
Jan Gröndahl

Implementation and Evaluation of a
Network Element Control Protocol

Faculty of Electronics, Communications and Automation

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 24.5.2010

Thesis supervisor:

Professor Andrei Gurtov

Thesis instructor:

M.Sc. (Tech.) Olli-Pekka Lamminen

A! Aalto University
School of Science
and Technology

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/80702238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

aalto university

school of science and technology

abstract of the

master's thesis

Author: Jan Gröndahl

Title: Implementation and Evaluation of a Network Element Control Protocol

Date: 24.5.2010 Language: English Number of pages:11+77

Faculty of Electronics, Communications and Automation

Department of Communications and Networking

Professorship: Data communications software Code: T-109/T-110

Supervisor: Professor Andrei Gurtov

Instructor: M.Sc. (Tech.) Olli-Pekka Lamminen

This thesis consists of the implementation and evaluation of a network element
control protocol that is used for the communication between the control element
and the forwarding element in a network element in a network operator's core
network. The author has investigated three commonly used dynamic switch control
protocols and one of them is chosen to be implemented in this study. This protocol
is the forwarding and control element separation (ForCES).

In the EU 7th framework program's ETNA project, there has been done some
modi�cations to the IETF speci�ed ForCES protocol: the PATH-DATA-TLV layer
was removed among other type-length-value (TLV) data structure modi�cations.
ETNA has also added extra IDs, data types, event and result codes, and other
values choosing them so that they do not overlap with the values in the IETF
ForCES speci�cation.

The implementation done in this study is a C++ library with 31 classes and
15 436 lines of source code. The code was tested with a test program written by
the author and is working without any known bugs.

The evaluation part of the study consists of memory allocation and message
construction time performance measurements. The test messages with one kilobyte
length and 185 TLVs allocated over 500 % extra memory compared to the message
network length. However, this overhead is proportional to the network length of
the message and will decrease as the length of the TLVs increase. The processing
time for the message construction was linearly increasing, but there was some o�set
time at the beginning of the message processing especially with short messages
with a few TLVs.

In Aalto University, we designed and implemented the control element imple-
mentation of the ForCES protocol and the Ben Gurion University was responsible
for the design and implementation of the forwarding element. Both implementa-
tions were integrated together and there was demonstrated a new co-developed
proof-of-concept core network model.

Keywords: network element, control element, ForCES, Ethernet, carrier grade,
Internet

aalto-yliopisto

teknillinen korkeakoulu

diplomityön

tiivistelmä

Tekijä: Jan Gröndahl

Työn nimi: Erään verkkoelementin ohjausprotokollan toteuttaminen ja sen
arviointi

Päivämäärä: 24.5.2010 Kieli: Englanti Sivumäärä:11+77

Elektroniikan, tietoliikenteen ja automaation tiedekunta

Tietoliikenne- ja tietoverkkotekniikan laitos

Professuuri: Tietoliikenneohjelmistot Koodi: T-109/T-110

Valvoja: Professori Andrei Gurtov

Ohjaaja: DI Olli-Pekka Lamminen

Tämä opinnäytetyö koostuu erään ohjaus- ja välityselementtien väliseen tiedonsiir-
toon käytettävän verkkoelementin ohjausprotokollan toteutuksesta ja arvioinnista.
Tätä ohjausprotokollaa käytetään verkkoelementin sisällä verkko-operaattorin
runkoverkossa. Kirjoittaja on tutkinut kolmea yleisesti käytössä olevaa dynaamista
verkkokytkimen ohjausprotokollaa ja yksi näistä on valittu toteutettavaksi tässä
tutkimuksessa. Tämä kyseinen protokolla on forwarding and control element sep-
aration (ForCES).

Euroopan Unionin seitsemännen puiteohjelman ETNA-projektissa on tehty
IETF:n määrittelystä poikkeavia muutoksia ForCES-protokollaan: PATH-DATA-
TLV-kerros poistettiin sekä muita TLV-tietorakenteita muutettiin projektin
tarpeiden mukaisesti. ETNA on myös lisännyt ylimääräisiä ID-arvoja, tietotyyppe-
jä, tapahtuma- ja tuloskoodeja sekä muita arvoja. Arvot on valittu niin, etteivät
ne mene päällekäin IETF:n ForCES määrittelyjen kanssa.

Tässä tutkimuksessa tehty ohjelmistototeutus on C++-kirjasto, jossa on 31
luokkaa ja 15 436 riviä lähdekoodia. Ohjelmistokoodi on testattu kirjoittajan
tekemällä testiohjelmalla ja se toimii ilman tunnettuja virhetoimintoja.

Tutkimuksen arviointiosuus koostuu muistinvarauksen ja viestin muodostus-
ajan mittaamisesta. Kilotavun mittaiset ja 185 TLV-tietorakennetta sisältävät tes-
tiviestit varasivat yli 500 % ylimääräistä muistia verrattuna viesten nettopituu-
teen. Tämän ylimääräisen muistinkäytön suhteellinen osuus viestien nettopituu-
teen verrattuna kuitenkin pienenee, samalla kun TLV-tietorakenteiden pituus
kasvaa. Viestinmuodostuksen käsittelyaika kasvoi lineaarisesti, mutta mittauksis-
sa havaittiin viestien käsittelyn alussa jonkin verran ylimääräistä käsittelyaikaa
etenkin lyhyillä viesteillä, joissa oli vähän TLV-tietorakenteita.

Suunnittelimme ja toteutimme Aalto-yliopistossa ohjauselementin ForCES-
protokollan toteutuksen ja Ben Gurionin yliopisto Israelissa oli vastuussa välitys-
elementin suunnittelusta ja toteutuksesta. Molemmat toteutukset yhdistettiin ja
demonstroitiin yhdessä kehitettyä uutta runkoverkon mallia.

Avainsanat: verkkoelementti, ohjauselementti, ForCES, Ethernet, operaattorita-
soinen, Internet

Preface

This Master's thesis has been done at the Department of Communications and
Networking in Aalto University School of Technology, Finland. The work was carried
out as a part of the Ethernet Transport Networks, Architectures of Networking
(ETNA) project which was co-funded by the European Commission in the seventh
EU framework program of research and technological development (FP7).

I would like to thank my supervisor, professor Andrei Gurtov and my instructor,
M.Sc. (Tech.) Olli-Pekka Lamminen for their contribution to this Master's thesis.
Thanks also to William Martin for proofreading the �nal version of the manuscript.

I thank the Department of Communications and Networking for provided fund-
ing and a work environment and also my colleagues in ETNA for a nice co-working
atmosphere. I also thank my family for their support and ideas on this thesis.

Otaniemi, 24.5.2010

Jan Gröndahl

iv

Contents

Abstract . ii

Abstract (in Finnish) . iii

Preface . iv

Contents . v

Abbreviations . viii

List of Figures . x

List of Tables . xi

1 Introduction to the Study 1

1.1 Background . 1

1.1.1 Ethernet Transport Networks, Architectures of Networking . . 2

1.1.2 ETNA Network Model . 2

1.1.3 Network Element . 3

1.2 Scope and Structure of the Thesis . 3

1.2.1 Scope . 3

1.2.2 Structure . 4

1.3 Key Terminology . 4

2 Dynamic Switch Control Protocols 6

2.1 Network Switch Constructions . 6

2.2 Protocols Selected for Investigation in the Study 6

2.2.1 Forwarding and Control Element Separation Protocol 7

2.2.2 General Switch Management Protocol 9

2.2.3 OpenFlow Protocol . 10

2.3 Comparison of the Protocols . 11

2.4 Summary and Conclusions . 12

v

3 ForCES Protocol Details 13

3.1 Message Flows . 13

3.1.1 Association Setup State . 13

3.1.2 Association Established State 14

3.2 Message Encapsulation and Structure 14

3.2.1 Common Header . 15

3.2.2 Type-Length-Value Data Structure 17

3.2.3 Identi�er-Length-Value Data Structure 19

3.3 ForCES Messages . 19

3.3.1 Association Messages . 20

3.3.2 Con�guration Messages . 22

3.3.3 Query Messages . 23

3.3.4 Event Noti�cation Message 24

3.3.5 Packet Redirect Message . 24

3.3.6 Heartbeat Message . 25

3.4 Summary and Conclusions . 25

4 ETNA Requirements 26

4.1 Network Element Architecture Overview 26

4.2 Requirements for the ForCES Messages 27

4.3 Summary and Conclusions . 28

5 Software Implementation of the ForCES Protocol 30

5.1 About the Implementation . 30

5.2 Code Structure . 31

5.3 Class Inheritance . 32

5.4 Library Use . 32

5.4.1 ForCES Message Construction 33

5.4.2 ForCES Message Destruction 36

5.4.3 Object Member Variable Accessing Functions 37

5.4.4 Object Validation . 38

5.4.5 Object Length Calculation . 38

5.4.6 ForCES Message Printing . 39

5.5 Development Environment . 39

vi

5.5.1 Platform . 39

5.5.2 Testing and Debugging . 40

5.6 Coding process . 41

5.7 Summary and Conclusions . 41

6 Evaluation of the Implementation 43

6.1 Evaluation Methods . 43

6.2 Performance Measurements . 43

6.2.1 Planning of the Measurements 44

6.2.2 Tools Used in the Measurements 44

6.2.3 Measurement Environment . 45

6.2.4 Measurements with ForCES Test Message 1 45

6.2.5 Measurements with ForCES Test Message 2 46

6.2.6 Measurements with ForCES Test Message 3 47

6.2.7 Measurements with ForCES Test Message 4 48

6.3 Results of the Measurements . 49

6.3.1 Analysis of the Memory Allocations 49

6.3.2 Analysis of the Message Construction Times 50

6.4 Summary and Conclusions . 52

7 Summary and Conclusions of the Study 54

7.1 Summary . 54

7.2 Conclusions . 55

7.3 Future Work . 55

References 56

Appendices 59

A Code Snippets 59

B Test Runs 65

C Numerical Values Used in ETNA 67

D Measurements 72

vii

Abbreviations

2PC Two Phase Commit
ACK Acknowledged
API Application Programming Interface
ASIC Application Speci�c Integrated Circuit
BGU Ben Gurion University of the Negev, Israel
CE Control Element
CP Control Plane
DP Data Plane
ETNA Ethernet Transport Networks, Architectures of Networking
FDB Forwarding Database
FE Forwarding Element
ForCES Forwarding and Control Element Separation
GSMP General Switch Management Protocol
HB Heartbeat
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IF Interface
ILV Identi�er-Length-Value
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ITU International Telecommunication Union
ITU-D ITU, Telecommunication Development Sector
LFB Logical Function Block
MP Management Plane
MPLS Multiprotocol Label Switching
mRSVP Management Resource Reservation Protocol
MS Management System
NE Network Element
OAM Operations, Administration and Maintenance
OOP Object-Oriented Programming
PDU Protocol Data Unit
PL Protocol Layer
QoS Quality of Service
RFC Request For Comments

viii

RSVP Resource Reservation Protocol
RSVP-TE Resource Reservation Protocol � Tra�c Engineering
RSVP-TEEth Resource Reservation Protocol � Tra�c Engineering for Ethernet
SOAP SOAP (former Simple Object Access Protocol)
TCP Transmission Control Protocol
TLV Type-Length-Value
TML Transport Mapping Layer
VoD Video-on-Demand
VoIP Voice over Internet Protocol
WP Work Package
WWW World Wide Web
XML Extensible Markup Language

ix

List of Figures

Figure 1.1 Layers of the ETNA network model. 3

Figure 2.1 Classical network switch architecture. 7

Figure 2.2 Architecture with control and forwarding logic separated. . . . 8

Figure 2.3 ForCES architecture. 9

Figure 3.1 An example of establishing an NE association. 14

Figure 3.2 An example of message exchange during steady state. 15

Figure 3.3 Common header layout. 16

Figure 3.4 Type-Length-Value (TLV) data structure layout. 17

Figure 3.5 An example of TLV encapsulation with a set of sub-TLVs. . . . 18

Figure 3.6 LFBselect TLV layout. 18

Figure 3.7 Identi�er-Length-Value (ILV) data structure layout. 19

Figure 4.1 Network element structure with layer separation. 27

Figure 5.1 TLV class inheritance. 32

Figure 6.1 ForCES test messages construction time comparison. 50

Figure 6.2 ForCES test messages construction time comparison (zoomed). 51

Figure 6.3 ForCES test message 2 construction times with 1�5 messages. . 52

x

List of Tables

Table 3.1 ForCES message types. 20

Table 4.1 ForCES message types used in ETNA. 28

Table 6.1 ForCES test message 1 measurements with non-optimized code. 46

Table 6.2 ForCES test message 1 measurements with optimized code. . . 46

Table 6.3 ForCES test message 2 measurements with non-optimized code. 46

Table 6.4 ForCES test message 2 measurements with optimized code. . . 47

Table 6.5 ForCES test message 3 measurements with non-optimized code. 47

Table 6.6 ForCES test message 3 measurements with optimized code. . . 48

Table 6.7 ForCES test message 4 measurements with non-optimized code. 48

Table 6.8 ForCES test message 4 measurements with optimized code. . . 48

Table 6.9 Comparison between message length and memory allocated. . . 49

Table 6.10 Calculated ForCES test message construction time o�sets. . . . 51

xi

Chapter 1

Introduction to the Study

In this �rst chapter the general background needed to understand the subject of this
thesis is explained and the project in which this thesis has been done is described.
The second section describes the scope and structure of the thesis. The essential
key terminology is listed in the third section.

1.1 Background

The capacity of the current Internet is rapidly becoming insu�cient to cater for the
vast amount of network tra�c and the number of Internet users which is increas-
ing all the time [1] [2]. Scalability and robustness of the network are growing in
importance. There are many reasons for this growth, for example, new and future
services such as video-on-demand (VoD), real-time services such as Internet protocol
television (IPTV) and voice over Internet protocol (VoIP) based services. Moreover,
the higher resolution of movies and pictures, as technology makes it possible to use
higher resolution recordings, further adds to the problems of capacity limitations.

Traditional Internet protocol (IP) [3, p. 572] networks work well when there are
not many users using resources at the same time. IP was not designed to meet the
quality-of-service requirements of, for example, real-time voice and high-bandwidth
video and it does not include extensive monitoring capabilities [4].

While the amount of the network tra�c has been rising, Ethernet [5, pp. 292�
295] technology has consolidated its position in homes and the prices of network
hardware have come down as the amount of manufactured devices has increased.
Also the quality and reliability of Ethernet technology is excellent today. This is
why Ethernet technology can be a solution to the capacity problems outlined above
on the Internet, if Ethernet will be utilized in the Internet service providers' core
networks [6].

CHAPTER 1. INTRODUCTION TO THE STUDY 2

1.1.1 Ethernet Transport Networks, Architectures of Net-

working

The Ethernet Transport Networks, Architectures of Networking (ETNA) project is
looking for a solution to this existing problem by designing and analysing future
metro and core networks based on Ethernet technology. The goal of the project
is to design and implement a working prototype of a low cost European Ethernet
transport network that can serve millions of subscribers. The designed network
is aimed to be a common and secure transport architecture for di�erent network
services that are in use now, and also to take into consideration future services that
have not yet been implemented.

ETNA was carried out in the years 2008 and 2009, and was co-funded by the
European Commission in the Seventh EU Framework Program of Research and
Technological Development (FP7). During the project solutions have been made
that have been �xed and implemented by partners from universities and notable
telecommunications companies and operators [7].

In the Aalto University School of Science and Technology (former Helsinki Uni-
versity of Technology), we have implemented a portion of a working demonstration
of a core network based on Ethernet transport. Generally known protocols are used
for packet transport and tunnel operations adapted to �t our implementation. In
this network model, a network element can be divided into a control element and a
forwarding element. Our task has been designing and implementing the control ele-
ment part and the Ben Gurion University of the Negev (BGU) has been responsible
for the design and implementation of the forwarding element part. Both implemen-
tations have been integrated together and has been demonstrated [8, p. 7] the new
co-developed core network model.

As a part of Aalto University implementation this study contains the imple-
mentation and evaluation of the protocol used between the control and forwarding
element communication.

1.1.2 ETNA Network Model

The ETNA network model consist of three distinct layers (Figure 1.1). These layers
are the transport layer, the transport services layer, and the value added services
layer [9, p. 19].

The transport layer operates the packet transmission between the network end-
points. The functionality of this layer includes three distinct planes: a control plane
(CP), a forwarding plane (FP), and a management plane (MP). Physically the trans-
port layer consists of network elements (NE) that possess the functionality of all
these three planes. The middle layer is the transport services layer that o�ers a set
of services required to support customers of the transport network. These services
utilize the basic functionalities of the transport layer such as tunnel creation. The
value added services layer utilizes the services o�ered by the transport services layer

CHAPTER 1. INTRODUCTION TO THE STUDY 3

Transport

Transport Services

Value Added Services

Figure 1.1: Layers of the ETNA network model [9, p. 19].

and implements such services as routing [10] [11] [12].

1.1.3 Network Element

A network element is a manageable logical entity that consists of one or more phys-
ical elements. To external entities it looks like one integrated network element.
Network elements normally have two types of components: control plane compo-
nents and forwarding plane components. Control plane components are usually
based on general-purpose processors that provide control functionality, for example,
processing routing or signaling protocols. In general, forwarding plane components
are application speci�c integrated circuit (ASIC), network processor, or general-
purpose processor based devices that handle all the datapath operations. De�ning
a standard set of ways for connecting these components provides signi�cantly more
scalability and allows the control and forwarding planes to evolve independently
[13].

The software implemented in this study will be located in the control plane and
is used to communicate with the forwarding plane via protocol messages.

1.2 Scope and Structure of the Thesis

In this section the scope and the structure of the thesis are described.

1.2.1 Scope

This thesis focuses on implementing and evaluating a switch control protocol for
message transport between a control element and a forwarding element in a network
element. One switch control protocol is chosen to be implemented and evaluated.

CHAPTER 1. INTRODUCTION TO THE STUDY 4

Two other protocols are also investigated to compare their features with the pro-
tocol chosen to be implemented and with each other. The original speci�cation of
the chosen switch control protocol is investigated and compared with the protocol
speci�cation that has been modi�ed by the project. The actual implementation is
done following the ETNA modi�ed speci�cation.

The implementation work includes implementing all the forwarding and control
element separation (ForCES) messages and type-length-value (TLV) data structures
in the ETNA modi�ed switch control protocol speci�cation. The needed classes
and class member variables and functions are to be designed, implemented, and
tested. The evaluation of the implementation includes performance measurements
in message construction with selected test messages. The performance is evaluated
by measuring the processing times of operations and memory usage during program
execution. In addition to the measurements, the functioning of the implementation
is evaluated.

1.2.2 Structure

In the �rst chapter, the reader is introduced to the topic and given some back-
ground. In the second chapter, the concept of the dynamic switch control protocol
is explained and a selection of protocols and their features are discussed. The third
chapter takes one of these protocols, the ForCES protocol, for deeper analysis.

The fourth chapter tells about ETNA architecture and requirements for the
ForCES messages. The software implementation, that is how the code is designed
and implemented, is explained in the �fth chapter. Testing and debugging is also
covered in this chapter. The sixth chapter has the evaluation of the ForCES pro-
tocol implementation. The seventh and �nal chapter includes the conclusions and
summary of the study.

1.3 Key Terminology

In this section the most important key terminology is explained to understand the
principles behind the subject of this thesis.

Control Element

In a network switch model where control logic and forwarding logic are separated,
a control element (CE) is the controlling part of a network element and is often
implemented with some standard hardware platform and software running on that.
Usually a control element is used to instruct one or more forwarding elements on how
to process packets. A control element usually implements controlling and signaling
protocols.

CHAPTER 1. INTRODUCTION TO THE STUDY 5

ForCES Message

A forwarding and control element separation (ForCES) protocol message is used
between the CE and FE communication. A ForCES message has a common header
which length is 24 bytes. After the header is the top-level TLV which can include
one or many sub-TLVs.

Forwarding Element

A forwarding element (FE) is the forwarding part of a network element that can
be implemented, for instance, with network processors for faster packet processing
performance. The forwarding element provides packet processing and handling as
controlled by one or more control elements.

Logical Function Block

A logical function block (LFB) is a well de�ned, logically separable functional block
in a forwarding element and is controlled by the control element via the Forwarding
and Control Element Separation (ForCES) protocol. A logical function block can,
for instance, belong to the forwarding element datapath and process packets or it
can be a separate control or con�guration entity.

Network Element

A network element (NE) is a part of a network that is a manageable logical enity
and has one or more physical components. In this thesis the network element is
usually referred to as a network switch.

Operations, Administration and Maintenance

Operations, administration and maintenance (OAM) is a service or device on a
network that is used for operating, administrating, managing and maintaining any
system in that network. OAM can o�er, for instance, troubleshooting and perfor-
mance measuring sevices.

Type-Length-Value

A type-length-value (TLV) is a data structure that contains three �elds: a 16-bit
type �eld, a 16-bit length �eld, and a varying length value �eld. The Length of the
TLV is calculated in bytes and includes also the type and the length �elds as well
as the value �eld. A TLV can have one or more sub-TLVs in its value �eld.

Chapter 2

Dynamic Switch Control Protocols

In the �rst section of this chapter there are described common network switch archi-
tectures as background knowledge. The second section analyzes protocols selected
for investigation in the study and the third section compares them with each other.
The fourth section presents the protocol chosen to be implemented in ETNA and
the �fth and �nal section has the summary and conclusions for this chapter.

2.1 Network Switch Constructions

A classical network switch architecture has the control and forwarding logic parts
both integrated as shown in Figure 2.1. The other model is to have the control logic
and forwarding logic separated [14] so that only the forwarding logic is located in
the switch and the control logic is placed in a separate controller that can be located
in the same place as the switch or at a distance from it (Figure 2.2).

The forwarding logic can then be implemented with fast hardware solutions
whereas the control logic can be implemented, for example, with some inexpensive
general hardware platform and switch control software customized by the network
operator involved. This makes it easier to modify the controller and add features.
Further, by using modular design it is possible to improve the availability of the
network switch [15]. In this thesis the control logic part is called a control element
(CE) and, correspondingly, the forwarding logic part is called a forwarding element
(FE).

2.2 Protocols Selected for Investigation in the Study

There are many protocols available for dynamic switch controlling. A few of them
are explained in this chapter. The protocols explained here are the Forwarding and
Control Element Separation (ForCES) protocol, the General Switch Management
Protocol (GSMP) and the OpenFlow protocol. These were chosen because the

CHAPTER 2. DYNAMIC SWITCH CONTROL PROTOCOLS 7

Control Logic

Forwarding Logic

Proprietary
Bus

Switch

Figure 2.1: Classical network switch architecture.

ForCES protocol was decided to be utilized in ETNA and the other two protocols
were chosen to be investigated here also to compare their features with each other.
Both ForCES and GSMP have been available for several years while OpenFlow has
been released more recently.

2.2.1 Forwarding and Control Element Separation Protocol

The Forwarding and Control Element Separation (ForCES) protocol is de�ned in the
IETF Network Working Group Internet-Draft ForCES Protocol Speci�cation [16].
The requirements of the ForCES protocol are de�ned in Request for Comments
(RFC) 3654 [13]. The ForCES architectural framework is de�ned in RFC 3746
[17]. In addition to the framework, there are de�ned associated protocols [18] to
standardize information exchange between the control plane and the forwarding
plane in a ForCES network element (NE). The ForCES protocol works in master-
slave mode in which the forwarding elements (FE) are slaves and the control elements
(CE) are masters.

A control element controls a forwarding element [19] by sending speci�c mes-
sages de�ned in the ForCES protocol speci�cation. The FE can respond to the
received messages, if the protocol allows responding to that message type. Because
the control element is a master, it normally initiates the messaging, but in some
situations the forwarding element can also send messages �rst. These situations are
discussed later in this chapter.

There are six di�erent kinds of messages available: association messages, con-

CHAPTER 2. DYNAMIC SWITCH CONTROL PROTOCOLS 8

Control Logic

Forwarding Logic

Switch Control
Protocol

Forwarding Element (FE)
(switch)

Control Element (CE)

Figure 2.2: A network switch architecture with control and forwarding logic sepa-
rated.

�guration change messages, messages to query FE part con�gurations, event noti�-
cation messages, messages for packet redirecting and heartbeat signaling messages.
Association messages are used to make associations between CEs and FEs and to
teardown them when associations are not needed anymore. Con�guration messages
are used by CE to set new con�gurations to FE part. Query messages are used
also by CE to query current con�guration settings on FE. Event Noti�cation mes-
sages are used when FE notices status changes in the network or FE's operating
state. Heartbeat messages are used by one ForCES element to notify other ForCES
elements of its existence.

Protocol Framework

The ForCES protocol architecture has two layers: the protocol layer (PL) and the
transport mapping layer (TML). The protocol layer de�nes the ForCES protocol
messages, the protocol state transfer scheme, and the ForCES protocol architecture
itself. The transport mapping layer uses the capabilities of existing transport proto-
cols to speci�cally address protocol message transportation issues such as how the
protocol messages are transported through the network using di�erent transport me-
dia, such as TCP, IPv4, IPv6, ATM [20] or Ethernet. In addition to this, the TML
layer implements reliability, multicast, and ordering of protocol message transport.
Both the PL and TML are de�ned in the ForCES protocol speci�cation [16].

CHAPTER 2. DYNAMIC SWITCH CONTROL PROTOCOLS 9

CE-FE IF

ForCES Network Element

CE Manager

FE Manager FE 2FE 1

CE 2CE 1

FE-FE IF

CE-CE IF

CE Manager-CE IF

FE Manager-CE IF

CE Manager-
FE Manager IF

CE-FE IF CE-FE IF

FE external IF FE external IF

Figure 2.3: ForCES architecture [16, p. 12].

A ForCES network element can have one or more CEs and one or more FEs.
An architectural diagram of a ForCES NE with two CEs and two FEs is shown
in Figure 2.3. Outside the ForCES network element, there are CE Manager and
FE Manager. The CE Manager duties control the CEs of the ForCES NE and
respectively the FE Manager controls the FEs in the ForCES NE. The network
tra�c is transported from the FE 1 external interface to the FE 2 external interface
and vice versa.

The protocol layer is common to all implementations of ForCES. The PL asso-
ciates an FE or CE to an NE and also tears down the associations when they are no
longer needed. The CE con�gures both the FE and associated LFBs' operational
parameters using the PL. The CE can send various requests to the FE to activate
or deactivate it, recon�gure its availability parameters, subscribe to speci�c events,
among other things.

2.2.2 General Switch Management Protocol

The general switch management protocol (GSMP) is a general purpose protocol that
is used to control a label switch. Label switch uses labeled datagrams with existing
IP routing protocols, such as the multiprotocol label switching (MPLS) protocol.

A controller can establish and release connections across the switch, add or
delete leaves on a multicast connection, manage switch ports, request con�guration
information, request and delete reservation of switch resources, and request statis-
tics. The GSMP can be used to inform the controller of events, for example, when
a link goes down. The protocol is asymmetric, the controller being the master and
the switch being the slave. A single controller can control multiple switches using
multiple instantiations of the protocol over separate control connections [21].

CHAPTER 2. DYNAMIC SWITCH CONTROL PROTOCOLS 10

A connection across a switch is formed by connecting an incoming labeled
channel to one or more outgoing labelled channels. GSMP supports point-to-point
and point-to-multipoint connections. A multipoint-to-point connection is speci�ed
by establishing multiple point-to-point connections, each of them specifying the same
output branch. A multipoint-to-multipoint connection is speci�ed by establishing
multiple point-to-multipoint trees each of them specifying the same output branches
[21].

A connection is established with a certain quality of service (QoS). The default
QoS con�guration in GSMP version 3 includes three QoS models: a service model, a
simple abstract model with strict priorities and a QoS pro�le model. The di�erences
between these will not, however, be discussed in this document [21].

The GSMP is very adaptable: packets can be encapsulated in ATM, Ethernet
and TCP transport, for example. The controller issues request messages to the
switch which send a response message, if it is required by the message sent by the
controller. The response message contains a value indicating either a successful
result or a failure. There are six classes of GSMP request messages that require a
response: Connection Management, Reservation Management, Port Management,
State and Statistics, Con�guration, and Quality of Service. In addition to this, it
is allowed for the switch to generate asynchronous event messages. There is also a
method to send messages for synchronization across a link and for maintaining a
handshake.

Request messages and successful response messages have their own format.
Failure response messages have the same format with the request message that
caused the failure. The code �eld then tells the reason for the failure.

GSMP version 1.1 was released in August 1996 and version 2.0 in March 1998.
Version 3 is the newest so far and was released in June 2002. The versions 1.1 and
2.0 were designed for ATM switches only but version 3.0 extended the applicability
to other types of network switches also [21] [22, p. 1].

2.2.3 OpenFlow Protocol

OpenFlow is an open protocol which originally has been developed at Stanford
University1. Nowadays, the OpenFlow Switch Consortium2 is continuing the proto-
col's development and support work. The consortium's goal is to get the Ethernet
switches and routers that are in use in the universities to support the OpenFlow pro-
tocol. OpenFlow allows researchers to test new functionalities in their own networks:
new routing protocols, management techniques, or packet processing algorithms.

An OpenFlow switch has three main parts: A �ow table which contains the
actions to be done for each �ow entry, a secure connection between the switch and
the controller, and the OpenFlow protocol itself. The �ow table is located in the

1http://www.stanford.edu/
2http://www.open�owswitch.org/

CHAPTER 2. DYNAMIC SWITCH CONTROL PROTOCOLS 11

OpenFlow switch and the controller can access it using the proper queries using the
OpenFlow protocol. An entry in the �ow table contains three �elds: The packet
header that de�nes the �ow, the action which de�nes how the packets should be
processed, and statistics data to help controlling �ows [23, p. 3] [24, p. 1].

At the starting point of the ETNA project the OpenFlow protocol did not yet
exist, so it has not been along in choosing the protocol for ETNA needs. Today, the
latest version available is version 1.0.

The OpenFlow development has also an approach to switch virtualization and
there has been developed a network virtualization layer called FlowVisor [25]. The
idea of network virtualization is that the same hardware can be used to serve multiple
logical networks, each with a distinct forwarding logic.

2.3 Comparison of the Protocols

The GSMP protocol is the oldest of these protocols and has been available since
version 1.1 designed for ATM switches in 1996. Today it has reached the version
3. The ForCES protocol is a quite new protocol, with its �rst speci�cation being
released in 2004, and its version number is now 1. OpenFlow is the newest of these
and already this year version 1.0 is available.

The message type and length �elds are the same length. The GSMP protocol
has the transaction identi�er which is 24 bits in length. ForCES has the correlator
�eld which acts in the same way but is 64 bits in length. These �elds are used
to mark di�erent packets belonging to a speci�c transaction. That means, if the
packets belong to the same transaction, they will have the same identi�er value.
Because ForCES has a longer �eld for this purpose, it has also a bigger address
space. In addition to these ForCES has source and destination ID �elds to identify
requesting and responding elements. All elements have a unique ID number which
is used to identify them.

The result �eld in GSMP acts like an Ack-�ag in ForCES wasting six bits
more of header space. This �eld is used to tell the receiver if it must respond
to the message. Pri-�ag does exist only in ForCES and is used for prioritizing
packets. Higher priority packets are processed �rst if possible. This could be of use.
SubMessage number is correlated in TP-�ag in some way, but they are speci�ed
slightly di�erently. The TP-�ag is the transaction phase in the ForCES protocol
and is used to identify if the packet starts or ends the transaction, ie. its the �rst
or last packet or if it is in the middle of the transaction. They are used when the
message is segmented into multiple packets.

The I-�ag in GSMP toggles the sub-message number �eld usage whether it
indicates the total number of sub-message segments that compose the entire message.
The other usage is for the I-�ag to indicate the sequence number of the current
sub-message segment within the whole message. The AT-�ag in ForCES tells if
the message belongs to an atomic transaction and must be set if the transaction

CHAPTER 2. DYNAMIC SWITCH CONTROL PROTOCOLS 12

operation has multiple messages.

The ForCES protocol is often implemented inside a closed system, meaning that
the source code and the implementation details are not available to the public. That
is usually so, because ForCES is used in communication between the CE and FE in
a network element (NE) and the internal implementation is not needed or wanted
to be open to everyone. In contrast to this, OpenFlow is designed in Stanford
University and is meant to be an open framework.

In this Master's thesis, ForCES is the protocol chosen to be utilized in ETNA
to implement CE-FE communication. This protocol was chosen because some of the
project members had previous experience of it and it seemed to be the most �exible
protocol for a new Ethernet environment which is not dependent on MPLS or IP.

2.4 Summary and Conclusions

There are two models of network switch architectures: the classical with the con-
trol and forwarding logic integrated and the other model in which the control and
forwarding logic are separated. The separated architecture has some bene�ts such
as the architecture can be made modular so it is easier, for example, to add control
elements and forwarding elements in case of performance issues or some element
gets broken. That also means the availability of the network switch is improved.

Three dynamic network switch control protocols were discussed and compared
with each other. These protocols are the general switch management protocol
(GSMP), the forwarding and control element separation protocol (ForCES), and
the OpenFlow protocol. The ForCES protocol was chosen by ETNA and will be
implemented and evaluated further in this thesis. This protocol was chosen because
some of the project members had previous experience of that and it seemed to be
the most �exible protocol for a new Ethernet environment which is not dependent
on MPLS or IP.

It seems that the ForCES protocol chosen to be implemented in this project
has all the functionality needed. The original IETF protocol speci�cations can be
extended to meet the project needs.

Chapter 3

ForCES Protocol Details

In this chapter the Forwarding and Control Element Separation (ForCES) protocol
will be described more deeply. The �rst section describes the message �ow in di�er-
ent protocol states. The second section explains the ForCES message encapsulation
and structure for each type of the ForCES messages. In the third section there is
described the structure of all the ForCES messages and for what purpose they are
used. The fourth and �nal section contains the summary and conclusions of the
chapter.

3.1 Message Flows

ForCES messages are used, for example, to establish an association, to tear down
an association, send con�guration queries and changes, and to send heartbeat sig-
nals. In this section there are shown two di�erent kinds of message �ows: one for
association setup state and the other for association established or steady state.

3.1.1 Association Setup State

An example of an association setup state message �ow is shown in Figure 3.1. The
association setup state starts after the FE has booted up. First the FE sends an
association setup request to the CE. The CE responds to that with an association
setup response. Now the CE knows that the FE is available and sends a query
for LFB capabilities which the FE responds with a query response. After that the
CE queries topology information from the FE and the FE responds to that also.
The FE can also send event noti�cations to inform the CE like in this example the
OperEnable event. The last message from the CE is a con�guration change request
also in which the FE sends a response.

CHAPTER 3. FORCES PROTOCOL DETAILS 14

Association Setup Request

Association Setup Response

LFBx Query Capability

LFBx Query Response

FEO Query (Topology)

FEO Query Response

FEO OperEnable Event

Config FEO Adminup

FEO Config Response

FE PL CE PL

1

2

3

4

5

6

7

8

9

Figure 3.1: An example of message exchange between CE and FE to establish an
NE association [16, p. 29].

3.1.2 Association Established State

The association established state is the state after the association between the CE
and FE was successful. In this state the heartbeats are sent in distinct time intervals
and there can be sent con�guration changes and queries as well as event reports and
packet redirects.

An example of the association established state is shown in Figure 3.2. The
heartbeat signals are sent by both the CE and FE. The CE sends con�guration
changes and queries to the LFBs in the FE. The FE informs the CE with an event
report and sends a packet redirect message also.

3.2 Message Encapsulation and Structure

All Protocol Layer (PL) Protocol Data Units (PDUs) start with a common header
followed by Type-Length-Value (TLV) data structures. The common header and

CHAPTER 3. FORCES PROTOCOL DETAILS 15

Heartbeat

Config Set LFB1 FE Event Report

FE PL CE PL

Heartbeat

Config Response LFB1

Config Set LFB2 Attributes

Config Response LFB2

Query LFB3

Query Response LFB3

FE PL CE PL

Packet Redirect LFB1

Heartbeat

Heartbeat

1

2

3

4

5

6

7

8

9

10

11

12

Figure 3.2: An example of message exchange between CE and FE during steady
state [16, p. 30].

the TLV data structures are explained in the following sub-sections.

3.2.1 Common Header

The format of the ForCES message common header is presented in Figure 3.3. The
x-axis in the �gure shows the bits in a 32-bit word starting from the left and the y-
axis shows the number of the bytes from the beginning of the header. All messages
have this common header. Version �eld (4 bits) tells the version number of the
ForCES protocol used in the current session. The next four bits are reserved for
future use. The sender must set them to zero and the receiver should not try to
interpret them. After that follows the message type �eld (8 bits) that has the value
of the ForCES message type. The length �eld (16 bits) contains the value of the
length of the message in 32-bit words.

The Source ID consist of a 2-bit source type selector (sTS) and a 30-bit sub-ID
(together 32 bits). The destination ID �eld correspondingly has a 2-bit destination
type selector (dTS) and a 30-bit sub-ID (together 32 bits). The correlator �eld
(64 bits) is the message correlator that is used to match the request and response
messages with each other. The CE generates the correlator value for each of the
ForCES requests. The FE must assign the same correlator value for the response it
sends back to the CE. If the correlator is not relevant, for example, when a response
is not expected, the �eld is set to zero [26].

After the correlator �eld there is the 32-bit �ags �eld containing �ags ACK
(Acknowledge, 2 bits), Pri (Priority, 3 bits), EM (Execution Mode, 2 bits), AT

CHAPTER 3. FORCES PROTOCOL DETAILS 16

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Version Reserved LengthMessage Type

Source ID

Destination ID

Correlator, bits 63-32

Correlator, bits 31-0

Flags

0

4

8

12

16

20

24

Figure 3.3: Common header layout [16, p. 36].

(Atomic Transaction, 1 bit) and TP (Transaction Phase, 2 bits).

When sending a Con�g message, or Heartbeat message, the CE uses the ACK-
�ag to tell the message receiver whether or not a response is required by the sender.
For all other messages the ACK-�ag is not used. The FE does not set the ACK-�ag,
it only reads the status of this �ag when needed. The �ag values [16, p. 39] are the
following: NoACK, SuccessACK, FailureACK, and AlwaysACK. The NoACK value
means that the message receiver must not send any response message back to the
message sender while the SuccessACK means that the message receiver must send
a response message back only when the message has been successfully processed by
the receiver. The FailureACK tells the message receiver that it must send a response
message back to the sender only when the message processing has failed, and the
AlwaysACK tells the message receiver that it must send a response message to all
the received messages in any case.

An Association Setup message and Query message always expects a response.
An Association Teardown message, Packet Redirect message, and all response mes-
sages never expect a response. The ACK-�ag is ignored with these messages.

The Pri-�ag contains the priority of the message. The ForCES protocol de�nes
eight priority values from 0 to 7, seven being the most important priority value. The
normal priority value is 1.

The EM-�ag can contain one of three execution modes: execute-all-or-none,
execute-until-failure, and continue-execute-on-failure. The execute-all-or-none mode
executes all operations serially and the FE must not have any execution failure for
any of the operations. If a failure happens anyway, all operations done must be
undone. The execute-until-failure mode executes all operations on the FE serially.
If a failure happens, the rest of the operations are not executed, but operations

CHAPTER 3. FORCES PROTOCOL DETAILS 17

already completed are not undone. The continue-execute-on-failure mode continues
execution to the end, even when a failure happens.

The AT-�ag is used to indicate if the message is a stand-alone message or
belongs to an atomic transaction operation with multiple messages. The TP-�ag
indicates the transaction phase this message belongs to. There are four possible
phases for an atomic transactional operation: SOT (start of transaction), MOT
(middle of transaction), EOT (end of transaction), and ABT (abort). The �rst
message in an atomic transaction operation has the SOT TP-�ag value and the
second and further messages have the MOT value in the TP-�ag. If there is no
failure the CE sends the last message with the EOT transaction value. Any failure
noti�ed by a FE causes the CE to send a Con�g message with the TP-�ag set to
the ABT value to abort the transaction on all FEs involved.

3.2.2 Type-Length-Value Data Structure

Type-Length-Value (TLV) data structure is a basic building block in all of the
ForCES messages. After the common header the payload data is encapsulated to
these data structures. Figure 3.4 shows the layout of the TLV data structure.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

TLV Type TLV Length

TLV Value (the actual data)

0

4

n

Figure 3.4: Type-Length-Value (TLV) data structure layout [16, p. 41].

The x-axis in the �gure shows the bits in a 32-bit word starting from the left
and the y-axis shows the number of the bytes from the beginning of the TLV. There
is �rst a 16-bit TLV type �eld which has the TLV type ID. After that there is the
TLV length �eld that tells the length of the TLV in bytes including both the type
and the length �elds. After that comes the TLV value, ie. payload.

TLVs can be either only one or many inside a payload and they can be nested
inside the value �eld of the other TLV. An example of this is shown in Figure 3.5.
All �elds are in network byte order. Depending on the message type, there can be
one or several TLVs after the common header.

CHAPTER 3. FORCES PROTOCOL DETAILS 18

Type Length

Sub-TLV 1

Value

Sub-TLV 2

Sub-TLV 1

Sub-TLV 2

Sub-TLV 3

Sub-TLV 1

Type

Type

Type

Type

Type

Type

Length

Length

Length

Length

Length

Length

Value

Value

Value

Figure 3.5: An example of TLV encapsulation with a set of sub-TLVs.

LFBselect TLV

LFBselect TLV is used in messages that need a speci�c operation on a selected
logical function block (LFB). These message types are Association Setup messages,
Con�g messages, Con�g Response messages, Query messages, Query Response mes-
sages and Event Noti�cation messages. Association Setup Response messages have
ASRresult TLV, and Association Teardown messages have ASTreason TLV as their
top-level TLV. Packet Redirect messages have Redirect TLV as a top-level TLV.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Type = LFBselect Length

LFB Class ID

LFB Instance ID

Sub-TLV 1

...

Sub-TLV N

0

4

8

12

16

n-4

n

Figure 3.6: LFBselect TLV layout [16, p. 51].

CHAPTER 3. FORCES PROTOCOL DETAILS 19

Heartbeat messages have no top-level TLV at all.

The layout of the LFBselect TLV is shown in Figure 3.6. The type of the TLV
is LFBselect, the LFB Class ID and LFB Instance ID �elds de�ne the target LFB.
There can be one or more sub-TLVs at the end of the PDU.

The message body consist of type-length-value (TLV) structures that can be
one or several sequentially or embedded to the other TLV's value �eld. This type of
structuring is very �exible: data can be added to the end of the message and after
the addition only the length of the message must be updated.

3.2.3 Identi�er-Length-Value Data Structure

In the ForCES protocol there are two types of TLV kind of data structures used: the
TLV data structures with 16-bit type and length �elds and the identi�er-type-length
(ILV) data structures which use 32-bit type and length �elds (Figure 3.7).

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

ILV Identifier

ILV Length

ILV Value (the actual data)

0

4

8

n

Figure 3.7: Identi�er-Length-Value (ILV) data structure layout [16, p. 43].

The operation of the ILV is basically the same as with the TLV structures.
The nature of type (or identi�er) �eld is that the type value should be unique in the
same context. The length of the structure is expressed in bytes, including type and
length �elds.

Both the TLV and ILV structures have to be padded to the 32-bit boundary,
so that if the length of the structure is not dividable by four, there must be added
zeros to the end until the length criteria is met.

3.3 ForCES Messages

The IETF ForCES protocol speci�cation de�nes six di�erent kinds of messages.
These are association messages, con�guration messages, query messages, event noti-
�cation messages, packet redirect messages, and heartbeat (HB) messages. Associ-

CHAPTER 3. FORCES PROTOCOL DETAILS 20

Table 3.1: ForCES message types.

Name Value Top-level TLV OPER-TLV(s)

Association Setup 0x01 LFBselect REPORT

Association Setup Response 0x11 ASRresult-TLV none

Association Teardown 0x02 ASTreason-TLV none

Con�g 0x03 (LFBselect)+
(SET | SET-PROP |
DEL | COMMIT |

TRCOMP)+

Con�g Response 0x13 (LFBselect)+
(SET-RESPONSE |

SET-PROP-RESPONSE |
DEL-RESPONSE |

COMMIT-RESPONSE)+

Query 0x04 (LFBselect)+ (GET | GET-PROP)+

Query Response 0x14 (LFBselect)+
(GET-RESPONSE |

GET-PROP-RESPONSE)+

Event Noti�cation 0x05 LFBselect REPORT

Packet Redirect 0x06 REDIRECT-TLV none

Heartbeat 0x0F none none

ation, con�guration, and query messages have also response messages that are sent
as a response to a request message. There is also an association teardown message
to tear down an association. Message types are listed in Table 3.1. The ForCES
speci�cation allows adding multiple TLVs in a sequence. The '+' sign indicates this
after the TLV name [26].

3.3.1 Association Messages

The ForCES association messages are used to establish and tear down associations
between FEs and CEs [16, p. 67]. FEs always start establishing a ForCES associa-
tion by sending an association setup message to a chosen target CE. The CE then
responds with an association response message containing a result, whether the as-
sociation was successful or not. When an association is no longer needed, it can be
torn down by either of the FE or the CE.

CHAPTER 3. FORCES PROTOCOL DETAILS 21

Association Setup Message

The association setup message is sent by the FE to the CE to setup a ForCES
association between them [16, p. 67].

The message type is AssociationSetup. The ACK-�ag in the common header is
ignored, since the association setup message always expects to get a response from
the message receiver (CE), whether the setup was successful or not. The correlator
�eld in the common header is set, so that the FE can correlate the response coming
back from the CE correctly [16, p. 67].

The association setup message body can contain zero, one or two LFBselect
TLVs. The LFB class ID in the LFBselect TLV can point either to the FE Object
LFB or to the FE Protocol LFB. If neither of the LFBs need to be speci�ed, LF-
Bselect TLVs are omitted. If both LFBs are to be speci�ed, then there will be two
LFBselect TLVs in an association setup message. The OPER-TLV is optional. The
type of the OPER-TLV is REPORT. The value �eld contains a PATH-DATA-TLV
for REPORT which can contain FULLDATA-TLV(s), but not any RESULT-TLV
[16, p. 67].

Association Setup Response Message

The association setup response message is sent by the CE to the FE in response
to the association setup message. It indicates to the FE whether the setup was
successful or not [16, p. 69].

The message type is AssociationSetupResponse. The ACK-�ag in the common
header is ignored. The association setup response message never expects a response
from the message receiver (FE). The destination ID in the header will be set to the
source ID in the corresponding association setup message, if the value is not zero
[16, p. 69]. The top-level TLV type is ASRresult and it contains a 32-bit association
setup result in the value �eld [16, p. 70].

Association Teardown Message

The Association Teardown message can be sent by the FE or the CE to any ForCES
element to end its ForCES association with that element [16, p. 70].

The message type is AssociationTeardown. The ACK-�ag is ignored. The
correlator �eld is not used in this message and is set to zero. The top-level TLV
type is ASTreason and it contains a 32-bit teardown reason in the value �eld [16, p.
71].

CHAPTER 3. FORCES PROTOCOL DETAILS 22

3.3.2 Con�guration Messages

The ForCES con�guration messages are used by the CE to con�gure the FEs in a
ForCES NE and report the results back to the CE. A con�guration change starts
when the CE sends a Con�g message to the FE. The FE then responds with a Con�g
Response message indicating the result of the con�guration change. The receiver
(CE) no longer replies to this message whatever the result is [16, p. 72].

Con�g Message

The Con�g message is sent by a CE to a FE in a ForCES NE to con�gure LFB com-
ponents in the FE. This message is also used by the CE to subscribe or unsubscribe
to LFB events [16, p. 72].

The message type in the common header is Con�g. The ACK-�ag can be set to
any value. The OPER-TLV type �eld has the operation type for the con�g message.
The value �eld has the PATH-DATA-TLV for the Con�g message. The operation
type of the OPER-TLV for the con�g message has �ve values: SET, SET-PROP,
DEL, COMMIT and TRCOMP [16, p. 72].

The SET operation type is used to set the LFB components in the FE. The
SET-PROP type is used to set the properties for the LFB component. The DEL
operation type deletes some LFB components. The COMMIT operation type is
sent to the FE to commit in a two phase commit (2PC) [27] transaction. 2PC is a
classical transactional protocol that is used to achieve the transactional operations
utilizing con�guration messages. A COMMIT TLV is an empty TLV with no value,
i.e. its length is four bytes containing the header only. The TRCOMP operation
is sent to the FE to mark the success from a NE perspective of a 2PC transaction.
A TRCOMP TLV is also an empty TLV with no value, i.e. its length is four bytes
containing the header only [16, p. 72].

The PATH-DATA-TLV for SET or SET-PROP operations must contain either
a FULLDATA-TLV or SPARSEDATA-TLV(s), but must not contain any RESULT-
TLV. TheDEL operation may contain a FULLDATA-TLV or SPARSEDATA-TLV(s),
but must not contain any RESULT-TLV [16, p. 73].

Con�g Response Message

The Con�g Response message is sent by the FE to the CE in response to the Con�g
message. The response indicates whether the con�guration change was successful or
not on the FE and also gives a detailed response regarding the con�guration result
of each component [16, p. 74].

The message type is Con�g Response. The ACK-�ag must be always ignored,
and the message receiver (CE) must not send any further response to this message.
The OPER-TLV has a PATH-DATA-TLV in its value �eld. The type of the OPER-
TLV is one of the following: SET-RESPONSE, SET-PROP-RESPONSE, DEL-

CHAPTER 3. FORCES PROTOCOL DETAILS 23

RESPONSE, or COMMIT-RESPONSE [16, p. 74�75].

The SET-RESPONSE operation is for the response of the SET operation of
LFB components. The SET-PROP-RESPONSE operation is for the response of the
SET-PROP operation of LFB component properties. The DEL-RESPONSE oper-
ation is for the response of the DEL operation of LFB components. The COMMIT-
RESPONSE operation is sent to the CE to con�rm a commit success in a 2PC
transaction. A COMMIT-RESPONSE type of TLV must contain a RESULT-TLV
indicating success or failure [16, p. 75].

The PATH-DATA-TLV for SET-RESPONSE operation must contain one or
more RESULT-TLVs so that each of the operations get a result for the SET op-
eration. The same restriction applies to the DEL-RESPONSE operation [16, p.
75].

3.3.3 Query Messages

The ForCES query messages are used by the CE to query LFBs in the FE for
the LFB component, capability, statistics, and that kind of information. A query
message is sent by the CE and the FE responds back with a query response message
containing the query result [16, p. 76].

Query Message

The ForCES Query messages are sent by the CE to the FE to query LFBs for
information such as LFB components, capabilities, and statistics data. The common
header is the same as in other ForCES messages and the message body has one or
more TLVs. The message type is Query. The ACK-�ag in the common header is
always ignored. A response for all queries in the message is always expected. The
correlator �eld in the common header is used by the CE to locate the response back
from the FE correctly [16, p. 77].

The OPER-TLV has a PATH-DATA-TLV in its value �eld. The type of the
OPER-TLV is either GET or GET-PROP. Neither of the operations must contain
any SPARSEDATA-TLV, FULLDATA-TLV, or RESULT-TLV [16, p. 77].

Query Response Message

When the FE receives a ForCES Query message, it processes the message and makes
a query result. Then it sends the query result back to the message sender (CE) by
use of the Query Response message. If the query was successful, the reply message
contains the information being queried otherwise it contains an error code if the
query operation fails, indicating the reason for the failure. One Query Response
message can contain several answers to queries, as many as there were in the original
Query message for which the response is to [16, p. 78].

CHAPTER 3. FORCES PROTOCOL DETAILS 24

A Query Response message starts with a common header. After that comes
the message body consisting of one or more TLVs describing the query result. The
message type in the common header is QueryResponse and the ACK-�ag is ignored.
The Query Response message does not expect a further response [16, p. 78].

The operation type is one of the two: GET-RESPONSE or GET-PROP-
RESPONSE. They are responses for the GET and GET-PROP operations respec-
tively. These responses can contain SPARSEDATA-TLV, FULLDATA-TLV and/or
RESULT-TLV(s) in the PATH-DATA-TLV data encoding [16, p. 79].

3.3.4 Event Noti�cation Message

ForCES Event Noti�cation messages are used by the FE to asynchronously notify
the CE of events in the FE. Di�erent events can be generated in the FE, and the CE
can subscribe to all of those events by sending a Con�g message with a SET-PROP
operation, where the included path speci�es the event [16, p. 80].

An Event Noti�cation message starts with a common header. After that comes
the message body consisting of one or more TLVs describing the event noti�cations.
The message type in the common header is EventNoti�cation and the ACK-�ag is
ignored. The Event Noti�cation message does not expect a further response [16, p.
80].

Only REPORT operation type is de�ned for the event noti�cation message.
The PATH-DATA-TLV can contain SPARSEDATA-TLV or FULLDATA-TLV, but
no RESULT-TLV(s) in the PATH-DATA-TLV data encoding [16, p. 81].

3.3.5 Packet Redirect Message

A Packet Redirect message is used to transfer data packets between the CE and
FE. These data packets are normally control packets, but they may be also data-
path packets that need further processing. It is possible also to use this message for
transferring only metadata [16, p. 82].

A ForCES Packet Redirect message starts with a common header. After that
comes the message body consisting of one or more TLVs containing or describing the
packet being redirected. The message type in the common header is PacketRedirect.
The TLV is a Redirect TLV with the type Redirect. Messages can be sent from the
CE to FE or from the FE to CE [16, p. 82].

The Redirect TLV has two sub-TLVs: Meta Data TLV and Redirect Data TLV.
The Meta Data TLV speci�es meta-data associated with the followed redirected
data. The type of the TLV is METADATA-TLV. The value �eld contains a number
of Meta Data ILVs. The Identi�er-Length-Value (ILV) format is similar to TLV
format, except the 16-bit type �eld and the 16-bit length �elds are replaced by the
32-bit identi�er and the 32-bit length �elds. The Meta Data ILV contains the actual
meta data for the packet redirect message [16, p. 83].

CHAPTER 3. FORCES PROTOCOL DETAILS 25

The Redirect Data TLV contains the packet that is to be redirected in the
network byte order. The packet should be 32-bits aligned as all the data for the
TLVs. That is, if the data is not dividible by four bytes, the data is padded with
zeros until the criterion is met [16, p. 83].

3.3.6 Heartbeat Message

A ForCES element, either the CE or FE, can use the Heartbeat (HB) message to
asynchronously notify one or more other ForCES elements in the same ForCES NE
of its existence. The heartbeat message is sent periodically. It has no message body.

The message type in the common header is Heartbeat. The ACK-�ag in the
common header is set to either NoACK or AlwaysACK when the HB is sent. The
NoACK value means that response from the receiver is not expected. When the
ACK-�ag is set to AlwaysACK value, the response is always expected. When the
response is expected, the correlator �eld should be set to the proper value so that
the receiver can correlate the response correctly.

3.4 Summary and Conclusions

Di�erent types of ForCES messages are used in di�erent protocol states. When the
forwarding element (FE) starts up, it establishes an association with the CE. During
the steady state both the CE and FE send heartbeat signals to the other element
to show that they are alive. After the association has been made, the CE can send
con�guration queries and changes to the FE. The FE informs CE of event changes
with an event noti�cation.

A ForCES message consists of a common header and a number of TLV/ILV
data structures. The message payload consist of TLVs which can include one or
many sub-TLVs inside them. The message type indicates how many TLVs a ForCES
message can have.

The IETF ForCES protocol speci�cation de�nes six di�erent kinds of messages.
These are association messages, con�guration messages, query messages, event no-
ti�cation messages, packet redirect messages, and heartbeat (HB) messages.

The message encapsulation and structure are speci�ed quite well in the IETF
ForCES speci�cation and the message �ows seem to be quite reasonable, so we can
proceed to the next chapter how ETNA is going to modify the original ForCES
speci�cations to meet its needs in the project.

Chapter 4

ETNA Requirements

In this chapter the ETNA requirements for the ForCES protocol are discussed. First
a general picture of a network element used in ETNA network model is given to the
reader. The second section describes the requirements for the ForCES messages and
the modi�cations to the original IETF speci�cation.

4.1 Network Element Architecture Overview

The ETNA project's view of the architecture of a network element (NE) is described
in Figure 4.1. There are three logical planes: the management plane (MP), the
control plane (CP) and the data (forwarding) plane (DP).

The management plane is where the network operator manages network ele-
ments using a user interface (UI) module. The control plane has control elements
(CE) and a management system (MS). There can be one or more control elements
in parallel, depending on the con�guration. The IETF ForCES speci�cation allows
more than one CE-FE connection for each of the CEs, but in the ETNA model every
control element has only one forwarding element it is associated with. The manage-
ment system is accessed by the user interface module and is further on connected
to the control elements. The data plane contains forwarding elements (FE) which
handle the transport of the actual network tra�c [28].

The communication between the management plane and control plane goes
through the MP-CP interface which is realized with SOAP (former simple object
access protocol) [29, p. 11]. This interface has been implemented and is described
further in [30].

The CE to MS communication utilizes an extended resource reservation proto-
col (mRSVP) which is based on the resource reservation protocol (RSVP). mRSVP
utilizes similar message structures that are used in RSVP. It has been designed to
handle communication between several distributed control elements and one man-
agement system. Communication between multiple distributed control elements
within the control plane is managed by the RSVP-TE with Ethernet extensions

CHAPTER 4. ETNA REQUIREMENTS 27

(RSVP-TEEth) which is based on the RSVP-TE [31]. The mRSVP and RSVP-
TEEth are implemented and described further in [32].

Management Plane

Control Plane

Data Plane CE-FE communication

UI-MS communication

CE-MS
communicat ion

Network Element

Management System
(MS)

User Interface
(UI)

Forwarding Element
(FE)

CE-CE
communicat ion

Control Element(s)
(CE)

Figure 4.1: Network element structure with layer separation.

A control element and a forwarding element communicate with each other
through the control plane and data plane application protocol interface (API). The
protocol used for that communication is the forwarding and control element separa-
tion (ForCES) protocol, of which the author has created an implementation for this
project. The implementation of the protocol is evaluated in this thesis.

4.2 Requirements for the ForCES Messages

The format of the common header remains the same in the ETNA speci�cation as
in the original IETF ForCES speci�cation. The version number used in ETNA is 1.
Valid message type values are the same as in the IETF speci�cation and can be found
in Table 4.1. Source and destination IDs consist of a type selector (TS) and a sub-
ID. The usage of the type selector is the same as in the IETF speci�cation but the
sub-ID used in ETNA is 1 because there is only one forwarding element associated
with a corresponding control element. The correlator and the �ags functionalities
are not changed [26].

CHAPTER 4. ETNA REQUIREMENTS 28

Table 4.1: ForCES message types used in ETNA.

Name Value Top-level TLV Sub-TLV type

Association Setup 0x01 LFBselect Report
Association Setup Response 0x11 ASRresult none
Association Teardown 0x02 ASTreason none
Con�g 0x03 LFBselect+ Con�g+
Con�g Response 0x13 LFBselect+ Con�g Response+
Query 0x04 LFBselect+ Query+
Query Response 0x14 LFBselect+ Query Response+
Event Noti�cation 0x05 LFBselect Report
Packet Redirect 0x06 Redirect Meta Data+, Redirect Data+
Heartbeat 0x0F none none

ETNA uses the following LFB class IDs: manager, forwarding database, OAM,
QoS, tunnel control, topology discovery, and status monitor. The corresponding ID
values for these can be found in Appendix C. In the ETNA implementation the LFB
instance ID is set to 1 as there is only one active instance of each LFB at a time.

ETNA has speci�ed eleven FE capability type values used in FE Capabilities
TLV, �fteen Con�g data types used in Con�g Data TLV, three extra result codes
used in Result TLV, 27 Con�g parameter values used in Parameter Field TLV, and
12 event codes used in Event Noti�cation TLV. The values are chosen so that they
do not overlap with the values in the IETF speci�cation. All these values are listed
in Appendix C.

Modi�cations to the IETF speci�cation

The PATH-DATA-TLV layer was removed from the ForCES model for simplicity as
it was of no relevant use. Also the FULLDATA-TLV and SPARSEDATA-TLV was
left unimplemented. All other TLVs were implemented.

4.3 Summary and Conclusions

The ETNA network element architecture view has three logical planes: the manage-
ment plane, the control plane and the data (forwarding) plane. The control plane
can have many control elements but only one forwarding element associated with
each of the control elements. In the control plane there is also a management sys-
tem which is controlled by the user interface in the management plane. The ForCES
protocol is used between the CE-FE communication and the CE-MS communication
utilizes mRSVP. RSVP-TEEth is used for the CE-CE communication. The MP-CP
interface is utilizing SOAP.

The format of the common header is the same in the ETNA speci�cation as in
the IETF ForCES speci�cation. ETNA uses the following LFB class IDs: manager,

CHAPTER 4. ETNA REQUIREMENTS 29

forwarding database, OAM, QoS, tunnel control, topology discovery, and status
monitor. In addition to these, ETNA has speci�ed a bunch of IDs, data types, event
and result codes, and other values that do not overlap with the values in the IETF
speci�cation. The PATH-DATA-TLV layer, FULLDATA-TLV and SPARSEDATA-
TLV were removed from the ForCES model.

The ETNA ForCES model has some modi�cations di�ering from the IETF
speci�cation. It has been a bit simpli�ed but not much. A few dozens of new
values have been de�ned in ETNA ForCES speci�cation for the needs of the ETNA
implementation.

Chapter 5

Software Implementation of the

ForCES Protocol

This chapter presents the software implementation of the ForCES protocol. The
�rst section is about the implementation and the second section explains the code
structure. The third section describes the class inheritance and the fourth is about
the library use. The development environment is described in the �fth section. The
sixth section tells about the coding process and the seventh section has the summary
and contents.

5.1 About the Implementation

The implementation of the forwarding and control element separation (ForCES)
protocol was done following the ETNA requirements speci�cation for the ForCES
Messages [26].

The programming language used in ETNA was C++, so the object-oriented
programming (OOP) paradigm [33] was used from the beginning in the design of
the software. This includes data abstraction, encapsulation, inheritance, and poly-
morphism. With data abstraction the functions are de�ned, but the implementation
itself is hidden. By encapsulation, the data inside an object is not directly accessible.
Instead of that, object member variable access functions must be used. Inheritance
is used to put the same kind of objects together to achieve better code structure and
reduce the amount of code by placing common code to all inherited classes to base
class. Polymorphism makes possible call functions with di�erent parameter types
and the number of parameters can vary.

The main function of the implementation is to provide an interface for message
creation and accessing, so it was sensible that the software compiles to a library.
The most convenient way to do this was to compile it to a static library with a
make�le. The ForCES message library provides classes and functions for creating
and accessing ForCES messages to be transported between the CE and FE. The

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 31

complete library includes 31 classes and 15 436 lines of source code.

In addition to the ForCES Message library, a common test program was written
by the author to test all the messages with di�erent inputs. The tests create and
modify message and TLV/ILV objects in several ways with varying input parameters.
They also print the contents of the message to the standard output (i.e. screen) both
in the hex and ASCII format. Finally, the created objects are removed to release the
allocated memory. The idea of the test program is to run through all the essential
parts of the library. This covers are constructors, destructors, class member variable
accessing functions, byte array reading and writing functions, message validation
functions, message length calculation functions, and message printing functions.

5.2 Code Structure

There are three base classes in the ETNA ForCES Message library: the ForCES
Message base class, TLV base class, and ILV base class. Every object that is created
runtime either belongs to or is inherited from one of these base classes. There is
no main program, because the code compiles as a library. Every class has its own
source and �les also.

All of the ten ForCES message types are derived from the base class ForCES
Message. Because the common header is the same for every ForCES message, all the
common header data is placed in the base class member variables. Also functions
that handle these variables are located in the ForCES Message base class. The
di�erence between di�erent types of ForCES messages is visible by checking which
top-level TLV and sub-TLVs it has.

The top-level TLV and the sub-TLV classes are derived from the base class TLV.
The type and the length �elds are the same for all of the classes, so these �elds and
the accessing functions for them are placed in the TLV base class. Also the value
�eld is stored as a byte array in the base class for uniformity. The derived classes
have the value data in a more detailed way, i.e. it is stored in their class member
variables which are di�erent depending on the derived class. The ILV classes are
derived the same way from the base class ILV, although there is currently only one
ILV structure speci�ed in the IETF ForCES speci�cation which is the Meta Data
ILV [16, p. 84].

In addition to the speci�c class member variable accessing functions, the author
has implemented a couple of generic form class member functions that are included
in all of the ForCES Message, the TLV and ILV classes. These are functions for
byte array reading and writing, a function that checks the validity of an object and
a funtion that calculates the actual length of the data stored in an object in bytes.
That is, the amount of data in the message structure to be sent to the network. The
code is speci�c for each of the classes, so it is located with the derived classes.

The ForCES message base class has also a function that prints the contents of
the message to the standard output in both a hexadecimal and a clear text formats

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 32

for content checking and testing purposes.

5.3 Class Inheritance

There are three kinds of objects that can be created: ForCES Messages, TLVs, and
ILVs. All ForCES Messages are inherited from the ForCES Message base class. All
TLV objects are inherited from the TLV base class and all ILV objects are inherited
from the ILV base class, correspondingly. The TLV class inheritance principle is
shown in Figure 5.1. The same principle applies to the ForCES Message and ILV
base classes.

TLV sub-class 1

TLV sub-class 2

TLV base class

TLV sub-class N-1

TLV sub-class NTLV sub-class 3

Figure 5.1: TLV class inheritance.

All implemented classes have their own constructors and a destructor. The
classes have their member variables encapsulated as a private data type, so their
values must be accessed using public member variable accessing functions. Depend-
ing on the type of the private data, the access functions can be setters and getters,
but also functions that add or remove items in the case of a list or similar kind of
data structure. These data structures are used in some message and TLV classes to
store sub-TLVs in the other TLVs and the top-level TLVs in the message classes.

All classes have functions to read a raw network order data array to the object
data and vice versa. There are also functions to validate an object and calculate it's
length in bytes. Message classes have also a function to print the contents of the
message to the standard output.

5.4 Library Use

There are two basic situations the ForCES message library is used: when a message
arrives from the network and its contents must be read into a ForCES message
object in order to access it and when the message contents must be written to a
network order byte array containing the message that can be sent to the network.

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 33

The message can be easily modi�ed when its data is read to a message object. After
the modi�cations, the data can be written to a network order byte array.

5.4.1 ForCES Message Construction

There are �ve ways to create a message using the ETNA ForCES library:

(1) calling a speci�c message class constructor with no parameters and then �lling
the values separately,

(2) calling a speci�c message class constructor with all parameters separately
given,

(3) calling a speci�c message class constructor with data stored in �eld format,

(4) calling a speci�c message class constructor with byte array as a parameter
where the data is read to the class member variables, and

(5) calling a speci�c function that returns a base class type ForCES Message as a
return value.

Method (1) is used when we want to create an empty ForCES message and
afterwards set all the object member variables and �elds. This method is also used
when calling a default constructor for a ForCES message.

If we have all the needed values for creating a ForCES message already, we
can use method (2) and call a constructor that takes all the parameters separately.
The result is a complete ForCES message, if all the data is submitted and correct.
After the construction, the calling program should validate the message to ensure
all values were valid. Depending on the type of the message, there can be one or
more TLVs after the common header. If the message has only one TLV that can be
optional, the TLV is stored as a pointer in the message object and the memory must
be allocated dynamically for the TLV. On the other hand, if the message can include
several TLVs, they are stored in a pointer vector. In this case, the TLVs cannot be
set in the message construction phase, but they must be added after creating the
message using speci�c message class member functions.

Method (3) can be used, if we have the message input data as whole �elds. For
example, we can have the value of the whole 32-bit �ag �eld, instead of each of the
�ags' values separately. The operation with TLVs is the same as in method (2).

When we have received a ForCES message from the network and want to con-
struct a message object from the input data, we can use method (4) that takes a
byte array as a parameter. The second parameter is the length of the array, since
the parameter array is a pointer and has no size information in itself. There is,
though, a message length �eld in the common header, but we cannot trust the value
given in the input array is correct � the data can have been corrupted in the network

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 34

or it can be otherwise a wrong value. A wrong value can make the program read
the data from outside of the allocated memory area for the input array causing a
segmentation fault.

Method (4) can be used when we expect a certain type of a ForCES message,
but when we do not know the type of the message for sure, we can use method (5)
to construct the message. The parameters are the same as in method (4). The type
of the return value is the base class ForCES Message, so the constructed message
must be dynamically cast to the actual type of the message when operated.

Message Construction in Details

When creating a ForCES message using method (1) described in the previous sub-
section, the calling program must call a constructor of the desired message type, for
example, in the case of Association Setup message, the constructor to be called is
the default constructor AssociationSetupMessage() with no parameters. There are
two ways to do this, depending whether the memory is to be allocated from the
stack or from the heap. The memory is allocated from the stack using a default
constructor call inside object declaration:

AssociationSetupMessage message;

The other way is to use the new command for allocating memory from the heap:

AssociationSetupMessage* message = new AssociationSetupMessage();

In this case, the allocated memory must be released, when not needed anymore,
using the delete command:

delete message;

Now we have an empty Association Setup message object called message. After
this, we can set the message object member variables using speci�c setter functions.
The �rst �eld, the version �eld, can be set using the following message class member
function call:

message->setVersion(0x10);

This function sets the �rst 8-bit common header �eld including the 4-bit version
number with the value 0x10 in whole instead of only the version number. One must
note that the version number is actually the four most signi�cant bits of the eight
bit value, so the version number bits must be shifted to the left by four before calling
the function. The version number of the ForCES protocol is 1 in this example. The
four least signi�cant bits are reserved for future use and must be set to zero. When

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 35

using a constructor with all parameters separately given, the bit shifting is done in
the costructor. In other cases, the whole �eld value must be given.

The message type �eld is set in the construction phase, so normally one does
not have to set it anymore after construction. The message length behaves the
same way: the value is updated after every size change automatically. The message
should be validated using the class member function isValid() before sending it to
network, though. The length can be calculated using the class member function
calculateLength() and checked against the message length �eld to ensure the value is
correct. The message length can be asked by using the class member getter function
getMessageLength(). These functions are used this way:

bool valid = message->isValid();

uint16_t calculatedLength = message->calculateLength();

uint16_t storedLength = message->getMessageLength();

The source sub-ID and destination sub-ID �elds can be set using either one 32-
bit value as a parameter including both the source/destination sub-ID and sTS/dTS
�elds or giving them separately as two parameters:

message->setSourceSubID(1, 0);

message->setDestinationSubID(0x40000001);

The setter function for message correlator takes one 64-bit value as a parameter:

message->setCorrelator(664ull);

The ull speci�er just after the new correlator value stands for unsigned long long in-
teger type, i.e. an unsigned 64-bit integer value, and must be included when working
with larger than 32-bit unsigned integer values in a 32-bit processor architecture.

The �ags �eld can be set also two ways: using the setFlags() class member
function that takes one 32-bit value as a parameter to set all the �ags, or setting
each �ag separately using the setFlag() class member function:

message->setFlags(0b00001000010000000000000000000000);

message->setFlag(Ack, 0b11);

In here, the latter function takes the �ag name and the new �ag value as parameters.
The �ag name is an enumerated type de�ned as follows:

enum COMMON_HEADER_FLAG { Ack, Pri, EM, A, TP };

It is possible, for example, to create a Con�g message using method (2), a
constructor that takes all the input values separately, and allocate memory from the
stack, this way:

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 36

ConfigMessage configMsg(0x10, 1, 1, 0, 1, 664ull, 0, 1, 1, 0, 0);

An example of creating a Query message using method (3) and allocating memory
from the stack:

QueryMessage queryMsg(0x10, 0x40000001, 1, 664ull, 0xC8400000);

A Packet Redirect message is created using method (4), giving an input byte array
and it's length as parameters and allocating memory from the heap. The data in
the array arr is copied from another Packet Redirect message prm1 :

char* arr;

prm1->writeByteArray(&arr);

PacketRedirectMessage* prm2 = new PacketRedirectMessage(arr, 80);

If we receive a message from the network and are not sure what the message
type is, we can use method (5) to generate a ForCES base class object from the
message and check if the result is a valid message:

char arr[4096];

ForCESMessage* fm = makeMessage(arr, 4096);

If the return value is NULL, then the message construction was not successful.
Otherwise, the result is a valid ForCES message the type of which can be checked
by using a class member function getMessageType():

uint8_t messageType = fm->getMessageType();

The size of the array arr can be larger than the actual length of the message. It is
a bu�er to store the message whatever the length of the content is.

5.4.2 ForCES Message Destruction

When a ForCES message object is to be created, a constructor of the class of the
object is called. Likewise, if a ForCES message object is to be deleted, the destructor
of the class of the object is called. This happens when a delete command is called to
that object or the program exits from the current context and the memory for the
object has been allocated from the stack. Destructors are normally called automat-
ically in these two situations, so the program does not need to call them directly.
If an object has dynamically allocated memory in other objects or variables, they
must be also deleted in the object's destructor.

All ForCES messages, except for the Heartbeat message, call a top-level TLV
destructor from their own destructors. Depending on the structure of the top-
level TLV, several sub-TLV destructors may be called. This means that the object
destruction functions recursively through all the objects belonging to the actual
message.

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 37

5.4.3 Object Member Variable Accessing Functions

For each of the object member variables, there is a function that sets the variable
to the desired value and a function that gets the value of the variable at the current
moment. Setter functions take the new value as a parameter, while getter functions
return the current value of the variable as a return value. Below are the function
prototypes to set the version �eld and get the message type �eld:

virtual void setVersion(uint8_t version);

virtual uint8_t getMessageType() const;

The setter and getter functions for the common variables for all inherited classes
are placed in the base class. That is why we must use the word virtual before the
return type in the function prototype. The getter function does not change anyting
inside the object, so it needs the word const. Normally there is only one getter for
each of the member variables. An exception is, for example, the �ags �eld where
one can get the whole �eld or only one �ag value by specifying the �ag name as a
parameter to the �ag getter function. Here are the prototypes for these functions:

virtual uint32_t getFlags() const;

virtual int getFlag(COMMON_HEADER_FLAG flagName) const;

If the value can contain more than one of the same kind of variable type, then
there are functions to add an item to and remove an item from the list. Because
of encapsulation, the list implementation is not visible to the outside of the object.
There is also a function that returns the number of items in the list. Here are
examples of these function prototypes:

ParameterFieldTLV* getItem(int itemNo);

int getNumberOfItems() const;

void addItem(ParameterFieldTLV* parameterField);

void removeItem(int itemNo);

In this case, the member variable list contains Parameter Field TLV objects and the
list item getter function returns a pointer to the TLV object returned. The getter
function also takes the number of the item as a parameter. The calling program
must release the memory by deleting the object, when it is not needed anymore.

To ensure that the number is not out of bounds, the number of items in the
list should be checked before getting the value by using the number of items getter
function. The last two function prototypes are for adding an item to the list and
removing an item from the list. The item adding function places the new object
or value to the end of the list. The item removing function removes an item which
number is speci�ed as a parameter.

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 38

The list implementation uses the Boost1 library and a pointer vector data struc-
ture for dynamic object storing. Pointer vectors are easy to use and the Boost library
takes control of all memory allocation and releasing operations. When adding or
removing a list item, the object length �eld value is updated automatically so the
calling program need not calculate the new length value. Still, it is recommended to
check the validity of the object after operations that change the object length with
the object validation checking function.

5.4.4 Object Validation

A ForCES message or a TLV/ILV object can be validated using a speci�c class
member function. The validation function checks, for example, that the object
length is correct by calculating recursively all member variables and objects in the
object being validated. The function prototype is:

virtual bool isValid();

The function returns a true value of boolean type, if the object is valid, otherwise
it returns a false value. Depending on the type of the object tested, all the needed
tests are driven against the object. If all tests are passed, the object tested is found
to be a valid object.

Message validation starts by checking the common header. The code for this
operation is located in the parent class ForCESMessage to minimize duplicate code.
All the �elds of the common header are tested for valid values as speci�ed in ETNA
requirements [26]. Lastly, the message length calculation function is called and the
result is compared to the message length �eld.

The next operation is to check the top-level TLV: if it exists, the validation
function of the top-level TLV is called. It calls then recursively all the sub-TLVs
inside the top-level TLV. If any of the validation functions returns a false boolean
value, the message is not valid and the false value is returned to the calling pro-
gram. Moreover, if the message should have a top-level TLV and there is none, the
validation function returns false.

The TLV validation function checks, if the type of the TLV and the message
length are valid values. Depending on the type of the TLV, the validation function
can perform additional tests, for example, some TLV types must not have a sub-
TLV and others can have it. If there exists any sub-TLV, the sub-TLVs' validation
functions are called recursively.

5.4.5 Object Length Calculation

The length of a ForCES message, TLV, or ILV object can be calculated using a
speci�c class member function. The function prototype is:

1http://www.boost.org/

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 39

virtual uint16_t calculateLength();

The return value is an unsigned 16-bit integer type. The length of an object is
calculated as (8-bit) bytes, ie. octets.

If the object being calculated has sub-objects, the total length is calculated
recursively by calling the length calculation function in the sub-object and the re-
turning value is added to the length counter, �nally giving the total length of the
object. This value corresponds to the valuable data of the object, not the actual
amount of data allocated from the memory for the object.

5.4.6 ForCES Message Printing

There is a class member function in all the ForCES message classes to print the
contents of a message to the standard output. The prototype for the print function
is:

virtual void print();

All data of the message is printed in hex format. If the data values are text
characters or other characters that can be printed on the screen, they are printed
also in ASCII format next to the hex data values. Otherwise, the period character
is printed instead of the corresponding ASCII character. The printed line length
is limited to 78 characters, so that the message can be printed using a 80 column
terminal.

5.5 Development Environment

This section describes the development environment used along with the coding
process.

5.5.1 Platform

The project chosed the Ubuntu Linux operating system and x86 processor architec-
ture as the development environment platform. Also FreeBSD2 was considered as
an alternative. Also the Debian3 distribution of Linux could have been a choice, but
the Ubuntu4 distribution of Linux was ultimately chosen, because it is easy to setup
and use and there are more up-to-date libraries available for Ubuntu than for other
Unix-like operating systems.

2The FreeBSD Project, http://www.freebsd.org/
3Software in the Public Interest, Inc., http://www.debian.org/
4Canonical Ltd., http://www.ubuntu.com/

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 40

5.5.2 Testing and Debugging

The testing of the source code was performed mainly by unit testing. A separate
test program was written by the author which has a number of tests and a menu to
choose a test from. The test program uses standard output to print every meaningful
step of the running program and the contents of the message in a byte array format
as a hex dump to check that the modi�cations to the message have been a�ected in
the right places.

There is at least one test case for each of the message types. The test cases �rst
create a new message object of the desired type, for example PacketRedirectMessage,
and then add or set using a speci�c function the needed Type-Length-Value (TLV)
structures inside the message object depending if there is a �xed area of memory
reserved for the TLV to be set or the memory must be allocated dynamically by
adding a new TLV. There can be one or multiple TLVs inside another TLV depending
on the message structure. The aim is to use all TLV levels even though they are not
necessarily needed to compose a valid message to test the right functional operation.
The composed message is printed to the standard output using the print function.

The test cases then call a function that writes the message content to a byte
array format and then generates a second instance of the message using a function
that takes the byte array and the length of the message in bytes as arguments.
The function returns a message of a ForCESMessage base class type that must be
dynamically casted to the actual message type in order to access the data inside the
object other than common header, because the message structure depends on the
type of the message. Lastly, the generated message is tested so that it contains the
correct values.

The second way to generate a message from a byte array is to call the construc-
tor of the desired message class with an input byte array and the length of the array
as arguments. This method can be used when we know the type of the message
already. Some of the test cases utilize this method as well. The generated message
is printed at the end of the test case to compare the contents of the second instance
to the �rst.

There are also three debug levels that can be activated in the source code.
There is a de�nition DEBUG_LEVEL in the ForCES Message base class header �le
ForCESMessage.h that can have three values: DEBUG_LEVEL_OFF, DEBUG_-
LEVEL_NORMAL and DEBUG_LEVEL_ALL. Debugging level DEBUG_LE-
VEL_OFF prints no debug prints. Some essential debug information is printed
with level DEBUG_LEVEL_NORMAL. The most accurate debug level, when all
the debug prints are printed, is DEBUG_LEVEL_ALL. The idea behind this was
to have a simple and fast way to add debug prints to the source code with the ability
to disable them when not needed anymore. Also the GNU Debugger5 was used a
few times when there were more cumbersome bugs.

For memory leakage inspection, the Valgrind6 Memcheck tool was used to reveal

5The GDB developers, http://www.gnu.org/software/gdb/

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 41

bugs that leak random access memory. The tool was found very valuable for locating
many problems in source code, usually missing memory free calls.

5.6 Coding process

The work was started by designing the code structure: the needed classes, functions
and variables. After that the basic implementation of classes were quite straight-
forward. However, there came a lot of small changes in the code during the project
and many of the changes a�ected all or several classes. The number of TLV classes
and their relations to other classes, and the number of details in the requirement
speci�cation needed special care while writing the code. All the �les, classes and
functions were commented using Doxygen style comments and that also took a lot
of time to make a good documentation.

There were some problems with the way the Boost library handles the pointer
vector memory allocations: adding an object to a pointer vector needs the object
memory to be allocated from the heap and no stack allocation was possible. The
Boost library releases the memory allocated for the pointer vector objects when the
objects are removed from the pointer vector or the object containing the pointer
vector is deleted, so memory allocations and deallocations are not done in the same
context. The author did not have a relevant solution to this problem so this func-
tioning was decided to be accepted and documented.

5.7 Summary and Conclusions

The implementation of the ForCES protocol was done following the ETNA require-
ments speci�cation for the ForCES messages. A C++ library was implemented and
a separate test program written by the author to test the library functionality. The
library has 31 classes with 15 436 lines of source code.

The object-oriented programming paradigm was used from the beginning in
the design of the software: the data in the objects is stored in the private member
functions and can be accessed using speci�c functions. There are functions to convert
the object data to a byte array form to be transported to the network and to read
a byte array, that contains a message from the network, and write that data to
a message object. In addition, there are object validation and length calculation
functions. In the ForCES Message class there is also a print function to print
contents of the message to the screen.

Testing was performed using the common test program that has di�erent tests
to cover the functionality of the library. There are three debug levels in the code to
print run-time debug information. Also the GNU Debugger was used a few times.
Comments were written using Doxygen documentation system.

6The Valgrind developers, http://valgrind.org/

CHAPTER 5. SOFTWARE IMPLEMENTATION OF THE FORCES
PROTOCOL 42

The implementation is working well and has all the needed functionality to
generate ForCES messages and process them. There are still some things that can
be done to improve the usability of the library such as adding functions to insert an
item to a selected place on the pointer vector. The coding work was �rst estimated
much less than it was �nally, because there were many small and bigger changes to
the source code and one change needed modi�cations to other classes also, if not all
of them at a time.

Chapter 6

Evaluation of the Implementation

In the �rst section of this chapter the used evaluation methods are described. The
second section contains the performance measurements: the planning of the mea-
surements, the tools and the environment used in the measurements and the actual
measurements in details. The results are discussed in the third section and the
fourth section has the summary and conclusions.

6.1 Evaluation Methods

Because the implementation is used in the message transport, the speed of the
message construction and the object data reading is important. Two things can be
measured from these: the time elapsed in the message construction and how much
memory was used during an operation. These facts describe the performance of the
implementation.

The tools used measuring the performance are the test program tester.cpp writ-
ten by the author and the Valgrind Memcheck tool. The ForCES message construc-
tion time was measured with the test program and the memory usage with the
Valgrind Memcheck tool.

6.2 Performance Measurements

The performance measurements were done in two ways: the one with the normal
compiling options and the other with code execution speed optimizing with the -O2 -
�ag given to the compiler to optimize the code as much as possible. The processor's
other load was kept steady and as minimal as possible, so that the measurements
would be comparable together. A few times there were slightly divergent values
measured. When this happened, the divergent values were excluded from the results
not to distort them.

CHAPTER 6. EVALUATION OF THE IMPLEMENTATION 44

Four di�erent message types were selected in the measurements. ForCES test
message 1 is a small message with only a common header and no Type-Length-Value
(TLV) data structures. ForCES test message 2 is a short Con�g message with only
a few TLVs and minimal data. ForCES test message 3 is a long Con�g message with
a few TLVs and much data. ForCES test message 4 is a long Con�g message with
lots of TLVs included. The structures of the test messages are designed so that the
test messages 2 and 3 have the same amount of TLVs included and the test messages
3 and 4 have the same length in bytes.

The unoptimized ForCES message construction time measurements and mem-
ory allocations done during the code execution are shown in Tables 6.1, 6.3, 6.5, and
6.7. The corresponding code execution time measurements and memory allocations
of the optimized code are shown in Tables 6.2, 6.4, 6.6, and 6.8. The tables have the
values normalized to individual messages. The original measurement results can be
seen on Appendix D.

The values for the memory allocations include only the essential memory allo-
cations: other memory allocations, such as temporary arrays used and the memory
allocated for the program start are excluded from the values.

6.2.1 Planning of the Measurements

The ForCES message construction operation was selected to be measured in the tests
because it is more complicated operation than the object data reading. That is be-
cause the Boost library is used to store dynamically TLV objects inside upper level
TLVs or message objects in the message construction phase and it is expectable that
these Boost operations take more time than if we are only reading the object data
values. The message destruction operations were left out from the time measure-
ments also. The test cases handle several messages at a time and an average value
can be counted from the results to omit errors resulting from unessential causes.

The designed performance tests have the amount of messages to be constructed
set so that the total processing time is about a few seconds or less to keep the testing
time reasonable. The tests are done �ve times with �ve di�erent lineal increasing
amounts of messages. The results were then normalized to correspond to the values
for one message to �ve messages so that the individual message processing times
and memory allocations can be easily seen.

6.2.2 Tools Used in the Measurements

The ForCES message library was performance tested with the test program tester.cpp
written by the author. It is a common test program containing also functional tests
that were run when the general functionality of the ForCES message library was
tested.

The message construction time was measured by speci�c tests in the test pro-

CHAPTER 6. EVALUATION OF THE IMPLEMENTATION 45

gram. The tests utilize clock() function that resides in the C time library [34, p.
906]. The function prototype is:

clock_t clock(void);

The return value of type clock_t is the processor time at the moment the function
was called. The current time, when the test starts, is stored and compared to the
time after the code to be measured is executed. The di�erence of these two values
is the execution time of the measured code.

The Valgrind Memcheck tool was utilized for checking the number of memory
allocations and the total amount of memory allocated in bytes per program run.
Valgrind can be executed from the command line with the needed arguments by
typing:

valgrind --leak-check=full --max-stackframe=2000016 ./tester

The --leak-check=full argument tells Valgrind to search for memory leaks at
the program exit and print the number of the memory allocations done, the total
amount of memory allocated from the heap in bytes, and the amount of memory
released during the program execution. The --max-stackframe=2000016 argument
was needed to increase the stack frame limit because the limit was not high enough
for the fourth measurement with lots of TLVs. Without this argument, there will
not be enough space in the stack during the program execution and a stack over�ow
will result [35, p. 197].

6.2.3 Measurement Environment

The operating system used in measurements was Ubuntu Release 8.04 with Linux
Kernel 2.6.24-21-generic. The hardware was a standard PC compatible with an
Intel® Core� 2 Duo E6600 2.40 GHz processor with two cores and two gigabytes
of random access memory. The used test program did not utilize threads so only
one central processing unit was used at a time.

6.2.4 Measurements with ForCES Test Message 1

The �rst ForCES message used for measurements was selected to be as short as
possible. The only ForCES message that has no TLVs, just a common header, is
the Heartbeat message. The length of the common header is 24 bytes, so that will
be the length of this message also.

The average message construction time measurements and memory allocations
from the heap using non-optimized code are shown in Table 6.1. The corresponding
measurements for optimized code are shown in Table 6.2.

CHAPTER 6. EVALUATION OF THE IMPLEMENTATION 46

Table 6.1: ForCES test message 1 construction time measurements normalized and
related memory allocations with non-optimized code.

Average
time
(µs)

Standard
deviation
(µs)

Number
of mes-
sages

Number of
memory al-
locations

Memory
allocated
(bytes)

8.16 0.06 1 1 32
16.48 0.56 2 2 64
24.26 0.70 3 3 96
31.78 0.57 4 4 128
39.88 0.43 5 5 160

Table 6.2: ForCES test message 1 construction time measurements normalized and
related memory allocations with optimized code.

Average
time
(µs)

Standard
deviation
(µs)

Number
of mes-
sages

Number of
memory al-
locations

Memory
allocated
(bytes)

5.54 0.11 1 1 32
10.86 0.21 2 2 64
15.78 0.16 3 3 96
21.12 0.74 4 4 128
26.00 0.37 5 5 160

6.2.5 Measurements with ForCES Test Message 2

The second ForCES message used for measurements was selected to be a short
message with a few TLVs in the payload. For clarity, this message and the rest of
the messages used for measurements would be good to be the same type. Because a
Con�g message can have several TLVs with multiple levels, that message type was
selected for the rest of the measurements.

The Con�g message used for this measurement has an LFBselect TLV as the

Table 6.3: ForCES test message 2 construction time measurements normalized and
related memory allocations with non-optimized code.

Average
time
(µs)

Standard
deviation
(µs)

Number
of mes-
sages

Number of
memory al-
locations

Memory
allocated
(bytes)

304 5.5 1 19 308
522 8.4 2 38 616
722 4.5 3 57 924
946 13.4 4 76 1232
1166 11.4 5 95 1540

CHAPTER 6. EVALUATION OF THE IMPLEMENTATION 47

Table 6.4: ForCES test message 2 construction time measurements normalized and
related memory allocations with optimized code.

Average
time
(µs)

Standard
deviation
(µs)

Number
of mes-
sages

Number of
memory al-
locations

Memory
allocated
(bytes)

130 7.1 1 19 308
212 8.9 2 38 616
284 11.4 3 57 924
364 11.4 4 76 1232
442 11.0 5 95 1540

top-level TLV. Inside that, there is one Con�g TLV with two Con�g Data TLVs in
the value �eld. The �rst Con�g Data TLV has two Parameter Field TLVs of length
eight and the second Con�g Data TLV has two Parameter Field TLVs of length
four, that is the value �eld of them being empty. This is not a reasonable situation
in practise, but for testing purposes it is a good choice, because it is a special case
that is good to be tested also. The length of this message is 80 bytes.

The average message construction time measurements and memory allocations
from the heap using non-optimized code are shown in Table 6.3. The corresponding
measurements for optimized code are shown in Table 6.4.

6.2.6 Measurements with ForCES Test Message 3

A long Con�g message with a few TLVs was used in this measurement. The structure
of this Con�g message is the same as in the previous measurement, but the length
of the �rst two Parameter Field TLVs is 480 bytes instead of eight. The total length
of this message is 1024 bytes.

The average message construction time measurements and memory allocations
from the heap using non-optimized code are shown in Table 6.5. The corresponding
measurements for optimized code are shown in Table 6.6.

Table 6.5: ForCES test message 3 construction time measurements normalized and
related memory allocations with non-optimized code.

Average
time
(µs)

Standard
deviation
(µs)

Number
of mes-
sages

Number of
memory al-
locations

Memory
allocated
(bytes)

352 13.0 1 19 1252
624 9.0 2 38 2504
896 9.0 3 57 3756
1162 11.0 4 76 5008
1438 14.8 5 95 6260

CHAPTER 6. EVALUATION OF THE IMPLEMENTATION 48

Table 6.6: ForCES test message 3 construction time measurements normalized and
related memory allocations with optimized code.

Average
time
(µs)

Standard
deviation
(µs)

Number
of mes-
sages

Number of
memory al-
locations

Memory
allocated
(bytes)

156 13.4 1 19 1252
268 11.0 2 38 2504
368 14.8 3 57 3756
488 11.0 4 76 5008
596 8.9 5 95 6260

6.2.7 Measurements with ForCES Test Message 4

The last measurement was done using a long Con�g message with lots of TLVs. The
structure of this Con�g message is almost the same as in the second measurement,
but there are in total 120 Parameter Field TLVs of the length eight instead of only
two. The total length of this message is 1024 bytes which is the same length used in
the third measurement to enable easier comparison of the time and memory usage
between the measurements.

Table 6.7: ForCES test message 4 construction time measurements normalized and
related memory allocations with non-optimized code.

Average
time
(µs)

Standard
deviation
(µs)

Number
of mes-
sages

Number of
memory al-
locations

Memory
allocated
(bytes)

5020 83 1 437 6232
9320 217 2 874 12464
13500 71 3 1311 18696
17760 114 4 1748 24928
22000 283 5 2185 31160

Table 6.8: ForCES test message 4 construction time measurements normalized and
related memory allocations with optimized code.

Average
time
(µs)

Standard
deviation
(µs)

Number
of mes-
sages

Number of
memory al-
locations

Memory
allocated
(bytes)

2200 122 1 437 6232
3980 84 2 874 12464
5560 55 3 1311 18696
7360 89 4 1748 24928
9020 45 5 2185 31160

CHAPTER 6. EVALUATION OF THE IMPLEMENTATION 49

The average message construction time measurements and memory allocations
from the heap using non-optimized code are shown in Table 6.7. The corresponding
measurements for optimized code are shown in Table 6.8.

6.3 Results of the Measurements

The results of the measurements are handled from two points of view: the amount of
memory allocated in the message construction phase and the measured time elapsed
during the operation.

6.3.1 Analysis of the Memory Allocations

It can be seen from the values from the ForCES test message 1 measurements (Ta-
ble 6.1) that there is one memory allocation from the heap for each message. Memory
is allocated 32 bytes for one Heartbeat message, so if we take into consideration that
the length of the Heartbeat message is 24 bytes, there is eight bytes more memory
allocated than the length of the message is as can be seen in Table 6.9. The number
of the memory allocations and the memory allocated grow linearly as the number
of the test messages increase.

The ForCES test message 2 has eight TLVs. From Table 6.3 we can see that
there were 19 memory allocations for that message. That is because the Boost library
does one extra memory allocation per each of the TLVs. Two memory allocations are
for the parameter values and one for the message itself. That makes in total nineteen
memory allocations. The di�erence between the memory allocated for the ForCES
test message 2 and the message length, ie. overhead, is 228 bytes (Table 6.9). The
extra bytes are from the memory allocations made by the test program and Boost
library. The exact amounts of bytes allocated in each of the operations are beyond
the scope of this thesis and will not be investigated more here.

The memory usage for the ForCES test message 3 (Table 6.5) is quite similar
to the previous message. The length of the message is only bigger, while the number
of the memory allocations and the amount of memory allocated minus the length of

Table 6.9: Comparison between message length and memory allocated in measure-
ments with ForCES test messages 1�4.

Test message name Number of
TLVs in a
message

Message
length
(bytes)

Memory
allocated
(bytes)

Over-
head
(bytes)

Over-
head
(%)

ForCES test message 1 0 24 32 8 33
ForCES test message 2 8 80 308 228 285
ForCES test message 3 8 1024 1252 228 22
ForCES test message 4 185 1024 6232 5208 509

CHAPTER 6. EVALUATION OF THE IMPLEMENTATION 50

the message are the same as with the ForCES test message 2 (see Table 6.9).

The ForCES test message 4 has 185 TLV data structures and that increases the
memory usage signi�cantly (Table 6.7). The di�erence between the memory allo-
cated for each of the messages and the message length is now 5208 bytes (Table 6.9).
That is over �ve times the length of the actual message (1024 bytes). The memory
allocations overhead compared to the message network length is calculated in the
last column of Table 6.9.

6.3.2 Analysis of the Message Construction Times

In Figure 6.1, there is a bar diagram showing the di�erence between the construction
times for one ForCES test message.

0 µs

1000 µs

2000 µs

3000 µs

4000 µs

5000 µs

6000 µs

8 µs

304 µs 352 µs

5020 µs

6 µs
130 µs 156 µs

2200 µs

Figure 6.1: ForCES test messages 1�4 construction times with one message com-
pared.

Figure 6.2 shows the same bars zoomed so that the small di�erences between
messages 2 and 3 are seen better from the diagram. The blue bar shows the result
for the unoptimized code and the red bar shows the result for the optimized code.
The �rst almost invisible bar pair is for the Heartbeat message and the rest are for
the Con�g messages. From the picture it can be seen that a long message with lots
of TLVs takes signi�cantly more time than a long message with a few TLVs even
though they are of the same length. This is because the memory for the objects is
allocated dynamically by the test program and the Boost library, and that seems to
take much time.

CHAPTER 6. EVALUATION OF THE IMPLEMENTATION 51

0 µs

50 µs

100 µs

150 µs

200 µs

250 µs

300 µs

350 µs

400 µs

8 µs

304 µs

352 µs

5020 µs

6 µs

130 µs

156 µs

2200 µs

Figure 6.2: ForCES test messages 1�4 construction times with one message com-
pared (zoomed).

The code optimization with the -O2 parameter given to the compiler reduces
the message construction times to a half or less compared to the unoptimized code.
This can be seen from all of the four measurements.

From Figure 6.3 it can be seen from the graph that the ForCES test message
processing times increase linearly. If we continue the line one more step to the left
(x=0) by approximating, the gap between the origin and the line in y-axis direction
is the o�set time.

The o�set time and the percentage of the o�set compared to the average of the
di�erences of the neighbor values for the ForCES test messages 1�4 are calculated
in Table 6.10. ∆1 is the distance of the �rst value from the x-axis, ie. the value
itself. ∆2�∆5 are the di�erences of the other values compared to the previous value.
The average value is calculated for only ∆2�∆5, because ∆1 includes the o�set so it

Table 6.10: ForCES test message construction time o�sets calculated.

Msg
#

∆1

(µs)
∆2

(µs)
∆3

(µs)
∆4

(µs)
∆5

(µs)
Average of
∆2�∆5 (µs)

St. Dev.
(µs)

O�set
(µs)

O�set
(%)

1 8.16 8.32 7.78 7.52 8.10 7.93 0.35 0.23 2.9
2 304 218 200 224 220 216 11 89 41
3 352 272 272 266 276 272 4 81 30
4 5020 4300 4180 4260 4240 4245 50 775 18

CHAPTER 6. EVALUATION OF THE IMPLEMENTATION 52

1 2 3 4 5

0 µs

200 µs

400 µs

600 µs

800 µs

1000 µs

1200 µs

1400 µs

Figure 6.3: ForCES test message 2 construction times with 1�5 messages processed.

must be excluded. The next column shows the standard deviation for the calculated
average values.

From the o�set percentage column of this table we can see that for the Heart-
beat messages the message construction o�set time is nearly negligible. The relative
o�set is the largest for the short Con�g message with a few TLVs and gets smaller
as the message complexity increases.

6.4 Summary and Conclusions

Four di�erent kinds of ForCES test messages have been used in the performance
testing in the evaluation of the ForCES message library. The �rst ForCES test
message was a short one with only the common header. The second one was a
message with a few short TLVs. The third message was a much longer message with
a few TLVs and the fourth message was a long message with lots of TLVs.

The memory usage was calculated using the Valgrind memory checking tool
and compared between di�erent test messages. This includes both the number
of memory allocations and the amount of memory allocated during the message
construction. Also the message construction time was measured using the clock()
function that is included in the C time library.

There were signi�cant di�erences between the results. Both the construction
time and the amount of memory allocated increased signi�cantly as the number of

CHAPTER 6. EVALUATION OF THE IMPLEMENTATION 53

TLVs increased. The reason for this phenomenon is the memory allocation opera-
tions that take time. The code optimization reduced the processing times to a half
or less compared to the unoptimized code.

As the number of TLVs increase in a ForCES message, the processing time and
the memory usage increase signi�cantly. However, that would be not a problem
because the absolute time and memory used are still quite insigni�cant compared
to the capacity of the computers today. The nature of the ForCES messages is that
they are, for example, used to make associations or con�guration changes so they
do not need so much capacity in processing.

The results were quite reasonable and it was interesting to see how much the
optimization of the code reduced the processing times of the tested messages.

Chapter 7

Summary and Conclusions of the

Study

In this chapter there is a summary of all the work done and conclusions. Finally,
some future work ideas are presented.

7.1 Summary

This Master's thesis has dealt with a software implementation and evaluation of a
network element control protocol that has been a part of the Ethernet Transport
Networks, Architectures of Networking (ETNA) project which was co-funded by
the European Commission in the Seventh EU Framework Program of Research and
Technological Development (FP7). The network element control protocol chosen
to be implemented was the Forwarding and Control Element Separation (ForCES)
protocol. Two other network element control protocols were also investigated and
their features compared with the protocol utilized by ETNA and with each other.
These protocols were general switch management protocol (GSMP) and OpenFlow.

The original ForCES protocol speci�cation written by the IETF network work-
ing group was modi�ed for ETNA needs: the PATH-DATA-TLV layer was removed
to simplify the implementation and several new TLV type values were introduced.
The implementation was done against the modi�ed speci�cation and compiled to a
C++ library. The ForCES protocol implementation was part of the ETNA proof-
of-concept network element model that was tested together with BGU's forward-
ing element part ForCES implementation in the project integration phase during
autumn 2009. The evaluation of the implementation included some performance
measurements.

CHAPTER 7. SUMMARY AND CONCLUSIONS OF THE STUDY 55

7.2 Conclusions

The ETNA project requirements for the ForCES protocol implementation were well
speci�ed, so the coding process was quite straightforward. The implementation was
found to be working well without problems in the project integration phase where
all the software modules from Aalto University and Ben Gurion University were
working together.

As a result, it can be said that the protocol chosen was a good decision even-
tually. It has all the functionality for the CE�FE communication needed in ETNA.

The implementation of the basic framework for the ForCES protocol took a
few months and the commenting, debugging, and modifying of the code for better
matching up to the ForCES protocol speci�cation adapted for the ETNA project
took also a lot of time because of the high amount of classes in the C++ code. The
commenting of all the code was done using the Doxygen1 documentation system.

The ForCES message library has now the basic functionality so that it can
be used to construct a ForCES message from a byte array containing a message
from the network and read a ForCES message object data to a byte array to be
transported to the network. The library can handle all ten ForCES message types
that are speci�ed in the IETF ForCES speci�cation.

7.3 Future Work

If an object can have more than one of the same kind of TLV, now TLVs can be
added to the end and the desired TLV number can be removed. Some future work
could be to make adding possible to any place in the data structure. A function
that �nds the �rst or next item with a given value or type could be useful also. The
Boost library has also other useful features that can be utilized in making better
functions that handle Boost pointer vector items.

The PATH-DATA-TLV was not utilized in the ETNA implementation. That
could be implemented in the future versions if it seems to be practical. For multi-core
processor systems thread utilizing could be useful. That will need some additional
code to use and control multiple threads.

1http://www.doxygen.org/

Bibliography

[1] The Miniwatts Marketing Group, Internet World Stats � Usage and Population
Statistics, updated: 2009-09-30, accessed: 2009-11-17, available:
http://www.internetworldstats.com/stats.htm.

[2] International Telecommunication Union (ITU), ICT Statistics Newslog �
Internet tra�c is growing fast � but capacity is keeping pace, updated:
2008-09-05, accessed: 2009-11-17, available:
http://www.itu.int/ITU-D/ict/newslog/Internet+Traffic+Is+Growing+

Fast+But+Capacity+Is+Keeping+Pace.aspx.

[3] Comer, D. E., Internetworking with TCP/IP � Volume I: Principles, Protocols,
and Architecture, Third Edition, Prentice-Hall, Inc., 1995, ISBN 0-13-216987-8.

[4] Hudson, D., Next-generation Ethernet and network intelligence: Foundations
for future networks, Nortel Technical Journal, Issue 4, pp. 1�6.

[5] Tanenbaum, A. S., Computer Networks, Prentice-Hall International Editions,
Prentice-Hall, Inc., 1981, ISBN 0-13-164699-0.

[6] Allard, R., Ethernet OAM and resiliency: Making Ethernet suitable for carrier
operations, Nortel Technical Journal, Issue 4, pp. 28�29.

[7] ETNA Consortium, ETNA, ETNA Consortium WWW home page, accessed:
2009-11-04, available: http://www.ict-etna.eu/.

[8] ETNA Consortium, Ethernet Transport Networks, Architectures of Network-
ing, Work Package 6 Deliverable 6.1, Showcase Report, 2010-01-15, accessed:
2010-05-10, available: http://www.ict-etna.eu/documents/ETNA%20D6.1%

20Showcase%20Report%20V1.4.pdf.

[9] ETNA Consortium, Ethernet Transport Networks, Architectures of Networking,
Work Package 1 Deliverable 1.1, Requirements, speci�cation and analysis, 2008-
06-30, accessed: 2010-05-10, available: http://www.ict-etna.eu/documents/
ETNAWP1FinalD1.1.pdf.

[10] Kantola, R., Luoma, M., and Ilvesmäki, M., Routed End to End Ethernet �
RE2EE, 2007-02-26.

http://www.internetworldstats.com/stats.htm
http://www.itu.int/ITU-D/ict/newslog/Internet+Traffic+Is+Growing+Fast+But+Capacity+Is+Keeping+Pace.aspx
http://www.itu.int/ITU-D/ict/newslog/Internet+Traffic+Is+Growing+Fast+But+Capacity+Is+Keeping+Pace.aspx
http://www.ict-etna.eu/
http://www.ict-etna.eu/documents/ETNA%20D6.1%20Showcase%20Report%20V1.4.pdf
http://www.ict-etna.eu/documents/ETNA%20D6.1%20Showcase%20Report%20V1.4.pdf
http://www.ict-etna.eu/documents/ETNAWP1FinalD1.1.pdf
http://www.ict-etna.eu/documents/ETNAWP1FinalD1.1.pdf

BIBLIOGRAPHY 57

[11] Ryynänen, J., Routed End-to-End Ethernet Network � Proof of Concept, Mas-
ter's thesis, Aalto University School of Science and Technology, Department of
Communications and Networking, Espoo, 2008.

[12] Toropainen, T., A Routing Protocol for Ethernet Transport, Master's thesis,
Helsinki University of Technology, Espoo, 2008.

[13] Khosravi, H., and Anderson, T., Eds., Requirements for Separation of IP Con-
trol and Forwarding, RFC 3654, November 2003.

[14] Allan, D., and Bragg, N., Taking control: The evolving role of the control and
data planes, Nortel Technical Journal, Issue 4, pp. 25�32.

[15] Calzia, S., Bonsall, L., Building a highly available enterprise network, Light-
wave, Issue April 2010, a network magazine, pp. 13�16, PennWell Corporation,
accessed: 2010-05-10, available: http://online.qmags.com/LW0410/.

[16] Doria, A., Haas, R., Hadi Salim, J., Khosravi, H., and Wang, W. M., ForCES
Protocol Speci�cation, Internet-Draft draft-ietf-forces-protocol-22 (work in
progress), March 2009.

[17] Yang, L., Dantu, R., Anderson, T., and Gopal, R., Forwarding and Control
Element Separation (ForCES) Framework, RFC 3746, April 2004.

[18] Jin, R., and Wang, W, Research and Implementation of SNMP in ForCES
Framework, IEEE publication, 2007.

[19] Halpern, J., and Salim, J. H., Forwarding and Control Element Separation
(ForCES) Forwarding Element Model, RFC 5812, March 2010.

[20] Dutton, H. J. R., Lenhard P., Asynchronous Transfer Mode (ATM) Technical
Overview, Second Edition, Prentice-Hall, Inc., 1995, ISBN 0-13-52044-5.

[21] Doria, A., Hellstrand, F., Sundell, K., and Worster, T., General Switch Man-
agement Protocol (GSMP) V3, RFC 3292, June 2002.

[22] Doria, A., and Sundell, K., General Switch Management Protocol (GSMP) Ap-
plicability, RFC 3294, June 2002.

[23] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rex-
ford, J., Shenker, S., and Turner, J., OpenFlow: Enabling Innovation in Campus
Networks, OpenFlow whitepaper, 2008-03-14, accessed: 2009-12-17, available:
http://www.openflowswitch.org/documents/openflow-wp-latest.pdf.

[24] Das, S., Parulkar, G., and McKeown, N., Simple Uni�ed Control
for Packet and Circuit Networks, accessed: 2010-05-10, available:
http://www.openflowswitch.org/wp/wp-content/uploads/2009/05/

openflow_ucp_submitpaper.pdf.

http://online.qmags.com/LW0410/
http://www.openflowswitch.org/documents/openflow-wp-latest.pdf
http://www.openflowswitch.org/wp/wp-content/uploads/2009/05/openflow_ucp_submitpaper.pdf
http://www.openflowswitch.org/wp/wp-content/uploads/2009/05/openflow_ucp_submitpaper.pdf

BIBLIOGRAPHY 58

[25] Sherwood, R., Gibb, G., Kok-Kiong, Y., Appenzeller, G., Casado, M., McK-
eown, N., and Parulkar, G., FlowVisor: A Network Virtualization Layer,
2009-10-14, accessed: 2009-11-19, available: http://openflowswitch.org/

downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf.

[26] ETNA Consortium, ForCES Messages, The ETNA Control Plane ForCES Mes-
sages requirements speci�cation, updated: 2008-09-15.

[27] Gray, J., Notes on database operating systems. In Operating Systems: An
Advanced Course. Lecture Notes in Computer Science, Vol. 60, pp. 394�481,
Springer-Verlag, 1978.

[28] Lamminen, O.-P., Luoma, M., Nousiainen, J., and Taira, T., Control Plane for
Carrier-Grade Ethernet Network, submitted for BIPN'09.

[29] ETNA Consortium, Ethernet Transport Networks, Architectures of Net-
working, Work Package 4 Deliverable 1.1, Requirements, Implementa-
tion, Architecture, and Functionality, 2008-11-30, accessed: 2010-05-10,
available: http://www.ict-etna.eu/documents/ETNA%20Report%20of%

20the%20requirements,%20implementation%20%20architecture%20and%

20models%20-D4.1-R1.pdf.

[30] Nousiainen, J., Management of Carrier Grade Intra-Domain Ethernet, Mas-
ter's thesis, Aalto University School of Science and Technology, Department of
Communications and Networking, Espoo, 2010.

[31] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., and Swallow, G.,
RSVP-TE: Extensions to RSVP for LSP Tunnels, RFC 3209, December 2001.

[32] Taira, T., A Signaling System for Ethernet Transport, Master's thesis, Aalto
University School of Science and Technology, Department of Communications
and Networking, Espoo, 2010.

[33] Schach, S. R., Object-Oriented & Classical Software Engineering, 6th Edition,
International Edition, McGraw-Hill, 2005, ISBN 0-07-111191-3.

[34] Stroustrup, B., The C++ Programming Language, Special Edition, Addison
Wesley, 2000, ISBN 0-201-70073-5.

[35] Ho�man, A., PC Assembly Language: Step by Step, A complete beginners guide
to learning and applying assembly language, A Micro Application Book, Abacus
Software Inc, 1990, ISBN 1-55755-096-4.

http://openflowswitch.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://openflowswitch.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf
http://www.ict-etna.eu/documents/ETNA%20Report%20of%20the%20requirements,%20implementation%20%20architecture%20and%20models%20-D4.1-R1.pdf
http://www.ict-etna.eu/documents/ETNA%20Report%20of%20the%20requirements,%20implementation%20%20architecture%20and%20models%20-D4.1-R1.pdf
http://www.ict-etna.eu/documents/ETNA%20Report%20of%20the%20requirements,%20implementation%20%20architecture%20and%20models%20-D4.1-R1.pdf

Appendix A

Code Snippets

ForCESMessage.h

/** \ f i l e ForCESMessage . h
* \ b r i e f ForCES Message base c l a s s d e c l a ra t i on .
* \author Jan Grondahl
* \ date 19.11.2008
*

* This f i l e conta ins c l a s s d e c l a ra t i on o f ForCES Message base c l a s s . A l l
* ForCES Messages are der i ved from t h i s c l a s s .
*/

#ifndef FORCESMESSAGE_H_
#define FORCESMESSAGE_H_

/// Message type va lue s
#define ASSOCIATION_SETUP_MESSAGE_TYPE 0x01
#define ASSOCIATION_SETUP_RESPONSE_MESSAGE_TYPE 0x11
#define ASSOCIATION_TEARDOWN_MESSAGE_TYPE 0x02
#define CONFIG_MESSAGE_TYPE 0x03
#define CONFIG_RESPONSE_MESSAGE_TYPE 0x13
#define QUERY_MESSAGE_TYPE 0x04
#define QUERY_RESPONSE_MESSAGE_TYPE 0x14
#define EVENT_NOTIFICATION_MESSAGE_TYPE 0x05
#define PACKET_REDIRECT_MESSAGE_TYPE 0x06
#define HEARTBEAT_MESSAGE_TYPE 0x0F

/// Common header f i e l d o f f s e t va lue s .
#define COMMON_HEADER_VERSION_OFFSET 0x00
#define COMMON_HEADER_MESSAGETYPE_OFFSET 0x01
#define COMMON_HEADER_MESSAGELENGTH_OFFSET 0x02
#define COMMON_HEADER_SOURCESUBID_OFFSET 0x04
#define COMMON_HEADER_DESTINATIONSUBID_OFFSET 0x08
#define COMMON_HEADER_CORRELATOR_OFFSET 0x0C
#define COMMON_HEADER_FLAGS_OFFSET 0x14
#define FIRST_TOPLEVELTLV_OFFSET 0x18
#define COMMON_HEADER_SIZE 0x18

/// Common header f i e l d b i t o f f s e t va lue s
#define COMMON_HEADER_VERSION_BIT_OFFSET 0x04 ///< Version
#define COMMON_HEADER_STS_BIT_OFFSET 0x1E ///< sTS
#define COMMON_HEADER_DTS_BIT_OFFSET 0x1E ///< dTS
#define COMMON_HEADER_ACK_FLAG_BIT_OFFSET 0x1E ///< Ack f l a g
#define COMMON_HEADER_PRI_FLAG_BIT_OFFSET 0x1B ///< Pri f l a g
#define COMMON_HEADER_EM_FLAG_BIT_OFFSET 0x16 ///< EM f l a g
#define COMMON_HEADER_A_FLAG_BIT_OFFSET 0x15 ///< A f l a g

APPENDIX A. CODE SNIPPETS 60

#define COMMON_HEADER_TP_FLAG_BIT_OFFSET 0x13 ///< TP f l a g

/// Common header f i e l d b i t s i z e va lue s
#define COMMON_HEADER_STS_BIT_SIZE 0x02 ///< sTS
#define COMMON_HEADER_DTS_BIT_SIZE 0x02 ///< dTS
#define COMMON_HEADER_ACK_FLAG_BIT_SIZE 0x02 ///< Ack f l a g
#define COMMON_HEADER_PRI_FLAG_BIT_SIZE 0x03 ///< Pri f l a g
#define COMMON_HEADER_EM_FLAG_BIT_SIZE 0x02 ///< EM f l a g
#define COMMON_HEADER_A_FLAG_BIT_SIZE 0x01 ///< A f l a g
#define COMMON_HEADER_TP_FLAG_BIT_SIZE 0x02 ///< TP f l a g

/// Current so f tware ver s ion
#define CURRENT_VERSION 1

/// " In va l i d " va lue s used fo r i n i t i a l i z i n g v a r i a b l e s
#define INVALID_VALUE_8BIT 0xFFu ///< uint8_t (char)
#define INVALID_VALUE_16BIT 0xFFFFu ///< uint16_t (shor t)
#define INVALID_VALUE_32BIT 0xFFFFFFFFu ///< uint32_t (i n t / long)
#define INVALID_VALUE_64BIT 0xFFFFFFFFFFFFFFFFull ///< uint64_t (long long)

/** \ b r i e f Debug l e v e l s f o r t e s t i n g and debugging purposes .
*

* Debug l e v e l s f o r t e s t i n g and debugging purposes .
*

* DEBUG_LEVEL_OFF = No t e s t p r i n t s .
* DEBUG_LEVEL_NORMAL = Normal t e s t p r i n t s .
* DEBUG_LEVEL_ALL = Al l t e s t p r i n t s .
*/

#define DEBUG_LEVEL_OFF 0 ///< No debug p r i n t s .
#define DEBUG_LEVEL_NORMAL 1 ///< Some debug p r i n t s .
#define DEBUG_LEVEL_ALL 2 ///< Al l debug p r i n t s .

/// Current debug l e v e l
#define DEBUG_LEVEL DEBUG_LEVEL_OFF

#include <in t type s . h>
#include <s td i n t . h>
#include "bit_ops . h"

/** \namespace forcesmessage
* \ b r i e f ForCES message crea t i on and acces s ing func t i ons .
*

* Forcesmessage inc l ude s c l a s s e s and func t i ons to crea t e and access
* d i f f e r e n t types o f ForCES messages used to t ranspor t between ETNA Control
* Plane and Forwarding Plane .
*/

namespace f o r ce smes sage {

/// Common header f l a g s
enum COMMON_HEADER_FLAG { Ack , Pri , EM, A, TP } ;

/** \ b r i e f This c l a s s s p e c i f i e s the base c l a s s ForCESMessage .
*

* This c l a s s s p e c i f i e s the base c l a s s ForCESMessage .
*/
class ForCESMessage {

public :

/// Constructors

/** \ b r i e f The d e f a u l t cons t ruc tor . */
ForCESMessage () ;

/** \ b r i e f A cons t ruc tor t ha t t ake s every s i n g l e va lue as i t ' s own
* parameter . */

ForCESMessage (
int vers ion ,

APPENDIX A. CODE SNIPPETS 61

int sTS ,
uint32_t sourceSubID ,
int dTS ,
uint32_t dest inat ionSubID ,
uint64_t c o r r e l a t o r ,
int flag_Ack ,
int f lag_Pri ,
int flag_EM ,
int flag_A ,
int flag_TP) ;

/** \ b r i e f A cons t ruc tor t ha t t ake s va lue s as whole bytes , words , long
* words and long long words . */

ForCESMessage (
uint8_t vers ion ,
uint32_t sourceSubID ,
uint32_t dest inat ionSubID ,
uint64_t c o r r e l a t o r ,
uint32_t f l a g s) ;

/** \ b r i e f A cons t ruc tor t ha t reads a by te array . */
ForCESMessage (const char* array , int s i z e) ;

/// Destructor

/** \ b r i e f Destructor . */
virtual ~ForCESMessage () ;

/// Get ters

/** \ b r i e f Returns the ver s ion number . */
virtual uint8_t getVers ion () const ;

/** \ b r i e f Returns the message type . */
virtual uint8_t getMessageType () const ;

/** \ b r i e f Returns the message l eng t h . */
virtual uint16_t getMessageLength () const ;

/** \ b r i e f Returns the source sub−ID . */
virtual uint32_t getSourceSubID () const ;

/** \ b r i e f Returns the d e s t i na t i on sub−ID . */
virtual uint32_t getDest inat ionSubID () const ;

/** \ b r i e f Returns the c o r r e l a t o r . */
virtual uint64_t ge tCo r r e l a t o r () const ;

/** \ b r i e f Returns the f l a g f i e l d . */
virtual uint32_t getF lags () const ;

/** \ b r i e f Returns the f l a g s p e c i f i e d . */
virtual int getFlag (COMMON_HEADER_FLAG flagName) const ;

/// Se t t e r s

/** \ b r i e f Se t s the ver s ion number . */
virtual void s e tVer s i on (uint8_t ve r s i on) ;

/** \ b r i e f Se t s the message type . */
virtual void setMessageType (uint8_t messageType) ;

/** \ b r i e f Se t s the message l eng t h . */
virtual void setMessageLength (uint16_t messageLength) ;

/** \ b r i e f Se t s the source sub−ID . */
virtual void setSourceSubID (uint32_t sourceSubID) ;

APPENDIX A. CODE SNIPPETS 62

/** \ b r i e f Se t s the source sub−ID . */
virtual void setSourceSubID (uint32_t sourceSubID , int sTS) ;

/** \ b r i e f Se t s the d e s t i na t i on sub−ID . */
virtual void setDest inat ionSubID (uint32_t dest inat ionSubID) ;

/** \ b r i e f Se t s the d e s t i na t i on sub−ID . */
virtual void setDest inat ionSubID (uint32_t dest inat ionSubID , int dTS) ;

/** \ b r i e f Se t s the c o r r e l a t o r . */
virtual void s e tCo r r e l a t o r (uint64_t c o r r e l a t o r) ;

/** \ b r i e f Se t s the f l a g f i e l d . */
virtual void s e tF l ag s (uint32_t f l a g s) ;

/** \ b r i e f Se t s the f l a g s p e c i f i e d . */
virtual void s e tF lag (COMMON_HEADER_FLAG flagName , int value) ;

/// Message content read from and wr i t e to Byte Array func t i ons

/** \ b r i e f Reads the content s o f a by te array rece i v ed from the network
* and s e t s the corresponding f i e l d s in an o b j e c t . */
virtual int readByteArray (const char* array , int s i z e) ;

/** \ b r i e f Generates a by te array corresponding the ac tua l message to be
* t ranspor t ed to network . */
virtual int writeByteArray (char** array) const ;

/** \ b r i e f Writes o b j e c t data to a by te array corresponding the ac tua l
* message to be t ranspor t ed to network . */
virtual int writeByteArray (char* array , int s i z e) const ;

/** \ b r i e f Checks the v a l i d i t y o f a message . */
virtual bool i sVa l i d () ;

/** \ b r i e f Ca l cu l a t e s the l eng t h o f a message . */
virtual uint16_t ca l cu la t eLength () ;

/** \ b r i e f Pr in t s the message to the standard output . */
virtual void pr in t () ;

private :
uint8_t m_version ; ///< Bi t s 0−3: reserved , b i t s 4−7: ver s ion
uint8_t m_messageType ; ///< Message type
uint16_t m_messageLength ; ///< Message l eng t h in DWORDS (4 by te inc .)
uint32_t m_sourceSubID ; ///< Bi t s 0−29: Src . sub−ID , b i t s 30−31: sTS
uint32_t m_destinationSubID ; ///< Bi t s 0−29: Dest . sub−ID , b i t s 30−31: dTS
uint64_t m_correlator ;
uint32_t m_flags ; ///< Flags : Ack , Pri , EM, A, TP

} ;

/** \ b r i e f Makes a new ForCES Message */
ForCESMessage* makeMessage (const char* array , int s i z e) ;

}

#endif /* FORCESMESSAGE_H_ */

tester.cpp

This is the test program the author has used to test the functionalities of the ForCES
protocol implementation and to ensure the code works as it was speci�ed. Due to
the length of the source code in the test program, only one test function is shown
here.

APPENDIX A. CODE SNIPPETS 63

The following function is for the performance test of the ForCES test message 4.
This function takes the test count number as a parameter which denotes how many
times the test loop is executed. One test loop run constructs one Con�g message
with total of 120 Parameter Field TLVs in a Con�g Data TLV which is stored
inside a Con�g TLV. Again, the resulting Con�g TLV is stored inside an LFBselect
TLV which is the top-level TLV of the Con�g message. The whole constructed test
message length will be 1024 bytes.
void t e s t2200 (int testCount)
{

int ve r s i on = 1 ;
int s t s = 0 ;
uint32_t sourceSubID = 1 ;
int dts = 1 ;
uint32_t dest inat ionSubID = 1 ;
uint64_t c o r r e l a t o r = 0 u l l ;
int flag_Ack = 0 ;
int f l ag_Pr i = 1 ;
int flag_EM = 1 ;
int flag_A = 0 ;
int flag_TP = 0 ;
ConfigMessage* messages [testCount] ;

cout << "Creat ing new Config message ob j e c t s . . . " << endl ;

try

{
ParameterFieldTLV* parameterFieldTLV1 = NULL;
ParameterFieldTLV* parameterFieldTLV2 = NULL;
ConfigDataTLV* configDataTLV1 = NULL;
ParameterFieldTLV* parameterFieldTLV3 = NULL;
ParameterFieldTLV* parameterFieldTLV4 = NULL;
ConfigDataTLV* configDataTLV2 = NULL;
LFBselectTLV* topLevelTLV1 = NULL;
int i , j ;
c lock_t in itTime ;

ConfigTLV* configTLV = NULL;
in itTime = c lock () ;
for (i = 0 ; i < testCount ; i++) {

configTLV = new ConfigTLV(5) ;
for (j = 0 ; j < 60 ; j++) {

parameterFieldTLV1 = new ParameterFieldTLV (1) ;
parameterFieldTLV1−>setParameterValue (0x12345678) ;

parameterFieldTLV2 = new ParameterFieldTLV (2) ;
parameterFieldTLV2−>setParameterValue (0xFEDCBA98) ;

configDataTLV1 = new ConfigDataTLV () ;
configDataTLV1−>setType (CONFIG_SET_PROP_TYPE) ;
configDataTLV1−>s e t I d e n t i f i e r (6) ;

configDataTLV1−>addItem (parameterFieldTLV1) ;
configDataTLV1−>addItem (parameterFieldTLV2) ;

configTLV−>addItem (configDataTLV1) ;
}
parameterFieldTLV3 = new ParameterFieldTLV (3) ;
parameterFieldTLV4 = new ParameterFieldTLV (4) ;

configDataTLV2 = new ConfigDataTLV(2 , 6) ;

configDataTLV2−>addItem (parameterFieldTLV3) ;
configDataTLV2−>addItem (parameterFieldTLV4) ;

configTLV−>addItem (configDataTLV2) ;

APPENDIX A. CODE SNIPPETS 64

topLevelTLV1 = new LFBselectTLV (CONFIG_MESSAGE_TYPE) ;

topLevelTLV1−>setLFBClassID (LFB_CLASS_ID_MANAGER) ;
topLevelTLV1−>setLFBInstanceID (LFB_INSTANCE_ID) ;
topLevelTLV1−>addItem (configTLV) ;

messages [i] = new ConfigMessage (ver s ion , s t s , sourceSubID , dts ,
dest inat ionSubID , c o r r e l a t o r , flag_Ack , f lag_Pri , flag_EM ,
flag_A , flag_TP) ;

messages [i]−>addItem (topLevelTLV1) ;
}
cout << (double) ((c l o ck () − in i tTime) / (double)CLOCKS_PER_SEC) << endl ;
cout << "Config messages c rea ted ok ! " << endl ;

for (i = 0 ; i < testCount ; i++)
delete messages [i] ;

} catch (const std : : l o g i c_e r r o r &e)
{

cout << e . what () ;
}

}

Appendix B

Test Runs

jgrondah@g2n−3:~/ subver s i on / ce /ForCESMessage_tester/ bin$. / t e s t e r
ForCES Message l i b r a r y t e s t e r v e r s i on 0 .7 a //JLG
Test programs :
1 − Assoc i a t i on Setup Message
2 − Assoc i a t i on Setup Response Message
3 − Assoc i a t i on Teardown Message
4 − Config Message
5 − Config Response Message
6 − Query Message
7 − Query Response Message
8 − Event No t i f i c a t i o n Message
9 − Packet Red i rec t Message
10 − Heartbeat Message
11 − Assoc i a t i on Setup Message , us ing makeMessage ()
100 − Example t e s t s

S e l e c t t e s t program . Enter number and pr e s s ente r : 9
Test program 9 s e l e c t e d !
Creat ing new packet r e d i r e c t message ob j e c t . . .
MetaDataILV created ok !
MetaDataTLV created ok !
MetaDataILV added to MetaDataTLV ok !
RedirectDataTLV created ok !
RedirectTLV created ok !
PacketRedirectMessage c rea ted ok !
message . p r i n t () :
Message content i s :
10 06 00 10 : 00 00 00 01 : 40 00 00 01 : 00 00 00 00 @
00 00 00 00 : 08 40 00 00 : 00 01 00 28 : 01 15 00 14 @ (. . . .
00 00 00 05 : 00 00 00 10 : 67 61 72 62 : 61 67 65 00 garbage .
01 16 00 10 : 01 02 03 04 : 05 06 07 08 : 09 00 00 00
Message content i s :
10 06 00 10 : 00 00 00 01 : 40 00 00 01 : 00 00 00 00 @
00 00 00 00 : 08 40 00 00 : 00 01 00 28 : 01 15 00 14 @ (. . . .
00 00 00 05 : 00 00 00 10 : 67 61 72 62 : 61 67 65 00 garbage .
01 16 00 10 : 01 02 03 04 : 05 06 07 08 : 09 00 00 00
Pr inted . Program end . De l e t ing ob j e c t s . . .
jgrondah@g2n−3:~/ subver s i on / ce /ForCESMessage_tester/ bin$

jgrondah@g2n−3:~/ subver s i on / ce /ForCESMessage_tester/ bin$. / t e s t e r
ForCES Message l i b r a r y t e s t e r v e r s i on 0 .7 a //JLG
Test programs :
1 − Assoc i a t i on Setup Message
2 − Assoc i a t i on Setup Response Message
3 − Assoc i a t i on Teardown Message
4 − Config Message
5 − Config Response Message
6 − Query Message

APPENDIX B. TEST RUNS 66

7 − Query Response Message
8 − Event No t i f i c a t i o n Message
9 − Packet Red i rec t Message
10 − Heartbeat Message
11 − Assoc i a t i on Setup Message , us ing makeMessage ()
100 − Example t e s t s

S e l e c t t e s t program . Enter number and pr e s s ente r : 100
Test program 100 s e l e c t e d !
Message content i s :
10 01 00 0c : 00 00 00 01 : 40 00 00 01 : 00 00 00 00 @
00 00 00 00 : 08 40 00 00 : 10 00 00 18 : 00 00 00 01 @
00 00 00 01 : 00 0b 00 0c : e7 01 00 08 : 00 00 02 2b +
Message content i s :
10 03 00 14 : 00 00 00 01 : 40 00 00 01 : 00 00 00 00 @
00 00 00 00 : 08 40 00 00 : 10 00 00 38 : 00 00 00 01 @ 8
00 00 00 01 : 00 05 00 2c : 00 02 00 18 : 00 00 00 06 ,
00 01 00 08 : 12 34 56 78 : 00 02 00 08 : f e dc ba 98 4 Vx
00 02 00 10 : 00 00 00 06 : 00 03 00 04 : 00 04 00 04
Message content i s :
10 06 00 10 : 00 00 00 01 : 40 00 00 01 : 00 00 00 00 @
00 00 00 00 : 08 40 00 00 : 00 01 00 28 : 01 15 00 14 @ (. . . .
00 00 00 05 : 00 00 00 10 : 67 61 72 62 : 61 67 65 00 garbage .
01 16 00 10 : 01 02 03 04 : 05 06 07 08 : 09 00 00 00
Message content i s :
10 04 00 11 : 00 00 00 01 : 40 00 00 01 : 00 00 00 00 @
00 00 00 00 : 08 40 00 00 : 10 00 00 2c : 00 00 00 01 @ ,
00 00 00 01 : 00 05 00 20 : 00 02 00 14 : 00 00 00 06
21 2c 37 42 : 4d 58 13 88 : cb f e 00 00 : 00 02 00 08 ! , 7BMX.
00 00 00 07
jgrondah@g2n−3:~/ subver s i on / ce /ForCESMessage_tester/ bin$

Appendix C

Numerical Values Used in ETNA

This appendix contains the numerical values for type names and IDs used in ETNA.
The values that are de�ned in the IETF ForCES protocol speci�cation are not listed
here. Instead, they can be found in the IETF ForCES protocol speci�cation draft
[16].

Unique ID numbers for the Logical Function Block (LFB) Classes used in ETNA
are listed in Table C.1. The LFB Class ID value is used in the LFB Class ID �eld of
the LFBselect TLV which is included in ForCES Association Setup message, Con�g
message, Con�g Response message, Query Message, Query Response message, and
Event Noti�cation message.

Table C.1: LFB Class IDs used in ETNA.

LFB Class ID Value
Manager 0x0001
Forwarding Database 0x0002
OAM 0x0003
QoS 0x0004
Tunnel Control 0x0011
Topology Discovery 0x0012
Status Monitor 0x0013

Table C.2 shows the FE capability values used in ETNA. The FE capability
value is used in the type �eld of the FE Capabilities TLV which is placed in an
optional Report TLV in the ForCES Association Setup message.

Depending on the type of the operation in Con�g TLV in ForCES Con�g mes-
sages, Con�g TLV may have one or more Con�g Data TLVs. The type �eld of the
Con�g Data TLV contains the type of the con�g data. The con�g data types and
their corresponding values used in ETNA are listed in Table C.3.

Inside the Con�g Data TLV, there are one or more Parameter Field TLVs. The
type �eld of the Parameter Field TLV contains the type of the parameter and the
value of the parameter is stored in the TLV value �eld.

APPENDIX C. NUMERICAL VALUES USED IN ETNA 68

Table C.2: FE capabilities used in ETNA.

FE capability Value
point-to-multipoint forwarding 0x0001
multiple forwarding tables 0x0002
port trunking 0x0004
OAM support 0x0010
link level OAM 0x0020
tunnel level OAM 0x0040
QoS support 0x0100
shaping 0x0200
scheduling 0x0400
port typing 0x1000
frame typing 0x2000

Table C.3: Con�g data types used in ETNA.

Con�g Data Type Abbreviation Value
LFB activation LA 0x0001
LFB deactivation LD 0x0002
LFB reset LR 0x0003
LFB con�guration LC 0x0004
Device settings DS 0x0011
Interface settings IS 0x0012
Port settings PS 0x0013
Port Type settings PT 0x0014
Frame Format speci�cation FF 0x0021
Frame Mapping setup FM 0x0022
Event Subscription EV 0x0031
Forwarding Database setup DBS 0x0041
Forwarding Database entry DBE 0x0042
OAM setup OAS 0x0051
OAM update OAU 0x0052

The parameter types and their corresponding values are listed in Table C.5. The
third column tells the length of the parameter value in octets. An asterisk means
that the length of the parameter value can vary. If the length of the parameter value
is not divisible by four, it must be padded with zero to the 32-bit boundary. The
applicability column shows in which of the con�g data types the parameter can be
applied. The abbreviations used in this column refer to the con�g data types shown
in Table C.3. The description column has more detailed information on the usage
of the parameter.

The ForCES Con�g Response message contains one or more Result TLVs. The
result code is stored in the result code �eld of the Result TLV. In addition to the
IETF speci�ed result codes [16, p. 99], there are a few result codes speci�ed by

APPENDIX C. NUMERICAL VALUES USED IN ETNA 69

ETNA for use with Con�g Response. These codes and their corresponding values
are listed in Table C.4.

Table C.4: Con�g Response result codes used in ETNA.

Result Code Value De�nition

E_C_IDENTIFIER_UNKNOWN 0x30 Identi�er is unknown
E_C_PARAMETER_MISMATCH 0x31 Parameter not supported by

con�g type
E_C_PARAMETER_NOT_SUPPORTED 0x32 Setting of parameter not sup-

ported by receiver

Event codes are used in the Event Noti�cation TLV in the ForCES Event
Noti�cation message. The ETNA speci�ed event codes and their corresponding
values are listed in Table C.6. The data column in the table indicates which event
types allow extra data. The extra data is stored in Event Data TLVs after the Event
Code �eld in the Event Noti�cation TLV.

APPENDIX C. NUMERICAL VALUES USED IN ETNA 70

Table C.5: Con�g parameter values used in ETNA.
Parameter Value Len Applicability Description

ID 0x0001 8 LC, DS, IS,
PS, PR, FF,
FM, DBS,
DBE

Unique identi�er (32 bit integer)

Address 0x0002 12 DS, IS, PS NSAP/MAC address (6 octets + padding)
Name 0x0003 * DS, IS, PS,

PT, FF,
DBS

User de�ned name (string)

Speed 0x0004 8 IS Speed in bits per second (32 bit integer)
Duplexity 0x0005 8 IS Interface duplexity: 0x01 = half duplex, 0x02

= full duplex (32 bit integer)
State 0x0006 8 IS, PS Interface / port state: 0x00 = down, 0x01 =

up (32 bit integer)
Type 0x0007 8 PS Port Type identi�er (32 bit integer)
Interfaces 0x0008 * PS List of interface IDs bound to port (array of

32 bit integers)
InFrames 0x0009 * PS, PT List of incoming frame format IDs allowed by

port / port type (array of 32 bit integers)
OutFrames 0x000A * PS, PT List of outgoing frame format IDs allowed by

port / port type (array of 32 bit integers)
OpMode 0x000B 8 PS, PT Default operating mode for port / port type:

0x00 = deny all tra�c, 0x01 = allow InFrames,
0x02 = allow OutFrames, 0x03 = allow all
known frames, 0x0F = allow all tra�c (32 bit
integer)

FrameStruct 0x000C * FF Frame structure in byte encoded XML format
(bXML)

FrameMappingIDs 0x000D 12 FM Frame format IDs mapped together (2 32 bit
integers)

FrameMappingDir 0x000E 8 FM Direction of frame mapping: 0x01 = unidirec-
tional, 0x02 = bidirectional (32 bit integer)

FrameMappingStruct 0x000F * FM Byte encoded XML description of frame �eld
mapping (bXML)

Subscription 0x0010 8 EV Subscription status: 0x00 = not subscribed,
0x01 = subscribed (32 bit integer)

FDB�elds 0x0011 * DBS Byte encoded XML describing the structure of
forwarding database (bXML)

FDBtimeout 0x0012 8 DBS, DBE Forwarding DB entry timeout in milliseconds
(32 bit integer)

FDBkey 0x0013 * DBE Byte encoded XML describing the �eld
matches for incoming tra�c (bXML)

FDBmatch 0x0014 * DBE Byte encoded XML describing the set �elds for
outgoing tra�c (bXML)

FDBout 0x0015 * DBE Frame mapping and outgoing port ID pairs for
outgoing tra�c (array of 2 32 bit integers)

FDBstate 0x0016 8 DBE Forwarding entry state: 0x00 = deactive , 0x01
= active (32 bit integer)

OAMstate 0x0017 8 OAS OAM instance state: 0x00 = deactive , 0x01
= active (32 bit integer)

OAMscope 0x0018 8 OAS OAM level: 0x00 = link, 0x01 = tunnel (32 bit
integer)

OAMrate 0x0019 8 OAS OAM packet interval, matches values in CCM
interval �eld (32 bit integer)

OAMout 0x001A 8 OAS Outgoing interface (link) or FDB entry (tun-
nel) ID (32 bit integer)

OAMlinkdst 0x001B 12 OAS NSAP/MAC address of the neighbor across
this link (6 octets + padding)

APPENDIX C. NUMERICAL VALUES USED IN ETNA 71

Table C.6: Event codes used in ETNA.

Code Value Data Description

LFB_ERROR 0x0001 Yes LFB detected an unrecoverable internal error.
LFB_DOWN 0x0002 Yes LFB going down because of something.
LFB_NEW 0x0003 Yes New LFB started.
IF_DOWN 0x0011 No Network interface went down (disconnected).
IF_UP 0x0012 No Network interface came up (reconnected).
IF_STATUS 0x0013 Yes Other change in interface status.
PORT_DOWN 0x0015 No Port went down (disconnected).
PORT_UP 0x0016 No Port came up (reconnected).
PORT_STATUS 0x0017 Yes Other change in port status.
OAM_HB_FAILURE 0x0021 No OAM heartbeats not received on tunnel.
OAM_DELAY 0x0022 Yes OAM delay/jitter noti�cation.
STATS_UPDATE 0x0031 Yes Periodical update in subscribed statistics

group.

Appendix D

Measurements

This appendix contains the original values from the measurements explained in this
thesis. The �rst �ve columns are the measured time values. Then comes their
average value and standard deviation. The next column tells how many messages
was processed. Then the number of memory allocations and how many bytes of
memory has been allocated totally from the heap.

Table D.1: Heartbeat message construction time measurements and related memory
allocations with non-optimized code.

Val.
#1
(s)

Val.
#2
(s)

Val.
#3
(s)

Val.
#4
(s)

Val.
#5
(s)

Ave.
time
(s)

St.
dev.
(s)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

0.82 0.81 0.82 0.82 0.81 0.816 0.005 100000 100000 3200000
1.64 1.63 1.57 1.68 1.72 1.648 0.056 200000 200000 6400000
2.40 2.40 2.38 2.55 2.40 2.426 0.070 300000 300000 9600000
3.21 3.15 3.18 3.10 3.25 3.178 0.057 400000 400000 12800000
3.99 3.99 4.05 3.98 3.93 3.988 0.043 500000 500000 16000000

Table D.2: Heartbeat message construction time measurements and related memory
allocations with optimized code.

Val.
#1
(s)

Val.
#2
(s)

Val.
#3
(s)

Val.
#4
(s)

Val.
#5
(s)

Ave.
time
(s)

St.
dev.
(s)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

0.55 0.54 0.57 0.55 0.56 0.554 0.011 100000 100000 3200000
1.07 1.08 1.12 1.07 1.09 1.086 0.021 200000 200000 6400000
1.59 1.56 1.59 1.59 1.56 1.578 0.016 300000 300000 9600000
2.24 2.05 2.09 2.09 2.09 2.112 0.074 400000 400000 12800000
2.61 2.59 2.66 2.57 2.57 2.600 0.037 500000 500000 16000000

APPENDIX D. MEASUREMENTS 73

Table D.3: Heartbeat message construction time measurements and related memory
allocations normalized with non-optimized code.

Val.
#1
(µs)

Val.
#2
(µs)

Val.
#3
(µs)

Val.
#4
(µs)

Val.
#5
(µs)

Ave.
time
(µs)

St.
dev.
(µs)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

8.2 8.1 8.2 8.2 8.1 8.16 0.055 1 1 32
16.4 16.3 15.7 16.8 17.2 16.48 0.563 2 2 64
24.0 24.0 23.8 25.5 24.0 24.26 0.699 3 3 96
32.1 31.5 31.8 31.0 32.5 31.78 0.572 4 4 128
39.9 39.9 40.5 39.8 39.3 39.88 0.427 5 5 160

Table D.4: Heartbeat message construction time measurements and related memory
allocations normalized with optimized code.

Val.
#1
(µs)

Val.
#2
(µs)

Val.
#3
(µs)

Val.
#4
(µs)

Val.
#5
(µs)

Ave.
time
(µs)

St.
dev.
(µs)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

5.5 5.4 5.7 5.5 5.6 5.54 0.114 1 1 32
10.7 10.8 11.2 10.7 10.9 10.86 0.207 2 2 64
15.9 15.6 15.9 15.9 15.6 15.78 0.164 3 3 96
22.4 20.5 20.9 20.9 20.9 21.12 0.736 4 4 128
26.1 25.9 26.6 25.7 25.7 26.00 0.374 5 5 160

Table D.5: A short Con�g message with a few TLVs construction time measurements
and related memory allocations with non-optimized code.

Val.
#1
(s)

Val.
#2
(s)

Val.
#3
(s)

Val.
#4
(s)

Val.
#5
(s)

Ave.
time
(s)

St.
dev.
(s)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

0.31 0.30 0.30 0.31 0.30 0.304 0.005 1000 19000 308000
0.53 0.52 0.51 0.53 0.52 0.522 0.008 2000 38000 616000
0.72 0.73 0.72 0.72 0.72 0.722 0.004 3000 57000 924000
0.94 0.94 0.94 0.97 0.94 0.946 0.013 4000 76000 1232000
1.16 1.17 1.18 1.15 1.17 1.166 0.011 5000 95000 1540000

APPENDIX D. MEASUREMENTS 74

Table D.6: A short Con�g message with a few TLVs construction time measurements
and related memory allocations with optimized code.

Val.
#1
(s)

Val.
#2
(s)

Val.
#3
(s)

Val.
#4
(s)

Val.
#5
(s)

Ave.
time
(s)

St.
dev.
(s)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

0.13 0.13 0.13 0.14 0.12 0.130 0.007 1000 19000 308000
0.20 0.21 0.22 0.22 0.21 0.212 0.009 2000 38000 616000
0.30 0.28 0.29 0.28 0.27 0.284 0.011 3000 57000 924000
0.36 0.38 0.37 0.36 0.35 0.364 0.011 4000 76000 1232000
0.44 0.44 0.46 0.43 0.44 0.442 0.011 5000 95000 1540000

Table D.7: A short Con�g message with a few TLVs construction time measurements
and related memory allocations normalized with non-optimized code.

Val.
#1
(µs)

Val.
#2
(µs)

Val.
#3
(µs)

Val.
#4
(µs)

Val.
#5
(µs)

Ave.
time
(µs)

St.
dev.
(µs)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

310 300 300 310 300 304 5.48 1 19 308
530 520 510 530 520 522 8.37 2 38 616
720 730 720 720 720 722 4.47 3 57 924
940 940 940 970 940 946 13.42 4 76 1232
1160 1170 1180 1150 1170 1166 11.40 5 95 1540

Table D.8: A short Con�g message with a few TLVs construction time measurements
and related memory allocations normalized with optimized code.

Val.
#1
(µs)

Val.
#2
(µs)

Val.
#3
(µs)

Val.
#4
(µs)

Val.
#5
(µs)

Ave.
time
(µs)

St.
dev.
(µs)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

130 130 130 140 120 130 7.07 1 19 308
200 210 222 220 210 212 8.88 2 38 616
300 280 290 280 270 284 11.40 3 57 924
360 380 370 360 350 364 11.40 4 76 1232
440 440 460 430 440 442 10.96 5 95 1540

APPENDIX D. MEASUREMENTS 75

Table D.9: A long Con�g message with a few TLVs construction time measurements
and related memory allocations with non-optimized code.

Val.
#1
(s)

Val.
#2
(s)

Val.
#3
(s)

Val.
#4
(s)

Val.
#5
(s)

Ave.
time
(s)

St.
dev.
(s)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

0.36 0.33 0.35 0.36 0.36 0.352 0.013 1000 19000 1252000
0.63 0.61 0.62 0.63 0.63 0.624 0.009 2000 38000 2504000
0.90 0.90 0.88 0.90 0.90 0.896 0.009 3000 57000 3756000
1.15 1.18 1.16 1.16 1.16 1.162 0.011 4000 76000 5008000
1.43 1.42 1.44 1.46 1.44 1.438 0.015 5000 95000 6260000

Table D.10: A long Con�g message with a few TLVs construction time measurements
and related memory allocations with optimized code.

Val.
#1
(s)

Val.
#2
(s)

Val.
#3
(s)

Val.
#4
(s)

Val.
#5
(s)

Ave.
time
(s)

St.
dev.
(s)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

0.15 0.14 0.17 0.15 0.17 0.156 0.013 1000 19000 1252000
0.27 0.27 0.27 0.25 0.28 0.268 0.011 2000 38000 2504000
0.37 0.39 0.37 0.36 0.35 0.368 0.015 3000 57000 3756000
0.49 0.50 0.49 0.47 0.49 0.488 0.011 4000 76000 5008000
0.60 0.60 0.60 0.58 0.60 0.596 0.009 5000 95000 6260000

Table D.11: A long Con�g message with a few TLVs construction time measurements
and related memory allocations normalized with non-optimized code.

Val.
#1
(µs)

Val.
#2
(µs)

Val.
#3
(µs)

Val.
#4
(µs)

Val.
#5
(µs)

Ave.
time
(µs)

St.
dev.
(µs)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

360 330 350 360 360 352 13.03 1 19 1252
630 610 620 630 630 624 8.94 2 38 2504
900 900 880 900 900 896 8.94 3 57 3756
1150 1180 1160 1160 1160 1162 10.95 4 76 5008
1430 1420 1440 1460 1440 1438 14.83 5 95 6260

APPENDIX D. MEASUREMENTS 76

Table D.12: A long Con�g message with a few TLVs construction time measurements
and related memory allocations normalized with optimized code.

Val.
#1
(µs)

Val.
#2
(µs)

Val.
#3
(µs)

Val.
#4
(µs)

Val.
#5
(µs)

Ave.
time
(µs)

St.
dev.
(µs)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

150 140 170 150 170 156 13.42 1 19 1252
270 270 270 250 280 268 10.95 2 38 2504
370 390 370 360 350 368 14.83 3 57 3756
490 500 490 470 490 488 10.95 4 76 5008
600 600 600 580 600 596 8.94 5 95 6260

Table D.13: A long Con�g message with lots of TLVs construction time measure-
ments and related memory allocations with non-optimized code.

Val.
#1
(s)

Val.
#2
(s)

Val.
#3
(s)

Val.
#4
(s)

Val.
#5
(s)

Ave.
time
(s)

St.
dev.
(s)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

0.51 0.50 0.50 0.49 0.51 0.502 0.008 100 43700 623200
0.92 0.92 0.92 0.97 0.93 0.932 0.022 200 87400 1246400
1.36 1.35 1.35 1.35 1.34 1.350 0.007 300 131100 1869600
1.77 1.78 1.76 1.79 1.78 1.776 0.011 400 174800 2492800
2.25 2.19 2.19 2.18 2.19 2.200 0.028 500 218500 3116000

Table D.14: A long Con�g message with lots of TLVs construction time measure-
ments and related memory allocations with optimized code.

Val.
#1
(s)

Val.
#2
(s)

Val.
#3
(s)

Val.
#4
(s)

Val.
#5
(s)

Ave.
time
(s)

St.
dev.
(s)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

0.24 0.22 0.21 0.21 0.22 0.220 0.012 100 43700 623200
0.41 0.39 0.40 0.39 0.40 0.398 0.008 200 87400 1246400
0.55 0.56 0.55 0.56 0.56 0.556 0.005 300 131100 1869600
0.74 0.73 0.75 0.73 0.73 0.736 0.009 400 174800 2492800
0.91 0.90 0.90 0.90 0.90 0.902 0.004 500 218500 3116000

APPENDIX D. MEASUREMENTS 77

Table D.15: A long Con�g message with lots of TLVs construction time measure-
ments and related memory allocations normalized with non-optimized code.

Val.
#1
(µs)

Val.
#2
(µs)

Val.
#3
(µs)

Val.
#4
(µs)

Val.
#5
(µs)

Ave.
time
(µs)

St.
dev.
(µs)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

5100 5000 5000 4900 5100 5020 83.67 1 437 6232
9200 9200 9200 9700 9300 9320 216.80 2 874 12464
13600 13500 13500 13500 13400 13500 70.71 3 1311 18696
17700 17800 17600 17900 17800 17760 114.02 4 1748 24928
22500 21900 21900 21800 21900 22000 282.84 5 2185 31160

Table D.16: A long Con�g message with lots of TLVs construction time measure-
ments and related memory allocations normalized with optimized code.

Val.
#1
(µs)

Val.
#2
(µs)

Val.
#3
(µs)

Val.
#4
(µs)

Val.
#5
(µs)

Ave.
time
(µs)

St.
dev.
(µs)

Number
of mes-
sages

Number
of mem.
alloc.

Memory
allocated
(bytes)

2400 2200 2100 2100 2200 2200 122.47 1 437 6232
4100 3900 4000 3900 4000 3980 83.67 2 874 12464
5500 5600 5500 5600 5600 5560 54.77 3 1311 18696
7400 7300 7500 7300 7300 7360 89.44 4 1748 24928
9100 9000 9000 9000 9000 9020 44.72 5 2185 31160

	Abstract
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	List of Figures
	List of Tables
	Introduction to the Study
	Background
	Ethernet Transport Networks, Architectures of Networking
	ETNA Network Model
	Network Element

	Scope and Structure of the Thesis
	Scope
	Structure

	Key Terminology

	Dynamic Switch Control Protocols
	Network Switch Constructions
	Protocols Selected for Investigation in the Study
	Forwarding and Control Element Separation Protocol
	General Switch Management Protocol
	OpenFlow Protocol

	Comparison of the Protocols
	Summary and Conclusions

	ForCES Protocol Details
	Message Flows
	Association Setup State
	Association Established State

	Message Encapsulation and Structure
	Common Header
	Type-Length-Value Data Structure
	Identifier-Length-Value Data Structure

	ForCES Messages
	Association Messages
	Configuration Messages
	Query Messages
	Event Notification Message
	Packet Redirect Message
	Heartbeat Message

	Summary and Conclusions

	ETNA Requirements
	Network Element Architecture Overview
	Requirements for the ForCES Messages
	Summary and Conclusions

	Software Implementation of the ForCES Protocol
	About the Implementation
	Code Structure
	Class Inheritance
	Library Use
	ForCES Message Construction
	ForCES Message Destruction
	Object Member Variable Accessing Functions
	Object Validation
	Object Length Calculation
	ForCES Message Printing

	Development Environment
	Platform
	Testing and Debugging

	Coding process
	Summary and Conclusions

	Evaluation of the Implementation
	Evaluation Methods
	Performance Measurements
	Planning of the Measurements
	Tools Used in the Measurements
	Measurement Environment
	Measurements with ForCES Test Message 1
	Measurements with ForCES Test Message 2
	Measurements with ForCES Test Message 3
	Measurements with ForCES Test Message 4

	Results of the Measurements
	Analysis of the Memory Allocations
	Analysis of the Message Construction Times

	Summary and Conclusions

	Summary and Conclusions of the Study
	Summary
	Conclusions
	Future Work

	References
	Appendices
	Code Snippets
	Test Runs
	Numerical Values Used in ETNA
	Measurements

