
AALTO UNIVERSITY

School of Science and Technology

Faculty of Electronics, Communications and Automation

Department of Communications and Networking

Petri Ylikoski

Applying DTN to Mobile Internet Access: a Case Stud y

Thesis submitted in partial fulfillment of the requirement for the

degree of Master of Science in Technology

Espoo, Finland, 10.5.2010.

Supervisor Prof. Jörg Ott

Instructor Prof. Jörg Ott

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TIIVISTELMÄ

i

AALTO-YLIOPISTON
TEKNILLINEN KORKEAKOULU

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Petri Ylikoski

Työn nimi: Applying DTN to Mobile Internet Access: a Case Study

Päivämäärä: 10.5.2010 Sivumäärä: 60

Tiedekunta: Elektroniikan, tietoliikenteen ja automaation tiedekunta

Laitos: T4070 Tietoliikenne- ja tietoverkkotekniikan laitos

Työn valvoja: Prof. Jörg Ott

Työn ohjaaja: Prof. Jörg Ott

Internetin mobiilikäyttö on yleistynyt voimakkaasti. Internet-protokollat on
kuitenkin kehitetty kiinteän verkon viestintää varten ja niiden suorituskyky,
erityisesti TCP:n, kärsii olosuhteissa, joissa kiinteää yhteyttä verkkoon ei ole
saatavilla. EU-tutkimusprojekti nimeltä CHIANTI perustettiin tutkimaan
mahdollisuutta paremman suorituskyvyn tarjoamiseksi mobiilikäyttäjille. Sen
pyrkimyksenä on kehittää tietoliikenneratkaisu, jossa välityspalvelimet
suojaavat käyttäjiä verkkoyhteyden katkoksilta.

DTN on tietoliikennearkkitehtuuri joka on kehitetty viestinvälitykseen
vaativissa olosuhteissa, esim. avaruusviestinnässä, ja mahdollistaa viestien
välityksen pitkien viiveiden ja katkonaisten verkkoyhteyksien yli.

Diplomityöni tarkoitus oli selvittää, voitaisiinko CHIANTI-projektin mukaiset
välityspalvelimet toteuttaa hyödyntäen DTN-tutkimusryhmän kehittämää
DTN-sovellusta. Työtä varten olen kehittänyt ja toteuttanut yksinkertaisen
protokollan, jolla voidaan välittää HTTP-pääteyhteyksiä kahden DTN-solmun
kautta. Protokollatoteutuksen avulla voidaan mitata DTN-toteutuksen
suorityskykyä ja sitä kautta arvioida sen soveltuvuutta CHIANTI-projektin
kannalta. Tätä varten mitattiin DTN-toteutuksen tiedonsiirtokapasiteettia sekä
sen aiheuttamaa lisäviivettä HTTP-tiedostonsiirtoihin.

Mittaustulokset osoittivat, että DTN-toteutus pystyy vain rajalliseen tiedon-
siirtoon, suurin mitattu siirtonopeus oli vain noin 1,5 megatavua sekunnissa ja
kaikissa tapauksissa DTN:n käyttö lisäsi yhteysviivettä yli 100 millisekunnilla.

Tulosten valossa työssä todetaan, että tarkasteltu DTN-toteutus on hieman
rajallinen suorituskyvyltään mutta silti käyttökelpoinen ja omaa potentiaalia
jatkokehitykseen.

Avainsanat: CHIANTI, disconnection tolerance, DTN, HTTP

ABSTRACT

 ii

AALTO UNIVERSITY
SCHOOL OF SCIENCE AND TECHNOLOGY

ABSTRACT

Author: Petri Ylikoski

Name of the Thesis: Applying DTN to Mobile Internet Access: a Case Study

Date: 10.5.2010 Number of pages: 60

Faculty: Faculty of Electronics, Communications and
Automation

Department: Department of Communications and Networking

Supervisor: Prof. Jörg Ott

Instructor: Prof. Jörg Ott

Mobile use of Internet is increasing rapidly. Internet-protocols, in particular
TCP, have been designed for operation with fixed connections and perform
poorly in conditions of intermittent connectivity. CHIANTI is an EU-funded
research project established to offer better performance for mobile Internet
users.

DTN is a communications architecture that has been developed to enable
communications over long delays and intermittent connectivity, such as in
space communications.

The purpose of this work is to investigate applicability of the reference DTN
implementation developed by the DTN Reseach Group to the needs and aims
of CHIANTI. For this purpose I have developed a simple protocol to relay
endpoint HTTP connections over a DTN link in order to be able to measure
DTN performance and assess its usefulness for CHIANTI purposes. To this
end, throughput capacity and delay caused by DTN are measured.

Results of measurements indicate limited throughput performance of around
1.5 megabytes per second and over 100 millisecond additional delay to
endpoint communications even in best cases.

In light of attained results this work concludes that the DTN implementation
used in this work has limited performance but could still prove useful, and has
potential for further development.

Keywords: CHIANTI, disconnection tolerance, DTN, HTTP

FOREWORD

 iii

Foreword

As far as I am able to tell, the actual process behind this master’s thesis was

not particularly long or arduous as such. However, for me the process gradually

leading to the point where I was finally able to begin working with it was much

more difficult. Having finally reached the culmination of my studies and facing

imminent graduation, I feel with all the more reason that a sentiment of

appreciation is not entirely inappropriate here.

I owe a debt of gratitude to Professor Jörg Ott, the supervisor and instructor of

this thesis, for finding time to personally guide me through the entire process of

creation. While it could be argued that this is something he is supposed to do as

a professor, it is an altogether different matter to recognize that he has done so

with inexhaustible patience and with a positive, encouraging and constructive

manner despite pressing work load. For guiding me through several courses, a

special assignment and finally this thesis, always with a friendly smile, he has

earned my gratitude and respect.

By far the greatest and most important pillar of support for me has, however,

been my dearly beloved wife, who for the last ten years has always given me

unwavering and loving support where needed, and a proverbial but swift kick to

the posterior when necessary. Today, I would not be here without her by my

side.

Espoo 10.5.2010

Petri Ylikoski

TABLE OF CONTENTS

 iv

Table of Contents

FOREWORD..III

TABLE OF CONTENTS IV

ILLUSTRATIONS VI

LIST OF TABLES..................................... ... VII

ABBREVIATIONS AND ACRONYMS......................... VIII

1. INTRODUCTION ..1

2. BACKGROUND...................................... ..4

2.1. MOBILITY AND DISCONNECTIVITY...4

2.2. DTN ..8

2.3. CHIANTI ...11

3. DESIGN AND IMPLEMENTATION16

3.1. GOALS OF THE DESIGN...16

3.2. DESIGN ..18

3.2.1. Opening a New Connection Context between Daemons19

3.2.2. TCP Stream Conversion into Bundles..19

3.2.3. Multiplexing Client TCP Streams into the DTN Link21

3.2.4. Providing Sufficient TCP-style Reliability between Daemons...........22

3.2.5. Connection Context Termination..27

3.3. PROTOCOL ...27

3.3.1. States and Exchanges ...28

3.3.2. Packets and Formats ...30

3.4. IMPLEMENTATION ..34

3.4.1. Software environment ..34

3.4.2. DTN Reference Implementation...35

TABLE OF CONTENTS

 v

3.4.3. Implementation Architecture...36

3.4.4. Design Issues Specific to Implementation..39

4. TESTING AND MEASUREMENTS42

4.1. TEST SCENARIO AND SETUP..42

4.2. MEASUREMENTS ...44

5. RESULTS ...47

6. CONCLUSIONS ...56

REFERENCES ...58

ILLUSTRATIONS

 vi

Illustrations

Figure 1: DTN communication architecture – example scenario.......................10

Figure 2: Overview of CHIANTI architecture, spheres of control; from [23]13

Figure 3: CHIANTI Flex Proxy topology, external chain modules; from [24]14

Figure 4: HTTP Relay protocol states ...29

Figure 5: Protocol header flag field ...31

Figure 6: Data Relay bundle header formats illustrated32

Figure 7: Acknowledgement and Retransmission Request bundle headers33

Figure 8: Graph summary of measurement results for phase 2.50

LIST OF TABLES

 vii

List of Tables

Table 1: Wget throughput downloading 50 MiB file using DTN.........................47

Table 2: Reference values for throughput, plain wget.......................................48

Table 3: Throughput for wget through DTN, bundling delay 10 ms...................48

Table 4: Throughput for wget through DTN, bundling delay 25 ms...................48

Table 5: Throughput for wget through DTN, bundling delay 50 ms...................49

Table 6: Throughput for wget through DTN, bundling delay 100 ms.................49

Table 7: Throughput for wget through DTN, bundling delay 250 ms.................49

Table 8: Throughput for wget through DTN, bundling delay 500 ms.................49

Table 9: Throughput for wget through DTN, bundling delay 1000 ms...............50

Table 10: Latency for downloading a single file, size 1 KiB52

Table 11: Latency for downloading a single file, size 32 KiB52

Table 12: Latency for downloading a single file, size 64 KiB53

Table 13: Latency for downloading a single file, size 1 MiB..............................53

ABBREVIATIONS AND ACRONYMS

 viii

Abbreviations and Acronyms

2.5G Packet switching technology added to 2nd generation mobile

networks like GSM. Also known as General Packet Radio

Service, GPRS

3G 3rd Generation Mobile Telecommunications, also IMT-2000

ACK Acknowledgement

API Application Programming Interface

CHIANTI Challenged Internet Architecture Network Technology

Infrastructure

DHARMA Distributed Home Agent for Robust Mobile Access

DNS Domain Name System

DTN Delay-Tolerant Networking

DTNRG →DTN Research Group

EU European Union

GNU GNU’s Not Unix, a software project to develop free software,

also operating system

GSM Global System for Mobile Telecommunications

HIP Host Identity Protocol

HTTP HyperText Transfer Protocol

I/O Input / Output

IBR Institute of Operating Systems and Computer Networks at

the Braunschweig Technical University

ICT Information and Communication Technologies

IEEE Institute of Electrical and Electronics Engineers

ISC Internet Systems Consortium

IP, IPv4, IPv6 Internet Protocol, version 4 or 6

Kbps Kilobits per second

KB, KB/s Kilobyte, kilobytes per second. A kilobyte = 1000 bytes

KiB Kibibyte, 1024 bytes

LAN Local Area Network

Mbps Megabits per second

ABBREVIATIONS AND ACRONYMS

 ix

MB, MB/s Megabyte, megabytes per second. A megabyte = 1000

→kilobytes

MiB Mebibyte, 1024 kibibytes

ms Millisecond

NAT Network Address Translation

OCMP Opportunistic Connection Management Protocol

OS Operating System

PCMP Persistent Connection Management Protocol

RFC Request For Comments

SOCKSv5 SOCKS version 5. SOCKS (SOCKetS) is a network protocol

developed to assist communication through firewalls

SYN SYNchronize sequence numbers, a →TCP Profocol flag

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless →LAN

x86 A processor architecture originally developed by Intel

XML Extensible Markup Language

1. INTRODUCTION

 1

1. Introduction

The end of the second millennium saw the introduction of groundbreaking new

ways of communication: the Internet and mobile telephony.

The Internet, with its powerful, evolving infrastructure and proliferation of

personal computing resources and innovative applications and protocols, has

provided us a way of sharing vast amounts of information as well as become a

platform for new, previously unimaginable services and possibilities. The first

ever Millennium Technology Prize was awarded in 2004 to Tim Berners-Lee,

the founding father of the World Wide Web, as a reflection and recognition of

the profound effect it has had on the society.

Mobile telephony, with the introduction of the GSM communication standard

and proliferation of inexpensive, hand-held mobile telephones made possible by

the advances in microelecronics and computing, now allows us to communicate

with each other with flexibility and convenience unseen ever before.

A natural idea for further development is combination of Internet and mobility,

and indeed it has been the subject of fervent research, as service providers

have been rushing to provide mobile broadband to customers and mobile

multimedia has been at the center of many a research conference. As anyone

with experience in using a laptop while on the move can tell, there is still a long

way to go before Internet services can be offered to mobile users with a degree

of service comparable to Internet use through fixed cable networks. Moving out

of range of a WLAN hotspot will interrupt connections and force users to restart

application sessions – even if network connectivity with some other access

technology existed. Overcoming such connectivity intermittence is one of the

key challenges in mobile communications and correspondingly has spawned

countless research projects focusing on challenged Internet access.

Moving outside of the Internet environment, space exploration, satellite

communications and other more exotic and demanding network environments

and communication scenarios have also given rise to different research fields.

1. INTRODUCTION

 2

Data transfer over extremely challenged and/or heterogeneous networks with

little common technological ground have produced proposals such as Delay-

Tolerant Networking. DTN has been developed for transmitting messages in a

robust manner over difficult conditions, such as over links with extreme latency

and intermittent connectivity, conditions where traditional Internet protocols fail

or fare poorly. A key idea behind this work is that DTN technologies might have

the potential to alleviate or even solve problems inherent in mobile Internet

access as well.

A favourite Internet application today is the World Wide Web, widely used for

business and pleasure alike with a user base in the hundreds of millions and

thus the initial starting point for this work. This document investigates the

possibility to utilize an existing reference implementation of Delay-Tolerant

Networking software in order to provide at least a basis for disconnection-

resilient communication environment for mobile Internet users. This document

also describes the design and implementation of a simple communication

protocol for relaying web session data over an unreliable communication link

masked by the DTN, and assesses the performance of the DTN software to

gain some insight on its suitability for the task.

For the purpose of assessing DTN performance, a set of simple measurements

will be made to compare throughput and latency of HTTP traffic over a DTN link

with corresponding measurements without the DTN software. Measurements

aim to find out the data throughput capability of the DTN software, magnitude of

the effect it has on latency for file transfers, and effects of different DTN-related

parameters on both throughput and latency.

The rest of this document has been organized as detailed below.

Section 2 provides background information relevant for this work, especially

explaining the DTN concept in more detail.

Section 3 concentrates on the design and implementation of an adaptation

protocol to facilitate relaying HTTP traffic over a DTN link. It gives overview of

1. INTRODUCTION

 3

the protocol design choices and functionality, as well as describing the actual

protocol implementation.

Section 4 documents the test setup and procedures and measurements

performed to test the performance and functionality of the protocol and DTN

implementations.

Section 5 presents the results of testing and measurements and discusses their

implications to evaluating the performance of the DTN technology.

Section 6 concludes the document, summarizing the findings of this work and

gives recommendation for future work for improving on the concept.

2. BACKGROUND

 4

2. Background

Heterogeneous wireless environments and the resulting intermittent connectivity

experienced by mobile users is a widely recognized and copiously researched

subject around the world. Section 2.1 is a brief introduction to some notable

work on the subject. One culmination of this earlier research is the DTN

concept, which forms a crucial part of this work and is explained in more detail

in section 2.2. The CHIANTI project, more thoroughly discussed in chapter 2.3,

is a recent, more practical development for improving resilience for connection

disruptions. The work described in this thesis originated as an aside during the

CHIANTI project as a possible alternative for implementing CHIANTI

functionality using existing technologies, more specifically, using the

implementation created by the DTN Research Group to provide improved

disconnection tolerance to normal HTTP traffic.

2.1. Mobility and disconnectivity

The Internet and its core communication protocols, the TCP/IP suite, were

designed for robust communication in a fixed network with static nodes. Internet

protocol and application design was based on the end-to-end principle,

formulated in [1]. In brief, the end-to-end principle states that many necessary

functions in communication over an unknown, heterogeneous network can only

be performed by the endpoints actually engaged in the dialogue. This is

because the design of networks was at the time directed towards simple,

minimal network which would efficiently provide the bare minimum of services –

mostly routing and packet forwarding – and avoid replicating more extensive

functionality both in the network and at higher protocol levels. The TCP protocol

operation is a good example of the end-to-end principle in action; endpoint

hosts running TCP/IP protocol stack employ TCP to take care of such

necessary functions as flow control, out-of-order caching, acknowledgements,

retransmitting missing packets and timing out connection. Following the end-to-

end principle usually involves interaction between endpoints, which is not a

problem, if they have a fixed, low-latency network connection available.

2. BACKGROUND

 5

On the other hand, the GSM revolution of the early 1990’s triggered an

increasing interest for mobile communications, exacerbated by the creation of

other wireless technologies such as the IEEE 802.11 technology family

(WLAN). By now, proliferation of different wireless access technologies has led

to existence of wide variety of different computing and communication devices

supplied with several different access technologies, ranging from copper-based

Ethernet to V.90 and 3G modems.

Increasing demand for mobility combined with the development of Internet-

based services, particularly of those related to multimedia, is increasingly

bringing Internet and associated applications into mobile devices. It has also

created demand for wireless broadband communications. In general, radio

signals suffer from attenuation and poor signal to noise ratio, especially so at

lower levels of transmitted power. Also, higher data rates demand higher carrier

frequencies for more transmitted information per time unit, while higher

frequencies demand more power to transmit and tend to attenuate faster than

low frequencies, thus having shorter range than lower frequencies.

Furthermore, mobile devices are often severely constrained in terms of size and

thus available power, making economical use of energy an important design

criterion. As a consequence, cell sizes used in different communication

technologies tend to become smaller as data rate increases, and so, for users

of high data rate mobile communication services connection disruptions are

commonplace. For example, laptop user in a WLAN hotspot will eventually have

to leave the coverage area of the WLAN base station, the radius of which is

typically around ten to a hundred meters, and from there on will have to use

other access technologies (e.g. 2.5G, 3G, WiMAX) for wireless communication.

As noted earlier, modern communication devices tend to be capable of

communicating via more than one access technology. However, Internet

applications and protocols quite often rely on TCP for establishing and

maintaining endpoint connections. Implementations of TCP (and UDP) however

rely on sockets as endpoint identities; sockets are bound to IP address – having

one is a mandatory requirement for any entity wishing to communicate in the

2. BACKGROUND

 6

Internet – which is very likely to change if user roams between different access

networks. As a result communication context is lost, at least from the

perspective of the TCP protocol. Even in the case of moving between different

WLAN networks, coverage may be intermittent, and TCP (or the application in

use) will quickly time out if it does not reach acknowledgements from the other

endpoint, again losing all context and forcing the user to re-establish session.

Of course, several improvements have been suggested to either improve TCP’s

mobile performance or to circumvent it altogether with higher-layer approaches.

Much work has also been done in trying to mitigate the effect of changing IP

addresses. For instance, Mobile IP, as specified in RFC 3344 [2] and RFC3775

[3] for IPv4 and IPv6 respectively, uses home and foreign agents to keep track

of mobile endpoints and enable continuous routing of packets to mobile

endpoint via aforementioned agents even as IP addresses change, maintaining

application and transport-layer (TCP) connection. However, this approach will

not protect the user from disconnections.

A higher-layer protocol dubbed HIP [4] was proposed to separate IP’s endpoint

identifier and locator functionalities from each other, thus creating an

identification technology better suited for mobility. To provide protection for

connection outages, a proposal of combining HIP with some custom TCP

enhancements has been made [5]. The TCP options, called User Timeout

Option and Retransmission Trigger, would prevent TCP from timing out during

outages and resume transmission as soon as connection becomes available,

and by binding the TCP to HIP addresses instead of IP addresses, immunity

from IP address changes is obtained. A similar solution is TCP Migrate [6],

which modifies the TCP SYN packets and adds a new state into the protocol to

protect it from disconnections and uses Dynamic DNS for protection from

changing IP addresses.

These kinds of endpoint-oriented approaches have their own problems. For

instance, modifying the TCP protocol in one endpoint generally has the effect of

rendering it incompatible with other, unmodified endpoints. With the staggering

growth of Internet in the recent decade the estimated amount of endpoints in

2. BACKGROUND

 7

the Internet today is vast; ISC Internet Domain Survey estimates the Internet

host count to have been over 680 million in July 2009 compared with 43 million

in January 1999 [7]. Large-scale efforts of introducing new endpoint functionality

and support for it in global scope are thus usually considered quite infeasible.

In contrast to endpoint-oriented approaches, several suggestions use an

overlay approach by introducing a small number of proxies with enhanced

functionality at key points in the network – for instance, as gateways between

the Internet and a mobile access network – to relay traffic between each other

and endpoint hosts. Even a single proxy in the network can be considered to

form an overlay. Usually endpoints have to be provided with extra functionality

or information to communicate with proxies, but their capability to communicate

with other hosts using standard applications and protocols is not hampered in

any way.

Such overlay approaches include the Euonym architecture [8], which places

intermediate hosts with shim layer software in isolated networks and operates

on custom “name stacks” to achieve IP address independence and

disconnection tolerance. The Distributed Home Agent for Robust Mobile

Access, or DHARMA [9], which uses Dynamic DNS for IP independence and

home and mobility agents for additional functionality and improved

disconnection tolerance. It also provides the possibility to operate in end-to-end

fashion by placing the agents at endpoint hosts - a technique applicable to

overlay solutions in general.

Other notable suggestions include the Persistent Connection Management

Protocol (PCMP) [10] and the Opportunistic Connection Management Protocol

(OCMP) [11]. The PCMP is a session management protocol which uses custom

peer names and can be deployed in proxies to provide persistent connections

over disconnections and changing IP addresses. OCMP is a further

development of the same idea and provides better support for applications and

protocols besides the TCP.

2. BACKGROUND

 8

Most of these solutions, be they end-to-end or overlay based, generally focus

on the Internet, that is, their design focuses on the assumption that Internet is

the principal carried network and endpoints operate using current Internet

protocols – usually TCP. This choice carries with it certain implicit assumptions

about the conditions the communication takes place in. They of course try to do

away with the assumption that endpoints are always connected, but, disruptions

notwithstanding, use of TCP usually assumes that connections tend to be fairly

reliable and have a relatively small latency and round-trip time – usually of the

order of under a second, probably much less, and in worst cases not more than

several seconds. Likewise, use of TCP presumes a given degree of interaction

between endpoints; three-way handshake is a requirement before data can be

transmitted, and acknowledgements are continuously needed. In the largely

favourable conditions of the terrestrial Internet these preconditions usually hold.

But for more constrained communication environments different approaches are

needed.

2.2. DTN

Delay-Tolerant Networking, or DTN, was developed partly as one possible

answer to some of the more important shortcomings of the TCP/IP suite in

communication over long-distance, high-delay, low-bandwidth, disruptive links.

Interplanetary communication in our own solar system is often used as an

example target application. DTN is not a single protocol or mechanism but a

generalized architecture for communication over different networks – “regions” –

with might use completely different addressing and routing mechanisms and

protocols. The DTN architecture is described in RFC 4838 [12] and a good

source of more information is the Delay-Tolerant Networking Research Group

web site [13].

In deep-space communications, such as between Earth and space probes in

Saturn orbit, distances become so great that message propagation at the speed

of light will take well over an hour, given the speed of light of approximately 3 x

108 m/s and minimum distance between Saturn and Earth of about 1.2 x 109 km

2. BACKGROUND

 9

as stated in [14]. The propagation delay in this case would work out to about an

hour and seven minutes (4000 seconds). For TCP three-way handshake, it

would then take about 3h 20min before the transmission of the first actual data

byte. To make matters worse, other celestial bodies of the ecliptic plane,

including the sun, might interject between the probe and Earth listening stations

or satellites, meaning that no direct communications could be established at all,

for relatively long periods of time. Using relays positioned elsewhere in the solar

system, such as in Mars orbit, could provide a communication path, but it would

lead to even greater delays in communication. Clearly, TCP and Internet

protocol suite are not appropriate for communication of this scale.

Besides the poor performance of TCP outside Internet conditions, another

motivation for the DTN architecture is the existence of other communication

networks besides the Internet and the desire to be able to relay messages

through heterogeneous networks with incompatible addressing and protocols

via a unified mechanism. For instance, it might be desirable to relay data from a

remote underwater acoustic network otherwise disconnected from the Internet

via a satellite link to a research station. In this case, data messages would have

to traverse first through the acoustic network, then through the satellite link, and

only at the final stages of communication through some part of the Internet

before reaching the other endpoint.

Of course, networks outside the Internet could always be easily incorporated

into the Internet by simply applying the IP protocol to all component networks.

However, just as with the TCP, IP is not necessarily always a feasible solution

for all conditions and networks. For instance, in some constrained environments

where memory, processing and bandwidth are scarce, overhead incurred by

having to transmit the 40-byte IP header plus higher-layer protocol headers and

associated header processing might prove prohibitive. Or in very scarce

networks with very few nodes and/or fixed links there might not be need for

routing functionality provided by the IP. In such cases it could well be more

sensible to apply other networking technologies in place of IP and then connect

to the Internet using a higher-layer mechanism – such as the DTN.

2. BACKGROUND

 10

To solve the challenge of delay-tolerance, DTN specifies a message storing-

and-forwarding mechanism with persistent storage, and a higher-layer end-to-

end message protocol, called Bundle Protocol and specified in RFC 5050 [15].

To make spanning of heterogeneous communication networks possible, DTN

uses a URI-based (see RFC 3986 [16]) addressing, the aforementioned Bundle

Protocol, and a mechanism called convergence layer. Application data is

packaged into bundles, which are routed through the DTN using transport

protocols applicable to component networks along the way. Bundle data is

passed to the transport protocol through an appropriate convergence layer,

which essentially provides a protocol to transmit bundle data to another DTN

entity using transport-layer protocols pertaining to the network being traversed,

and then relays it to the next bundle router. For instance, in the Internet, DTN

nodes might have TCP and UDP convergence layers for relaying bundles.

Figure 1 below is a simplified example depiction of DTN communication

between two different networks which use a satellite relay to opportunistically

forward bundles when a communication satellite passes over.

Figure 1: DTN communication architecture – example scenario

Routing between different networks and DTN nodes is something of an open

question, not having been explicitly defined in the specification. Routing

2. BACKGROUND

 11

mechanisms and protocols vary from network to network, and routing might be

implemented using static routes or existing routing protocols adapted to DTN.

The Bundle Protocol is in a sense at the heart of the DTN and has many

features and capabilities. To begin with, bundles are the basic unit of storage

and transmission in the DTN architecture. The bundles are forwarded to the

next hop towards the target endpoint, and if they cannot be immediately

forwarded, e.g. if no connection is available for the next hop, they are stored

until communication is possible. Bundle protocol also has mechanisms for

authentication, bundle fragmentation and notification of successful delivery. It

also defines and provides custody transfers, meaning essentially that nodes

further along the communication path can accept the responsibility for storing

and retransmitting bundles, providing more efficient retransmission behaviour in

long and challenged paths.

The DTN architecture and related protocols are quite complex; bundling and

bundle processing as well as convergence layer operations induce an extra

overhead in transmissions and processing. DTN Research Group has

developed and published a reference implementation of the DTN suite, labeled

DTN2. The currently available version, 2.6.0, is hosted by SourceForge [17] and

is a central component in this work. The reference implementation supports

most DTN features and has TCP and UDP convergence layer functionality, but

it requires extensive support libraries and has an overall memory footprint of

around 40MB [18]. This is quite much considering mobile devices, wireless

access points and similar hardware today. However, it has a well-defined API,

reasonably useful documentation and provides an accessible starting point for

concept testing and development and was thus chosen to serve as the

foundation of this work.

2.3. CHIANTI

Challenged Internet Access Network Technology Infrastructure [19], or

CHIANTI, is a two-year research project within the ICT initiative of the Seventh

EU Framework Programme [20], scheduled to end in February 2010. It is a

2. BACKGROUND

 12

multilateral effort between participants from the public and private sectors,

participants being European universities and enterprises. In a nutshell, CHIANTI

aims to improve mobile user experience by providing existing user applications

enhanced disconnection and disruption tolerance, making use of the existing

Internet infrastructure and by adding deployable service-support infrastructure

to key locations, as expressed in project deliverable D1.1 [21].

The CHIANTI project defines spheres of control, defined in D1.1, based on the

main functioning entity within the sphere, and specifies CHIANTI components

and most important use cases in the form of two main scenarios, the Nomadic

User and Vehicle Support scenarios. Deliverable D1.2 [22] provides more

information about project requirements and goals, while deliverable D3.1 [23]

describes the architecture in more detail as well as elaborates on the scenarios.

CHIANTI protocols, in turn, are better explained in D2.4 [24].

The CHIANTI project has the ultimate goal of creating an improved service with

commercial potential. As a consequence, CHIANTI system architecture has

several practical and technical requirements regarding its deployment and

functionality. Key requirements are ability to work with existing Internet

infrastructure and with existing user applications and devices, while providing

enhanced service to users with CHIANTI-aware equipment. As to the definition

of enhanced service, D3.1 lists among other things requirements such as 30%

increase in throughput in intermittent conditions and tolerance of disconnections

longer than five minutes. In preparation, extensive traffic analysis has also been

done in authentic environment, findings include clear prevalence of TCP in

client traffic and consequently CHIANTI stresses optimization of TCP for

disruption tolerance and increased throughput.

The functional core of the project is formed by a CHIANTI client-proxy pair,

located at the opposite sides of a disconnection point. Client functionality could

reside in a mobile device or in a moving vehicle and in the latter case could also

protect vehicle occupants from disconnections – the key idea behind the

Vehicle Support scenario. The proxy, on the other hand, usually resides

somewhere in the “fixed” Internet and can serve several clients. The

2. BACKGROUND

 13

architecture also takes into account the possibility of nested client-proxy

configurations possible in a system with several service providers.

Figure 2 below presents the CHIANTI architecture as it appears in the CHIANTI

Deliverable D3.1. Different spheres are highlighted, clarifying their role in the

overall architecture. CHIANTI proxies can reside in different spheres, depending

on the role of their service provider. CHIANTI clients are not shown, but they

always reside within the Mobile sphere.

CHIANTI
ISP

Internet

ISP A

ISP B

CHIANTI
proxies

3rd party provider
CHIANTI proxies

Servers, peers

Mobile Access ISP Internet Access Mobile

Figure 2: Overview of CHIANTI architecture, spheres of control; from [23]

Both client and proxy are equipped with the CHIANTI protocol stack which is

essentially a core (called “Flex Proxy”), a chain of modules to provide

application support for users, and a tunneling protocol for robust, disconnection-

resistant communication between client and proxy. Interface for intermodular

communication exists; CHIANTI modules communicate via the SOCKSv5

protocol, defined in RFC 1928 [25]. Figure 3 below depicts CHIANTI Flex Proxy

2. BACKGROUND

 14

topology with external chain modules as it appears in Deliverable D2.4. The

DTN module would be one such external chain module.

CCM Chain Communication Module

SOCKS
Server HTTP

Inter Proxy Module

CCM Chain Communication Module

TCP UDP

Interception Module

CHIANTI
Flex Proxy

(here for CHIANTI-Client side)

to Client Application
(e.g. Web Browser)

to Peer Proxy
(here a CHIANTI-Proxy)

S
O

C
K

S
C

lie
n

t
S

O
C

K
S

S
er

ve
r

External Chain Module

SOCKS
Server
SOCKS
Client

S
O

C
K

S
C

lie
n

t
S

O
C

K
S

S
er

ve
r

SOCKSv5 SOCKS
Client

SOCKS
ServerCONNECT,

UDP ASSOCIATE

SOCKSv5

CONNECT,
UDP ASSOCIATE

External
Module
Adapter

External
Module
Adapter

External
Module
Adapter

Figure 3: CHIANTI Flex Proxy topology, external cha in modules; from [24]

As already mentioned earlier, this work arose from the sidelines of the CHIANTI

project as a case study to explore applicability of DTN to provide users

protection against disconnections. The modular structure of the CHIANTI

protocol architecture should make it possible to implement a module which

provides SOCKSv5 server functionality for incoming connections and directs

incoming traffic to a DTN entity which is then used to relay data over an

intermittently connected link to another DTN module, which would then feed it

on, socksified, to awaiting module chain to pass on to the target endpoint.

The operational scenarios considered by CHIANTI are strictly limited to Internet

environments, and the decision to use DTN, designed for much more

challenging conditions, might seem almost inappropriate; especially as DTN is

earlier criticized as an overly complex and resource-intensive for small-scale

2. BACKGROUND

 15

use in mobile environments. Even so, DTN should work fairly well in a benign

environment. Testing the DTN provides an opportunity to investigate its impact

and overhead on traffic, and, should the results seem promising, there is always

the possibility of using a scaled down, more efficient implementation.

3. DESIGN AND IMPLEMENTATION

 16

3. Design and Implementation

This section documents the design process and the reasoning behind the

implementation. It also explores its details; the communication protocol, packet

formats and such.

Subsection 3.1 details the design goals for the implementation.

Subsection 3.2 describes in more detail the problems and needs arising from

the specified goals and the rationale behind the details of the protocol

developed for the implementation; a review of design choices.

Subsection 3.3 describes the actual protocol in more detail. It contains

description of protocol states and exchanges taking place between protocol

entities and explains packet types and their header formats in detail.

Finally, subsection 3.4 describes the actual software implementation as well as

the software environment of the implementation in more detail, also briefly

commenting on some implementation-specific issues.

3.1. Goals of the design

Being from the outset affiliated with the CHIANTI project described in the

previous section CHIANTI system architecture is implicitly reflected in the

design of the software implementation, ultimately considering possible system

integration within CHIANTI architecture. Implementation therefore has to keep

in mind some of the key restrictions and considerations of the CHIANTI project

itself, for instance the support of existing applications and protocols, and

importance of TCP. The scope of this work, however, is much more modest

than that of the CHIANTI, and concentrates on a particular TCP application,

namely, the World Wide Web service using HTTP.

From a more practical perspective, purpose of the programming task here is to

implement a computer program – from hereon referred to as daemon – which

will accept user HTTP traffic and relay it through a DTN link to another similar

3. DESIGN AND IMPLEMENTATION

 17

daemon which in turn will relay incoming HTTP traffic onwards. For standalone-

testing, the daemon should be able to relay HTTP traffic directly to the originally

specified endpoint – i.e. the target web server – while, in consideration of the

CHIANTI scenario and modular architecture, it should also provide interfaces to

communicate with CHIANTI devices and modules. As CHIANTI defines

SOCKSv5 protocol as its primary interface, implementation also has to provide

at least a limited degree of SOCKSv5 functionality to be able to forward traffic to

the next CHIANTI module in a possible module chain.

For accepting HTTP requests, and also in keeping in mind integration with

CHIANTI architecture, the daemon should provide a (minimal) SOCKSv5

server. For the DTN link, DTNRG implementation will provide the API and

functionality for bundle sending and reception; what remains to be done for the

daemon is to multiplex several HTTP client connections into over a single DTN

link, to convert incoming HTTP requests into bundles and relay necessary

information pertaining to the HTTP connections – such as target address and

identifiers – to the other communicating daemon, to make sure all bundles

come across and that all data is relayed in correct order, and to keep track of

endpoint connections at either end.

Initially, to demonstrate basic functionality, the daemon should listen for

incoming SOCKSv5 connections and respond to “TCP Stream” requests in IPv4

protocol. Once these basic concepts have been implemented and tested,

support for UDP and IPv6 along with other desired features can be added as

deemed necessary.

The CHIANTI architecture describes a client agent residing in the mobile

sphere, essentially at the mobile user’s side of the anticipated disconnection

point, and a proxy agent residing at the other side of the disconnection point,

with a fixed, reliable connection to the Internet. In a vehicle support scenario

where one provider might e.g. have several CHIANTI clients in a single train

and operate with several trains it is clearly impractical to have a separate proxy

entity serving each client. This means that proxies must have the capability to

distinguish between and communicate with several client entities.

3. DESIGN AND IMPLEMENTATION

 18

Finally, in the interests of flexibility and simplicity – and of conformity with

CHIANTI specifications – it was decided that the daemon should work in a

symmetric fashion, i.e. each daemon instance should be able to provide both

client and proxy functionality as needed.

3.2. Design

The main problems to be solved for the design of the daemon implementation

can be summarized as follows:

• Opening a new connection context between daemons

• How to convert data from a TCP stream into bundles

• Multiplexing several client TCP connections over one DTN link

• Replicating TCP-style reliability between daemons

• Connection context termination

Each of these problems is expanded and discussed and corresponding design

solutions presented in following subsections. Furthermore, there are some

additional issues related to specification of the required implementation

functionality which are less concerns of protocol design than they are details of

the implementation itself, mainly:

• Symmetric operation of the daemon

• Connectivity detection

These issues are commented more later on in the subsection concerning the

implementation itself

3. DESIGN AND IMPLEMENTATION

 19

3.2.1. Opening a New Connection Context between Dae mons

When a mobile client opens up a new HTTP connection, it will first have to

perform a brief SOCKSv5 negotiation with the daemon. This initial exchange

provides the daemon with knowledge of the IP address and port of the target

host the mobile client wants to communicate with. Daemon at the client end has

to explicitly relay this information to the other daemon so it will be able to

establish connection to the target host; after the initial SOCKSv5 negotiation,

client endpoint will start receiving TCP stream data from the mobile client which

is then packaged into a bundle and sent to the other daemon.

At the very least, the first bundle to be transmitted needs to have target IP

address and port information included in a bundle header. Also needed is an

identifier which creates the context between the two daemons of a unique HTTP

exchange – there might well be several requests directed at the same web

server, so an address/port pair is insufficient for context identification.

After the initial bundle is received by the other daemon, it can immediately

establish a TCP connection to the target host and deliver received data; as it

receives reply data from the end host it includes the context identifier in the

bundle header so the client end daemon can direct received data back to the

appropriate mobile client. There is no need to include address/port information

bundle headers after the first bundle, but there could be slight additional

benefits for supplying the address information with each bundle header. Mainly,

implementation will be slightly easier with identical bundle header structure for

all data bundles. Also, if the first bundle is delayed or gets lost, connection to

the end host can be opened upon the reception of the second bundle, although

this is hardly an advantage as bundle data cannot be transmitted out of order

anyway.

3.2.2. TCP Stream Conversion into Bundles

Conversion of continuous TCP data stream into bundles presents some

interesting problems. First, there is no predefined size limit for a bundle; they

3. DESIGN AND IMPLEMENTATION

 20

can be almost arbitrarily small or large. Different bundling sizes pose different

benefits and drawbacks: smaller bundle sizes means smaller delays in bundle

transmission but on the other hand induce a greater overhead from bundle

headers and thus decrease overall effectiveness of transmission; larger bundles

mean extra delay and increased likelihood of a bundle being discarded in case

of packet loss but increased overall efficiency.

Second, the issue of multiplexing described in the next subsection also has an

effect on bundling; data from several different connections could be stored in a

single bundle. This issue is more closely examined in the next subsection; the

design choice made here is to keep each bundle associated with only one client

connection.

Third, HTTP protocol session usually consists of an exchange of relatively small

messages, client first sending a request for a resource and server replying with

a status message or with the desired resource. In these cases, waiting for a

bundle to be filled with more data is impossible and a timer mechanism is

needed to trigger bundle transmission in case of inactivity so that messages will

be delivered in a timely fashion and the user will not have to experience

excessive extra delay. This, in turn, leads to the problem of choosing an

appropriate bundling timeout, especially at the server side which is connected to

the Internet and will probably behave in a much less predictable way than the

client side due to larger variations in available bandwidth, latency and server

load.

Too long or too short timeout will nullify any benefits gained from optimal bundle

size; too short timeout will make connection more responsive but will also incur

larger overheads, and too large timeouts will increase unresponsiveness and

negate benefits from smaller bundle sizes. Having said all this, the subject of

choosing optimal combination of timeouts and bindle sizes is a complex

mathematical exercise and ultimately beyond the scope of this work, where

quick tentative qualitative concept testing takes precedence to excess

quantitative optimization. Once initial testing is complete, further refinements

may be implemented in the form of e.g. user-selectable parameters and/or

3. DESIGN AND IMPLEMENTATION

 21

adaptive bundling algorithms. For the initial version, maximum bundle size limit

is therefore set at 48 KiB, and value of bundling timeout is left to user’s

discretion with the possible range of 1 to 1000 ms. This will also enable

tentative tests for finding out good approximations for practical use.

3.2.3. Multiplexing Client TCP Streams into the DTN Link

TCP connection multiplexing over DTN link is in itself fairly straightforward. The

basic solution for multiplexing several connections into one link is to supply

each different connection with an identifier and to label each bundle with this

identifier. Inherent here is the assumption that a single bundle will only contain

data from a single connection.

While it is perfectly possible to define a more elaborate and flexible framing

format for packing a bundle with data from several TCP connections, as

mentioned in the previous subsection, it would add considerable complexity to

the implementation and have an unpredictable and probably detrimental impact

on perceived client connection quality. For instance, if a new connection is

established and a short “HTTP GET”-message is sent through it, bundling

timeout must be applied to trigger sending a bundle containing the request. Just

waiting for more data to arrive is obviously not a solution as the connection

might be the only client connection present in the daemon and no further data

will arrive before the requesting client receives a reply from the server. Now,

then, if there is more traffic present, it is possible that more data will arrive at the

daemon from some other client before the timeout is triggered. In this case, the

bundle will be filled with arriving data and a new timeout set. This cycle is

repeated until timeout triggers or the bundle is full. In the worst case scenario,

new connections with short initial packets could arrive at the daemon just before

the timeout, in which case the original first connection would experience

considerable extra latency, possibly several times larger than the value of

bundling timeout itself.

Another drawback in multiplexing TCP connections within a bundle is the fact

that an out-of-order arrival or actual loss of a bundle will then hamper all the

3. DESIGN AND IMPLEMENTATION

 22

client connections having had data in the disrupted bundle instead of just one

connection. Particularly loss events are troublesome as the lost bundle will have

to be first detected as being lost and then retransmitted, possibly leading to

much greater delay suffered by client connections than if the bundle had been

simply delayed just enough to arrive out of order.

After deciding on labeling, the size and format of the connection identifier label

has to be decided on. Given the TCP/IP architecture with 16-bit port number

identification, the maximum amount of TCP connections per one IP address

remains at 216 and is typically much less. However, traditional TCP/IP

implementations in different operating systems use sockets for binding into TCP

(and UDP) communication endpoints, which are typically identified with a 4-byte

integer value with a range greatly exceeding 216. Therefore the most

straightforward solution here is to use the 4-byte socket identifier as provided by

the target platform as such.

The idea of using identifiers is to provide uniqueness to each connection. Using

socket identifiers provides a degree of uniqueness in the sense that no two

sockets may coexist with the same identifier at a single host. However, it is

entirely possible if not indeed probable that two successive client connections

be assigned the same socket identifier. A degree of protection against such

temporal collisions should also be included in the protocol to prevent daemons

from getting confused by late-arriving bundles having belonged to a previous

client connection. This is to some degree an implementation issue, as the

identifiers are already bound to sockets and as such are affected by the rules of

the socket API. By way of an example, this provision of uniqueness in time as

well as in numerical space can be done with a bit of extra accounting of recently

used connection/socket identifiers or by attaching extra delay to calls for closing

sockets after client connection teardown.

3.2.4. Providing Sufficient TCP-style Reliability b etween Daemons

Traditionally in the Internet TCP has provided end-to-end reliability to higher-

level protocols. In this case, TCP will not be able to operate end-to-end because

3. DESIGN AND IMPLEMENTATION

 23

of the interjecting daemons. Instead, endpoints are in TCP communication with

a daemon entity, and daemons communicate via a custom protocol which uses

Bundle protocol as a transport, which in turns uses convergence layer agents

for point-to-point transmission.

Bundles are generally subject to similar problems in transmission as IP

datagrams. Given that the DTN link between daemons is unreliable and prone

to interruptions, bundles may get lost in transit. Even if they do not, it is entirely

possible for them to arrive at their destination out of order. For all these

reasons, daemon entities must have mechanisms for keeping track of sent and

received bundles and their correct sequence, for acknowledging or requesting

retransmitting bundles and storing bundles in buffer for possible retransmission

until they are acknowledged.

The traditional method to counter out-of-order arrival of and to facilitate keeping

track of bundles is to apply sequence numbers to them. Both daemons must

keep separate sequence numbering; client connections have their own flow,

and responses received from the remote endpoint have their own, applying a

common sequence numbering to apply to both directions is difficult, especially

considering the assumed intermittent nature of the DTN link and subsequent

possible delays in packet arrival.

For acknowledgements and retransmissions, information about requested and

acknowledged bundles has to be included in protocol messages. And, although

DTN and Bundle Protocol do provide persistent storage for bundles, their

retransmission mechanisms and reliability are unclear and it is probably safer to

keep a buffer of sent bundle payloads in memory for more flexible and effective

bundle retransmission.

HTTP is a request/response protocol. Typically, an HTTP session consists of a

number of exchanges between client and server; client sending a request for a

resource and server responding to the request. In other words, there are going

to be alternating data streams to both directions between the two. Usually, one

data stream (i.e. a request) has to be received in its entirety before another data

3. DESIGN AND IMPLEMENTATION

 24

stream (i.e. response) can be formulated and sent. This assumption may not

hold generally, but for the purposes of designing and implementing the

necessary reliability features for relaying HTTP traffic it is assumed to be valid.

In this sense, a daemon receiving a reply from the other daemon usually means

that the data stream and all bundles belonging to it were successfully delivered

and serves as a sort of acknowledgement. Including a bundle sequence number

corresponding to the latest received bundle in the reply helps daemons with

buffer management, as they can instantly discard all bundles from the buffer

which have a sequence number equal to or smaller than the number reported in

the received bundle.

Large, unidirectional file transfers mean there might be plenty of bundles flowing

in one direction but none in the other, so explicit acknowledgements (ACKs) are

needed as the transmitting daemon will not receive enough feedback from the

other daemon for effective buffer management otherwise. The details for this

acknowledgement mechanism need to be defined.

Sending ACKs for each bundle seems excessive and creates lots of traffic with

large overhead – bundles with no other payload than identifiers and a 4-byte

sequence number. ACKing several bundles at once on the other hand means

that a single ACK getting lost can have a larger impact on communication. A

threshold value n could be defined, as a function of the bundle buffer size, e.g.

one-quarter of the buffer size, and ACKs then sent for every n bundles, always

reporting the latest consecutive bundle sequence number received. If data

stream ends, a reply is most likely to follow and will again be supplied with the

sequence number of the last received bundle.

Also, retransmission mechanism needs to be given due consideration to gain

sufficient reliability without sacrificing too much performance – the purpose,

after all, is to provide a service enhancement for mobile Internet users.

One question is which one of the daemons is responsible for retransmissions,

the sending or the receiving daemon. Of course, the receiving daemon cannot

3. DESIGN AND IMPLEMENTATION

 25

know if there is data coming in, especially before establishing a new connection

context, so the sending daemon must assume responsibility for retransmitting

bundles if it receives no reply to the bundle it has sent. This can be done with a

retransmission timeout. On the other hand, the receiving daemon has to keep

track of arriving bundles, and in case of bundles arriving out of order, possibly

due to a lost bundle, it will have to make a decision on when to request a

retransmission of a bundle. For instance, if bundle 5 is received after bundle 3,

immediate request for bundle no 4 could be premature. On the other hand,

bundles are relatively large compared to e.g. Ethernet frames, and after

receiving bundle 6 it is getting more and more unlikely that bundle 4 will arrive

without it being retransmitted. A threshold value will have to be defined.

Another question is whether the sending daemon should proactively trigger

retransmissions whenever it is sending a bundle with sequence number greater

than the last received ACK number plus the aforementioned threshold value.

This would reduce the impact of ACK bundles getting lost but in a case of

connection disruption would lead to fruitless retransmissions. As connectivity is

assumed unreliable, it is probably better for the sending daemon only to

retransmit on request. Better yet, using selective acknowledgement mechanism

similar to that of TCP will also allow for more efficient retransmission behaviour.

For instance, in the previous example, bundles up to 3 could be acknowledged

cumulatively, but on top of that explicit acknowledgements for subsequently

received bundle 5 and later could be included. This would allow the sender to

react faster and retransmit missing bundles.

Using timeouts always brings forth the question of finding a suitable value for

them. Short timeout values generally improve responsiveness, but might cause

needless extra traffic, while long timeouts make for more efficient bandwidth

usage but increase the impact of bundle loss. Experimenting with different

timeout values is once again needed for finding suitable values, but for initial

implementation and concept testing reasonable default values will have to be

defined.

3. DESIGN AND IMPLEMENTATION

 26

Further additional problems with the Bundle Protocol specification are identified

in [26]. The most notable problem mentioned is the lack of reliability due to

there not being a usable checksum mechanism in place. In light of this it would

doubtless be a good idea to implement a simple checksum mechanism by

implementing a simple hashing algorithm to be applied to TCP data and

reserving some bytes for storing the resultant hash value within the bundle.

However, in can also be noted that within the Internet environment, by using the

TCP convergence layer supplied by the DTN software, it is possible to gain

some benefits from TCP’s own reliability mechanisms: a bundle transmitted

through TCP can be trusted to be uncorrupted if it arrives at its destination. So,

for the purposes of this project, adding checksum mechanisms is probably not a

priority issue; if desired or if deemed necessary by test results, it can be

implemented later.

In summary, bundle headers will have fields for sequence numbers and for

latest sequentially received sequence number – the cumulative ACK – plus for

sequence numbers received after that – the selective ACKs. For simplicity,

sequence number will be an unsigned 4-byte integer. This provides 232 unique

sequence numbers per connection and even without wrap-around mechanisms

will be quite sufficient for the initial testing.

Daemon schedules two timeout events as it sends the first bundle of a data

stream to another daemon. The value of the first timeout, or retransmission

timeout, is initially 5 seconds and probably subject to change during testing, the

second timeout is a connection timeout of 5 minutes. If the timeout triggers

without daemon having received a reply or an acknowledgement it will

retransmit all unacknowledged bundles in its retransmission buffer, setting

another timeout with equal value. The daemon will repeat this behaviour until it

receives a reply or until connection is timed out.

Daemons will keep a retransmission buffer of several bundles. Initial value is

more or less arbitrarily selected as 16 bundles, different values can be used and

tested during testing phase. On reception of an acknowledgement sequence

number in a bundle daemon will discard from its buffer bundles with sequence

3. DESIGN AND IMPLEMENTATION

 27

number equal to or smaller than in the acknowledgement. Receiving daemon

will send out acknowledgements for every retransmission buffer / 4 bundles

received successfully. If retransmission buffer fills up, daemon must not receive

any more data from the endpoint it is communicating with before the other

daemon has acknowledged some earlier bundles and buffer space may be

freed.

3.2.5. Connection Context Termination

A connection between a HTTP server and client can be closed by either end.

Endpoint hosts are not in direct connection but instead converse with daemons.

After either endpoint closes the connection, there is probably data left in the

pipeline waiting to be relayed to the other endpoint. Daemon at the closing side

in these cases must take care that all data is delivered and then notify the other

daemon about the connection having been closed. Both endpoints can then,

after data has been delivered, release all resources related to the connection

context.

A protocol flag is reserved for connection teardown notification. The last bundle

in the data stream coming from the closing client will be marked with the

teardown flag by the daemon sending it. The other daemon, upon receiving a

bundle with a teardown flag must then acknowledge the final bundle.

By now the most critical issues regarding the requirements of the working

protocol have been elaborated on, briefly but adequately. The next subsection

will focus more on details of the protocol specifics themselves and serve as the

protocol specification.

3.3. Protocol

The previous subsection has described the design problems and choices; this

subsection concentrates on the detailed description of the protocol arising from

those choices and also defines its details: protocol states, message types and

exchanges, and bundle header formats. The protocol is fairly simple and

3. DESIGN AND IMPLEMENTATION

 28

designed for quick concept testing and implementation and is no doubt

suboptimal; the precedence in design has been in putting together a workable

first approximation for a future protocol basis.

3.3.1. States and Exchanges

In its default state, the implementation runs a SOCKSv5 server and waits for

incoming SOCKSv5 client connections. The first major state transition occurs

when a new client connection is established, and daemon creates a new

connection context, which then moves into the SOCKS negotiation phase,

which actually has several sub-states according to the proceeding of the

SOCKS negotiation. A failed SOCKS negotiation results in termination of the

connection.

After the SOCKS negotiation is complete, the HTTP dialogue between

endpoints begins. HTTP itself is a stateless protocol, and the daemon only

relays HTTP data between itself and another daemon, so it has no need to keep

track of any specific states while the connection context is established. Client

daemon enters the established state when it transmits its first bundle. Upon

receiving the first bundle for a new connection context, the proxy daemon,

depending on whether relays traffic to a chain module or to endpoint, will either

enter SOCKSv5 client negotiation phase or connection context establishment

state. A failed SOCKS negotiation or endpoint connection establishment will

result in teardown of the connection context.

Connection context enters the teardown phase as either daemon detects that its

served endpoint has disconnected. At that point, last bundles are sent if data is

in the buffer and the last bundle is flagged as disconnected. Upon receiving a

disconnection-flagged bundle, other daemon sends a final acknowledgement

and is then free to tear down the connection context. The other daemon will do

so upon receiving the final ACK.

Besides these message exchanges, connection contexts may be torn down if

the connection timeout triggers at any point during the exchange, in practice

3. DESIGN AND IMPLEMENTATION

 29

after several minutes of DTN link disconnectivity. A state diagram is presented

in figure 4 below.

Figure 4: HTTP Relay protocol states

Protocol exchanges occur only in three distinct types: data bundles,

acknowledgement bundles and retransmission request bundles. Data bundles

come in two flavours: client-to-proxy bundles and proxy-to-client bundles, they

are used for data transmission whenever other daemon has data from an

endpoint to be relayed. In short exchanges, these data bundles have a double

role as acknowledgements, but when larger one-way streams occur, separate

bundles are used explicitly for acknowledgements. A retransmission request is

sent when receiving daemon notices one or more missing bundles and has to

explicitly request them from the other daemon.

3. DESIGN AND IMPLEMENTATION

 30

All other messaging, such as relaying endpoint addresses and connection

termination, are carried by these three bundle types. Exact bundle formats are

the subject of the next subsection.

3.3.2. Packets and Formats

All bundles relayed by the daemon have a header, used for protocol signaling

and relaying necessary connection related information between daemons. All

headers have a protocol flag field, which is used to mark address and protocol

types as well as protocol message types. In keeping with 32-bit field alignment,

the size of the flag field is 4 bytes. First byte is used for various relay protocol

flags, as follows:

Bit 1 signifies a client request - i.e. value 1 indicates that the bundle is coming

from a client daemon agent as opposed to the proxy agent. This makes

implementing symmetric operation easier.

Bit 2 flags bundle acknowledgement and is on if request has no data payload

but is exclusively used for acknowledgement purposes.

Bit 3 flags a retransmission request, and if it is flagged, indicates that the bundle

has info on what bundles are requested for retransmission, but no other data.

Bit 4 flags the use of IPv4 or IPv6 addressing, and like bit 4, is provided as a

support for possible future implementation of IPv6 addressing. Value 1 means

use of IPv4.

Bit 5 indicates that target address field is a DNS name instead of an IP address;

SOCKS protocol allows for using DNS names instead of IP addresses.

Bits 6 and 7 have no immediate use for now but could be useful in the future if

implementation is to be refined.

Bit 8 signifies endpoint shutdown and closing the connection. A daemon

receiving a bundle with this bit flagged may, after acknowledging, tear down the

communication context related to this bundle.

3. DESIGN AND IMPLEMENTATION

 31

The second byte of the flag field indicates the protocol used on top of IP, e.g.

UDP or TCP, and is copied directly from the Protocol/Next Header field of the IP

datagram received from the client. This makes it easier to support additional

protocols in future implementations.

The third byte signifies target address length in bytes. This information is

needed when a DNS address is transmitted instead of an IP address with fixed

length. One byte will be enough as DNS address length is limited to 255 bytes.

Fourth byte denotes header length and is counted in 4-byte words. This

provides information for calculating the number of acknowledged bundles at the

end of the header. Figure 5 below represents the flag field graphically.

Bit
1 2 3 4 5 6 7 8 16 24 32

R
E
Q

A
C
K

R
T
X

I
P
V

D
N
S

-

 -

T
D
N

Protocol

Address length
(in bytes)

Header length
(in 4-byte words)

Figure 5: Protocol header flag field

The Data Relay bundle has the 4-byte protocol flag field first. If the bundle

originates in a client daemon, bit 1 has value 1 and bits 2 and 3 have value 0. If

the bundle originates in a proxy daemon, all first three bits are 0.

For both types of Data Relay bundles, next field is the 4-byte connection

identifier field, in practice containing the 4-byte socket identifier reserved for the

client endpoint connection at the client daemon. Next 4-byte field contains the

bundle sequence number, an unsigned integer value, 1 being the sequence

number of the first bundle.

For client-originating Data Relay bundle, the next field is reserved for the target

endpoint IP address, being four bytes for IPv4 addresses, 16 bytes for IPv6

addresses, and variable size for DNS addresses. In keeping with 32-bit header

field alignment, DNS address field is padded with zeroes to an even multiple of

3. DESIGN AND IMPLEMENTATION

 32

4 bytes. After the address field, next two bytes are reserved for the target port

number, with the next two bytes padded with zeroes for 32-bit field alignment.

For all Data Relay bundle headers, next 4-byte fields are acknowledgement

sequence number fields. The fourth byte of the flag field indicating header

length provides the information needed for calculating the amount of

acknowledgement numbers included. The first reported sequence number is

always the cumulative acknowledgement; sending daemon reports here the

sequence number of the last bundle it has received from the other daemon in a

consecutive manner. If no bundles have yet been received from the other

daemon, value here is 0; otherwise, daemon receiving a cumulative ACK may

discard bundles from its send buffer with sequence number smaller than or

equal to the number in this field. Subsequent fields, if present, acknowledge

bundles received out of order in an ascending order. Figure 6 below illustrates

both data relay headers.

Figure 6: Data Relay bundle header formats illustra ted

3. DESIGN AND IMPLEMENTATION

 33

The Acknowledgement bundle has the 4-byte protocol flag field first. Bit 2 of

the protocol field must be flagged, value of bit 1 is not significant, but value for

bit 3 must be 0. Address length field has the value 0 as no address information

is relayed. Header length field denotes normally the size of the header in 4-byte

words.

Next 4-byte field is the connection identifier field, exactly as in the Data Relay

bundle. The Acknowledgement bundle has no sequence number of its own, as

it contains no data that has to be buffered and does not need to be kept track

of. The last 4-byte fields in the ACK bundle, then, contain the cumulatively and

selectively acknowledged bundle numbers, exactly as with the Data Relay

bundle header. See figure 7 below for illustration.

The Retransmission bundle also has the 1-byte protocol flag field first, with bit

3 flagged. Value of the first bit is not significant but bit 2 must be 0. Address size

field is 0 and header length field is as with other bundle types. The following 4-

byte field contains the connection identifier number, and as with the ACK

bundle, the Retransmission bundle has no sequence number of its own.

Instead, next 4-byte fields contain sequence numbers of those bundles the

daemon is missing – there might be several. The final 4-byte field is the

cumulative acknowledgement of the sender. Providing sequence numbers for

selective acknowledgements is redundant, as explicit retransmission of missing

packets is already requested anyway. See figure 7 below for illustration.

Figure 7: Acknowledgement and Retransmission Reques t bundle headers

3. DESIGN AND IMPLEMENTATION

 34

3.4. Implementation

This subsection describes the composition and establishment of the software

framework and environment for the prototype implementation. It also describes

the more immediate practical design of the implementation code and what

information is stored and how it is organized as well as provides commentary on

some choices that have been made during implementation process.

3.4.1. Software environment

The central software component of this project, the DTN2 reference

implementation, has been developed for and tested in a Linux environment. For

this reason alone, but also for reasons of familiarity and relative ease of

programming, Linux was chosen as the development platform for this project as

well.

Linux comes in many flavors, difficult to compare in appropriateness to the task

at hand without considerable experience and deeper knowledge of the

properties of different distributions. Thus, mainly for reasons of familiarity and

ease of maintenance a 64-bit x86 version of a Debian [27] release dubbed as

Lenny [28] was chosen. The development platform uses 2.6 series kernel.

The DTN2 distribution is hosted by the Sourceforge web site. However, the

hosted version is rather old, dated July, 2008 and did not compile and run on

the more modern operation system used here. Sourceforge also has latest

developing versions of the code hosted in a Mercurial [29] repository; this

implementation uses the Mercurial versions of the DTN2 from summer 2009.

DTN2 also requires a set of support libraries called Oasys, also available on

Sourceforge with and without Mercurial [30]. Configuring and compiling the

DTN2 implementation also requires a selection of other dependent sotftware

packages: GNU C and C++ compilers version 3.3 or newer, 3.4 was used in this

project. It also requires development packages of TCL, any version between

and including 8.3 and 8.5 series. Bundle storage requires a database backend.

Used here was the BerkeleyDB version 4.6 development version; versions from

3. DESIGN AND IMPLEMENTATION

 35

4.2 to 4.7 inclusive can be used. For XML processing the xerces library version

2.6 or newer is a requirement as well.

The design of the prototype implementation requires an effective handling of

several incoming and outgoing network connections in an asynchronous

manner. Also, protocol specification calls for timeout mechanisms for which an

event scheduler has to be implemented.

For asynchronous network I/O the first solution to come to mind is the socket

handling interface provided by select(). From earlier experience, however, this

is considered to be a cumbersome and limited interface. Also, implementing an

event handler for timers and events other than socket activity is not a trivial

task, once again deriving from earlier experience with similar software

programming activities. An event notification library known as libevent [31]

provides a convenient, ready implementation to solve these both problems, and

thus libevent library version 2.0.2-alpha was chosen to be used here. The alpha

version was preferred, as the Debian package management system coupled

with the chosen distribution provides only version 1.3 of libevent, which lacks

several features supported by later versions.

Finally, to assist in development and testing, a virtualization software called

VMWare Workstation 6.5 [32] was used. VMWare Workstation provides a

convenient environment for quickly deploying a number of virtualized testbed

computers and allows for saving and resuming virtual machine states for

extremely convenient testing, although it is by no means necessary for the

development process.

3.4.2. DTN Reference Implementation

To be able to run the daemon on a host, an instance of the DTN reference

implementation needs to be running on the same host, as well as a set of

libraries required by the daemon and the DTN. The compilation, installation and

configuration procedures for the DTN reference implementation are sufficiently

well documented elsewhere [33] and repeating such instructions here makes

3. DESIGN AND IMPLEMENTATION

 36

little sense. Likewise, installation of the libevent library is a fairly straightforward

procedure and sufficient guidance is provided with the release.

DTN reference implementation needed to be configured for various options

before it could be used. The implementation uses databases as a backend for

bundle storage; Berkeley DB was chosen as the easy and lightweight option.

Nodes were given simple addresses using the format dtn://[hostname].dtn.

Routing between DTN daemons using such unusual addressing was done

using static one-way routes, configured into the DTN configuration file, with IP

address information coupled with the dtn address entry and TCP convergence

layer links defined between DTN nodes. As for bundle transmission, the

reference implementation specifies payload types of either “memory” or “file”

when using the DTN API. For this work, memory-type payloads were used to

avoid unnecessary file operation overheads. Maximum bundle size for memory-

type payload was defined as 50000 bytes in the implementation code, so

bundle size used in the relay protocol implementation was chosen to be 48 KiB.

3.4.3. Implementation Architecture

The prototype implementation performs several functions and provides data

types and structures for handling all associated protocol data. A rough overview

of the organization of these structures follows.

• Endpoint connections are stored in connection tables. There are two

connection tables: one for storing client-to-proxy connections and

another for storing proxy-to-client connections. These are fixed-size

pointer tables with necessary management functions for keeping track of

active endpoint connections.

• A data structure is defined for containing all relevant data pertaining to a

single endpoint connection. This endpoint data structure gathers all the

individual variables and other related items required for managing bundle

transfer between the client-proxy pair. These items include endpoint IP

addresses and port numbers, sequence numbers, socket identifiers and

3. DESIGN AND IMPLEMENTATION

 37

buffers for storing unacknowledged or out-of-order bundle data, and

event instances for event management.

• Data for individual bundles is stored in a buffer structure which contains a

memory block for data and necessary variables for keeping track of data

size, sequence numbers and such necessary protocol information.

• Buffers are implemented as double-linked lists of bundle buffer structs.

One is needed for bundles sent over the DTN link and another for

received bundles.

• Event management is handled by an event base (implemented in the

external libevent library) into which events are registered.

• Events are information structures which define an event type (read, write,

timeout), associated socket and callback function used for handling the

events.

• Finally, the DTN-API provides a socket-like descriptor for the DTN

connection and necessary functions for bundle management, reception

and transmission.

Following is a rough description of the most important functional blocks of the

implementation as well as their responsibilities. It also provides a general

understanding of the program flow in normal operation.

• The main loop initializes the DTN-API interface, sets up the event handler

base, establishes a server port for listening for incoming connectionsfrom

endpoints, sets up all the necessary event structures, connection tables

and such and starts the event loop.

• A callback function for events associated with the server port is run when

endpoints connect to the server port. This callback accepts the incoming

connection and initializes all relevant endpoint data structures described

earlier.

• A callback function for reading data from a socket associated with an

endpoint connection is executed when data arrives at such a socket. This

callback performs SOCKSv5 negotiation at the client entity, and at both

3. DESIGN AND IMPLEMENTATION

 38

daemon entities, accepts and stores incoming data into a bundle buffer.

If the buffer fills, it dispatches the bundle for delivery by setting up a dtn

write event, and if not, sets up a bundling timeout event for triggering

bundle transmission.

• A callback function for writing data to the DTN handle is executed when

there is a data buffer pending packaging into a bundle and transmission

over the DTN link. It also manages sending of acknowledgements and

retransmission requests to the other daemon when such transmissions

are triggered.

• A callback function for reading data from the DTN handle is executed

when a bundle arrives at a daemon. This callback function parses the

information in bundle headers and initializes and establishes endpoint

connections at the proxy daemon. It manages incoming bundle buffer

space, monitoring for lost or out-of-order arrivals of bundles, setting up

retransmissions requests when necessary, and triggers write events to

endpoint sockets when it has more data to be relayed to an endpoint. It

also reacts to retransmission requests as well as to acknowledgements,

freeing obsolete buffers as they get acknowledged by the other daemon.

• A callback function for writing data to endpoint is executed when daemon

decides there is data to be relayed to the endpoint. The callback sends

data from the incoming bundle buffer to the endpoint, freeing old buffer

space after successful delivery and triggering acknowledgements when

necessary.

• In addition to these main building blocks, there are callbacks for different

timeouts, such as the bundling timeout, which triggers data bundling if no

data is received in a while and bundle still has available space.

• There are also other functions for option parsing, writing bundle headers

into data buffers, for socksification, endpoint connection establishment

and for printing diagnostics as well as for managing data structures.

While necessary, they are not focal points of protocol operation and are

not covered in deeper detail here.

3. DESIGN AND IMPLEMENTATION

 39

The descriptions above avoid are not excessively detailed but instead provide a

general outline of the implementation functionality, as the details in any case

are subject to constant change and evolution as the code matures.

3.4.4. Design Issues Specific to Implementation

As mentioned before, certain aspects of implementation functionality concern

less the communication protocol than the circumstances in which it operates. It

makes arguably little sense for the protocol to concern itself with such external

factors, and so there problems must be solved in some way or another by the

implementation itself. Here such problems are considered to be the detection of

connectivity and symmetric operation between daemons. Consideration of

these topics follows.

3.4.4.1. Connectivity Detection

The DTN connection is inherently unreliable and may go down at any given

moment. During a connection outage, sending anything through DTN is useless

so sensible daemons should refrain from sending anything until connectivity is

restored. However, this brings forth the problem of how to detect connection

losses – and restorations.

There are two basic options for detecting outages: either using local resources

or by sending periodic probes to the other daemon. In the first case, daemon

might communicate with the host OS and try to detect network connection

states and act accordingly. This option is not straightforward, as the host OS

configuration is not uniform in different daemon instances, e.g. there might be

different access network interfaces – or a different host OS altogether. Besides,

this method only works if the disconnection-prone interface actually resides

within the same host as the daemon. On the other hand, this approach would

not generate excess traffic and would probably be quick to respond to

connection state changes, of course depending on the underlying OS

mechanisms.

3. DESIGN AND IMPLEMENTATION

 40

The other option for outage detection is quite straightforward: daemons sending

probe bundles to each other at regular intervals. Connection outages could then

be detected with only a modest delay if a daemon stops receiving bundles from

the other daemon. This approach generates some extra traffic on the network.

Also, if bundles are being sent in any case to detect connectivity, those bundles

might just as well be given a useful payload. Probe bundles could also get lost

or delayed, possibly introducing additional complications to operation. A proxy

daemon communicating with several client daemons also involves receiving

several probes and generating replies to each probe, leading to possible

scalability issues.

A further development of this latter approach would be to monitor incoming

bundles from the other daemon and compare it to existing connection table. Not

receiving any bundles from any given daemon could be indicative of a

connection loss. Furthermore, suppose a client endpoint is the only

communicating entity served by a client daemon, and is downloading a large

file, thus sending nothing else than acknowledgements to the proxy daemon. In

such an instance, the first symptom of a connection loss is a lack of

acknowledgements from the client side and subsequent filling of the

transmission buffer at the proxy side. Having the proxy keep track of time

between arriving bundles will bring little benefit to the scenario.

In conclusion, no specific measures for detecting connectivity events will be

implemented at least in the initial prototype. Actual performance of the prototype

might provide clues to whether such a mechanism will be needed in possible

later implementations.

3.4.4.2. Symmetric Operation

Keeping the daemon symmetric is fairly simple, with some assumptions about

operating environment. Given the architecture specified in CHIANTI, there is an

assumption of client-proxy functionality model and connections tend to be

initialized by the client side. Another assumption is that each proxy serves

3. DESIGN AND IMPLEMENTATION

 41

several clients, and client daemons are therefore assumed to communicate with

a single proxy daemon.

With these assumptions, symmetric operation for a daemon is reasonably easy

to achieve: in client mode, daemon has a predetermined proxy daemon entity

for relaying HTTP connections; in proxy mode, it will just have to maintain

separate connection tables according to incoming DTN addresses, as each

arriving bundle will have a source DTN address.

However, a true, generalized symmetry in the sense that proxy daemon should

be able to relay client requests initialized in the Internet side to mobile endpoints

in the access sphere, served by one of its client daemons, is much more

difficult. Mobile clients and even the daemon entities might reside within NATted

private networks. If both endpoints or worse yet both daemon entities reside

behind NATted networks, finding endpoint (or daemon) IP addresses becomes

problematic and demands MobileIP-style application of address tracking agents

within the public Internet, adding considerable complexity to the protocol

architecture and implementation.

Impact of NAT has been considered in CHIANTI project and documented in

several deliverables (D1.2, D3.1); the CHIANTI architecture itself assumes that

connections between CHIANTI components must be client-initiated and that

proxies reside within publicly reachable Internet. This also implies that endpoint

connections are always initiated from within NATted networks. With this

specification as the reference guide, this work does not aim to provide

symmetric operation in the strictest sense, but rather within the same scope as

specified in the CHIANTI architecture.

4. TESTING AND MEASUREMENTS

 42

4. Testing and Measurements

To assess the potential usefulness of the DTN reference implementation to the

CHIANTI scenario a testing procedure needs to be defined. While this work is

tentative and implementation of the software daemon immature and likely to

evolve should the initial results be encouraging enough to warrant for further

development. Also, the protocol designed for the HTTP-over-DTN functionality

is minimal and the values chosen for the parameters regulating its performance

lack rigorous analysis and testing, meaning that the protocol performance is

almost assuredly suboptimal. Thus, the focus of the tentative testing is not

rigorous analysis of protocol performance or accurate modeling of typical

Internet experience or environment. Rather, the aim is to perform a simple

series of tests under good conditions in order to assess impact of the DTN

reference implementation to performance compared to plain HTTP traffic.

Subsection 4.1 describes the test setup and procedure for performance testing.

Subsection 4.2 details the focus of the testing procedure and explains the

measurements performed during the testing. Results are presented in the last

subsection 4.3.

4.1. Test scenario and setup

For the test procedure, two Linux hosts running the software daemon and DTN

reference implementation and a web server hosting files are used. The hosts

reside in a LAN environment providing at least 100 Mbps transfer infrastructure

between them, and the web server resides in the Aalto University network. This

setup provides high transfer capacity and minimal delay and jitter environment,

minimizing the impact of network conditions to the transfer performance.

Unfortunately, available resources did not allow for a completely isolated test

environment, as both the local LAN and especially the university server and its

hosting network are subject to a degree of continuous network traffic which will

be visible as minor fluctuations of performance. However, in general, network

4. TESTING AND MEASUREMENTS

 43

environment in the test setup can be considered close to ideal, considering the

tentative nature of testing at this point.

One of the hosts is a desktop computer running the proxy daemon, the other

host is a laptop running the client daemon. The laptop then runs the test scripts,

relaying HTTP requests over the DTN link to the desktop host, which forwards

the requests to the web server. The basic idea of the test scripts is to use wget,

a simple program designed to perform file retrieval using HTTP, to download

test files from a web server, first over plain HTTP, then through a DTN link using

the software daemon as an HTTP proxy. Testing is done in several phases.

The first phase of the testing involves the transfer of a single large file of around

50 MiB from the web server. Downloading the file using wget with plain HTTP

first gives a benchmark value for performance in ideal conditions, which acts as

a reference when assessing file transfer performance of wget using DTN.

Several runs are made using the DTN link, with the HTTP-DTN adaptation

protocol configured with different values of protocol parameters. This is to

perform a coarse tuning of the protocol parameters to gain some insight of their

impact on performance and possibly to minimize the impact by selecting

reasonable values.

The second phase of the testing procedure is done after achieving results from

the first phase of testing and it is a simplified adaptation of the procedure used

for actual CHIANTI performance testing as described in CHIANTI Deliverable

D5.2 [34]. Wget is provided resource files which contain URLs pointing to test

files. Test files are generated in different sizes, in an exponentially increasing

sequence beginning with one kibibyte (1 KiB = 210 bytes = 1024 bytes) and

increasing in size by a factor of two, i.e. 2 KiB, 4 KiB, … , 1 MiB, 2 MiB.

Requests are generated using exponential distribution with a mean value of 300

KiB, rounded to the nearest test file size, i.e. 300 KiB request translates to

downloading the 256 KiB test file, while a 400 KiB request translates to the 512

KiB test file. Once again, testing is done first with wget using plain HTTP, then

using the DTN link.

4. TESTING AND MEASUREMENTS

 44

The final phase of testing involves creating artificial latency to network traffic

between the proxy daemon and the web server. By introducing fixed latencies

of various sizes to the connection between the proxy and the web server,

observations about the latency caused by the DTN software can be made by

first fetching a file of given size with wget through the delayed network without

the DTN software in-between and then by fetching the same file with wget

through DTN, and then comparing measured values of latency. By repeating

measurements for different values of bundling timeout in the software daemon,

more information about the impact of bundling timeout and TCP convergence

layer mechanisms to latency can also be gained.

To evaluate the “real-life” performance of the DTN implementation and relay

protocol from user perspective, some browser testing is also performed simply

by browsing through some web pages with and without DTN enhancements and

observing the subjective user experience in both cases.

4.2. Measurements

Testing phase one concerns itself mostly with the performance of the DTN

transfer and the software daemon with different operating parameters. As such,

the most important metric is the data throughput rate, i.e. the rate at which user

receives files from the web servers. Throughput rate is reported by the wget at

the end of each download and is used for performance assessment.

It would be illustrative to measure also the actual data transfer rate of the DTN

link, but this is difficult as the DTN API does not provide access to read actual

bundle or bundle header sizes and thus estimating the overhead in data transfer

is difficult without painstaking analysis of all captured network traffic in the DTN

link. The order of magnitude of overhead induced by the adaptation protocol

can be easily estimated. In ideal conditions with no retransmissions it is very

small, i.e. 24 bytes per bundle – around 0.05% for a 48 KiB bundle, and is

certainly much less than the overhead from bundle headers. Acknowledgement

bundles incur further overhead, but with ACK bundle sizes upwards of 12 bytes

and one ACK sent for e.g. every four bundles this overhead too is next to

4. TESTING AND MEASUREMENTS

 45

meaningless for large bundle sizes. In any case, as the emphasis on testing is

on getting qualitative results for indicators of development potential, therefore

rigorous measurement of all possible overhead influence is not considered

essential here.

For the first test run, the 50MiB target file is fetched with wget. Wget reports

transfer rate for the file after a successful download, this value is used as a

reference value for DTN test runs.

Daemon is configured to use different values of bundle buffer sizes: 8, 16, 24

and 32 bundles per connection. For each buffer size configuration, three sets of

test runs are performed, each run using a different value for bundling timeout,

i.e. the interval of time during which the daemon will wait for further incoming

endpoint data before sending the current bundle. Timeout values of 10, 100 and

1000 milliseconds are used. For each run, the 50MiB target file is downloaded

five times to be able to calculate an average value. Being a performance test,

the highest throughput value for each run is also recorded as perhaps the better

indicator of what the DTN implementation is capable of.

For the second stage of testing, ten different batches of exponentially

distributed file sizes are downloaded with wget, first without and then with DTN

software. This time, test runs are repeated with different values for bundling

timeout to estimate their effect on transferring smaller files; the expectation is

that in the first phase, bundling timeout should have little effect on the

throughput rate of a file considerably larger than bundle size of 48 KiB used. In

effect, only the last bundle should suffer from bundling timeout, as all earlier

bundles should fill up with data at the same (high) rate as the plain wget is able

to download the file. In the second phase, file sizes are closer to and even less

than bundle size, and bundling timeout should have a clear impact on

throughput rates.

Each run is repeated ten times for each bundling timeout value, timeout values

are 10, 25, 50, 100, 250, 500 and 1000 milliseconds. Wget logs are examined

4. TESTING AND MEASUREMENTS

 46

for reported throughput rates for each file size, of these, minimum, maximum

and average values are then recorded.

Last testing stage involves fetching files over a connection subject to increasing

delay in order to provide further information on the effect of DTN on latency.

Some of the applications used by mobile users might well be delay-sensitive,

and so it is all the more desirable to keep additional latency introduced by

service enhancements as low as possible. At the basic scenario, delay between

the proxy daemon and the web server is about one millisecond. Single file is

then fetched with wget, first 1 KiB and 32 KiB files, which fit well in a single

bundle, and then 64 KiB and 1 MiB files, which involve sending two or more

bundles, are fetched. A test script will record timestamp with sufficient accuracy

before running wget and another one immediately after wget completes. Same

files are then downloaded through DTN software with TCP convergence layer,

using different bundling timeout values of 10, 100 and 1000 milliseconds. Each

download is repeated five times, and the procedure is repeated for increased

delay values of 10, 100 and 1000 milliseconds. It is assumed that delays

incurred by factors independent of delay such as script processing remain

approximately constant between different runs. The differences in timestamp

values recorded can then be compared to find the extra latency due to DTN

implementation for each test case.

5. RESULTS

 47

5. Results

Downloading the 50 MiB test file with plain wget (no DTN), wget reported

average throughput rate of 10.63 MB/s, with maximum reported throughput

value being 11.02 MB/s. Considering underlying 100 Mbps switched Ethernet

LAN, this is fairly close to full utilization of the network; 11.02MB/s = 88.16

Mbps, some bandwidth is wasted on the protocol overheads from Ethernet

framing, TCP/IP headers and HTTP messages.

Table 1 below shows throughput rates for the 50 MiB file downloaded through

DTN software, as reported by wget.

Table 1: Wget throughput downloading 50 MiB file us ing DTN

 Bundling timeout (ms)

Buffer size 10 100 1000

8 – avg 644.91 kB/s 620.42 kB/s 577.41 kB/s

8 - max 744.75 kB/s 818.80 kB/s 591.35 kB/s

16 – avg 1.06 MB/s 1.17 MB/s 1.18 MB/s

16 – max 1.18 MB/s 1.24 MB/s 1.22 MB/s

24 – avg 1.29 MB/s 1.31 MB/s 1.24 MB/s

24 – max 1.53 MB/s 1.51 MB/s 1.36 MB/s

32 – avg 1.20 MB/s 1.21 MB/s 1.18 MB/s

32 – max 1.34 MB/s 1.41 MB/s 1.33 MB/s

The resulting throughput values do not compare favourably to the plain wget

case; with DTN in place, throughput rate in the best case – 1.53 MB/s for 24

bundle buffer, 10 ms bundling delay – corresponds to about 14% of the best

case without DTN. Furthermore, best results are achieved when 24 bundle

buffer size is used – given 48 KiB maximum bundle size this would correspond

to 1152 KiB of memory needed for buffering – per client connection.

To better assess the effects of bundling timeout to throughput in the second

phase of testing, test results for files larger spanning more than one bundle are

examined. As mentioned before, bundle size used was always 48 KiB.

5. RESULTS

 48

For file sizes of 64 KiB and above, reported reference throughput results for

plain wget are presented in the table 2 below. Values of throughput are given in

MB/s as reported by wget. Minimum and maximum values were originally

included to give some idea of performance fluctuations in the network.

Corresponding reported throughput rates for same file sizes, downloaded

through DTN, are presented in tables 3 through 9 below for bundling timeout

values of 10, 25, 50, 100, 250, 500 and 1000 ms respectively.

Table 2: Reference values for throughput, plain wge t

Throughput File size

(in MB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB

-average 9.52 10.02 10.26 10.43 10.69 10.31

-min 8.67 7.41 8.96 7.79 9.27 8.83

-max 9.97 10.75 10.85 11.02 10.97 10.92

Table 3: Throughput for wget through DTN, bundling delay 10 ms

Throughput File size

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB

-average 620.43 565.64 430.58 545.73 637.92 713.89

-min 424.68 436.37 382.40 408.26 459.07 621.24

-max 1100.00 828.54 523.63 658.36 812.34 841.20

Table 4: Throughput for wget through DTN, bundling delay 25 ms

Throughput File size

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB

-average 636.73 582.90 439.68 553.62 661.63 701.69

-min 380.39 437.03 351.90 410.84 430.50 604.80

-max 1190.00 891.56 541.35 740.41 833.46 759.42

5. RESULTS

 49

Table 5: Throughput for wget through DTN, bundling delay 50 ms

Throughput File size

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB

-average 543.04 552.43 430.57 569.85 675.48 765.81

-min 408.64 446.36 377.13 433.12 504.74 665.93

-max 1040.00 711.06 501.88 723.91 919.30 833.24

Table 6: Throughput for wget through DTN, bundling delay 100 ms

Throughput File size

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB

-average 405.58 466.02 416.46 565.23 705.78 810.42

-min 302.99 379.31 354.08 406.04 460.33 647.23

-max 756.34 576.88 484.05 705.97 901.48 919.38

Table 7: Throughput for wget through DTN, bundling delay 250 ms

Throughput File size

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB

-average 196.78 284.21 362.72 456.14 547.64 646.12

-min 164.30 236.02 322.73 372.64 448.32 576.35

-max 246.92 328.22 412.41 542.30 664.53 709.09

Table 8: Throughput for wget through DTN, bundling delay 500 ms

Throughput File size

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB

-average 110.84 185.83 270.02 386.80 536.71 569.57

-min 101.08 169.78 231.86 318.18 378.58 401.46

-max 123.01 207.01 300.73 446.77 621.08 678.62

5. RESULTS

 50

Table 9: Throughput for wget through DTN, bundling delay 1000 ms

Throughput File size

(in KB/s) 64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB

-average 59.24 106.76 176.67 278.71 420.70 564.19

-min 55.46 100.75 156.05 244.75 343.07 510.39

-max 62.29 121.16 193.35 305.82 460.39 595.10

The results of measurements are summarized in the graph presented in figure 8

below.

Phase 2 results

0.00
100.00
200.00
300.00
400.00
500.00
600.00
700.00
800.00
900.00

64 KiB 128 KiB 256 KiB 512 KiB 1 MiB 2 MiB

File size

T
hr

ou
gh

pu
t (

K
B
/s

) Delay 1000ms

Delay 500ms

Delay 250ms

Delay 100ms

Delay 50ms

Delay 25ms

Delay 10ms

Figure 8: Graph summary of measurement results for phase 2.

From the results some insight to the effects of DTN implementation overhead

may be gleaned. As expected, the reference throughput rates for plain wget

downloads are high and comparable to plain wget performance in the first

phase of testing. The effect of bundling delay to throughput is obvious, as

smaller files are concerned – with 64 KiB files, increasing bundling delay from

10 to 1000 ms drops throughput rate to 10%. However, even with smaller

values for bundling delay and larger files throughput remains somewhat

disappointingly low, being less than 1 MBps even in the best case. Furthermore,

5. RESULTS

 51

throughput performance is best for larger files, as is expected. However, file

objects in the Internet on the average tend to be smaller, of the order of tens or

hundreds of kilobytes rather than of megabytes.

A closer examination of the reported throughput values reveals that, somewhat

unexpectedly, 64 KiB files have experienced a better throughput rate than some

of the larger files. This seems counterintuitive at first, as smaller files comprising

of fewer bundles should be impacted more by the bundling delay, as it should

only affect transmission of the last bundle and the proportionate effect of the

bundling delay should be greater than with larger files. However, another

observation is that 64 KiB files have only experienced better throughput rates

for the lowest values of bundling timeout, and fluctuation between minimum and

maximum throughput rates is large. Most likely this is a combination of effects of

web server load and too aggressive bundling timeout causing transmission of

extra bundles and thus extra latency; for larger files and longer bundling

timeouts throughput fluctuations decrease, with bundling timeout of 100 ms

providing best throughput measurements for larger files and only a slight

decrease of throughput performance for smaller files.

The final set of measurements was designed to provide further information on

the effect of DTN implementation and TCP convergence layer on latency.

Tables 10 to 13 below list for each file size used latency in milliseconds for

different combinations of (simulated) transmission delay and bundling delay.

The bottom three rows of each table also list reference values for series of plain

wget downloads. Different file sizes were chosen as 1 KiB, 32 KiB, 64 KiB and

1MiB. Smaller file sizes were chosen because they should fit into a single

bundle, allowing for a better estimation of the effect of bundling delay to latency,

while larger file sizes were chosen to provide better estimation of effects of DTN

implementation and TCP convergence layer operations on latency.

5. RESULTS

 52

Table 10: Latency for downloading a single file, si ze 1 KiB

Bundling Delay (ms)

Timeout 1 10 100 1000

10 – avg 173.3 190.4 352.7 2163.2

10 – min 157.8 162.1 345.8 2134.4

10 – max 192.2 231.4 375.4 2208.8

100 – avg 331.0 348.6 531.9 2670.5

100 – min 326.0 344.3 516.3 2319.0

100 – max 343.5 361.1 559.2 3672.5

1000 – avg 2131.0 2173.0 2332.3 4154.4

1000 – min 2120.8 2152.7 2318.1 4127.5

1000 – max 2145.1 2199.0 2364.2 4212.7

Ref – avg 15.2 36.7 216.6 2018.3

Ref – min 8.2 28.5 214.6 2016.7

Ref – max 33.3 49.7 217.5 2024.1

Table 11: Latency for downloading a single file, si ze 32 KiB

Bundling Delay (ms)

Timeout 1 10 100 1000

10 – avg 179.6 219.6 659.4 5152.4

10 – min 157.8 203.1 641.3 5142.4

10 – max 208.2 240.7 679.6 5169.4

100 – avg 330.3 392.9 833.5 5329.9

100 – min 328.8 376.1 831.0 5320.3

100 – max 331.3 417.0 836.2 5352.0

1000 – avg 2143.7 2195.9 2635.5 7150.9

1000 – min 2127.4 2182.4 2629.3 7136.3

1000 – max 2179.0 2227.7 2649.4 7169.2

Ref – avg 23.3 68.3 526.7 5026.7

Ref – min 14.7 67.3 525.4 5025.9

Ref – max 39.7 69.5 528.5 5027.4

5. RESULTS

 53

Table 12: Latency for downloading a single file, si ze 64 KiB

Bundling Delay (ms)

Timeout 1 10 100 1000

10 – avg 259.6 278.0 763.6 6150.0

10 – min 241.0 265.9 752.5 6143.0

10 – max 284.6 320.3 797.1 6158.1

100 – avg 396.3 444.9 929.9 6339.0

100 – min 393.1 416.7 918.4 6322.9

100 – max 399.0 504.6 941.7 6379.3

1000 – avg 2217.5 2234.8 2729.6 8129.8

1000 – min 2199.9 2223.5 2725.7 8123.0

1000 – max 2237.3 2267.6 2733.8 8133.0

Ref – avg 23.2 79.7 627.1 6027.2

Ref – min 15.4 76.5 621.8 6021.7

Ref – max 32.3 88.0 636.4 6036.7

Table 13: Latency for downloading a single file, si ze 1 MiB

Bundling Delay (ms)

Timeout 1 10 100 1000

10 – avg 734.0 873.4 2534.9 22187.5

10 – min 621.7 795.5 2502.3 21175.3

10 – max 849.6 994.1 2608.2 26179.3

100 – avg 957.0 1055.2 2628.1 21355.9

100 – min 853.7 918.7 2597.5 21344.3

100 – max 1118.3 1193.6 2656.6 21362.2

1000 – avg 2687.1 2895.7 4418.3 23241.7

1000 – min 2651.1 2776.6 4385.0 23200.8

1000 – max 2732.9 3052.2 4448.6 23269.9

Ref – avg 118.2 263.7 2153.0 21052.8

Ref – min 107.6 256.0 2147.7 21046.0

Ref – max 144.7 274.8 2160.3 21058.2

5. RESULTS

 54

Observing data gathered while downloading the 1 KiB file provides a good

starting point to estimate the inherent delay inflicted by the DTN software, as it

should involve sending only one bundle after bundling timeout has triggered. By

subtracting from the measured latency twice the value of bundling delay (which

takes place both at the client daemon as the initial endpoint request arrives and

at the proxy daemon which receives the file from the other endpoint) and the

reference value a rough estimate for DTN-induced latency can be obtained.

From this, the increase in latency is around 130 ms for one bundle. Repeating

the calculation for all values of 1, 10, 100 and 1000 ms of transmission delay

yields latency values of 138.1, 133.7, 116.1 and 124.9 ms respectively. Further

repetition of the same calculation for increasing bundling delays yields similar

values for most cases. Earlier measurements show reduced throughput rates

for traffic carried by DTN, at this point it is difficult to determine the degree of

extra latency caused by decreased throughput and that caused by bundling

overhead itself.

Results from the 1 MiB file transfer provide other possibilities for performance

assessment. TCP performance typically begins to deteriorate as latency

increases; comparing plain transfers of 32 KiB and 64 KiB files over a delay of

1000 ms, file transfer operation takes about 1000 ms longer to complete –

yielding throughput rate of about 240 kbps. Same comparison for 1 KiB and 1

MiB files shows that transferring about 1 MiB of data over a 1000 ms delay

takes about 19 seconds longer, which means throughput of approximately 440

kbps – significantly less than throughput DTN has earlier proved capable of.

With the long-delay transfers DTN is no longer a bottleneck; now, a closer

examination of their measured latencies is in order. In fact, comparing every

latency value for DTN transfers with the respective reference value reveals that

in nearly all cases, the difference in latency is just over 100 ms – very close to

the latencies around 130 ms calculated for 1 KiB file transfer. This would

suggest that DTN implementation and its TCP convergence layer mechanism

combined with the relay protocol implementation have a characteristic latency of

around 100 ms. Sources of this latency include TCP connection establishment

5. RESULTS

 55

of the TCP convergence layer and bundle handling and management. The DTN

reference implementation uses a database backend for bundle storage, quite

likely a major source of latency. However, more accurate breakdown and

analysis of component effect on latency requires more extensive and carefully

designed measurements.

The induced extra latency is quite acceptable for bulk traffic transfers. For the

more delay-critical real-time applications addition of another 100+ milliseconds

of latency is potentially much more disruptive. Of course, on top of this, delay

due to bundling timeout has to be added for every message which fails to fill a

bundle, further increasing the negative impact.

Final browser testing supplies no additional quantitative results here, nor was it

meant to do so. The most important result of browser testing was that the relay

protocol actually managed to relay real web traffic. Subjective comparison of

user experience between normal browsing and browsing through DTN was that

browsing through DTN was perceptibly more sluggish than normal browsing,

especially so when browsing web pages over high-capacity, low-delay network

connection. In light of the more quantitative results gained earlier this is not

surprising. However, while browsing through DTN was slower than plain

browsing, degradation of service was fairly light even in worst cases and at no

point could be considered unacceptable for normal use.

6. CONCLUSIONS

 56

6. Conclusions

This work set out to test the potential usefulness and applicability of the DTN

reference implementation for the purposes and goals set in the CHIANTI

project, designing and implementing a simple protocol for multiplexing endpoint

HTTP connections over a DTN link provided by said reference implementation.

Simple measurements of key performance values of DTN communication have

been performed in order to form an initial assessment of its usefulness to the

project.

DTN is a communication architecture designed for robust communication over

communication environment difficult to the extreme. As such, high throughput

and low delay performance are not critical in a store-and-forward architecture,

which also reflects on performance of the DTN reference implementation.

The performance measurement results for the DTN reference implementation

using TCP convergence layer mechanisms coupled with the simple HTTP relay

protocol implementation developed for this work compared with performance

measurement without the DTN software have provided some insights to its

performance in different conditions with respect to increased latency and

decreased throughput.

Results show increased latency of at least 100 ms plus bundling delay and

maximum achieved throughput of around 12 Mbps. Best performance values

are achieved for relatively large files and for bundling delay value of 100ms.

Qualitative browser testing has proved the concept workable in practice as well,

extra latency not being too disruptive for casual use. The limited throughput is

enough for serving a limited amount of users in a vehicle, and will saturate a 3G

or a 11 Mbps 802.11b wireless uplink, although not a 54 Mbps 802.11b/g or a

WiMAX link. All in all, the DTN reference implementation is useful, if not optimal.

Now that a prototype CHIANTI-compliant HTTP-over-DTN module has been

developed and tested, trial integration with CHIANTI architecture remains to be

done. With a DTN module place in a CHIANTI FlexProxy, final evaluation of its

6. CONCLUSIONS

 57

capabilities and usefulness could be made, possibly along with performance

comparison against CHIANTI core tunneling modules. Before such comparison,

it is worth investigating how much performance of the DTN implementation can

be improved.

Performance of the DTN reference implementation suggests potential for future

improvements, especially with regard to throughput. Investigating latency and

throughput performance of UDP convergence layer is another possible option,

as well as exploring effect of different database backends on performance.

Furthermore, there are other lightweight, scaled-down DTN implementations in

existence, such as the IBR-DTN; they might well perform better than the

reference implementation and comparing their performance with the results

gained here would be interesting.

Effects of factors such as bundling timeout, delay, buffer and file sizes to overall

performance having now been briefly investigated, refinement of the HTTP relay

protocol and its implementation also hold promise for improving performance.

The prototype protocol implementation is rather crude, with emphasis on quick

testing rather than optimal performance. Future versions of the protocol could

experiment with adaptive bundling delay and bundle size depending on latency,

duration, and possibly even jitter of an endpoint connection.

This work has been a case study of applying the DTN reference implementation

to mobile Internet. A protocol for relaying HTTP traffic in bundles has been

specified and implemented and its performance measured and results reported,

with some suggestions for future work and improvements, for which this thesis

should provide a useful basis.

 58

References

[1] Saltzer, J, Reed, D, Clark, D. D; End-to-End Arguments in System

Design. Second International Conference on Distributed Computing

Systems, pages 509-512, April 1981

[2] Perkins, C; RFC 3344: IP Mobility Support for Ipv4, 2002;

http://www.ietf.org/rfc/rfc3344.txt (24.4.2010)

[3] Johnson, D, Perkins, C, Arkko, J; RFC 3775: Mobility Support in Ipv6,

2004; http://www.ietf.org/rfc/rfc3775.txt (24.4.2010)

[4] Moskowitz, R, Nikander, P, Jokela, P, Henderson, T; RFC 5201: Host

Identity Protocol, 2008; http://www.ietf.org/rfc/rfc5201.txt (24.4.2010)

[5] Schütz, S, Eggert, L, Schmid, S, Brunner, M; Protocol Enhancements

for Intermittently Connected Hosts; ACM SIGCOMM Computer

Communication Review; 2005

[6] Snoeren, A. C, Balakrishnan, H; An End-to-End Approach to Host

Mobility; Mobicom ’00; 2000

[7] ISC Internet Domain Survey, Jan 2009;

http://ftp.isc.org/www/survey/reports/2009/01 (24.4.2010)

[8] Kempe, G, Hutchinson, N. C; Networks without Borders:

Communication despite Disconnection; IEEE AICT/ICIW 2006; 2006

[9] Mao, Y, Knutsson, B, Lu, H, Smith, J. M; DHARMA: Distributed Home

Agent for Robust Mobile Access; IEEE INFOCOM 2005; 2005

[10] Ott, J, Kutscher, D; A Disconnection-Tolerant Transport for Drive-thru

Internet Environments; IEEE INFOCOM 2005; 2005

[11] A. Seth, S. Bhattacharyya, S. Keshav; Application Support for

Opportunistic Communication on Multiple Wireless Networks; 2005

http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/05/ocmp.pdf

(24.4.2010)

 59

[12] Cerf, V, Burleigh, S, Hooke, A, Torgerson, L, Durst, R, Scott, K, Fall, K.

Weiss, H; RFC 4838: Delay-Tolerant Networking Architecture, 2007;

http://www.ietf.org/rfc/rfc4838.txt (24.4.2010)

[13] Delay Tolerant Networking Research Group website;

http://www.dtnrg.org/wiki (24.4.2010)

[14] Saturn Observation Campaign India website: Saturn – Earth facts;

http://soc06.tripod.com/id11.html (24.4.2010)

[15] Scott, K, Burleigh, S; RFC 5050: Bundle Protocol Specification, 2007;

http://www.ietf.org/rfc/rfc5050.txt (24.4.2010)

[16] Berners-Lee, T, Fielding, R, Masinter, L; RFC 3986: Uniform Resource

Identifier (URI): Generic Syntax, 2005; http://www.ietf.org/rfc/rfc3986.txt

(24.4.2010)

[17] SourceForge website; http://sourceforge.net (24.4.2010)

[18] Doering, M, Lahde, S, Morgenroth, J, Wolf, L; IBR-DTN: An Efficient

Implementation for Embedded Systems, 2008;

http://chants.cs.ucsb.edu/2008/papers/p-4.pdf (24.4.2010)

[19] CHIANTI project website; http://www.chianti-ict.org/ (24.4.2010)

[20] European Commission CORDIS Seventh Framework Programme

website; http://cordis.europa.eu/fp7/home_en.html (24.4.2010)

[21] Seifert, N; Description of Use Cases and Scenarios; CHIANTI project

Deliverable D1.1, 2008; http://www-rn.informatik.uni-

bremen.de/chianti/public/chianti-D1.1.pdf (24.4.2010)

[22] Seifert, N; Operational and User Requirements; CHIANTI project

Deliverable D1.2, 2008; http://www-rn.informatik.uni-

bremen.de/chianti/public/chianti-D1.2.pdf (24.4.2010)

[23] Ylikoski, P, Ott, J; System Architecture; CHIANTI project Deliverable

D3.1, 2008; http://www-rn.informatik.uni-

 60

bremen.de/chianti/public/chianti-D3.1.pdf (24.4.2010)

[24] Bergmann, O; Protocol Specification; CHIANTI project Deliverable

D2.4, 2009; http://www-rn.informatik.uni-

bremen.de/chianti/public/chianti-D2.4.pdf (24.4.2010)

[25] Leech, M, Ganis, M, Lee, Y, Kuris, R, Koblas, D, Jones, L; RFC 1928:

SOCKS Protocol Version 5, 1994; http://www.ietf.org/rfc/rfc1928.txt

(24.4.2010)

[26] Wood, L, Eddy, W. M, Holliday, P; A Bundle of Problems, 2009;

http://personal.ee.surrey.ac.uk/Personal/L.Wood/publications/wood-

ieee-aerospace-2009-bundle-problems.pdf (24.4.2010)

[27] Debian operating system website http://www.debian.org/ (24.4.2010)

[28] Debian ”Lenny” release information webpage

http://www.debian.org/releases/lenny/ (24.4.2010)

[29] Mercurial source control management tool website

http://mercurial.selenic.com (24.4.2010)

[30] OASYS Project pages hosted at SourceForge website

http://sourceforge.net/projects/oasys/ (24.4.2010)

[31] Libevent – en event notification library website

http://www.monkey.org/~provos/libevent/ (24.4.2010)

[32] VMware Workstation product page at VMware website

http://www.vmware.com/products/workstation/ (24.4.2010)

[33] DTN2 Manual Table of Contents webpage hosted at SourceForge

http://dtn.sourceforge.net/DTN2/doc/manual/index.html (24.4.2010)

[34] Bergmann, O, Gerdes, S; Final Trial Report; CHIANTI project

Deliverable D5.2, 2010; http://www-rn.informatik.uni-

bremen.de/chianti/public/chianti-D5.2.pdf (24.4.2010)

