM system into six blocks of function-
ality. OSA-CBM builds on that standard and specifies interfaces to these blocks.
The specification is defined using UML and is technology-neutral - it does not define

24

any specific binding, so it can be implemented using any communication standard
such as WS-* and DCOM. [38]

The interfaces to the function blocks can be divided into three different groups: data,
configuration and explanation. Data interfaces provide information and events from
the block, configuration interfaces provide information on the inputs, outputs and
algorithms used by the block and explanation interfaces provide the data that was
used by the block to produce an output. The interfaces are the same for every
function block. [38]

3.5.3 Common Interoperability Registry (CIR)

Common Interoperability Registry is used to connect different tags used in separate
systems together so that it is possible to find out what is the tag in system B if
the tag in system A is known. CIR provides a model that assigns every entity a
globally unique ID (GUID). This GUID can then be associated with system-specific
tags. CIR also allows users to define properties for the entities that can be useful
for identifying the entity in other systems even if the tag is now known.[39]

This model is accessed by using transactions defined in the specification. These
transactions exchange XML messages conforming to the schemata defined by XSD
files. There are no specific bindings defined, but it is relatively simple to implement
these XML message exchanges using SOAP. These transactions include functionality
for registry management (creating, combining and deleting registries), accessing
registry data, and defining equivalent entries in different systems (entry E1 in system
S1 in the same as entry E2 in system S2).

3.6 Related research

Existing research has different approaches to the problem of device integration in
general, with little research done on device integration for purposes of condition
monitoring. Use of OPC UA for field device integration has been widely discussed.

Hadlich describes the data available using existing FDT and EDDL interfaces that
can be presented in OPC UA address space and concludes that an OPC UA server
can provide data from both FDT and EDDL regardless of them having fundamen-
tally different approaches [40]. Huang and Liu concentrate on mapping EDDL ele-
ments to OPC UA concepts [41]. Both of these works focus on presenting the devices
in OPC UA address space, but lack description on how to utilise this data.

In other works, the SOA-based IT architecture of the enterprise is connected directly
to the devices using Web Service protocols. An integration architecture has been
presented by the SOCRADES project that uses the Device Protocol for Web Services
(DPWS) for connecting to devices [42]. The SOCRADES middleware uses SAP MII
to connect to enterprise systems. The work includes a Figure which proposes that
OPC UA could be used over DPWS, but this combination is not further explained.

25

OSA-EAI has been applied in condition monitoring system in the work by Mathew
et al. [43]. In the work, the OSA-EAI database schema (CRIS) was implemented
for a condition monitoring system based on OSA-CBM. The work focuses on the
database implementation issues and the implementation of OSA-EAI interfaces was
not considered.

The POSC Caesar Association (PCA) is a nonprofit organisation that promotes
the development of open specifications. The MIMOSA organisation has presented
use cases of the integrated operations and maintenance solution to the Integrated
Operations in High North (IOHN) project of the POSC Caesar Association [44].
These use cases can be divided to two groups. The first group includes the use cases
that involve information regarding the engineering of the plant, for example, what
equipment is used and why. These use cases are outside the scope of this work. The
second group includes preventive maintenance use cases. Part of the requirements
for the design done in this work are derived from these use cases.

3.7 Summary

The contemporary enterprise IT systems claim to follow the SOA paradigm. On
the other hand, the IT systems used in automation have different approaches to the
integration. It is claimed that the gap between these two worlds can be bridged with
the new standard, OPC Unified Architecture. In this chapter the relevant standards
in both domains were described. The chapter focused on the features of OPC Unified
Architecture. Even though there is a lot of research regarding device integration and
OPC Unified Architecture, there is relatively little literature available on using OPC
UA to present device data to SOA-oriented IT systems.

26

4 Design of application integration

The main objective of this work is to create a feasible design that is based on using
OPC Unified Architecture to bridge the gap between automation systems and IT
systems in condition based maintenance. The integrated system should be able to
cover the concerns and needs of the stakeholders in condition based maintenance. In
this chapter, first the main stakeholders of the system are identified and the needs
of them are described. The chapter adapts IEEE 1471 as its conceptual framework.
The architectural description is not meant to conform to it, but it uses the concepts
of the standard to communicate the architecture.

Viewpoints and views that conform to them are a central concept in IEEE 1471
[45]. Viewpoints are specifications and conventions for constructing representations
(views) of the system. The structure and behaviour of the system are described
with UML 2.0 viewpoints. Component diagrams are used to describe the static
structure of the system, and sequence diagrams illustrate dynamic behaviour such
as conversations and data flows. The design applies the ISA-95 standard to identify
the functions and the boundaries of the IT systems.

4.1 Requirements

In this section, the requirements of the application integration are identified. The
integrated system is meant to provide information on assets and their condition
to maintenance engineers performing condition based maintenance. The integrated
system operates as a part of the complete IT architecture of the enterprise. The
system deals mostly with enterprise asset management and condition monitoring
systems, but should be extensible enough so that if necessary, it can be connected
to other information sources such as manufacturing execution systems (MES) and
product lifecycle management (PLM) systems. Some of these systems, like condition
monitoring systems, are on levels 0-2 in the ISA-95 functional hierarchy model,
and some, such as PLM or EAM systems, operate on level 3. The integration
environment on these levels are different, so the integrated system should be designed
so that it can be connected to both kinds of systems. To derive the requirements
of the application integration, the stakeholders of the system and their needs are
identified. This approach is further described in the IEEE 1471 standard [45].

Stakeholders are users or classes of users that have interests or concerns regarding
the system. The main users of the integrated system are the maintenance engineers
that need information on the health of the assets and their maintenance history
to perform condition based maintenance successfully. The type of the health data
can vary depending on the sophistication of the condition monitoring system, from
raw sensor data to prognosis and diagnosis of the state of the equipment as defined
by ISO 13374. The use cases of maintenance engineers are described later in this
section and further needs are identified.

The integrated system is implemented and maintained by the developers. They

27

want that the system should be easy and fast to implement and maintain. The inte-
gration architecture should be applicable to wide variety of existing IT architectures
deployed by the client. The integration architecture should be flexible enough to
accomodate the evolution of the connected systems, with the assumption that the
lower level systems will use OPC UA for communication.

The owners of the system are the plant operators. They want the equipment to
operate at optimum capacity and they want that the implementation of the archi-
tecture goes smoothly so that costs stay low and the integration work does not take
too much time. These needs are satisfied if the needs of maintenance engineers and
developers are met.

4.1.1 Use cases

The use cases for maintenance engineers are derived from the business processes in
condition based maintenance, which were described in section 2.1.1. The integrated
systems should provide services that directly support these use cases. These ser-
vices can then be used directly, or they can be included and orchestrated in other
manufacturing operations management processes.

The condition based maintenance process starts when a notification is received, and
is roughly divided to two parts: situation assessment and execution management.
Situation assessment requires the maintenance engineer to identify related assets,
assess their performance and finally estimate the maintenance need. The execution
management is mostly taken care of by existing EAM systems. To make the tran-
sition between the parts seamless, the asset management functions in EAM system
should be easily accessable from the integrated system. Because the maintenance
processes can be outsourced, the integrated system should be designed so that the
organisation boundaries are taken into account. This process can be decomposed to
discrete use cases.

The integration system can also enable new use cases. Some of these use cases
have been identified by the POSC Caesar Association. The use cases that involve
product lifecycle management and as-designed information are outside the scope
of this work. The use cases addressed by the integrated system are use case #5,
automated O&M configuration, and use case #7, open automatic or semi-automatic
CBM triggering [44]. These use cases and the use cases from the condition based
maintenance process enhanced by the integrated system are illustrated in Figure 16.

The situation assessment process is started when a notification arrives. The mainte-
nance engineer then proceeds to identify the assets related to the notification. The
integrated system should be able to communicate the topology of the area where
the situation was detected. This functionality is provided by existing EAM systems
and is not enhanced by the integration.

When the related assets are known, the maintenance engineer assesses their perfor-
mance. The maintenance engineers needs to be able to see information from various
sources related to the asset. The CM system is one source for self diagnosis data,

28

Maintenance Engineer

Integrated system

Equipment

configuration

CBM triggering

Maintenance

need

assessment

Health

assessment

Equipment

Figure 16: Use cases enhanced by the integration

but data from the process control system (PCS) can also be useful. The integrated
system should be able to support this by presenting all information that can be
gathered in a single screen to the maintenance engineer. The contents of the view
have been defined by ISO 13374 to include at least 5 components: state detection,
health assessment, prognosis, recommended actions and identification. Presenting
the prognosis, recommended actions and health assessment requires a fairly sophis-
ticated condition monitoring system. If the condition monitoring system cannot
produce the data, the task of data analysis is left to the maintenance engineer.

After the performance of related assets is known, the maintenance engineer esti-
mates the need for maintenance. To be able to make this decision, the maintenance
engineer needs to know the design parameters and the maintenance history of the
asset so the current performance can be compared to the baseline performance. In-
formation on the process measurements from the PCS system can also be valuable
here. The integrated system should be able to make this information easily available.

If there is need for maintenance, the maintenance engineer needs to create a work
request. This task is often done in the EAM system and thus integrated system does
not need to implement this use case. However, the integrated system can support the
use case by making the EAM system easily accessible from the integrated system.
For example, if the EAM system is web-based, the integrated system can produce a
hyperlink to the work order management page of the system.

29

4.2 Structure of the integrated system

In SOA terms, the integrated system provides composite services. The system pro-
vides services that support the condition based maintenance process by processing
the data from multiple related sources including the EAM and CM systems. Further-
more, because the services are aligned to the business processes in condition based
maintenance, this composite service lies at the business process service layer of the
SOA model defined by [17]. The integrated system as part of a SOA architecture is
illustrated in Figure 17.

Business processes

Process services

Business services

Application services

Condition Monitoring Enterprise Asset

Management

Other system

Condition based

monitoring

Integrated system

EAM, CM and

other system

services

Figure 17: The integrated system as part of SOA architecture

The middleware abstracts the connected systems as a set of services to the rest of the
IT architecture. The system can be used directly by implementing a user interface to
the services, or the services can be orchestrated by workflows defined at the process
service layer. The services provided by the middleware should be designed so that
they provide business value, but do not embody any specific business rules. Keeping
the business rules separate from the business services increases the organisational
agility, because changing the business process will not require re-engineering the
services of the integrated system. For example, if the enterprise wants to outsource
its maintenance, it does not need to rebuild the integrated system.

The system should provide its services with the Web Services technology stack,
because it is the most commonly used technology used in SOA-oriented architectures.
Using Web Services allows the integrated system to be connected to other systems
using the infrastructure in place in the organisation, such as the enterprise service
bus (ESB). The services that the middleware offers to other systems should use a
standard message format so that other systems that want to use the services do
not need to implement custom transformation logic to connect to the middleware.
Unfortunately in maintenance operations management there are no message formats
that are supported by a broad range of vendors. If there are no pre-existing message

30

formats already used in the enterprise, then a standard format should be selected
such as Tech-XML defined by OSA-EAI.

<<subsystem>>

Middleware

<<component>>

ProtocolAdapter

<<component>>

IntegrationLogic

<<subsystem>>

Server

Server-specific protocol

CompositeServices

MessageTranslator

CompositionLogic

AdapterServices

*

*

<<delegate>>

<<delegate>>
CompositeServices

Figure 18: Components, connectors and interfaces

The system, its elements and the connectors are further illustrated in Figure 18.
The middleware has two types of external interfaces. It communicates with the
connected servers with server-specific protocols and offers their data as a set of
composite services to other systems. The middleware communicates with other
systems using adapters. Adapters offer the functionality of the connected servers
over the interface defined by the adapter framework. This allows the middleware
to communicate with the servers without implementing protocol-specific logic for
each connection. This design follows the general architecture of WCF, described in
section 3.1. Adapters are reusable and can be used in other integration scenarios as
well.

It is expected that at least some of the connected servers are OPC UA servers. In
that case the protocol-specific adapter must include a OPC UA Client to be able to
communicate. The adapter should at least be able to offer the OPC UA Services over
the interface defined by the adapter framework. However, the data provided by OPC
UA Services is not structured. Read services only return arrays of values. Higher

31

level systems deal with higher level abstractions; for example, XML documents and
objects. The adapter should be able to provide the OPC UA objects in a format
that is understood by the adapter framework. Following the architecture of WCF,
this format should use XML.

A generic WS-* adapter can also be used if the OPC UA Server supports the Web
Service mapping. However, such adapters do not understand the semantics of OPC
UA and thus their data is not as well refined as the data that is produced by a OPC
UA-specific adapter which can benefit from the rich information model of OPC UA.

The middleware must include at least two components: the message translation
component and the message composition component. The message translation com-
ponent translates the messages understood by the adapters to a common message
format. Because the adapters have already translated the protocol-specific data
to use a well-defined format, the message translation component can focus on the
schema translation. If the used format in the adapter framework is XML, then the
message translation can be implemented with XSLT.

The documents from multiple sources are combined by the composition logic. The
combined document offers the information in a well-defined message format over a
WS-* interface. This information can be sent to a program that presents the data
to a maintenance engineer or it can be sent to other systems. These other systems
can be programmed against the WS-* interface and they do not need to know what
systems are involved to produce the required information.

4.3 Dynamic behaviour and interactions in the integrated
system

The dynamic behaviour and the interactions of the elements is presented using UML
2.0 sequence diagrams. This viewpoint addresses the concerns of the developer such
as how the systems communicate with each other, what kind of messages do they
send and what kind of transformations are applied to the messages. The actual
communication patterns depend on the capabilities of the connected system. Figure
19 illustrates the interaction between a client accessing a composite service, the
integration system and the connected server.

The client sends a service request as a SOAP message to the integration server.
The integration logic in the integration server identifies which servers it needs to
access to be able to construct the response. When these servers are known, the
integration server sends the request messages to the adapters that are connected
to the servers that need to be accessed. The adapters access the connected servers
using a server-specific protocol.

Data transformations are a essential part of the integrated architecture, because
the middleware lies at the boundary between the plant floor and the manufacturing
operations management level. The systems at the lower level are assumed to use
OPC Unified architecture which uses a meta-model that is essentially a mesh net-

32

: Client

: ProtocolAdapter

ref

adapterInteraction

: Server

sd Request

ServiceRequest(:soap)

AdapterRequest1(:xml)

AdapterRequest2(:xml)

ServerRequest1()

ServerRequest2()

AdapterResponse1(:xml)

AdapterResponse2(:xml)ServiceResponse(:soap)

: IntegrationLogic

Figure 19: Interaction between the systems

work. The higher level systems, however, tend to use XML-based messaging. The
middleware must address this difference in communication styles.

The integration system uses adapters to convert all incoming data to a meta-model
that is suitable for further processing. The used meta-model is the XML Infoset,
because that is the most used meta-model in data processing in SOA architectures.
Because XML Infoset is a hierarchical data model, more complex data models must
be transformed so that the data can be represented as a XML document.

4.4 Data transformations

The most important functionality of the integration system is its capability to trans-
form the data so that the connected systems can understand it. The view in Figure
20 illustrates how the data moves through the system from one system to another.

It is essential that the integration system knows how the resources are identified
in all connected systems. If the integration system does not know the name of a
resource in a certain system, it cannot query for information about that resource.
In an ideal situation all systems have the same name for the same resource. When
this is not possible, the integration system must be able to resolve the name for
any given resource in all connected systems. This can be implemented by having a
separate service that can do the name translation.

The adapters in the integration system take care of the meta-model transformation
between the meta-model used by the external system to the XML Infoset. The
message translation component in the integration system itself transfers the data

33

Translations

Adapters

Convert to XML

Convert to XML

Integration Logic

Schema

Translation

Schema

Translation

Composition

Servers

Incoming data in

server-specific

format,

e.g. OPC UA

Client

Data sent over

WS-* interface

Figure 20: Flow of data between the systems

models using some transformation method, such as XSL Transformations (XSLT).
Because the meta-model transformation is done at the adapter level, the integration
system can concentrate on transformation of XML documents. This functionality
is found in most commercial off-the-shelf integration servers which usually provide
a visual tool for mapping XML documents between models. If the XML documents
conform to a standard schema, it is possible that the transformation is already
implemented and the transformation rules can be reused.

Because Web Services use XML as the message format, there is no need to do
any meta-model transformation in the adapter. Thus any Web Service library or
framework can be used as an adapter in the integration system. Most integration
servers provide functionality to connect to other Web Services, so existing integration
servers already provide the required Web Service adapters.

OPC Unified architecture uses a meta-model that is more complex than the meta-
model of XML. OPC Unified Architecture defines a set of Services, but they provide
data on the node level. There are no services in OPC UA that can be used to read
complete objects. Additionally, the Web Service interface of OPC UA is not well
supported. At the time of writing, only the C# SDK has implemented it. Thus,
even if the OPC UA server supported the Web Service API, the user of these services
would have to compose a lot of OPC UA service calls to read an OPC UA object,
such as a Device in the OPC UA Device Information Model. The Web Service API
of OPC UA is not optimised for high performance so it is unadvisable to send a
torrent of Web Service calls every time an object in the address space is accessed.

To facilitate reading data at a higher level of abstraction, the adapter should provide
functionality to read complete objects and return them as XML documents. Be-

34

Motor101

Identification

Configuration

ManufacturerName

Revision

<Motor name="Motor101">

 <Identification>

 <Revision value="1" />

 <ManufacturerName>

 ACME

 </ManufacturerName>

 </Identification>

 <Configuration />

</Motor>

Figure 21: Mapping an OPC UA Object to a XML document

cause of the restrictions for references and BrowseNames in OPC UA ObjectTypes,
all OPC UA Objects are relatively but not completely hierarchical. The mapping
of OPC UA Objects to XML documents is illustrated in Figure 21. In the figure,
the OPC UA Object is described using the notation defined in [46]. The user of the
adapter should be able to explicitly define what parts of the object type are mapped
to XML. Because the object access service is implemented at the adapter, the in-
tegration server can communicate using the optimised binary protocol of OPC UA.
The service can aggregate the requests so instead of reading every node separately,
the read request can include all nodes that belong to the requested object. Mapping
simple nodes to XML documents can be done according to the rules defined by OPC
UA mapping specification.

4.5 Rationale

The proposed design can be connected to the rest of the IT infrastructure of the
organisation relatively easily, because it presents its data using a standard XML
messaging format over a Web Service interface. Web Service interface was selected,
because it is assumed that the services of the integrated system are mostly used

35

by higher level systems. OPC Unified Architecture is mostly suited to the systems
operating at a lower level, so it was not used in this case.

The middleware aggregates data from variety of sources. The adapter architecture
and the meta-model transformations done in adapters allow commercial off-the-shelf
integration servers to be used. Such servers already provide the required function-
ality such as message routing and transformations. It is also possible to imple-
ment a custom integration system in which case same adapters can be used. The
adapters can be reused elsewhere even for point-to-point integration purposes. To
use adapters successfully, the used platform must specify a standard adapter inter-
face. Such specifications already exist - for example in .NET platform the adapters
can be implemented as WCF channel stacks by using the WCF adapter SDK. The
proposed design is meant to be closely aligned with the communication model of
WCF.

Because the adapters provide all data in XML, the data model transformations can
be done using existing technology such as XSLT. Integration servers provide visual
tools to create XSLT transformation rules. If an integration server is not used, there
exists multiple high-grade libraries to do XML transformations.

Because the meta-model transformation is delegated to the adapter, the transfor-
mation of the data model and the meta-model are kept separate. It is enough to do
the meta-model transformation only in the adapter instead of doing it every time
for every data model transformation.

The OPC UA adapter supports configuration of the meta-model transformation per
OPC UA ObjectType. These configurations can be reused. If the transformation
from OPC UA Device Information Model to XML is configured once, then the
same configuration can be used in all other places where the same information
model is used. These configurations can be reused in other projects where the same
information model is encountered.

4.6 Summary

In this chapter, a design that applied OPC Unified Architecture to integrate IT
systems involved in condition based maintenance was presented. The chapter fo-
cused on providing the information from an OPC UA address space to IT systems
that had interfaces based on the Web Service technology stack. The integration was
facilitated by utilising the OPC UA object model to map the data from the OPC
UA server to the meta-model used by XML.

36

5 Implementation and testing

The proposed design was evaluated by implementing it on the integration research
platform that was developed in the laboratory during this thesis. The chapter begins
with a description of the integration research platform concentrating on the mainte-
nance operations in the platform and then proceeds to describe the implementation
of the design described in the earlier chapter.

The implementation applies the CIR and MIMOSA OSA-EAI standards to support
the integration, but the intent is not evaluate these standards. The purpose of the
implementation is to demonstrate the feasibility of the design and discover prop-
erties of using OPC UA with the selected technologies. Due to the nature of the
test platform, performance and scalability of the implementation were not tested.
The chapter concludes with the description of the test scenarios used to validate
the implementation. Finally, the communication between the integrated systems is
illustrated with an example use case.

5.1 Integration research platform

MaintenanceProduction

Enterprise Resource

Planning System

(ERP)

Not yet implemented

Enterprise Asset

Management

System (EAM)

CalemEAM

Community Edition

Manufacturing

Execution System

(MES)

GE Fanuc Proficy

Plant Applications

Supervisory Control

and Data

Acquisition System

(SCADA)

Not yet implemented

Condition

Monitoring System

(CM)

Metso FieldCare

Batch Process

Mini Pulp Process

Process Control

System (PCS)

Simulated

Not yet

implemented

Level 4

Level 3

Levels 2, 1

Level 0

Figure 22: Integration research platform

37

During the course of this work, a part of an integration research platform was imple-
mented in the laboratory for research and teaching purposes. The platform is meant
to represent a subset of an IT architecture in a manufacturing plant, focusing on
operations and maintenance. The platform divided to the levels of ISA-95 functional
hierarchy model is illustrated in Figure 22. The maintenance parts of the platform
were implemented for this work.

Figure 23: Mini Pulp Process (MPP)

The research platform is based on system “Mini Pulp Process (MPP)” which models
a pulp batch cooking process. MPP is pictured in Figure 23. Pulp batch cooking
process converts wood chips to a batch of dissolved wood fibres, but due to practical
issues the implemented equipment just moves water. MPP was implemented as a
part of an earlier master’s thesis done in the laboratory [47]. The IT systems in the
research platform model the equipment and processes of this system.

The platform can be divided to two parts: the production part and the maintenance
part. The maintenance part was implemented during this work and is explained
in more detail later in this section, while the production part was implemented
simultaneously as a part of an another master’s thesis. The process is controlled
by a process control system (PCS). At this stage of the project, the PCS system
is not connected to the actual process but rather simulates the process execution.
The production management (scheduling, dispatching, quality control and other

38

activities in manufacturing operations management) is done with a manufacturing
execution system (MES). The interaction between the PCS and the MES systems
are based on the ISA-95 and the ISA-88 batch production standards. [48].

The integration research platform is not yet complete. The MES system is to be
connected to a enterprise resource planning (ERP) system which is responsible for
the enterprise level activities. The production process is to be monitored and su-
pervised with a supervisory control and data acquisition (SCADA) system. The
SCADA system connects to the processes control system and provides a interface
for plant operators to see the state of the process and control it if necessary.

5.1.1 Maintenance operations integration in the platform

CalemEAM CalemWS

MySQL

SQL

WS-*

<<delegate>>

Maintenance

OPC UA

UADevices

Metso

FieldCare

CommDTM

Simulator

Neles ND9000

(simulated)

SimEdit

WS-*

PROFIBUS PA

(Simulated)

FDT

Condition

Monitoring

<<delegate>>

Enterprise Asset

Management

Figure 24: Maintenance part of the research platform

The maintenance systems in the platform, illustrated in Figure 24, consists of the
simulated valves, the condition monitoring system and the enterprise asset man-
agement system. The test platform provides an OPC UA interface to simulated
condition data of valve controllers. The communication between involved systems
is illustrated in Figure 25.

The condition monitoring system, Metso FieldCare, is configured to use a commu-
nication DTM simulator for PROFIBUS PA field bus. The communication DTM
simulator is configured to use data dumps (ND9000 1.txt and ND9000 2.txt) of a

39

UADevices FieldCare
OPC UA

Client

CommDTM

simulator
ND9000_1.txt

GetPositionStatus(pid)

GetVariableHistory(pid)

Read(slots, indices)
Read(slots, indices)

Read(nodeIds)

GetPositionStatus(pid)

GetVariableHistory(pid)

Read(slots, indices)

SimEdit can

be used to

edit this text

file

OPC UA WS-* FDT File access

Figure 25: Accessing valve condition data over OPC UA

Neles ND9000P valve controller to simulate a connection to two of such valve con-
trollers. Neles ND9000P is an intelligent valve controller equipped with self diagnosis
features. The valve controller can trigger warnings and alarms when it is operat-
ing outside the specification. Maintenance engineers can use Metso FieldCare or a
generic FDT frame application to see the self-diagnosis of the valve controller and
predict when maintenance is required. A separate program “SimEdit” was devel-
oped that can be used to modify the simulated data of the valve controller so that
events, such as alarms and warnings, can be generated.

A SOAP server module was installed to Metso FieldCare, which makes the condition
monitoring data available over a Web Services interface. One of the objectives of
this work was to evaluate how OPC UA can be used to deliver condition data,
so a separate OPC UA interface had to be developed because FieldCare does not
have support for OPC UA. A separate OPC UA server “UADevices” was developed
that accesses the condition monitoring data stored in FieldCare over the SOAP
server module. UADevices polls FieldCare to update its address space regarding
the monitored devices every 10 seconds.

The data was modelled in the OPC UA address space using the OPC UA Device
Information Model. The information model does not define how condition data
should be represented, so a subset of the data was made available in the Parame-
terSet folder of the device as an array. Because the Alarms & Events information
model of OPC UA was not complete during this work, it was not used to model the

40

alarms and warnings of the device.

The enterprise asset management software used is CalemEAM community edition.
CalemEAM community edition was selected, because its source code is available
and there are no licensing fees. CalemEAM community edition had no documented
integration API, so a separate application “CalemWS” was developed that provides
a set of Web Services that can be used to access the database of the EAM system.
CalemEAM uses MySQL to store its data, so CalemWS can directly connect to the
database and provide its data over a Web Service interface.

5.2 Implementation of the design

An user interface was developed to the maintenance engineer that provides function-
ality for a subset of the use cases in condition based maintenance. The implemented
functionality was selected so that it covers the requirements as well as possible.

The implemented system and its connection to the integration research platform
is illustrated in Figure 26. The user interface is connected to a middleware that
provides services to support the use cases. The implemented services conform to
the WSDL definitions in the OSA-EAI standard. OSA-EAI was selected, because the
pre-existing IT systems in the integration platform did not already use any specific
messaging format. OSA-EAI has well-defined message formats and interfaces for
asset management.

Only the services that are required to support the use cases were implemented on the
middleware. The middleware was implemented on the .NET 3.5 platform, because at
the time of writing, the OPC Foundation’s OPC UA C# SDK had the best support
for OPC Unified Architecture specifications. Furthermore the adapter architecture
was designed to be compatible with the WCF architecture.

Because the assets in the research platform use different tags in the condition mon-
itoring system and the asset management system, a separate server was developed
that can do the tag translation. The separate server, implemented with C#, nHiber-
nate and Microsoft SQL Server Express, follows the CIR specification. In the inter-
actions where the integration system needs to know the names of a given resource,
the CIR server is contacted and the list of names is requested. Every asset in the
integration platform has at least 3 tags: one tag in the condition monitoring system,
one tag in the EAM system and one tag (GUID) in the CIR server. The CIR server
database was configured so it can link all the other tags with the GUID tag in the
CIR server. If other systems are added to the integration platform that use yet
another naming scheme for the assets, the CIR server database can be updated.

The OPC UA adapter was implemented with the WCF Line-of-Business Adapter
SDK and OPC Foundation OPC UA SDK. WCF adapters can be used directly by
.NET applications that use the WCF framework, or they can be used in Microsoft
Biztalk integration server solutions. A set of OPC UA services were implemented
in the adapter, and an additional service “UA2XML”. UA2XML is used to convert

41

FieldCare

CalemWS

Maintenance

UI

UADevices

CalemEAM

CommDTM

Simulator
SimEdit

CIRServer

OSA-EAI

Tech-XML

REG

OSA-EAI

Tech-XML

TREND

SQL

OPC UA

WS-*

FDT

PROFIBUS PA

CIR

WS-*

Maintenance Engineer

Middleware

OSA-EAI

RegistryServices

OSA-EAI

TrendServices

OPC UA Adapter

OPC UA

Client

Integration Research Platform

Maintenance operations

Implementation

Figure 26: Implemented system and the maintenance operations in the integration
research platform

OPC UA objects to XML documents. The service can be configured with XML
files that contain declarative rules on how to convert an OPC UA object with given
ObjectType to an XML document fragment. The intent is that the developer can
look at the object type in the OPC UA server and then configure the adapter to
provide the needed data as an XML document.

The configuration file format is inspired by XSLT. The format is essentially a set
of XML fragment templates that are applied recursively to obtain a complete XML
document. A simplified configuration file that defines rules to convert a valve object
to XML is presented in Listing 1.

42

Listing 1: Configuration for converting valve objects to XML
<Match type="ValveType">

<Valve>
<Name value-of="@DisplayName" />
<ModelName value-of="3:FactorySettings/3:Model" />
<Parameters>

<Stiction value-of="3:ParameterSet/3:Stiction" />
</Parameters>
<Alarms value-of="3:Status/3:Alarms" />

</Valve>
<Match>

The templates can also be written against a BrowseName so they can be used with
generic object types. The implemented directives essentially mirror XSLT elements
apply-templates, template (Match in the implemented format) and value-of (imple-
mented as an attribute). These were enough to implement the transformation of
OPC UA Device Information Model to XML. XSLT was chosen as the basis because
it is the most used XML transformation language. Because system integrators are
usually familiar with XSLT, the barrier of entry is low for writing OPC UA meta-
model transformations.

A configuration file was created for the adapter that describes how to transform
OPC UA Devices to XML documents. With this configuration, it is possible to
read the state of a valve controller in the condition monitoring system with a single
service call. When the user interface calls the UA2XML service of this adapter, the
adapter knows what nodes it should read from the OPC UA Server and how the
result should be presented. The result of this call is an XML document which the
user interface presents to the user of the application. Because the OPC UA Device
information model does not specify how condition data should be presented, the
user interface just prints all the data to the screen without further analysis - the
user interface application does not know the meaning of the data.

5.3 Testing

The integrated system was tested with a scenario that was identified during the
requirements identification process. The communication sequences in other scenarios
are similar, and the transferred data from the OPC UA server is identical which is
why the testing concentrates on just one scenario.

In the scenario, an impending valve failure causes anomalies in the production pro-
cess. The anomaly is detected by the operator who notifies the maintenance en-
gineer. The parts of this scenario that are relevant to the integrated system were
simulated. The parts where the maintenance engineer interacts only with a single
system were omitted.

The maintenance engineer after receiving the notification must discover what equip-
ment are involved in the part of the production process that had anomalies. It is
expected that the EAM and the PCS system can provide this information. After

43

the equipment is known, the maintenance engineer needs to assess the health of the
involved equipment. When the health of the equipment is known and a prognosis
can be made, a work request can be generated to the EAM system. The health
assessment part of the process is illustrated next.

5.3.1 Health assessment use case

FCCalemEAM CIRServerIntegrationServerUI

QueryAssets()

FindEquivalentEntry()

OPCUA_Adapter

UA2XML()
Read()

OPC UA

CIR

Custom WS-*

interface
WCF Service

OSA-EAI

Tech-XML

mim_5005

FindAssetByAssetNo()

Figure 27: Interaction between the servers

Figure 27 illustrates the interaction between the servers involved. First the main-
tenance engineer accesses the user interface and enters the tags of the equipment
involved. In the test these tags are V101 and V102. The user interface sends
an OSA-EAI Tech-XML QueryAssets message to the integration server. The inte-
gration server queries the CIR server to find out what systems store information
regarding the assets that were in the query. The reply tells the integration server
that some of the equipment are monitored by the condition monitoring system. The
reply also includes the tag names used by the condition monitoring system for the
equipment. These tag names also function as the Node ID:s for the equipment in
the OPC UA address space. Because the query used the asset names in the EAM
system, the integration system can directly query the EAM system for additional
information regarding the equipment.

Next the integration system queries the OPC UA Server of the condition monitoring
system. The integration system calls the UA2XML service with the Node ID:s of
the equipment. The adapter reads these Node ID:s from the server, notices that the
nodes are Objects that have the Valve ObjectType and finally converts the objects to

44

XML according to the rules of its mapping file. The integration system converts the
XML document to a format that is suitable for the QueryAssets response document.

Finally the document in the new format is combined with the response received ear-
lier from the EAM system. Part of the response is shown in Listing 2. The response
is sent back to the user interface and it can display the basic information about the
equipment. The maintenance UI still needs to issue a few more OSA-EAI messages
from the TREND technology type to discover if there are alarms or warnings ac-
tive and to read the readings of the diagnostic sensors (such as temperature and
stiction). The communication sequences for these queries are identical to the one
demonstrated earlier.

Listing 2: Part of the mim 5005 QueryAssets response
<s:Body xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<QueryAssetsResponse

xmlns="http://www.mimosa.org/TechXMLV3-2/
RegistryManagementServices">

<QueryAssetsResult
xmlns="http://www.mimosa.org/TechXMLV3-2">

<ack>
<row>

<asset serial_number="00001001"
as_type_code="0"
user_tag_ident="404-00001001"
name="404-00001001"
as_db_id="0"
asset_id="1"
as_db_site="BEEFF00D00000000"
cs_type_db_site="0000000000000000">

</asset>
<asset_chr_data

data_value="Simulated valve number 1."
eu_type_code="241"
eu_db_id="0"
ac_db_site="0000000000000000"
asset_id="1"
eu_db_site="0000000000000000"
ac_type_code="0"
ac_db_id="0">

</asset_chr_data>
</row>

</ack>
</QueryAssetsResult>

</QueryAssetsResponse>
</s:Body>

45

5.4 Summary

In this chapter, the test platform that was used to facilitate the implementation of
the design and the actual implementation were described. The communication pat-
terns between the integrated systems were illustrated with an example scenario. The
implemented interfaces could provide the data necessary to provide the necessary
data to the maintenance engineer.

46

6 Conclusions and discussion

In this thesis, a design for integrating IT systems involved in condition based main-
tenance based on OPC Unified Architecture and Service Oriented Architecture was
presented. An experimental implementation was constructed to integrate enterprise
asset management and condition monitoring systems. The implementation was eval-
uated with a test scenario identified by analysing the processes of condition based
maintenance. The experimental implementation applied the MIMOSA OSA-EAI
and OpenO&M CIR specifications to support the integration.

6.1 Conclusions

A design for integrating IT systems and devices for condition based maintenance
was presented in this work. In the design, adapters are used to communicate with
condition monitoring systems, intelligent devices and other systems involved for
producing the data regarding the health of the equipment. Separating the adapters
from the rest of the integration logic allows the adapters to be reusable in other
integration solutions as well. In the presented design, the protocol-specific data is
transformed to XML format before passing it to the integration logic. This allows
the integration logic to concentrate on transformations of XML data, regardless of
the data models used by the connected systems. The experimental implementation
demonstrated the feasibility of this approach in the integration of relatively small
amount of IT systems.

The work demonstrated that the abstractions of OPC Unified Architecture simplify
the design and implementation of the integration. Information models such as the
OPC UA Device Information Model allow developers to access device identification
data in a standardised manner. The object model of OPC UA allows integrators
to implement their solution according to the type definitions in the address space.
However, the OPC UA Device Information Model was found to be insufficient to
model condition data. However, it can serve as a basis for an extended data model
for presenting such data.

The separation of the services and mappings of OPC UA allow it to be used in
service based frameworks. The implementation demonstrated this with the Windows
Communication Foundation. This allows OPC UA to be used with integration
servers based on WCF, such as Microsoft Biztalk, if an adapter for the protocol is
implemented. In this work, a proof of concept version of the adapter was developed.
This allows integration servers and solutions based on WCF to communicate directly
with OPC UA servers that do not support the Web Service mapping.

The web service interfaces of MIMOSA OSA-EAI Tech-XML SOAP were used to
present the device data to other IT systems. Because OSA-EAI defines its own iden-
tification numbering for assets, a separate service was required to map the entity
names in the integration solutions. The OpenO&M CIR specification was sufficient
to implement this mapping support for the purposes of the experimental implemen-

47

tation.

Presenting the asset data using the OSA-EAI Tech-XML elements is difficult if an
OSA-EAI CRIS database is not used. The message schemas are based on the CRIS
data model, which is relational. The keys and foreign key references are present
even in the XML documents and constructing them is not straightforward if the
data is not backed by an actual relational database. A CIR server can facilitate this
integration by mapping OPC UA object types to keys that refer to the OSA-EAI
reference data.

6.2 Discussion and proposals for future work

OPC UA is still a relatively new specification and there exists little research on
how to utilise it for data integration. The security, the performance and platform
independence of OPC UA already offer benefits over the older OPC standards.
However, the information modelling tools of OPC UA can offer even larger benefits.
OPC UA gives powerful tools to model complex domain-specific data and present
it in a standard way. If more domain-specific information models are developed and
are adopted by the vendors, the integrators can integrate the systems in a vendor-
independently. This will reduce the cost of integration. On the other hand, if the
modelling tools are ignored, they remain a source of unnecessary complexity and
can hinder the adoption of the standard.

OPC Unified Architecture can be used to present condition data from intelligent
devices, but the currently available information models do not define how this data
should be made available. Extending the Device Information Model to present
condition data in a standard manner could be a reasonable topic for further research.
It is expected that the work on FDI can provide input to this research. Also, bridging
the gap between MIMOSA OSA-EAI asset model and OPC UA device model could
ease the use of OSA-EAI web service interfaces together with OPC UA data sources.

This work tested the proposed design in a rather small scale. The design should be
evaluated in a more realistic IT environment to evaluate its scalability and perfor-
mance with larger number of systems. The proposed approach of converting OPC
UA objects to XML using a declarative template language appears promising for
converting simple data models such as OPC UA DI. The feasibility of the approach
should be tested with more complex data models such as the PLCOpen and Analyser
Device information models.

48

References

[1] Suomen Standardisoimisliitto SFS, Helsinki, Finland, SFS-EN 13306:2001 –
Maintenance terminology, 2001.

[2] The Instrumentation, Systems and Automation Society, Research Triangle
Park, NC, USA, ANSI/ISA-95.00.03-2005 – Enterprise Control System Inte-
gration – Part 3: Activity Models of Manufacturing Operations Management,
2005.

[3] International Organization for Standardization, Geneva, Switzerland, ISO
13374-1:2003: Condition monitoring and diagnostics of machines – Data pro-
cessing, communication and presentation – Part 1: General guidelines, 2003.

[4] M. Bustamante, Learning WCF. Sebastopol, CA, USA: O’Reilly Media, Inc.,
1st ed., 2007.

[5] Microsoft, “Data transfer architectural overview.” Available at http://
msdn.microsoft.com/en-us/library/aa347789.aspx, accessed on
2010-03-04.

[6] W. Mahnke, S.-H. Leitner, and M. Damm, OPC Unified Architecture. Berlin,
Germany: Springer, 2009.

[7] D. Grossmann, K. Bender, and B. Danzer, “OPC UA based Field Device Inte-
gration,” in SICE Annual Conference, pp. 933–938, 20-22. Aug 2008.

[8] Machinery Information Management Open Standards Alliance, “MI-
MOSA’s open systems architecture for enterprise application inte-
gration (OSA-EAI) technical architecture summary.” Available at
http://www.mimosa.org/sites/default/files/TechDocs/
OSA-EAI_Technical_Architecture_Summary_Dec_2006.pdf,
accessed on 2010-05-06, 2007.

[9] J. Järviö, “Mitä on kunnossapito,” in Kunnossapito (J. Järviö, ed.), pp. 11–25,
Hamina, Finland: KP-Media Oy, 2006.

[10] J. Järviö, “Ehkäisevä kunnossapito,” in Kunnossapito (J. Järviö, ed.), pp. 66–
77, Hamina, Finland: KP-Media Oy, 2006.

[11] G. M. Knapp and B. Wang, “Fundamentals of maintenance,” in Computer-
Aided Maintenance Methodologies and practices (J. Lee and B. Wang, eds.),
Manufacturing Systems Engineering Series, pp. 3–19, Dordrect, The Nether-
lands: Kluwer Academic Publishers, 1999.

[12] J. Järviö, “Vikaantuminen,” in Kunnossapito (J. Järviö, ed.), pp. 48–66, Ham-
ina, Finland: KP-Media Oy, 2006.

http://msdn.microsoft.com/en-us/library/aa347789.aspx
http://msdn.microsoft.com/en-us/library/aa347789.aspx
http://www.mimosa.org/sites/default/files/TechDocs/OSA-EAI_Technical_Architecture_Summary_Dec_2006.pdf
http://www.mimosa.org/sites/default/files/TechDocs/OSA-EAI_Technical_Architecture_Summary_Dec_2006.pdf

49

[13] The Instrument Society of America, Research Triangle Park, NC, USA, ISA-
95.00.01-2000 – Enterprise-Control System Integration – Part 1: Models and
Terminology, 2000.

[14] B. Stengl and R. Ematinger, SAP R/3 plant maintenance: making it work for
your business. Harlow, Great Britain: Pearson Education, 2001.

[15] CalemEAM Inc., “CalemEAM website.” http://www.calemeam.com, ac-
cessed on 05-05-2010.

[16] D. S. Linthicum, Next Generation Application Integration: From Simple In-
formation to Web Services. Boston, MA, USA: Addison-Wesley Professional,
2003.

[17] T. Erl, Service-Oriented Architecture: Concepts, Technology, and Design. Up-
per Saddle River, NJ, USA: Prentice Hall PTR, 2005.

[18] N. Josuttis, SOA in Practice. Sebastopol, CA, USA: O’Reilly Media, Inc.,
1st ed., 2007.

[19] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-Oriented Archi-
tecture Best Practices. Upper Saddle River, NJ, USA: Prentice Hall, 2004.

[20] I. Seilonen, J. Olli, M. Rintala, and K. Koskinen, “Application integration
for condition monitoring: A case study with installed base information,” in
Proceedings of the 21st International Congress and Exhibition Condition Mon-
itoring and Diagnostic Engineering Management (COMADEM) 2008, 11-13.
Jun 2008.

[21] Mtelligence Corporation, “Mtelligence MIMOSA interop server (MIS)
datasheet.” Available at http://www.mtelligence.net/downloads/
default.aspx. Accessed on 2010-04-29.

[22] G. Cena, L. Durante, and A. Valenzano, “Standard field bus networks for indus-
trial applications,” Computer Standards & Interfaces, vol. 17, no. 2, pp. 155–
167, 1995.

[23] PI, “PROFIBUS PA system description.” Available at
http://www.profibus.com/nc/downloads/downloads/
profibus-pa-technology-and-application-system-description/
download/191/, accessed on 2010-05-06.

[24] FDT Joint Interest Group, Diegem, Belgium, FDT Interface Specification Ver-
sion 1.2, 2001.

[25] M. Nelson, “Using Distributed COM with firewalls.” Available at http:
//msdn.microsoft.com/en-us/library/ms809327.aspx?ppud=4,
accessed on 2010-05-06, 1998.

http://www.calemeam.com
http://www.mtelligence.net/downloads/default.aspx
http://www.mtelligence.net/downloads/default.aspx
http://www.profibus.com/nc/downloads/downloads/profibus-pa-technology-and-application-system-description/download/191/
http://www.profibus.com/nc/downloads/downloads/profibus-pa-technology-and-application-system-description/download/191/
http://www.profibus.com/nc/downloads/downloads/profibus-pa-technology-and-application-system-description/download/191/
http://msdn.microsoft.com/en-us/library/ms809327.aspx?ppud=4
http://msdn.microsoft.com/en-us/library/ms809327.aspx?ppud=4

50

[26] M. Wasznicky, “Using Web Services instead of DCOM.” Available at http:
//msdn.microsoft.com/fi-fi/library/aa302336(en-us).aspx,
accessed on 2010-05-06, Feb. 2002.

[27] OPC Foundation, Scottsdale, AZ, USA, OPC Unified Architecture Specification
– Part 1: Overview and Concepts 1.01, 2009.

[28] OPC Foundation, Scottsdale, AZ, USA, OPC Unified Architecture Specification
– Part 4: Services 1.01, 2009.

[29] OPC Foundation, Scottsdale, AZ, USA, OPC Unified Architecture Specification
– Part 6: Mappings 1.00, 2009.

[30] OPC Foundation, “Opc unified architecture website.” Available at http://
www.opcfoundation.org/UA, accessed on 2010-05-06.

[31] OPC Foundation, Scottsdale, AZ, USA, OPC Unified Architecture for Devices
(DI) 1.00 Companion Specification, 2009.

[32] OPC Foundation, Scottsdale, AZ, USA, OPC UA Companion Specification for
Analyzer Devices 1.00, 2009.

[33] PLCopen, “PLCopen and OPC foundation combine their technologies.” Avail-
able at http://www.plcopen.org/pages/tc4_communication/, ac-
cessed on 2010-05-06.

[34] ABB, “ABB supports new industry-wide collaboration for accelerated Field
Device Integration.” Available at http://www.abb.fi/cawp/seitp202/
8749114d6534b9688525766b00544560.aspx, accessed on 2010-02-17.

[35] OPC Foundation, “OPC UA certification road map.” Avail-
able at http://www.opcfoundation.org/Default.aspx/
Compliance-Certification/roadmap-ua.asp?MID=Compliance,
accessed on 2010-05-06.

[36] K. Bever, “OpenO&M Information Service Bus and CIR.” Available
at http://www.openoandm.org/files/OpenO&M%20Information%
20Service%20Bus%20and%20CIR%2010-16-2009.pdf, accessed 2010-
03-09.

[37] Machinery Information Management Open Systems Alliance, Tuscaloosa, AL,
USA, Tech-XML-Services Client & Server Specification Version 3.2.1, Dec.
2008.

[38] Penn State University / Applied Research Laboratory, The Boeing Company,
and Machinery Information Management Open Standards Alliance, “Open sys-
tems architecture for condition-based maintenance (OSA-CBM) primer,” 2006.

[39] OpenO&M, Research Triangle Park, NC, USA, OpenO&M Common Interop-
erability Registry Specification draft V0.6, 2009.

http://msdn.microsoft.com/fi-fi/library/aa302336(en-us).aspx
http://msdn.microsoft.com/fi-fi/library/aa302336(en-us).aspx
http://www.opcfoundation.org/UA
http://www.opcfoundation.org/UA
http://www.plcopen.org/pages/tc4_communication/
http://www.abb.fi/cawp/seitp202/8749114d6534b9688525766b00544560.aspx
http://www.abb.fi/cawp/seitp202/8749114d6534b9688525766b00544560.aspx
http://www.opcfoundation.org/Default.aspx/Compliance-Certification/roadmap-ua.asp?MID=Compliance
http://www.opcfoundation.org/Default.aspx/Compliance-Certification/roadmap-ua.asp?MID=Compliance
http://www.openoandm.org/files/OpenO&M%20Information%20Service%20Bus%20and%20CIR%2010-16-2009.pdf
http://www.openoandm.org/files/OpenO&M%20Information%20Service%20Bus%20and%20CIR%2010-16-2009.pdf

51

[40] T. Hadlich, “Providing device integration with OPC UA,” in IEEE Interna-
tional Conference on Industrial Informatics (INDIN) 2006, pp. 263–268, 16-18.
Aug 2006.

[41] R. Huang and F. Liu, “Research on opc ua based on electronic device de-
scription,” in 3rd IEEE Conference on Industrial Electronics and Applications
(ICIEA) 2008, pp. 2162–2166, 3-5. Jun 2008.

[42] L. Moreira, S. Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and
D. Savio, “SOCRADES: A web service based shop floor integration infrastruc-
ture,” in Internet of Things 2008 Conference, pp. 50–67, 26–28 Mar. 2008.

[43] J. Mathew, J. Kennedy, L. Ma, A. Tan, and D. Anderson, “A Review of the
MIMOSA OSA-EAI Database for Condition Monitoring Systems,” in 1st World
Congress on Engineering Asset Management (WCEAM) 2006, pp. 837–846, 11-
17. Jul 2006.

[44] K. Bever, “Oil & Gas/PetroChem Industry OpenO&M Interoperability
Use Cases & Scenarios.” Available at https://trac.posccaesar.
org/attachment/wiki/IOHN/InformationDissemination/
Oil%26Gas-PetroChem%20Industry%20OpenO%26M%
20Interoperability%20Use%20Cases%20--%20Complete%
20(updated%202008-08-22).ppt, accessed on 2010-05-06, Sept.
2008.

[45] The Institute of Electrical and Electronics Engineers, Inc., New York, NY, USA,
IEEE Std 1471-2000: IEEE Recommended Practice for Architectural Descrip-
tion of Software-Intensive Systems, 2000.

[46] OPC Foundation, Scottsdale, AZ, USA, OPC Unified Architecture Specification
– Part 3: Address Space Model 1.01, 2009.

[47] P. Arrenius, “Evaluation environment for new technologies in automation de-
sign,” Master’s thesis, Helsinki University of Technology, Department of Au-
tomation and Systems Technology, Espoo, Finland, 2006.

[48] J. Virta, “Application integration for production operations management using
OPC Unified Architecture,” Master’s thesis, Aalto University School of Science
and Technology, Department of Automation and Systems Technology, Espoo,
Finland, 2010.

https://trac.posccaesar.org/attachment/wiki/IOHN/InformationDissemination/Oil%26Gas-PetroChem%20Industry%20OpenO%26M%20Interoperability%20Use%20Cases%20--%20Complete%20(updated%202008-08-22).ppt
https://trac.posccaesar.org/attachment/wiki/IOHN/InformationDissemination/Oil%26Gas-PetroChem%20Industry%20OpenO%26M%20Interoperability%20Use%20Cases%20--%20Complete%20(updated%202008-08-22).ppt
https://trac.posccaesar.org/attachment/wiki/IOHN/InformationDissemination/Oil%26Gas-PetroChem%20Industry%20OpenO%26M%20Interoperability%20Use%20Cases%20--%20Complete%20(updated%202008-08-22).ppt
https://trac.posccaesar.org/attachment/wiki/IOHN/InformationDissemination/Oil%26Gas-PetroChem%20Industry%20OpenO%26M%20Interoperability%20Use%20Cases%20--%20Complete%20(updated%202008-08-22).ppt
https://trac.posccaesar.org/attachment/wiki/IOHN/InformationDissemination/Oil%26Gas-PetroChem%20Industry%20OpenO%26M%20Interoperability%20Use%20Cases%20--%20Complete%20(updated%202008-08-22).ppt

	Abstract
	Abstract in finnish
	Preface
	Contents
	Abbreviations
	List of Figures
	Introduction
	Objectives, research questions, research methods
	Results
	Outline of this thesis

	Maintenance
	Overview
	Condition based maintenance

	Maintenance operations management
	Automation and information systems in maintenance operations management
	Enterprise asset management systems
	Condition monitoring systems

	Summary

	Application integration in maintenance
	Concepts
	Application integration in condition based maintenance
	FDT
	OPC UA
	Concepts
	OPC UA device information model
	Field Device Integration
	Current status and future

	MIMOSA and OpenO&M standards
	OSA-EAI
	OSA-CBM
	Common Interoperability Registry (CIR)

	Related research
	Summary

	Design of application integration
	Requirements
	Use cases

	Structure of the integrated system
	Dynamic behaviour and interactions in the integrated system
	Data transformations
	Rationale
	Summary

	Implementation and testing
	Integration research platform
	Maintenance operations integration in the platform

	Implementation of the design
	Testing
	Health assessment use case

	Summary

	Conclusions and discussion
	Conclusions
	Discussion and proposals for future work

	References

