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Internetin mobiilikäyttö on yleistynyt voimakkaasti. Internet-protokollat on 
kuitenkin kehitetty kiinteän verkon viestintää varten ja niiden suorituskyky, 
erityisesti TCP:n, kärsii olosuhteissa, joissa kiinteää yhteyttä verkkoon ei ole 
saatavilla. EU-tutkimusprojekti nimeltä CHIANTI perustettiin tutkimaan 
mahdollisuutta paremman suorituskyvyn tarjoamiseksi mobiilikäyttäjille. Sen 
pyrkimyksenä on kehittää tietoliikenneratkaisu, jossa välityspalvelimet 
suojaavat käyttäjiä verkkoyhteyden katkoksilta. 

DTN on tietoliikennearkkitehtuuri joka on kehitetty viestinvälitykseen 
vaativissa olosuhteissa, esim. avaruusviestinnässä, ja mahdollistaa viestien 
välityksen pitkien viiveiden ja katkonaisten verkkoyhteyksien yli. 

Diplomityöni tarkoitus oli selvittää, voitaisiinko CHIANTI-projektin mukaiset 
välityspalvelimet toteuttaa hyödyntäen DTN-tutkimusryhmän kehittämää 
DTN-sovellusta. Työtä varten olen kehittänyt ja toteuttanut yksinkertaisen 
protokollan, jolla voidaan välittää HTTP-pääteyhteyksiä kahden DTN-solmun 
kautta. Protokollatoteutuksen avulla voidaan mitata DTN-toteutuksen 
suorityskykyä ja sitä kautta arvioida sen soveltuvuutta CHIANTI-projektin 
kannalta. Tätä varten mitattiin DTN-toteutuksen tiedonsiirtokapasiteettia sekä 
sen aiheuttamaa lisäviivettä HTTP-tiedostonsiirtoihin.  

Mittaustulokset osoittivat, että DTN-toteutus pystyy vain rajalliseen tiedon-
siirtoon, suurin mitattu siirtonopeus oli vain noin 1,5 megatavua sekunnissa ja 
kaikissa tapauksissa DTN:n käyttö lisäsi yhteysviivettä yli 100 millisekunnilla. 

Tulosten valossa työssä todetaan, että tarkasteltu DTN-toteutus on hieman 
rajallinen suorituskyvyltään mutta silti käyttökelpoinen ja omaa potentiaalia 
jatkokehitykseen. 

Avainsanat: CHIANTI, disconnection tolerance, DTN, HTTP  
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Mobile use of Internet is increasing rapidly. Internet-protocols, in particular 
TCP, have been designed for operation with fixed connections and perform 
poorly in conditions of intermittent connectivity. CHIANTI is an EU-funded 
research project established to offer better performance for mobile Internet 
users. 

DTN is a communications architecture that has been developed to enable 
communications over long delays and intermittent connectivity, such as in 
space communications. 

The purpose of this work is to investigate applicability of the reference DTN 
implementation developed by the DTN Reseach Group to the needs and aims 
of CHIANTI. For this purpose I have developed a simple protocol to relay 
endpoint HTTP connections over a DTN link in order to be able to measure 
DTN performance and assess its usefulness for CHIANTI purposes. To this 
end, throughput capacity and delay caused by DTN are measured. 

Results of measurements indicate limited throughput performance of around 
1.5 megabytes per second and over 100 millisecond additional delay to 
endpoint communications even in best cases. 

In light of attained results this work concludes that the DTN implementation 
used in this work has limited performance but could still prove useful, and has 
potential for further development. 
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1. Introduction 

The end of the second millennium saw the introduction of groundbreaking new 

ways of communication: the Internet and mobile telephony. 

The Internet, with its powerful, evolving infrastructure and proliferation of 

personal computing resources and innovative applications and protocols, has 

provided us a way of sharing vast amounts of information as well as become a 

platform for new, previously unimaginable services and possibilities. The first 

ever Millennium Technology Prize was awarded in 2004 to Tim Berners-Lee, 

the founding father of the World Wide Web, as a reflection and recognition of 

the profound effect it has had on the society. 

Mobile telephony, with the introduction of the GSM communication standard 

and proliferation of inexpensive, hand-held mobile telephones made possible by 

the advances in microelecronics and computing, now allows us to communicate 

with each other with flexibility and convenience unseen ever before. 

A natural idea for further development is combination of Internet and mobility, 

and indeed it has been the subject of fervent research, as service providers 

have been rushing to provide mobile broadband to customers and mobile 

multimedia has been at the center of many a research conference. As anyone 

with experience in using a laptop while on the move can tell, there is still a long 

way to go before Internet services can be offered to mobile users with a degree 

of service comparable to Internet use through fixed cable networks. Moving out 

of range of a WLAN hotspot will interrupt connections and force users to restart 

application sessions – even if network connectivity with some other access 

technology existed. Overcoming such connectivity intermittence is one of the 

key challenges in mobile communications and correspondingly has spawned 

countless research projects focusing on challenged Internet access. 

Moving outside of the Internet environment, space exploration, satellite 

communications and other more exotic and demanding network environments 

and communication scenarios have also given rise to different research fields. 
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Data transfer over extremely challenged and/or heterogeneous networks with 

little common technological ground have produced proposals such as Delay-

Tolerant Networking. DTN has been developed for transmitting messages in a 

robust manner over difficult conditions, such as over links with extreme latency 

and intermittent connectivity, conditions where traditional Internet protocols fail 

or fare poorly. A key idea behind this work is that DTN technologies might have 

the potential to alleviate or even solve problems inherent in mobile Internet 

access as well.  

A favourite Internet application today is the World Wide Web, widely used for 

business and pleasure alike with a user base in the hundreds of millions and 

thus the initial starting point for this work. This document investigates the 

possibility to utilize an existing reference implementation of Delay-Tolerant 

Networking software in order to provide at least a basis for disconnection-

resilient communication environment for mobile Internet users. This document 

also describes the design and implementation of a simple communication 

protocol for relaying web session data over an unreliable communication link 

masked by the DTN, and assesses the performance of the DTN software to 

gain some insight on its suitability for the task. 

For the purpose of assessing DTN performance, a set of simple measurements 

will be made to compare throughput and latency of HTTP traffic over a DTN link 

with corresponding measurements without the DTN software. Measurements 

aim to find out the data throughput capability of the DTN software, magnitude of 

the effect it has on latency for file transfers, and effects of different DTN-related 

parameters on both throughput and latency. 

The rest of this document has been organized as detailed below. 

Section 2 provides background information relevant for this work, especially 

explaining the DTN concept in more detail. 

Section 3 concentrates on the design and implementation of an adaptation 

protocol to facilitate relaying HTTP traffic over a DTN link. It gives overview of 
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the protocol design choices and functionality, as well as describing the actual 

protocol implementation. 

Section 4 documents the test setup and procedures and measurements 

performed to test the performance and functionality of the protocol and DTN 

implementations. 

Section 5 presents the results of testing and measurements and discusses their 

implications to evaluating the performance of the DTN technology. 

Section 6 concludes the document, summarizing the findings of this work and 

gives recommendation for future work for improving on the concept. 
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2. Background 

Heterogeneous wireless environments and the resulting intermittent connectivity 

experienced by mobile users is a widely recognized and copiously researched 

subject around the world. Section 2.1 is a brief introduction to some notable 

work on the subject. One culmination of this earlier research is the DTN 

concept, which forms a crucial part of this work and is explained in more detail 

in section 2.2. The CHIANTI project, more thoroughly discussed in chapter 2.3, 

is a recent, more practical development for improving resilience for connection 

disruptions. The work described in this thesis originated as an aside during the 

CHIANTI project as a possible alternative for implementing CHIANTI 

functionality using existing technologies, more specifically, using the 

implementation created by the DTN Research Group to provide improved 

disconnection tolerance to normal HTTP traffic. 

2.1. Mobility and disconnectivity 

The Internet and its core communication protocols, the TCP/IP suite, were 

designed for robust communication in a fixed network with static nodes. Internet 

protocol and application design was based on the end-to-end principle, 

formulated in [1]. In brief, the end-to-end principle states that many necessary 

functions in communication over an unknown, heterogeneous network can only 

be performed by the endpoints actually engaged in the dialogue. This is 

because the design of networks was at the time directed towards simple, 

minimal network which would efficiently provide the bare minimum of services – 

mostly routing and packet forwarding – and avoid replicating more extensive 

functionality both in the network and at higher protocol levels. The TCP protocol 

operation is a good example of the end-to-end principle in action; endpoint 

hosts running TCP/IP protocol stack employ TCP to take care of such 

necessary functions as flow control, out-of-order caching, acknowledgements, 

retransmitting missing packets and timing out connection. Following the end-to-

end principle usually involves interaction between endpoints, which is not a 

problem, if they have a fixed, low-latency network connection available.  



2. BACKGROUND 

 5 

On the other hand, the GSM revolution of the early 1990’s triggered an 

increasing interest for mobile communications, exacerbated by the creation of 

other wireless technologies such as the IEEE 802.11 technology family 

(WLAN). By now, proliferation of different wireless access technologies has led 

to existence of wide variety of different computing and communication devices 

supplied with several different access technologies, ranging from copper-based 

Ethernet to V.90 and 3G modems. 

Increasing demand for mobility combined with the development of Internet-

based services, particularly of those related to multimedia, is increasingly 

bringing Internet and associated applications into mobile devices. It has also 

created demand for wireless broadband communications. In general, radio 

signals suffer from attenuation and poor signal to noise ratio, especially so at 

lower levels of transmitted power. Also, higher data rates demand higher carrier 

frequencies for more transmitted information per time unit, while higher 

frequencies demand more power to transmit and tend to attenuate faster than 

low frequencies, thus having shorter range than lower frequencies. 

Furthermore, mobile devices are often severely constrained in terms of size and 

thus available power, making economical use of energy an important design 

criterion. As a consequence, cell sizes used in different communication 

technologies tend to become smaller as data rate increases, and so, for users 

of high data rate mobile communication services connection disruptions are 

commonplace. For example, laptop user in a WLAN hotspot will eventually have 

to leave the coverage area of the WLAN base station, the radius of which is 

typically around ten to a hundred meters, and from there on will have to use 

other access technologies (e.g. 2.5G, 3G, WiMAX) for wireless communication. 

As noted earlier, modern communication devices tend to be capable of 

communicating via more than one access technology.  However, Internet 

applications and protocols quite often rely on TCP for establishing and 

maintaining endpoint connections. Implementations of TCP (and UDP) however 

rely on sockets as endpoint identities; sockets are bound to IP address – having 

one is a mandatory requirement for any entity wishing to communicate in the 
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Internet – which is very likely to change if user roams between different access 

networks. As a result communication context is lost, at least from the 

perspective of the TCP protocol. Even in the case of moving between different 

WLAN networks, coverage may be intermittent, and TCP (or the application in 

use) will quickly time out if it does not reach acknowledgements from the other 

endpoint, again losing all context and forcing the user to re-establish session.  

Of course, several improvements have been suggested to either improve TCP’s 

mobile performance or to circumvent it altogether with higher-layer approaches. 

Much work has also been done in trying to mitigate the effect of changing IP 

addresses. For instance, Mobile IP, as specified in RFC 3344 [2] and RFC3775 

[3] for IPv4 and IPv6 respectively, uses home and foreign agents to keep track 

of mobile endpoints and enable continuous routing of packets to mobile 

endpoint via aforementioned agents even as IP addresses change, maintaining 

application and transport-layer (TCP) connection. However, this approach will 

not protect the user from disconnections. 

A higher-layer protocol dubbed HIP [4] was proposed to separate IP’s endpoint 

identifier and locator functionalities from each other, thus creating an 

identification technology better suited for mobility. To provide protection for 

connection outages, a proposal of combining HIP with some custom TCP 

enhancements has been made [5]. The TCP options, called User Timeout 

Option and Retransmission Trigger, would prevent TCP from timing out during 

outages and resume transmission as soon as connection becomes available, 

and by binding the TCP to HIP addresses instead of IP addresses, immunity 

from IP address changes is obtained. A similar solution is TCP Migrate [6], 

which modifies the TCP SYN packets and adds a new state into the protocol to 

protect it from disconnections and uses Dynamic DNS for protection from 

changing IP addresses. 

These kinds of endpoint-oriented approaches have their own problems. For 

instance, modifying the TCP protocol in one endpoint generally has the effect of 

rendering it incompatible with other, unmodified endpoints. With the staggering 

growth of Internet in the recent decade the estimated amount of endpoints in 
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the Internet today is vast; ISC Internet Domain Survey estimates the Internet 

host count to have been over 680 million in July 2009 compared with 43 million 

in January 1999 [7]. Large-scale efforts of introducing new endpoint functionality 

and support for it in global scope are thus usually considered quite infeasible. 

In contrast to endpoint-oriented approaches, several suggestions use an 

overlay approach by introducing a small number of proxies with enhanced 

functionality at key points in the network – for instance, as gateways between 

the Internet and a mobile access network – to relay traffic between each other 

and endpoint hosts. Even a single proxy in the network can be considered to 

form an overlay. Usually endpoints have to be provided with extra functionality 

or information to communicate with proxies, but their capability to communicate 

with other hosts using standard applications and protocols is not hampered in 

any way.  

Such overlay approaches include the Euonym architecture [8], which places 

intermediate hosts with shim layer software in isolated networks and operates 

on custom “name stacks” to achieve IP address independence and 

disconnection tolerance. The Distributed Home Agent for Robust Mobile 

Access, or DHARMA [9], which uses Dynamic DNS for IP independence and 

home and mobility agents for additional functionality and improved 

disconnection tolerance. It also provides the possibility to operate in end-to-end 

fashion by placing the agents at endpoint hosts - a technique applicable to 

overlay solutions in general. 

Other notable suggestions include the Persistent Connection Management 

Protocol (PCMP) [10] and the Opportunistic Connection Management Protocol 

(OCMP) [11]. The PCMP is a session management protocol which uses custom 

peer names and can be deployed in proxies to provide persistent connections 

over disconnections and changing IP addresses. OCMP is a further 

development of the same idea and provides better support for applications and 

protocols besides the TCP. 



2. BACKGROUND 

 8 

Most of these solutions, be they end-to-end or overlay based, generally focus 

on the Internet, that is, their design focuses on the assumption that Internet is 

the principal carried network and endpoints operate using current Internet 

protocols – usually TCP. This choice carries with it certain implicit assumptions 

about the conditions the communication takes place in. They of course try to do 

away with the assumption that endpoints are always connected, but, disruptions 

notwithstanding, use of TCP usually assumes that connections tend to be fairly 

reliable and have a relatively small latency and round-trip time – usually of the 

order of under a second, probably much less, and in worst cases not more than 

several seconds. Likewise, use of TCP presumes a given degree of interaction 

between endpoints; three-way handshake is a requirement before data can be 

transmitted, and acknowledgements are continuously needed. In the largely 

favourable conditions of the terrestrial Internet these preconditions usually hold. 

But for more constrained communication environments different approaches are 

needed.  

2.2. DTN 

Delay-Tolerant Networking, or DTN, was developed partly as one possible 

answer to some of the more important shortcomings of the TCP/IP suite in 

communication over long-distance, high-delay, low-bandwidth, disruptive links. 

Interplanetary communication in our own solar system is often used as an 

example target application. DTN is not a single protocol or mechanism but a 

generalized architecture for communication over different networks – “regions” – 

with might use completely different addressing and routing mechanisms and 

protocols. The DTN architecture is described in RFC 4838 [12] and a good 

source of more information is the Delay-Tolerant Networking Research Group 

web site [13]. 

In deep-space communications, such as between Earth and space probes in 

Saturn orbit, distances become so great that message propagation at the speed 

of light will take well over an hour, given the speed of light of approximately 3 x 

108 m/s and minimum distance between Saturn and Earth of about 1.2 x 109 km 
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as stated in [14]. The propagation delay in this case would work out to about an 

hour and seven minutes (4000 seconds). For TCP three-way handshake, it 

would then take about 3h 20min before the transmission of the first actual data 

byte. To make matters worse, other celestial bodies of the ecliptic plane, 

including the sun, might interject between the probe and Earth listening stations 

or satellites, meaning that no direct communications could be established at all, 

for relatively long periods of time. Using relays positioned elsewhere in the solar 

system, such as in Mars orbit, could provide a communication path, but it would 

lead to even greater delays in communication. Clearly, TCP and Internet 

protocol suite are not appropriate for communication of this scale. 

Besides the poor performance of TCP outside Internet conditions, another 

motivation for the DTN architecture is the existence of other communication 

networks besides the Internet and the desire to be able to relay messages 

through heterogeneous networks with incompatible addressing and protocols 

via a unified mechanism. For instance, it might be desirable to relay data from a 

remote underwater acoustic network otherwise disconnected from the Internet 

via a satellite link to a research station. In this case, data messages would have 

to traverse first through the acoustic network, then through the satellite link, and 

only at the final stages of communication through some part of the Internet 

before reaching the other endpoint. 

Of course, networks outside the Internet could always be easily incorporated 

into the Internet by simply applying the IP protocol to all component networks. 

However, just as with the TCP, IP is not necessarily always a feasible solution 

for all conditions and networks. For instance, in some constrained environments 

where memory, processing and bandwidth are scarce, overhead incurred by 

having to transmit the 40-byte IP header plus higher-layer protocol headers and 

associated header processing might prove prohibitive. Or in very scarce 

networks with very few nodes and/or fixed links there might not be need for 

routing functionality provided by the IP. In such cases it could well be more 

sensible to apply other networking technologies in place of IP and then connect 

to the Internet using a higher-layer mechanism – such as the DTN. 
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To solve the challenge of delay-tolerance, DTN specifies a message storing-

and-forwarding mechanism with persistent storage, and a higher-layer end-to-

end message protocol, called Bundle Protocol and specified in RFC 5050 [15]. 

To make spanning of heterogeneous communication networks possible, DTN 

uses a URI-based (see RFC 3986 [16]) addressing, the aforementioned Bundle 

Protocol, and a mechanism called convergence layer. Application data is 

packaged into bundles, which are routed through the DTN using transport 

protocols applicable to component networks along the way. Bundle data is 

passed to the transport protocol through an appropriate convergence layer, 

which essentially provides a protocol to transmit bundle data to another DTN 

entity using transport-layer protocols pertaining to the network being traversed, 

and then relays it to the next bundle router. For instance, in the Internet, DTN 

nodes might have TCP and UDP convergence layers for relaying bundles. 

Figure 1 below is a simplified example depiction of DTN communication 

between two different networks which use a satellite relay to opportunistically 

forward bundles when a communication satellite passes over. 

 

Figure 1: DTN communication architecture – example scenario 

Routing between different networks and DTN nodes is something of an open 

question, not having been explicitly defined in the specification. Routing 
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mechanisms and protocols vary from network to network, and routing might be 

implemented using static routes or existing routing protocols adapted to DTN. 

The Bundle Protocol is in a sense at the heart of the DTN and has many 

features and capabilities. To begin with, bundles are the basic unit of storage 

and transmission in the DTN architecture. The bundles are forwarded to the 

next hop towards the target endpoint, and if they cannot be immediately 

forwarded, e.g. if no connection is available for the next hop, they are stored 

until communication is possible. Bundle protocol also has mechanisms for 

authentication, bundle fragmentation and notification of successful delivery. It 

also defines and provides custody transfers, meaning essentially that nodes 

further along the communication path can accept the responsibility for storing 

and retransmitting bundles, providing more efficient retransmission behaviour in 

long and challenged paths. 

The DTN architecture and related protocols are quite complex; bundling and 

bundle processing as well as convergence layer operations induce an extra 

overhead in transmissions and processing. DTN Research Group has 

developed and published a reference implementation of the DTN suite, labeled 

DTN2. The currently available version, 2.6.0, is hosted by SourceForge [17] and 

is a central component in this work. The reference implementation supports 

most DTN features and has TCP and UDP convergence layer functionality, but 

it requires extensive support libraries and has an overall memory footprint of 

around 40MB [18]. This is quite much considering mobile devices, wireless 

access points and similar hardware today. However, it has a well-defined API, 

reasonably useful documentation and provides an accessible starting point for 

concept testing and development and was thus chosen to serve as the 

foundation of this work. 

2.3. CHIANTI 

Challenged Internet Access Network Technology Infrastructure [19], or 

CHIANTI, is a two-year research project within the ICT initiative of the Seventh 

EU Framework Programme [20], scheduled to end in February 2010. It is a 
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multilateral effort between participants from the public and private sectors, 

participants being European universities and enterprises. In a nutshell, CHIANTI 

aims to improve mobile user experience by providing existing user applications 

enhanced disconnection and disruption tolerance, making use of the existing 

Internet infrastructure and by adding deployable service-support infrastructure 

to key locations, as expressed in project deliverable D1.1 [21]. 

The CHIANTI project defines spheres of control, defined in D1.1, based on the 

main functioning entity within the sphere, and specifies CHIANTI components 

and most important use cases in the form of two main scenarios, the Nomadic 

User and Vehicle Support scenarios. Deliverable D1.2 [22] provides more 

information about project requirements and goals, while deliverable D3.1 [23] 

describes the architecture in more detail as well as elaborates on the scenarios. 

CHIANTI protocols, in turn, are better explained in D2.4 [24]. 

The CHIANTI project has the ultimate goal of creating an improved service with 

commercial potential. As a consequence, CHIANTI system architecture has 

several practical and technical requirements regarding its deployment and 

functionality. Key requirements are ability to work with existing Internet 

infrastructure and with existing user applications and devices, while providing 

enhanced service to users with CHIANTI-aware equipment. As to the definition 

of enhanced service, D3.1 lists among other things requirements such as 30% 

increase in throughput in intermittent conditions and tolerance of disconnections 

longer than five minutes. In preparation, extensive traffic analysis has also been 

done in authentic environment, findings include clear prevalence of TCP in 

client traffic and consequently CHIANTI stresses optimization of TCP for 

disruption tolerance and increased throughput. 

The functional core of the project is formed by a CHIANTI client-proxy pair, 

located at the opposite sides of a disconnection point. Client functionality could 

reside in a mobile device or in a moving vehicle and in the latter case could also 

protect vehicle occupants from disconnections – the key idea behind the 

Vehicle Support scenario. The proxy, on the other hand, usually resides 

somewhere in the “fixed” Internet and can serve several clients. The 
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architecture also takes into account the possibility of nested client-proxy 

configurations possible in a system with several service providers. 

Figure 2 below presents the CHIANTI architecture as it appears in the CHIANTI 

Deliverable D3.1. Different spheres are highlighted, clarifying their role in the 

overall architecture. CHIANTI proxies can reside in different spheres, depending 

on the role of their service provider. CHIANTI clients are not shown, but they 

always reside within the Mobile sphere. 

CHIANTI
ISP

Internet

ISP A

ISP B

CHIANTI
proxies

3rd party provider
CHIANTI proxies

Servers, peers

Mobile Access ISP Internet Access Mobile
 

Figure 2: Overview of CHIANTI architecture, spheres  of control; from [23] 

 

Both client and proxy are equipped with the CHIANTI protocol stack which is 

essentially a core (called “Flex Proxy”), a chain of modules to provide 

application support for users, and a tunneling protocol for robust, disconnection-

resistant communication between client and proxy. Interface for intermodular 

communication exists; CHIANTI modules communicate via the SOCKSv5 

protocol, defined in RFC 1928 [25]. Figure 3 below depicts CHIANTI Flex Proxy 
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topology with external chain modules as it appears in Deliverable D2.4. The 

DTN module would be one such external chain module. 
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Figure 3: CHIANTI Flex Proxy topology, external cha in modules; from [24] 

 

As already mentioned earlier, this work arose from the sidelines of the CHIANTI 

project as a case study to explore applicability of DTN to provide users 

protection against disconnections. The modular structure of the CHIANTI 

protocol architecture should make it possible to implement a module which 

provides SOCKSv5 server functionality for incoming connections and directs 

incoming traffic to a DTN entity which is then used to relay data over an 

intermittently connected link to another DTN module, which would then feed it 

on, socksified, to awaiting module chain to pass on to the target endpoint. 

The operational scenarios considered by CHIANTI are strictly limited to Internet 

environments, and the decision to use DTN, designed for much more 

challenging conditions, might seem almost inappropriate; especially as DTN is 

earlier criticized as an overly complex and resource-intensive for small-scale 
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use in mobile environments. Even so, DTN should work fairly well in a benign 

environment.  Testing the DTN provides an opportunity to investigate its impact 

and overhead on traffic, and, should the results seem promising, there is always 

the possibility of using a scaled down, more efficient implementation. 
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3. Design and Implementation 

This section documents the design process and the reasoning behind the 

implementation. It also explores its details; the communication protocol, packet 

formats and such.  

Subsection 3.1 details the design goals for the implementation. 

Subsection 3.2 describes in more detail the problems and needs arising from 

the specified goals and the rationale behind the details of the protocol 

developed for the implementation; a review of design choices. 

Subsection 3.3 describes the actual protocol in more detail. It contains 

description of protocol states and exchanges taking place between protocol 

entities and explains packet types and their header formats in detail. 

Finally, subsection 3.4 describes the actual software implementation as well as 

the software environment of the implementation in more detail, also briefly 

commenting on some implementation-specific issues. 

3.1. Goals of the design 

Being from the outset affiliated with the CHIANTI project described in the 

previous section CHIANTI system architecture is implicitly reflected in the 

design of the software implementation, ultimately considering possible system 

integration within CHIANTI architecture. Implementation therefore has to keep 

in mind some of the key restrictions and considerations of the CHIANTI project 

itself, for instance the support of existing applications and protocols, and 

importance of TCP. The scope of this work, however, is much more modest 

than that of the CHIANTI, and concentrates on a particular TCP application, 

namely, the World Wide Web service using HTTP. 

From a more practical perspective, purpose of the programming task here is to 

implement a computer program – from hereon referred to as daemon – which 

will accept user HTTP traffic and relay it through a DTN link to another similar 
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daemon which in turn will relay incoming HTTP traffic onwards. For standalone-

testing, the daemon should be able to relay HTTP traffic directly to the originally 

specified endpoint – i.e. the target web server – while, in consideration of the 

CHIANTI scenario and modular architecture, it should also provide interfaces to 

communicate with CHIANTI devices and modules. As CHIANTI defines 

SOCKSv5 protocol as its primary interface, implementation also has to provide 

at least a limited degree of SOCKSv5 functionality to be able to forward traffic to 

the next CHIANTI module in a possible module chain. 

For accepting HTTP requests, and also in keeping in mind integration with 

CHIANTI architecture, the daemon should provide a (minimal) SOCKSv5 

server. For the DTN link, DTNRG implementation will provide the API and 

functionality for bundle sending and reception; what remains to be done for the 

daemon is to multiplex several HTTP client connections into over a single DTN 

link, to convert incoming HTTP requests into bundles and relay necessary 

information pertaining to the HTTP connections – such as target address and 

identifiers – to the other communicating daemon, to make sure all bundles 

come across and that all data is relayed in correct order, and to keep track of 

endpoint connections at either end. 

Initially, to demonstrate basic functionality, the daemon should listen for 

incoming SOCKSv5 connections and respond to “TCP Stream” requests in IPv4 

protocol. Once these basic concepts have been implemented and tested, 

support for UDP and IPv6 along with other desired features can be added as 

deemed necessary.  

The CHIANTI architecture describes a client agent residing in the mobile 

sphere, essentially at the mobile user’s side of the anticipated disconnection 

point, and a proxy agent residing at the other side of the disconnection point, 

with a fixed, reliable connection to the Internet. In a vehicle support scenario 

where one provider might e.g. have several CHIANTI clients in a single train 

and operate with several trains it is clearly impractical to have a separate proxy 

entity serving each client. This means that proxies must have the capability to 

distinguish between and communicate with several client entities.  
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Finally, in the interests of flexibility and simplicity – and of conformity with 

CHIANTI specifications – it was decided that the daemon should work in a 

symmetric fashion, i.e. each daemon instance should be able to provide both 

client and proxy functionality as needed. 

3.2. Design 

The main problems to be solved for the design of the daemon implementation 

can be summarized as follows: 

• Opening a new connection context between daemons 

• How to convert data from a TCP stream into bundles  

• Multiplexing several client TCP connections over one DTN link 

• Replicating TCP-style reliability between daemons  

• Connection context termination  

 

Each of these problems is expanded and discussed and corresponding design 

solutions presented in following subsections. Furthermore, there are some 

additional issues related to specification of the required implementation 

functionality which are less concerns of protocol design than they are details of 

the implementation itself, mainly: 

• Symmetric operation of the daemon 

• Connectivity detection 

 

These issues are commented more later on in the subsection concerning the 

implementation itself 
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3.2.1. Opening a New Connection Context between Dae mons 

When a mobile client opens up a new HTTP connection, it will first have to 

perform a brief SOCKSv5 negotiation with the daemon. This initial exchange 

provides the daemon with knowledge of the IP address and port of the target 

host the mobile client wants to communicate with. Daemon at the client end has 

to explicitly relay this information to the other daemon so it will be able to 

establish connection to the target host; after the initial SOCKSv5 negotiation, 

client endpoint will start receiving TCP stream data from the mobile client which 

is then packaged into a bundle and sent to the other daemon. 

At the very least, the first bundle to be transmitted needs to have target IP 

address and port information included in a bundle header. Also needed is an 

identifier which creates the context between the two daemons of a unique HTTP 

exchange – there might well be several requests directed at the same web 

server, so an address/port pair is insufficient for context identification. 

After the initial bundle is received by the other daemon, it can immediately 

establish a TCP connection to the target host and deliver received data; as it 

receives reply data from the end host it includes the context identifier in the 

bundle header so the client end daemon can direct received data back to the 

appropriate mobile client. There is no need to include address/port information 

bundle headers after the first bundle, but there could be slight additional 

benefits for supplying the address information with each bundle header. Mainly, 

implementation will be slightly easier with identical bundle header structure for 

all data bundles. Also, if the first bundle is delayed or gets lost, connection to 

the end host can be opened upon the reception of the second bundle, although 

this is hardly an advantage as bundle data cannot be transmitted out of order 

anyway.  

3.2.2. TCP Stream Conversion into Bundles 

Conversion of continuous TCP data stream into bundles presents some 

interesting problems. First, there is no predefined size limit for a bundle; they 
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can be almost arbitrarily small or large. Different bundling sizes pose different 

benefits and drawbacks: smaller bundle sizes means smaller delays in bundle 

transmission but on the other hand induce a greater overhead from bundle 

headers and thus decrease overall effectiveness of transmission; larger bundles 

mean extra delay and increased likelihood of a bundle being discarded in case 

of packet loss but increased overall efficiency. 

Second, the issue of multiplexing described in the next subsection also has an 

effect on bundling; data from several different connections could be stored in a 

single bundle. This issue is more closely examined in the next subsection; the 

design choice made here is to keep each bundle associated with only one client 

connection. 

Third, HTTP protocol session usually consists of an exchange of relatively small 

messages, client first sending a request for a resource and server replying with 

a status message or with the desired resource. In these cases, waiting for a 

bundle to be filled with more data is impossible and a timer mechanism is 

needed to trigger bundle transmission in case of inactivity so that messages will 

be delivered in a timely fashion and the user will not have to experience 

excessive extra delay. This, in turn, leads to the problem of choosing an 

appropriate bundling timeout, especially at the server side which is connected to 

the Internet and will probably behave in a much less predictable way than the 

client side due to larger variations in available bandwidth, latency and server 

load. 

Too long or too short timeout will nullify any benefits gained from optimal bundle 

size; too short timeout will make connection more responsive but will also incur 

larger overheads, and too large timeouts will increase unresponsiveness and 

negate benefits from smaller bundle sizes. Having said all this, the subject of 

choosing optimal combination of timeouts and bindle sizes is a complex 

mathematical exercise and ultimately beyond the scope of this work, where 

quick tentative qualitative concept testing takes precedence to excess 

quantitative optimization. Once initial testing is complete, further refinements 

may be implemented in the form of e.g. user-selectable parameters and/or 
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adaptive bundling algorithms. For the initial version, maximum bundle size limit 

is therefore set at 48 KiB, and value of bundling timeout is left to user’s 

discretion with the possible range of 1 to 1000 ms. This will also enable 

tentative tests for finding out good approximations for practical use. 

3.2.3. Multiplexing Client TCP Streams into the DTN  Link 

TCP connection multiplexing over DTN link is in itself fairly straightforward. The 

basic solution for multiplexing several connections into one link is to supply 

each different connection with an identifier and to label each bundle with this 

identifier. Inherent here is the assumption that a single bundle will only contain 

data from a single connection. 

While it is perfectly possible to define a more elaborate and flexible framing 

format for packing a bundle with data from several TCP connections, as 

mentioned in the previous subsection, it would add considerable complexity to 

the implementation and have an unpredictable and probably detrimental impact 

on perceived client connection quality. For instance, if a new connection is 

established and a short “HTTP GET”-message is sent through it, bundling 

timeout must be applied to trigger sending a bundle containing the request. Just 

waiting for more data to arrive is obviously not a solution as the connection 

might be the only client connection present in the daemon and no further data 

will arrive before the requesting client receives a reply from the server. Now, 

then, if there is more traffic present, it is possible that more data will arrive at the 

daemon from some other client before the timeout is triggered. In this case, the 

bundle will be filled with arriving data and a new timeout set. This cycle is 

repeated until timeout triggers or the bundle is full. In the worst case scenario, 

new connections with short initial packets could arrive at the daemon just before 

the timeout, in which case the original first connection would experience 

considerable extra latency, possibly several times larger than the value of 

bundling timeout itself. 

Another drawback in multiplexing TCP connections within a bundle is the fact 

that an out-of-order arrival or actual loss of a bundle will then hamper all the 
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client connections having had data in the disrupted bundle instead of just one 

connection. Particularly loss events are troublesome as the lost bundle will have 

to be first detected as being lost and then retransmitted, possibly leading to 

much greater delay suffered by client connections than if the bundle had been 

simply delayed just enough to arrive out of order. 

After deciding on labeling, the size and format of the connection identifier label 

has to be decided on. Given the TCP/IP architecture with 16-bit port number 

identification, the maximum amount of TCP connections per one IP address 

remains at 216 and is typically much less. However, traditional TCP/IP 

implementations in different operating systems use sockets for binding into TCP 

(and UDP) communication endpoints, which are typically identified with a 4-byte 

integer value with a range greatly exceeding 216. Therefore the most 

straightforward solution here is to use the 4-byte socket identifier as provided by 

the target platform as such. 

The idea of using identifiers is to provide uniqueness to each connection. Using 

socket identifiers provides a degree of uniqueness in the sense that no two 

sockets may coexist with the same identifier at a single host. However, it is 

entirely possible if not indeed probable that two successive client connections 

be assigned the same socket identifier. A degree of protection against such 

temporal collisions should also be included in the protocol to prevent daemons 

from getting confused by late-arriving bundles having belonged to a previous 

client connection. This is to some degree an implementation issue, as the 

identifiers are already bound to sockets and as such are affected by the rules of 

the socket API. By way of an example, this provision of uniqueness in time as 

well as in numerical space can be done with a bit of extra accounting of recently 

used connection/socket identifiers or by attaching extra delay to calls for closing 

sockets after client connection teardown. 

3.2.4. Providing Sufficient TCP-style Reliability b etween Daemons 

Traditionally in the Internet TCP has provided end-to-end reliability to higher-

level protocols. In this case, TCP will not be able to operate end-to-end because 
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of the interjecting daemons. Instead, endpoints are in TCP communication with 

a daemon entity, and daemons communicate via a custom protocol which uses 

Bundle protocol as a transport, which in turns uses convergence layer agents 

for point-to-point transmission. 

Bundles are generally subject to similar problems in transmission as IP 

datagrams. Given that the DTN link between daemons is unreliable and prone 

to interruptions, bundles may get lost in transit. Even if they do not, it is entirely 

possible for them to arrive at their destination out of order. For all these 

reasons, daemon entities must have mechanisms for keeping track of sent and 

received bundles and their correct sequence, for acknowledging or requesting 

retransmitting bundles and storing bundles in buffer for possible retransmission 

until they are acknowledged. 

The traditional method to counter out-of-order arrival of and to facilitate keeping 

track of bundles is to apply sequence numbers to them. Both daemons must 

keep separate sequence numbering; client connections have their own flow, 

and responses received from the remote endpoint have their own, applying a 

common sequence numbering to apply to both directions is difficult, especially 

considering the assumed intermittent nature of the DTN link and subsequent 

possible delays in packet arrival. 

For acknowledgements and retransmissions, information about requested and 

acknowledged bundles has to be included in protocol messages. And, although 

DTN and Bundle Protocol do provide persistent storage for bundles, their 

retransmission mechanisms and reliability are unclear and it is probably safer to 

keep a buffer of sent bundle payloads in memory for more flexible and effective 

bundle retransmission. 

HTTP is a request/response protocol. Typically, an HTTP session consists of a 

number of exchanges between client and server; client sending a request for a 

resource and server responding to the request. In other words, there are going 

to be alternating data streams to both directions between the two. Usually, one 

data stream (i.e. a request) has to be received in its entirety before another data 
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stream (i.e. response) can be formulated and sent. This assumption may not 

hold generally, but for the purposes of designing and implementing the 

necessary reliability features for relaying HTTP traffic it is assumed to be valid. 

In this sense, a daemon receiving a reply from the other daemon usually means 

that the data stream and all bundles belonging to it were successfully delivered 

and serves as a sort of acknowledgement. Including a bundle sequence number 

corresponding to the latest received bundle in the reply helps daemons with 

buffer management, as they can instantly discard all bundles from the buffer 

which have a sequence number equal to or smaller than the number reported in 

the received bundle. 

Large, unidirectional file transfers mean there might be plenty of bundles flowing 

in one direction but none in the other, so explicit acknowledgements (ACKs) are 

needed as the transmitting daemon will not receive enough feedback from the 

other daemon for effective buffer management otherwise. The details for this 

acknowledgement mechanism need to be defined.  

Sending ACKs for each bundle seems excessive and creates lots of traffic with 

large overhead – bundles with no other payload than identifiers and a 4-byte 

sequence number. ACKing several bundles at once on the other hand means 

that a single ACK getting lost can have a larger impact on communication. A 

threshold value n could be defined, as a function of the bundle buffer size, e.g. 

one-quarter of the buffer size, and ACKs then sent for every n bundles, always 

reporting the latest consecutive bundle sequence number received. If data 

stream ends, a reply is most likely to follow and will again be supplied with the 

sequence number of the last received bundle. 

Also, retransmission mechanism needs to be given due consideration to gain 

sufficient reliability without sacrificing too much performance – the purpose, 

after all, is to provide a service enhancement for mobile Internet users. 

One question is which one of the daemons is responsible for retransmissions, 

the sending or the receiving daemon. Of course, the receiving daemon cannot 
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know if there is data coming in, especially before establishing a new connection 

context, so the sending daemon must assume responsibility for retransmitting 

bundles if it receives no reply to the bundle it has sent. This can be done with a 

retransmission timeout. On the other hand, the receiving daemon has to keep 

track of arriving bundles, and in case of bundles arriving out of order, possibly 

due to a lost bundle, it will have to make a decision on when to request a 

retransmission of a bundle. For instance, if bundle 5 is received after bundle 3, 

immediate request for bundle no 4 could be premature. On the other hand, 

bundles are relatively large compared to e.g. Ethernet frames, and after 

receiving bundle 6 it is getting more and more unlikely that bundle 4 will arrive 

without it being retransmitted. A threshold value will have to be defined.  

Another question is whether the sending daemon should proactively trigger 

retransmissions whenever it is sending a bundle with sequence number greater 

than the last received ACK number plus the aforementioned threshold value. 

This would reduce the impact of ACK bundles getting lost but in a case of 

connection disruption would lead to fruitless retransmissions. As connectivity is 

assumed unreliable, it is probably better for the sending daemon only to 

retransmit on request. Better yet, using selective acknowledgement mechanism 

similar to that of TCP will also allow for more efficient retransmission behaviour. 

For instance, in the previous example, bundles up to 3 could be acknowledged 

cumulatively, but on top of that explicit acknowledgements for subsequently 

received bundle 5 and later could be included. This would allow the sender to 

react faster and retransmit missing bundles. 

Using timeouts always brings forth the question of finding a suitable value for 

them. Short timeout values generally improve responsiveness, but might cause 

needless extra traffic, while long timeouts make for more efficient bandwidth 

usage but increase the impact of bundle loss. Experimenting with different 

timeout values is once again needed for finding suitable values, but for initial 

implementation and concept testing reasonable default values will have to be 

defined. 



3. DESIGN AND IMPLEMENTATION 

 26 

Further additional problems with the Bundle Protocol specification are identified 

in [26]. The most notable problem mentioned is the lack of reliability due to 

there not being a usable checksum mechanism in place. In light of this it would 

doubtless be a good idea to implement a simple checksum mechanism by 

implementing a simple hashing algorithm to be applied to TCP data and 

reserving some bytes for storing the resultant hash value within the bundle. 

However, in can also be noted that within the Internet environment, by using the 

TCP convergence layer supplied by the DTN software, it is possible to gain 

some benefits from TCP’s own reliability mechanisms: a bundle transmitted 

through TCP can be trusted to be uncorrupted if it arrives at its destination. So, 

for the purposes of this project, adding checksum mechanisms is probably not a 

priority issue; if desired or if deemed necessary by test results, it can be 

implemented later. 

In summary, bundle headers will have fields for sequence numbers and for 

latest sequentially received sequence number – the cumulative ACK – plus for 

sequence numbers received after that – the selective ACKs. For simplicity, 

sequence number will be an unsigned 4-byte integer. This provides 232 unique 

sequence numbers per connection and even without wrap-around mechanisms 

will be quite sufficient for the initial testing. 

Daemon schedules two timeout events as it sends the first bundle of a data 

stream to another daemon. The value of the first timeout, or retransmission 

timeout, is initially 5 seconds and probably subject to change during testing, the 

second timeout is a connection timeout of 5 minutes. If the timeout triggers 

without daemon having received a reply or an acknowledgement it will 

retransmit all unacknowledged bundles in its retransmission buffer, setting 

another timeout with equal value. The daemon will repeat this behaviour until it 

receives a reply or until connection is timed out. 

Daemons will keep a retransmission buffer of several bundles. Initial value is 

more or less arbitrarily selected as 16 bundles, different values can be used and 

tested during testing phase. On reception of an acknowledgement sequence 

number in a bundle daemon will discard from its buffer bundles with sequence 
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number equal to or smaller than in the acknowledgement. Receiving daemon 

will send out acknowledgements for every retransmission buffer / 4 bundles 

received successfully. If retransmission buffer fills up, daemon must not receive 

any more data from the endpoint it is communicating with before the other 

daemon has acknowledged some earlier bundles and buffer space may be 

freed. 

3.2.5. Connection Context Termination 

A connection between a HTTP server and client can be closed by either end. 

Endpoint hosts are not in direct connection but instead converse with daemons. 

After either endpoint closes the connection, there is probably data left in the 

pipeline waiting to be relayed to the other endpoint. Daemon at the closing side 

in these cases must take care that all data is delivered and then notify the other 

daemon about the connection having been closed. Both endpoints can then, 

after data has been delivered, release all resources related to the connection 

context. 

A protocol flag is reserved for connection teardown notification. The last bundle 

in the data stream coming from the closing client will be marked with the 

teardown flag by the daemon sending it. The other daemon, upon receiving a 

bundle with a teardown flag must then acknowledge the final bundle. 

By now the most critical issues regarding the requirements of the working 

protocol have been elaborated on, briefly but adequately. The next subsection 

will focus more on details of the protocol specifics themselves and serve as the 

protocol specification. 

3.3. Protocol 

The previous subsection has described the design problems and choices; this 

subsection concentrates on the detailed description of the protocol arising from 

those choices and also defines its details: protocol states, message types and 

exchanges, and bundle header formats. The protocol is fairly simple and 
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designed for quick concept testing and implementation and is no doubt 

suboptimal; the precedence in design has been in putting together a workable 

first approximation for a future protocol basis. 

3.3.1. States and Exchanges 

In its default state, the implementation runs a SOCKSv5 server and waits for 

incoming SOCKSv5 client connections. The first major state transition occurs 

when a new client connection is established, and daemon creates a new 

connection context, which then moves into the SOCKS negotiation phase, 

which actually has several sub-states according to the proceeding of the 

SOCKS negotiation. A failed SOCKS negotiation results in termination of the 

connection. 

After the SOCKS negotiation is complete, the HTTP dialogue between 

endpoints begins. HTTP itself is a stateless protocol, and the daemon only 

relays HTTP data between itself and another daemon, so it has no need to keep 

track of any specific states while the connection context is established. Client 

daemon enters the established state when it transmits its first bundle. Upon 

receiving the first bundle for a new connection context, the proxy daemon, 

depending on whether relays traffic to a chain module or to endpoint, will either 

enter SOCKSv5 client negotiation phase or connection context establishment 

state. A failed SOCKS negotiation or endpoint connection establishment will 

result in teardown of the connection context. 

Connection context enters the teardown phase as either daemon detects that its 

served endpoint has disconnected. At that point, last bundles are sent if data is 

in the buffer and the last bundle is flagged as disconnected. Upon receiving a 

disconnection-flagged bundle, other daemon sends a final acknowledgement 

and is then free to tear down the connection context. The other daemon will do 

so upon receiving the final ACK. 

Besides these message exchanges, connection contexts may be torn down if 

the connection timeout triggers at any point during the exchange, in practice 
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after several minutes of DTN link disconnectivity. A state diagram is presented 

in figure 4 below. 

 

Figure 4: HTTP Relay protocol states 

Protocol exchanges occur only in three distinct types: data bundles, 

acknowledgement bundles and retransmission request bundles. Data bundles 

come in two flavours: client-to-proxy bundles and proxy-to-client bundles, they 

are used for data transmission whenever other daemon has data from an 

endpoint to be relayed. In short exchanges, these data bundles have a double 

role as acknowledgements, but when larger one-way streams occur, separate 

bundles are used explicitly for acknowledgements. A retransmission request is 

sent when receiving daemon notices one or more missing bundles and has to 

explicitly request them from the other daemon. 
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All other messaging, such as relaying endpoint addresses and connection 

termination, are carried by these three bundle types. Exact bundle formats are 

the subject of the next subsection.  

3.3.2. Packets and Formats 

All bundles relayed by the daemon have a header, used for protocol signaling 

and relaying necessary connection related information between daemons. All 

headers have a protocol flag field, which is used to mark address and protocol 

types as well as protocol message types. In keeping with 32-bit field alignment, 

the size of the flag field is 4 bytes. First byte is used for various relay protocol 

flags, as follows: 

Bit 1 signifies a client request - i.e. value 1 indicates that the bundle is coming 

from a client daemon agent as opposed to the proxy agent. This makes 

implementing symmetric operation easier. 

Bit 2 flags bundle acknowledgement and is on if request has no data payload 

but is exclusively used for acknowledgement purposes. 

Bit 3 flags a retransmission request, and if it is flagged, indicates that the bundle 

has info on what bundles are requested for retransmission, but no other data. 

Bit 4 flags the use of IPv4 or IPv6 addressing, and like bit 4, is provided as a 

support for possible future implementation of IPv6 addressing. Value 1 means 

use of IPv4. 

Bit 5 indicates that target address field is a DNS name instead of an IP address; 

SOCKS protocol allows for using DNS names instead of IP addresses. 

Bits 6 and 7 have no immediate use for now but could be useful in the future if 

implementation is to be refined. 

Bit 8 signifies endpoint shutdown and closing the connection. A daemon 

receiving a bundle with this bit flagged may, after acknowledging, tear down the 

communication context related to this bundle. 
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The second byte of the flag field indicates the protocol used on top of IP, e.g. 

UDP or TCP, and is copied directly from the Protocol/Next Header field of the IP 

datagram received from the client. This makes it easier to support additional 

protocols in future implementations. 

The third byte signifies target address length in bytes. This information is 

needed when a DNS address is transmitted instead of an IP address with fixed 

length. One byte will be enough as DNS address length is limited to 255 bytes. 

Fourth byte denotes header length and is counted in 4-byte words. This 

provides information for calculating the number of acknowledged bundles at the 

end of the header. Figure 5 below represents the flag field graphically. 
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Figure 5: Protocol header flag field 

 

The Data Relay bundle  has the 4-byte protocol flag field first. If the bundle 

originates in a client daemon, bit 1 has value 1 and bits 2 and 3 have value 0. If 

the bundle originates in a proxy daemon, all first three bits are 0. 

For both types of Data Relay bundles, next field is the 4-byte connection 

identifier field, in practice containing the 4-byte socket identifier reserved for the 

client endpoint connection at the client daemon. Next 4-byte field contains the 

bundle sequence number, an unsigned integer value, 1 being the sequence 

number of the first bundle. 

For client-originating Data Relay bundle, the next field is reserved for the target 

endpoint IP address, being four bytes for IPv4 addresses, 16 bytes for IPv6 

addresses, and variable size for DNS addresses. In keeping with 32-bit header 

field alignment, DNS address field is padded with zeroes to an even multiple of 
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4 bytes. After the address field, next two bytes are reserved for the target port 

number, with the next two bytes padded with zeroes for 32-bit field alignment. 

For all Data Relay bundle headers, next 4-byte fields are acknowledgement 

sequence number fields. The fourth byte of the flag field indicating header 

length provides the information needed for calculating the amount of 

acknowledgement numbers included. The first reported sequence number is 

always the cumulative acknowledgement; sending daemon reports here the 

sequence number of the last bundle it has received from the other daemon in a 

consecutive manner. If no bundles have yet been received from the other 

daemon, value here is 0; otherwise, daemon receiving a cumulative ACK may 

discard bundles from its send buffer with sequence number smaller than or 

equal to the number in this field. Subsequent fields, if present, acknowledge 

bundles received out of order in an ascending order. Figure 6 below illustrates 

both data relay headers. 

 

Figure 6: Data Relay bundle header formats illustra ted 
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The Acknowledgement bundle  has the 4-byte protocol flag field first. Bit 2 of 

the protocol field must be flagged, value of bit 1 is not significant, but value for 

bit 3 must be 0. Address length field has the value 0 as no address information 

is relayed. Header length field denotes normally the size of the header in 4-byte 

words. 

Next 4-byte field is the connection identifier field, exactly as in the Data Relay 

bundle. The Acknowledgement bundle has no sequence number of its own, as 

it contains no data that has to be buffered and does not need to be kept track 

of. The last 4-byte fields in the ACK bundle, then, contain the cumulatively and 

selectively acknowledged bundle numbers, exactly as with the Data Relay 

bundle header. See figure 7 below for illustration. 

The Retransmission bundle  also has the 1-byte protocol flag field first, with bit 

3 flagged. Value of the first bit is not significant but bit 2 must be 0. Address size 

field is 0 and header length field is as with other bundle types. The following 4-

byte field contains the connection identifier number, and as with the ACK 

bundle, the Retransmission bundle has no sequence number of its own. 

Instead, next 4-byte fields contain sequence numbers of those bundles the 

daemon is missing – there might be several. The final 4-byte field is the 

cumulative acknowledgement of the sender. Providing sequence numbers for 

selective acknowledgements is redundant, as explicit retransmission of missing 

packets is already requested anyway. See figure 7 below for illustration. 

 

Figure 7: Acknowledgement and Retransmission Reques t bundle headers 
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3.4. Implementation 

This subsection describes the composition and establishment of the software 

framework and environment for the prototype implementation. It also describes 

the more immediate practical design of the implementation code and what 

information is stored and how it is organized as well as provides commentary on 

some choices that have been made during implementation process. 

3.4.1. Software environment 

The central software component of this project, the DTN2 reference 

implementation, has been developed for and tested in a Linux environment. For 

this reason alone, but also for reasons of familiarity and relative ease of 

programming, Linux was chosen as the development platform for this project as 

well. 

Linux comes in many flavors, difficult to compare in appropriateness to the task 

at hand without considerable experience and deeper knowledge of the 

properties of different distributions. Thus, mainly for reasons of familiarity and 

ease of maintenance a 64-bit x86 version of a Debian [27] release dubbed as 

Lenny [28] was chosen. The development platform uses 2.6 series kernel. 

The DTN2 distribution is hosted by the Sourceforge web site. However, the 

hosted version is rather old, dated July, 2008 and did not compile and run on 

the more modern operation system used here. Sourceforge also has latest 

developing versions of the code hosted in a Mercurial [29] repository; this 

implementation uses the Mercurial versions of the DTN2 from summer 2009. 

DTN2 also requires a set of support libraries called Oasys, also available on 

Sourceforge with and without Mercurial [30]. Configuring and compiling the 

DTN2 implementation also requires a selection of other dependent sotftware 

packages: GNU C and C++ compilers version 3.3 or newer, 3.4 was used in this 

project. It also requires development packages of TCL, any version between 

and including 8.3 and 8.5 series. Bundle storage requires a database backend. 

Used here was the BerkeleyDB version 4.6 development version; versions from 
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4.2 to 4.7 inclusive can be used. For XML processing the xerces library version 

2.6 or newer is a requirement as well. 

The design of the prototype implementation requires an effective handling of 

several incoming and outgoing network connections in an asynchronous 

manner. Also, protocol specification calls for timeout mechanisms for which an 

event scheduler has to be implemented. 

For asynchronous network I/O the first solution to come to mind is the socket 

handling interface provided by select(). From earlier experience, however, this 

is considered to be a cumbersome and limited interface. Also, implementing an 

event handler for timers and events other than socket activity is not a trivial 

task, once again deriving from earlier experience with similar software 

programming activities. An event notification library known as libevent [31] 

provides a convenient, ready implementation to solve these both problems, and 

thus libevent library version 2.0.2-alpha was chosen to be used here. The alpha 

version was preferred, as the Debian package management system coupled 

with the chosen distribution provides only version 1.3 of libevent, which lacks 

several features supported by later versions. 

Finally, to assist in development and testing, a virtualization software called 

VMWare Workstation 6.5 [32] was used. VMWare Workstation provides a 

convenient environment for quickly deploying a number of virtualized testbed 

computers and allows for saving and resuming virtual machine states for 

extremely convenient testing, although it is by no means necessary for the 

development process. 

3.4.2. DTN Reference Implementation 

To be able to run the daemon on a host, an instance of the DTN reference 

implementation needs to be running on the same host, as well as a set of 

libraries required by the daemon and the DTN. The compilation, installation and 

configuration procedures for the DTN reference implementation are sufficiently 

well documented elsewhere [33] and repeating such instructions here makes 
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little sense. Likewise, installation of the libevent library is a fairly straightforward 

procedure and sufficient guidance is provided with the release. 

DTN reference implementation needed to be configured for various options 

before it could be used. The implementation uses databases as a backend for 

bundle storage; Berkeley DB was chosen as the easy and lightweight option. 

Nodes were given simple addresses using the format dtn://[hostname].dtn. 

Routing between DTN daemons using such unusual addressing was done 

using static one-way routes, configured into the DTN configuration file, with IP 

address information coupled with the dtn address entry and TCP convergence 

layer links defined between DTN nodes. As for bundle transmission, the 

reference implementation specifies payload types of either “memory” or “file” 

when using the DTN API. For this work, memory-type payloads were used to 

avoid unnecessary file operation overheads. Maximum bundle size for memory-

type payload was defined as 50000 bytes in the implementation code, so 

bundle size used in the relay protocol implementation was chosen to be 48 KiB. 

3.4.3. Implementation Architecture 

The prototype implementation performs several functions and provides data 

types and structures for handling all associated protocol data. A rough overview 

of the organization of these structures follows. 

• Endpoint connections are stored in connection tables. There are two 

connection tables: one for storing client-to-proxy connections and 

another for storing proxy-to-client connections. These are fixed-size 

pointer tables with necessary management functions for keeping track of 

active endpoint connections. 

• A data structure is defined for containing all relevant data pertaining to a 

single endpoint connection. This endpoint data structure gathers all the 

individual variables and other related items required for managing bundle 

transfer between the client-proxy pair. These items include endpoint IP 

addresses and port numbers, sequence numbers, socket identifiers and 
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buffers for storing unacknowledged or out-of-order bundle data, and 

event instances for event management. 

• Data for individual bundles is stored in a buffer structure which contains a 

memory block for data and necessary variables for keeping track of data 

size, sequence numbers and such necessary protocol information. 

• Buffers are implemented as double-linked lists of bundle buffer structs. 

One is needed for bundles sent over the DTN link and another for 

received bundles. 

• Event management is handled by an event base (implemented in the 

external libevent library) into which events are registered. 

• Events are information structures which define an event type (read, write, 

timeout), associated socket and callback function used for handling the 

events. 

• Finally, the DTN-API provides a socket-like descriptor for the DTN 

connection and necessary functions for bundle management, reception 

and transmission. 

Following is a rough description of the most important functional blocks of the 

implementation as well as their responsibilities. It also provides a general 

understanding of the program flow in normal operation. 

• The main loop initializes the DTN-API interface, sets up the event handler 

base, establishes a server port for listening for incoming connectionsfrom 

endpoints, sets up all the necessary event structures, connection tables 

and such and starts the event loop.  

• A callback function for events associated with the server port is run when 

endpoints connect to the server port. This callback accepts the incoming 

connection and initializes all relevant endpoint data structures described 

earlier. 

• A callback function for reading data from a socket associated with an 

endpoint connection is executed when data arrives at such a socket. This 

callback performs SOCKSv5 negotiation at the client entity, and at both 
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daemon entities, accepts and stores incoming data into a bundle buffer. 

If the buffer fills, it dispatches the bundle for delivery by setting up a dtn 

write event, and if not, sets up a bundling timeout event for triggering 

bundle transmission. 

• A callback function for writing data to the DTN handle is executed when 

there is a data buffer pending packaging into a bundle and transmission 

over the DTN link. It also manages sending of acknowledgements and 

retransmission requests to the other daemon when such transmissions 

are triggered. 

•  A callback function for reading data from the DTN handle is executed 

when a bundle arrives at a daemon. This callback function parses the 

information in bundle headers and initializes and establishes endpoint 

connections at the proxy daemon. It manages incoming bundle buffer 

space, monitoring for lost or out-of-order arrivals of bundles, setting up 

retransmissions requests when necessary, and triggers write events to 

endpoint sockets when it has more data to be relayed to an endpoint. It 

also reacts to retransmission requests as well as to acknowledgements, 

freeing obsolete buffers as they get acknowledged by the other daemon. 

• A callback function for writing data to endpoint is executed when daemon 

decides there is data to be relayed to the endpoint. The callback sends 

data from the incoming bundle buffer to the endpoint, freeing old buffer 

space after successful delivery and triggering acknowledgements when 

necessary. 

•  In addition to these main building blocks, there are callbacks for different 

timeouts, such as the bundling timeout, which triggers data bundling if no 

data is received in a while and bundle still has available space. 

• There are also other functions for option parsing, writing bundle headers 

into data buffers, for socksification, endpoint connection establishment 

and for printing diagnostics as well as for managing data structures. 

While necessary, they are not focal points of protocol operation and are 

not covered in deeper detail here. 
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The descriptions above avoid are not excessively detailed but instead provide a 

general outline of the implementation functionality, as the details in any case 

are subject to constant change and evolution as the code matures. 

3.4.4. Design Issues Specific to Implementation  

As mentioned before, certain aspects of implementation functionality concern 

less the communication protocol than the circumstances in which it operates. It 

makes arguably little sense for the protocol to concern itself with such external 

factors, and so there problems must be solved in some way or another by the 

implementation itself. Here such problems are considered to be the detection of 

connectivity and symmetric operation between daemons. Consideration of 

these topics follows. 

3.4.4.1.  Connectivity Detection 

The DTN connection is inherently unreliable and may go down at any given 

moment. During a connection outage, sending anything through DTN is useless 

so sensible daemons should refrain from sending anything until connectivity is 

restored. However, this brings forth the problem of how to detect connection 

losses – and restorations. 

There are two basic options for detecting outages: either using local resources 

or by sending periodic probes to the other daemon. In the first case, daemon 

might communicate with the host OS and try to detect network connection 

states and act accordingly. This option is not straightforward, as the host OS 

configuration is not uniform in different daemon instances, e.g. there might be 

different access network interfaces – or a different host OS altogether. Besides, 

this method only works if the disconnection-prone interface actually resides 

within the same host as the daemon. On the other hand, this approach would 

not generate excess traffic and would probably be quick to respond to 

connection state changes, of course depending on the underlying OS 

mechanisms. 
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The other option for outage detection is quite straightforward: daemons sending 

probe bundles to each other at regular intervals. Connection outages could then 

be detected with only a modest delay if a daemon stops receiving bundles from 

the other daemon. This approach generates some extra traffic on the network. 

Also, if bundles are being sent in any case to detect connectivity, those bundles 

might just as well be given a useful payload. Probe bundles could also get lost 

or delayed, possibly introducing additional complications to operation. A proxy 

daemon communicating with several client daemons also involves receiving 

several probes and generating replies to each probe, leading to possible 

scalability issues. 

A further development of this latter approach would be to monitor incoming 

bundles from the other daemon and compare it to existing connection table. Not 

receiving any bundles from any given daemon could be indicative of a 

connection loss. Furthermore, suppose a client endpoint is the only 

communicating entity served by a client daemon, and is downloading a large 

file, thus sending nothing else than acknowledgements to the proxy daemon. In 

such an instance, the first symptom of a connection loss is a lack of 

acknowledgements from the client side and subsequent filling of the 

transmission buffer at the proxy side. Having the proxy keep track of time 

between arriving bundles will bring little benefit to the scenario. 

In conclusion, no specific measures for detecting connectivity events will be 

implemented at least in the initial prototype. Actual performance of the prototype 

might provide clues to whether such a mechanism will be needed in possible 

later implementations. 

3.4.4.2. Symmetric Operation 

Keeping the daemon symmetric is fairly simple, with some assumptions about 

operating environment. Given the architecture specified in CHIANTI, there is an 

assumption of client-proxy functionality model and connections tend to be 

initialized by the client side. Another assumption is that each proxy serves 
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several clients, and client daemons are therefore assumed to communicate with 

a single proxy daemon. 

With these assumptions, symmetric operation for a daemon is reasonably easy 

to achieve: in client mode, daemon has a predetermined proxy daemon entity 

for relaying HTTP connections; in proxy mode, it will just have to maintain 

separate connection tables according to incoming DTN addresses, as each 

arriving bundle will have a source DTN address. 

However, a true, generalized symmetry in the sense that proxy daemon should 

be able to relay client requests initialized in the Internet side to mobile endpoints 

in the access sphere, served by one of its client daemons, is much more 

difficult. Mobile clients and even the daemon entities might reside within NATted 

private networks. If both endpoints or worse yet both daemon entities reside 

behind NATted networks, finding endpoint (or daemon) IP addresses becomes 

problematic and demands MobileIP-style application of address tracking agents 

within the public Internet, adding considerable complexity to the protocol 

architecture and implementation. 

Impact of NAT has been considered in CHIANTI project and documented in 

several deliverables (D1.2, D3.1); the CHIANTI architecture itself assumes that 

connections between CHIANTI components must be client-initiated and that 

proxies reside within publicly reachable Internet. This also implies that endpoint 

connections are always initiated from within NATted networks. With this 

specification as the reference guide, this work does not aim to provide 

symmetric operation in the strictest sense, but rather within the same scope as 

specified in the CHIANTI architecture. 
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4. Testing and Measurements 

To assess the potential usefulness of the DTN reference implementation to the 

CHIANTI scenario a testing procedure needs to be defined. While this work is 

tentative and implementation of the software daemon immature and likely to 

evolve should the initial results be encouraging enough to warrant for further 

development. Also, the protocol designed for the HTTP-over-DTN functionality 

is minimal and the values chosen for the parameters regulating its performance 

lack rigorous analysis and testing, meaning that the protocol performance is 

almost assuredly suboptimal. Thus, the focus of the tentative testing is not 

rigorous analysis of protocol performance or accurate modeling of typical 

Internet experience or environment. Rather, the aim is to perform a simple 

series of tests under good conditions in order to assess impact of the DTN 

reference implementation to performance compared to plain HTTP traffic.  

Subsection 4.1 describes the test setup and procedure for performance testing. 

Subsection 4.2 details the focus of the testing procedure and explains the 

measurements performed during the testing. Results are presented in the last 

subsection 4.3. 

4.1. Test scenario and setup 

For the test procedure, two Linux hosts running the software daemon and DTN 

reference implementation and a web server hosting files are used. The hosts 

reside in a LAN environment providing at least 100 Mbps transfer infrastructure 

between them, and the web server resides in the Aalto University network. This 

setup provides high transfer capacity and minimal delay and jitter environment, 

minimizing the impact of network conditions to the transfer performance. 

Unfortunately, available resources did not allow for a completely isolated test 

environment, as both the local LAN and especially the university server and its 

hosting network are subject to a degree of continuous network traffic which will 

be visible as minor fluctuations of performance. However, in general, network 
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environment in the test setup can be considered close to ideal, considering the 

tentative nature of testing at this point. 

One of the hosts is a desktop computer running the proxy daemon, the other 

host is a laptop running the client daemon. The laptop then runs the test scripts, 

relaying HTTP requests over the DTN link to the desktop host, which forwards 

the requests to the web server. The basic idea of the test scripts is to use wget, 

a simple program designed to perform file retrieval using HTTP, to download 

test files from a web server, first over plain HTTP, then through a DTN link using 

the software daemon as an HTTP proxy. Testing is done in several phases. 

The first phase of the testing involves the transfer of a single large file of around 

50 MiB from the web server. Downloading the file using wget with plain HTTP 

first gives a benchmark value for performance in ideal conditions, which acts as 

a reference when assessing file transfer performance of wget using DTN. 

Several runs are made using the DTN link, with the HTTP-DTN adaptation 

protocol configured with different values of protocol parameters. This is to 

perform a coarse tuning of the protocol parameters to gain some insight of their 

impact on performance and possibly to minimize the impact by selecting 

reasonable values. 

The second phase of the testing procedure is done after achieving results from 

the first phase of testing and it is a simplified adaptation of the procedure used 

for actual CHIANTI performance testing as described in CHIANTI Deliverable 

D5.2 [34]. Wget is provided resource files which contain URLs pointing to test 

files. Test files are generated in different sizes, in an exponentially increasing 

sequence beginning with one kibibyte (1 KiB = 210 bytes = 1024 bytes) and 

increasing in size by a factor of two, i.e. 2 KiB, 4 KiB, … , 1 MiB, 2 MiB. 

Requests are generated using exponential distribution with a mean value of 300 

KiB, rounded to the nearest test file size, i.e. 300 KiB request translates to 

downloading the 256 KiB test file, while a 400 KiB request translates to the 512 

KiB test file. Once again, testing is done first with wget using plain HTTP, then 

using the DTN link. 
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The final phase of testing involves creating artificial latency to network traffic 

between the proxy daemon and the web server. By introducing fixed latencies 

of various sizes to the connection between the proxy and the web server, 

observations about the latency caused by the DTN software can be made by 

first fetching a file of given size with wget through the delayed network without 

the DTN software in-between and then by fetching the same file with wget 

through DTN, and then comparing measured values of latency. By repeating 

measurements for different values of bundling timeout in the software daemon, 

more information about the impact of bundling timeout and TCP convergence 

layer mechanisms to latency can also be gained. 

To evaluate the “real-life” performance of the DTN implementation and relay 

protocol from user perspective, some browser testing is also performed simply 

by browsing through some web pages with and without DTN enhancements and 

observing the subjective user experience in both cases. 

4.2. Measurements 

Testing phase one concerns itself mostly with the performance of the DTN 

transfer and the software daemon with different operating parameters. As such, 

the most important metric is the data throughput rate, i.e. the rate at which user 

receives files from the web servers. Throughput rate is reported by the wget at 

the end of each download and is used for performance assessment. 

It would be illustrative to measure also the actual data transfer rate of the DTN 

link, but this is difficult as the DTN API does not provide access to read actual 

bundle or bundle header sizes and thus estimating the overhead in data transfer 

is difficult without painstaking analysis of all captured network traffic in the DTN 

link. The order of magnitude of overhead induced by the adaptation protocol 

can be easily estimated. In ideal conditions with no retransmissions it is very 

small, i.e. 24 bytes per bundle – around 0.05% for a 48 KiB bundle, and is 

certainly much less than the overhead from bundle headers. Acknowledgement 

bundles incur further overhead, but with ACK bundle sizes upwards of 12 bytes 

and one ACK sent for e.g. every four bundles this overhead too is next to 
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meaningless for large bundle sizes. In any case, as the emphasis on testing is 

on getting qualitative results for indicators of development potential, therefore 

rigorous measurement of all possible overhead influence is not considered 

essential here. 

For the first test run, the 50MiB target file is fetched with wget. Wget reports 

transfer rate for the file after a successful download, this value is used as a 

reference value for DTN test runs. 

Daemon is configured to use different values of bundle buffer sizes: 8, 16, 24 

and 32 bundles per connection. For each buffer size configuration, three sets of 

test runs are performed, each run using a different value for bundling timeout, 

i.e. the interval of time during which the daemon will wait for further incoming 

endpoint data before sending the current bundle. Timeout values of 10, 100 and 

1000 milliseconds are used. For each run, the 50MiB target file is downloaded 

five times to be able to calculate an average value. Being a performance test, 

the highest throughput value for each run is also recorded as perhaps the better 

indicator of what the DTN implementation is capable of. 

For the second stage of testing, ten different batches of exponentially 

distributed file sizes are downloaded with wget, first without and then with DTN 

software. This time, test runs are repeated with different values for bundling 

timeout to estimate their effect on transferring smaller files; the expectation is 

that in the first phase, bundling timeout should have little effect on the 

throughput rate of a file considerably larger than bundle size of 48 KiB used. In 

effect, only the last bundle should suffer from bundling timeout, as all earlier 

bundles should fill up with data at the same (high) rate as the plain wget is able 

to download the file. In the second phase, file sizes are closer to and even less 

than bundle size, and bundling timeout should have a clear impact on 

throughput rates. 

Each run is repeated ten times for each bundling timeout value, timeout values 

are 10, 25, 50, 100, 250, 500 and 1000 milliseconds. Wget logs are examined 
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for reported throughput rates for each file size, of these, minimum, maximum 

and average values are then recorded. 

Last testing stage involves fetching files over a connection subject to increasing 

delay in order to provide further information on the effect of DTN on latency. 

Some of the applications used by mobile users might well be delay-sensitive, 

and so it is all the more desirable to keep additional latency introduced by 

service enhancements as low as possible. At the basic scenario, delay between 

the proxy daemon and the web server is about one millisecond. Single file is 

then fetched with wget, first 1 KiB and 32 KiB files, which fit well in a single 

bundle, and then 64 KiB and 1 MiB files, which involve sending two or more 

bundles, are fetched. A test script will record timestamp with sufficient accuracy 

before running wget and another one immediately after wget completes. Same 

files are then downloaded through DTN software with TCP convergence layer, 

using different bundling timeout values of 10, 100 and 1000 milliseconds.  Each 

download is repeated five times, and the procedure is repeated for increased 

delay values of 10, 100 and 1000 milliseconds. It is assumed that delays 

incurred by factors independent of delay such as script processing remain 

approximately constant between different runs. The differences in timestamp 

values recorded can then be compared to find the extra latency due to DTN 

implementation for each test case. 
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5. Results 

Downloading the 50 MiB test file with plain wget (no DTN), wget reported 

average throughput rate of 10.63 MB/s, with maximum reported throughput 

value being 11.02 MB/s. Considering underlying 100 Mbps switched Ethernet 

LAN, this is fairly close to full utilization of the network; 11.02MB/s = 88.16 

Mbps, some bandwidth is wasted on the protocol overheads from Ethernet 

framing, TCP/IP headers and HTTP messages. 

Table 1 below shows throughput rates for the 50 MiB file downloaded through 

DTN software, as reported by wget. 

Table 1: Wget throughput downloading 50 MiB file us ing DTN 

  Bundling timeout (ms) 

Buffer size 10 100 1000 

8 – avg 644.91 kB/s 620.42 kB/s 577.41 kB/s 

8 - max 744.75 kB/s 818.80 kB/s 591.35 kB/s 

16 – avg 1.06 MB/s 1.17 MB/s 1.18 MB/s 

16 – max 1.18 MB/s 1.24 MB/s 1.22 MB/s 

24 – avg 1.29 MB/s 1.31 MB/s 1.24 MB/s 

24 – max 1.53 MB/s 1.51 MB/s 1.36 MB/s 

32 – avg 1.20 MB/s 1.21 MB/s 1.18 MB/s 

32 – max 1.34 MB/s 1.41 MB/s 1.33 MB/s 
 

The resulting throughput values do not compare favourably to the plain wget 

case; with DTN in place, throughput rate in the best case – 1.53 MB/s for 24 

bundle buffer, 10 ms bundling delay – corresponds to about 14% of the best 

case without DTN. Furthermore, best results are achieved when 24 bundle 

buffer size is used – given 48 KiB maximum bundle size this would correspond 

to 1152 KiB of memory needed for buffering – per client connection. 

To better assess the effects of bundling timeout to throughput in the second 

phase of testing, test results for files larger spanning more than one bundle are 

examined. As mentioned before, bundle size used was always 48 KiB. 
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For file sizes of 64 KiB and above, reported reference throughput results for 

plain wget are presented in the table 2 below. Values of throughput are given in 

MB/s as reported by wget. Minimum and maximum values were originally 

included to give some idea of performance fluctuations in the network. 

Corresponding reported throughput rates for same file sizes, downloaded 

through DTN, are presented in tables 3 through 9 below for bundling timeout 

values of 10, 25, 50, 100, 250, 500 and 1000 ms respectively. 

Table 2: Reference values for throughput, plain wge t 

Throughput File size 

(in MB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB 

         

-average 9.52 10.02 10.26 10.43 10.69  10.31 

-min 8.67 7.41 8.96 7.79 9.27 8.83 

-max 9.97 10.75 10.85 11.02 10.97 10.92 
 

Table 3: Throughput for wget through DTN, bundling delay 10 ms 

Throughput File size 

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB 

         

-average 620.43 565.64 430.58 545.73 637.92  713.89 

-min 424.68 436.37 382.40 408.26 459.07 621.24 

-max 1100.00 828.54 523.63 658.36 812.34 841.20 
 

Table 4: Throughput for wget through DTN, bundling delay 25 ms 

Throughput File size 

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB 

         

-average 636.73 582.90 439.68 553.62 661.63  701.69 

-min 380.39 437.03 351.90 410.84 430.50 604.80 

-max 1190.00 891.56 541.35 740.41 833.46 759.42 
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Table 5: Throughput for wget through DTN, bundling delay 50 ms 

Throughput File size 

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB 

         

-average 543.04 552.43 430.57 569.85 675.48  765.81 

-min 408.64 446.36 377.13 433.12 504.74 665.93 

-max 1040.00 711.06 501.88 723.91 919.30 833.24 

 

Table 6: Throughput for wget through DTN, bundling delay 100 ms 

Throughput File size 

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB 

         

-average 405.58  466.02 416.46 565.23 705.78 810.42 

-min 302.99 379.31 354.08 406.04 460.33 647.23 

-max 756.34 576.88 484.05 705.97 901.48 919.38 

 

Table 7: Throughput for wget through DTN, bundling delay 250 ms 

Throughput File size 

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB 

         

-average 196.78  284.21 362.72 456.14 547.64 646.12 

-min 164.30 236.02 322.73 372.64 448.32 576.35 

-max 246.92 328.22 412.41 542.30 664.53 709.09 

 

Table 8: Throughput for wget through DTN, bundling delay 500 ms 

Throughput File size 

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB 

         

-average 110.84  185.83 270.02 386.80 536.71 569.57 

-min 101.08 169.78 231.86 318.18 378.58 401.46 

-max 123.01 207.01 300.73 446.77 621.08 678.62 
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Table 9: Throughput for wget through DTN, bundling delay 1000 ms 

Throughput File size 

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB 

         

-average 59.24 106.76 176.67 278.71 420.70  564.19 

-min 55.46 100.75 156.05 244.75 343.07 510.39 

-max 62.29 121.16 193.35 305.82 460.39 595.10 
 

The results of measurements are summarized in the graph presented in figure 8 

below. 
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Figure 8: Graph summary of measurement results for phase 2. 

From the results some insight to the effects of DTN implementation overhead 

may be gleaned. As expected, the reference throughput rates for plain wget 

downloads are high and comparable to plain wget performance in the first 

phase of testing. The effect of bundling delay to throughput is obvious, as 

smaller files are concerned – with 64 KiB files, increasing bundling delay from 

10 to 1000 ms drops throughput rate to 10%. However, even with smaller 

values for bundling delay and larger files throughput remains somewhat 

disappointingly low, being less than 1 MBps even in the best case. Furthermore, 
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throughput performance is best for larger files, as is expected. However, file 

objects in the Internet on the average tend to be smaller, of the order of tens or 

hundreds of kilobytes rather than of megabytes.  

A closer examination of the reported throughput values reveals that, somewhat 

unexpectedly, 64 KiB files have experienced a better throughput rate than some 

of the larger files. This seems counterintuitive at first, as smaller files comprising 

of fewer bundles should be impacted more by the bundling delay, as it should 

only affect transmission of the last bundle and the proportionate effect of the 

bundling delay should be greater than with larger files. However, another 

observation is that 64 KiB files have only experienced better throughput rates 

for the lowest values of bundling timeout, and fluctuation between minimum and 

maximum throughput rates is large. Most likely this is a combination of effects of 

web server load and too aggressive bundling timeout causing transmission of 

extra bundles and thus extra latency; for larger files and longer bundling 

timeouts throughput fluctuations decrease, with bundling timeout of 100 ms 

providing best throughput measurements for larger files and only a slight 

decrease of throughput performance for smaller files.   

The final set of measurements was designed to provide further information on 

the effect of DTN implementation and TCP convergence layer on latency. 

Tables 10 to 13 below list for each file size used latency in milliseconds for 

different combinations of (simulated) transmission delay and bundling delay. 

The bottom three rows of each table also list reference values for series of plain 

wget downloads. Different file sizes were chosen as 1 KiB, 32 KiB, 64 KiB and 

1MiB. Smaller file sizes were chosen because they should fit into a single 

bundle, allowing for a better estimation of the effect of bundling delay to latency, 

while larger file sizes were chosen to provide better estimation of effects of DTN 

implementation and TCP convergence layer operations on latency.  
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Table 10: Latency for downloading a single file, si ze 1 KiB 

Bundling Delay (ms) 

Timeout 1 10 100 1000 

10 – avg 173.3 190.4 352.7 2163.2 

10 – min 157.8 162.1 345.8 2134.4 

10 – max 192.2 231.4 375.4 2208.8 

100 – avg 331.0 348.6 531.9 2670.5 

100 – min 326.0 344.3 516.3 2319.0 

100 – max 343.5 361.1 559.2 3672.5 

1000 – avg 2131.0 2173.0 2332.3 4154.4 

1000 – min 2120.8 2152.7 2318.1 4127.5 

1000 – max 2145.1 2199.0 2364.2 4212.7 

Ref – avg 15.2 36.7 216.6 2018.3 

Ref – min 8.2 28.5 214.6 2016.7 

Ref – max 33.3 49.7 217.5 2024.1 

 

Table 11: Latency for downloading a single file, si ze 32 KiB 

Bundling Delay (ms) 

Timeout 1 10 100 1000 

10 – avg 179.6 219.6 659.4 5152.4 

10 – min 157.8 203.1 641.3 5142.4 

10 – max 208.2 240.7 679.6 5169.4 

100 – avg 330.3 392.9 833.5 5329.9 

100 – min 328.8 376.1 831.0 5320.3 

100 – max 331.3 417.0 836.2 5352.0 

1000 – avg 2143.7 2195.9 2635.5 7150.9 

1000 – min 2127.4 2182.4 2629.3 7136.3 

1000 – max 2179.0 2227.7 2649.4 7169.2 

Ref – avg 23.3 68.3 526.7 5026.7 

Ref – min 14.7 67.3 525.4 5025.9 

Ref – max 39.7 69.5 528.5 5027.4 
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Table 12: Latency for downloading a single file, si ze 64 KiB 

Bundling Delay (ms) 

Timeout 1 10 100 1000 

10 – avg 259.6 278.0 763.6 6150.0 

10 – min 241.0 265.9 752.5 6143.0 

10 – max 284.6 320.3 797.1 6158.1 

100 – avg 396.3 444.9 929.9 6339.0 

100 – min 393.1 416.7 918.4 6322.9 

100 – max 399.0 504.6 941.7 6379.3 

1000 – avg 2217.5 2234.8 2729.6 8129.8 

1000 – min 2199.9 2223.5 2725.7 8123.0 

1000 – max 2237.3 2267.6 2733.8 8133.0 

Ref – avg 23.2 79.7 627.1 6027.2 

Ref – min 15.4 76.5 621.8 6021.7 

Ref – max 32.3 88.0 636.4 6036.7 
 

Table 13: Latency for downloading a single file, si ze 1 MiB 

Bundling Delay (ms) 

Timeout 1 10 100 1000 

10 – avg 734.0 873.4 2534.9 22187.5 

10 – min 621.7 795.5 2502.3 21175.3 

10 – max 849.6 994.1 2608.2 26179.3 

100 – avg 957.0 1055.2 2628.1 21355.9 

100 – min 853.7 918.7 2597.5 21344.3 

100 – max 1118.3 1193.6 2656.6 21362.2 

1000 – avg 2687.1 2895.7 4418.3 23241.7 

1000 – min 2651.1 2776.6 4385.0 23200.8 

1000 – max 2732.9 3052.2 4448.6 23269.9 

Ref – avg 118.2 263.7 2153.0 21052.8 

Ref – min 107.6 256.0 2147.7 21046.0 

Ref – max 144.7 274.8 2160.3 21058.2 
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Observing data gathered while downloading the 1 KiB file provides a good 

starting point to estimate the inherent delay inflicted by the DTN software, as it 

should involve sending only one bundle after bundling timeout has triggered. By 

subtracting from the measured latency twice the value of bundling delay (which 

takes place both at the client daemon as the initial endpoint request arrives and 

at the proxy daemon which receives the file from the other endpoint) and the 

reference value a rough estimate for DTN-induced latency can be obtained. 

From this, the increase in latency is around 130 ms for one bundle. Repeating 

the calculation for all values of 1, 10, 100 and 1000 ms of transmission delay 

yields latency values of 138.1, 133.7, 116.1 and 124.9 ms respectively. Further 

repetition of the same calculation for increasing bundling delays yields similar 

values for most cases. Earlier measurements show reduced throughput rates 

for traffic carried by DTN, at this point it is difficult to determine the degree of 

extra latency caused by decreased throughput and that caused by bundling 

overhead itself. 

Results from the 1 MiB file transfer provide other possibilities for performance 

assessment. TCP performance typically begins to deteriorate as latency 

increases; comparing plain transfers of 32 KiB and 64 KiB files over a delay of 

1000 ms, file transfer operation takes about 1000 ms longer to complete – 

yielding throughput rate of about 240 kbps. Same comparison for 1 KiB and 1 

MiB files shows that transferring about 1 MiB of data over a 1000 ms delay 

takes about 19 seconds longer, which means throughput of approximately 440 

kbps – significantly less than throughput DTN has earlier proved capable of. 

With the long-delay transfers DTN is no longer a bottleneck; now, a closer 

examination of their measured latencies is in order. In fact, comparing every 

latency value for DTN transfers with the respective reference value reveals that 

in nearly all cases, the difference in latency is just over 100 ms – very close to 

the latencies around 130 ms calculated for 1 KiB file transfer. This would 

suggest that DTN implementation and its TCP convergence layer mechanism 

combined with the relay protocol implementation have a characteristic latency of 

around 100 ms. Sources of this latency include TCP connection establishment 
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of the TCP convergence layer and bundle handling and management. The DTN 

reference implementation uses a database backend for bundle storage, quite 

likely a major source of latency. However, more accurate breakdown and 

analysis of component effect on latency requires more extensive and carefully 

designed measurements. 

The induced extra latency is quite acceptable for bulk traffic transfers. For the 

more delay-critical real-time applications addition of another 100+ milliseconds 

of latency is potentially much more disruptive. Of course, on top of this, delay 

due to bundling timeout has to be added for every message which fails to fill a 

bundle, further increasing the negative impact. 

Final browser testing supplies no additional quantitative results here, nor was it 

meant to do so. The most important result of browser testing was that the relay 

protocol actually managed to relay real web traffic. Subjective comparison of 

user experience between normal browsing and browsing through DTN was that 

browsing through DTN was perceptibly more sluggish than normal browsing, 

especially so when browsing web pages over high-capacity, low-delay network 

connection. In light of the more quantitative results gained earlier this is not 

surprising. However, while browsing through DTN was slower than plain 

browsing, degradation of service was fairly light even in worst cases and at no 

point could be considered unacceptable for normal use. 
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6. Conclusions 

This work set out to test the potential usefulness and applicability of the DTN 

reference implementation for the purposes and goals set in the CHIANTI 

project, designing and implementing a simple protocol for multiplexing endpoint 

HTTP connections over a DTN link provided by said reference implementation. 

Simple measurements of key performance values of DTN communication have 

been performed in order to form an initial assessment of its usefulness to the 

project. 

DTN is a communication architecture designed for robust communication over 

communication environment difficult to the extreme. As such, high throughput 

and low delay performance are not critical in a store-and-forward architecture, 

which also reflects on performance of the DTN reference implementation. 

The performance measurement results for the DTN reference implementation 

using TCP convergence layer mechanisms coupled with the simple HTTP relay 

protocol implementation developed for this work compared with performance 

measurement without the DTN software have provided some insights to its 

performance in different conditions with respect to increased latency and 

decreased throughput. 

Results show increased latency of at least 100 ms plus bundling delay and 

maximum achieved throughput of around 12 Mbps. Best performance values 

are achieved for relatively large files and for bundling delay value of 100ms. 

Qualitative browser testing has proved the concept workable in practice as well, 

extra latency not being too disruptive for casual use. The limited throughput is 

enough for serving a limited amount of users in a vehicle, and will saturate a 3G 

or a 11 Mbps 802.11b wireless uplink, although not a 54 Mbps 802.11b/g or a 

WiMAX link. All in all, the DTN reference implementation is useful, if not optimal. 

Now that a prototype CHIANTI-compliant HTTP-over-DTN module has been 

developed and tested, trial integration with CHIANTI architecture remains to be 

done. With a DTN module place in a CHIANTI FlexProxy, final evaluation of its 
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capabilities and usefulness could be made, possibly along with performance 

comparison against CHIANTI core tunneling modules. Before such comparison, 

it is worth investigating how much performance of the DTN implementation can 

be improved. 

Performance of the DTN reference implementation suggests potential for future 

improvements, especially with regard to throughput. Investigating latency and 

throughput performance of UDP convergence layer is another possible option, 

as well as exploring effect of different database backends on performance. 

Furthermore, there are other lightweight, scaled-down DTN implementations in 

existence, such as the IBR-DTN; they might well perform better than the 

reference implementation and comparing their performance with the results 

gained here would be interesting. 

Effects of factors such as bundling timeout, delay, buffer and file sizes to overall 

performance having now been briefly investigated, refinement of the HTTP relay 

protocol and its implementation also hold promise for improving performance. 

The prototype protocol implementation is rather crude, with emphasis on quick 

testing rather than optimal performance. Future versions of the protocol could 

experiment with adaptive bundling delay and bundle size depending on latency, 

duration, and possibly even jitter of an endpoint connection. 

This work has been a case study of applying the DTN reference implementation 

to mobile Internet. A protocol for relaying HTTP traffic in bundles has been 

specified and implemented and its performance measured and results reported, 

with some suggestions for future work and improvements, for which this thesis 

should provide a useful basis.  
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