
AALTO UNIVERSITY
SCHOOL OF SCIENCE AND TECHNOLOGY
Faculty of Electronics, Communications and Automation

Veera Andersson

Network Address Translator Traversal for
the Peer-to-Peer Session Initiation Protocol
on Mobile Phones

Master’s Thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Technology.

Espoo, May 10, 2010

Supervisor: Professor Jörg Ott
Instructor: Jouni Mäenpää

AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF SCIENCE AND TECHNOLOGY MASTER’S THESIS
Author: Veera Andersson
Name of the thesis: Network Address Translator Traversal for the Peer-to-Peer

Session Initiation Protocol on Mobile Phones

Date: May 10, 2010 Number of pages: 100

Faculty: Electronics, Communications and Automation
Professorship: S-38

Supervisor: Prof. Jörg Ott
Instructor: Jouni Mäenpää, M.Sc.

Network Address Translators (NATs) allow multiple hosts to share one or more IP addresses.
The initial decision to use NATs as one of the solutions to Internet Protocol (IP) address deple-
tion, has later induced further challenges; NATs are specially problematic in connection with
peer-to-peer (P2P) communication. Interactive Connectivity Establishment (ICE) is a NAT
traversal mechanism that helps peers in creating a direct path in the presence of NATs. ICE
largely relies upon utilizing the mechanisms of Session Traversal Utilities for NAT (STUN)
and Traversal Using Relays around NAT (TURN) protocols.

Nowadays P2P applications are speading to mobile phones that can also have a NATed ad-
dress. Knowing the constraints of mobile phones, we were interested in the applicability of
NAT traversal mechanisms for mobile phones in the context of Peer-to-Peer Session Initiation
Protocol (P2PSIP). SIP was used for controlling communication sessions between the peers.
We implemented an ICE prototype for measuring CPU load, memory consumption, packet
drop rate and battery consumption of a mobile phone acting as a STUN or TURN client or
server. Additionally, we measured the impact of ICE on delays in P2PSIP.

The downside of relaying messages via a TURN server is the increase in delay and the increased
overhead due to STUN encapsulation. A TURN server running on a mobile phone has to limit
the number of allocations and the type of data being transmitted through it. A mobile phone
works well as STUN server, especially if keepalives can simply be ignored. Mobile phones can
act as P2PSIP peers and TURN servers, even in the presence of NATs, however, it is preferable
to have NATs using address and port-independent mapping, since then no relaying is needed.

Keywords: NAT, STUN, TURN, ICE, NAT traversal, P2PSIP, mobile

i

AALTO-YLIOPISTO DIPLOMITYÖN
TEKNILLINEN KORKEAKOULU TIIVISTELMÄ
Tekijä Veera Andersson
Työn nimi: Osoitteenmuuntajien läpäisy vertaisverkon istunnon-

aloitusprotokollaa käyttävälle matkapuhelimelle

Päivämäärä: 10.5.2010 Sivuja: 100

Tiedekunta: Elektroniikka, tietoliikenne ja automaatio
Professuuri: S-38

Työn valvoja: Prof. Jörg Ott
Työn ohjaaja: DI Jouni Mäenpää

Osoitteenmuuntajat sallivat useiden isäntäkoneiden jakavan yhden tai useamman IP osoit-
teen. Päätös käyttää osoitteenmuuntajia yhtenä ratkaisuna IP osoitteiden ehtymiseen, on
myöhemmin tuonut mukanaan lisähaasteita; osoitteenmuuntajat ovat erityisen ongelmallisia
vertaisyhteyksille. ICE (Interactive Connectivity Establishment) on osoitteenmuuntajien
läpäisymenetelmä, joka auttaa vertaiskoneita luomaan suoran polun osoitteenmuuntajien läsnä
ollessa. ICE perustuu suurilta osin STUN (Session Traversal Utilities for NAT) ja TURN
(Traversal Using Relays around NAT) -protokolliin.

Nykyään vertaissovellukset ovat levinneet matkapuhelimiin, joilla voi myös olla osoite-
muutettu osoite. Matkapuhelinten rajoitukset tietäen, on kiinnostavaa tietää osoitteenmuunta-
jien läpäisymenetelmien soveltuvuus matkapuhelimille P2PSIP:n (Peer-to-Peer Session Initia-
tion Protocol) yhteydessä. SIP:iä käytettiin kommunikointi-istuntojen hallintaan vertaiskonei-
den välillä. Toteutimme ICE-prototyypin mitataksemme STUN tai TURN asiakkaana tai
palvelimena toimivan matkapuhelimen suorituskykyä huomioiden keskusyksikön kuorman,
muistinkäytön, pakettien pudotusmäärän ja akun kulutuksen. Lisäksi työssä tutkittiin ICE:n
vaikutusta P2PSIP:n viiveisiin.

TURN välityspalvelimen käytön haittapuoli on kasvanut viive ja STUN koteloinnista johtuvat
ylimääräiset tavut. Puhelimessa toimivan TURN palvelimen tulee rajoittaa asiakkaiden määrä
sekä millaista dataa se voi välittää. Puhelin toimii hyvin STUN palvelimena, etenkin jos yhtey-
den ylläpitoviestit voidaan jättää huomiotta. Puhelimet voivat toimia osana P2PSIP-verkkoa
myös osoitteenmuuntajien läsnä ollessa. On kuitenkin suotavaa, että osoitteenmuuntajat käyt-
täisivät osoite- ja porttiriippumatonta kuvausta, koska silloin välitystä ei tarvita.

Avainsanat: NAT, STUN, TURN, ICE, osoitteenmuuntajien läpäisy, P2PSIP, mobiili

ii

Acknowledgements

This Master’s thesis has been carried out at Ericsson Research Finland, NomadicLab, as part
of the Decentralized Inter-Service Communication (DECICOM) project and the ICT clus-
ter of the Finnish Strategic Centres for Science, Technology and Innovation (ICT SHOK)
Future Internet Programme.

I wish to thank my thesis supervisor Jörg Ott for his guidance and valuable feedback. It was
really nice to work with him.

Jouni Mäenpää has instructed my thesis and I want to thank him for all his efforts. I would
also like to thank my other colleagues at the NomadicLab; especially Ari Keränen for all
the valuable discussions on the topic.

Finally, I owe my deepest gratitude to my friends, and especially to my mom and my sister
for all the support throughout my studies.

Espoo, May 10, 2010

Veera Andersson

iii

Contents

Abbreviations vii

List of Figures xi

List of Tables xii

1 Introduction 1

1.1 Objectives and Scope . 3

1.2 Structure . 3

2 Background 4

2.1 Network Address Translation . 4

2.1.1 Basic Network Address Translator 6

2.1.2 Network Address and Port Translator 7

2.1.3 Benefits of Network Address Translation 9

2.1.4 Drawbacks of Network Address Translation 9

2.2 NAT Classification . 11

2.2.1 Mapping Behavior . 11

2.2.2 Filtering Behavior . 13

2.2.3 Port Assignment Behavior . 13

2.2.4 Hairpinning Behavior . 14

2.3 NAT Traversal . 15

2.3.1 STUN . 16

iv

2.3.2 TURN . 20

2.3.3 Interactive Connectivity Establishment 23

2.4 Existence of Different NAT Types . 26

2.5 Peer-to-Peer Networking . 28

2.5.1 Peer-to-Peer Session Initiation Protocol 28

2.5.2 Use of Distributed Hash Tables 29

2.5.3 Peer-to-Peer Protocol (P2PP) . 32

2.5.4 REsource LOcation And Discovery (RELOAD) 33

2.6 Mobile Phone Capabilities . 36

2.7 Summary . 36

3 Implementing Mobile NAT Traversal Using ICE 38

3.1 Need for Mobile NAT Traversal . 38

3.2 Java 2 Micro Edition . 39

3.3 Implementation Architecture . 39

3.3.1 STUN Library . 40

3.3.2 TURN Extension . 41

3.3.3 ICE Library . 42

3.4 Implementing ICE . 42

3.4.1 Differences from the specification 43

3.4.2 Non-Specification Additions . 44

3.4.3 Stopping the Connectivity Checks 45

3.5 Summary . 46

4 Measurements and Evaluation 47

4.1 P2PSIP Prototype . 47

4.1.1 Call Setup between P2PSIP Clients 48

4.1.2 Organizing Peers as STUN and TURN servers 50

4.2 Prototyping Environment . 50

4.2.1 P2PSIP Parameters . 52

v

4.2.2 ICE Parameters and Message Sizes 53

4.3 Baseline Measurements on a Mobile Phone 54

4.4 Measurement Results . 56

4.4.1 Mobile Phone as a TURN Server 56

4.4.2 Mobile Phone as a STUN Server 68

4.4.3 Mobile Phone as a STUN or TURN Client 70

4.4.4 Mobile phone as P2PSIP peer . 73

4.4.5 Impact of NAT Traversal on Delays in P2PSIP 75

4.5 Measurement Analysis . 82

4.5.1 Battery consumption . 82

4.5.2 Memory Consumption . 84

4.5.3 CPU Load . 85

4.5.4 Overhead Bandwidth and Drop Rate 87

4.5.5 Call establishment in P2PSIP . 89

4.5.6 Generality of the Measurement Results 90

4.5.7 Measurement Observations . 91

4.6 Summary . 92

5 Discussion 94

5.1 NAT Traversal on Mobile P2PSIP Peers 94

5.2 Future Work . 97

5.3 Summary . 97

6 Conclusions 98

vi

Abbreviations

3G Third Generation
ALG Application Layer/Level Gateway
AoR Address-of-Record
API Application Protocol Interface
ASCII American Standard Code for Information Interchange
ASP Address Settlement by Peer-to-peer
CAN Content Addressable Network
CLDC Connected Limited Device Configuration
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DB Database
DHT Distributed Hash Table
DNS Domain Name Server
DTLS Datagram Transport Layer Security
GSM Global System for Mobile Communications
HIP Host Identity Protocol
HMAC Hash-based Message Authentication
HSDPA High Speed Downlink Packet Access
ICE Interactive Connectivity Establishment
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IM Instant Messaging
IP Internet Protocol
ITU International Telecommunication Union
J2ME Java 2 Micro Edition
J2SE Java 2 Standard Edition
JP Java Platform

vii

JSR Java Specification Request
JVM Java Virtual Machine
MIDP Mobile Information Device Profile
NAPT Network Address Port Translator
NAT Network Address Translation / Translator
P2P Peer-to-Peer
P2PP Peer-to-Peer Protocol
P2PSIP Peer-to-Peer Session Initiation Protocol
PC Personal Computer
PDA Personal Digital Assistant
QoS Quality of Service
RELOAD REsource LOcation and And Discovery
RRC Radio Resource Control
RTP Real-time Transport Protocol
RTT Round-Trip Time
SDP Session Description Protocol
SHA Secure Hash Algorithm
SIP Session Initiation Protocol
STUN Session Traversal Utilities for NAT
TCP Transmission Control Protocol
TLS Transport Layer Security
TLV type-length-value
TURN Traversal Using Relays around NAT
VoIP Voice over IP
UDP User Datagram Protocol
UML Unified Modeling Language
UMTS Universal Mobile Telecommunications System
URI Uniform Resource Identifier
USB Universal Serial Bus
WCDMA Wideband Code Division Multiple Access
WLAN Wireless Local Area Network

viii

List of Figures

2.1 Example NAT scenarios . 5

2.2 Basic NAT with outbound traffic . 6

2.3 Basic NAT with return traffic . 7

2.4 NAPT with outbound traffic . 8

2.5 NAPT with return traffic . 8

2.6 Example of endpoint-independent mapping 12

2.7 Example of address-dependent mapping 12

2.8 Example of address and port-dependent mapping 13

2.9 Example of a NAT supporting hairpinning 14

2.10 Example of a STUN configuration . 17

2.11 Format of a STUN message including a STUN attribute 17

2.12 Example of a TURN configuration . 20

2.13 Message exchange during an example ICE session 25

2.14 Elements of a P2PSIP Overlay . 29

2.15 An identifier circle with three nodes . 30

2.16 An identifier circle with nodes maintaining finger tables 31

2.17 Recursive routing . 32

2.18 Iterative routing . 32

2.19 The main components of RELOAD . 34

3.1 ICE implementation architecture . 40

3.2 Format of STUN address attribute . 44

ix

4.1 Architecture of the P2PSIP prototype . 48

4.2 P2PSIP call setup . 49

4.3 Memory consumption of a mobile TURN server caused by keepalives . . . 58

4.4 CPU load of a mobile TURN server caused by keepalives 58

4.5 Battery consumption of a mobile TURN server caused by keepalives 59

4.6 Calculating loop . 61

4.7 Sending loop . 61

4.8 Drop rate on different packet sizes . 62

4.9 CPU load of a mobile TURN server caused by data relaying 63

4.10 Memory consumption of a mobile TURN server caused by data relaying . . 63

4.11 Battery consumption of a mobile TURN server caused by data relaying . . 64

4.12 Drop rate with different number of clients 65

4.13 CPU load of a TURN server caused by signaling data relaying 66

4.14 Memory consumption of a TURN server caused by signaling data relaying . 66

4.15 Battery consumption of a TURN server caused by signaling data relaying . 67

4.16 CPU load of a STUN server caused by keepalives 69

4.17 Memory consumption of a STUN server caused by keepalives 69

4.18 Battery consumption of a STUN server caused by keepalives 70

4.19 CPU load of a STUN client caused by keepalives 71

4.20 CPU load of a TURN client caused by keepalives 71

4.21 Memory consumption of a STUN client caused by keepalives 72

4.22 Memory consumption of a TURN client caused by keepalives 72

4.23 Battery consumption of a STUN client caused by keepalives 73

4.24 Battery consumption of a TURN client caused by keepalives 73

4.25 Call setup delays . 76

4.26 Components of call setup delay for mobile P2PSIP clients 77

4.27 Components of call setup delay for wired P2PSIP clients 78

4.28 Number of STUN messages sent during call setup by a mobile P2PSIP client 80

4.29 Number of STUN messages sent during call setup by a wired P2PSIP client 81

x

4.30 Battery duration and bandwidth . 82

4.31 Battery duration and transmission interval 83

4.32 Average memory consumption of a TURN server 85

4.33 Average CPU load of a server with different number of clients 86

4.34 Average CPU load of different scenarios with one connection 86

xi

List of Tables

2.1 STUN message types . 18

2.2 STUN attributes . 18

2.3 STUN message types for TURN . 21

2.4 STUN attributes for TURN . 22

2.5 Mapping and filtering behavior of existing NATs 26

2.6 Probabilities for NAT types between two random hosts 27

4.1 Mobile phone specifications . 51

4.2 Laptop specifications . 51

4.3 P2PSIP traffic model and parameters . 52

4.4 ICE parameters . 53

4.5 STUN message sizes . 54

4.6 TURN server with different number of clients (keepalives) 60

4.7 TURN server with different number of clients (signaling data) 67

4.8 STUN server with different number of clients (keepalives) 68

4.9 STUN and TURN client with signaling data 72

4.10 Maximum numbers of STUN and TURN clients 73

4.11 Comparison of voice and signaling data relaying 88

xii

Chapter 1

Introduction

The word ‘Internet’ was first introduced in the early 1980’s. Since then the Internet has
changed tremendously, both in size and the way people communicate using it; not to men-
tion its increased performance. At first, the use of Internet was primarily limited to a small
number of users, such as scientists, universities, and the military. Therefore, the 32-bit In-
ternet Protocol (IP) version 4 [2] address space with approximately four billion addresses
was considered more than enough for future utilization – an assumption that turned out to
be very wrong. Nowadays the Internet is accessible by almost everyone and nearly every-
where. In addition, the number of different access devices has grown, varying from wired
computers to handheld personal digital assistants (PDAs). As a result, the need for globally
uniquely addressable devices has grown as well as the challenges in routing between these
devices.

Network Address Translators (NAT) were devised as a short-term solution to the problem
of IP address depletion and scaling in routing [48]. NATs are devices capable of sharing one
or more globally unique addresses between multiple hosts. The hosts behind a NAT form
a private network that uses internally unique private addresses making the private network
also more secure. These private addresses can be reused within other private networks.
Despite the fact that many long-term solutions were identified during the same time, such
as larger IP address space, NATs have gained widespread popularity in the Internet [48, 22].
One reason for the increased popularity is their simplicity of deployment; only changes in
the routers at the edge of the network are required [48].

Some of the drawbacks that NATs cause were known from the start, such as problems with
end-to-end security mechanisms and applications using IP address information in the IP

1

CHAPTER 1. INTRODUCTION 2

packet payload, others have followed from the fact that all communication is no longer
client-server based. In peer-to-peer (P2P) communications, a session can be initiated by
either one of the communicating parties. Since any host is capable of acting as a peer, it
is possible for peers to be located behind a NAT, which makes contacting them a bit more
problematic. To help setting up a connection, peers often need to make use of a signaling
channel, such as one created using the Session Initiation Protocol (SIP) [11].

The signaling channel is used for exchanging control messages, but it is inefficient for
carrying data traffic, since it usually results in a possibly indirect path between the peers.
NAT traversal is the way to work around the problems caused by NATs in peer-to-peer
environments. Session Traversal Utilities for NAT (STUN) [44] and Traversal Using Relays
around NAT (TURN) [43] are tools for other protocols to use to traverse NATs. How well
the tools work depends on the characteristics of the NATs between the peers. STUN and
TURN can be used as such, but they are usually used as part of a full NAT traversal solution,
such as Interactive Connectivity Establishment (ICE) [42]. STUN is a mechanism that a
host can use to discover its globally routable address that another host may try to use for
contacting it. This address might be either an address on one of the host’s directly attached
interfaces or an address assigned by the NAT. STUN tries to provide a direct path to the host,
whereas TURN is used to provide a relayed path. Thus, when using the TURN protocol, a
client can request a TURN server in the external network to relay data messages between
the client and its peers. This solution is very likely to work, but it is not considered efficient
due to the relaying costs. ICE is used to find the optimal path for communication, which
means relaying messages only as a last resort.

P2P networks, such as Peer-to-peer Session Initiation Protocol (P2PSIP) networks, have to
implement multiple protocols to keep the P2P overlay function. Due to the decentralized
nature of a P2PSIP network a distributed database algorithm is needed for locating a peer
with a particular data item within the network. Furthermore, a P2P signaling protocol is
required for purposes of maintaining the network. SIP is used for enabling communication
between the peers. Even though the network maintenance requires more complicated co-
operation of peers than a simple client-server model, the efforts pay of since a P2P network
is self-organized and more scalable.

In addition to computers, also mobile phones can have a NATed address. Even though the
problem with NATs and the solution to the problem stay the same, there are other issues
to be taken into consideration. The constraints of mobile phones relative to computers
are well-known: limited memory, battery and processing power. An interesting subject
for research is knowing whether these constrains are a limiting factor for the use of NAT
traversal tools in mobile phones.

CHAPTER 1. INTRODUCTION 3

1.1 Objectives and Scope

The applicability of the ICE protocol as a NAT traversal solution has been shown in setups
where the nodes running the protocol are computers [28]. The objective of this thesis is
to examine the applicability of the protocol when computers are being replaced by mobile
phones. The interest for the study arose as the need for NAT traversal in the context of
mobile phones became apparent. To be able to provide meaningful results on the power
consumption and the sufficiency of processing capacity of a mobile phone, an ICE protocol
library was implemented for Java 2 Micro Edition (J2ME). Some measurements are also
made in comparison to the protocol usage on computers. Our main focus is on establishing
a phone call between wired and wireless peers in the presence of different type of NATs
in a P2PSIP network of reasonable size. This makes it possible to compare the difference
in call setup times for different NAT scenarios. Additionally, the performance of a mobile
phone as a STUN and TURN client and server is measured.

Protocols intended to traverse NATs might also be usable for traversing other type of
middle-boxes. However, regarding this thesis, those are out of scope. There is also a re-
striction pertaining to the supported transport protocols: we only discuss NAT traversal for
UDP-based traffic due to the multiple additional challenges related to TCP NAT traversal,
and also due to the lack of standardized mechanisms for TCP NAT traversal [20]. Addition-
ally, questions regarding the incentives of peers to act as relays in P2P networks are out of
scope.

1.2 Structure

In this Chapter the subject area and its scope were briefly introduced, as well as the purpose
and goal of writing the thesis. Chapter 2 provides a deeper insight to the topic of the thesis.
Chapter 3 describes the implemented ICE prototype, including some experiences and chal-
lenges concerning the implementation. Chapter 4 describes the prototyping environment
and includes the actual measurement results. The chapter also analyzes the measurement
results. In Chapter 5, we discuss the applicability of the NAT traversal protocols in mobile
peer-to-peer networks based on the results presented in the previous chapter. Finally, in
Chapter 6, we sum up the results and draw final conclusions.

Chapter 2

Background

In this chapter we present the concepts of NATs, NAT traversal, and P2P communication.
We start by introducing NATs and take a more detailed look at two of the most common
NAT types. We will explain the advantages and disadvantages of NATs. Additionally,
we present how NATs are classified based on their characteristics. Then we explain NAT
traversal and cover some of the most relevant NAT traversal techniques in more detail. To
show the importance of NAT Traversal in today’s Internet, we give a brief overview on
the existence of different NAT types. The background on P2P communication includes an
overview of Peer-to-Peer Session Initiation Protocol (P2PSIP) and how peer-to-peer net-
working makes use of distributed hash tables, such as Chord. Moreover, we introduce two
peer-to-peer signaling protocols: REsource LOcation And Discovery (RELOAD) and its
predecessor protocol, known as Peer-to-Peer Protocol (P2PP). Finally, we briefly describe
the basic capabilities of a mobile phone.

2.1 Network Address Translation

Network Address Translation is a method that enables IP address reuse. It is realized by
placing a Network Address Translator (NAT) at the border of a local network with private IP
addresses. It is the responsibility of the NAT to translate these locally unique addresses to
globally unique addresses while accessing the external network. The NAT device maintains
a table with private-public address mappings. Since private and public addresses have to
differ for network address translation to function, the IP address space is divided into two
parts. Private IP addresses used within a local network can be reused within any other local

4

CHAPTER 2. BACKGROUND 5

network. The network address translation is done transparently to the end hosts. This means
that a host behind a NAT sees as though packets it receives from the external network would
have been designated to its own local node IP address already at the source of the message.
Likewise, the external host does not know that packets it sent to an external address of
the NAT are actually forwarded to a local host behind the NAT. The illusion is created by
careful header manipulation done by the NAT. Header manipulation concerns at least the IP
address, the IP checksum and TCP checksum (in case of TCP). Also certain type of Internet
Control Message Protocol (ICMP) error messages, which include the original IP packet,
require changes in their payload [16, 50].

The life cycle of a single NAT session consists of three phases. In the first phase, a local
address gets an external IP address assigned to it. In static address assignment, a given host
is configured to be always associated with the same public IP address when connecting to
the external network. In the case of dynamic assignment, addresses are assigned dynam-
ically, meaning that a host might receive different bindings at different times, and that a
binding used by the host might be reused by other hosts after the session with the host in
question has terminated. In the second phase, when the NAT receives a packet belonging
to an already existing session, it needs to perform address lookup to confirm the existence
of the session and modify the packet to keep the translation transparent. Finally, as the
NAT assumes the session to have finished, it needs to unbind the address association. The
address may now be freely used by other sessions. To prevent a premature unbinding from
happening, hosts need to keep the binding alive via regular transmissions. [50]

Corporate

network

Internet

ISP network

PC
PC

Laptop
Laptop

PC
PC

NAT
NAT

PC
PC

PC
PC

Base station
Base station

Cell phone
Cell phone

NAT
NAT

NAT
NAT

Laptop
Laptop

Server
Server

Figure 2.1: Example NAT scenarios

CHAPTER 2. BACKGROUND 6

Some typical NAT scenarios are shown in Figure 2.1. A company uses private addressing
to hide its addresses and address structure from the external network. Since it is a company
network, most of the communication is internal, meaning that an address translation does
not even always take place [16]. A NAT can also be used to block unknown traffic from
entering the network. Another typical scenario is a user at home wanting to gain access to
the Internet via a laptop and a PC simultaneously, but having only one IP address available.
By connecting both of the devices to the Internet through a NAT makes it possible to share
a single public address between both of them. In addition, when a mobile phone connects
to the network, it can get an address assigned to it that is only unique within the cellular
network it resides in. NATs come in many flavors, but in the following subsections only
traditional NATs, as being the most common ones, are presented in more detail. Traditional
network address translation can be based on either basic network address translation or
Network Address and Port Translation (NAPT).

2.1.1 Basic Network Address Translator

In Basic Network Address Translation (Basic NAT), a NAT has a set of public IP addresses
to be shared by the hosts behind the NAT. The translation applies only to the IP addresses.
The maximum number of hosts being able to simultaneously access the public network is
equal to the number of public IP addresses that the NAT has. If there are more hosts, access
to the Internet cannot be guaranteed. All sessions initiated from the same host use the same
mapping. Taking advantage of static address assignment, certain hosts can have guaranteed
access at all times. [48]

 Private network

Host A

10.0.0.1

Host B

10.0.0.2

Host C

108.37.178.14

 Public network

Basic NAT

Src: 10.0.0.1

Dst: 108.37.178.14

Src: 10.0.0.2

Dst: 108.37.178.14

Src: 183.54.114.2

Dst: 108.37.178.14

Src: 183.54.114.3

Dst: 108.37.178.14

Figure 2.2: Basic NAT with outbound traffic

CHAPTER 2. BACKGROUND 7

Figure 2.2 shows the operation of a Basic NAT. Two hosts, Host A (10.0.0.1) and Host B
(10.0.0.2), which are located in the same private network, both want to set up a connection
to Host C (108.37.178.14) in the public network. Initially, neither of the hosts has any
ongoing sessions. As the first outgoing packets traverse through the NAT, the NAT assigns
the hosts new addresses (183.54.114.2 and 183.54.114.3) that are used outside the private
network. The assigned address does not depend on the destination address of the packet.
The same translation is used for all subsequent packets belonging to the same host until all
of its sessions have finished. After that the address can be used by other hosts.

Private network

Host A

10.0.0.1

Host B

10.0.0.2

Host C

108.37.178.14

Public network

Basic NAT

Src: 108.37.178.14

Dst: 10.0.0.1

Src: 108.37.178.14

Dst: 10.0.0.2

Src: 108.37.178.14

Dst: 183.54.114.2

Src: 108.37.178.14

Dst: 183.54.114.3

Figure 2.3: Basic NAT with return traffic

Figure 2.3 shows the operations that the Basic NAT makes for the return traffic. The transla-
tion is performed by replacing the destination address of the packet with the private address.
As Host C receives packets, it does not need to know that the addresses it sees as source
addresses are actually public addresses assigned by the NAT. This is why it sends its return
packets back to the assigned public addresses just like to any other node with a public ad-
dress. Regarding basic NAT, the translation done by the NAT applies to the IP address and
the IP checksum of the IP header, as well as the checksum in the TCP and UDP headers
(if used). Likewise, modifications to the ICMP error messages concern only the IP address
and checksum parts in the payload. [48]

2.1.2 Network Address and Port Translator

In Network Address and Port Translation (NAPT), the translation is applied to the IP ad-
dress as well as the transport layer identifier (i.e., port number) part of the packets. The
advantage of this is that only one public IP address is needed to enable multiple hosts to

CHAPTER 2. BACKGROUND 8

simultaneously access the public network. Different hosts and the different sessions on
the same host are distinguished by assigning them different transport layer identifiers. The
services supported by a NAPT router are restricted to UDP, TCP and ICMP query sessions.

 Private network

Host A

10.0.0.1

Host B

10.0.0.2

Host C

108.37.178.14

 Public network

NAPT

Src: 10.0.0.1:5000

Dst: 108.37.178.14:160

Src: 10.0.0.2:5000

Dst: 108.37.178.28:160

Src: 183.54.112.3:6000

Dst: 108.37.178.14:160

Src: 183.54.112.3:6001

Dst: 108.37.178.28:160

Host D

108.37.178.28

Figure 2.4: NAPT with outbound traffic

Figure 2.4 presents two ongoing sessions through a NAPT. Hosts A (10.0.0.1) and B (10.0.0.2)
are in the private network and hosts C (108.37.158.14) and D (108.37.178.28) are in the
public network. Host A has set up a connection with Host C and Host B similarly with Host
D using the same transport identifiers as source and destination ports. The figure shows
the translations that take place for the outgoing packets of the two ongoing sessions. Since
NAPT has only one single address to share, both sessions have the same public address as
source after the translation. However, the packets have different source ports to distinguish
that they belong to different hosts and sessions (183.54.112.3:6000 and 183.54.112.3:6001).

Private network

Host A

10.0.0.1

Host B

10.0.0.2

Host C

108.37.178.14

Public network

NAPT

Src: 108.37.178.14:160

Dst: 10.0.0.1:5000

Src: 108.37.178.28:160

Dst: 10.0.0.2:5000

Src: 108.37.178.14:160

Dst: 183.54.112.3:6000

Src: 108.37.178.28:160

Dst: 183.54.112.3:6001

Host D

108.37.178.28

Figure 2.5: NAPT with return traffic

CHAPTER 2. BACKGROUND 9

Figure 2.5 shows how the translation is performed for the return traffic. The translation is
done by replacing the destination address and port with the corresponding private address
and port.

In case of NAPT, translating the IP address and the IP checksum of the IP header, as well as
the checksum in the TCP and UDP headers is not enough. In addition, the TCP/UDP ports
of the TCP and UDP headers must be modified. Also the modifications in the payload of
an ICMP error packet must be extended to cover port modifications. [48]

2.1.3 Benefits of Network Address Translation

One of the advantages is allowing multiple hosts to share a single IP address for accessing
the Internet, which naturally slows down the IP address depletion. However, NATs might
also be useful for other reasons, such as privacy. The fact that connections cannot be initi-
ated from the outside provides privacy for the internal network, and the actual addresses of
the private hosts are usually not seen in the external network. [48]

Moreover, there is no need to change the internal addresses if the outside topology changes.
A NAT can take care of the changes in a centralized way. Another benefit comes from is its
simple deployment. The installation requires only changes to the address translation router.
For hosts and other routers the translation is entirely transparent. [48]

A private network does not have to be geographically located in the same place. This is
common with corporate networks that are spread to different locations along with the of-
fices. To avoid the need of address translation, it is possible to share the same private
address space between the separately located corporate networks. Since the packets have
to traverse via the external network, where the private addresses are invalid, NATs encap-
sulate the packets inside an IP packet that uses externally available addresses. From the
private hosts point of you, all the hosts belong within the same private network. NATs have
one address especially for the encapsulation. This type of network is called a backbone-
partitioned stub [16]. In case of virtual private networks (VPN), the tunneled packets need
to be encrypted to ensure privacy. [50]

2.1.4 Drawbacks of Network Address Translation

Network address translation violates some very fundamental architectural principles of the
Internet. First of all, it breaks the end-to-end model by moving intelligence from the edge to

CHAPTER 2. BACKGROUND 10

the core network. NAT also breaks the concept of fate-sharing by reducing robustness. Fate-
sharing states that only an end point itself can destroy a state of its own. The principles also
refer to the concept of “transparency”, which means unaltered communications between
the end points using unique labels. Breaking the principles is not only a principle level
issue, but incurs some practical drawbacks. By making all communications flow through
the NAT creates a single point of failure. This could be avoided by using multiple NATs,
but it would cause further challenges, like timely communication of the state and routing
related failures. [12, 22]

One of the disadvantages with NATs are the complications they cause on several protocols.
The problem is that some protocols include IP address or port information into the payload
of IP packets. This breaks the fundamental idea of transparency that NATs are supposed to
provide. Some of the protocol complications can be worked around by extending NATs to
offer protocol specific aid by means of Application Level Gateways (ALG), others will fail
anyway. But since the goal should be the ability to add new applications at end points with-
out requiring changes to the infrastructure, adding ALGs increases the complexity. When
using ALGs, application updates are required to multiple locations and applications need to
be multiplexed. In addition, debugging gets more complicated. One of these protocols with
complications is Session Initiation Protocol (SIP), which exchanges address and port infor-
mation in the payload of the packets it sends. One example of a protocol unable to work
through NATs as such is IPsec, since one of its explicit purposes is to detect alterations to
the IP packet header by encryption. The problem with IPsec can, however, be solved with
NAT-T (NAT Traversal in the Internet Key Exchange). Moreover, some protocols require
retaining the same mapping for multiple sessions. However, a NAT cannot know that this
is required, since it is designed to recycle addresses between different hosts and different
sessions. [22, 16, 24, 50]

NAT, ALG and firewall work together to achieve an even more secure private network. If
the NAT router is part of the trusted boundary, it can be used to implement IP security by
serving itself as the other end of the tunnel. For example, ALGs can be used for checking
that the payload or header of a packet does not include private IP addresses. The firewall
filter can be used to drop such packets. It is also good to keep in mind that a NAT itself can
be a target of an attack. This is why a NAT should use protection mechanisms similar to a
server. [50]

One disadvantage closely related to the subject of this thesis are the challenges with peer-
to-peer applications. Most of the NATs in use have been designed for client-server based
communications, where the other node acts as a server in the external network and connec-

CHAPTER 2. BACKGROUND 11

tions to it are initiated by a client either in private or public network. In P2P communica-
tions, there is no clear distinction between a client and a server. Communication can be
initiated by either of the communicating parties. Additional problems are due to the variety
of different NATs. Different NATs use different binding as well as filtering rules. Another
problem is that the hosts inside the private network have no externally visible addresses for
the hosts outside to contact. Therefore, the addresses to contact have to be communicated
via a signaling protocol, like SIP. NAT traversal takes care of finding the best working path
between the peers based on the signaled addresses. [49, 24]

Even though network address translation is compute intensive, it is not necessarily a prob-
lem. Especially as long as the NAT device is able to process packets at a higher speed
than the transmission speed the line is able to achieve. NAT uses an effective checksum
adjustment algorithm, since every packet needs to be translated. [24]

2.2 NAT Classification

To understand the different circumstances that NAT traversal is supposed to cope with,
there is a need to classify the different NAT behaviors. The following sections clarify the
properties of NATs by classifying them based on mapping, filtering and port assignment
behavior. The firewall specific settings that might inhibit communications do not belong as
part of the NAT classification. [4]

2.2.1 Mapping Behavior

Every time a private host initiates a new session to a host in the public network it gets a
public address and port assigned to it (assuming NAPT). The assigned address and port
are used for translating all the subsequent packets belonging to the same session. Mapping
behavior is used to describe the different rules for mapping a private address and port into
a public IP address and port. Even if different sessions would originate from the same
source, it does not guarantee that the same mapping will be used. In fact, it also depends
on the endpoint the packets are destined to. Thus, the mapping behavior can be divided
into endpoint-independent mapping, address-dependent mapping, and address and port-
dependent mapping. [4]

Endpoint-independent mapping means that the NAT re-uses the same mapping for all pack-
ets originating from the same private address and port regardless of the destination address

CHAPTER 2. BACKGROUND 12

and port. Figure 2.6 shows an example of endpoint-independent mapping. In the figure, the
NAT uses the same mapping for both of the sessions from the same origin, no matter what
the address or port of the external sessions endpoint is.

Private network

Host A

10.0.0.4

Host B

128.47.86.5

Public network

NAT

Host C

128.47.86.9

Src: 10.0.0.4:150

Dst: 128.47.86.5:400

Src: 173.30.45.2:3000

Dst: 128.47.86.9:450

Src: 173.30.45.2:3000

Dst: 128.47.86.5:400

Src: 10.0.0.4:150

Dst: 128.47.86.9:450

Figure 2.6: Example of endpoint-independent mapping

Address-dependent mapping means that the NAT re-uses the same mapping for all packets
originating from the same address and port to the same destination address, regardless of
the port used. Figure 2.7 shows the same situation as Figure 2.6, except that in this case,
the NAT assigns a different mapping since the session endpoints have different addresses.

Private network

Host A

10.0.0.4

Host B

128.47.86.5

Public network

NAT

Host C

128.47.86.9

Src: 10.0.0.4:150

Dst: 128.47.86.5:400

Src: 173.30.45.2:3001

Dst: 128.47.86.9:400

Src: 173.30.45.2:3000

Dst: 128.47.86.5:400

Src: 10.0.0.4:150

Dst: 128.47.86.9:400

Figure 2.7: Example of address-dependent mapping

Address and port-dependent mapping means that the NAT re-uses the same mapping for
packets originating from the same address and port only if the destination address and
port are the same. Figure 2.8 shows two sessions between same hosts, however, with two
different mappings, because the sessions use different ports on the external hosts.

CHAPTER 2. BACKGROUND 13

Private network

Host A

10.0.0.4

NAT

Src: 10.0.0.4:150

Dst: 128.47.86.5:400

Src: 10.0.0.4:150

Dst: 128.47.86.5:401

Host B

128.47.86.5

Public network

Src: 173.30.45.2:3000

Dst: 128.47.86.5:400

Src: 173.30.45.2:3001

Dst: 128.47.86.5:401

Figure 2.8: Example of address and port-dependent mapping

2.2.2 Filtering Behavior

Filtering behavior is used to describe the filtering rules applied to incoming packets on an
external address and port of a NAT. The criteria for the filtering is based on filtering rule
defined for an internal and external endpoint pair. The rule can be based on either endpoint-
independent, address-dependent, or address and port-dependent filtering. [4]

When endpoint-independent filtering is applied, all messages destined to an internal address
and port with a mapping are forwarded. The external address and port used for sending a
packet does not effect the filtering.

In Address-dependent filtering, only packets originating from the same external address
where the internal host has already sent packets to are accepted. This means that the external
host may use any source port for reaching the internal host.

Address and port-dependent filtering means that only packets originating from an external
address and port, that the internal host has already sent packets to, are accepted. All other
packets are rejected.

2.2.3 Port Assignment Behavior

Port assignment behavior describes the rules that NATs use for assigning ports. [4]

When a NAT supports port preservation, it means that a NAT tries to use the same port
for the assigned external address as is used for the private address. In case that port is
already assigned for another mapping, a port collision occurs. It is up to the NAT how such
a collision is handled; it can either override the previous mapping, assign a different port or

CHAPTER 2. BACKGROUND 14

use the same address with a different external address (in case a NAT has multiple external
addresses to choose from and one of them is unused). If a NAT uses port overloading, most
applications will fail, since port preservation is always used despite of possible collisions.

If port preservation is not supported, a NAT does not try to make any efforts in preserving a
port. This is known as the “No Port Preservation” -behavior.

2.2.4 Hairpinning Behavior

A NAT is said to support hairpinning, if two hosts behind the same NAT are capable of
communicating with each other using the public addresses assigned by the NAT. The Figure
2.9 shows an example of a NAT that supports hairpinning. Host A sends a message to host
B using B’s public address, and the NAT relays the message to reach its destination. The
figure shows the relevant translations.

Private network

Host BHost A

Public network

NAT

Src: A:a

Dst: C:c2

Src: C:c1

Dst: B:b

Src: C:c1

Dst: C:c2

C:c1

A:a B:b

C:c2

Figure 2.9: Example of a NAT supporting hairpinning

CHAPTER 2. BACKGROUND 15

2.3 NAT Traversal

With the advent of peer-to-peer applications, such as file sharing, Voice over IP (VoIP) and
online gaming, the need for NAT traversal became apparent. Some applications rely on a
central server to maintain a list of the connected hosts and the resources they have, while
the actual data traffic is transmitted directly between the hosts. A direct communication
is preferred in order to reduce transmission latency. Nowadays, a popular alternative is
creating an entirely decentralized P2P network that is managed in collaboration between
the peers, with no or little involvement of servers.

As described earlier, the problem with NATs is that hosts behind a NAT, without a public
address assigned to them, can only be contacted by hosts within the same private network.
Even if a host would have a public address assigned to it, it depends on the type of the
NAT whether an incoming connection is accepted or not. Further, NATs were not until
recently standardized, so one workable solution for all situations is not achievable [49, 4].
Consequently, the requirements for P2P communication work badly with NATs. But due
to the popularity of P2P applications and the generality of NATs, several NAT traversal
techniques have been developed. Almost all connection attempts to a private network are
inhibited, unless there are static bindings. The Internet’s architecture is designed to work
for client-server based communications where all the connections are initiated by the client
and servers are located in the public network. However, peer-to-peer communications is
not as straightforward in the presence of NATs. Peer-to-peer communication requires direct
connections that can be initiated by either of the peers. [49]

NAT traversal is a collection of different mechanisms to create connections through dif-
ferent type of NATs. Since the type of NATs is not known by the endpoints, multiple
mechanisms may need to be tried out before finding a working one. One simple and prac-
tical technique for UDP that many NATs support is known as “UDP Hole Punching”. Hole
punching does not require any changes to be made to the infrastructure, instead it tries to
work around the security policies of most NATs. UDP hole punching makes use of a well-
known rendezvous server for setting up a direct peer-to-peer UDP session. By means of a
rendezvous server it is possible to know if a client is behind a NAT or not by comparing the
address that the server sees the client is using with the address the client thinks it is using.
If the addresses differ, the client is behind a NAT. STUN is one example of a protocol that
uses UDP hole punching for letting a client know its globally valid address and finding out
whether it has a NATed address. [49]

CHAPTER 2. BACKGROUND 16

The most reliable, but least efficient method is to relay messages between the peers via a
server in the external network. This solution is likely to work since it makes the communica-
tion look like a normal client-server communication. Of course, with the basic assumption
of being able to connect to a server. This solution has, however, clearly and easily identifi-
able drawbacks. Firstly, it consumes processing power and network bandwidth. Secondly, it
induces additional latency between the communicating peers. But since it provides a guar-
anteed solution, peers keep it as an option in case other attempts fail. TURN is an example
of a protocol that provides such a relaying service. [49]

Despite the drawbacks of NATs, the need for NAT traversal is likely to remain for a long
time. NATs are useful for the incremental deployment of IPv6 [15] addresses in translating
between IP version 4 and version 6 addresses [22]. Additionally, to fully upgrade an existing
infrastructure to support IPv6 services takes time [3]. Even after a full integration of IPv6,
the need for NAT traversal will still remain; NATs are not the only type of middleboxes that
need to be traversed, there are also other types of middle-boxes that benefit from using it,
such as firewalls. Besides, even if more than enough IP addresses would be available, the
benefits of private networks still make network address translation a desirable feature.

2.3.1 STUN

Session Traversal Utilities for NAT (STUN) is a protocol that a host can use to discover
its globally routable address. This is done by sending a request to a server in the public
network to learn the address that the server sees as the address of the client. This is called
the (server) reflexive transport address. The returned address might be an address on one
of the client’s directly connected interfaces or it might be an address assigned by a NAT.
A client knows the address on its directly connected interface. Thus, if this address differs
from the one returned by the server, the client knows it is behind a NAT. Depending on the
type of the NAT, a host in the public network could be able to use the returned address for
contacting the host behind the NAT. STUN also provides a mechanism to keep the binding
on the NAT alive. This solution works properly for NATs performing endpoint-independent
mapping [54]. STUN is not a complete NAT traversal solution in itself, but works as part
of a full solution. [44]

Figure 2.10 shows a possible STUN configuration. The host behind a NAT is called a
STUN client, and the server on the external side is called a STUN server. Communication
between the STUN agents is possible since STUN is a client-server protocol. With STUN
agents we refer to entities implementing the STUN protocol. There are two types of STUN

CHAPTER 2. BACKGROUND 17

Private

network 1

STUN Client

Public

network

NAT 1

Private

network 2

NAT 2
STUN Server

Reflexive Transport

Address

Host Transport

Address
STUN Server

Address

Figure 2.10: Example of a STUN configuration

transactions: request/response and indication. In a request/response transaction the client
sends a request to the server and the server replies with a response. Indication messages are
never replied to. STUN transactions are distinguished via a transaction ID. The transaction
ID is a randomly chosen 96-bit identifier used to associate requests with responses. The
transaction ID is included in the fixed 20-byte header of a STUN message alongside with
the message type, length and magic cookie. A 32-bit magic cookie value is one of the ways
used to distinguish STUN messages from other messages. The format of a STUN message
is shown in Figure 2.11.

Magic Cookie

Message Length0 0 STUN Message Type

Value (variable)

LengthType

Transaction ID (96 bits)

Figure 2.11: Format of a STUN message including a STUN attribute

The STUN message type field is a combination of the method and class values. A single
method, called Binding, is needed for the basic STUN functionality to work. The message
classes are request, success response, failure response and indication. The different STUN
message types are summarized in Table 2.1. Following the header, a message can have

CHAPTER 2. BACKGROUND 18

Table 2.1: STUN message types

Message type Description

Binding request Client requests for a Binding response

Binding success response Includes the reflexive transport address

Binding error response Includes the type of the detected error

Binding indication Keeps the binding on the NAT alive

zero or more attributes specified by the method or the usage. In the Figure 2.11, the header
is followed by a single attribute (marked in grey). The STUN protocol defines a generic
message format that can be extended to provide additional features for other protocols using
STUN for NAT traversal. The STUN attributes are listed in the Table 2.2 below.

The basic STUN functionality involves the client sending a Binding request to the server and
the server replying with a Binding response, that includes a XOR-MAPPED-ADDRESS at-
tribute containing a combination of IP address and port, identifying the client as seen by the
server on the public network. This way the client learns its reflexive transport address. Since
UDP is not a reliable transport protocol, STUN request might need to be retransmitted. The
retransmission timeout doubles after every retransmission starting with a 500 ms timeout.
A maximum of 7 retransmissions is used, in case no response is received before that. Af-
ter a successful request/response transaction, the client starts sending Binding indication
messages to the server address to keep the binding alive. The recommended frequency for
Binding indications is 15 s. The binding on the NAT breaks after a while, if no messages
are sent using the binding. The server does not need to be informed of the unbinding.

Table 2.2: STUN attributes

Attribute type Description

(XOR-) MAPPED-ADDRESS Indicates a reflexive transport address

USERNAME Identifies the username and password combination

MESSAGE-INTEGRITY Contains an HMAC-SHA1 of the message

ERROR CODE Used in Error response messages

REALM Used with long-term credentials

NONCE A random value used for replay protection

FINGERPRINT Used for distinguishing STUN messages

CHAPTER 2. BACKGROUND 19

When receiving a message, a STUN agent first needs to confirm that the message in question
is indeed a STUN message before further processing. If the message is a response message,
the agent needs to check that the transaction ID of the received message matches one of the
outstanding transactions. Some other checking might be necessary, such as checking the
FINGERPRINT extension discussed below. Additionally, possible authentication mecha-
nisms are checked if specified by the usage. In case of an error specified by the STUN
protocol, an error response is sent. The type of error is announced in the ERROR-CODE
attribute.

The FINGERPRINT mechanism is an additional mechanism for distinguishing STUN mes-
sages from other messages. It is needed when multiplexing multiple protocols using the
same transport address. When utilized, an agent adds the FINGERPRINT attribute to the
messages it sends. STUN provides also authentication and message-integrity mechanisms,
known as the short-term credential mechanism and the long-term credential mechanism.
When using short-term credentials, another protocol is needed for exchanging a username
and a password. The username and the password are applicable only for the duration of
the media sessions, which makes the credentials time-limited. When forming a request or
an indication the USERNAME and MESSAGE-INTEGRITY attributes must be included,
whereas a response message must only include the MESSAGE-INTEGRITY attribute. The
message integrity is a value computed using the password exchanged earlier.

The long-term credentials rely on long-term username and password credentials. They are
called long-term since they stay valid until a user is no longer a subscriber of the system or
they are changed. Replay attacks are prevented by using realm and nonce values. Initially,
the client sends a request without any credentials or integrity checks. The server rejects the
request by providing the user a realm and a nonce. For the next request, the client adds
the username, realm and the nonce it just received. Also a message-integrity is included
providing an HMAC (Hash-based Message Authentication Code) over the entire request,
including the nonce. The server checks the values, and if approved, the message is authen-
ticated. If the nonce is no longer valid the whole procedure is repeated by rejecting the
request and providing a new nonce. Indications are not protected by long-term credential.
All responses sent by the server should include the message-integrity attribute computed
using the username and password used to authenticate the request, but the username, realm,
and nonce attributes should not be included.

CHAPTER 2. BACKGROUND 20

2.3.2 TURN

There are situations in which a direct connection between hosts behind different NATs is
impossible, especially if a NAT uses address or address and port dependent mapping [54].
In such cases, it is necessary to relay the communication via an external intermediate node.
Traversal Using Relays around NAT (TURN) [43] is a protocol that provides a relaying
service via a TURN server. The relaying service of TURN can be used as such to guarantee
communication between peers or as part of ICE to make traversal of NATs more optimized
– using relaying only as a last resort. TURN is an extension to the STUN protocol, that
allows a client to allocate an address on the TURN server using a new method type called
Allocate.

Private network

TURN Client

NAT

Public network

TURN Server

Client’s Reflexive

Transport Address

Client’s Host

Transport Address

TURN Server

Address

Relayed Transport

Address

Peer

Peer Transport

Address

Figure 2.12: Example of a TURN configuration

Figure 2.12 shows a possible TURN configuration. The client sends an Allocate request
to the server and the server replies with an Allocate response including a XOR-MAPPED-
ADDRESS (see Section 2.3.1) and a XOR-RELAYED-ADDRESS attribute that contains
a relayed transport address. The relayed transport address is a combination of IP address
and port on the server that peers can use for contacting the client. The Allocate request
and response messages can include additional attributes to describe the allocation. TURN
clients send both STUN and data messages to the TURN server address. The TURN server
sends the data messages forward to the clients’ peers using the clients’ corresponding re-
layed transport address. Another method type is called Refresh, and it can be used either
to refresh an existing allocation, update the expiry time of an allocation, or to delete an
allocation. All the new TURN related STUN message types (excluding error responses)

CHAPTER 2. BACKGROUND 21

Table 2.3: STUN message types for TURN

Message type Description

Allocate request Makes an allocation on the server

Allocate response Includes the reflexive and relayed transport address

Refresh request Refreshes the allocation

Refresh response Acknowledges the Refresh request

CreatePermission request Permits a peer to send data for the client

CreatePermission response Acknowledges the CreatePermission request

ChannelBind request Requests to send ChannelData messages

ChannelBind response Acknowledges the ChannelBind request

and attributes are collected in the Tables 2.3 and 2.4. Since a relayed transport address un-
ambiguously defines a client’s reflexive transport address and the used transport protocol,
relaying the messages from the client’s peers to the corresponding client is straightforward.
However, the client must beforehand approve the peer, whose messages are to be forwarded.
This is done by the client sending a CreatePermission requests to the server specifying the
permitted IP addresses as XOR-PEER-ADDRESS attributes in the message. The lifetime
of a permission is 300 s (= 5 min) and it can be refreshed by retransmitting the CreatePer-
mission request.

When sending an Allocate request, the client must choose a currently unused transport
address for sending the message to the server transport address. The only obligatory at-
tribute to be added to the allocate request is the REQUESTED-TRANSPORT attribute
that specifies the transport protocol to be used. When receiving an Allocate request the
server checks the credentials, that the requested allocation does not already exist, and that
the REQUESTED-TRANSPORT attribute is included. After this any additional attributes
might be checked. If all checks are passed, an allocation is created. A response message
sent from the server to the client includes, in case of a success response, the relayed trans-
port address, lifetime of the allocation, unique identifier for the allocation on the server, and
the server reflexive transport address. TURN itself does not make use of the server reflexive
transport address; it is included for the convenience of other protocols, such as ICE.

The TURN specification recommends the use of long-term credentials for the authentication
to avoid the need to negotiate new credentials for every session. Once the allocation is
done, the allocation needs to be refreshed before the lifetime of the allocation expires. This

CHAPTER 2. BACKGROUND 22

Table 2.4: STUN attributes for TURN

Attribute type Description

XOR-RELAYED-ADDRESS Indicates a relayed transport address

REQUESTED-TRANSPORT Specifies the desired transport protocol

XOR-PEER-ADDRESS Specifies the address and port of the peer

DATA Consists of the application data

LIFETIME Represents the lifetime of the allocation

CHANNEL-NUMBER Indicates the number of the channel

is done by sending a Refresh request. The lifetime of an allocation can be requested in the
Allocate request and it can be modified in the Refresh request. It is up to the server to decide
whether the requested lifetime is approved, and inform the client about the actual lifetime
in the response. When a client no longer wishes to use an allocation, it sends a Refresh
request with a LIFETIME attribute of value 0. Sending and receiving of data through the
relay does neither refresh an allocation nor renew a permission. The time-to-expiry is by
default 600 s (10 min).

Data can be transmitted in one of two ways between the client and its peers through the
TURN server. The first uses Send and Data indications, and the second uses channels.
When using the first way data is sent using a Send indication STUN message including two
attributes: the DATA attribute including the data and the XOR-PEER-ADDRESS attribute
including the address of the peer. Data is encapsulated in a Send or Data indication only
between the client and the server. When the Send indication is received by the server,
data is extracted and forwarded in a UDP datagram to the peer. To the opposite direction,
as the server receives a data message on a relayed transport address, it places its content
into the DATA attribute of a Data indication, puts the peer’s address into the XOR-PEER-
ADDRESS attribute and forwards the message to the client.

Using channels produces less overhead. This results from using a new message format,
known as ChannelData message, instead of the STUN message format. It uses a 4-byte
header, that indicates the channel number, a value bound to a peer’s address to work as a ref-
erence number. The binding is done by sending a ChannelBind request to the server, which
includes an unbound channel number (CHANNEL-NUMBER attribute) and the transport
address of the peer (XOR-PEER-ADDRESS attribute). After the binding is made, the client
is able to send data to its peer by sending a ChannelData message to the server. Likewise, it
is able to receive ChannelData messages on the channel from the server. Channel bindings

CHAPTER 2. BACKGROUND 23

are always initiated by the client. All other messages, except for the ChannelData message,
are STUN message formatted. Permissions are granted based on IP addresses and a per-
mission for a peer to send data back to the client expires after 5 minutes. A permission can
be refreshed by repeating the ChannelBind (or CreatePermission) transaction. A channel
binding lasts for 10 minutes unless refreshed.

2.3.3 Interactive Connectivity Establishment

Interactive Connectivity Establishment (ICE) [42] is a protocol developed by the Internet
Engineering Task Force’s (IETF) Multiparty Multimedia Session Control Working Group
(MMUSIC). It provides a complete NAT traversal solution by utilizing the functionalities
of STUN and TURN. ICE was originally defined to be used by UDP-based multimedia
communication protocols, but later has been extended to handle TCP transport protocols
[39]. This work only focuses on ICE for UDP-based media. A host using ICE, known as an
ICE agent, needs to know the address of a STUN or TURN server and to have a signaling
path with the host it wishes to communicate with.

In the beginning of the ICE processing, an agent discovers its transport addresses, known
as candidates, that are potential points for contacting it. An agent uses the mechanisms of
TURN to learn its server reflexive transport address and relayed transport address. Each
agent knows the transport addresses obtainable from its local interfaces. To establish ses-
sions using an offer/answer mechanism, a signaling path is required between the peers. The
signaling path is used for exchanging the candidates a peer has gathered, for example within
SDP (Session Description Protocol) offers and answers. The candidates received from the
other agent are known as peer candidates. An agent pairs up its own candidates and the can-
didates of the peer and arranges them in a priority order, forming a list of possibly working
candidate pairs. Then, the agent starts performing connectivity checks, which are done by
sending checks on each candidate pair in priority order and at the same time replying to
received checks. Checks are done by STUN Binding request transactions. When a check
succeeds on a candidate pair, the pair is considered valid for communication.

One of the agents is controlling agent and the other one is a controlled agent. The agent
in controlling role nominates one of the valid pairs for sending and receiving of media.
This is done by performing a check on the chosen pair with a USE-CANDIDATE attribute
added to the STUN request message. There are two approaches on nominating candidate
pairs: regular nomination and aggressive nomination. In aggressive nomination, the USE-
CANDIDATE attribute is added to each check and the first check to produce a reply is

CHAPTER 2. BACKGROUND 24

chosen for media. In regular nomination, the controlling agent nominates a valid pair in
the valid list as soon as it meets its stopping criteria. The stopping criteria is entirely up to
the controlling agent’s local optimization. As the controlled pair receives a STUN message
including a USE-CANDIDATE attribute, it knows to use the pair in question for the media.

ICE can be implemented either as a lite or full implementation. A lite implementation does
not gather candidates, since it only uses the addresses from local interfaces. In addition
to this, it does not generate connectivity checks. It simple responses to checks. A lite
agent never takes the role of a controlling agent. The ICE lite version is implemented on
agents that are directly connected to the public network, but want to support ICE. A full
implementation, in addition to generating the checks, also implements some additional pro-
cedures, such as detecting and repairing of role conflicts and discovering new peer reflexive
candidates. A peer reflexive candidate identifies a peer as seen by the other peer. A full
implementation uses triggered checks to speed up the ICE processing: if an agent receives
a check on a pair that is not in succeeded state, it schedules a connectivity check on that
pair.

Sometimes, a single ICE negotiation is used to establish connectivity for more than one
transport layer port on a single transport address, for example, one for an audio and one for
a video stream. Candidates and peer candidates for different media streams (i.e., compo-
nents) are identified by different component IDs and only candidates and peer candidates
with the same component ID are paired. To optimize the checks, in such a case, ICE im-
plements a frozen algorithm based on the “similarity” of certain pairs. If two candidates
are similar, they are said to have the same foundation – same transport address type and
obtained from the same host candidate and STUN server, using the same protocol. The
foundation of a candidate pair is simply the concatenation of the foundations of its candi-
dates. The assumption behind the frozen algorithm is that checks performed on pairs with
the same foundation value will end up with the same result for the checks. This makes it
possible to optimize the order in which connectivity checks are performed despite of the
priority order of the pairs.

Example of ICE message flow

The message sequence diagram in Figure 2.13 shows an example message flow of an ICE
session. The figure outlines the messages exchanged during the connection establishment
phase and after the connection has been set up. The ICE agents are located in different
private networks, however, they both use the same TURN server in the public network.

CHAPTER 2. BACKGROUND 25

Controlling ICE Agent
10.0.0.1:150

NAT
Controlled ICE Agent

10.0.2.3:150
TURN Server

145.60.3.42:3478
NAT

Allocate Request

Allocate Response

Allocate Request

Allocate Response

CANDIDATES
Host 10.0.0.1:150

Reflexive 173.30.45.2:2010
Relayed 146.60.3.42:6080

CANDIDATES
Host 10.0.2.3:150

Reflexive 108.37.178.28:160
Relayed 146.60.3.42:6081

SENDING AND
RECEIVING OF
INITIAL OFFER

PERFORMING
CONNECTIVITY

CHECKS

CHECK LIST

CANDIDATE PAIRS
Host – Host

Host – Reflexive
Host – Relayed
Relayed – Host

Relayed – Reflexive
Relayed - Relayed

Binding Req.

Binding RequestBinding Req.

Binding Request

Binding Response

Binding Request

Binding Response

Binding Request incl. USE-CANDIDATE

Binding Response

VALID LIST
Reflexive – Reflexive

VALID LIST
Reflexive – Reflexive

SELECTED PAIR
Reflexive – Reflexive

SELECTED PAIR
Reflexive – Reflexive

 Binding Request

Binding Request

Send Indication

Send IndicationBinding Req.

Send Indication Binding Resp.

Binding Request

VALID LIST
Reflexive – Reflexive
Relayed - Reflexive

Send Indication

Binding ResponseData Ind.

Binding Req.

Binding Req.Binding Req.

VALID LIST
Reflexive – Reflexive
Reflexive - Relayed

APPLICATION
LEVEL DATA

Data

Data

Data

Data

Data

Data

Binding Indication

Binding Indication

Binding Req.

Binding Resp.

Binding Req.

Binding Resp.

Binding Req.

Data Ind.

Data Ind.Data Ind.

Binding Resp.

Binding Req.

Binding Resp.

Data

Data

Data

Binding Ind.

Binding Ind.

Data

Data

Data

Binding Req.

Figure 2.13: Message exchange during an example ICE session

CHAPTER 2. BACKGROUND 26

The agent on the left is in controlling role, so it first gathers its candidates and sends the
initial offer. As the agent in controlled role receives the initial offer it likewise performs
the candidate gathering procedure and sends its answer to the controlling agent. After the
candidate exchange is done, ICE agents start performing the actual checks according to
their check list. As the figure shows, the controlling agent might continue performing the
checks as usual even after a candidate pair is added to the valid list. The valid list consists
of candidate pairs that are considered valid for communication. An agent usually wants to
make sure that none of the higher priority candidate pairs work before meeting its stopping
criterion. An agent will ensure this via retransmission of yet unanswered Binding requests.

In this example, the checks to the reflexive addresses either directly or via the TURN server
work as long as permissions on the TURN server exist. On the other hand, transmissions
to the host addresses will not work since the agents belong to different private networks.
As soon as the stopping criterion is met, the highest priority valid pair gets nominated
by sending a Binding request with an USE-CANDIDATE attribute. After this the agents
can start sending data using the selected pair, which in this case means using the reflexive
addresses as transmission endpoints. Messages need to be sent regularly to keep the binding
on the NAT alive; Binding indications are used if no data has been sent for a while.

2.4 Existence of Different NAT Types

Defining the type of an existing NAT is not straightforward due to the non-deterministic
nature of some NATs. Non-deterministic nature means that a single NAT might behave
differently depending on the prevailing conditions. For example, this is the case with some
of port preserving NATs. As a host tries to use a port that is already in use on the NAT,
it gets a different port assigned to it, and additionally ends up with a different mapping
and/or filtering behavior. A NAT that does not change its mapping or filtering behavior
under any circumstances, is referred to as a deterministic NAT. A NAT that can change

Table 2.5: Mapping and filtering behavior of existing NATs

Endpoint Address Address and Port
Independent Dependent Dependent

Mapping 92.31% - 7.69%

Filtering 36.54% 4.81% 58.65%

CHAPTER 2. BACKGROUND 27

its behavior, a non-deterministic NAT, is said to have a primary and secondary type. The
primary type refers to the behavior in the absence of conflicts, and secondary type to the
changed behavior after a conflict. The most recent results, in 2008, on existing NAT types
are based on a field test [36] including 104 NATs. The test did not take into consideration
the non-deterministic behavior of NATs. So, we can not be sure whether the behavior from
a reported data point is based on the primary or secondary type of the NAT. The results on
the mapping and filtering behavior of existing NATs based are shown in Table 2.5.

Table 2.6: Probabilities for NAT types between two random hosts

Host 2
Public EIm/EIf EIm/ADf EIm/PDf PDm/PDf

Host 1

Public 4.00% 5.85% 0.77% 8.15% 1.23%
EIm/EIf 5.85% 8.55% 1.12% 11.92% 1.80%
EIm/ADf 0.77% 1.12% 0.15% 1.57% 0.24%
EIm/PDf 8.15% 11.92% 1.57% 16.62% 2.51%
PDm/PDf 1.23% 1.80% 0.24% 2.51% 0.38%

Not all hosts are behind NATs – there are also hosts directly (or with the assistance of a
UPnP) connected to the Internet. Yet the percentage of directly accessible hosts is quite
small; around 20% [7]. We can also calculate the probability for relaying in the Internet,
when we assume that 80% of all hosts are behind NATs and use the NAT type frequencies
from the field test. Table 2.6 presents the probabilities for the NAT types between two
arbitrary hosts; for example, the likelihood for both peers to be behind symmetric NATs
is 0.38%. We use the following abbreviations in the table: EI for endpoint-independent,
AD for address-dependent, PD for address and port-dependent, m for mapping and f for
filtering.

The percentage values in the table marked in bold represent the combination of NAT types
between two hosts that cannot create a direct path but instead need a relay. The NAT hole
punching support is not directly a property of a NAT. Whether hole punching works, rather
depends on the context. To be more precise, it depends on the interoperability of a NAT
with another NAT. Relaying is needed if at least one of the peers is behind a NAT that
uses address and port-dependent mapping and filtering, and neither of the peers is behind
an endpoint-independent mapping and filtering NAT (or directly connected to the public
network). Based on the frequency of different NAT combinations, one can calculate (by
summing the cells printed in bold) the probability for relaying between two random hosts to

CHAPTER 2. BACKGROUND 28

be 5.88%. This value is slightly smaller than the corresponding estimates made on Skype’s
traffic (9.6%) [21] and GoogleTalk traffic (8%) [19].

2.5 Peer-to-Peer Networking

In peer-to-peer networking each peer has the same capabilities allowing them to share re-
sources equally. This basically means that a peer has characteristics of both servers and
clients. One major challenge in peer-to-peer networks is in locating the resources. Using a
decentralized architecture has several advantages, such as improved scalability, greater fault
tolerance and self-organization. Moreover, peer-to-peer communication gives opportunities
for creating new user scenarios.

At the moment the probably most widespread P2P application is file sharing, in particular
the sharing of music files. Among the popular P2P applications is also Skype [47], which
is a free P2P application that enables calls over the Internet to other Skype users. In peer-
to-peer communication, the applications need to be interoperable and the peers need to be
able to trust each other. [52]

2.5.1 Peer-to-Peer Session Initiation Protocol

The Session Initiation Protocol (SIP) is a text-based signaling protocol for creating, modi-
fying and terminating multimedia communication sessions between peers. SIP runs on the
application layer, independent of the underlying transport protocol, such as TCP or UDP.
The traditional SIP relies on hierarchical proxy servers that help routing SIP messages be-
tween the SIP clients. The proxy servers are also used for uploading and requesting a user’s
current location (i.e., contact address), as well as authentication and authorization. Example
application scenarios for P2P (or P2PSIP) are related to real-time IP communications, such
as VoIP, Instant Messaging (IM), and presence. [45, 9]

In Peer-to-Peer Session Initiation Protocol (P2PSIP), the hierarchically organized proxy
servers are replaced by a P2PSIP overlay of nodes called P2PSIP peers. A P2PSIP overlay
is a collection of nodes running a distributed database algorithm, such as a distributed hash
table (DHT). The main responsibility of the P2PSIP peers is to provide a transport service
and a storage service. The transport service makes it possible to transport messages be-
tween any two peers in the overlay. The storage service means storing information for the
purpose of mapping between Address-of-Records (AoRs) and Contact Uniform Resource

CHAPTER 2. BACKGROUND 29

Identifiers (URIs). The overlay may have other type of nodes, known as P2PSIP clients,
which make use of only a logical subset of the P2PSIP peer protocol, known as the P2PSIP
client protocol. The peer protocol and the client protocol are both implemented using RE-
source LOcation And Discovery (RELOAD), discussed in more detail under section 2.5.4.
The elements of a P2PSIP overlay are shown in the Figure 2.14. [8]

P2PSIP Overlay

P2PSIP Client

P2PSIP Peer

DB

DB

DB

DB

DB

DB

DB

DB

P2PSIP
Client Protocol

P2PSIP
Peer Protocol

Figure 2.14: Elements of a P2PSIP Overlay

Since peers from different address spaces are allowed to join the overlay, NAT traversal
is necessary for peer protocol and SIP (and media) connections. RELOAD mandates the
use of ICE for NAT traversal. RELOAD uses a “mesh of connections” approach to NAT
traversal. In the approach, a partial mesh of connections is created between the peers and
messages are routed according to the existing mesh topology. So even peers with private
addresses can be full peers in the overlay. [26]

2.5.2 Use of Distributed Hash Tables

The lack of centralized control in a peer-to-peer network makes it difficult to efficiently
locate a peer with a particular data item. Several distributed lookup protocols have been
implemented to address the problem. Many of them make use of a lookup service based on
distributed Hash Tables (DHTs) containing (key, value) pairs.

CHAPTER 2. BACKGROUND 30

Hash functions are used to convert a variable-size input into a fixed-size value which is
called the hash value. Hash tables make use of hash functions to map keys to table entry
indexes to retrieve an associated value. Hash tables enable fast lookup since there is no
need to compare all values in sequential order in a table but rather use a hash function that
directly points the corresponding table entry.

Due to the decentralized architecture of peer-to-peer networks, the hash table cannot be
stored in a single node, instead it has to be somewhat equally distributed among the peers.
Each peer is given responsibility of a certain set of keys. A DHT algorithm can be used for
distributing the information. DHT scales well to networks with lots of peers and can take
care of peers joining and leaving the network. We take a more detailed look at one of the
DHT algorithms, Chord, since it is the default algorithm used by the RELOAD protocol.
Several other algorithms exists, such as CAN [41], Pastry [46] and Kademlia [38].

Chord

Chord [51] is a DHT algorithm that uses consistent hashing to arrange nodes in a ring and to
map keys to nodes responsible for them. Nodes are placed in the ring based on the hashed
value of the node’s key (e.g., peer’s IP address) calculated using a hash function, such as
Secure Hash Algorithm (SHA-1) [1].

1

0

1

2

3

4

5

6

7

5

7

successor(7) = 7

successor(5) = 6

successor(1) = 3

Figure 2.15: An identifier circle with three nodes

CHAPTER 2. BACKGROUND 31

In RELOAD, the key is assigned by the an enrollment server or if there is no central server,
it is calculated as hash of the node’s public key. Data localization can be implemented by
associating a key with a data item. One of Chord’s advantages is its simplicity: mapping a
given key to a node is the only function that it supports. It is efficient in locating each key
with a small number of hops (O(log(N))), even in networks with a large number of peers.

The Chord protocol can also recover from the failure of existing nodes. However, if in-
formation is out of date, performance decreases. Each peer maintains information about
O(log(N)) other peers in its routing table. Figure 2.15 shows how nodes get arranged in
an identifier circle based on their hashed values, called identifiers. Each identifier has a
predecessor and a successor. Successor(k) denotes the successor node of key k, the node
responsible for the key. It is either the first node whose identifier is equal to the key or the
next node in the identifier circle when moving clockwise in the ring. Whenever a node joins
or leaves the network, the predecessor and successor states of the adjacent nodes need to be
updated.

0

1

2

3

4

5

6

7

key succ.

0
1
3

3
3
3

finger table key

7

key succ.

0
2
7

3
3
7

finger table key

5

key succ.

4
5
7

6
6
7

finger table key

1

Figure 2.16: An identifier circle with nodes maintaining finger tables

However, knowing only the successor node would lead to a very insufficient solution since
queries would need to be routed via all the intermediate nodes in the ring. To speed up
the process, additional routing information is needed. The additional routing information
is implemented by maintaining a routing table known as finger table. A finger table entry

CHAPTER 2. BACKGROUND 32

contains the Chord identifier and the IP address of the corresponding node. The entries are
calculated using the formula finger[i] = successor(n+ i−), which returns the ith en-
try in the table at node n. Figure 2.16 shows the finger tables of the nodes originally shown
in Figure 2.15. As the figure shows, each node knows more about nodes closely follow-
ing it than about nodes further away in the circle. The Chord protocol uses a stabilization
protocol to take care of the successor pointer and finger table updates.

2.5.3 Peer-to-Peer Protocol (P2PP)

The Peer-to-Peer Protocol (P2PP) [6] is an application layer protocol for forming and main-
taining a P2P overlay. The participating peers provide routing and storage services to be
utilized by the P2P peers themselves or by P2P clients through the peers. P2PP can use
either a structured (e.g., Chord) or unstructured (e.g., Gia [13]) overlay algorithm, for cre-
ating the overlay. The data that is stored in the overlay is referred to as a resource-object.
Each resource-object has a resource-ID that can be used for locating the peer responsible
for the resource. To assure that the peer and user identifiers (peer-IDs and user-IDs) are
unique, a central enrollment server can be used [26]. User identifiers can be for instance
SIP URIs (e.g., alice@work.com).

Request

Request

Request

Response

Response

Response

Peer 1 Peer 2 Peer 3 Peer 4

Figure 2.17: Recursive routing

Request

Request

Request

Response

Response

Response

Peer 1 Peer 2 Peer 3 Peer 4

Figure 2.18: Iterative routing

The overlay layer below the application layer takes, among other functions, care of rout-
ing the messages and provides mechanisms for NAT traversal. In a P2PP overlay, request
messages are forwarded either in a recursive or iterative manner. Figure 2.17 shows how
recursive request routing is done in comparison to iterative routing, shown in Figure 2.18.
In recursive routing, the request is forwarded from one peer to another towards the desti-
nation. As the request finally reaches its destination, the destination sends a response back
along the same route. In iterative routing, every intermediate peer sends a response back to
the sender telling the next hop peer. Thus, the response from the destination is sent back

CHAPTER 2. BACKGROUND 33

to the sender using a direct connection. On the transport layer, messages can be sent using
reliable or unreliable transmission.

2.5.4 REsource LOcation And Discovery (RELOAD)

REsource LOcation And Discovery (RELOAD) [26] is a peer-to-peer signaling protocol
that allows nodes to route messages to each other and to store and retrieve data in the
overlay. The RELOAD protocol was chosen among several competing protocols to be
developed by the Internet Engineering Task Force’s (IETF) Peer-to-Peer Session Initiation
Protocol Working Group (P2PSIP). The current version of the RELOAD Internet-Draft is
based on the combination of some of the initially competing proposals: RELOAD, Address
Settlement by Peer-to-Peer (ASP) [27], and Peer-to-Peer Protocol (P2PP).

Even though RELOAD has been especially designed to fulfill the requirements for P2PSIP,
it can be used to support various different applications. RELOAD makes use of pluggable
overlay algorithms. To increase interoperability, the Chord DHT algorithm is mandatory
to implement. Otherwise it is possible to select an overlay algorithm that is best optimized
for a certain application. RELOAD also works in networks were some of the peers are
behind NATs or firewalls. ICE is the protocol used by RELOAD for traversing NATs as
new connections need to be established between peers either to be utilized by RELOAD or
the application protocol.

The P2PP protocol discussed in the previous Section 2.5.3 and the RELOAD protocol are
very alike, since they both use a very similar approach to solving the same problem. Their
probably biggest difference is in the way they encode the messages they send. P2PP uses
a common header followed by a variable size payload of type-length-value (TLV) objects.
RELOAD, on the other hand, uses a more complex message structure that consists of three
parts: forwarding header, message contents and signature. Moreover, in P2PP intermediate
nodes store information to route a response message from the destination back to the sender,
whereas RELOAD has an additional option to implement this by adding via and destination
lists to the forwarding header. This option reduces the state information needed to be stored
into nodes. However, it increases the size of the messages sent.

RELOAD Architecture

As shown in Figure 2.19 the architecture of RELOAD can be depicted by dividing the main
components of RELOAD into different layers: usage layer, routing layer, forwarding layer

CHAPTER 2. BACKGROUND 34

and transport layer. The figure also shows the APIs (Application Protocol Interfaces) that
can be used by the upper layers to access services provided by the lower layers.

SIP
Usage

XMPP
Usage

Message
Transport

Storage

Topology Plugin

Forwarding & Link
Management

TLS DTLS

Application

...

...

Message Routing API

Overlay Link API

Figure 2.19: The main components of RELOAD

It depends on the application how it wants to use the services provided by RELOAD.
Because of this, each application needs to define a usage layer that communicates with
RELOAD through the Message Routing API. One example of RELOAD usage is SIP us-
age. The main responsibility of a usage is to specify how data is handled in the overlay and
how applications can get the data.

The routing layer is composed of three components: the message transport, the storage
component and the topology plugin. All these components talk directly with each other.
The routing layer takes care of routing messages from one peer to another through the
overlay. The storage component handles storage and retrieval requests from the routing
layer as well as manages data replication if required by the topology plugin. The topology
plugin maintains a routing table that is formed based on the chosen overlay algorithm.
The routing layer makes its routing decisions based on the overlay algorithm routing table
maintained by the topology plugin.

CHAPTER 2. BACKGROUND 35

The forwarding layer is below the routing layer and it talks directly with the routing layer
and the topology plugin. The forwarding layer sets up the network connections as deter-
mined by the topology plugin and makes sure that a packet gets forwarded to the next peer
as determined by the routing layer. The forwarding layer takes also care of NAT traver-
sal. The transport layer below the forwarding layer takes care of actually carrying the
RELOAD messages. The forwarding layer communicates with the transport layer through
the transport API. The RELOAD draft specifies how to use DTLS (Datagram Transport
Layer Security) and TLS (Transport Layer Security) on the transport layer.

Establishing and Managing the RELOAD Overlay

For the RELOAD overlay to be able to provide services, nodes need to be able to join the
network, create connections with each other, and route messages through the overlay. Each
node in the overlay has an identifier, known as the Node-ID. The Node-ID determines the
node’s position in the overlay topology and the resources for which the node is responsible.
A node must have a Node-ID before joining a RELOAD overlay, either by receiving it from
an enrollment server or by generating it by itself in a trusted network.

To become part of an overlay a node must first create a connection to a “bootstrap node” that
is publicly reachable. The overlay algorithm is responsible for taking care of the the details
of the joining procedure, like creating connections to some other peers and transferring
resources between the joined node and its adjacent nodes. As soon as the node is part of
the overlay, it can send Attach requests to be routed through the overlay to other nodes it
wishes to contact. The overlay routing mechanisms take care of forwarding the message
to its destination. Naturally, messages can be lost on the way. To provide end-to-end
reliability, RELOAD sends up to 4 retransmissions if no response is received in 3 seconds
after the latest request has been transmitted.

To help routing the messages the forwarding header can include via and destination lists.
The via-list contains all the destination nodes that the message has passed and the destination-
list contains all the destinations that the message should pass through. As P2PP, RELOAD
supports two routing mechanisms recursive and iterative routing. RELOAD uses symmetric
recursive routing as its basic routing mechanism: a request message is always forwarded
closer to its destination and the response follows the same path. This can be implemented
using via-lists or storing state in the intermediate nodes on how to return the response.
RELOAD supports iterative routing due to its advantages, such as the possibility to route
around misbehaving NATs and to cause less processing in intermediate nodes. However,

CHAPTER 2. BACKGROUND 36

when peers are located behind NATs it becomes very resource consuming since every hop
requires a direct connection to be established.

Direct connections are formed either for the purposes of RELOAD messages or application
layer protocol to improve the efficiency of routing. Since a direct connection may not be
created off hand in the presence of NATs, Attach messages are used for establishing the
connection. In contrast to the way ICE is used with SIP, the ICE parameters are exchanged
using a more restricted binary encoding in the Attach method, instead of SDP. There are
also other restrictions concerning the RELOAD environment: only one single stream (for
RELOAD or application protocol) is supported and only a single offer/answer exchange is
needed. The peer sending the initial Attach request is always in controlling role. Every peer
is capable of working as a STUN server, however, each peer may need more that one STUN
server due to complicated NAT topologies.

2.6 Mobile Phone Capabilities

Even though the capabilities of a mobile phone are improving, they still have their limi-
tations in comparison to computers. The most significant limitations to consider from the
point of view of this thesis are the battery life-time and the processing efficiency. On the
other hand, the storage capacity is nowadays not considered to be such a limiting factor,
since the memory size in a single mobile phone has increased substantially, even up to
several gigabytes.

2.7 Summary

Network Address Translators (NAT) take care of address translation between different ad-
dress realms. By means of NATs it is possible to separate private networks from the public
network and reuse the private addresses in different private networks. Even though NATs
have their benefits, such as slowing down the IP address depletion and providing privacy,
they have become a challenge for direct communication between hosts.

The way to make peer-to-peer communication work in the presence of NATs is by utilizing
NAT traversal techniques, such as Interactive Connectivity Establishment (ICE). ICE tries
to find the optimal path for communication between two peers. A host using ICE needs
to know the address of a Session Traversal Utilities for NAT (STUN) or Traversal Using

CHAPTER 2. BACKGROUND 37

Relays around NAT (TURN) server and to have a signaling path with the host it wishes
to communicate with. A host can use the STUN server to discover its globally routable
address and the TURN server helps relaying data messages as a last resort. According to
the literature 80% of hosts are estimated to be behind NATs. Thanks to the capabilities of
ICE, such as the ability to learn peer reflexive addresses, the probability that relaying is
needed between two arbitrary hosts is around 6%.

Peer-to-Peer Session Initiation Protocol (P2PSIP) can be used for forming, modifying and
terminating sessions between peers in a peer-to-peer environment. Application layer proto-
cols, such as SIP, make use of a transport and storage service for transporting SIP messages
and storing information. Such a service can be implemented by a peer-to-peer signaling pro-
tocol like REsource LOcation And Discovery (RELOAD) or its predecessor, Peer-to-Peer
Protocol (P2PP). However, the lack of centralized control makes it difficult to efficiently
locate a peer with a particular data item. Distributed Hash Table (DHT) algorithms that use
consistent hashing can map keys to nodes responsible for them. One example of a DHT
algorithm is Chord, which arranges peers in a ring topology to achieve effective mapping.

Chapter 3

Implementing Mobile NAT Traversal
Using ICE

This chapter starts with some motivation for implementing NAT traversal for mobile phones.
We also introduce the programming language used for the implementation. The architecture
of the implemented ICE prototype is shown in more detail, including a class diagram and a
description of the main tasks of each class. The differences between the implementation and
specifications of STUN, TURN, and ICE are listed. Finally, a few words are mentioned on
the design decision made regarding the stopping criterion of the ICE connectivity checks.

3.1 Need for Mobile NAT Traversal

The need for NAT traversal becomes apparent from the increasing amount of P2P applica-
tions available. As mentioned earlier, it is difficult for two nodes behind different NATs to
contact each other directly, which is essential to applications such as Voice over IP (VoIP)
and online gaming. Peer-to-peer communication does not use servers to store the content,
however, servers are still sometimes necessary for implementing the NAT traversal func-
tionality [49]. Now that the peer-to-peer applications are moving also to the mobile side,
it is worth measuring how well NAT traversal functionality, such as ICE, works on mobile
phones. We need to consider the client side as well as the server side of a NAT traversal
protocol. Of course, the mobile phones implementing STUN or TURN servers need to be
publicly reachable. In that case, data would be transferred directly from mobile phone to
another or relayed via a third mobile phone. This entirely eliminates the need for a non-

38

CHAPTER 3. IMPLEMENTING MOBILE NAT TRAVERSAL USING ICE 39

mobile server. It would have been nice to have some statistics on the proportion of private
addresses in mobile networks. Unfortunately, we were not able to find any with a reason-
able amount of effort. This is why we simply have to depend on the results presented in
Section 2.4 for wired networks on the existence of different NAT types.

3.2 Java 2 Micro Edition

The ICE library was implemented using the Java 2 Micro Edition (J2ME), which is a version
of Java designed for small devices. J2ME takes into account the resource-constrains of a
small device, such as a mobile phone, by providing only a subset of the Java Standard
Edition. To ease the efforts to run code during implementation, it is possible to use a mobile
phone emulator on a PC and transfer the code later to real phones. [29]

J2ME is divided into configurations, profiles and optional APIs. A configuration defines the
core APIs for certain type of devices. A profile provides more specific APIs based on the
configuration and optional APIs provide additional APIs, such as the Mobile Media API
[14]. A mobile phone uses the Mobile Information Device Profile (MIDP) based on the
Connected Limited Device Configuration (CLDC). [29]

The use of optional APIs was not necessary for the implemented ICE prototype. As a
result of the limited libraries in the MID Profile, some minor modifications from the ICE
specification were necessary. The differences from the specification are described in more
detail in Section 3.4.1.

3.3 Implementation Architecture

We implemented an ICE prototype to test the suitability of the ICE protocol in a mobile
peer-to-peer environment. The ICE library consists of 13 classes and approximately 7000
lines of code. The classes and their dependencies are depicted in Figure 3.1 using an Unified
Modeling Language (UML) class diagram. The figure shows how the STUN library and its
TURN extension form the basis of the ICE library. Three additional classes were needed
for implementing the ICE specific functionality. The STUN library and the STUN library
with the TURN extension can be used solely without the ICE library.

CHAPTER 3. IMPLEMENTING MOBILE NAT TRAVERSAL USING ICE 40

IceHandler

StunHandler

StunIOStunTransaction

CandidatePairCandidate

Response

StunHeader

TurnServer

TurnAllocation

TurnClient

StunAttribute

StunMessage

* *
2

1

1

* 1 *

1*

1 11

11

1

1 *

2

*

Figure 3.1: ICE implementation architecture

3.3.1 STUN Library

The StunIO class provides simple methods for sending and receiving of messages, both
STUN and data messages. Each StunIO object receives and sends messages on a UDP
Datagram Connection bound to a local endpoint address [35]. If STUN or data message
needs to be encapsulated in a Send indication message, the StunIO object takes care of that.

The StunMessage class has methods for parsing and constructing a STUN message. The
StunHeader class describes the header part of the STUN message and the StunAttribute
class describes a single type-length-value (TLV) encoded attribute of the payload. A STUN
message can be composed of zero or more STUN attributes. StunMessage also provides a
method to examine whether the received message was a STUN message or not.

The StunTransaction class takes care of request/response transactions, including retrans-
missions of the requests and the scheduling of keep alive messages (Binding indications).

CHAPTER 3. IMPLEMENTING MOBILE NAT TRAVERSAL USING ICE 41

The information of a response is condensed into the Response class. A request and its
corresponding response are associated via the transaction ID in the STUN header.

Most of the STUN functionality and logic is implemented in the StunHandler class. An
instance of the StunHandler class is always bound to a single local address and port. The
StunHandler class decides which class further processes a received message: STUN Bind-
ing requests and Data indications are handled by the class itself, whereas Allocate requests
and Send indications it gives for the StunServer class to handle. In addition to this, the re-
sponsibility of the StunHandler is to take care of the client side of STUN request/response
transactions, both Binding and Allocate, either to server addresses or during the connectiv-
ity checks to its peer candidate addresses. As we can notice, there is some TURN specific
functionality included also in the STUN library. This is done to avoid having same func-
tionality in both STUN and TURN specific classes. Moreover, to avoid cross-referencing
between STUN and TURN classes, Data indications are processed in the StunHandler class
since the StunHandler class anyway decides how to handle the message encapsulated in the
Data indication.

StunHandler also examines if the received STUN Binding Request message is part of the
ICE processing and if so forwards it to the IceHandler for further processing: to detect
and repair role conflicts, to learn peer reflexive remote candidates, to trigger checks and
possible nominate a candidate pair. Nonetheless, if the other end point receives connectivity
checks before having started its own connectivity checks, it needs to postpone the further
processing of the request until the checks are started. A response is, however, sent back
immediately.

3.3.2 TURN Extension

The implementation of the TURN functionality is divided mainly into two classes: Turn-
Client and TurnServer. As the names imply, TurnClient class takes care of the client pro-
cedures and TurnServer of the server procedures, respectively. It is important to notice that
an endpoint can act as a server and a client at the same time.

An instance of the TurnClient class is created as soon as a success response to an Allocate
request is received. The TurnClient instance is server-specific, meaning that a single end-
point is able to run multiple instances of the TurnClient class related to one StunHandler.
TurnClient takes care of refreshing the allocation on the TURN server for a certain local
address. The TurnServer class handles Allocate requests and Refresh requests. It keeps
track of all the allocations it is responsible for and cleans up the ones that have expired. Its

CHAPTER 3. IMPLEMENTING MOBILE NAT TRAVERSAL USING ICE 42

essential functionality is relaying messages between the client and its peers. Send indica-
tions received from a client are given for the corresponding TurnAllocation class for further
handling. The TurnAllocation class represents an allocation on the TURN server. Its task
is to store allocation specific variables, such as the transport addresses and the expiry time
of the allocation. It also has a reference to two StunIO instances: one for the server address
and one for the relayed address of the given allocation. The TurnAllocation class keeps up
a list of permissions of peers allowed to send messages through the relay. Once a message
from a permitted peer is received on the relayed address, the TurnAllocation encapsulates
it in a Data indication and sends it forward from the server address to the corresponding
client’s server reflexive address.

3.3.3 ICE Library

The ICE library is implemented by adding three more classes on top of the STUN library
with TURN extension. The resulting libraries as a whole implement the ICE functional-
ity. The IceHandler class takes care of the main ICE logic: the candidate gathering, the
scheduling of the connectivity checks and stopping the checks once the chosen stopping
criterion is met. The IceHandler also provides additional methods for detecting and repair-
ing of role conflicts, learning peer reflexive remote candidates and triggering checks. Once
the connection is set up the IceHandler makes sure that application layer data is sent using
the selected candidate pair(s).

The Candidate class describes a candidate. The same class is used to represent both local
and remote candidates. The CandidatePair class represents a candidate pair by keeping
a reference to a local and a remote candidates forming the pair. A candidate knows the
StunHandler that was used for getting the candidate in the first place. The StunHandler in
question takes care of performing the connectivity checks for the candidate pairs that have
the given candidate as their local candidate.

3.4 Implementing ICE

The implemented ICE prototype is based on the ICE specification. The implementation can
be considered as a full implementation that uses regular nomination. However, it does not
include all the features specified in the ICE specification. Only the most important features
for measurement purposes and for future usage were implemented. The biggest shortcom-
ing of the implementation compared to the specification are the security options and error

CHAPTER 3. IMPLEMENTING MOBILE NAT TRAVERSAL USING ICE 43

messages. Also, the usage of the J2ME programming language set some implementation
limitations that needed to be taken into account. These are covered in the Section 3.4.2.
The differences from the specification are given in more detail in the following subsection.
In addition to the basic ICE functionality, the following ICE features were implemented:

• Frozen algorithm based on the foundations of the candidate pairs; it is used to op-
timize the ICE processing when multiple connections are created between the peers
during the same connectivity establishment.

• ICE-CONTROLLING and ICE-CONTROLLED attribute for detecting and repairing
of role conflicts; in the case of SIP it is possible for both peers to end up having the
same role.

• Triggered check queue; triggered checks are prioritized before the ordinary checks.

3.4.1 Differences from the specification

This section lists the features of the ICE specification [42] that were not implemented in the
ICE prototype. The fact that some of the features are lacking has no impact on the validity
of the results. The following features were not implemented:

• Support for multiple media streams; only one check list per ICE processing was
implemented.

• The FINGERPRINT attribute, that provides additional multiplexing reliability.

• The authentication of Binding Indication messages; the Binding Indications are sent
without any attributes.

• Error Response messages; without Error Responses the sender of the Request is un-
able to determine the reason for a failed transaction.

• ChannelData messages; only Send and Data Indications are implemented.

• CreatePermission transaction; permissions are created by sending data to a peer.

• No two minutes wait after an expired allocation; a relayed address can be recycled
immediately after it has been freed.

• Utilization of short-term and long-term credentials.

CHAPTER 3. IMPLEMENTING MOBILE NAT TRAVERSAL USING ICE 44

• Encoding and exchanging of Session Description Protocol (SDP) messages using
offer/answer exchange; the upper layer protocols take care of the offer/answer ex-
change.

• Subsequent offer/answer Exchanges; the implementation provides no means for send-
ing an updated offer.

• Changing the RTO and Ta values during ICE processing; the transaction timers use
configurable values that stay the same for the entire ICE processing.

3.4.2 Non-Specification Additions

Due to the limited J2ME library, three additional attributes were needed for the functions to
work according to the ICE specification. Self-created attributes naturally violate the interop-
erability with other implementations. However, there are no known better alternative ways
to work around the problem. For our measurement purposes, this fix works fine, since all
the test devices use the same implementation. But taken into consideration future usage, our
implementation will require some changes to be compatible. The three additional attributes
are called HOST-NAME-ADDRESS, PEER-HOST-NAME-ADDRESS and RELAYED-
HOST-NAME-ADDRESS. The attributes are used as aid in situations where the use of
attributes (XOR-)MAPPED-ADDRESS, PEER-ADDRESS and RELAYED-ADDRESS as
defined in the ICE specification is not possible.

0 0 0 0 0 0 0 0 Family (IPv4 or IPv6) Port

Address (32 bits or 128 bits)

LengthType

Figure 3.2: Format of STUN address attribute

The format of an address attribute is as shown in Figure 3.2 above. The format expects the
address part to be an IP address of fixed length (either 32 or 128). The Java 2 Standard
Edition (J2SE) provides methods for getting an address of a datagram socket or a datagram
packet as either host name (if available) or IP address. This way it is possible for the
programmer to always get the IP address instead of the host name. But this is not the

CHAPTER 3. IMPLEMENTING MOBILE NAT TRAVERSAL USING ICE 45

case in J2ME, where the IP address is most likely to be returned only if the host name is
not available. This makes it impossible to encode the addresses given as host name in the
format that the specification defines. This is the reason for defining new attributes that have
the address as host name in ASCII format.

Another disadvantage as a consequence of the additional attributes is the increase in the
amount of peer reflexive candidates. This results from the fact that transport addresses in
IP address format and as host names are considered to be different transport addresses. As
a consequence the amount of candidate pairs in the the check list grows. Additionally, the
discovery of a new peer reflexive remote candidate causes a new check to be triggered for
the newly created candidate pair.

3.4.3 Stopping the Connectivity Checks

The ICE specification only defines that a controlling agent should stop connectivity checks
as soon as it meets its stopping criterion. However, an exact rule for the criterion is not de-
fined to give the opportunity for local optimization. The stopping criterion is a compromise
between the duration of the connectivity checks and the confidence on having selected the
best working candidate pair for communication.

The stopping criterion chosen for our implementation is the following: The controlling
agent nominates a highest priority candidate pair immediately after having received a suc-
cess response to a check on that pair. In case that no success response is received to a
highest priority candidate pair after 2 seconds wait, the highest priority non-relayed valid
pair (if one exists) is nominated. A maximum of 10 seconds is waited, from the start of the
checks, before nominating a valid pair that requires relaying. If the valid list is still empty
at that point, the connectivity checks are said to have failed.

The decision for the 2 seconds wait is based on the recommendations by the International
Telecommunication Union (ITU). ITU states that the mean post-selection delay on local
connections under normal load should be on average 3 seconds [53]. Therefore due to the
additional delays caused by the ICE processing, a 1 second margin is left for exchanging
the candidates and for nominating the selected candidate pair(s).

The implemented stopping criterion takes into consideration the fact that certain pairs are
more preferable, as well as bounds the maximum duration to an upper limit. The favor-
ability is implemented by giving the higher priority candidate pairs more time to succeed
in case retransmissions are required. The disadvantage of the criterion is that a total of 10

CHAPTER 3. IMPLEMENTING MOBILE NAT TRAVERSAL USING ICE 46

seconds needs to be waited every time that a relayed candidate pair is the only working pair.
Additionally, the user experience substantially decreases if an operation takes a long time
to complete without a response. If no progress indicators are shown, 10 seconds is about
the limit for keeping the user’s attention [37].

The same maximum duration for the connectivity checks is also used by other implemen-
tations [34]. Without an upper limit for the duration, in case of no working candidate pair,
it might take a minimum of 40 seconds for the checks to conclude. This is the approximate
time it takes for a candidate pair to use up all its retransmissions.

3.5 Summary

For the purpose of NAT traversal on mobile phones, an ICE prototype was implemented
using Java 2 Micro Edition (J2ME). The ICE prototype consists of 13 classes and around
7000 lines of code. A STUN prototype with a TURN extension was first implemented since
it forms the basis of the ICE prototype.

The idea of the ICE prototype is to provide the main ICE functionality. However, some
features were implemented in addition to the basic functionality, such as the frozen algo-
rithm used to optimize the ICE processing, and the triggered check queue used to prior-
itize certain checks. Some features of ICE were not implemented since they were seen
as non-essential for the measurements performed for the thesis. The biggest difference of
the implementation compared to the specification is the lack of security options and error
messages. Additionally, some differences from the specification were unavoidable due to
the limited J2ME library: three additional attributes were implemented for the functions to
work somewhat according to the ICE specification.

The ICE specification does not specify an exact rule for when to stop the ICE checks.
Our ICE prototype meets its stopping criterion if any of the following rules applies: (1)
the highest priority candidate pair works, (2) a non-relayed candidate pair works after 2
second, or (3) the maximum time for connectivity checks (10 seconds) is exceeded. When
the stopping criterion is met, the highest priority candidate pair in the valid list gets chosen
for communication. If the valid list is still empty after 10 seconds, the ICE checks have
failed.

Chapter 4

Measurements and Evaluation

In this Chapter, we describe the prototyping environment and show the measurements that
were conducted to examine NAT traversal on mobile phones. We start this chapter by
describing the P2PSIP prototype that was integrated to our ICE prototype for the purpose
of testing the delays that NAT traversal causes in P2PSIP networks. Then we describe the
prototyping environment, including the mobile and fixed access networks, as well as the
different end devices. Before going to the actual measurements, we show some baseline
measurements performed on the test mobile phone. Some of actual measurements were
performed using the ICE prototype alone, such as the TURN and STUN client and server
tests. Finally, we present the measurement results and finally evaluate the outcome.

4.1 P2PSIP Prototype

Before describing the prototyping environment in more detail, we need to take a look at the
P2PSIP prototype, since it plays a major role in the call setup delay measurements. The
prototype was not presented in the previous chapter, since we use an existing P2PSIP im-
plementation [17] that consists of roughly 100000 lines of code for managing the P2PSIP
overlay. In order for the P2PSIP prototype to work in the presence of NATs, it was inte-
grated with the ICE prototype. The contribution of this thesis was to implement the ICE
stack. The work required to integrate ICE to P2PP, SIP, RTP, and the Chord connection
management logic was done by other developers.

The P2PSIP prototype is provided in two versions, one for PCs and one for mobile phones.
Both are implemented in Java programming language, but they use different editions of

47

CHAPTER 4. MEASUREMENTS AND EVALUATION 48

Java, J2SE (Java 2 Standard Edition) and J2ME, respectively. The two versions of the pro-
totype are interoperable. Although we are mainly concentrating on the mobile implemen-
tation, it is interesting to make comparison as some of the tests are run on PCs as well. The
J2SE implementation proved also useful in most of the mobile measurements in helping to
implement those parts of the test setup that were not being examined.

P2PSIP Prototype

Graphical User Interface

Session Initiation Protocol

Peer-to-Peer Protocol

Chord

Interactive Connectivity Establishment

Figure 4.1: Architecture of the P2PSIP prototype

Figure 4.1 shows the architecture of the P2PSIP prototype after integration to the ICE li-
brary. All protocols run on top of the UDP transport protocol. The P2PSIP prototype
provides a graphical user interface to make the prototype easier to use. The prototype uses
SIP for controlling media communication sessions, such as voice calls. SIP uses the prede-
cessor protocol of RELOAD, P2PP, for creating and maintaining the P2PSIP overlay and
for mapping SIP Address-of-Record (AoR) values to contact Uniform Resource Identifiers
(URIs). The DHT algorithm used by the prototype is Chord, since it is specified by the
P2PSIP working group of the IETF as mandatory to implement. ICE takes care of NAT
traversal by utilizing the functionalities of STUN and TURN. The P2PSIP prototype sup-
ports two types of nodes, P2PSIP peers and P2PSIP clients. The clients run only a subset of
the P2P protocol stack, even though they implement the same stacks as the P2PSIP peers.

4.1.1 Call Setup between P2PSIP Clients

The call setup flow of P2PSIP is shown in Figure 4.2. Alice and Bob are both P2PSIP
clients. They are connected to the overlay via P2PSIP peers, Peer 1 and Peer 3, respectively.
They both use Peer 2 as their TURN server to simplify the figure; in reality Alice and Bob

CHAPTER 4. MEASUREMENTS AND EVALUATION 49

P2PP LookupObject

200 OK

TURN Allocate request

P2PP Connect

200 OK (Connect)

200 OK (Connect)

RTP media

SIP ACK

TURN Allocate request

Allocate response

P2PP Connect

P2PP Connect

Allocate response

200 OK (Connect)

ICE connectivity checks for SIP

TURN Allocate request

TURN Allocate request

SIP INVITE

SIP 200 OK (INVITE)

Allocate response

Allocate response

ICE connectivity checks for media

Alice Peer 1 Peer 2 Peer 3 Bob

Figure 4.2: P2PSIP call setup

might be using different TURN servers. For the caller, Alice, to be able to contact the
callee, Bob, she needs to discover Bob’s contact information by sending a P2PP lookup
into the overlay. The P2PP lookup may go through multiple overlay nodes before reaching
its destination. After receiving a response to the lookup, Alice gathers her ICE candidates
using her designated TURN server. For the purpose of creating a direct connection for
SIP, a Connect request, including the candidates, is sent via the overlay. Next, Bob gathers
his ICE candidates and sends them to Alice in a Connect response. After the candidate
exchange, the connectivity checks are performed. If the checks succeed, Alice repeats the
candidate gathering for RTP (Real-time Transport Protocol) and sends her candidates in an
INVITE request to Bob, but this time using the connection just created for SIP. Once again
Bob gathers his candidates and sends them in a SIP response to Alice. The SIP response

CHAPTER 4. MEASUREMENTS AND EVALUATION 50

is acknowledged. Once the ICE checks for RTP have successfully finished, a call has been
successfully established and RTP packets can be sent using the connection created by ICE.

4.1.2 Organizing Peers as STUN and TURN servers

Having more than one STUN server in a P2PSIP overlay is essential for each peer to be
able to create direct connections even in complex NAT topologies. Since every peer in
the overlay can act as a STUN server for another peer, STUN servers are learned when
connecting to new peers. It is definitely not reasonable to use all the learned servers since the
number of possible servers increases quickly as new connections are created. To maximize
the chance of achieving a direct connection, a peer groups the servers based on equality of
the peer-reflexive addresses it discovered through them. When new connections are being
created, one server from each group is selected. However, not every peer is allowed to act
as a TURN server. A peer can register itself as a TURN server only if the address of its
local network interface matches to every peer-reflexive address it has discovered. [26]

Yet another interesting matter is how TURN servers are discovered in the overlay. The peers
capable of acting as TURN servers need to save pointers in the overlay to ensure that other
peers are with a high probability to locate them using a bounded number of lookups. The
P2PSIP prototype calculates the number of pointers needed by using a birthday paradox
based formula that takes as an input an estimate of the worst case TURN server density and
an estimate of the total network size. [33]

4.2 Prototyping Environment

The measurements were carried out in either mobile or fixed access networks. The mobile
access network was used when measuring the capabilities of a TURN server or STUN client
in a mobile phone or when measuring the call setup delay between two mobile phones
running the P2PSIP client protocol. The fixed access network, on the other hand, is used in
measurements where the P2PSIP clients are run on PCs. In all P2PSIP measurements, the
P2PSIP overlay is run over a fixed network. The following sections take a more detailed
look at both of these access networks, including the devices used for accessing them.

The measurements were carried out on two mobile phone models: Sony Ericsson C905 and
W910. Table 4.1 shows the specifications of these phones. The phones were connected
to the network of the Finnish operator DNA in the Helsinki region. The phones reported

CHAPTER 4. MEASUREMENTS AND EVALUATION 51

Table 4.1: Mobile phone specifications

C905 W910

Memory Up to 160 MB Up to 40 MB

Battery 3.6 V, 930 mAh 3.6 V, 920 mAh

Standby Time
GSM: 400 hours, GSM: 400 hours,
UMTS: 350 hours UMTS: 350 hours

Talk Time
GSM: 9 hours GSM: 9 hours,

UMTS: 3.5 hours UMTS: 3.5 hours

Data transfer Up to 3.6 Mbps Up to 3.6 Mbps
speed downlink (HSDPA) (HSDPA)

Data transfer Up to 384 kbps Up to 384 kbps
speed uplink (WCDMA) (WCDMA)

J2ME CLDC 1.1 / MIDP 2.1 CLDC 1.1 / MIDP 2.1

Java platform version JP-8.4.3 JP-8.2.1

the received signal level to be at the maximum. We measured using network speed test [5]
the downlink bandwidth to be 1037 kbit/s, when connected to the Internet through Third
Generation (3G) High Speed Downlink Packet Access (HSDPA). The uplink bandwidth
was 318 kbit/s. The measured bandwidths were averaged over several measurements at
different times of a day. Although the uplink bandwidth was lower, it should not affect our
measurements as shown later.

We used PCs also in the mobile measurements. The PCs acted either as TURN or STUN
clients or servers not being the test subject. This was done to minimize the effects that the
components not directly being experimented would have on the results. For example, if
we were to measure the drop rate caused by relaying messages via a mobile phone acting

Table 4.2: Laptop specifications

Dell Latitude D610

Processor
Intel Pentium M Processor 750

(1.86GHz, 2MB L2)

Memory
Up to 2048MB using

533MHz DDR2 SDRAM

CHAPTER 4. MEASUREMENTS AND EVALUATION 52

as a TURN server between two wired PCs, one acting as a TURN client and the other
its peer, we can assume that the possible packet drops are most likely to occur due to the
communication over the air interface or the insufficient processing capacity of the phone.
The Table 4.2 gives the specifications of the PC model used in the measurements. The PCs
were connected to a corporate network in the Helsinki region.

A PC was also used to simply log test data from the mobile phone. The Sony Ericsson
resource monitor was the application on the PC for logging the CPU load and memory
consumption from the phone via an USB cable. JSR (Java Specification Request) Mobile
Sensor API was utilized within the J2ME test code for measuring the battery consumption
on a mobile phone.

4.2.1 P2PSIP Parameters

The call setup delay measurements were carried out in a global P2PSIP overlay consisting of
approximately 500 peers. The same P2PSIP overlay has been used in previous work [30, 31,
32]. The overlay consisted of Planetlab [40] nodes running the P2PSIP prototype. Planetlab
is an open platform that the members of the PlanetLab Consortium, mostly corporations
and universities hosting PlanetLab nodes, can freely use for distributed systems research
and network services development. The measurements were carried out by connecting two
clients to the P2PSIP overlay and by initiating calls between them.

Table 4.3: P2PSIP traffic model and parameters

Parameter Value

Peer interarrival time 28.8s

Network size 500 peers

Busy hour call attempts 2.21 calls/user/hour

% of calls to buddies 66.6

Finger pointers 10

Successors 10

Chord stabilization interval 60s

Table 4.3 describes the parameters that the P2PSIP overlay was using. The traffic model is
similar to the one used in [32]. The arrival and departure of the peers in the P2PSIP overlay
were modeled as a Poisson process. The average uptime of peers was 4 hours meaning that

CHAPTER 4. MEASUREMENTS AND EVALUATION 53

the average interarrival and departure time was 28.8 seconds. Every user in the P2P overlay
made on average 2.21 calls/hour and roughly 66.6% of the calls were made to buddies.
When a call is made to a buddy no lookup is performed during the call setup. This is
because a lookup to a buddy has already been performed before initiating a call in order to
get the presence status of the buddy.

Since the successor or predecessor nodes in the overlay may disappear due to a failure
or a departure, it is recommended for Chord to keep a table of multiple successors and
predecessors. The sizes of Chord’s successor and predecessor tables were set to 10 [32]. To
speed up Chord’s search method, finger tables of size 10 were used in the P2PSIP overlay.
Moreover, the nodes run a stabilization process every 60 seconds to make sure that the
routing table is up-to-date [51]. This information is also used to correct finger and successor
table entries [51]. The stabilization interval should reflect the frequency of node arrivals
and departures, i.e. the more frequently nodes arrive and departure, the more often the
stabilization process should be run. The stabilization interval chosen for the measurements
is based on the results in [31]. More detailed information on the P2PSIP prototype can be
found in [30, 32].

The bootstrap peer and one of the P2PSIP clients of the overlay were located in Helsinki,
whereas the other P2PSIP client was located in Hamburg, Germany. The Round-Trip Time
(RTT) between the clients was measured to be on average 47.8 milliseconds.

4.2.2 ICE Parameters and Message Sizes

Table 4.4 shows the parameters that the ICE prototype was using. The stopping criterion for
ICE was already presented in Section 3.4.3 since it was an implementation specific choice.
However, there are ICE parameters that have to be configurable. One such parameter is the

Table 4.4: ICE parameters

Parameter Value

ICE keepalive interval (Tr) 15s

Time between ICE checks (Ta), RTP 20ms

Time between ICE checks (Ta), non-RTP 500ms

Deadline, highest priority pair 2s

Maximum ICE check execution time 10s

CHAPTER 4. MEASUREMENTS AND EVALUATION 54

Ta that defines the pacing of STUN or TURN transactions during the candidate gathering
phase or the connectivity checks. The value of Ta is different if ICE is being used for
establishing a connection for a real time media stream, such as RTP, or something else. For
non-RTP sessions, such as SIP and P2PP in our case, Ta was set to 500 milliseconds, which
is the default value specified in the ICE specification. The audio codec used by the P2PSIP
clients was G.728, which means that 32 byte RTP packets were sent every 20 milliseconds.
Thus, the Ta value for RTP was set to 20 milliseconds according to the formula in the ICE
specification. [42]

Table 4.5: STUN message sizes

Method and class Size

Binding request 20 bytes

Binding response 28 bytes

Binding indication 20 bytes

Allocate request 28 bytes

Allocate response 44 bytes

Refresh request 28 bytes

Refresh response 28 bytes

Data indication 32 bytes + data

Send indication 32 bytes + data

Table 4.5 shows the message lengths of the different STUN message types. The given
message lengths may not apply to all implementations, since other ICE implementations
might include additional STUN attributes to the messages. The length of STUN Data and
Send indications depend on the length of the data that the message carries as its DATA
attribute’s value.

4.3 Baseline Measurements on a Mobile Phone

To be able to better design the measurements and interpret their results, some baseline mea-
surements were performed on the Sony Ericsson C905 mobile phone, whose specifications
were listed in Table 4.1. The baseline measurements reveal the fundamental limits of the
mobile phones. The focus of the baseline measurements is on finding the maximum number
of open sockets and threads a mobile phone is capable of maintaining. Simple test programs

CHAPTER 4. MEASUREMENTS AND EVALUATION 55

were implemented in J2ME for the purpose of determining the limits. The measurements
showed that the maximum number of open sockets the mobile phone is capable of main-
taining is 50. The phone is able to create more than 50 sockets during the execution of the
program, but the maximum number of simultaneously open sockets is 50. Two programs
were created for testing the number of threads that the mobile phone can simultaneously
support. The first test put the created threads to sleep, the other test kept all the threads
running. The results showed that it makes no difference whether the started threads are
running or sleeping: the maximum number of simultaneously supported threads is 509. If
this limit is exceeded, the application terminates with an application error.

Based on these limiting values it is possible to conclude some theoretically limiting thresh-
old values for the STUN, TURN and ICE protocols on a mobile phone. A STUN or TURN
client can have a maximum of 50 ongoing sessions. Naturally the number of sessions is
less if some sessions use multiple component IDs. A TURN server can serve a maximum
of 49 TURN clients. One socket is reserved for the TURN server address and port. Also in
this case, if a single client requires multiple allocations for its sessions or multiple transport
layer ports per session, the number of supported TURN clients decreases. Moreover, if the
TURN server itself has multiple ongoing communication sessions the number of sockets
available for allocations decreases.

In general, when writing J2ME code, an own thread is needed for each listening socket since
it possible to create only blocking receive() -calls on the sockets. However, the number of
threads is not a limiting factor in our ICE implementation because when the maximum
number of sockets is used, the maximum number of threads on the client side with 50
sessions is 150 (n, where n is the number of sessions) and on the server side with 49
TURN clients is 51 (m+ , where m is the number of TURN clients). More specifically,
in our implementation, a single TURN client requires three threads: one for listening to
the client address and port, one for refreshing the allocation on the TURN server, and for
keeping the binding on the NAT alive. A TURN server, on the other hand, requires one
thread for listening to the server port, one thread for checking the expiry times of all the
allocations on the server, and one thread per allocation. The number of threads needed is
naturally implementation dependent.

On the other hand, the case of running out of threads is more critical than running out of
sockets. As a consequence of running out of threads, an application error occurs, which
means that the whole application crashes. Running out of sockets causes an exception, that
simply needs to be handled inside the program, but otherwise the program execution can
continue normally. The conclusions we made based on the number of sockets and threads

CHAPTER 4. MEASUREMENTS AND EVALUATION 56

are somewhat simplistic in the sense that they do not take into consideration the threads
and sockets used by other running applications and because only a single phone model was
used for the tests. Another point to take into consideration is whether it is even reasonable
to consider having 50 clients running on a single mobile phone. Based on these initial
measurements, we cannot make any definite conclusions on the performance of a mobile
phone. That is why it is worth examining whether there are even more limiting factors
for mobile peer-to-peer networking, such as the processing capacity of the phone when the
number of allocations on the TURN server, or the number of sessions on a STUN or TURN
client grows.

4.4 Measurement Results

The measurement results on the STUN and TURN client and server performance are pre-
sented under the following sections: mobile phone as a TURN server in Section 4.4.1,
mobile phone as a STUN server in Section 4.4.2, and mobile phone as a STUN or TURN
client in Section 4.4.3. In these measurements the STUN and TURN client and server are
not part of a P2PSIP overlay too see the effect that keepalives or data relaying as such have
on a mobile phone running the STUN or TURN prototypes. However, to see how the STUN
and TURN prototypes work, when ran on a mobile phone acting as a P2PSIP peer, a few ad-
ditional measurements were conducted. Those results are shown in Section 4.4.4. Finally,
we present the results regarding the impact of ICE procedures on the delays in P2PSIP call
establishment in Section 4.4.5.

4.4.1 Mobile Phone as a TURN Server

To assess how well a mobile phone can act as a TURN server, we measure how efficient
the mobile TURN server is at relaying voice and overlay maintenance data. Additionally,
we measured the battery and memory consumption, as well as the CPU load that keepalive
traffic causes on a mobile phone.

Due to their limitations, it can be expected that mobile phones will act as P2PSIP clients in a
P2PSIP overlay. This way they are not obliged to store data objects and route requests. They
only need to maintain the connection to the P2PSIP peer they are connected to. In these
measurements, we considered a case where there are no centralized servers to take care
of the TURN server functionality and no PCs connected to the P2PSIP overlay. Instead,
there are only mobile phones creating the P2P network. In such a case it is necessary for

CHAPTER 4. MEASUREMENTS AND EVALUATION 57

the mobile phones themselves to be able to act as P2PSIP peers. Moreover, if they have a
public address they also need to be able to run the TURN server functionality to allow other
mobile phones with private addresses join the network.

In our measurements, the Sony Ericsson phone model C905 was used to run the TURN
server prototype, W910 acted as a STUN server, and the PC Dell Latitude D610 took care
of the client side functionality. In the P2P signaling message relaying measurements, we
assumed the mobile phone to be acting as a TURN server for a 10000-peer overlay, where
each peer initiates or forwards a message on the average every 2.65 seconds and the average
message size is 819 bytes [30].

Impact of Keepalives on a TURN Server

The purpose of the test was to examine a simplified case where only the effect of keepalive
traffic on a TURN server was considered. The TURN server had only one client. In the
test scenario, the client and its peer ended up using a relayed path between them after
performing ICE. A simple TCP relay was used as the signaling channel for exchanging the
candidates. After the connection had been established, no data was sent between the TURN
client and the peer, the connection was simply kept up via keepalives: STUN Binding
indications were sent every 15 seconds and Refresh requests every 10 minutes. The client
and its peer used the relayed path for sending keepalives to each other. Test duration was
1 hour, starting after the ICE connectivity checks had finished. The CPU load and memory
consumption measurements start logging data only after the ICE connectivity checks have
finished, where as the battery consumption measurements include the ICE checks.

The Figure 4.3 shows the memory consumption of the TURN server during the measure-
ment. The used and free Java memories were observed for an hour by taking a sample
of the Java memory usage once in a second. The average amount of used memory on the
java phone heap was 766 kilobytes of the initially allocated 1.049 megabytes. As the Fig-
ure shows, the size of the Java heap grows repeatedly to a maximum of 1.048 megabytes,
which is very close to the initially allocated memory size. The memory consumption stays
far below the maximum Java heap size available to applications, which is 30 megabytes on
the phone model used in the measurement. The mobile phone platform is able to increase
the initially allocated Java heap size during program execution. However, we could see that
the heap size was not increased during this measurement since the sum of the used and free
Java memories (not shown in the figure) remained constant.

The CPU usage on the phone is shown in Figure 4.4. The CPU load was measured over
the same time period as the memory consumption, thus also collecting information once

CHAPTER 4. MEASUREMENTS AND EVALUATION 58

0 

200 

400 

600 

800 

1000 

1200 

0  600  1200  1800  2400  3000  3600 

M
em

or
y 
[k
B]
 

Time [s] 

Figure 4.3: Memory consumption of a mobile TURN server caused by keepalives

per second. The average CPU load during the measurement was 3.1% with a standard
deviation of 3.6. By taking the 95th percentile CPU load, we see that 95 percent of the
observed CPU loads fall below 10%. As the results show, the CPU load that a single TURN
client and its peer cause on the TURN server is quite low. This is because there are no
heavy computational operations required and messages are received at a relatively steady
rate. When the mobile phone acting as a TURN server has no clients to serve, its average
CPU load is close to zero.

0 

5 

10 

15 

20 

25 

30 

35 

0  600  1200  1800  2400  3000  3600 

CP
U
 lo
ad

 [%
] 

Time [s] 

Figure 4.4: CPU load of a mobile TURN server caused by keepalives

CHAPTER 4. MEASUREMENTS AND EVALUATION 59

The measurement on battery consumption lasted until the mobile phone acting as TURN
server ran out of battery. The battery consumption of the mobile phone acting as TURN
server is shown in Figure 4.5. The remaining battery level was measured once per minute.
The mobile phone ran out of battery in 8 hours and 58 minutes. The main reason for the
battery consumption was the reception and sending of STUN messages and the handling of
the messages. Every time a message was received, it was checked whether the message was
indeed a STUN message. All STUN messages needed to be parsed for further interpretation.

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  50  100  150  200  250  300  350  400  450  500  550 

Ba
#
er
y 
le
ve
l [
%
] 

Time [min] 

Figure 4.5: Battery consumption of a mobile TURN server caused by keepalives

The TURN server received Binding indications from the client that were addressed to the
server and Binding indications that needed to be relayed from the client to its peer and
vice versa. Additionally, the TURN client sent Refresh requests to the TURN server that
were replied by sending back a Refresh response. During its battery lifetime the mobile
phone received 2152 messages that were simply ignored (keepalives), 4304 messages that
needed to be relayed and 54 messages that needed to be answered. This means that the
phone received a message over the radio channel approximately once per 4.96 seconds.
The average size of a received message was 34.6 bytes.

To see how the number of clients effects the CPU load and memory consumption of the
mobile phone, the same test was also run with different number of clients. Table 4.6 presents
the relevant values on a mobile phone acting as TURN server with 2, 5 and 10 clients. The
initially allocated 1.049 MB java phone heap size was enough regardless of the number of
clients used. As the table shows, the CPU load and memory consumption increase as the
number of clients increases.

CHAPTER 4. MEASUREMENTS AND EVALUATION 60

Table 4.6: TURN server with different number of clients (keepalives)

CPU load Memory consumption
of clients Average σ 95th percentile Average Min Max

1 3.1% 3.6 10% 766 kB 492 kB 1.048 MB

2 4.9% 5.0 15% 774 kB 505 kB 1.047 MB

5 9.2% 6.9 22% 796 kB 538 kB 1.048 MB

10 14.3% 8.0 27% 820 kB 573 kB 1.048 MB

Data Relaying on a TURN Server

In the previous measurements, we tested the impact of keepalives on a TURN server running
on a mobile phone. However, there is not much point in maintaining an allocation just for
the purpose of sending keepalives. This section takes a look at the capabilities of a mobile
phone to act as a TURN server for the purpose of relaying data, especially real-time data,
such as voice. Naturally, keepalive messages are still sent in the background if no data has
been sent for 15 seconds. Refresh requests are sent every 10 minutes regardless of other
messages being sent.

We used the same setup as in the previous keepalive measurements but this time the TURN
client and its peer started transmitting data after having established a connection using ICE.
Thus, data was being relayed from the client to its peer and vice versa. When speaking of
the bandwidth of an audio codec under this section, we refer to the bandwidth of a one way
transmission excluding the additional bandwidth caused by STUN encapsulation. The test
setup is such that the relayed path gets chosen for communication.

In the first measurement, we assumed the same audio codec G.728 Annex H that was also
later used for the media in the P2PSIP call setup measurements. Using the codec, 32 byte
data packets are sent every 20 milliseconds. The dropping rate of packets for a voice stream
is considered acceptable if it is less than 0.05; otherwise, it is considered unacceptable.
After the ICE connectivity checks had finished, we transmitted data messages between the
TURN client and its peer for a 30 minute period. During this period, approximately 58% of
the 180000 packets were dropped. This was of course clearly above the acceptable dropping
level.

Knowing the drop rate to be that high, the next step was to look at the possible reasons
for such a high drop rate when using a mobile phone to relay data. As a starting point,

CHAPTER 4. MEASUREMENTS AND EVALUATION 61

we knew that the limiting factor cannot be the bandwidth, since it was measured to be
318 kbit/s in the uplink direction. The corresponding downlink speed was even higher.
The bandwidth required by the audio codec G.728 Annex H was 12.8 kbit/s. Some other
possible limitations to consider were the CPU power, as well as the receiving and sending
buffers.

86 

88 

90 

92 

94 

96 

98 

100 

0  30  60  90  120  150  180 

CP
U
 lo
ad

 [%
] 

Time [s] 

Figure 4.6: Calculating loop

74 

76 

78 

80 

82 

84 

86 

88 

0  30  60  90  120  150  180 

CP
U
 lo
ad

 [%
] 

Time [s] 

Figure 4.7: Sending loop

We made two simple programs for testing the limiting factors. One of the programs simply
kept on making never-ending calculations and the other program kept on sending messages.
Figure 4.6 shows the CPU load when making calculations and Figure 4.7 when the program
was just sending. The average CPU load for the calculating program was 96.6% and for the
sending program 83.2%. From this we could conclude that while making the calculations
the mobile phone was able to utilize the entire CPU capacity allocated for the application,
whereas when transmitting data the phone was not able to make use of the whole CPU
processing power since the sending buffer could be limiting the speed of transmission.
Consequently, if our program is relaying data (receiving and sending is handled in the same
thread) and the sending buffer fills up, it reflects to the receiving buffer so that it most likely
starts dropping packets.

The next test results show how well the mobile phone acting as a TURN server suits for re-
laying a narrow band data stream. The chosen audio codec G.723.1 uses less than half of the
bandwidth utilized by G.728 Annex H. The G.723.1 codec sends a 20 byte frame once per
every 30 milliseconds, thus requiring a bandwidth of 5.3 kbit/s. To further examine the kind
of data transmission a mobile phone would be most suitable for relaying, we used the same
bandwidth with different data packet sizes. The measurements for each data size lasted 15
minutes and were repeated 6 times. Figure 4.8 depicts how the packet drop rate depends
on the transmission frequency. The figure shows the drop rate as a function of data packet
size. In this context, when referring to data packet size, we mean the length of the voice
data in the payload of a packet ignoring the overhead of lower layers, such as STUN, UDP,

CHAPTER 4. MEASUREMENTS AND EVALUATION 62

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0  20  40  60  80  100  120 

D
ro
p 
ra
te
 

Packet size [B] 

5.3 kbit/s 

Figure 4.8: Drop rate on different packet sizes

and IP. The overhead decreases as the packet size increases. Thus, the actual bandwidth
usage is much higher for small packets. Naturally, as we increased the data packet size,
we decreased the transmission interval in proportion to keep the data bandwidth the same.
As an example, for 20-byte data packets, the transmission interval was 30 milliseconds and
for 80-byte data packets it was 120 milliseconds. For data packet sizes up to 40 bytes, the
drop rate decreased as the packet size increased. However, on the tested data packet sizes
of 50-90 bytes, the drop rate was higher than for the data packet size of 40 bytes.

The codec G.723.1 with a default packet size of 30 bytes falls far above the acceptable drop
rate, with a drop rate of 0.43. In addition to measuring the average drop rate using the same
codec, we wanted to examine whether the dropped packets were single packets every now
and then, or dropped in bursts. We measured the average number of sequentially dropped
packets to be 8.4. However, the maximum burst of dropped packets was as high as 46.

Despite the fact that the packet drop rate for packets over 100 bytes is less than 0.04, we
chose the data packet size of 40 bytes for further measurements. This is done because
we do not want the transmission interval to get too low, especially if voice data is being
transmitted. Besides, G.723.1 offers an audio codec that uses 40 byte data packets for
the bandwidth of 5.3 kbit/s. However, the average drop rate of the packets was above
the acceptable limits, that is, on average 0.09 with a standard deviation of 0.005. Despite
this, it was the most appropriate codec available, so we further measured the delays for
the given data stream. G.114 is an ITU recommendation that defines acceptable delays
for voice transmissions. According to the specification, voice quality is good if delays are
less that 150 milliseconds, average if delays are between 150-400 milliseconds, and poor if
delays are over 400 milliseconds. The average end-to-end delay for our data packets was

CHAPTER 4. MEASUREMENTS AND EVALUATION 63

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

0  600  1200  1800  2400  3000  3600 

CP
U
 lo
ad

 [%
] 

Time [s] 

Figure 4.9: CPU load of a mobile TURN server caused by data relaying

384 milliseconds, which is just within the acceptable limits if we only observe the average
value. However, this was the mean value of all the measured delays, meaning that actually
only 65.1% of the measured packet delays were below the acceptable level. Moreover, the
additional delay caused by the playout buffer is not even included. By examining the delays
of the same frame size, only with lower transmission rate, we could confirm that the delays
do depend on the transmission rate, but can only be optimized to a certain limit. Meaning
that having a mobile phone as relay is nearly always costly on the delay. For example, by
using the same frame size with a halved transmission rate we get only a slightly smaller
average end-to-end delay of 375 milliseconds.

0 

200 

400 

600 

800 

1000 

1200 

0  600  1200  1800  2400  3000  3600 

M
em

or
y 
[k
B]
 

Time [s] 

Figure 4.10: Memory consumption of a mobile TURN server caused by data relaying

CHAPTER 4. MEASUREMENTS AND EVALUATION 64

Using the chosen audio codec G.723.1 with 40 byte frames, the TURN server is able to
serve barely a single TURN client. Already with two clients, the drop rate is higher than
0.4. Moreover, the average end-to-end packet delay is 1429 milliseconds and the average
burst of sequentially dropped packets is 15.0. Even when testing data relaying with two
clients transmitting 100 bytes of data every 150 ms, the drop rate grew to 0.26.

Using the audio codec G.723.1 with 40 byte frames, we measured the CPU load and mem-
ory consumption on the TURN server. Figures 4.9 and 4.10 show the results of the mea-
surements. The CPU load and the memory consumption were measured by taking a sample
once per second. The average amount of used memory on the 1.049 MB java phone heap
was 765 kilobytes. The average CPU load was 57.8% with a standard deviation of 10.2. 95
percent of the observed CPU loads fell below 73%. This is an unacceptable high load on
a relay. The server received a data message that needed to be relayed approximately once
every 30 ms.

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  25  50  75  100  125  150  175  200  225  250 

Ba
#
er
y 
la
ve
l [
%
] 

Time [min] 

Figure 4.11: Battery consumption of a mobile TURN server caused by data relaying

We measured that a mobile phone relaying data ran out of battery in 4 hours as shown in
Figure 4.11. This is a little longer than the talk time of the phone using UMTS, which is
3.5 hours. During its battery lifetime, the mobile phone received 840 messages that were
simply ignored (keepalives), 420,000 messages that needed to be relayed and 21 messages
that needed to be answered. No keepalives were sent through the server due to the fre-
quent transmission of data messages. The phone received a message over the radio channel
approximately once per 29.9 milliseconds and the average size of a received message was
55.9 bytes. On average, a 3.5 hour call would be rather long, but we wanted to study the
maximum time that a mobile phone can act as a relay for a phone call. Moreover, we can
think that the 3.5 hours call consisted of multiple sequential phone calls of different users.

CHAPTER 4. MEASUREMENTS AND EVALUATION 65

P2P Signaling message Relaying on a TURN Server

One important difference between media and signaling data is that media data is much
more delay-constrained. Moreover, peer-to-peer signaling uses retransmissions if an ac-
knowledgement to a message is not received within a certain time period. However, if the
drop rate of packets is high, it might be that the initial request and its retransmissions get all
dropped, which makes managing the overlay impossible. The test setup stays the same as in
previous measurements, except that this time signaling data is being transmitted along the
relayed path. We assumed to have a 10000-peer overlay, where every node sends on aver-
age 819 bytes of overlay maintenance data every 2.65 seconds [30]. All of the maintenance
data of a peer is signaled using the same allocation, since we assumed that the peer-to-peer
signaling data to different peers is multiplexed using the same port.

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0  2  4  6  8  10  12  14  16  18 

D
ro
p 
ra
te
 

Number of clients 

Figure 4.12: Drop rate with different number of clients

The purpose of the first measurement is to find out the maximum number of TURN clients
that can send and receive peer-to-peer signaling data through a mobile phone acting as
a TURN server with an acceptable drop rate. The Figure 4.12 shows the drop rate as a
function of the number of clients. The drop rate was examined over 15 minute period and
the measurement was repeated three times for each number of clients. As the figure shows,
the TURN server was able to handle the signaling data connections of a maximum of 10
clients. Already with 11 clients the drop rate almost doubled compared to 10 clients.

With 10 clients the average time between incoming signaling messages on the server was
approximately 133 milliseconds. This means that the average bandwidth consumption of
10 clients’ signaling messages during the measurement period was 49.45 kbit/s for both the

CHAPTER 4. MEASUREMENTS AND EVALUATION 66

0 

5 

10 

15 

20 

25 

0  600  1200  1800  2400  3000  3600 

CP
U
 lo
ad

 [%
] 

Time [s] 

Figure 4.13: CPU load of a TURN server caused by signaling data relaying

up- and the downlink, and the dropping rate was 0.095. In the measurement, the clients did
not perform any retransmissions even if packets were dropped. With retransmissions there
would have been even more traffic.

Let us examine the CPU load, as well as memory and battery consumption that is caused by
the signaling data of one client and its peer. The CPU load and the memory consumption
were measured by taking a sample once per second for a duration of one hour. The battery
consumption was again measured by recording the time it took for the mobile phone to run
out of battery.

0 

200 

400 

600 

800 

1000 

1200 

0  600  1200  1800  2400  3000  3600 

M
em

or
y 
[k
B]
 

Time [s] 

Figure 4.14: Memory consumption of a TURN server caused by signaling data relaying

CHAPTER 4. MEASUREMENTS AND EVALUATION 67

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  50  100  150  200  250  300 

Ba
#
er
y 
le
ve
l [
%
] 

Time [min] 

Figure 4.15: Battery consumption of a TURN server caused by signaling data relaying

During the one hour measurement the average CPU load was 1.71% with a standard devi-
ation of 1.26. The CPU load of the phone is shown in Figure 4.13. We can calculate that
95 percent of the observed CPU load values fall below 3%. The average memory consump-
tion on the TURN server was 772 kilobytes as depicted in Figure 4.14. The size of the
Java heap varied between 490 kilobytes and 1.048 megabytes. As shown in Figure 4.15 the
battery was drained in 4 hours 32 minutes. During its battery lifetime, the mobile phone
received 1088 messages that were simply ignored (keepalives), 12317 signaling messages
that needed to be relayed and 27 messages that needed to be answered. This means that the
phone received a message over the radio channel approximately once per 1.22 seconds and
the average size of a received message was 767.4 bytes.

Table 4.7: TURN server with different number of clients (signaling data)

CPU load Memory consumption
of clients Average σ 95th percentile Average Min Max

1 1.71% 1.26 3% 772 kB 490 kB 1.048 MB

5 8.8% 3.66 15% 801 kB 547 kB 1.048 MB

10 17.32% 5.37 26% 833 kB 608 kB 1.048 MB

Table 4.7 shows the results of the CPU load and memory consumption for scenarios in
which 1, 5, or 10 clients are relaying signaling data with their peers via the TURN server.
As expected, the CPU load and the memory consumption grow as the number of clients
grows.

CHAPTER 4. MEASUREMENTS AND EVALUATION 68

4.4.2 Mobile Phone as a STUN Server

We measured the CPU load and memory consumption on a STUN server as it served dif-
ferent number of STUN clients. Additionally, the battery consumption of a STUN server
with one STUN client was measured. The STUN server measurements were conducted
similarly as the TURN server measurements. We had a STUN client and its peer that estab-
lished a connection using ICE. In our measurements the Sony Ericsson phone model C905
was used to run the STUN server prototype and the PC Dell Latitude D610 ran the STUN
client prototype. In these experiments, the clients did not need a relay.

Impact of Keepalives on a STUN Server

The measurements excluding the battery measurement were started as soon as the ICE
checks had finished. Information on the CPU and memory usage was collected once per sec-
ond. Since the STUN server does not perform relaying, once the checks have finished, the
STUN server simply keeps on receiving keepalives. All other data, whether it is keepalive,
voice or signaling, is transmitted directly between the client and its peer.

Table 4.8 shows the CPU load and memory consumption on a STUN server having different
number of clients. As can be expected, the CPU load increases as the number of clients
grows. The increase is more notable with a small number of clients; the increase from one
client to 10 clients causes a 4.12 percentage unit increase, whereas the increase from 20
clients to 30 clients causes only a 0.04 percentage unit increase. The memory consumption
is the same irrespective of the number of clients because the server does not maintain any
state information for a client. Additionally, if we compare the table to the Table 4.6, which

Table 4.8: STUN server with different number of clients (keepalives)

CPU load Memory consumption
of clients Average σ 95th percentile Average Min Max

1 1.91% 1.93 7% 787 kB 486 kB 1.045 MB

5 3.77% 3.56 11% 767 kB 489 B 1.046 MB

10 6.03% 4.56 13% 766 kB 490 B 1.048 MB

20 10.32% 4.55 18% 767 kB 488 B 1.045 MB

30 10.36% 4.25 19% 765 kB 492 B 1.044 MB

CHAPTER 4. MEASUREMENTS AND EVALUATION 69

0 

2 

4 

6 

8 

10 

12 

14 

16 

0  600  1200  1800  2400  3000  3600 

CP
U
 lo
ad

 [%
] 

Time [s] 

Figure 4.16: CPU load of a STUN server caused by keepalives

shows the corresponding results on a TURN server, we can notice that the CPU load of
a STUN server caused by STUN clients is lower than the CPU load caused by the same
number of clients on a TURN server (assuming that the clients relay packets through the
server). A STUN server with 30 STUN clients has an average CPU load of 10.4%, whereas
a TURN server with 10 TURN clients has an average CPU load of 14.2%.

The level of the CPU load and the amounts of used Java memory caused by one client on
a STUN server were collected once per second, and are shown in Figures 4.16 and 4.17,
respectively. During the one hour measurement, the server received 240 keepalives. As

0 

200 

400 

600 

800 

1000 

1200 

0  600  1200  1800  2400  3000  3600 

M
em

or
y 
[k
B]
 

Time [s] 

Figure 4.17: Memory consumption of a STUN server caused by keepalives

CHAPTER 4. MEASUREMENTS AND EVALUATION 70

depicted in Figure 4.18, it took 9 hours and 10 minutes for the mobile phone acting as a
STUN server to run out of battery. All the received messages were of the same size, that is
20 bytes, and a message was received every 15 seconds. The corresponding battery duration
of a TURN server was slightly shorter, that is 8 hours and 58 minutes.

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  100  200  300  400  500  600 

Ba
#
er
y 
le
ve
l [
%
] 

Time [min] 

Figure 4.18: Battery consumption of a STUN server caused by keepalives

4.4.3 Mobile Phone as a STUN or TURN Client

In this section we will show the measurements that were performed in order to assess the
capabilities of a mobile phone to act as a STUN or TURN client. Our purpose is in de-
termining the impact of keepalives and signaling data on a STUN or TURN server. In our
measurements, we assume that the client using a TURN server ends up using a relayed path
after the ICE connectivity checks. Hereby, the difference between being a STUN or TURN
client, in addition to sending Refresh requests, is that the messages that the client sends to
or receives from the peer are encapsulated (when using a relay). Encapsulation requires
more processing of the sent and received packets, and additionally produces overhead. The
test setup is such that the Sony Ericsson phone model C905 was used to act as a STUN or
TURN client, the server side functionality was run on a Planetlab machine located in the
Helsinki region, and the PC Dell Latitude D610 acted as the client’s peer.

CHAPTER 4. MEASUREMENTS AND EVALUATION 71

Impact of Keepalives on a STUN or TURN client

We will examine the impact of keepalives on STUN and TURN clients when the client
is sending keepalives to its peer and its respective server, and receiving keepalives from
its peer. During an one hour measurement, information on the CPU load and memory
consumption was collected once per second. The average CPU load of a STUN client (see
Figure 4.19) is 2.94% with a standard deviation of 3.27. This is only a bit lower than the
average CPU load of a TURN client (see Figure 4.20), which is 3.01% with a standard
deviation of 3.26. For both STUN and TURN clients, the 95th percentile CPU load is 11%.

0 

5 

10 

15 

20 

25 

30 

0  600  1200  1800  2400  3000  3600 

CP
U
 lo
ad

 [%
] 

Time [s] 

Figure 4.19: CPU load of a STUN client
caused by keepalives

0 

5 

10 

15 

20 

25 

30 

0  600  1200  1800  2400  3000  3600 

CP
U
 lo
ad

 [%
] 

Time [s] 

Figure 4.20: CPU load of a TURN client
caused by keepalives

The average memory consumption is 768 kilobytes for the STUN client and 774 kilobytes
for the TURN client. The memory consumption of STUN and TURN clients are shown
in Figures 4.21 and 4.22, respectively. When looking at the figures, we can notice that the
differences in being a STUN or TURN server with one connection and no data traffic is
very subtle. So, we additionally tested the impact of signaling data on a STUN or TURN
client. In the signaling measurements, the test setup stayed the same, except that this time,
after the ICE connectivity checks the client and its peer transmitted signaling data over
the created connection. Due to the increased transmission rate between the client and its
peer, no keepalives were sent between them following the rules of ICE. So keepalives were
sent only between the client and the server. Even with signaling, there was only a small
difference in the CPU load. The results of a mobile phone acting as a STUN or TURN client
with signaling data considering the CPU load and the memory consumption are shown in
Table 4.9. On the other hand, there is a slight difference when a STUN or TURN client is
sending and receiving keepalives or signaling data. However, this difference could be also
explained by the fact that a little more code is included in the program with signaling data
and the extra memory required by the variables when running the code.

CHAPTER 4. MEASUREMENTS AND EVALUATION 72

0 

200 

400 

600 

800 

1000 

1200 

0  600  1200  1800  2400  3000  3600 

M
em

or
y 
[k
B]
 

Time [s] 

Figure 4.21: Memory consumption of a
STUN client caused by keepalives

0 

200 

400 

600 

800 

1000 

1200 

0  600  1200  1800  2400  3000  3600 

M
em

or
y 
[k
B]
 

Time [s] 

Figure 4.22: Memory consumption of a
TURN client caused by keepalives

A STUN client sending only keepalives to the server and its peer, and receiving keepalives
from its peer drains the battery in 9 hours 22 minutes (see Figure 4.23). For a TURN client
the battery lasts 9 hours and 23 minutes (see Figure 4.24). During the measurement, the
bandwidth consumption by both a STUN and TURN client is very low: the STUN client
uses a 21.33 bit/s uplink bandwidth and a 10.67 bit/s downlink bandwidth, whereas the
TURN client uses a 38.77 bit/s uplink bandwidth and a 28.11 bit/s downlink bandwidth.
The uplink bandwidth is higher in consequence of the keepalives (Binding indications)
sent to the server. The difference in bandwidth required by a STUN and TURN client for
keepalives ensues from the difference in the packet sizes, not so much the transmission
interval. The message transmission interval of a STUN client is 7.50 seconds and the av-
erage reception interval is 15 seconds. For the TURN client the intervals are 7.41 seconds
and 14.63 seconds, respectively. The average message size for a STUN client sending and
receiving keepalives is 20 bytes. For a TURN client the average message size is due to
encapsulation 35.9 on the uplink and 51.4 bytes on the downlink.

We measured the battery consumption of a mobile phone acting as a STUN and TURN
client sending and receiving signaling data for an one hour period. The battery charge

Table 4.9: STUN and TURN client with signaling data

CPU load Memory consumption
of clients Average σ 95th percentile Average Min Max

STUN 0.88% 0.92 2% 780 kB 512 kB 1.048 MB

TURN 1.02% 1.31 3% 780 kB 509 kB 1.048 MB

CHAPTER 4. MEASUREMENTS AND EVALUATION 73

dropped from 100% to 78% in both cases. This similar to the result in [31] where battery
charge dropped from 99% to 79% during an hour, and the small difference could be ex-
plained by the fact that keepalives were not considered. But from [31] we can use the total
battery duration time for signaling data to be 4 hours and 50 minutes (for both STUN and
TURN client). The respective battery charge drop in one hour with keepalives only was
from 100% to 89% for the STUN client and from 100% to 88% for the TURN client.

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  100  200  300  400  500  600 

Ba
#
er
y 
le
ve
l [
%
] 

Time [min] 

Figure 4.23: Battery consumption of a
STUN client caused by keepalives

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

0  100  200  300  400  500  600 

Ba
#
er
y 
le
ve
l [
%
] 

Time [min] 

Figure 4.24: Battery consumption of a
TURN client caused by keepalives

4.4.4 Mobile phone as P2PSIP peer

In the previous measurements, we examined the impact that keepalives, signaling, or data
transmissions have on a mobile phone acting as a STUN or TURN client or server. Since the
phone was not actually part of a P2PSIP overlay, it was easier to detect the effects that, for
example, keepalives have on a STUN or TURN client or server. However, we next wanted
to know the limits of a mobile phone acting as a STUN or TURN server, and at the same
time acting as a peer in a P2PSIP overlay. To be able to act as a TURN server, the peer itself
had to be publicly reachable. We used a publicly reachable peer also as the STUN server.

Table 4.10: Maximum numbers of STUN and TURN clients

Description Maximum # of clients Drop rate

TURN server with keepalives 14 -

TURN server with signaling 9 0.10

TURN server with voice data 0 -

STUN server with keepalives 1018 -

CHAPTER 4. MEASUREMENTS AND EVALUATION 74

In these measurements, we were only interested in the maximum number of clients that
a STUN or TURN server can serve when simultaneously sending and receiving its own
overlay maintenance data. The maximum number of clients was determined solely based
on drop rates. Table 4.10 summarizes the results by showing the maximum number of
clients a STUN or TURN server is capable of serving and drop rate on that number of
clients.

The test setups were exactly the same as in the previous corresponding measurements, ex-
cept that this time STUN or TURN server exchanged overlay maintenance data with a
Planetlab [40] node. The test setup in this measurement was very simplistic: all the signal-
ing data was actually sent and received from a single node and received from a single node,
no retransmissions were sent even if a packet was lost, and there was no handling of the re-
ceived or sent packets (cryptographic operations, verification of certificates and signatures,
and generation of signatures [30]).

The measurement started by finding an estimate for the maximum number of clients. The
actual test cases covered measuring the drop rates with different numbers of clients close
to the estimate. Each of the test cases was measured 3 times and the duration of a single
measurement was 15 minutes. When examining a STUN or TURN server with clients
sending keepalives, we did not actually measure the drop rates, but simply the fact whether
a given number of clients were able to receive a Binding or Allocation request, and in case
of TURN server, whether the clients were able to refresh their allocation. The STUN and
TURN clients connected a server with a time interval of 3 seconds.

The results match well with the results from the previous measurements. A P2PSIP peer
that acts as a TURN server was not able to relay even a single voice data connection. With
one voice data connection the drop rate already grew to 0.15. The TURN server was able to
relay one connection less than in the previous measurements, that is 9 connections, since it
sent and received its own overlay maintenance data. With only keepalives, a TURN server
was able to keep up connections of 14 clients (all need relaying). The corresponding number
of clients for a STUN server is 1018. The reason for such a high number of clients a STUN
server is capable of serving is that the server only has to reply to Binding requests received
every 3 seconds, otherwise it can just ignore all the received messages. Besides, all the
messages (except its own signaling data) are received over a single socket that is handled
by a single thread. The traffic model that a mobile phone supports seems to be better suited
for receiving than sending messages. With 1018 STUN clients, the STUN server receives
Binding indications every 14.7 milliseconds. Moreover, hardly any retransmissions are
required for the sent Binding requests.

CHAPTER 4. MEASUREMENTS AND EVALUATION 75

4.4.5 Impact of NAT Traversal on Delays in P2PSIP

This measurement was performed in order to determine the delays that come with call setup
in a P2PSIP overlay. Our main interest is in establishing a call between two mobile nodes
acting as P2PSIP clients in a 500-peer overlay running in Planetlab. However, to be able
to determine how much of the delay depends on the fact that the clients were implemented
on wireless nodes the same measurements were done also for wired endpoints. In the
measurements, we consider the call setup delay to be the time between initiating the call
and finishing ICE connectivity checks for RTP. We examined four different scenarios for
both wireless and wired clients:

1. No ICE: client nodes are publicly reachable and do not use ICE.

2. No NATs: client nodes are publicly reachable and use ICE.

3. Good NATs: client nodes are behind good NATs.

4. Bad NATs: client nodes are behind bad NATs.

Our focus was not so much on knowing the exact types of the NATs used between the
P2PSIP clients, but rather on the effect that a combination of NATs has on the path selected
by ICE. Generally, relaying is needed if at least one of the peers is behind a NAT that
uses address and port-dependent mapping and filtering, and neither of the peers is behind
an endpoint-independent mapping and filtering NAT (or directly connected to the public
network). This is why we refer to NATs using endpoint-independent mapping and filtering
as good NATs, whereas bad NATs use address and port-dependent mapping and filtering.

For each of the test scenarios a call was setup 50 times. The average call setup delay and the
95th percentile are shown in Figure 4.25. The line segments on top of the bars represent the
confidence intervals. By using a 95% confidence level we can estimate the reliability of the
results. Based on that we can determine that the differences in the results between different
test cases are statistically significant. From the same figure, we can clearly see that when
using the same test scenarios the average delays for the wired are lower than for the mobile.

For both, mobile and wired call setup tests, the use of bad NATs resulted in the highest
delay. The lowest delay was achieved by running the test without using ICE. For the mobile
tests, when the nodes were behind bad NATs the average delay was 33.5 seconds. When
the nodes were behind good NATs the delay was 17.8 seconds, when the nodes were not
behind NATs but ICE was used the delay was 13.6 seconds. Without ICE the delay was

CHAPTER 4. MEASUREMENTS AND EVALUATION 76

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	
D
el
ay
	 [m

s]
	

Average	

95th	 percen4le	

Figure 4.25: Call setup delays

4.2 seconds. The respective delays for the wired tests were 26.8 seconds, 8.0 seconds, 6.0
seconds and 1.5 seconds. The biggest difference in the delay between the mobile and wired
setups was in the case where the nodes are behind good NATs, that is, 9.8 seconds. The
smallest difference in the delay between the mobile and wired setups on the other hand was
2.7 seconds in the case where ICE was not used. The impact of enabling ICE in a case
where the nodes are publicly reachable is substantial on the delay, in the mobile case the
delay increases by a factor of 3.2 and in the wired case by a factor of 2.8. When looking at
the delays of the wired setups in Figure 4.25, we can notice that the delay of the bad NAT
case is notably long compared to the other wired cases. For the bad NAT scenarios the 95th
percentiles are as high as 40.1 seconds for the mobile and 35.0 seconds for the wired. For
the mobile scenario with the lowest delay when ICE is used (i.e., “no NAT” scenario) the
95th percentile is 19.9 seconds and for the corresponding wired scenario 10.6 seconds.

As described in Section 3.4.3 the justification for the chosen stopping criterion of the ICE
connectivity checks is partly based on the ITU recommendations. ITU E.721 recommen-
dation [53] states that the target values for mean delay for local, toll, and international
connections should be 3.0, 5.0, and 8.0 seconds. Moreover, it recommends the 95th per-
centiles to be 6.0, 8.0, and 11.0 seconds, respectively. Regarding our measurements we are
interested in the delays for the international calls. For the mobile scenarios with ICE, the

CHAPTER 4. MEASUREMENTS AND EVALUATION 77

Lookup
ICE candidates for SIP
Connect
ICE checks for SIP
ICE candidates for media
INVITE
ICE checks for media

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

40000 

Bad NATs  Good NATs  No NATs  No ICE 

D
el
ay
 [m

s]
 

ICE checks for media 

INVITE 

ICE candidates for media 

ICE checks for SIP 

Connect 

ICE candidates for SIP 

Lookup 

Figure 4.26: Components of call setup delay for mobile P2PSIP clients

delays never fall within the acceptable limits, since the lowest average delay is 13.7 sec-
onds and the lowest 95th percentile delay is 19.9 seconds. For the wired scenarios using
ICE, only the delays for the “bad NAT” scenario are clearly unacceptable. We use the word
’clearly’, since the mean delay for the “good NAT” scenario was 8.0 seconds and the 95th
percentile was slightly over the recommendation, that is, 11.2 seconds.

Figures 4.26 and 4.27 show the components of call setup delay for the different test cases.
In cases where ICE is used, the delay is composed of a P2PP lookup for locating the other
peer, ICE candidate gathering for SIP, a Connect transaction for exchanging the candidates,
performing the ICE connectivity checks for SIP, gathering the candidates for media, ex-
changing the candidates in a SIP INVITE transaction, and performing ICE connectivity
checks for the media. In the no ICE scenarios the delay is composed of only the Lookup
and the INVITE transactions.

Figure 4.26 shows the components of call setup delay for the mobile cases. As shown in
the figure for the cases using ICE, the delays for the Connect and INVITE transactions are
higher than for the P2PP lookup. This is because the Connect and INVITE transactions
include the candidate gathering at the called party. Moreover, the delay of the INVITE
transaction is lower than the delay of the Connect transaction, since the INVITE is sent
using the direct connection created for SIP, whereas the Connect message is forwarded over

CHAPTER 4. MEASUREMENTS AND EVALUATION 78

Lookup
ICE candidates for SIP
Connect
ICE checks for SIP
ICE candidates for media
INVITE
ICE checks for media

0 

5000 

10000 

15000 

20000 

25000 

30000 

Bad NATs  Good NATs  No NATs  No ICE 

D
el
ay
 [m

s]
 

ICE checks for media 

INVITE 

ICE candidates for media 

ICE checks for SIP 

Connect 

ICE candidates for SIP 

Lookup 

Figure 4.27: Components of call setup delay for wired P2PSIP clients

several hops in the overlay. As depicted in the Figure 4.27, the situation is not the same
for wired cases using ICE, since the delay of the INVITE transaction is lower than either
of the P2PP lookup or the Connect transaction. Also, in the wired no ICE case the delay of
the P2PP lookup is higher than for the INVITE transaction, which makes sense, since no
candidates are gathered at the called party and a direct connection is used for the INVITE
message. One possible explanation why this is not the case in the mobile “no ICE” scenario
could be that INVITE is much larger (number of bytes) than lookup. Moreover, the overlay
is quite small and the non-wireless hops are fast. Lookup is also not terminated by a mobile
phone. The delay of the INVITE transaction is the highest in scenario of bad NATs (both
mobile and wired), since the message is relayed via a TURN server, and relaying naturally
induces extra delay.

These results make it also possible to examine the average time it takes to create a new
P2PSIP connection. The average setup delays of a P2PP or SIP connection is the sum
of delays of lookup, ICE candidate gathering, Connect transaction, and ICE connectivity
checks. For mobile P2PSIP, the delays are 1.7s, 9.7s, 13.1s and 18.9s in the “no ICE”,
“no NATs”, “good NATs”, and “bad NATs” scenarios, respectively. For wired P2PSIP the
corresponding delays are 1.2s, 5.0s, 5.6s, and 15.6s. In the P2PSIP connection setup delay,
the difference between between “no ICE” and “no NAT” scenarios is even more crucial

CHAPTER 4. MEASUREMENTS AND EVALUATION 79

compared to the P2PSIP call setup delays: in the mobile case the delay is 5.8-fold and in
the wired case 4.1-fold, when ICE is used.

From the Figures 4.26 and 4.27 we can additionally see that the duration of the ICE con-
nectivity checks is always shorter for the media than for SIP. As an example, in the mobile
“good NATs” scenario it takes 1.39 times longer for the ICE checks to finish for SIP than
for the media. This is because of the different pacing of the ICE connectivity checks for
SIP and RTP. The transmission rate of media determines the transmission rate of RTP, that
is, every 20 milliseconds in our case. For SIP we used the default value of 500 milliseconds
given by the ICE specification. A faster pacing would make it possible to finish checks
earlier. However, a lower default value is defined by the ICE specification due to possible
bandwidth limitations.

Finally, let us look at the delays caused solely by the ICE connectivity checks in view of the
stopping criterion. As we know, the time before meeting the stopping criterion is not the
same as delay of the ICE checks. The delay of the ICE connectivity checks is the total of
meeting the stopping criterion and nominating the selected pair. The delay for nominating
the pair is at minimum the RTT (Round-Trip Time) between the peers. This means that the
minimum delay for the ICE checks of the “no NATs” scenarios should be ∗RTT , since
the highest priority candidate pair gets nominated as soon as it succeeds. Moreover, for the
“good NATs” and “bad NATs” scenarios the minimum delays should be 2 seconds + RTT
and 10 seconds + RTT, respectively. Depending on the mutual timing of the checks, the
pacing of the checks and/or possible packet losses it can be that the minimum delay is not
attained. All other cases, except the mobile “good NATs” cases, follow the minimum delays
with a reasonable additional delay (33-309 milliseconds), when taking an approximation for
the RTT from the “no NATs” case (i.e., “no NATs” ICE check delay / 2). The difference
between the minimum delay and the actual delay for the mobile “good NATs” scenario is
1893 milliseconds for SIP and 767 milliseconds for RTP. Based on this it seems that in the
mobile “good NATs” scenario the ICE checks have not yet generated a valid pair for SIP or
media when the 2 seconds deadline is met.

Number of ICE Messages

Figures 4.28 and 4.29 show the number of STUN messages sent by the caller during differ-
ent ICE phases of the call setup. The message count includes also the retransmissions of
the messages. The bars also show the confidence intervals for both, requests and retrans-
missions, when using a 95% confidence level. Let us first discuss the candidate gathering

CHAPTER 4. MEASUREMENTS AND EVALUATION 80

phases of a call setup. The progression of the candidate gathering phase is the same regard-
less of the NAT scenario, since it is a simple client-server transaction. Additionally, since
we are only using one TURN server during the candidate gathering, it does not either make
a difference regarding whether the candidates are gathered for SIP or RTP. If there were
multiple servers, the pacing between the candidate gathering would be different for SIP and
RTP. This would not really affect the number of messages sent to a server but rather the the
duration of the gathering. By looking at the figures, we can notice that retransmissions to
the TURN server are much more likely to be needed for the mobile than for the wired test
scenarios. The difference in retransmissions between mobile and wired is especially clear
in the “no NAT” scenario.

Messages
Retransmissions

Messages
Retransmissions

Messages
Retransmissions

Messages
Retransmissions

Messages
Retransmissions

Messages
Retransmissions

Mobile bad NATs
Mobile good NATs
Mobile no NATs
Wired bad NATs
Wired good NATs
Wired no NATs

Requests
Retransmissions

Requests
Retransmissions

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

Ca
nd

id
at
es
 fo

r 
SI
P 

Ch
ec
ks
 fo

r 
SI
P 

Ca
nd

id
at
es
 fo

r 
m
ed

ia
 

Ch
ec
ks
 fo

r 
m
ed

ia
 

Ca
nd

id
at
es
 fo

r 
SI
P 

Ch
ec
ks
 fo

r 
SI
P 

Ca
nd

id
at
es
 fo

r 
m
ed

ia
 

Ch
ec
ks
 fo

r 
m
ed

ia
 

Ca
nd

id
at
es
 fo

r 
SI
P 

Ch
ec
ks
 fo

r 
SI
P 

Ca
nd

id
at
es
 fo

r 
m
ed

ia
 

Ch
ec
ks
 fo

r 
m
ed

ia
 

Mobile no NATs  Mobile good NATs  Mobile bad NATs 

N
um

be
r 
of
 m

es
sa
ge
s 

Retransmissions 

Requests 

Figure 4.28: Number of STUN messages sent during call setup by a mobile P2PSIP client

As mentioned in the above section, the faster pacing of the checks for media allows the
checks to finish earlier. However, when comparing the message counts of the checks for
SIP and RTP, we can perceive that this is done at the cost of more messages sent. Especially
clear this is in the wired “good NAT” case where the checks for RTP require on the average
5.67 messages more than the checks for SIP. Even for the wired “no NAT” case the amount
of transmitted messages more than doubles. Yet, since the wired “no NAT” scenario has the
lowest delay, it still only sends on average 4.83 messages during the checks for media.

CHAPTER 4. MEASUREMENTS AND EVALUATION 81

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

Ca
nd

id
at
es
 fo

r 
SI
P 

Ch
ec
ks
 fo

r 
SI
P 

Ca
nd

id
at
es
 fo

r 
m
ed

ia
 

Ch
ec
ks
 fo

r 
m
ed

ia
 

Ca
nd

id
at
es
 fo

r 
SI
P 

Ch
ec
ks
 fo

r 
SI
P 

Ca
nd

id
at
es
 fo

r 
m
ed

ia
 

Ch
ec
ks
 fo

r 
m
ed

ia
 

Ca
nd

id
at
es
 fo

r 
SI
P 

Ch
ec
ks
 fo

r 
SI
P 

Ca
nd

id
at
es
 fo

r 
m
ed

ia
 

Ch
ec
ks
 fo

r 
m
ed

ia
 

Wired no NATs  Wired good NATs  Wired bad NATs 

N
um

be
r 
of
 m

es
sa
ge
s 

Retransmissions 

Requests 

Figure 4.29: Number of STUN messages sent during call setup by a wired P2PSIP client

The amount of the all the messages sent during an ICE connectivity check is almost equal
in the mobile “good NAT” and “bad NAT” scenarios, for both SIP and RTP. The difference
between the respective wired ICE checks is much more noticeable. The highest number of
messages sent during connectivity checks were in the case of mobile “bad NAT”, that is,
17.45 messages on average. In general, the number of sent messages was higher for the
mobile than for the equivalent wired scenarios.

During the checks for media in the “good NAT” scenario and during both of the checks
in the “bad NAT” scenario, more requests get transmitted in the wired scenario. This is
most likely due to the mutual timing that the peers perform their checks in the wired case:
more request transactions get restarted due to the triggering of checks. Moreover, in the
wired case more requests get transmitted in the wired “good NAT” than in the “bad NAT”
scenario. The same reason applies for this: there are more request transactions to restart
due to more working pairs with good NATs.

CHAPTER 4. MEASUREMENTS AND EVALUATION 82

4.5 Measurement Analysis

This section makes some further analysis based on the measurement results presented
above. The analysis of the results of mobile phone as a STUN or TURN server, and mobile
phone as a STUN or TURN client is made from the point of view of battery consumption,
CPU load, memory consumption, and drop rate. Finally, the impact of NAT traversal on
delays in P2PSIP is analyzed separately from the other results.

4.5.1 Battery consumption

As we are to assume, the battery consumption results are correlated with the bandwidth con-
sumption, as well as the transmission interval. The relation between the battery consump-
tion and the bandwidth consumption is shown in Figure 4.30, and the relation between the
battery consumption and the transmission interval is shown in Figure 4.31. With the band-
width, we mean the combined bandwidth usage of the uplink and downlink directions, and
with the transmission interval, we mean the average time between receiving or sending of
a message. The figures sum up the battery consumption measurement results for one client
connection presented under the results earlier. For example, the “TURN server signaling”
scenario means the battery consumption is measured on a mobile TURN server that re-
lays signaling data of one client, whereas the “TURN server keepalives” scenario means
that only keepalives of one client (between the client and its peer) are relayed. The “TURN
client keepalives” scenario then again measures the battery consumption of a mobile TURN

TURN server keepalives
TURN server signaling
TURN server voice data
TURN client keepalives
STUN server keepalives
STUN client keepalives

TURN server keepalives
TURN server signaling
TURN server voice data
TURN client keepalives
STUN server keepalives
STUN client keepalives

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 

0 

100 

200 

300 

400 

500 

600 

Ba
nd

w
id
th
 [b

it
/s
] 

Ba
/
er
y 
du

ra
4
on

 [m
in
] 

Ba+ery dura1on 

Bandwidth 

Figure 4.30: Battery duration and bandwidth

CHAPTER 4. MEASUREMENTS AND EVALUATION 83

client that exchanges keepalives with its peer through a TURN server. We will first take a
look at the results of a mobile phone acting as a STUN or TURN client. When the impact
of keepalives only was observed, the battery duration was at a relatively acceptable level
considering that messages were sent regularly over a radio channel. However, it is worth
noticing that the consumed bandwidth was very low, that is, 32 bit/s on the STUN client
and 66.9 bit/s on the TURN client.

If we consider that a peer implementing the ICE functionality is behind a NAT and part
of a P2PSIP overlay, it also has to exchange signaling messages with its peers. We can
assume that in such a case the battery duration is less than 5 hours. Naturally, the battery
consumption can be even higher depending on the type of data being exchanged between
the client and its peers over the connection created using ICE.

0 

2 

4 

6 

8 

10 

12 

14 

16 

0 

100 

200 

300 

400 

500 

600 

Tr
an

sm
is
si
on

 in
te
rv
al
 [s
] 

Ba
1
er
y 
du

ra
5
on

 [m
in
] 

Ba,ery dura2on 

Transmission interval 

Figure 4.31: Battery duration and transmission interval

The mobile phones are by default much more suitable to work as STUN servers rather than
TURN servers. This is because TURN servers implement all the same functionality as
STUN servers, and additionally they take care of relaying messages between the client and
its peer. A STUN server simply has to respond to incoming requests and ignore received
indications. Yet, the difference of being a STUN or TURN server for one client is very
subtle if only keepalives are being transmitted, even if the TURN server is relaying the
keepalives of the client and its peer.

Next, let us consider a case where a publicly reachable peer is part of a P2PSIP overlay and
is capable of working as a STUN and TURN server. The impact of the peer’s own overlay
maintenance signaling drains the battery so fast that the battery consumption that a few

CHAPTER 4. MEASUREMENTS AND EVALUATION 84

STUN or TURN clients’ keepalives cause on the peer is very little. Of course, the situation
changes if the number of clients grows, or if some type of data is being relayed in addition
to keepalives.

In a 3G Wideband Code Division Multiple Access (WCDMA) network, there are three dif-
ferent Radio Resource Control (RRC) states to match the power consumption level to the
required traffic level [23]. For the highest power consumption state the typical power con-
sumption is 200-400 mA [25]. According to [23], when there is not much data to transmit
the battery consumption roughly halves. In the lowest connected state, where the phone
can be paged but cannot transmit data, only 1-2 percent of the highest state’s power is con-
sumed. In our measurements, the mobile phone acting as a STUN or TURN client sending
keepalives, or as a STUN or TURN server relaying keepalives from a single client con-
sumed on average 99-104 mA knowing the phone’s battery capacity to be 930 mAh. For
a TURN server relaying overlay maintenance signaling or voice data the average power
consumption was 205-233 mA. STUN client with signaling consumed on average 192 mA.

Based on this, we can conclude that the mobile phone in our keepalive measurements used
mostly the middle RRC state, since it did not send or receive messages that frequently,
whereas the signaling data and voice data utilize mostly the highest RRC state. The fact
that HSDPA was used for the downlink should not make a big difference, as reported in [18]
which measures the difference in power consumption between plain 3G and HSDPA in a
similar setup. Compared to the standby time, which is 350 hours, the mobile phone drains
the battery 37.4 times faster by sending keepalives (STUN client with one connection). In
the case of voice data relaying (TURN server relaying one connection), the mobile phone’s
battery lasts half an hour longer than the talk time is specified to last.

4.5.2 Memory Consumption

Regardless of the measurement scenario, the memory curve follows a sawtooth waveform,
meaning that the memory consumption grows upward and then sharply drops. The wave-
length depends on the transmission or reception rate: the more frequent the transmission
or reception rate, the shorter the wavelength. The used java heap size grows until it nearly
reaches the initially allocated 1049 kilobytes and then drops to a size of 765-783 kilobytes
depending on the test case. The drop is caused by the garbage collector that is run by the
Java Virtual Machine (JVM) after the java memory heap reaches a certain heap size. Objects
that are no longer used are subject to garbage collection. This is done to save memory.

CHAPTER 4. MEASUREMENTS AND EVALUATION 85

Keepalives
Signaling data

720 

740 

760 

780 

800 

820 

840 

1 client  5 clients  10 clients 

A
ve
ra
ge
 m

em
or
y 
co
ns
um

p0
on

 [k
B]
 

Keepalives 

Signaling data 

Figure 4.32: Average memory consumption of a TURN server

As already mentioned under the Section 4.4.3, there is no clear difference in the memory
consumption between a STUN or TURN client with one connection. Next, let us discuss
the memory consumption of STUN and TURN servers. For the STUN server, we could not
notice any correlation between the number of clients and the amount of average memory
used. This makes sense, since the STUN server does not keep any state information for its
clients, it simply either replies to requests or ignores the indications it receives. However,
a TURN server maintains information for each of its allocations, such as the expiry time of
the allocation and the required transport protocol. Additionally, it creates a new thread per
allocation. This means that the average, as well as the minimum used memory increases as
the number of clients grows. Figure 4.32 depicts how the used average memory usage on a
TURN server depends on the number of clients in case of keepalives and signaling.

4.5.3 CPU Load

To help analyzing the results on the CPU load for different test cases we have summarized
the results in the Figures 4.33 and 4.34. The first Figure 4.33 shows the average CPU loads
of STUN and TURN servers with different number of clients when keepalives and signaling
data is being transmitted. As one would expect, the CPU load increases as the number of
clients on the TURN server grows or the number of STUN sessions on a STUN client
grows. One would also assume that the CPU load on a TURN server would be higher with
signaling data due to the more frequent transmissions and bigger packet sizes. However,
this happens only when the number of clients gets high enough, that is at least more than 5

CHAPTER 4. MEASUREMENTS AND EVALUATION 86

TURN server signaling
TURN server keepalives
STUN server keepalives

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

1 client  5 clients  10 clients 

A
ve
ra
ge
 C
PU

 lo
ad

 [%
] 

TURN server signaling 

TURN server keepalives 

STUN server keepalives 

Figure 4.33: Average CPU load of a server with different number of clients

based on the figure. Moreover, the CPU load of a TURN server, with either keepalives or
with signaling, is higher than the CPU load of a STUN server. This makes also sense, since
the TURN server has to take care of relaying (assuming that the relayed path gets chosen).
Even in case of only keepalives relaying is needed for relaying the keepalives between the
client and its peer. However, there is also an exception when the number of clients is one.

Average CPU load
Transmission interval

0 

2 

4 

6 

8 

10 

12 

14 

16 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

Tr
an

sm
is
si
on

 in
te
rv
al
 [s
] 

A
ve
ra
ge
 C
PU

 lo
ad

 [%
] 

Average CPU load 

Transmission interval 

Figure 4.34: Average CPU load of different scenarios with one connection

Let us try to explain this irrational behavior by taking a look at the figure 4.34 that sums
the results for all the scenarios with either a client with a single session or a server relaying
messages of a single client. The figure also shows the average time interval between mes-

CHAPTER 4. MEASUREMENTS AND EVALUATION 87

sages received or sent over the radio air interface for a given scenario. The figure seems
to support the remark on the somewhat illogical behavior, that is, the signaling data causes
consistently a lower CPU load than keepalives. This happens regardless whether it is the
client or the server being observed.

We have presented the different scenarios on the x-axis in an ascendant order based on the
time interval between received and sent messages. It seems that the CPU load decreases
as the transmission and reception interval increases. However, as the average time interval
grows over a certain threshold (around 2 seconds) the CPU load ramps slightly up again
and decreases again from there. It seems that if no packets have been sent or received over
the air interface for a while, the reception of a packet has a bigger impact on the growth
of the CPU load. A possible explanation could be that if a radio channel gets released, the
reallocation of a channel is heavy on the CPU.

For all other scenarios except for the scenario where the TURN server is relaying data, the
CPU load is low, that is, on average 3% or less. If a mobile phone relays a data connection
compared to keepalives only, the CPU load grows 24-fold. To put this into the context
of P2PSIP networks: utilizing 57.8% of the mobile phone’s CPU capacity for relaying
someone else’s voice call is a very high percentage.

4.5.4 Overhead Bandwidth and Drop Rate

Let us discuss the overhead bandwidth caused by relaying via a TURN server by summing
up and analyzing the results of the scenarios where the TURN server was relaying 10 sig-
naling connections or one voice data connection. One should take into account that data
flowed in both directions over a single connection through the relay. Due to the frequent
transmissions in both cases, there is no need to send keepalives between the client and its
peer.

As Table 4.11 shows, 10 signaling connections achieve a much better throughput than one
voice connection with approximately the same drop rate. This is because, in case of a voice
connection, the TURN server receives packets 4.4 times more frequently (“Time between
data packets” in the table). By sending smaller packets the proportion of overhead increases.
By overhead we refer to the additional bytes transmitted due to the encapsulation in a STUN
Send or Data indication. In fact, the proportion of overhead in a voice data packet is as high
as 0.44. We have not taken the overhead of lower layers in the protocol stack, such as UDP
and IP, into account.

CHAPTER 4. MEASUREMENTS AND EVALUATION 88

Table 4.11: Comparison of voice and signaling data relaying

1 x voice data 10 x signaling data

Packet size 40 bytes 819 bytes

STUN overhead of a single packet 32 bytes 32 bytes

Time between data packets 30 ms 133 ms

Drop rate 0.091 0.095

Data bandwidth uplink 10.67 kbit/s 49.45 kbit/s

Data bandwidth downlink 10.67 kbit/s 49.45 kbit/s

Overhead bandwidth uplink 4.27 kbit/s 0.97 kbit/s

Overhead bandwidth downlink 4.27 kbit/s 0.97 kbit/s

We can in general state that to achieve a higher throughput over a relayed connection one
should send bigger packets (not too frequently, though). Of course this applies only up to a
certain upper limit. Actually, the TURN specification defines as a guideline that a maximum
of 500 bytes of application data in a single TURN message should not be exceeded to avoid
IP fragmentation [43]. The signaling data exceeded this value, but since the packet size
worked well for our measurements we did not see a reason for fragmenting the data into
different packets. Moreover, as described in Section 2.3.2, if it is necessary to send large
volumes of data one should use the the channel binding instead of Send and Data indications
to reduce the overhead. In case of a ChannelData message the overhead for a single data
packet would have been 4 bytes.

However, as the Figure 4.8 with small transmission or reception intervals showed, there
are exceptions to the ’bigger the better’ -rule of packet sizes on small transmission inter-
vals. Packets with 40-bytes of application data sent every 60 ms make the packet drop rate
fall below 0.1 whereas for packet sizes of 50 and 60 bytes the drop rate was above 0.1.
This could be related to the way that the air interface allocates radio channel resources.
Since the received capacity in the network is based on statistical traffic models, it might be
that with certain packet sizes and/or transmission rates the phone receives a more reliable
channel than on others. It might also depend on some of the phone’s own radio interface
optimization. Further analysis to explain the behavior is left for future work.

CHAPTER 4. MEASUREMENTS AND EVALUATION 89

4.5.5 Call establishment in P2PSIP

In the measurements where the delays of calls established between nodes acting as clients in
the P2PSIP overlay were studied, we could see that only in the cases where mobile or wired
endpoints were publicly reachable (i.e., “no ICE” and “no NATs” scenarios) the delays
were acceptable. The delays for the mobile P2PSIP clients in the “no ICE”, “no NATs”,
“good NATs”, and “bad NATs” scenarios were 2.7, 2.3, 2.2, and 1.3 times higher than for
the respective wired scenarios. There is no specific component in the mobile call setup that
would cause the delays to be higher. Instead the wireless access network causes all of the
components to be about 1-9 times higher.

The additional delays when communicating over the radio interface might be caused by
the (re)allocation of a dedicated channel, since in a 3G Wideband Code Division Multiple
Access (WCDMA) network a dedicated channel gets released if it has not been used for
several seconds. A dedicated channel enables a maximum throughput and minimum delay.
An other reason could be that since the data amounts sent during the call setup are quite
small, a dedicated channel is not even given to the mobile terminal. In such a case, the
delay comes from sharing a common channel with other terminals. Nonetheless, since
we more or less think about the network that the peers and clients are connected to as a
black box, we have to think of ways how the interworking of peers in the P2PSIP overlay
could reduce the delay. Or additionally, what the caller and callee (either mobile or wired)
themselves could do to reduce the delay. One possible way for making the cost smaller
would be by utilizing a service discovery mechanism that would let a peer or client use
a TURN server geographically close to it. Naturally, given that the load on that closest
server is reasonable. However, this has only a small impact on the candidate gathering
phase. It might also slightly affect the duration of the ICE checks depending on the stopping
criterion and candidates exchanged. First and foremost, it reduces the RTT for media once
the connection is setup. Another optimization would be to use the same pacing of ICE
connectivity checks for SIP as is used for RTP. As our measurement showed, a faster pacing
of the checks reduce the delay for both mobile and wired nodes.

The reason why we have to repeat the ICE negotiation for both SIP and RTP between the
same clients during a single phone call setup is because that is the way P2PSIP specifies it.
Another reason is the possibly non-deterministic behavior of NATs, which basically means
that a NAT can change its behavior due to a conflict. Anyhow, the impact of these optimiza-
tions is somewhat marginal. To more substantially cut off the delay, it would be necessary
to adapt the way how SIP works. First of all, by looking at the components causing the
delay, we can notice that the biggest cause of delay is the combined duration for perform-

CHAPTER 4. MEASUREMENTS AND EVALUATION 90

ing the ICE connectivity checks for SIP and RTP. It would be very tempting to perform
the ICE checks for SIP and RTP in a common ICE check by utilizing the frozen algorithm
optimization provided by ICE when establishing a connection for more than one transport
layer port (i.e., one for SIP and one for RTP in our optimization). A single ICE connectivity
check for two transport layer ports lasts slightly longer than for one transport layer port,
but it would totally remove the delay caused by a second connectivity check. Additionally,
this would mean that the candidates would be gathered during a single candidate gathering
phase rather than two separate, which would further reduce the delay. Of course, this opti-
mization has the drawback that if the SIP INVITE gets rejected (e.g., because the called user
is engaged in another call), we have created the connection for RTP in vain. However, the
optimization breaks the way things are specified, not only by SIP but by ICE and RELOAD
as well. According to SIP [45] the offer/answer model is used to agree the media streams,
codecs, ports, IP addresses, quality of service (QoS), etc. ICE [42] states that the frozen
algorithm should be used when multiple transport layer ports are required for components
of a stream, such as voice and video. Due to the restrictions concerning RELOAD only the
exchange of candidates for a single component ID is supported. However, as presented in
[10] the problem with separate negotiations can be solved by using Host Identity Protocol
(HIP) based overlays, since HIP allows re-using a path created with ICE.

Yet another optimization could be used, if we consider the P2PSIP application to be such
that in addition to making VoIP calls the applications supports other type of features such
as a friend list, showing the presence information of the friends. When the user would start
the application, the application would create a direct SIP connection to all of the friends
currently using the application. Using the SIP connection the user’s terminal would send a
SIP SUBSCRIBE message to the friends to receive their status and possible status updates
later. Since it is most likely that a user making a call would be making it to one of his friends,
he could use the existing SIP connection for sending a SIP INVITE message. Meaning
that the delay for the call setup would be more than halved (including the ICE candidate
gathering for media, SIP INVITE and ICE checks for media).

4.5.6 Generality of the Measurement Results

Since most of our measurements use mobile phones, we are dependent on the prevailing
conditions in the wireless access networks, such as how many clients a base station is cur-
rently serving. Also, we used only one mobile phone model for carrying out the measure-
ments, so we cannot know how much the results are affected by the given phone’s features
or optimizations.

CHAPTER 4. MEASUREMENTS AND EVALUATION 91

In the P2PSIP delay measurements, it is very likely that the Planetlab nodes are more con-
gested than some other nodes in the Internet joining a P2PSIP network would be. This
might have affected the time it took to transmit messages via the overlay, or the number of
retransmissions required. Also, the used stopping criterion has a considerable impact on the
duration of the ICE connectivity checks and the amount of traffic generated, especially in
scenarios were a relayed candidate pair gets selected. By implementing a different stopping
criterion the outcome could have been different.

In the measurements where the performance of a mobile phone acting as a TURN server or
client was tested, the test setup was such that the relayed path always got selected. We did
not test the use of a TURN server without using the relaying servive because in that case we
considered the results to be very similar to the results of using a STUN server. Additionally,
the performance of a mobile phone as a STUN server is likely to be considerable worse if
the keepalives were to be implemented as Binding requests and not as Binding indications
that need no further handling.

Moreover, we should take into consideration the impact that the implementation itself has
on the results. Implementation specific choices, such as the optimality of the chosen algo-
rithms, may reflect on the results.

4.5.7 Measurement Observations

As we mentioned in Section 3.4.2, in J2ME, the address of the sender of a message gets
returned as a host name, if one exists. This already caused problems during the imple-
mentation phase of the ICE prototype; three additional attributes were needed to be im-
plemented. While doing the measurements we could, however, notice that seldom, yet
frequently enough to make things complicated, the IP address gets returned, even if a host
name corresponding to the IP address exists.

There are multiple situations, especially in connection with the TURN prototype, for which
this kind of inconsistent behavior causes problems. For example, the permission of a peer
allowed to send data for a TURN client via the TURN server, is tied to the host name or
IP address of the peer that the TURN client has communicated to the TURN server (in a
PEER-HOST-NAME-ADDRESS or PEER-ADDRESS attribute). So, if a TURN client has
requested a permission for a peer based on its host name, but the TURN server would every
now and then interpret the received messages from the peer based on their IP address, those
messages would simply get dropped at the server. The same applies for the TURN client,
if the TURN server has interpreted the address of the TURN client as a host name as the

CHAPTER 4. MEASUREMENTS AND EVALUATION 92

TURN client made an allocation on the server. Now if the TURN server ever interprets the
address of a Send indication or a Refresh request as an IP address, the server thinks that
it does not have a corresponding allocation and simply drops the received messages. An
allocation is among others identified based on the address and port of the TURN client.

To work around this problem, we implemented a simple DNS server. Our ICE implemen-
tation was able to make reverse DNS queries on the server. The DNS server was actually a
piece of J2SE code that could easily solve the host name corresponding to an IP address by
using the existing J2SE libraries. We used an informal protocol for communication between
our ICE implementation and the simple DNS server. Of course, a DNS query caused addi-
tional delay. But we used a cache (implemented as a hash table) for the already resolved IP
addresses that was maintained for the duration of a program run. We decided to resolve IP
addresses to host names, and not the other way around, since it was clearly more likely that
a mobile phone interpreted an address as a host name than IP address.

4.6 Summary

We used our ICE prototype for determine how well a mobile phone can act as a STUN
or TURN client or server. We examined the performance with keepalives, P2PSIP overlay
maintenance data and voice data, and measured the battery and memory consumption, the
CPU load, and the drop rate. We also measured the call establishment delay in a P2PSIP
overlay for both mobile and wired clients. In order for the P2PSIP prototype to work in
the presence of NATs, it was integrated with the ICE prototype. The P2PSIP and ICE
prototypes are provided in two versions, one for PCs and one for mobile phones.

From the measurements we found out that when a mobile phone acting as a STUN client
sends only keepalives, it drains the battery 37.4 times faster than if it would in a standby
mode. So, the battery consumption is a crucial limit on performance. For all other scenarios,
except for the scenarios with voice data, the CPU load of a single connection (either as a
client or relay) is rather low, that is, on average 3% or less. By sending smaller packets
via a TURN server, the proportion of STUN overhead increases. In fact, the proportion of
STUN overhead in a voice data packet is as high as 44%. However, when a mobile phone
is also acting as a P2PSIP peer it is not able to relay even a single voice data connection.
The TURN server was able to relay up to 9 P2PSIP overlay maintenance data connections
with a drop rate of 0.1.

CHAPTER 4. MEASUREMENTS AND EVALUATION 93

The lowest delay in the P2PSIP call setup measurements was achieved without using ICE.
In the mobile tests, When the nodes were not behind NATs but ICE was used, the delay was
13.6 seconds. Without ICE the delay was 4.2 seconds. When the nodes were behind good
NATs the delay was 17.8 seconds, and when they were behind bad NATs the delay was as
high as 33.5 seconds. The delays for the wired scenarios were on average 2.7-9.8 seconds
less, depending on the scenario.

Chapter 5

Discussion

This Chapter discusses how NAT traversal could actually work in a P2PSIP network that is
run entirely on mobile phones acting as peers. Then we go through some possible future
work that could follow up from the findings of this thesis. Finally, we shortly sum up the
discussion of this chapter.

5.1 NAT Traversal on Mobile P2PSIP Peers

Under this section, we will not draw any definite performance thresholds on the working
of a P2PSIP network that consists entirely of mobile phones. This is because the mobile
phones acting as STUN and TURN clients and servers in most of our measurements were
not actually part of a mobile P2PSIP overlay, and in the P2PSIP delay measurements we
used the mobile phones as P2PSIP clients. Besides, the performance of a P2PSIP network
(without NATs though) has already been examined for instance in [30]. However, we should
be able to make some outlining.

As derived from the baseline measurements on our test mobile phone in Section 4.3, the
upper limit on the number of simultaneous open sockets on the Sony Ericsson phone is 50.
Based on our measurements, this should be more than enough in most cases, since it is
very likely that the performance restricts the number of sockets even before the threshold is
encountered. However, in the context of a low-bandwidth P2PSIP application, such as an
instant messaging and presence application, it could be that a peer behind a NAT would need
to have as many STUN or TURN sessions as it has friends online. That is because the SIP
subscription to each friend’s presence status requires its own ICE established connection.

94

CHAPTER 5. DISCUSSION 95

Even though the mobile phone’s air interface is not really designed to work with VoIP traffic,
it was an interesting measurement to make. It let us better understand the kind of traffic
suitable for a mobile phone acting as a P2PSIP peer with NAT traversal capabilities. We
were especially interested in the different traffic scenarios in the context of a TURN server.
From the point of view of a STUN or TURN client, if we have frequently (transmission
interval < keepalive timer Tr) application data to send, the amount of sent STUN messages
actually decreases, since no keepalives to the peer are required. Moreover, when a mobile
phone uses a relay the overhead of the sent and received messages increases. However, as
shown in our measurements, the transmission interval is more crucial for the performance
than the proportion of the overhead.

As shown by the measurements in [30] the sending and receiving of overlay maintenance
data is especially consuming on the battery. This is something that the mobile users will
also most certainly be aware of. Not to mention the scenarios where a peer in the overlay,
is additionally relaying overlay maintenance data of other peers behind bad NATs. From
this we could reason that if a user is not currently using the application, he or she will
most probably close the P2PSIP application before using it again. This will increase the
amount of joins and leaves to the network compared to a P2PSIP application running on
PCs. Behavior like this will make things problematic for a peer behind a bad NAT, since
its connections are likely to break if a peer acting as its TURN server leaves the network.
Another natural reason for a connection to break is the mobile running out of battery. This
is why it might be sensible to take into account the remaining battery life of a TURN
server already in the server selection phase. Further, since a mobile phone is aware of its
own battery state, a “TURN handover” might be a desirable feature for mobile phones to
implement. However, such handover mechanisms are not specified by TURN. Yet, it could
be realized by modifying the ALTERNATE-SERVER mechanism [44] to be used even after
a connection through a TURN relay has been established.

Moreover, we can assume that the users of mobile phones (with a public address) acting as
TURN servers are not happy about having to relay the connections of others. This kind of
turns the whole issue with NATs being problematic for P2P communications upside down:
users might actually benefit performance-wise from being behind (endpoint-independent
mapping and filtering supporting) NATs, since then they would never have to relay connec-
tions of other peers.

Since we have no information on the existence and proportions of different NAT types in
mobile phone networks, we will have to depend on the results in wired networks. One nice
possibility would be that since the mobile networks have only more recently (compared to

CHAPTER 5. DISCUSSION 96

wired networks) started to have NATed addresses, the NATs would follow the recommen-
dation for NATs more faithfully. The Requirements for Unicast UDP [3] state that a NAT
must have an endpoint-independent mapping behavior. Additionally, it is recommended
that P2P-friendly NATs would use endpoint-independent or address-dependent filtering [3].
However, since we do not know that, we will use the values from Section 2.4 that pre-
sented the existence of different NAT types in wired networks. So, we can consider that the
percentage of publicly reachable peers is 20%. This would mean in a 1000-peer P2PSIP
network that 200 peers would be capable of acting as TURN servers. Moreover, Table 2.6
showed that approximately 6% of peers need relaying, that is, 60 peers in our example net-
work. Each peer is likely to need multiple connections to be relayed. Based on this, in a
P2PSIP network running on mobile phones it is more important than ever to have the cost
of relaying equally distributed among the TURN servers.

Let us next focus on discussing in more detail TURN servers that are run on mobile phones
acting as P2PSIP peers. Firstly, the fact how many clients a TURN server is capable of
serving depends on the type of data relayed through the server. Moreover, the peer acting
as a TURN server can have one or more connections for its own purposes. This naturally
also affects the number of allocations it can have and means that a TURN server needs to
be able to determine when it is no longer able to make more allocations than it already has.
It would be also preferable if the client could tell the bandwidth requirements it has for the
connection that needs to be relayed. Unfortunately, the TURN specification has removed
the BANDWIDTH attribute, which still used to exist in version 7 of the specification. The
same version also included an error code 507 “Insufficient Bandwidth Capacity”, that the
TURN server could have simply used to denote that the TURN server in its current state
cannot fulfill the requested bandwidth requirements. Nonetheless, the specification states
that the removed properties could be easily added back later. To express that the server has
no more relayed transport addresses available at the moment is denoted by an existing error
code 508 “Insufficient Capacity”.

A TURN server without proper security mechanisms is an easy target for a denial of service
attack since an attacker only needs to make a maximum of 49 allocations on a server to make
it unavailable for other clients. This is why it is important to impose limits on the number
of allocations that a client with a given username can have at once. The error code 486
“Allocation Quota Reached” exists for this purpose.

CHAPTER 5. DISCUSSION 97

5.2 Future Work

By looking at the results in Section 4.4.5 on the delay of a P2PSIP call setup, we can
clearly notice that some improvements are needed for the delay to stay below the acceptable
limits. Even with small optimizations, such as adjusting the stopping criterion of the ICE
connectivity checks, we could make a huge difference. For example, since the call setup
repeats the ICE checks twice, we could let the results from the first check influence the
stopping criterion used for the second check. Naturally, we cannot trust the outcome of the
first ICE check if only due to the deterministic behavior of NATs. However, if a check on
the same type of candidate pair that got selected in the first ICE checks would succeed in
the second, it could cause the stopping criterion to be met earlier than it otherwise would be.
We did not implement any optimizations, but they could be an interesting topic for future
work.

5.3 Summary

Since we have no information on the existence and proportions of different NAT types in
mobile phone networks, it is hard to make any definite statements about how NAT traversal
would actually work in a real mobile P2PSIP environment. However, based on our mea-
surements presented in the previous chapter, mobile P2PSIP peers running ICE could relay
signaling traffic but not media. Therefore, they would be most suitable for a narrowband
application, such as instant messaging and presence information.

The fact that running a P2PSIP prototype is very battery consuming even without ICE [30],
could lead to a growth in the frequency of joins and leaves to the network. This could,
then again, make it more likely that connections via TURN server get broken. In a P2PSIP
network implemented on mobile phones, it is even more important that the cost of relaying
is equally distributed among the TURN servers. Moreover, the servers should limit the
number of allocations and the type of data being relayed.

Due to the high delays in P2PSIP when ICE is used, optimizations for the call setup are
required, such as adjusting the stopping criterion. The optimizations are left for future
work.

Chapter 6

Conclusions

The need for network address translators existed even before more than a billion wireless
devices, such as mobile phones, needed access to the Internet. Now that the peer-to-peer
applications are spreading to mobile phones, the phones are confronted with the same chal-
lenges as computers are with NATs. This is why additional tricks, commonly referred to
as NAT traversal techniques, are required also on mobile phones. ICE provides a complete
NAT traversal solution. It is not interested in figuring out the types of the NATs between
the peers; it simply tries to find the most optimal working path between the peers. We im-
plemented an ICE prototype using J2ME for examining the applicability of NAT traversal
mechanisms for mobile phones in the context of P2PSIP. The prototype was implemented
according to the ICE specification, except that it was necessary to add three non-standard
attributes to our implementation due to the incapability of the J2ME library to resolve a host
name into an IP address.

Among other things, we examined the impact of NAT traversal on a mobile phone from the
view point of CPU load, memory consumption, and battery consumption. In these mea-
surements the mobile phone running the ICE prototype was not actually part of a P2PSIP
overlay to better distinguish the effects of NAT traversal only. A STUN client that has es-
tablished a connection to its peer drains the battery in 9 hours 22 minutes when no data but
only keepalives are transmitted over the connection. In contrast, for a TURN server that is
relaying P2PSIP overlay maintenance data between a single client and its peer, the battery
duration is 4 hours 32 minutes. Due to the high battery consumption, users may have low
incentives to allow their phones to act as TURN servers. For all the measured scenarios with
one connection, the used momentary java heap size varies between 765 and 1049 kilobytes.
The average memory usage of a TURN server is clearly dependent on the number of clients

98

CHAPTER 6. CONCLUSIONS 99

it has; the average memory consumption grows approximately 5 kilobytes per allocation.
If either keepalives or P2PSIP overlay maintenance data are being transmitted between a
STUN or TURN client and its peer or relayed by a TURN server, the CPU load is rather
low, that is, on average 3% or less. However, if a mobile phone relays a voice data con-
nection compared to keepalives only, the CPU load grows 24-fold, which means utilizing
on average almost 60% of the entire CPU power. The downside of relaying is, in addition
to the increased delay, the increased proportion of overhead due to the encapsulation in a
STUN Send or Data indication.

We also examined how well a mobile phone being part of a P2PSIP overlay can act as a
STUN or TURN server. A P2PSIP peer acting as a TURN server cannot relay even a single
media connection, even if a narrow band voice codec was used. However, a mobile phone
can relay infrequent signaling and and can act as a STUN server. A TURN server running
on a phone was able to relay 14 connections with only keepalives and 9 connections with
P2PSIP overlay maintenance data, assuming it did not have any ongoing data connections
of its own. If more connections were added, the drop rate became unacceptably high. A
mobile P2PSIP peer worked surprisingly well as a STUN server, especially if the keepalives
to the server are implemented as Binding indications, which is the standard way (no reply
is needed). This means that in a P2PSIP network with mobile phones only it is preferable
for peers to be publicly reachable or behind NATs that use endpoint-independent mapping
and filtering since then relays are not needed.

The ICE prototype was integrated to a P2PSIP prototype for the purpose of measuring the
delays that NAT traversal causes in a call establishment between mobile and wired P2PSIP
clients. As expected, the average delays and the average amount of STUN messages sent
for the wired scenarios were lower than for the corresponding mobile scenarios, that is 2.7-
9.5 seconds depending on the scenario. In a mobile scenario, where the nodes are publicly
reachable, the use of ICE increases the delay by a factor of 3.2. ITU E.721 recommendation
states an average delay of 8.0 seconds and a 95th percentile of 11.0 seconds for international
calls. In the mobile scenarios with ICE, the delays never fell within the acceptable limits,
since the lowest average delay was 13.7 seconds and the lowest 95th percentile delay was
19.9 seconds. In the wired scenarios using ICE, only the delays for the publicly reachable
clients fell within the limits. During a P2PSIP call establishment, the ICE procedures are
repeated twice, once for SIP and once for RTP. The ICE connectivity checks finished faster
for RTP than SIP due to a different pacing of the checks. However, a faster pacing comes
with the cost of more messages being sent. Since the delays, especially in the mobile
scenarios using ICE, were clearly unacceptable, we presented some possible suggestions to
speed up the P2PSIP call setup.

CHAPTER 6. CONCLUSIONS 100

When starting with the thesis, we envisioned a P2PSIP overlay that would be run entirely
on mobile phones. Despite the fact that mobile phones are able to perform both the client
and server side functinality of STUN and TURN, the limitations of mobile phones make it
unfeasible to have the mobile phones act as a server, especially in a P2PSIP overlay. When-
ever possible, it is better for the mobile phones to act as P2PSIP clients, or if acting as
P2PSIP peers, have e.g. a desktop computer perform the STUN or TURN server function-
ality. Some of the delay caused by ICE when creating a connection follows from the way
ICE is specified (in addition to the locally optimizable stopping criterion): ICE focuses a lot
on ensuring that the most optimal path is found even in rare scenarios (checks are sent from
relayed addresses to host addresses with a relatively high priority). It follows that the way
of finding the path might not be the most optimal itself in some more common scenarios, in
terms of delay and the traffic generated.

Bibliography

[1] FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce/NIST, National
Technical Information Service, April 1995.

[2] P. Almquist. Type of Service in the Internet Protocol Suite. RFC 1349 (Proposed
Standard), July 1992. Obsoleted by RFC 2474.

[3] S. Asadullah, A. Ahmed, C. Popoviciu, P. Savola, and J. Palet. ISP IPv6 Deployment
Scenarios in Broadband Access Networks. RFC 4779 (Informational), January 2007.

[4] F. Audet and C. Jennings. Network Address Translation (NAT) Behavioral Require-
ments for Unicast UDP. RFC 4787 (Best Current Practice), January 2007.

[5] Finnish Communications Regulatory Authority. Network speed test.
https://nettimittari.ficora.fi. Accessed, February 23, 2010.

[6] S. Baset, H. Schulzrinne, and M. Matuszewski. Peer-to-Peer Protocol (P2PP). Internet
Draft (Standards Track), November 2007.

[7] L. Bo, S. Xie, G. Y. Keung, J. Liu, I. Stoica, H. Zhang, and X. Zhang. An Empirical
Study of the Coolstreaming+ System, volume 25. IEEE Journal on Selected Areas in
Communications, December 2007.

[8] D. Bryan, P. Matthews, E. Shim, D. Willis, and S. Dawkins. Concepts and Terminol-
ogy for Peer to Peer SIP. Internet-Draft (Informational), July 2008.

[9] D. Bryan, E. Shim, B. Lowekamp, and S. Dawkins. Application Scenarios for Peer-to-
Peer Session Initiation Protocol (P2PSIP). Internet-Draft (Informational), November
2007.

[10] G. Camarillo, P. Nikander, J. Hautakorpi, and A. Keränen. HIP BONE: Host Identity
Protocol (HIP) Based Overlay Networking Environment. experimental, October 2010.

101

BIBLIOGRAPHY 102

[11] G. Camarillo and J. Rosenberg. The Alternative Network Address Types (ANAT)
Semantics for the Session Description Protocol (SDP) Grouping Framework. RFC
4091 (Proposed Standard), June 2005.

[12] B. Carpenter. Architectural Principles of the Internet. RFC 1958 (Informational), June
1996. Updated by RFC 3439.

[13] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
Gnutella-like P2P Systems Scalable. In SIGCOMM’03, 2003.

[14] Oracle Corporation. Java ME: Mobile Media API (MMAPI); JSR 135.
http://java.sun.com/products/mmapi/, 2010.

[15] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC
2460 (Draft Standard), December 1998. Updated by RFC 5095.

[16] K. Egevang and P. Francis. The IP Network Address Translator (NAT). RFC 1631
(Informational), May 1994. Obsoleted by RFC 3022.

[17] Ericsson. P2PSIP Prototype.

[18] P. Eronen. TCP Wake-Up: Reducing Keep-Alive Traffic in Mobile IPv4 and IPsec NAT
Traversal. January 2008.

[19] Google. Google talk. http://code.google.com/apis/talk/libjingle/important_concepts.html.
Accessed, November 20, 2009.

[20] S. Guha, K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. NAT Behavioral Re-
quirements for TCP. RFC 5382 (Best Current Practice), October 2008.

[21] S. Guha, N. Daswani, and R. Jain. An Experimental Study of the Skype Peer-to-
Peer VoIP System. In Proceedings of The 5th International Workshop on Peer-to-Peer
Systems, 2006.

[22] T. Hain. Architectural Implications of NAT. RFC 2993 (Informational), November
2000.

[23] H. Haverinen, J. Siren, and P. Eronen. Energy consumption of always-on applications
in wcdma networks. In VTC Spring, 2007.

[24] M. Holdrege and P. Srisuresh. Protocol Complications with the IP Network Address
Translator. RFC 3027 (Informational), January 2001.

BIBLIOGRAPHY 103

[25] H. Holma and A. Toskala. WCDMA for UMTS: Radio Access for Third Generation
Mobile Communications. John Wiley & Sons, 2004.

[26] C. Jennings, B. Lowekamp, E. Rescorla, S. Baset, and H. Schulzrinne. REsource
LOcation And Discovery (RELOAD). Internet Draft (Standards Track), July 2008.

[27] C. Jennings, J. Rosenberg, and E. Rescorla. Address Settlement by Peer to Peer.
Internet Draft (Standards Track), July 2007.

[28] A. Keränen. Host Identity Protocol-based Network Address Translator Traversal
in Peer-to-Peer Environments. Master’s thesis, Helsinki University of Technology,
September 2008.

[29] S. Li and J.Knudsen. Beginning J2METM Platform: From Novice to Professional.
Apress, third edition, 2005.

[30] J. Mäenpää and J. J. Bolonio. Performance of resource location and discovery (reload)
on mobile phones. In Proc. of IEEE IPDPS, 2009.

[31] J. Maenpaa and G. Camarillo. Study on maintenance operations in a peer-to-peer
session initiation protocol overlay network. In Proc. of IEEE IPDPS, 2009.

[32] J. Mäenpää and G. Camarillo. Analysis of delays in a peer-to-peer session initiation
protocol overlay network. In Proc. of IEEE CCNC, 2010.

[33] J. Mäenpää and G. Camarillo. Estimating operating conditions in session initiation
overlay network. In Proc. of IEEE IPDPS, April 2010.

[34] Microsoft. Technical specification v20100218. Interactive Connectivity Establish-
ment (ICE) Extensions, February 2010.

[35] Sun Microsystems and Motorola. Application Programming Interface: MID Profile.
http://java.sun.com/javame/reference/apis/jsr118/, 2006.

[36] A. Müller, A. Klenk, and G. Carle. On the Applicability of Knowledge-based NAT
Traversal for future Home Networks. In Proceedings of IFIP Networking 2008, 2008.

[37] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1994.

[38] P. Maymounkov and David Mazierès. Kademlia: A Peer-to-peer Information System
Based on the XOR Metric, 2002.

[39] S. Perreault and J. Rosenberg. TCP Candidates with Interactive Connectivity Estab-
lishment (ICE). Internet-Draft (Standards Track), October 2010.

BIBLIOGRAPHY 104

[40] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Experiences building planetlab.
In Proc. of the 7th symposium on Operating systems design and implementation (OSDI
’06), 2006.

[41] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content-
Addressable Network. In SIGCOMM’01, 2001.

[42] J. Rosenberg. Interactive Connectivity Establishment (ICE): A Protocol for Network
Address Translator (NAT) Traversal for Offer/Answer Protocols. RFC 5245 (Stan-
dards Track), February 2010.

[43] J. Rosenberg, R. Mahy, and P. Matthews. Traversal Using Relays around NAT
(TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN). RFC 5766
(Standards Track), February 2010.

[44] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing. Session Traversal Utilities for NAT
(STUN). RFC 5389 (Proposed Standard), October 2008.

[45] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks,
M. Handley, and E. Schooler. SIP: Session Initiation Protocol. RFC 3261 (Proposed
Standard), June 2002. Updated by RFCs 3265, 3853, 4320, 4916, 5393.

[46] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2001), 2001.

[47] Skype. http://www.skype.com.

[48] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator (Traditional
NAT). RFC 3022 (Informational), January 2001.

[49] P. Srisuresh, B. Ford, and D. Kegel. State of Peer-to-Peer (P2P) Communication across
Network Address Translators (NATs). RFC 5128 (Informational), March 2008.

[50] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT) Terminology
and Considerations. RFC 2663 (Informational), August 1999.

[51] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In SIGCOMM’01,
2001.

[52] R. Subramanian and B.D. Goodman. Peer-to-peer computing: the evolution of a
disruptive technology. Idea Group Inc., 2005.

BIBLIOGRAPHY 105

[53] International Telecommunication Union. Network grade of service parameters and
target values for circuit-switched services in the evolving ISDN. ITU-T Recommen-
dation E.721, May 1999.

[54] M. Westerlund and T. Zeng. The evaluation of different NAT traversal Techniques for
media controlled by Real-time Streaming Protocol (RTSP). Internet-Draft (Informa-
tional), January 2010.

	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Objectives and Scope
	Structure

	Background
	Network Address Translation
	Basic Network Address Translator
	Network Address and Port Translator
	Benefits of Network Address Translation
	Drawbacks of Network Address Translation

	NAT Classification
	Mapping Behavior
	Filtering Behavior
	Port Assignment Behavior
	Hairpinning Behavior

	NAT Traversal
	STUN
	TURN
	Interactive Connectivity Establishment

	Existence of Different NAT Types
	Peer-to-Peer Networking
	Peer-to-Peer Session Initiation Protocol
	Use of Distributed Hash Tables
	Peer-to-Peer Protocol (P2PP)
	REsource LOcation And Discovery (RELOAD)

	Mobile Phone Capabilities
	Summary

	Implementing Mobile NAT Traversal Using ICE
	Need for Mobile NAT Traversal
	Java 2 Micro Edition
	Implementation Architecture
	STUN Library
	TURN Extension
	ICE Library

	Implementing ICE
	Differences from the specification
	Non-Specification Additions
	Stopping the Connectivity Checks

	Summary

	Measurements and Evaluation
	P2PSIP Prototype
	Call Setup between P2PSIP Clients
	Organizing Peers as STUN and TURN servers

	Prototyping Environment
	P2PSIP Parameters
	ICE Parameters and Message Sizes

	Baseline Measurements on a Mobile Phone
	Measurement Results
	Mobile Phone as a TURN Server
	Mobile Phone as a STUN Server
	Mobile Phone as a STUN or TURN Client
	Mobile phone as P2PSIP peer
	Impact of NAT Traversal on Delays in P2PSIP

	Measurement Analysis
	Battery consumption
	Memory Consumption
	CPU Load
	Overhead Bandwidth and Drop Rate
	Call establishment in P2PSIP
	Generality of the Measurement Results
	Measurement Observations

	Summary

	Discussion
	NAT Traversal on Mobile P2PSIP Peers
	Future Work
	Summary

	Conclusions

